GLASSY CARBONS Semi-Annual Progress Report for the Period June 30, 1973 to January 1, 1974 January 1974 ARPA Order Number: 1824 Program Code Number: 1D10 Contractor: The Regents of The University of Michigan Effective Date of Contract: 1 June 1973 Amount of Contract: $150,000 Contract Number: DAHC15-71-C-0283 Principle Investigator: Professor Edward E. Hucke Department of Materials & Metallurgical Engineering The University of Michigan Ann Arbor, Michigan 48104 (313) 764-3302

The views and conclusions contained in this document are those of the author and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S. Government.

TABLE OF CONTENTS Page SUMMARY.................... iv I. INTRODUCTION.................. 1 II. MATERIALS PREPARATION............ 3 III. STRUCTURAL STUDIES............ 4 A. Thermodynamic Characterization....... 5 B. Effect of Hydrogen on Thermodynamic Measurements........ 14 C. Small Angle X-ray Diffraction..... 29 IV. PROPERTY EVALUATION............. 42 REFERENCES.......... 44 APPENDIX.................... 45 iii

S UMMA RY Measurements by a variety of methods of structural characteristics at size levels from atomic dimensions to the macroscopic, together with the resulting mechanical and physical properties have shown that porous glassy carbons achieved by pyrolysis of furfural alcohol resins can reproducibly and rapidly be produced in large sections with tailored properties of potential interest for mechanical, physical and chemical applications. Sections greater than three inches have been made in pyrolysis cycles of one day. Thermodynamic cell measurements of the configurational enthalpy and entropy difference between glassy carbons and graphite have shown that the fine structures of various glassy carbons are quite different and certainly not merely microcrystalline graphite. The entropy measurements show that a large configurational difference exists relative to graphite for any of the glassy carbons studied up to the highest treatment temperature studied (about 1900~C). In addition, these data show that not much additional order is produced during vacuum pyrolysis in the temperature range of 1300~C to 1900~C even though there is a continuous sharpening of the wide angle X-ray spectrum. The strain as measured by the configurational enthalpy drops rapidly and continuously for the pyrolysis range studied (1000-1900C). iv

An analysis of the thermodynamics of the C-O-H system shows that the presence of rather large amounts of hydrogen contamination would be required in order to measurably affect the thermodynamic cell measurements of enthalpy and entropy. Small angle X-ray scattering measurements under improved experimental conditions have shown excellent agreement with other such work on commercial glassy carbon samples. However, many experimental glassy carbons show a markedly different fine pore structure. In many cases the very fine pore structure (10-100A) is not monodisperse, but appears to be distributed throughout the range. While strength is roughly proportional to increased apparent density and inversely proportional to macro pore size (100A and above), many notable exceptions exist. The reasons apparently lie in the very fine structure, most probably in variations possible in the polydispersity of very fine scale pores. A rather strong inverse relation exists between the compressive strength and electrical resistivity, reduced by calculation to eliminate all pores open to xylene, indicating that better layer perfection leads to higher strength. v

GLASSY CARBONS I. Introduction This report covers work carried out during the period June 1973 to January 1974. Results of the previous contract periods are summarized in four previous semi-annual reportsl. Since various property evaluations are being carried out simultaneously, the data tables included in this report are cumulative and have been revised to reflect additional samples as well as corrected in certain instances where more reliable measurements were obtained. Cumulative data tables are given in the Appendix. The term glassy carbon has been used in recent years to describe a supposedly new form of carbon having generally very high strength, hardness and inertness, coupled with a low density and a black glassy appearing fracture surface. Its properties are rather dramatically different from those of graphite and diamond and therefore has lead to interest in developing materials for a wide variety of structural, wear resistant, high temperature, biomedical, corrosion resistant, electrical, and chemical separation applications. While glassy carbons are all made by a controlled decomposition of organic compounds it has become obvious that the properties obtained depend markedly on the nature of the organic precursor and the exact details of its decomposition. -1

In short, glassy carbon is not a single material but a class of materials having a range of structure at all size levels ranging from atomic to macroscopic dimensions. While the materials normally produced are nearly pure carbon, because of the variability in structure they may possess quite different properties. In most respects these materials may be considered as two dimensional polymers containing a vanishingly small content of atoms other than carbon. Crystal structure in a three dimensional sense is lacking and even the two dimensional structure is not perfect. These materials are not truly amorphous in the sense of a supercooled random liquid but they are highly disordered and at best can be thought of as paracrystalline. With respect to their small scale structure they are really not new materials since they seem to be similar in many ways to soots, carbon blacks, and hard coals. In addition the so-called "graphite" fibers have a structure much more closely related to a one dimensionally elongated glassy carbon than to crystalline graphite. In addition most of the matrix materials in carbon-carbon composites are disordered rather than graphitic. Since the structure is so variable on all size levels, no single tool for investigation is satisfactory for revealing the complete structure. The current program utilized, bright and dark field electron microscopy, scanning microscopy, small and wide angle X-ray diffraction, pycnometry, porosimetry, surface adsorption, hardness, strength, modulus of elasticity, electrical -2

resistivity and thermodynamic methods to gain information about both the void and the solid structure. After examining many different samples with these techniques it was concluded that the most important information could be gained from a newly developed thermodynamic method for characterizing the degree of order of the solid together with small angle X-ray diffraction for characterizing the small voids and scanning microscopy and density measurements for the larger scale structure. A complete picture of the small scale structure gleaned from the many different studies suggest that glassy carbons are made up of highly strained and twisted stacks of about five randomly oriented planes with an approximate graphite structure within each plane. In addition, a small amount of rather large crystalline areas (up to 1 micron) with either graphite or diamond structure can be found. Even though the small scale structure is two dimensional the macroscopic properties are isotropic. Probably the most interesting feature of the structure is the incorporation of relatively stable voids within the structure on a size scale from atomic dimensions to the macroscopic. The control of this void system in both size and amounts leads to an interesting ability to tailor all of the physical, chemical and mechanical properties over wide ranges. II. Materials Preparation An original goal of this program was to produce thick sections, i.e., greater than 1/8 inch, in short processing times -3

without cracking. This goal has been met by incorporating a pore system to relieve escaping gases during the early stages of pyrolysis. Section sizes up to three inches have been successfully prepared in pyrolysis cycles of about one day. In the last period the major effort has been aimed at reproducibility in preparation. To that end some 110 separate batches were processed with a minimum number of process variations. Provided meticulous care is exercised at all stages, reproducibility in structure and properties can be achieved. Attempts to further refine preparation techniques with the currently favored precursor resin (Durez) and PTSA catalyst system are being made. It appears obvious that other resin systems would require at least as much effort in optimizing preparation in order to achieve the most desireable properties. III. Structural Studies The structural studies have concentrated in two areas, refinement and extension of the thermodynamic characterization of disorder, and small angle X-ray scattering for investigation of the small pores. In the case of the thermodynamics, a significant extension has been made in analyzing the potential effect of hydrogen included in the system. The small angle X-ray work has concentrated on achieving agreement with results of other laboratories, refining experimental techniques and improved analyses of the data. -4

A. Thermodynamic Characterization Additional data were obtained on the Gibbs free energy change of the equilibrium: C = C graphite glassy carbon for a series of glassy carbon samples 324-19, varying only in HTT (highest heat treating temperatures). This measurement as a function of temperature allows the evaluation of both the configurational enthalpy and entropy. The first gives a measure of the energies of missing atoms, strained bonds and similar defects while the second relates to the disorder relative to perfect crystalline graphite. The measurement currently employed measures electrochemically the difference between graphite and glassy carbon maintained in their respective equilibrium oxygen partial pressures at a given temperature and atmospheric pressure. Table 1 lists the summary of thermal treatment for all the glassy carbon samples studied so far by both fused salt (FS) and solid electrolyte (ZC) techniques. The samples were heated in either vacuum (-5xlO-7 atm) or in an atmosphere of flowing nitrogen for about 1 hr at HTT selected between 1000~-2000~C. The plots of free energy change AG vs. T for the reaction Cga = C yielded graphite glassy carbon yielded straight lines, since the above reaction involves vanishingly small differences in composition, specific heat, and hence the vibrational contributions. Figure 1 shows the AG vs. temperature -5

TABLE 1: Surmary of Thermal Treatment on Glassy Carbon Samples HTT HTt HTT Atmosphere Experiment Sample # (~C) (hr.) (Vacuum -5x10-7 atms.) FS-2 321-10 1600 1 Nitrogen FS-5 321-7 1400 i 1 Nitrogen FS-9 321-9 1600 - 1 Nitrogen FS-11 321-7 1600 1 Nitrogen ZC-15 UCAR-ZBY * * * ZC-16 321-13 1060 1 Vacuum ZC-17 321-13 1243 = 1 Vacuum ZC-18 321-13 1510 = 1 Vacuum ZC-19 321-13 1800 = 1 Vacuum ZC-21 Beckwith 2000 * * D-82-2 ZC-23 321-13 2000 1 Nitrogen ZC-24 321-7 1002 = 1 Vacuum ZC-25 321-7 2000 = 1 Nitrogen ZC-27 Hercules 1795 1 Vacuum H-54 ZC-28 324-19 1066 = 1 Vacuum ZC-29 324-19 1250 | 1 Vacuum ZC-30 324-19 1550 = 1 Vacuum ZC-31 324-19 1890 = 1 Vacuum *Not known

Glassy Carbon Sample # 324-!9 Heated Cooled in Vacuum Held at HTT'for Ihr. Cgraphite'-Cglassy carbon -6.0 - -4,0 - _ 1r 0660C ~' -4L 0 1250~C -2.0 _ 800 900 1000! 00 Temp. ~C Figure 1. Free Energy-Temperature Relationship for 324-19 Series Glassy Carbons -7

plots for the 324-19 series glassy carbon varying only in HTT. The slopes and intercepts at absolute zero of the lines yield the respective values of configurational entropy and enthalpy. A summary of data obtained on all the glassy carbon samples obtained so far has been presented in Table 2. As it can be seen, excellent least-square fits have been obtained on raw data of most of the glassy carbon samples, i.e., standard deviation of about 100-300 cal/gr-mole and correlation coefficients exceeding 0.99 in most cases. This uncertainty is well within the achievement domain of solid oxide electrolyte cells. The information contained in Table 2 is also presented in Fig. 2 in a graphical form, which may be regarded as a twoparameter (AS and AH) representation of glassy carbon samples. On this plot the origin represents perfect crystalline hexagonal graphite. It is quite apparent that the various glassy carbon samples are remarkably different in thermodynamic properties which manifests in a wide range of physical, mechanical and structural properties. This justifies our contention that "glassy" carbon is not a single material, but a family of materials whose structure (hence the properties) can be varied at all size levels. Additional data for nitrogen surface area, Xylene density, Lc, d002, La, d10 on the samples used for thermodynamic study have been summarized in Table 3. Figure 3 shows the results on the 324-19 series glassy carbon. The entropy and enthalpy show the expected trend, decreasing with increasing HTT. It is appar-8

TABLE 2: Summary of Data on Thermodynamic Measurements AH AS Standard Deviation Correlation Experiment (cal/gr-mole) (cal/gr-mole-~K) in AG (cal/gr-mole) Coefficient FS-2 200 0.2 ~100 0.957 FS-5 8,900 7.5 ~100 0.999 FS-9 1,300 1.4 -- FS-1l 750 0.6 ~100 0.999 ZC-15 300 0.2 ---- ZC-16 9,200 8.8 ~100 0.990 i ZC-17 4,800 4.6 ~100 0.999 i ZC-18 4,200 4.2 ~100 0.998 ZC-19 3,700 4.6 ~100 0.994 ZC-21 5,200 10.5 ~200 0.997 ZC-23 7,000 5.1 ~200 0.995 ZC-24 2,750 3.1 ~100 0.998 ZC-25 4,500 7.7 ~100 0.994 ZC-27 4,500 11.3 ~200 0.995 ZC-28 5,600 8.3 ~300 0.969 ZC-29 4,050 4.5 ~100 0.997 ZC-31 300 4.3 ~300 0.937

12*000 10,000 8000 -- 6000 % I ~e) 9< 4000 O 2000 Z a] S0 ZC Solid Electrolyte 3 El Fused Salt Electrolyte 4 8 12 16 AS (cals/gm-mole-~K) Figure 2. Two parameter representation of Glassy Carbons -10

TABLE 3: Summary of X-ray, Surface Area, and Xylene Density Data Specific Nitrogen Xylene Density d002 L d L1 c 10 a 0 0 0 0 Experiment Surface Area m2/gr PXYL' gr/cc A A A A Graphite ---- 2.22 3.37 Very 2.13 Very high high ZC-16 72.4 1.56 3.70 16.5 No vis. No vis. peak peak ZC-17 56.6 1.54 3.63 18.1 2.09 47.5 ZC-18 51.3 1.50 3.63 18.1 2.09 39.4 ^ ZC-19 47.9 1.44 3.56 18.5 2.10 48.5 ZC-21 - 1 1.51 3.49 30.8 2.10 48.5 ZC-23. 1.45 3.42 32.2 2.09 61.0 ZC-24 --- 1.52 3.69 17.5 No vis. No vis. peak peak ZC-25 --- 1.47 3.46 30.8 2.10 42.0 ZC-27 ---- 1.51 3.49 28.0 2.09 51.0 ZC-28 _ — 1.71 3.63 16.5 2.08 40.0 ZC-29 _ — 1.66 3.63 15.4 2.07 35.8 ZC-30 - 1 1.60 3.63 18.8 2.09 51.0 ZC-31 ---- 1.55 3.56 22.4 2.08 57.3

of~0 |N^ \Glossy Carbon Sample #: 324-19 E 6 00 Heated in Vacuum and held 80 E C"o~ for I hour at HTT - 4.0 J, 2.0- 60 t 420 6.0 o AS v iL. \ \__________^ ______ ^^^ —^<-.3 6 <J 2100 183.600 0' C4 M 3- 517 3 1 - 356 1- 15 1- - - ^ -' 2 10 2 C ^-A ----- -— A —1 -2 —.10 6o 1 1.70 P 2.06 1000 1200 1400 1600 1800 2000 HTTr: ~C Figure 3. Relation of X-ray, density and thermodynamic data in 324-19 Series Glassy Carbons. Carbons.

ent that relatively minor changes occur from 1250~-1900~C. The enthalpy drops more rapidly than the entropy in this range. The enthalpy difference, AH for the sample 324-19-1890~C (ZC-31) is only 300 cal/gr-mole which represents one of the smallest values obtained thus far indicating bond energy remarkably close to that for graphite. However, the configurational entropy shows that the structural order changes very little and is grossly different than crystalline graphite. The X-ray data correlate roughly in this series with the thermodynamic measurements. However, d002 shows a significant change while the atomic configuration is almost constant. This may well be due to strain relaxation which is confirmed by the lowering of AH to 300 cal/gr-mole. The values of L and L a c steadily increase with increasing HTT while d10 is fairly constant. These findings are consistent with the formation of closed pores as indicated by the steady drop in xylene density. -13

B. Effect of Hydrogen on Thermodynamic Measurements The experimental data obtained thus far on the thermodynamics of carbons were treated for a C-O binary system. The effect of a small amount of hydrogen present in the glassy carbon or graphite was a-priori assumed to be negligible, and the entire thermodynamic development of C-O-H ternary was approximated by the C-O limiting binary. This section describes the effects of hydrogen content on the thermodynamics of carbon approximated by the C-O binary. The variations of experimentally measured equilibrium oxygen partial pressure, activity of carbon, and the emf of the galvanic cell to measure the above quantities, have been studied as the function of hydrogen content. Since there is no available experimental data or approximating theoretical model to calculate the equilibrium hydrogen pressure of a given carbon from the input hydrogen concentration [i.e., the reaction: ~H (g) t H (hydrogen structurally associated in carbon)], the parameter studied is the input or initial hydrogen content of the system. Although the major source of hydrogen input is the carbon sample, the present calculation assumes a total hydrogen input from all sources, i.e., carbon sample, purified gas, adsorbed moisture, and minute but finite undetected leaks. Method of Solution The three component system of C-H-O, has one condensed phase C, and six gaseous constituents, CO, CO2, H2, H20, 02 and -14

CH4, considering only one major hydrocarbon constituent, methane, and hence four independent chemical reactions (no. of constituents - no. of elements = 7-3 = 4) will completely and uniquely describe the equilibrium of C-H-O ternary system. The four chemical reactions chosen were those where direct and accurate experimental data for equilibrium constants exists in the literature2. The reactions and the value of their equilibrium constants are as follows: Equilibrium Constant Reaction log K I. C(S) + ~02(g) = CO(g) (5956/T) + 4.459 II. C(S) + 02(g) = CO2(g) (20590/T) + 0.0437 III. H2(g) + ~O2(g) = H20(g) (13045/T) - 2.981 IV. C(S) + 2H2(g) = CH4(g) (4796/T) - 5.805 Assuming that the gaseous constituents form an ideal solution, their fugacities can be approximated by partial pressures which can in turn be replaced by mole fractions, at 1 atmospheric pressure. The equilibrium constants, KI, KII, KIII and KIV for the above reactions can thus be expressed, independent of total systems pressure as: -15

pcO (a ) (po1/2) C 0 2 K Ipco2 2 PH20 K = I (PH (po1/2) 2 2 K - PCH4 IV (ac) (PH )2 However, three additional constraints must be provided to solve the system of seven unknowns and seven equations uniquely. The four equilibrium constants constitute the first four equations. The fifth equation is the statement that the summation of partial pressures of all the constituents in the gaseous phase equals the total pressure of one atmosphere. The experimentally measured value, A, of the oxygen partial pressure of the C-O-H system constitutes the sixth equation. The seventh and the final equation comes from the conservation of hydrogen atoms, i.e., total input hydrogen, B, is split into equilibrium hydrogen, water vapor, and methane. The resulting seven non-linear equations may be written in the form: fi(x) = 0, i = 1,2,...7 (1) f,(x) = x2 - (K)2(x,) (x7)2 = 0 (2) -16

f2 (x) = x (K) (x7) (5) =(2) f3 (x) = x - (KI) 2 (x3) 2 (x) = 0 (3) f4 (x) = x6 - (K) (X7) (X3) = 0 (4) f5(x) = x1 + x2 + X3 + x4 + x5 + x6 - 1 = 0 (5) f6 (x) = x5 - A = 0 (6) f (x) = x4 + x3 + 2x6 - B = 0 (7) In the above system of equations x1, x2, X3, x4, X5, x6 are the equilibrium mole fraction of CO, CO2, H2, H20, 02, and CH4, respectively, and x7 is activity of carbon. A and B, as indicated above, are the equilibrium oxygen partial pressure, and the input hydrogen concentration, respectively. In addition, there are seven side conditions, 1.0 > x. > 0 i = 1,2,...7 (8) These conditions insure that all mole fractions in the equilibrium mixture are non-negative, that is, any solution of equations 1-7 that contains negative mole fractions and negative activity is thermodynamically meaningless. From physical-chemical principles, there is one and only one solution of the equations that satisfies conditions (8). Any irrelevant solutions may be therefore detected and discarded readily. In the case of graphite, where carbon activity at all temperatures and pressures is assigned a value of unity, i.e., -17

standard state of carbon, there are only six equations (equation 6 drops out) and six unknown (x a = = 1.00). Hence, the effect of variation of input hydrogen content, B, on the composition of the gaseous constituents, including the equilibrium oxygen partial pressure x5, is studied. The system of simultaneous nonlinear equations has been solved using the Newton-Raphson method as described by Carnahan, et al.3 The partial derivatives of equations 1-7 are obtained by partial differentiation of the seven functions, fi(x), with respect to each of the seven variables. For example, fl 2Xi, _7 -2(KI)2(x) (x7) af2 1.0 axS -(K )(x) ax2 - 1X5 7 3f 4 -2(KV )(7) (x3), f47 (K) (x3) The Newton-Raphson method consists of providing the initial guess for the unknown, solving the linear system of equations, a check for possible convergence to a solution, and finally the iterative process is containued until the desired accuracy exceeds or equals some specified upper limit. The Newton-Raphson method guarantees a quadratic convergence to the real roots. Results and Discussion The choice of initial guess of unknowns was very critical in the efficiency of numerical computation. With a wise and -18

educated guess it was possible to obtain convergence (within 0.00001) to the true roots within 10 iterations. The convergence was tested by starting the computation with a different set of guesses, and in all the successful runs, the results converged to the identical set of values. Physically meaningless results were discarded. Graphite The results for graphite (a = 1.00) at one atmospheric c pressure are shown in Tables 4-6. The first column of these tables lists the input hydrogen concentration and the next six columns record the equilibrium CO, CO2, H2, H20, CH, and oxygen partial pressures or mole fractions. The last column of Tables 4-6 list the absolute value of the electromotive force in mV of a hypothetical galvanic cell I consisting of an ideal graphite with no hydrogen contamination and a graphite with a given hydrogen contamination, as two electrodes fixing different equilibrium oxygen partial pressure. Pt/Graphite// S.O.E.// Graphite/Pt C-O (C-O-H) [I] I poII ~Po~ PO2 In other words, the absolute value of E is the upper bound of the error introduced in the measured thermodynamics of carbon when the -19

TABLE 4: Composition of gaseous constituents in equilibrium with graphite at 1073~K, 1 atm. pressure (PH) i PCO PCO, P PH2 PO20 PCH, PO, I E (xl 0 -2) (X10-5) (x10-2 ) (mV) _ _, _, 0.000 0.8750 0.1250 0.0000 0.0000 0.0000 0.7327 0.00 0.001 0.8742 0.1248 0.0009 0.0114 0. 0036 0.7314 0.04 0.010 0.8672 0.1228 0.0089 0.1126 0.3626 0.7197 0.41,.'... —..7197 0.41 0.050 0.8360 0.1141 0.0444 0.5436 9.0864 0.6688 2.11 0.100 0.7967 0.1036 0.0889 1.0377 36.452 0.6074 4.33 0.200 0.7174 0.0840 0.1783 1.8744 i 146.68 0.4926 9.18 0.400 0.5555 0.0504 0.3589 2.9213 594.19 0.2954 21.0 0.600 0.3889 0.0247 0.5420 3.0880,1355.2 0.1447 37.5 0.800 0.2168 0.0077 0.7280 2.3121 2444.6 0.0450 64.5 0.900 0.1285 0.0027 0.8222 1.5477 3118.1 0.0158 887 1.000 0.0386 10.0002 0.5182 3880.6 0.0014 144 -20

TABLE 5: Composition of gaseous constituents in equilibrium with graphite at 1273~K, 1 atm. pressure (PH2) P CO PO PH PH20 PCH4 PO2 E (x10-2) (X10-2) (x10-3) (xl0-18) (mV) 0.000 0.9914 0.8608 0.0000 0.0000 0.0000 0.5218 0.00 0.001 0.9904 0.8591 0.0010 0.0014 0.0000 0.5208 0.05 0.010 0.9816 0.8439 0.0099 0.0130 0.0009'0.5116 0.54 0.050 0.9422 0.7776 0.0493j 0.0624 0.0223 i0.4714 2.79 0.100 0.8931 0.6986 0.09861 0.1183 0.0891 10.4235 5.72 0.200 0.7948 0.5533 0.1972 0.2104 0.3561 0.3354 12.12 0.400 0.5983 0.3135 0.3940 0.3165 1.4217 0.1900 27.7 0.600 0.4018 0.1414 0.5904 0.3185 3.1927;0.0857 49.5 0.800 10.2053 0.0369 0.7865 0.2168 5.6650 0.0224 86.4 0.900 0.1071 0.0100 0.8844 0.1271 7.1635 j0.0061 122 1.000 0.0088 0.0001 0.9822 0.0116 8.8836 i0.00004 259 -21

TABLE 6: Composition of gaseous constituents in equilibrium with with graphite at 1473~K, 1 atm. pressure (PH)i PCO PCO P PH2O P PCH o iEI 2 C 2 C2z H4 E2 (X10-2) (Xl0-4) xl0-6) (x0-17) (mV 0.000 0.9990 0.1038 10.0000 0.0000 0.0000 0.9878 0.00 0.001 0.9980 0.1036 0.0010 0.0234 0.0028' 0.9858 0.06 I _____._______________I_~ I I 0.010 0.9890 0.1017 0.0100 0.2406 0.2807 0.9682 0.64 0.050 0.9491 0.0937 0.0499 1.1149 7.01641 0.8916 3.25 -----------— _ _ -- --- 5 s - 0.100 0.89921 0.0841 10.0997 2.1120 28.056 0.8003 6.68 0.200 0.7994 0.0664 0.1994 3.7542 112.15 0.6326 1 4.1 0.400 0.6001 0.0374 0.3985 5.6320 448.02 0.3564 32.3 0.600 0.4008 0.0167 0.5974 5.6400 1006.8 0.1590 58.0 0.800 0.20171 0.0042 0.7960 3.7826 11787.4 0.0403 102 0.900 0.1022 0.0011 10.89531 2.1559 12260.8 0.0104 145 1.000 0.0028 0.0000 0.9944 0.0982 2789.3 0.00008 373 -22

results of hydrogen contaminated graphite (C-O-H) is approximated, as a limiting case, to the uncontaminated system (C-O). The following conclusions can be drawn from the results obtained. (1) At all temperatures the composition of gaseous constituents in equilibrium with graphite either increase (H12, CH4) or decreases (CO, C02, 02) monotonically, except H20 which shows a maxima around (pH ) = 0.60. (2) The stoichiometric amount of methane is very small (almost negligible) at all temperatures and (PH )i as high as even 1.00. This checks the earlier assumption of totally negligible proportions of higher hydrocarbons. (3) The equilibrium hydrogen concentration is almost identical to the input concentration (PH )i implying that water vapor and methane are very minor constituents of gases in equilibrium with graphite under these conditions. (4) At lower hydrogen concentration, CO is the major constituent, and the proportion becomes even more overwhelming in favor of CO at higher temperatures. (5) The upper bound of the experimental error is about 0.5 mV, for a graphite containing as much as 1% hydrogen, which is well within the accuracy limits of the measured emf. Rather large amounts of hydrogen (approx. 10% atomic hydrogen in solid graphite) would have to be released from the small samples used to raise the gas phase hydrogen content to 1%. The results of Tables 4-6 along with some additional data are summarized in Figure 4. The most important portion of the -23

400 P= I atm. (All Temperatures in Kelvin) GRAPHITE: ec =1.00 300- -- (for all T) 12730 6 14730 E,c\-)~~~ 09730 0,0 4 0,08 L.....LJ 0.2 0.4 0.6 0.8 1.0 (PH2)i (atms.) Figure 4. Effect of initial hydrogen concentration on the upper bound of the experimental error.

curves [(PH ). = 0 - 0.1] has been blown up to demonstrate the above conclusion more clearly. Glassy Carbon Additional computations were done on a typical glassy carbon, characterized by AH = 9,000 cal/mole, AS = 9.00 e.u. relative to graphite. The results have been shown in Table 7. If calculations were made on the C-O system alone, the experimentally measured value of emf of the cell against hydrogen free graphite, would be 12.50 mV at 1073~K. This corresponds to an equilibrium oxygen partial pressure of 0.1258 x 10-19 atms, is the experimentally measured value and hence appears as constant in all five rows. The calculated value of carbon activity based on p0 = 0.1258 x 10-19 atm. has been calculated as a function of 02 hydrogen contamination. The value of IE is the emf in mV which would be obtained if a hypothetical cell II were operated: Pt/Glassy Carbon// S.O.E.// Glassy Carbon/Pt (C-O) (C-O-H) (II) and JAGJ is the free energy difference between two states of glassy carbon. Therefore, IEJ and JAGI are the measure of experimental uncertainty due to hydrogen contamination. The values of JAGI has been directly obtained by the relation a CI |AGI = RT n n a cII where a and a are the carbon activities of the left hand CI CI-25

TABLE 7: Composition of gaseous constituents in equilibrium with a glassy carbon (AH = 9,000; AS = 9.0) at 1073~K, 1 atm. pressure (PH2)i PCO 02 PH H2 PCH4 P02 ac EI JAGI (x10- 3) (x10- 3) (x10- 7) (x10- 19) (mV) (cal./mole) 0.000 0.8423 0.1577 0.0000 0.0000 0.0000 0.1258 0.7348 0.00 0 0.001 0.8414 0.1575 0.8561 0.1438 0.2481 0.1258 0.7338 0.04 3.0 0.010 0.8339 0.1561 8.5574 1.4377 24.565 0.1258 0.7272 0.36 22 0.050 0.8002 0.1498 42.7077 7.1749 587.17 0.1258 0.69791 2.04 110 0.100 0.7582 0.1420 85.237 14.320 2216.2 0.1258 0.6613 4.20 225 o~l

and right hand electrodes respectively. The value of |E| is the difference between 12.50 mV (emf of the uncontaminated hydrogen cell) and the value of emf obtained from the quadratic equation: a = [(Y) (X) (Z) {1 + (Y) (X) ]-' c II where Y = (Pc o /PO) of uncontaminated graphite X = e2EF/RT Z = equilibrium constant of the producer gas reaction (CGR + CO2 = 2CO) a = Carbon activity in the hydrogen containing c11 II glassy carbon. The following conclusions are drawn: (1) The carbon activity of glassy carbon in hydrogen contaminated atmosphere is lower than the same structured carbon without hydrogen present. (2) The effect of 1% gas phase hydrogen contamination does not change the experimental results beyond the accuracy limits of about 0.5 mV and 25 cal/mole. If all the hydrogen structurally associated with solid glassy carbon samples (1/4" x 1/8") were to be released, 1% gas phase hydrogen contamination corresponds to roughly 10% atomic hydrogen content of the solid carbon. Hence, the hydrogen content from solid carbon alone does not significantly affect the thermodynamic calculations approximated by C-O binary. -27

Therefore, it is concluded that the presence of any possible hydrogen in solid carbon could not have possibly accounted for the large measured free energy differences between graphite and glassy carbon. -28

C. Small Angle X-ray Diffraction Small angle X-ray scattering is being used to study microporosity of selected glassy carbon samples. Recent theoretical developments in the small angle X-ray analysis allow the determination of general structural parameters of both matter and the pore phases. Determination of the pore size, pore shape, distribution of pore sizes, internal surface area, etc., is possible if a detailed analysis is carried out1'9. Experimental Procedure Use of the Rigaku-Denki small angle unit equipped with a proportional counter, automatic step-scanner and digital printout is being used to measure the scattered intensity. Previously, slit collimation together with point focusing was used instead of line focusing. This resulted in a larger penalty in intensity. The point focus gave a smaller variation in the primary beam intensity with time, but increased the experimental time due to low intensity. Recently Kratky4'5 has described a collimation method using line focus not only to obtain maximum primary beam intensity but also to minimize effects of variation in room temperature, vibrations, and drifting of the focus. This "opening-beam" method requires that the tube window opening be slightly larger than the focal length. Since both of these parameters depend upon the tube and cannot be changed, generally it is not possible to achieve the opening-beam geometry. Fortunately a fine focus tube is -29

available with an 8 mm. focus and 10 mm. window. However the filter-mounting plate, collimator mounts, etc., has an opening less than 8 mm. and therefore some modifications in the RigakuDenki unit were made to achieve the described collimation. The above collimation system was able to increase the primary beam intensity by about 10 times compared to the point focus geometry. This reduced the experimental time to about 40 minutes from 3-4 hours with a resultant increased counting accuracy. Filtered Cu-Ka radiation is used in conjunction with a pulse-height discriminator. As pointed out by Kratky4'5 use of a narrow channel width discriminator results in radiation sufficiently monochromatic for all but extremely rigorous work. The tube is being operated at 54 KV and 25 mA. Correction of Observed-Intensity Weighting-Function When using slit-collimation the observed scattering is not at a single angle but represents the average scattering over a range of angles around the nominal scattering. The range of angles is often so large that the scattering pattern is distorted. Therefore experimental scattering data must be corrected for this effect. The extent of the angular region over which the collimation system averages the scattering and the relative emphasis given to angles within this range can be conveniently expressed -30

by a weighting function. The weighting function in the width direction of the slits can be experimentally measured as this is the shape of the direct beam. However it is generally not possible to measure the weighting function in the length or height direction, and therefore it is to calculate W from the known collimation geometry. The calculation of the length and width weighting function was made by a computer program written by Hendricks and Schmidt6. Only minor changes were made in this program. The width weighting function, Ww, was very small compared to W., and therefore width corrections were dropped after noticing no change in the width corrected curve and the observed curve. However WZ or Ww cannot be calculated very easily and accurately if the soller-slits are used in the detector slit box. Since the soller slits were used previously there is no easy way to get corrected curves from the samples reported earlier. Correction Program Scattering intensity, F(s) is related to perfect-collimation scattering I(s) by the equation, o00 F(s) = W(Z)I (/S2+Z2) dZ (1) - 00 where S = (28/A) and W(Z) is WZ the length weighting function is normalized so that 00 W(Z) dZ = 1 - 00 -31

Integration in (1) is needed only in +Z direction, since W(Z) is an even function of Z, therefore, 00 F(s) = 2 W(Z)I (/S2+Z2) dZ (2) -o Equation 2 is used to calculate I(s). The procedure requires a process of deconvolution. Two programs are available to carry out the deconvolution or desmearing. However only Schmidt's7 program was able to give corrected curves. The other program, written by Lake8 did not work since it did not converge even after 10 iterations. The method developed by Schmidt requires that W(Z) be Gaussian, that is, W(Z) = 2W(0)exp(-p2Z2) (3) hence 00 2W(0)exp(-p2Z2) dZ = 1 from which p = W(0) ~ /V can be obtained. In our case the weighting function was Gaussian and could be written as W(Z) = (0.01658) x 2 exp(-p2Z2) with p = 0.02855. The parameter "p" is all that is needed to correct the observed curve. -32

A difficulty was observed in many samples, particularly those with very low radius of gyration, was that ripples were caused by even slight scatter in the data even though Schmidt claims otherwise. For those samples it was necessary to develop a program to smooth the data before correction. A program has been developed to do this smoothing. Results Various samples have been analyzed by both Guinier and Porod plots. For the evaluation of RG, the Guinier radius, the approximation I(S) = n2 exp(- 4 2RG2S2) 3 iG is considered to be valid. Here I(S) is the corrected observed intensity and S is 2 sine/X where 0 and X are the Bragg angle and wavelength, respectively. The RG can be obtained from the plot of I(S) versus S2, which is a straight line if the distribution of pore size is very narrow. However if a wide range of pore sizes are present then the plot is no longer linear but curved concave upward, i.e., intensity increases sharply at lower S2. Pore size is directly related to the RG and can be calculated if the shape of the pores is known. If the pores are spherical then a= /J R where a is the radius of the pore. -33

Porod's plot (log I(S) versus log S) has been shown to be linear over wide range of S values if the density transitions between the phases are sharp as would be the case of pores within the carbon. For all the commercial samples thus far studied in this laboratory or reported in the literature, Guinier's law is followed, that is, the log I versus S2 plots are a straight line from very o low S2 value to high S2 value (X1.5x10-4A2). For the samples studied in our laboratory, given in Table 8, this has been verified. The Guinier radius, RG, is in excellent agreement with the published data. All the samples are found to be monodisperse, that is pore size for a particular sample is almost constant. For the samples made at the University of Michigan, many more samples are polydisperse than monodisperse. Very few samples follow Guinier law over wide ranges of S2 values as in the commercial samples. Only size out of twenty-four samples for which corrected RG values are reported in Table 9 follow Guinier law giving a single value of pore size. These samples are 317-26, 317-45, 318-5A, 318-7, 318-11, 318-51 all heat treated at 2000~C. Even these samples show a rapid increase in intensity near very o low S values (<0.2x10-4A2). However, the Guinier plots of the most of the polydisperse samples have a straight line portion in higher S2 values o (1l.5-3x10-4A-2). From the slope of this straight line a lower value of RG can be calculated. These RG values were found to be o o 10-16A for samples with HTT of 2000~C and %5A for samples of HTT -34

Table 8. Corrected RG for Commercial Samples Sample Our Yalue Reported Dispersity RG (A) Value (RG A) LMSC-20 14.8 13.2 Monodisperse LMSC-26 12.6 ---- Monodisperse LMSC-30 26.0 23.4 Monodisperse GC-10 5.2 5.7 Monodisperse GC-20 9.2 9.5 Monodisperse V-25 13.9 15.5 Monodisperse Beckwith-20 10.8 ---- Monodisperse V-10-42 14.8 ---- Monodisperse PFA-2000 13.1 13.0 Monodisperse -35

TABLE 9: Composition of gaseous constituents in equilibrium with graphite at 1073~K, 1 atm. pressure (PH2)i PCPCO2 PCOH2 PHO PHH P2CH P E (x1i-2) (xi0- ) (x10-2 (mV) 0.000 0.8750 0.1250 0.0 0.000 0.0000 00 0.7327 0.00 0.001 0.8742 0.1248 0.0009 0.0114 0.0036 0.7314 0.04 0.010 0.8672 0.1228 0.0089 0.1126 0.3626 0.7197 0.41 0.050 0.8360 0.1141 0.0444 0.5436 9.0864 0.6688 2.11 0.100 0.7967 0.1036 0.0889 1.0377 36.452 0.6074 4.33 0.200 0.7174 0.0840 0.1783 1.8744 146.68 0.4926 9.18 0.400 0.5555 0.0504 0.3589 2.9213 594.19 0.2954 j21.0 0.600 0.3889 0.0247 0.5420 3.0880 11355.2 0.1447 37.5 -0.800 0.2168 0.0077 0.7280 2.3121 2444.6 0.0450 64.5 0.900 10.1285 0.0027 0.8222 1.5477 3118.1 0.0158 88.7 1.000 0.0386 0.0002 0.9172 0.5182 3880.6 0.0014 144 -36

of 700~C. These values are approximately the same as the RG values of typical monodisperse samples at these temperatures. At present no relationship between any processing variable and whether or not the sample is polydisperse can be identified. To. calculate the range of RG values, the method of Jellinek, Solomon and Fankuchen9 was used. In this method a tangent is drawn to the Guinier plot at the greatest angle of scattering and the lowest RG is calculated from the slope of this line. The intensity values corresponding to this tangent are next subtracted from the original curve to give a curve not containing the contribution of the pores below this R. The G method is repeated until the whole curve is covered. In our case the above analysis gave very interesting results. The first tangent in all the cases was the same as the straight line portion of the Guinier plots. Once the intensity contribution of this was subtracted the remaining curve could be approximated by another straight line. The slope of these straight lines then was used to get the highest RG contributing to the scattering. These RG values were found to be 0 in the range of 50-90 A for all the samples. Thus we can say that the polydisperse samples contain 0 a significant fraction of pores of RG in the range 50-90 A givin a sharp rise in intensity over lower angles. Some commercial samples have shown similar behavior as reported by Ruland and Perret10, however the fraction of pores in this size range was -37

too small to cause any significant change in the Guinier plot. Further analysis is being carried out to determine the distribution of pores over the range discernible from the Guinier plot. This data then will be correlated with the porosimetry data. The above results show that some of our samples contain a greater fraction of pores of larger size than the commercial samples. These contain a much greater porosity than the commercial samples. For example 312-31 (2000), 318-22 (2000) and 318-45 (2000) for which porosimetry data are available show that a significant fraction of pores is present with diameters of 40 0 0 to 200 A (roughly corresponding RG values of 15-75 A if spherical shape is assumed). However, porosimetry data on the six samples which show monodispersity are not available to strengthen this point. A method is being developed to obtain the weight and number fraction of the pores in a given size group. Then the samples for which porosimetry data are available will be correlated with the small angle data. The scanning electron micrographs are available on some of the samples studied. However, the resolution of these micro0 graphs is limited to %200 A and therefore is of no direct use for comparison. Micrographs of samples 317-26 (2000), 317-45 (2000), 318-51 (2000) show only very coarse voids and it is very diffi0 cult to see any voids of diameter below 500 A. This agrees well -38

with the small angle study of these samples which shows them to be monodisperse and that they have only an extremely small 0 fraction of voids in the range 150-500 A. However sample 318-11 (2000) which is found to be monodisperse from small angle X-ray 0 analysis shows that some voids are present in the range 200-400 A size as seen in the electron scanning micrograph (50,000 X). 0 H-owever, the fraction of visible pores below 400 A seems to be small. For the polydisperse samples 317-45 (700), 318-12 (2000), 318-46 (2000) and 318-48 (2000) for which the scanning micrographs are available it is very hard to make any general conclusion because of lack of resolution. However it is certain that these 0 samples have some visible voids of diameter 200-500 A. Sample 318-46 (2000) shows a large number of voids present in the range 0 150-400 A and the small angle analysis shows that the sample is polydisperse with most voids in the range 50-150 A. Thus, there is qualitative agreement between these two techniques. The Porod plots for the above samples have been analyzed. For the commercial samples, plots from the corrected data are very similar to those reported earlier1 and published in the literature. The curves contain a flat region followed by a straight line portion at higher S values. This indicates the density transition from pore to carbon is very sharp. The Porod plots for samples made at the University of Michigan are similar to those reported earlierl. The region -39

at lower S values is not as flat as in commercial samples that are polydisperse (see Table 9) the flat region is barely present. However straight line behavior is found in all the samples over a wide range of S values. This indicates that the density transition is very sharp. Sample 312-31 (2000) has been studied using neutron timeof-flight diffraction method by Mildnerll. He found a charactero istic void dimension of 13.6 A. However, he did not study the sample in the S range in which the Guinier law is obeyed for 0 particles of RG = 14.2 A, the value found by X-ray. However, at higher S values he does support our finding that Porod's law is obeyed. -40

Table 9. Corrected RG for Samples Made at University of Michigan. 0 Sample RG (A) Polydispersity 311-19 (750) 5 - 65 Polydisperse 312-10 (2000) 19.7 - 53 Polydisperse 312-31 (2000) 14.2 - 65 Polydisperse 315-22 (2000) 12.0 - 70 Polydisperse 317-24 (2000) 10.2 - 70 317-26 (2000) 15.6 Monodisperse 317-45 (700) 4.0 - 90 Polydisperse 317-45 (2000) 14.8 Monodisperse 317-48 (700) 5 - 85 Polydisperse 317-48 (2000) 10.5 - 66 Polydisperse 318-5A (2000) 16.4 Monodisperse -7 (2000) 16.3 Monodisperse -8 (2000) 14.2 - 63 Polydisperse -9 (2000) 15.8 - 75 Polydisperse -11 (2000) 13.2 Monodisperse -12 (2000) 15.7 - 75 Polydisperse -22 (2000) 15.0 - 68 Polydisperse -23 (2000) 14.0 - 60 Polydisperse -41 (2000) 15.8 - 61 Polydisperse -45 (2000) 20.4 - 53 Polydisperse -46 (2000) 14.0 - 40 Polydisperse -48 (2000) 10.0 - 66 Polydisperse -49 (2000) 10.0 - 67 Polydisperse -51 (2000) 12.9 Monodisperse -41

IV. Property Evaluation During this report period work has concentrated on measurements of strength, density and electrical resistivity. Determinations of sonic modulus, hardness, and internal friction were suspended since no clear-cut correlations could be found between these properties and structure. Previous work" has shown a rough correlation between the apparent density and the strength properties; and an inverse relation between strength and average pore size. However, in both cases considerable scatter is present suggesting that significant variations in strength are caused by short range differences in carbon structure as well as the macro void structure. This point is best observed by comparing the strength and other properties on a reduced basis (see Appendix Table 10), i.e., correcting the cross-section to reflect only the area fraction carbon, pa/p, present. The large variation in the reduced data, especially for electrical resistivity indicates considerable variation in carbon structure. Other correlations with properties with such variables as real density (xylene) or X-ray parameters have not been able to significantly reduce the variation observed between different carbons. At present the strongest correlation found is between the reduced compressive strength and the reduced electrical resistivity. The strength data have been separated into five ranges and the reduced resistivity averaged for each group. -42

The results shown below give a definite inverse relationship with resistivity. Reduced Reduced Compressive Strength, psi Electrical Resistivity, 2-cm 44,000 and up.0088 20,000-43,000.0112 15,000-20,000.0133 10,000-15,000.0153 1,000-10,000.0220 Since lower resistivity would be expected to result from better perfection and lower strain within the layer structure, these results strongly suggest that higher strength also is favored by more perfect layers. This is not surprising, since the graphite layer structure is the strongest material known parallel to the layers. The inability to get clear-cut correlations of the properties with the more usual structural parameters suggests that other measures such as the thermodynamic order parameters, AH and AS, or the very fine scale void structure as determined by small angle X-ray might provide an answer. The differences might well be related to variations in the polydisperse very fine pore spectrum noted in the small angle X-ray experiments. -43

References 1. EE. Hucke, "Glassy Carbons", Semi-Annual Reports, January 1972, June 1972, January 1973, June 1973, Contract No. DAHC15-71-C-0283. 2. K. Schwerdtfeger and E. T. Turkdogan, Techniques of Metal Research, Interscience Publishers, Vol. IV, Part 1, 324 (1970). 3. B. Carnahan, H. A. Luther, and J. 0. Wilkes, Applied Numerical Methods, John Wiley & Sons, Inc., 321 (1969). 4. 0. Kratky, "Adaption of the technique..." In Small Angle X-ray Scattering (ed. H. Brumburger), p. 63, New York, Gordon and Breach (1968). 5. 0. Kratky, Quarterly Reviews in Biophysics 5(4), 481(1972). 6. R. W. Hendricks and P. W. Schmidt, Acta Physica Austricaca 26(3), 97(1967). 7. P. W. Schmidt, Acta Cryst. 19, 938(1965). 8. James A. Lake, Acta Cryst. 23, 191(1967). 9. M. H. Jellinik, E. Solomon, I. Fankuchen, Ind. Eng. Chem. Anal. Ed., 18, 172(1966). 10. R. Perret and W. Ruland, J. Appl. Cryst. 5, 183(1972). 11. D. Mildner, Ph.D. Thesis, University of Michigan, Ann Arbor, Michigan, 1974. -44

APPENDIX -45

TABLE 1 SUMMARY OF X-RAY DATA (All values in Angstroms) Symbols Used in the Tables Experimental Condition All the samples were run in a Phillips-Norelco Diffractometer using CuKa radiation under the following conditions: Tube Voltage: 45KV Tube Current: 14mA Proportional Counter Voltage: 1.622KV Proportional Counter Time Constant: 4 sec. Chart Speed: 1/2 inch/min. Scan Speed: 1.2 degree (20)/min. Slits: 1~/006"/1~ at Primary/Scattering/Secondary Sample used of thickness of 3mm in all cases except where otherwise designated. The value of d(10) refers to the unresolved (100) and (101) peak. (002) Peak Type S: "Smooth" (or single phase) Peak NVS: "Not Very Smooth" Peak 2P: "2 Phase" Peak 3P: "3 Phase" Peak (002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La Graphite, solid S 3.37 Very 2.13 Very 3mm & lmm thick High High Graphite S 3.37 Very 2.13 Very High High Graphite, natural S 3.35 Very 2.13 Very (Reported) High High Graphite, synthetic S 3.37 Very 2.13 Very (Reported) High High -46

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La Commercial Samples Lockheed, solid 2000 S 3.53 21.2 2.09 98.0 Lockheed, reported 2000 3.56 19.0 Beckwith, solid 2000 S 3.55 23.2 2.09 112.0 Beckwith, reported 2000 3.54 15.0 -- 50.0 Tokai, solid 1000 S 3.70 14.2 2.07 43.7 Tokai, reported 2000 -- -- -- -- Atomergic Chemicals 2500 S 3.40 38.4 2.09 69.0 Co., V-25, solid Atomergic Chemicals 2500 Co., V-25, reported Atomergic Chemicals 1000 NVS 3.44 42.0 2.10 71.0 Co., V-10 Atomergic Chemicals 1000 -- -- Co., V-10, reported Hercules H-54 1795 S 3.49 28.0 2.09 51.0 311-9 2000 S 3.54 28.0 2.10 57.0 311-19 700 S 3.63 18.0 - 311-20 2000 S 3.53 27.2 2.10 46.0 311-21 2000 S 3.52 27.2 2.10 54.0 311-22 2000 2P 2.49 29.0 2.12 >125.0 3.45 311-25 700 S 3.70 21.0 -- 311-30A 2000 S 3.51 23.4 2.10 54.0 311-31 2000 S 3.50 25.0 2.10 51.0 312-8 2000 S 3.52 27.0 2.10 42.0 312-9 2000 2P 3.52 27.0 2.10 57.0 3.45 312-10 700 S 3.65 16.2 - 312-10 2000 S 3.49 35.0 2.11 53.0 312-14 2000 S 3.51 29.0 2.09 61.0 312-14A 2000 3P 3.46 32.0 2.12 >150.0 3.43 3.36 312-15 2000 S 3.52 27.1 2.11 51.0 312-16 2000 3P 3.47 32.1 2.11 51.0 3.43 3.36 312-21 2000 S 3.51 30.8 2.10 57.0 312-26 2000 S 3.51 27.8 2.09 48.0 312-28 2000 S 3.51 27.2 2.10 51.0 312-29 2000 S 3.51 34.0 2.10 57.0 312-31, solid 2000 S 3.57 27.6 2.10 56.0 312-32 2000 S 3.51 30.8 2.10 54.0 312-33 2000 NVS 3.48 30.8 2.10 52.8 -47

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 312-34 2000 2P 3.46 33.0 2.11 46.2 3.44 312-39 2000 S 3.49 29.8 2.10 53.0 312-40 2000 2P 3.48 30.1 2.09 54.0 3.45 312-43 2000 2P 3.48 33.2 2.11 51.0 3.43 312-44 2000 2P 3.48 42.0 2.11 51.0 3.44 312-48 2000 3P 3.46 30.4 2.10 37.0 3.43 3.37 312-49 2000 S 3.52 31.1 2.11 61.0 315-1 2000 S 3.53 27.2 2.10 48.0 315-2 2000 2P 3.49 29.0 2.10 54.0 3.43 315-3 700 S 3.71 16.2 - 315-5 2000 2P 3.49 29.0 2.11 54.0 3.44 315-8 2000 2P 3.49 28.2 2.10 56.0 3.44 315-9 2000 2P 3.47 33.0 2.11 47.0 3.44 315-14 2000 S 3.53 26.3 2.10 54.0 315-18 2000 3P 3.40 45.0 3.382 3.351 315-20 680 S 3.70 16.3 -- -- 315-20A 2000 2P 3.53 28.0 2.10 57.0 3.43 315-21C 2000 2P 3.52 27.8 2.10 57.0 3.43 315-22 665 S 3.67 16.4 - 315-22 2000 S 3.52 28.0 2.10 51.0 315-24A 2000 2P 3.47 20.0 3.38 315-25A 2000 S 3.52 26.5 2.09 48.0 315-26B 2000 3P 3.50 26.5 2.10 46.0 3.41 3.37 315-26C 680 S 3.69 17.1 -- 315-28 2000 2P 3.52 26.0 2.10 46.0 3.43 315-28B 600 S 3.70 16.8 -- -- 315-30 2000 2P 3.56 24.0 2.09 48.0 3.43 315-31 680 S 3.70 18.2 315-34 680 S 3.69 15.4 -- -- -48

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 315-36 2000 3P 3.52 24.3 2.10 48.5 3.43 3.37 315-37 680 S 3.63 17.5 - 315-37 2000 S 3.50 26.3 2.098 42.0 315-38 680 S 3.63 18.8 -- -- 315-38 2000 2P 3.49 27.1 2.097 46.0 3.43 315-39 2000 2P 3.53 27.2 2.098 57.0 3.43 315-39 680 S 3.63 20.0 - 315-40 2000 S 3.54 25.6 2.097 51.0 315-41 2000 NVS 3.49 23.6 2.098 51.0 315-42 2000 S 3.56 27.2 2.098 46.0 315-43 2000 NVS 3.52 24.3 2.098 51.0 315-43 700 S 3.67 17.4 - 315-44 2000 2P 3.55 23.1 2.10 40.2 3.45 315-45 2000 S 3.49 27.2 2.10 46.6 315-46A 2000 2P 3.55 23.1 2.098 57.0 3.43 316-6 2000 NVS 3.50 27.0 2.11 57.0 316-7, Run 1 2000 S 3.49 28.0 2.10 45.0 316-7, Run 2 2000 S 3.52 27.0 2.10 53.0 316-15 2000 2P 3.40 32.0 - 316-28 2000 S 3.50 27.2 2.10 51.0 316-32 2000 2P 3.42 53.0 -- -- 3.40 317-1 700 S 3.71 20.0 - 317-1 2000 S 3.46 45.0 2.11 63.0 317-2 700 S 3.68 15.7 -- -- 317-2 2000 NVS 3.48 24.6 2.09 47.0 317-6 700 S 3.71 13.0 -- -- 317-6 2000 NVS 3.55 22.0 2.10 55.0 317-7 700 S 3.68 16.0 -- -- 317-7 2000 NVS 3.46 27.5 2.10 50.0 317-8 700 S 3.71 11.5 -- -- 317-8 2000 2P 3.56 20.0 2.10 44.0 3.46 317-10 2000 NVS 3.48 26.0 2.10 68.0 317-11 700 S 3.71 16.3 -- -- 317-13 700 S 3.72 15.0 -- -- 317-13 2000 NVS 3.47 24.0 2.08 66.0 317-14 700 S 3.71 15.7 -- -- 317-14 2000 NVS 3.45 27.0 2.09 46.0 317-15 700 S 3.71 15.3 -- -- 317-15 2000 NVS 3.47 26.0 2.09 54.0 317-16 2000 S 3.54 24.0 2.09 53.0 -49

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 317-18 2000 S 3.59 21.0 2.09 58.0 317-19 700 S 3.68 16.5 - 317-19 2000 NVS 3.49 30.0 2.09 52.0 317-20 700 S 3.66 17.5 - 317-20 2000 S 3.50 25.6 2.09 48.0 317-24, Run 1 2000 NVS 3.52 24.0 2.09 45.0 317-24, Run 2, solid 2000 NVS 3.49 21.0 2.09 50.0 317-25 2000 S 3.53 20.0 2.09 50.0 317-26, Run 1 2000 NVS 3.48 26.0 2.09 48.0 317-26, Run 2, solid 2000 2P 3.46 24.2 2.10 51.0 3.43 317-28 2000 NVS 3.46 25.0 2.09 52.0 317-29 700 2P 3.43 21.5 3.42 317-29, Run 1 2000 NVS 3.43 65.0 317-29, Run 2 2000 NVS 3.426 75.0 317-30 2000 2P 3.44 29.5 -- -- 3.40 317-31A 2000 S 3.58 22.0 2.10 46.0 317-32 700 S -- -- 317-32 2000 2P 3.51 23.6 2.08 49.0 3.48 317-33 700 S 3.68 17.0 -- -- 317-33 2000 S 3.414 92.0 2.10 49.0 317-34 700 S 3.68 17.0 -- -- 317-34 2000 3P 3.44 30.0 2.09 50.0 3.42 3.36 317-35 700 S 3.71 16.0 - 317-35 2000 3P 3.50 26.5 2.10 62.0 3.43 3.36 317-37 700 S 3.68 15.6 - 317-37 2000 NVS 3.43 43.0 2.10 63.0 317-38 700 S 3.68 15.6 -- -- 317-38 2000 3P 3.54 25.0 2.09 51.0 3.43 3.37 317-39, Run 1 2000 3P 3.45 28.0 2.10 52.0 3.43 3.36 317-39, Run 2, 2000 3P 3.52 24.2 2.09 45.0 solid, lmm thick 3.42 3.37 317-39, Run 3, 2000 3P 3.52 23.5 2.09 49.0 solid, lmm thick 3.41 3.37 -50

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 317-40 2000 3P 3.49 24.8 2.10 48.0 3.42 3.36 317-41A 2000 S 3.53 26.5 2.10 48.0 317-41B 2000 S 3.53 28.0 2.10 54.0 317-42 2000 3P 3.49 26.0 2.10 42.6 3.42 3.36 317-43 2000 3P 3.45 26.0 2.09 56.0 3.42 3.35 317-44 2000 3P 3.48 30.0 2.09 55.0 3.42 3.36 317-45, solid, 700 S 3.75 12.9 -- -- 1mm thick 317-45, Run 1 2000 3P 3.48 25.0 2.09 60.0 3.40 3.35 317-45, Run 2 2000 3P 3.46 24.0 2.09 42.0 3.42 3.35 317-46 2000 3P 3.43 31.5 2.10 75.0 3.42 3.36 317-47 2000 3P 3.50 27.0 2.10 60.0 3.42 3.36 317-48, Run 1 700 S 3.71 16.2 317-48, Run 2 700 S 3.87 17.4 -- -- 317-48, Run 1 2000 3P 3.45 40.0 2.10 60.0 3.43 3.37 317-48, Run 2 2000 3P 3.46 34.0 2.10 59.0 solid, lmm thick 3.43 3.37 317-49 700 S 3.71 15.7 - 317-49, Run 1 2000 3P 3.49 29.0 2.09 62.0 3.41 3.35 317-49, Run 2 2000 3P 3.46 33.0 2.09 60.0 solid, lmm thick 3.44 3.37 317-50 700 S 3.67 15.6 -- -- 318-1 2000 S 3.55 28.0 2.10 54.0 318-2 2000 S 3.51 27.0 2.10 55.0 318-3, Run 1 700 S 3.70 16.7 318-3, Run 2 700 S 3.69 16.7 -- -- -51

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 318-3 2000 2P 3.46 26.0 2.11 51.0 3 41 318-4 700 S 3.66 16.8 - 318-6A 2000 S 3.50 31.0 2.09 59.0 318-7, Run 1 2000 S 3.50 28.0 2.10 65.0 318-7, Run 2, solid 2000 S 3.49 28.0 2.10 45.0 318-8, Run 1 2000 S 3.45 39.0 2.10 63.0 318-8, Run 2 2000 S 3.45 43.5 2.10 77.0 solid, 2mm thick 318-9 2000 2P 3.48 32.5 2.11 57.0 3.46 318-10 520 S 3.74 15.2 - 318-10 2000 S 3.49 33.8 2.12 50.0 318-11, Run 1 2000 NVS 3.42 77.0 2.10 38.0 318-11, Run 2 2000 NVS 3.43 78.0 2.11 40.0 318-12 2000 3P 3.49 31.4 2.09 59.0 3.43 3.36 318-13 2000 NVS 3.42 44.0 2.10 58.0 318-14 700 S 3.65 16.0 -- 318-14 2000 3P 3.48 30.5 2.10 60.0 3.43 3.36 318-15, Run 1 700 S 3.75 16.0 -- -- 318-15, Run 2 700 S 3.75 15.1 -- -- 318-15 2000 3P 3.45 30.2 2.10 60.0 3.42 3.37 318-16 700 S 3.72 15.7 - 318-16 2000 2P 3.43 39.0 2.09 49.0 3.41 318-17 700 S 3.68 16.7 -- -- 318-17 2000 NVS 3.45 42.0 2.11 59.0 318-18, Run 1 700 S 3.68 16.4 - 318-18, Run 2 700 S 3.71 16.3 -- -- 318-18 2000 S 3.55 25.6 2.10 44.0 318-19 2000 S 3.52 26.0 2.09 59.0 318-20 700 S 3.67 16.0 - 318-20 2000 S 3.53 21.0 2.09 48.0 318-21, Run 1 700 S 3.78 14.0. 318-21, Run 2 700 S 3.75 15.4 -- 318-21 2000 S 3.55 23.6 2.10 55.0 318-22 700 S 3.70 15.4 - 318-22, Run 1 2000 NVS 3.44 65.0 2.10 55.0 318-22, Run 2 2000 NVS 3.44 64.0 2.11 54.0 318-23 700 S 3.74 16.0 -- -- 318-23 2000 S 3.63 63.0 2.10 73.0 318-24 700 S 3.64 16.7 -- -- -52

(002) Temp. Peak Sample Designation (oC) Type d(002) Lc d(10) La 318-24 2000 S 3.44 45.0 2.10 68.0 318-26, Run 1 700 S 3.69 15.7 -- -- 318-26, Run 2 700 S 3.75 16.1 318-26, Run 3 700 S 3.69 16.7 318-27 2000 2P 3.45 35.4 2.10 47.0 3.41 318-28 700 S 3.75 18.0 -- -- 318-28 2000 2P 3.47 27.0 -- -- 3.42 318-29, Run 1 2000 NVS 3.45 30.0 2.08 62.0 318-29, Run 2, 2000 2P 3.50 30.5 2.10 65.0 solid, lmm thick 3.44 318-29, Run 3 2000 2P 3.52 31.0 2.10 60.0 3.42 318-30 700 S 3.64 15.2 -- -- 318-30, Run 1 2000 2P 3.48 34.1 2.11 69.0 3.43 318-30, Run 2 2000 3P 3.45 31.0 2.11 63.0 3.41 3.36 318-31, Run 1 2000 2P 3.45 35.5 2.10 64.0 3.43 318-31, Run 2 2000 3P 3.47 31.0 2.11 63.0 3.41 3.36 318-32, Run 1 700 S 3.64 15.7 -- -- 318-32, Run 2 700 S 3.63 16.0 -- -- 318-32 2000 S 3.44 47.0 2.10 65.0 318-33 700 S 3.66 16.7 - 318-33 2000 NVS 3.46 28.0 2.11 64.0 318-34 700 S 3.63 16.5 -- -- 318-34 2000 3P 3.49 37.0 2.10 59.0 3.43 3.36 318-35 700 S 3.71 15.3 -- -- 318-35 2000 3P 3.50 34.0 2.11 67.0 3.44 3.37 318-36 700 S 3.68 17.0 -- -- 318-36 2000 2P 3.51 28.0 2.10 49.0 3.44 318-37 700 S 3.71 16.1 -- -- 318-37 2000 3P 3.46 33.6 2.10 52.0 3.43 3.376 318-38 700 S 3.71 15.6 -- -- 318-38 2000 3P 3.47 28.0 2.10 49.0 3.43 3.37 -53

(002) Temp. Peak Sample Designation (0C) Type d(002) Lc d(10) La 318-39, Run 1 700 S 3.71 17.0 318-39, Run 2 700 S 3.65 17.2 solid, lmm thick 318-39 2000 S 3.51 26.1 2.09 60.0 318-40 700 S 3.71 15.0 -- 318-40 2000 2P 3.52 28.0 2.11 54.0 3.45 318-41 700 S 3.71 14.8 - 318-41 2000 S 3.50 28.0 2.09 57.0 318-43, Run 1 700 S 3.69 17.0 - 318-43, Run 2 700 S 3.71 13.8 -- -- solid, 1mm thick 318-43, solid 2000 S 3.44 31.0 2.12 58.0 318-44 700 S 3.72 15.6 -- 318-44 2000 S 3.55 27.2 2.10 44.0 318-45 700 S 3.71 15.7 -- -- 318-45 2000 S 3.56 25.4 2.10 46.0 318-46 700 S 3.71 15.9 - 318-46, solid 2000 S 3.53 26.2 2.11 51.0 lmm thick 318-47 700 S 3.71 15.0 -- 318-47 2000 NVS 3.49 29.0 2.10 48.0 318-48, Run 1 2000 S 3.53 26.8 2.10 54.0 318-48, Run 2 2000 S 3.52 29.2 2.10 42.0 318-50, Run 1 700 S 3.71 14.3 318-50, Run 2 700 S 3.71 15.5 - 318-50 2000 S 3.53 26.0 2.10 46.0 318-51 2000 S 3.56 27.2 2.10 56.0 318-52 2000 S 3.53 26.5 2.10 54.0 318-53, Run 1 2000 S 3.52 26.5 2.10 54.0 318-53, Run 2 2000 S 3.54 30.0 2.10 60.0 318-54 700 S 3.66 17.0 - 318-55 700 S 3.71 15.2. 318-56 2000 S 3.54 27.0 2. 0 54.0 318-58 700 S 3.71 18.0 - 318-58 2000 NVS 3.51 28.2 2.10 51.0 318-59 700 S 3.68 16.7 318-59 2000 S 3.51 26.0 318-60 700 S 3.70 15.7 318-60 2000 2P 3.47 32.0 3.44 318-61 700 S 3.71 18.6 -- 318-61 2000 S 3.52 23.3 2.09 55.0 318-62 700 S 3.70 15.3 -- -- 318-62 2000 S 3.56 22.5 2.10 51.0 321-1 700 S 3.66 5.0 -- -- 321-2 700 2P 3.63 17.4 -- -- 3.57 -54

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 321-2 2000 3P 3.54 22.8 2.10 51.5 3.43 3.38 321-3 700 S 3.64 17.4 - 321-3 2000 S 3.53 24.3 2.10 51.0 321-4 700 S 3.64 17.2 321-4 2000 -- 321-5 700 S 3.63 15.4 - -- 321-5 2000 S 3.49 26.4 2.09 53.7 321-6 700 S 3.64 17.0 - 321-6 2000 S 3.54 27.7 2.10 48.0 321-7 700 S 3.69 18.0 -- -- 321-7 2000 - -- --- 321-8 700 S 3.69 17.5 321-8 2000 -- 321-9 700 S 3.67 17.4 321-9 2000 - -- --- 321-10 700 S 3.67 17.0 321-10 2000 - -- --- 321-11 700 S 3.71 17.0 -- -- 321-11 2000 2P 3.54 27.2 2.10 65.0 3.46 321-12 700 S 3.63 16.8 - 321-12 2000 S 3.53 26.4 2.094 56.0 321-13 700 S 3.66 17.0 -- -- 321-13 2000 2P 3.49 33.2 2.09 61.0 3.42 321-16A 2000 3P 3.50 30.8 2.10 57.0 3.43 3.36 321-16B 2000 S 3.50 28.8 2.10 44.0 321-16C 700 S 3.63 15.2 -- -- 321-17 700 S 3.60 18.7 -- -- 321-17B 2000 S 3.49 28.8 2.10 44.0 321-18A 2000 3P 3.50 29.8 2.10 49.0 3.43 3.37 321-18B 700 S 3.63 15.2 - 321-19A 2000 2P 3.54 25.0 2.09 46.0 3.426 321-19A 700 S 3.63 17.1 -- -- 321-19B 2000 NVS 3.43 39.0 2.10 53.8 321-20A 700 S 3.63 17.5 -- -- 321-20A 2000 3P 3.52 28.0 2.10 61.0 3.42 3.36 321-20B 2000 3P 3.53 37.0 2.10 46.0 3.426 3.37 321-21A 700 S 3.63 18.0 -55

(002) Temp. Peak Sample Designation (C) Type d(002) Lc d(10) La 321-21A 2000 NVS 3.43 41.6 2.10 51.0 321-21B 700 S 3.64 18.4 - 321-21B 2000 S 3.52 27.0 2.10 57.0 321-22A 2000 2P 3.52 27.6 2.10 53.0 3.43 321-22B 700 S 3.70 16.1 - 321-23 2000 S 3.49 33.0 2.10 54.0 321-23A 700 S 3.63 18.4 - 321-23B 700 S 3.36 16.5 -- 321-23B 2000 3P 3.52 29.6 2.10 51.0 3.43 3.36 321-24 700 S 3.70 15.8 321-24A 700 S 3.63 16.2 321-24B 700 S 3.63 16.5 - 321-24B 2000 S 3.43 35.4 2.09 57.0 321-25 700 S 3.63 18.4 -- -- 321-25 2000 NVS 3.47 30.8 2.10 60.8 321-25A 700 S 3.60 21.0 - 321-25A 2000 NVS 3.43 40.2 2.10 60.5 321-26 700 S 3.67 15.0 - 321-26 2000 S 3.52 27.2 2.094 48.5 321-26A 700 S 3.63 18.1 -- -- 321-26A 2000 S 3.52 27.2 2.094 54.0 321-27 2000 S 3.52 29.8 2.10 51.0 321-29 700 S 3.63 16.8 - 321-29 2000 3P 3.49 24.8 2.094 58.0 3.40 3.35 321-30 700 S 3.63 19.6 - 321-31 2300 3P 3.44 49.0 2.10 60.5 3.41 3.37 321-31A 2300 NVS 3.40 90.0 2.11 58.0 321-31B 2300 3P 3.49 37.0 2.11 69.0 3.43 3.37 321-31C 700 S 3.60 18.8 - 321-31C 2300 3P 3.49 34.5 2.11 69.0 3.426 3.37 321-31D 700 S 3.63 17.4 - 321-31D 2300 S 3.47 37.2 2.11 69.0 321-31E 700 S 3.63 17.4 -- -- 321-31E 2300 NVS 3.426 61.6 2.11 69.0 321-31F 700 S 3.60 18.5 - 321-31F 2300 S 3.45 44.0 2.10 69.0 321-31G 2300 2P 3.47 35.0 2.10 56.0 3.43.-56r

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 321-311 2300 2P 3.49 40.0 2.11 69.0 3.38 321-32 700 S 3.60 18.9 -- -- 321-34 2300 S 3.42 57.5 2.10 78.5 321-34A 2300 S 3.426 51.4 2.10 42.0 321-36A 2300 S 3.47 53.6 2.11 64.5 321-36B 700 S 3.63 18.2 -- -- 321-36C 2300 S 3.43 70.0 2.10 46.0 321-37 2000 S 3.52 30.8 2.10 54.0 321-37A 700 S 3.60 18.1 -- -- 321-37B 2000 3P 3.53 27.2 2.10 54.0 3.44 3.36 321-38B 700 S 3.63 17.7 -- -- 321-39 2000 2P 3.48 34.1 2.10 57.0 3.426 321-39B 700 S 3.63 16.4 -- -- 321-41C 2000 3P 3.49 32.6 2.10 62.5 3.43 3.36 321-42A 700 S 3.63 18.8 -- -- 321-42A 2000 2P 3.49 35.5 2.10 60.5 3.43 321-42B 700 S 3.63 16.7 - 321-42B 2000 2P 3.50 25.3 2.10 64.4 3.43 321-43B 700 S 3.63 19.3 -- -- 321-43B 2000 2P 3.49 35.0 2.098 59.4 3.42 321-43B1 2000 2P 3.50 36.8 2.11 59.5 3.426 321-43B2 2000 2P 3.50 33.0 2.10 57.0 3.43 321-44A 2000 3P 3.50 30.8 2.10 51.0 3.43 3.36 321-44B 2000 3P 3.50 29.0 2.10 54.0 3.43 3.36 321-45A 2200 S 3.49 33.0 2.10 57.0 321-45B 2200 S 3.47 45.5 2.10 40.5 321-46A 2000 2P 3.49 31.7 2.10 60.4 3.43 321-46B 2000 3P 3.46 30.8 2.10 51.0 3.43 3.36 321-46C 2000 3P 3.47 35.6 2.10 51.0 3.43 3.36 -57

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 321-46D 2000 3P 3.50 31.7 2.10 64.4 3.43 3.36 321-48A 2000 S 3.50 31.8 2.10 57.0 321-48B 2000 S 3.50 33.0 2.10 64.4 321-48C 2000 S 3.50 33.0 2.10 60.4 321-49A 2000 S 3.49 33.0 2.10 60.4 321-49B 2000 NVS 3.426 51.2 2.10 54.0 321-51 2000 NVS 3.43 91.5 2.11 69.0 321-51A 2000 NVS 3.43 107.5 2.11 68.0 321-52 2000 NVS 3.43 91.2 2.11 60.5 322-1A 2000 3P 3.44 26.4 2.085 57.3 3.37 3.33 322-1B 2000 S 3.40 41.5 2.085 -- 322-2B 1600 S 3.50 23.0 2.085 37.3 322-3B 1600 S 3.53 22.0 2.085 61.0 322-9A 2000 S 3.37 105.0 2.10 49.6 322-9B 2000 S 3.38 117.0 2.09 51.0 322-10A 2000 2P 3.43 33.0 2.085 -- 3.38 322-10B 2000 2P 3.50 30.8 2.10 69.0 3.43 322-10C 2000 2P 3.49 33.4 2.085 3.43 322-10D 2000 2P 3.50 28.6 2.10 60.0 3.43 322-11A 1670 S 3.55 22.0 2.085 51.2 322-11B 1670 S 3.49 23.0 2.085 47.0 322-11B 2000 2P 3.47 33.0 2.085 48.5 322-12A 1600 S 3.56 23.0 2.085 40.5 322-12B 1670 S 3.56 22.0 2.10 57.0 322-13B 1670 S 3.53 31.8 2.085 50.2 322-14A 1670 S 3.50 23.0 2.085 -- 322-14B 1670 S 3.56 21.0 2.09 46.0 322-15B 1670 S 3.56 25.0 2.085 48.4 322-16A 1670 S 3.56 23.5 2.085 322-16B 1670 S 3.56 22.0 2.085 44.0 322-17A 1670 S 3.56 22.2 2.085 88.0 322-17B 1670 S 3.56 22.0 2.085 51.4 322-18B 1670 S 3.50 28.8 2.085 61.5 322-19B 1670 S 3.56 20.6 2.085 48.5 322-20 1670 S 3.50 21.4 2.085 30.2 322-21B 1670 S 3.56 17.0 2.085 69.5 322-23A 1300 S 3.56 17.4 2.085 -- 322-25A 1410 S 3.56 18.5 2.085 46.1 322-25B 1410 S 3.56 19.2 2.07 121.0 322-26A 1410 S 3.50 25.6 2.085 51.0 322-26B 1410 S 3.50 19.2 2.085 40.2 -58

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 322-27A 1410 S 3.59 20.0 2.085 57.3 322-27B 1410 S 3.56 19.3 2.085 -- 322-28A 1410 S 3.56 19.4 2.08 40.2 322-28B 1410 S 3.56 17.8 2.085 53.2 322-29 1410 S 3.56 20.1 2.085 40.2 322-29B 1410 S 3.56 21.0 2.085 53.2 322-31A 1410 S 3.56 23.0 2.085 40.4 322-31B 1410 S 3.56 18.8 2.085 54.0 322-32 1350 S 3.56 18.2 2.085 48.5 322-34 1350 S 3.56 19.2 2.085 46.0 322-35 1350 S 3.56 20.6 2.085 54.0 322-36 1543 S 3.56 19.2 2.085 53.0 322-37 1543 S 3.56 23.0 2.085 -- 322-40 1440 S 3.53 23.6 2.085 66.0 322-41 1440 S 3.56 20.4 2.085 61.0 322-42A 1440 S 3.56 21.4 2.085 37.1 322-42B 1440 S 3.56 21.4 2.085 65.0 322-46 1440 S 3.53 19.6 2.08 -- 322-47A 1440 S 3.50 21.5 2.085 74.0 322-47B 1440 S 3.56 20.0 2.085 51.6 322-48A 1600 S 3.49 21.5 2.085 51.0 322-49 1460 S 3.53 24.4 2.10 49.0 322-49 1600 S 3.52 23.0 2.085 -- 322-53A 1460 S 3.56 20.0 2.09 54.2 322-53B 1460 S 3.56 20.0 2.10 -- 322-53C 1460 S 3.56 18.4 2.085 49.0 322-54A 1460 S 3.56 18.7 2.085 48.2 322-58 1500 NVS 3.50 21.0 2.085 53.0 322-58A 1500 S 3.49 21.0 2.085 51.0 322-59 1500 S 3.56 24.4 2.085 53.8 322-61 1500 NVS 3.47 37.0 2.09 60.0 322-62 1500 S 3.47 30.8 2.085 97.0 322-62A 700 S 3.56 18.3 - 322-63A 1500 S 3.46 35.6 2.10 72.5 322-63 1500 NVS 3.42 31.6 2.10 51.0 322-64 1370 S 3.56 18.5 2.085 54.0 322-66 1370 S 3.56 19.8 2.085 46.0 322-67A 1370 S 3.53 23.0 2.085 53.0 322-67B 1370 S 3.56 20.8 2.085 49.0 322-68A 1370 S 3.56 19.5 2.085 48.0 322-68B 1370 S 3.56 19.6 2.09 51.0 322-69 1370 S 3.56 18.5 2.085 54.0 323-1 1370 S 3.60 18.4 2.08 40.5 323-2 1370 S 3.60 18.4 2.07 44.0 323-2A 1370 S 3.60 18.4 2.07 48.0 323-3 1370 S 3.49 23.0 2.07 51.0 323-3A 1370 S 3.56 19.4 2.08 46.0 323-4 1370 S 3.58 18.9 2.07 54.0 323-4A 1370 S 3.58 20.0 2.07 51.0 -59

(002) Temp Peak Sample Designation (~C) Type d(002) Lc d (10) La 323-5 1000 S 3.63 16.4 2.07 42.0 323-5A 1000 S 3.63 15.4 2.07 46.0 323-6A 1000 S 3.63 16.8 2.07 42.0 323-6 1000 S 3.63 16.0 2.07 51.0 323-7 1000 S 3.63 18.1 2.07 46.0 323-8 1000 S 3.63 18.4 2.07 44.0 323-8A 1000 S 3.63 17.2 2.07 36.0 323-9 1000 S 3.63 15.6 2.07 44.5 323-9A 1000 S 3.63 16.4 2.07 37.0 323-11A 1000 S 3.63 16.2 2.07 35.0 323-11B 1000 S 3.63 17.7 2.07 37.2 323-11C 1000 S 3.63 17.4 2.07 32.0 323-11D 1000 S 3.63 16.4 2.08 37.2 323-11E 1000 S 3.63 16.7 2.07 39.0 323-11F 1000 S 3.63 16.4 2.07 49.0 323-11G 1000 S 3.63 17.7 2.07 46.0 323-12 1000 S 3.63 17.7 2.07 44.0 323-12A 1000 S 3.63 17.7 2.07 37.0 323-13 1000 S 3.63 18.8 2.07 40.5 323-13A 1000 S 3.63 17.0 2.07 51.0 323-14 i000 S 3.62 16.7 2.08 48.5 323-19 1049 S 3.63 17.7 2.07 37.2 323-20 1049 S 3.63 17.1 2.07 40.5 323-20A 1049 S 3.63 16.8 2.07 51.0 323-21 1049 S 3.63 15.6 2.07 42.0 323-22 1049 S 3.63 16.2 2.07 40.5 323-23 1049 S 3.63 16.5 2.08 51.0 323-24 1049 S 3.63 19.1 2.07 38.6 323-25 1038 S 3.63 16.2 2.07 39.0 323-25A 1038 S 3.63 16.0 2.07 39.0 323-26A 1038 S 3.63 16.2 2.08 42.0 323-26B 1038 S 3.67 16.0 2.08 39.0 323-27 1038 S 3.63 15.5 2.07 42.0 323-27A 1038 S 3.63 16.2 2.08 46.0 323-28 1038 S 3.63 15.0 2.08 40.5 323-29(low-p) 1038 S 3.63 15.8 2.08 44.0 323-29(hi-p) 1038 S 3.62 16.8 2.08 40.4 323-29 1038 S 3.67 16.2 2.08 46.0 323-29A 1038 S 3.63 17.4 2.08 44.0 323-30B 1038 S 3.63 17.1 2.07 56.0 323-30C 1038 S 3.63 15.8 2.08 48.5 323-31 1038 S 3.63 21.0 2.08 46.0 323-32 1038 S 3.63 15.6 2.07 42.0 323-32A 1038 S 3.67 16.5 2.08 38.6 323-32B 1038 S 3.67 16.0 2.08 42.0 323-32C 1038 S 3.63 15.6 2.08 42.0 323-32D 1038 S 3.67 16.7 2.08 44.0 323-33 1027 S 3.63 15.0 2.07 38.5 323-34 1038 S 3.63 16.5 2.08 38.6 ~-60r.

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 323-35 1027 S 3.67 15.0 2.08 39.0 323-36 1027 S 3.67 15.0 2.08 39.0 323-36 1027 S 3.63 15.0 2.08 40.0 323-38 1027 S 3.67 15.7 2.08 37.4 323-39 700 S 3.70 14.5 -- -- 323-40 1000 S 3.70 15.7 2.08 38.0 323-41 1015 S 3.70 16.0 2.08 40.5 323-42 700 S 3.70 16.0 -- -- 323-43 1015 S 3.70 15.4 2.08 40.5 323-45 1015 S 3.70 17.9 2.08 43.0 323-46 1000 S 3.70 15.0 2.08 40.5 323-47 1005 S 3.70 15.8 2.08 42.0 323-48 1005 S 3.70 16.0 2.08 42.0 323-49 700 S 3.70 16.0 -- -- 323-50 1000 S 3.70 16.0 2.08 42.0 323-51 1000 S 3.67 16.4 2.08 36.0 323-52 700 S 3.70 15.6 -- -- 323-53 1080 S 3.62 18.9 2.08 40.5 323-54 700 S 3.63 16.7 323-55 1027 S 3.63 15.0 2.08 39.0 323-56 700 S 3.70 15.6 -- 323-57 1000 S 3.63 16.0 2.08 41.0 323-58 1000 S 3.67 15.7 2.08 36.0 323-59 1000 S 3.67 16.0 2.08 40.5 323-58 1080 S 3.63 15.6 2.08 36.0 323-64 700 S 3.63 16.2 2.08 35.0 323-66 1000 S 3.70 15.0 2.08 48.5 323-67 1000 S 3.63 15.0 2.08 36.0 323-68 1000 S 3.70 16.0 2.07 55.0 323-69 1000 S 3.63 16.2 2.08 46.0 324-1 1000 S 3.70 14.0 2.08 39.0 324-2 1000 S 3.67 16.0 2.08 42.0 324-3 1000 S 3.63 16.2 2.08 42.0 324-4 1000 S 3.63 16.8 2.08 38.0 324-5 1000 S 3.67 15.5 2.08 39.0 324-6 1000 S 3.63 16.2 2.08 38.0 324-8 1000 S 3.67 16.4 2.08 37.4 324-9 1000 S 3.67 14.8 2.08 44.0 324-10 1000 S 3.63 16.5 2.08 36.0 324-11 1000 S 3.63 16.5 2.08 41.0 324-13 1000 S 3.63 16.7 2.08 41.0 324-14 1000 S 3.63 16.4 2.08 42.0 324-15 1000 S 3.63 16.0 2.08 42.0 324-16 1000 S 3.63 16.2 2.08 43.0 324-18 1000 S 3.70 16.2 2.08 60.0 324-19 1 hr. vac. 1066 S 3.63 16.5 2.08 40.0 324-19 1 hr. vac. 1550 S 3.63 18.8 2.08 51.0 324-19 1000 S 3.63 15.9 2.07 35.8 -61

(002) Temp. Peak Sample Designation (~C) Type d(002) Lc d(10) La 324-19 1 hr. vac. 1250 S 3.63 15.4 2.07 35.8 324-19 1 hr. vac. 1890 S 3.56 22.4 2.08 57.0 324-20 1060 S 3.63 16.2 2.08 43.0 324-21 1060 S 3.63 15.9 2.08 44.0 324-22 1060 S 3.70 16.0 2.07 40.5 324-23 1060 S 3.70 16.2 2.08 45.0 324-24 1060 S 3.70 16.2 2.08 40.0 324-25A 1060 S 3.70 16.8 2.08 46.0 324-25B 1060 S 3.67 16.7 2.08 41.0 324-25C 1060 S 3.70 16.0 2.08 42.0 324-27D 1060 S 3.70 16.3 2.08 36.0 324-28 1060 S 3.70 15.3 2.07 38.0 324-29 1060 S 3.70 16.0 2.08 40.0 324-30 1060 S 3.70 15.7 2.08 36.0 324-31 1060 S 3.63 16.4 2.08 39.0 324-33G 1082 S 3.63 17.0 2.08 41.0 324-34 1066 S 3.63 16.0 2.08 37.0 324-35 1066 S 3.63 16.4 2.08 37.4 324-36 1066 S 3.63 17.3 2.08 35.6 324-37 1060 S 3.63 16.4 2.08 37.0 324-38 1066 S 3.63 17.0 2.08 41.0 324-39 1066 S 3.63 16.7 2.08 41.0 324-40 1066 S 3.63 15.5 2.08 39.0 324-40A 1066 S 3.63 16.7 2.08 39.0 324-41 1066 S 3.63 16.5 2.08 42.0 324-42 1066 S 3.63 16.7 2.08 44.0 324-43 1066 S 3.63 16.7 2.08 41.0 324-43B4 1440 S 3.60 22.0 2.08 46.0 324-44 1066 S 3.63 16.5 2.08 46.0 324-45 1060 S 3.63 15.3 2.08 39.0 324-47 1066 S 3.63 16.7 2.08 37.4 324-48 1066 S 3.63 15.9 2.08 41.0 324-49 1104 S 3.63 15.6 2.08 42.0 324-51 1104 S 3.67 15.8 2.08 41.0 324-52 1104 S 3.63 17.4 2.07 48.0 324-53 590 S 3.70 14.4 - 324-54 1066 S 3.63 15.0 2.08 39.0 324-56 1066 S 3.63 15.0 2.08 42.0 324-58 1066 S 3.63 15.0 2.08 39.0 324-59 1066 S 3.63 16.0 2.08 49.0 324-61 1066 S 3.63 16.0 2.08 37.0 324-62 1066 S 3.63 15.6 2.08 44.0 324-63 1066 S 3.67 16.0 2.08 40.5 324-65 1066 S 3.63 16.5 2.08 39.0 324-66 1066 S 3.63 16.5 2.08 46.0 -62

TABLE 2 Sizes of the Structural Features Observed in Bright and Dark Field Electron Micrographs Compared to Crystallite Sizes Obtained from X-ray Analysis Granu- Dark Field (002) PlatelSt latios* Dia. X** X-ray (i) Peak Sample # Dia. A Dia. A (002) (100) Lc La Type 311-19(2000) 150-500 30-40 20-40 311-19(750)X 150-350 20-30 -- - 14 19 S 312-31(2000) 200-500 20-45 20-45 -- 27.6 56 S 312-31(2000) 150 35 30 >100 28 56 S 317-24(2000) 250 42 60t -- 24 45 NVS 317-29(2000) >250 60 30-70t -- 65-75 -- NVS 317-33(2000) 250-500 35 -- -- 92 49 S 317-45(2000) >500 30 -- - 25 60 3P 317-48(2000)x 250 55 -- -- 34 59 3P 317-49(2000)X 250-500 45 40t -- 33 60 3P 318-12(2000) 250-500 60 50 110 31 59 3P 318-22(2000) >500 40-60 35 -- 65 55 NVS 318-22(700) 250 - - -- 15.7 -- S 318-23(2000) 250 50 50 -- 63 73 S 318-23(700) -- -- - -- 16 -- S 318-29(2000)X >500 30-40 60 -- 31 63 2P 321-31C(2000)X 250 35 60 80 35 69 3P 321-31D(2300) 250 40 35 80 37 69 S *Diameter corresponds to distances between nearest neighbor. **Diameter of diffracting regions obtained from (002) or (100) diffraction halos. tSome of the crystallites giving rise to halos or spots are very large in size, i.e., up to 500A. XA second structural feature was observed in the bright field micrographs of these samples. This new feature appeared to be long regular cylinders 500A in diameter by about 1u long. Regular striations along the length were spaced 45A apart. -63

TABLE 3 Electron Diffraction Results Compared to X-ray Diffraction Results for d(002) and d(10) Spacings (A) Electron X-ray Diffraction (002) Sample # d(002) d(10) d(002) d(10) Peak Type Graphite 3.35 2.13 3.37 2.12 -- 311-19(2000) 3.56 2.17 3.45 2.09 311-19(750) 3.70 2.19 -- 2.07 S 312-31(2000) 3.54 2.12 3.53 2.16 S 3.57 2.10 3.53+ 2.12 S 317-24(2000) 3.50 2.10 3.53t 2.10t NVS 317-29(2000) 3.43 -- 3.35t 2.12 NVS 3.45 317-33(2000) 3.414 2.10 3.35t 2.10 S 317-45(2000) 3.35 2.09 3.50 2.10 3P 3.48 317-48(2000) 3.46 2.10 3.48t 2.12 3P 317-49(2000) 3.48 2.09 3.48t 2.10 3P 318-12(2000) 3.49 2.09 3.47t 2.11 3P 318-22(2000) 3.44 2.10 3.37t 2.07 NVS 318-22(700) 3.70 -- 3.50 2.11 S 3.42t 318-23(2000) 3.43 2.10 3.50t 2.10 S 318-23(700) 3.74 -- -2.07 S 318-29(2000) 3.45 2.08 3.45 2.12 2P 321-31C(2300) 3.43 2.11 3.561 2.12 3P 321-31D(2300) 3.47 2.11 3.50* 2.125 S *In this sample no spots were seen on any diffraction halo. tIn addition to Debye-Scherrer rings, a number of sharp diffracting spots were observed on or close to the ring. -64

TABLE 7 Surface Area Specific Surface He Density Knudsen Flow Area Sample # Temp. ~C (gm/cm3) (m2/gm) (m2/gm) 311-32 2000 1.41 3.0 26.4 317-9 700 1.83 -- 506.0 317-9 2000 1.70 12.5 59.9 317-12 700 1.80 9.1 510.0 317-12 2000 1.72 -- 109.0 318-22 700 1.79 -- 459.0 318-22 2000 1.51 -- 49.6 321-9 700 1.46 -- 541.2 321-9 2000 1.28X* -- 12.7 321-13 367 -- — 257.0 321-13 700 -- -852.3 321-13 1066 1.56X -- 72.4 321-13 1227 1.54X -- 56.6 321-13 1504 1.50X -- 51.3 321-13 1795 1.44X -- 47.9 321-24B 2000 1.48X -- 61.3 321-25A 2000 1.45X -- 36.9 323-8 1000 1.51X -- 3.3 323-26A 1038 1.46X --- 323-50 1000 1.51X -- 203.0 *X indicated Xylene -65

TABLE 8 PHe real1 PHg real2 PHg app. MPD IPV Sample # Temp.0C (g/cc) cc) c) (g/cc) (p) (cc/g) GC No.1 1.47 1.482 1.424.003.0273 302-5 2320 -- 1.509.647 2.97.8828 302-12 2320 -- 1.501.559 3.62 1.1224 305-6 2000 1.94 1.802.636 2.54 1.0151 6.62 Mo 305-12 2000 1.55 1.562.557 4.19 1.1560 305-18 2000 1.77 1.718.606 2.49 1.0678.4 Mo 308P-2 #2 1.586 1.505 1.034.009.3030 308P-3 #3 1.611 1.486 1.077.008.2559 310-1 1000 1.27 1.446.814.023.5411 310-3 1000 -- 1.424.805.020.5454 310-17A 2000 1.50 1.175.639.119.7130 310-18 1000 1.48 1.452.687.039.7666 310-18 2000 1.15 1.366.648.044.8110 310-20 2000 1.09 1.458 1.029.009.2855 310-29 2000 1.89 1.533.944.014.3959 311-21 2000 1.59 1.339.731.038.6221 311-22 2000 1.00.847.484.154.8809 312-19A 730 1.20 1.481.879.629.4626 312-29 728 1.52 1.441 1.038.014.2709 312-31 2000 1.41 1.490.923.025.4118 312-45 2000 1.26 1.302 1.214.005.0540 312-48 2000 1.53 1.392.861.121.4425 312-49 2000 1.34 1.404 1.031.011.2579 315-1 2000 1.50 1.431.962 47.0.3412 317-5 2000 1.42 1.313.873.071.4039 317-18 2000 1.50 1.255.953 39.1.281 318-22 700 1.79 1.426.771.057.5958 318-22 2000 1.51 1.576.937.054.4334 318-45 2000 1.37X 1.20.78.0078.021 321-7 2000 1.54 1.04.76.028.34714 321-9 700 1.46 1.24.98.0073.205 321-9 2000 1.36 1.4 1.2.0057.016 321-13 700 -- 2.00.96.042.49883 321-13 1504 1.50X3 1.09.51.046.48293 321-13 1795 1.44X 1.24.77.044.47032 321-17 2000 1.43 1.17.59 2.15.299 321-18 2000 1.67 1.16.87.175.247 *Glassy Carbon No. 1 - Le Carbone, p. 6927. 1Real densicy as determined by He pycnometry 2Real density as determined by Hg 3X indicates Xylene -66

PlJe real' PHg real2 PlIg app. MPD IPV Sample # Temp.~C (g/cc) (g/cc) (g/cc) (p) (cc/g) 321-19 2000 1.80 1.56.98.049.379 321-20 2000 1.60 1.63.70.088.345 321-21 2000 1.79 1.30.85.041.377 321-25 2000 -- 2.20 1.14.011.088 321-31 2000 1.41 1.49 1.34.0195.075 322-14A 1300 -- — 2.2.826 322-14A 1412 1.74 ---- 1.7.494 322-14B 1300 -- -- -- 2.3.501 322-14B 1412 -- ---- 1.5.496 322-17A 1300 -- -- -- 4.5.604 322-17A 1412 -- ---- 4.4.271 322-17B 1300 -- ---- 2.5.382 322-17B 1412 -- ---- 2.0.534 322-19A 1300 -- ---- 1.0.461 322-19A 1412 1.9 -- --.08.472 322-19B 1300 -- -- --.65.466 322-19B 1412 -- ----.95.468 322-20 1300 -- -- -- 1.8.432 322-20 1412 1.57X ---- 1.5.666 322-21A 1300 1.50X ---- 18.0.503 322-21A 1412 -- -- -- 3.5.420 322-21B 1412 1.52X ---- 10.0.400 322-21D 1300 -- ---- 8.0.780 322-22A 1300 -- ---- 1.1.308 322-22A 1412 1.48X ---- 1.2.443 322-22B 1300 -- ---- 1.4.457 322-22B 1412 1.49X — -- 1.2.440 322-23A 1300 1.55X ---- 1.5.443 322-23A 1412 1.47X ---- 1.2.458 322-23B 1300 2.08X --—.32.453 322-23B 1412 1.61X -- --.35.458 322-24A 1300 1.54X -- -- 1.3.395 322-24A 1412 -- --- -- 1.3.563 322-24B 1300 -- ---- 1.9.620 322-24B 1412 1.59X -- -- 1.4.888 322-32 1350 1.60X -- -- 1.4.571 322-35 1350 1.43X -- -- 6.0.472 322-41 1440 1.59X -- --.07.669 322-45 1500 1.72X ---- 4.2.421 322-46 1500 1.48X -- -- 1.4.550 322-47A 1500 1.47X -- -- 1.3.652 322-48 1605 1.53X ---- 6.0.634 322-49 1400 -- ---- 7.0.841 322-49 1400 -- ---- 7.0.607 322-49 1600 1.51X ---- 7.0.595 322-50 1600 1.52X -- -- 6.0.545 322-50 1400 1.48X -- -- 6.0.679 323-26A 1038 1.46X 1.37.53 1.27.497 -67

TABLE 9 Physical Properties Resis- Sonic Compr. Ult. Preal tivity Hard- Int. Mod. Str. Str. Papp. (g/cc) Q-cm ness Frict. psi psi psi Sample #Temp. ~C (g/cc) He Xyl (xl0H)(DPH) (x103) (x0-6) (x-3) (x1-3) 310-35 2000 (0.57)* -- 2.07 - -- - -- 5.18 1.01 311-34 2000 (0.60) - -- -- -- -- - 7.2 7.04 311-35 2000 0.51.294 -- 1.43 0.35 6.85 1.23 312-13 2000 (1.07) -- -- -- -- -- -- 50.0 4.85 312-14 2000 (1.00) 1.44 -- -- -- -- -- 36.0 312-16 2000 (0.77) 1.27 1.45 -- -- -- -- 1.73 2.83 312-27 2000 (1.15) -- -- -- -- - - -- 7.78 312-29 2000 (1.07) 1.52 - - -- -- -39.7 312-32 2000 (0.90) 1.47 -- -- -- -- -- 29.2 5.13 312-33 2000 -- 1.59 -- - 90 312-34 2000 (0.92) 1.38 -- -- -- -- -- 27.3 1.11 312-44 2000 -- 1.18 1.22 -- 98 312-45 680 -- -- -- -- 135 312-45A 2000 -- 1.26 1.29 -- 176 312-46 680 -- - -- -- 107 312-46 200 -- -- -- -- 105 - 312-49 2000 (1.10) 1.3 1.45 -- -- ---- 5.96 315-1 2000 (0.89) 1.49 - 315-2 2000 0.70 1.52 --.349 -- -- 1.27 1.47 0.36 315-3 2000 -- 1.38 1.49 - 315-4 2000 -- 1.55 - - 315-14 2000 (0.96) 1.6 -- -- — 47.7 4.7 315-17 2000 (0.79) -- 1.45 -- - - -- 29.3 2.51 315-20 2000 (0.84) 1.6 - -- -- 315-20A 2000 0.84 1.6 --.180 -- 0.93 1.48 315-20B 2000 0.77 1.60 --.275 -- 1.63 1.37 *Data in parenthesis obtained from unmachined cylinders. All other densities from machined cylinders.

Resis- Sonic Compr. Ult. real tivity Hard- Int. Mod. Str. Str. Papp. (g/cc) pQ-cm ness Frict. psi psi psi Sample # Temp.~C (g/cc) He Xyl (x10) (DPH) ( x103) (10-6) (10 -3) (x10-3) 315-20C 2000 0.88 1.60 --.203 -- 0.54 1.52 315-21B 2000 (0.96) -- 1.37 - -- -- -- -- 6.60 315-21C 2000 0.91 1.52 --.147 -- 0.26 1.54 46.8 7.13 315-21D 2000 (1.01) -- 1.47 -- -- -- - 27.0 7.62 315-22 2000 (0.90) 1.63 1.46- -- - 315-24 2000 (1.15) 1.78 - -- -- 315-25A 2000 (0.88) -- 1.43 -- -- -- -- 24.3 4.61 315-25B 2000 (0.87) -- 1.58 -- -- -- -- -- 4.78 315-25C 2000 0.88 1.41 --.317 -- 2.38 1.55 35.5 7.38 315-26B 2000 (0.88) -- 1.45 -- -- -- -- 30.5 6.63 315-26C 2000 0.80 1.45 --.057 -- -- 1.20 25.6 4.24 315-26D 2000 0.83 1.45 --.149 -- -- 1.38 36.6 315-28 2000 (0.96) 1.46 -- -- -- - - 37.3 4.39 315-30 2000 (0.91) 1.49 - -- -- a 315-31 2000 (0.85) 1.48 - --- - 315-31B 2000 0.80 1.46 --.119 -- 0.33 1.44 35.1 5.15 315-31C 2000 0.93 1.48 --.237 -- 0.47 1.65 315-31D 2000 0.91 1.46 --.229 -- 0.42 1.60 36.2 6.6 315-32 2000 (0.99) 1.43 -- -- -- -- -- 45.0 6.35 315-33 2000 0.78 1.50 --.195 -- 1.50 1.26 315-34C 2000 0.60 1.58 --.294 -- 0.31 0.87 21.0 2.95 315-34D 2000 0.66 1.57 --.137 -- 2.01 1.22 16.4 2.73 315-35B 2000 (0.87) 1.89 1.75 -- -- 315-37 2000 0.53 1.61 1.48.262 -- 0.31 0.61 14.2 2.51 315-38 2000 (0.72) 1.51 - --- - 315-38A 2000 0.72 1.51 --.237 -- - 0.93 2.40 2.97 315-39A 2000 0.96 1.64 1.43.188 -- 0.47 1.78 35.9 5.59 315-39B 2000 0.96 1.64 1.43.029 -- 1.28 1.76 28.5 4.41 315-40 2000 (0.87) 1.33 1.41 - -- - 315-41 2000 0.68 1.67 1.41.220 -- -- -- 15.0 315-41A 2000 0.77 1.67 --.038 -- 1.18 1.35 18.6 2.0 315-41B 2000 0.79 1.67 --.157 -- 0.98 1.28 16.0 2.02 315-42 2000 0.87 1.83 1.47.249 -- 0.35 1.65

Resis- Sonic Compr. U1t. Preal1 tivity Hard- Int. Mod. Str. Str. Papp. (g/cc) Q-cm ness Frict. psi psi psi Sample Te#mp.C (g/cc) He Xyl (xl) DPH (x103) (xl0-6) (x103) (xi0") 315-43 2000 (1.04) -- 1.48 - -- - - 50.0 315-44 2000 0.76 1.78 1.43.214 -- 0.32 1.43 315-45 2000 (0.88) 1.39 1.49 315-45B 2000 0.76 -- 1.67.039 - 0.28 5.8 315-46 2000 (1.094) -- 1.51 - 240 315-46 2000 (1.094) -- 1.51 -- 105 315-46A 2000 (.899) 1.55 -- - 58 - - 2.5 2.23 317-1 2000 (1.21) 1.67 1.21 -- -- -- -- 56.5 7.5 317-2 2000 0.71 1.74 1.45.088 - - 0.91 23.7 2.97 317-5 2000 (0.78) 1.42 1.31 -- 58 -- - 33.1 7.50 317-6 2000 (0.78) 1.88 1.45 317-7 2000 (0.79) 1.82 1.43 317-8 2000 1.00 1.64 1.44 -- - -- 1.82 40.5 2.29 317-9 2000 (0.93)1.76 -- - -- -- -- 32.3 5.77 317-10 2000 0.79 1.42 --.009 -- 0.75 1.45 43.7 6.00 317-12 2000 (0.89) 1.60 -- - - - -- - 5.82 317-13 2000 (0.88) 1.88 1.45 317-14 2000 (0.87) 1.49 -- - - - -- 27.4 4.69 317-15 2000 (0.91) 1.46 -- - -- -- -- 33.6 4.09 317-18 2000 0.72 1.50 1.26.088 -- 0.39 0.86 5.1 3.30 317-19 2000 (1.13) 1.68 -- -- -- -- -- 28.2 8.75 317-20 2000 (1.05) 1.51 317-23 2000 (0.83) -- 1.46 -- -- -- -- 7.6 1.90 317-24 2000 0.76 1.57 --.187 -- 0.76 1.45 49.1 4.37 317-25 2000 (0.88) 1.69 1.41 -- -- -- -- 34.1 2.85 317-26 2000 0.78 1.48 --.195 14 0.66 1.51 4.7 0.92 317-27 2000 -- -- -- -- -- -- -- 37.3 317-28 2000 (0.93) 1.7 1.45 317-29 2000 0.74 1.651.49.122 -- - 0.86 16.4 2.48 317-30 2000 (0.77) 1.68 1.51 317-31 2000 (0.70) 1..45 317-32 2000 0.89 1.72 1.43.224 -- -- 1.64 44.2 5.05 317-33 2000 (1.02) 1.46 -- - 73 - - 40.2 5.60

Resis- Sonic Compr. Ult. Preal tivity Hard- Int. Mod. Str. Str. app. (g/cc) 2-cm ness Frict. psi psi psi Sample # Temp.~C (g/cc) He Xyl (x10) (DPH) (x103) (x10-6) (x10-3) (10-3) 317-34 2000 0.65 1.56 1.50.321 -- -- 2.07 24.0 4.61 317-35 2000 (0.98) 1.40 317-37 2000 0.90 1.34 1.43.225 80 0.31 1.61 40.6 6.90 317-38 2000 0.90 1.34 1.43.268 62 1.27 1.01 37.6 4.20 317-39 2000 0.77 1.27 --.032 49 0.19 1.20 26.7 3.58 317-40 2000 0.85 1.47 --.184 -- -- 1.25 22.8 3.44 317-41 2000 (0.93) -- 1.59 -- -- -- -- 10.0 2.35 317-41A 2000 (0.90) -- 1.37 -- -- -- -- 7.4 1.91 317-41B 2000 (1.12) 1.48 -- -- -- -- -- 27.0 3.90 317-42 2000 0.87 1.45 --.135 53 -- 1.54 39.8 5.30 317-43 2000 (0.90) 1.40 -- -- -- -- -- 15.0 2.47 317-44 2000 0.84 1.51 --.007 52 1.68 1.35 27.3 2.13 317-45 2000 (0.88) 1.40 -- -- -- -- -- 32.3 5.2 317-46 2000 0.81 1.48 --.112 71 -- 1.27 34.6 4.95 317-47 2000 (0.97) 1.39 -- — 49 - -- 27.5 5.62 317-48 2000 1.16 1.46 -- -- -- - 1.23- 317-49 2000 0.80 1.51 --.34 -- 1.31 0.89 11.1 3.0 318-1 2000 0.79 1.51 --.169 -- -- 0.71 -- 2.56 318-2 2000 (0.95) 1.45 - --- - 318-2C 680 0.89 -- -- 907.0 -- -- 0.80 34.5 4.77 318-3 2000 -- 1.37 1.51- -- - 318-6A 2000 (1.17) 1.45 318-7 2000 0.78 -- 1.34.165 -- -- 0.65.82 1.67 318-8 2000 (0.96) 1.49 -- — 60 -- -- 18.2 5.62 318-8A 2000 (0.97) -- 1.49 -- -- -- -- 32.7 318-9 2000 (0.96) 1.50 -- -- 56 -- -- 27.4 5.19 318-10 2000 (0.99) 1.48 - --- - 318-11 2000 0.91 1.58 -- — 51 -- 1.48 -- 5.09 318-12 2000 (0.98) 1.50 -- -- 61 -- 318-13 2000 (1.03) -- 1.23 -- 71- - 318-14 2000 0.77 1.47 --.285 31 0.41 0.41 4.74 0.83 318-15 2000 (0.95) 1.51 -- -- 40- -- 318-16 2000 0.94 1.48 --.270 47 -- 1.43 28.2 4.02

Resis- Sonic Compr. Ult. ^real tivity Hard- Int. Mod. Str. Str. Papp. (g/cc) Q-cm ness Frict. psi psi psi Sample #Temp.0C (g/cc)2 He Xyl (xl0) (DPH) (x103) (x0l-6) (x0l-3) (x10-3) 318-17 2000 0.74 1.46 --.189 53 0.18 1.18 33.2 4.35 318-18 2000 - 1.48 - -- 46 318-18B 2000 — -- -- -- -- -- -- -- 5.28 318-19 2000 (0.77) 1.41 318-20 2000 -- 1.50 -- — 65 318-21 2000 -- 1.37 1.49 - 56 318-22 2000 0.83 1.45 --.237 44 -- 1.29 29.5 4.37 318-22 700 (0.78) 1.48 -- — 39 318-23 2000 (0.91) 1.49 - -- 54 318-24 2000 0.97 1.29 1.52 — 61 1.49 318-24C 2000 0.92 1.29 1.53 -- -- - -- 25.0 4.47 318-26 2000 (0.98) 1.59 -- — 70 318-27 2000 (0.87) 1.38 318-28 2000 0.84 1.45 --.177 -- - 1.33 318-29 2000 0.63 1.45 --.194 26 -- -- 0.23 0.73 j' 318-30 2000 1.08 1.49 -- — 60 -- 1.52 21.9 5.82 318-31 2000 0.55 1.31 1.36.216 21 2.41 0.135 1.6 0.19 318-32 2000 (0.84) 1.57 - -— 53 - - 19.7 318-33 2000 0.80 -- 1.53.101 57 0.73 1.37 32.2 4.75 318-34 2000 1.07 1.45 -- -- -- -- -- 28.7 4.85 318-35 2000 0.88 1.43 --.118 -- -" 1.48 26.4* 4.57 318-36 2000 1.02 1.41 --.107 67 -- 1.35 18.6* 3.34 318-37 2000 0.92 1.48 -.112 -- -- 2.17 25.7* 3.90 318-38 2000 -- 1.52 318-39 2000 1.23 1.57 --.085 -- -- 2.99 34.9* 7.95 318-41 2000 (1.05) 1.44 -- 318-43 2000 (1.08) -- 1.42 -- 106 318-44 2000 (1.09) -- 1.46 -- 103 318-45 2000 1.27 -- 1.37.070 -- - 3.1 318-46 2000 1.02 -- 1.46.41 56 -- 2.34 42.3* 7.35 318-48 2000 1.08 1.43 -- -- -- -- -- 3.5 8.27 *Head speed.05 in/min., all others.02 in/min.

Resis- Sonic Compr. Ult. real tivity Hard- Int. Mod. Str. Str. app. (g/cc) ~Q-cm ness Frict. psi psi psi Sample # Temp.~C (g/cc) He Xyl (xl0) (DPH) (x103) (x10-6) (xl0-3) (x10-3) 318-50 2000- -- - -- -- -- -- -- 5.73 318-51 2000 (0.88) 1.43 -- -- -- -- 0.83 17.3 1.44 318-52 2000 1.01 1.41 --.130 -- -- 1.66 17.7 2.54 318-53 2000 (0.87) 1.42 -- - -- -- - 4.73 1.60 318-56 2000 (0.85) 1.34 1.43 - -- - 318-58 2000 0.98 -- 1.51.237 -- -- 0.10 -- 6.02 318-59 2000 0.99 1.38 1.38 -- -- -- 2.15 31.7 4.20 318-60 2000 0.95 1.71 1.42.150 54 -- 1.78 36.2* 7.63 318-61 2000 1.01 1.75 1.38.403 -- -- 1.47 22.6* 3.96 318-62 2000 0.90 1.39 -- -- 69 -- -- 41.4 6.98 321-1B 2000 -- -- - -- -- -- -- 4.36.87 321-3 2000 0.98 1.57 --.340 78 -- -- 40.0* 7.18 321-5 2000 (0.99) 1.52 - --- - 321-6 2000 1.09 1.60 --.31 81 -- 2.33 41.7* 8.27 \i 321-7 2000 (0.91) 1.54 - --- -' 321-8 2000 0.90 1.46 --.546 105 -- 1.48 38.9* 7.00 321-9 2000 1.17 1.36 1.28 -- 120 -- - 54.2 9.75 321-10 2000 1.26 1.34 --.100 99 -- 2.99 54.9* 10.85 321-11 2000 0.95 1.43 --.114 95 -- 1.54 40.5 5.16 321-11C 2000 -- -- -- - 132 - -- 37.0 6.08 321-12 2000 0.97 1.32 --.121 -- - 1.22 14.9 2.52 321-13 2000 0.95 1.48 1.50.115 131 -- 1.67 36.2 6.04 321-15 2000 (0.96) 1.56 -- - -- - -- 34.5 5.98 321-16A 2000 (0.85) 1.84 -- -- - 0.21 1.55 24.3 4.52 321-16B 2000 (0.93) 1.75 1.39 321-17B 2000 (0.94) 1.41 - -- -- 0.22 1.81 36.7 5.26 321-18A 2000 (0.95) 1.67 1.42 321-18B 2000 (0.64) -- 1.49 -- - 0.2 1.73 39.6 5.67 321-19A 2000 (0.87) 1.68 1.42 -- 115 0.15 1.83 31.5 6.04 321-19B 2000 (0.83) 1.80 1.46 -- 87 0.11 1.49 31.4 5.76 321-20A 2000 (0.99) 1.72 1.41 - *Head speed.05 in/min., all others.02 in/min.

Resis- Sonic Compr. Ult. Preal tivity Hard- Int. Mod. Str. Str. app. (g/cc) Q-cm ness Frict. psi psi psi Sample # Temp. C (g/cc) He Xyl (xlO) (DPH) (x103) (x10-6) (x10-3) (x10- 3) 321-20B 2000 (0.70) 1.50 - -- -- -- -- 34.8 6.21 321-21A 2000 0.94 1.74 1.45.2 -- -- 1.65 45.5 6.35 321-21B 2000 1.00 -- 1.47.2 - -- 1.93 46.4 6.16 321-22A 2000 0.94 1.79 1.44.28 -- -- 1.44 31.9 6.14 321-22B 2000 (0.98) -- 1.54 - -- -- - 34.8 4.58 321-22C 2000 0.93 -- 1.50.17 -- - 1.43 36.1 4.35 321-22D4 2000 0.92 -- 1.47.19 - -- 1.42 33.7 5.15 321-23 2000 1.04 1.74 --.12 -- - 2.05 58.6 7.28 321-23A 2000 0.96 -- 1.53.27 -- - 1.64 40.9 6.36 321-23B 2000 0.97 1.77 1.44.18 - -- 1.69 42.7 5.98 321-24 2000 1.02 -- 1.60.19 -- - 1.95 47.8 6.39 321-24A 2000 0.95 -- 1.46.14 - -- 1.05 49.1 7.04 321-24B 2000 1.07 -- 1.48.15 - -- 2.22 45.1 6.76 321-25A 2000 0.70 -- 1.45.13 -- - 0.68 27.9 5.14 321-26 2000 (0.50) 1.43 1.56 -- -- -- -- 26.4 0.77 321-26A 2000 (0.45) 1.54 321-27 2000 0.86 1.52 --.11 -- -- 0.62 9.7 1.34 321-29 2000 0.96 1.64 1.42.18 - -- 1.59 40.0 5.94 321-31 2300 (0.81) 1.41 - -- -- 321-31A 2300 (0.97) 1.40 321-31B 2300 (0.91) 1.56 321-31C 2300 (0.88) 1.41 - --- 321-31D 2300 -- -- 1.53 -- -- -- -- 33.3 4.08 321-31F 2300 0.75 - 1.68.23 -- - 0.70 13.6 2.23 321-31G 2300 1.03 1.66 --.18 -- --- 22.2 3.53 321-31I 2300 (1.02) 1.48 321-31J 2000 0.91 -- 1.48.16 -- -- 1.15 22.6 3.99 321-31P 2000 0.89 -- 1.25.24 - -- 1.16 25.0 3.60 321-31Q 2000 0.98 -- 1.53.17 -- - 1.64 40.5 6.23 321-31R 2000 0.87 -- 1.48.18 - -- 0.85 12.2 1.85 321-31S 2000 0.96 -- 1.39.17 -- - 1.53 36.9 5.58 321-32A 2000 0.94 1.36 1.50.18 -- -- 0.91 35.5 3.78 321-32B 2000 0.93 1.30 1.52.20 - -- 0.92 36.9 5.76

Resis- Sonic Compr. Ult. real tivity Hard- Int. Mod. Str. Str. Papp. (g/cc) Q-cm ness Frict. psi psi psi Sample # Temp.~C (g/cc) He Xyl (xl1) (DPH) (x103) (x10-6) (x10-3) (x10-3) 321-32C 2000 0.92 1.25 1.50.21 -- - 0.93 41.4 6.11 321-32D 2000 0.92 -- 1.47.25 -- -- 1.49 321-32D1 2000 0.84 -- 1.47.29 -- -- 0.2 - 321-32E 2000 0.94 1.33 --.24 -- - 1.56 41.9 5.89 321-32F 2000 (0.96) -- 1.54 -- -- -.91 33.3 4.28 321-32G 2000 0.95 -- --.22 -- - 1.56 31.8 4.53 321-33A 2000 0.94 1.41 --.16 -- - -- 39.8 5.96 321-33B 2000 0.89 -- 1.47.33 -- - 1.49 53.6 6.69 321-34 2300 (0.95) 1.6 321-34A 2300 0.96 1.59 --.27 -- -- 1.49 31.3 7.55 321-34B 2300 0.94 -- 1.59.18 -- - 2.94 33.3 2.92 321-34D 2300 0.95 -- 1.49 -- -- -- 1.46 321-34E 2300 0.95 1.21 --.38 -- -- 0.92 40.9 5.43 321-36A 2300 (1.11) 1.80 1.44 -- -- -- -- -- 2.46 321-36B 2300 1.07 1.66 1.35.29 -- -- 1.15 50.4 7.23 U1 321-36C 2300 (1.11) 1.43 - - 321-37 2300 (1.07) 1.41 321-37B 2300.66 1.50 --.24 -- -- 0.42 5.53 1.09 321-37D 2300 -- -- -- -- -- -- -- 2.51 0.45 321-37E 2300 0.79 -- 1.76.44 -- -- 0.94 1.39 0.36 321-37F 2300 0.65 -- 1.56 -- -- - 0.08 1.05 0.22 321-37Q 2300 0.71 -- 1.62.31 -- -- 0.2 1.67 0.40 321-39 2300 0.84 1.60 --.23 -- -- 0.72 6.80 1.31 321-40 2300 (0.60) 1.42 --.30 -- - -- 0.50.06 321-41B 2300 (0.77) 1.51 321-42A 2000 0.77 -- 1.44.29 -- -- 0.35 2.05 0.57 321-42B 2000 0.65 1.48 --.28 -- -- 0.20 1.14 0.42 321-43A 2200 0.73 1.55 --.36 -- - 0.60 1.31 0.37 321-43B 2200 0.61 1.44 --.46 -- -- 0.10 0.73 0.22 321-44A 2200 (0.96) 1.81 1.46 321-44B 2200 (0.98) 1.56 321-45A 2200 (1.17) 1.78 1.42 321-45B 2200 (1.06) 1.84 1.50.09 -- -- 0.42 41.50 5.93

Resis- Sonic Compr. Ult. real tivity Hard- Int. Mod. Str. Str. Papp. (g/cc) Q-cm ness Frict. psi psi psi Sale #Temp.C (g/cc) He Xyl (xl1) (DPH) (x103) ( -) (x10-3) (x10-3) 321-46A 2200 (0.83) 1.40 321-46B 2200 0.82 1.43 --.26 - -- 0.16 2.04 0.49 321-46C 2200 (0.87) 1.60 - -- -- 321-47A 1600 (1.13) 2.07 1.48 - 321-47B 1600 (1.18) 1.67 321-47C 1600 (0.91) 1.84 1.45 - -- - 321-48A 1600 (0.79) 1.40 321-48B 1600 0.83 1.43 --.24 - -- 0.34 2.65 0.60 321-48C 2000 (0.78) 1.58 321-49A 1600 (0.91) 1.51 - 321-49B 1600 (0.80) 1.44 321-49C 1600 (0.91) 1.51 - - 321-50 1600 (1.00) 1.69 321-50B 1600 1.02 1.43 --.15 -- -- 1.5 28.2 4.52 321-50C 1600 (1.03) 1.45 321-51 2350 (0.99) 1.50 - - - - 0.73 9.1 1.36 321-51A 2350 0.96 1.53 --.21 - 321-52 2000 -- 1.3 1.52 321-53 2000 (1.12) 2.07 1.47 - -- - 322-1A 1600 0.82 -- 1.59.24 - -- 0.27 4.00 0.78 322-1B 1600 0.83 1.98 --.39 -- - 0.26 - 322-2A 1600 (0.87) 2.02 1.59 -- - 322-3A 1600 0.71 -- 1.59.18 -- -- 0.73 6.80 0.69 322-3B 1600 (0.78) 2.0 1.52 322-5 2000 (0.86) 1.55 - -- --- 322-6 2000 (0.86) 1.41 - -- - - 322-10C 2100 (0.84) 1.8 322-11A 1670 0.74 -- 1.49.207 -- - 0.25 1.77.59 322-11B 1670 0.72 1.9 --.26 -- - 0.24 0.791 0.17 322-12A 1600 0.55 -- 1.43.28 -- -- 0.24 2.23 0.24 322-12B 1600 0.73 -- 1.50.23 -- -- 0.35 2.04 0.24 322-13A 1670 0.78 -- 1.45.17 -- -- 0.59 4.06 322-14A 1670 (0.76) 1.74

Resis- Sonic Compr. Ult. Preal tivity Hard- Int. Mod. Str. Str. Papp. (g/cc) Q-cm ness Frict. psi psipsi Sample #Temp.0C (g/cc) He Xyl (x10) (DPH) (x103) (x106) (x103) (x10') 322-15B 1670 0.79 -- 1.48.19 ---- 0.57 6.82 322-16A 1670 (0.81) 1.89 — ------ 322-16B 1670 0.78 -- 1.54.22 ---- 0.35 3.970.82 322-17B 1670 0.71 -- 1.48.37 -- -- 0.2 —0.37 322-18A 1670 1.07 -- 1.49.09 -- -- 2.17 37.36.29 322-19A 1670 (0.85) 1.98 322-19B 1670 0.79 -- 1.55.28 -- — 0.33 4.160.41 322-20 1400 0.78 -- 1.57.17 -- — 0.77 8.971.43 322-21 1400 0.74 -- 1.45.22 -- -- 0.53 3.34 0.74 322-22A 1400 (0.88) -- 1.48 -- ----— 4.11.19 322-22B 1400 (0.89) -- 1.49 -- ----— 5.21.19 322-23A 1400 (0.84) -- 1.47 322-23B 1300 (0.83) -- 1.61 -- -- -- --— 4.07 322-24A 1300 (0.87) -- 1.51 -- -- -- --— 1.28.-]j 322-24B 1400 (0.82) -- 1.59 -- ------— 1.28 322-25A 1410 0.82 -- 1.48.11 -- — 1.56 23.173.24 322-25A 1670 0.88 -- 1.64.13 -- — 1.48 19.682.17 322-26 1400 0.98 -- —.11 -- — 2.04 27.153.6 322-27A 1400 0.83 -- 1.42.08 -- — 1.58 24.942.63 322-28A 1400 (0.93) -- 1.44.10 -- -- — 18.43.16 322-29A 1400 0.66 -- 1.46.19 -- -- 0.68 10.62 1.63 322-30 1410 0.85 1.64 1.42.18 ---- 0.79 2.680.773 322-31B 1410 0.69 -- 1.58.34 -- — 0.24 1.850.363 322-32 1350 0.74 -- 1.60.24 ---- 0.36 3.06 0.465 322-33 1350 0.71 -- 1.62.22 ---- 0.60 2.775 1.32 322-34 1350 0.75 -- 1.34.13 ---- 1.07 13.433.85 322-35 1350 0.77 -- 1.43.22 --— 0.68 11.81.33 322-36 1543 0.88 -- 1.45.10 -- -- 1.29 23.03.74 322-37 1543 0.78 -- 1.44.20 -- — 0.47 3.697 1.178 322-38 1543 0.73 -- 1.68.17 ---- 0.93 11.162.47 322-39 1440 0.59 -- 1.55.18 ---- 0.72 10.12.94 322-40 1440 0.79 -- 1.59.11 -- — 1.14 13.953.45 322-41 1440 0.73 -- 1.59.17 -- — 0.84 9.832.597

Resis- Sonic Compr. Ult. real tivity Hard- Int. Mod. Str. Str. Papp. (g/cc) Q-cm ness Frict. psi psi psi Sample # Temrp.C (g/cc) He Xyl (x10) (DPH) (x103) (x10-6) (x10-3) (x10-3) 322-42A3 1440 0.72 -- --.14 - -- 0.88 10.77 2.97 322-42A4 1440 0.64 -- --.23 -- -- 0.68 13.9 1.00 322-42B1 1440 0.66 -- 1.44.20 -- - 0.69 9.89 1.96 322-42B2 1440 0.75 -- 1.46.18 - -- 0.87 13.19 2.22 322-42B3 1440 0.73 -- 1.46.27 - -- 0.89 19.4 3.11 322-42B4 1440 0.66 -- 1.51.17 - -- 0.70 12.2 1.07 322-42B5 1440 0.68 -- --.19 -- - 0.76 14.45 2.50 322-42B6 1440 0.75 -- 1.49.19 -- -- 0.97 16.85 1.26 322-45 1440 0.82 -- 1.72.20 - -- 0.68 6.76 2.04 322-48 1605 0.68 -- 1.48.29 - -- 0.43 2.16 0.992 322-49A 1605 0.79 -- 1.46.15 -- - 0.79 13.2 2.24 322-50 1600 0.73 -- 1.52.15 - -- 0.56 7.11 1.38 322-51 1460 (0.78) -- 1.56 --- -- --- 322-56 1500 (1.00) -- 1.53- -- - 322-56A 1500 (0.96) -- 1.33 - - 322-57 1500 (1.06) -- 1.63- - 322-57A 1500 (1.03) -- 1.62 -- -- 322-61 1500 0.74 -- 1.46.189 - -- 0.4 3.92 1.01 322-62 1500 0.96 -- 1.49.095 -- -- 1.21 16.5 3.12 322-63 1500 1.00 -- 1.56.074 - - 1.69 35.8 4.11 322-63A 1500 1.19 -- 1.49.057 -- -- 2.47 24.3 5.13 322-64 1370 0.98 -- 1.60.076 - -- 1.92 45.6 5.41 322-64A 1370 (1.10) -- 1.51 - -- -- -- 322-64B 1370 0.93 -- 1.61.085 -- -- 1.89 38.9 5.93 322-65 1370 (1.28) -- 1.43 -- -- 322-66 1370 (1.09) -- 1.37 -- -- -- -- 322-67 1350 0.85 -- 1.64.099 -- -- 1.32 30.9 4.86 322-67A 1370 (0.84) -- 1.52 -- -- -- 322-67B 1370 0.82 -- 1.41.101 -- -- 1.33 27.9 4.48 322-68 1370 0.74 -- 1.52.180 - -- 0.53 7.6 1.47 322-68A 1370 (0.79) -- 1.25.150 - 322-68B 1370 (0.77) -- 1.48 -- -- 322-69 1370 0.69 -- 1.50.189 -- -- 0.42 5.2 1.19

Resis- Sonic Compr. Ult. Preal tivity Hard- Int. Mod. Str. Str. Papp. (g/cc) 2-cm ness Frict. psi psi psi Sample # Temp.~C (g/cc) He Xyl (xl1) (DPH) (x103) (x10-6) (x10-3) (x10-3) 322-69A 1370 0.72 -- 1.47.198 -- -- 0.42 5.1 1.38 322-70 1370 0.69 -- 1.44.224 - -- 0.38 6.09 1.14 323-1 1370 (1.01) -- 1.46- --- 323-2 1370 0.78 -- 1.45.112 -- -- 1.15 26.7 4.33 323-2A 1370 0.80 -- 1.44.111 -- -- 1.30 26.5 4.1 323-3 1370 (0.98) -- 1.51 323-3A 1370 1.13 -- 1.53.061 -- -- 2.48 48.5 6.51 323-4 1370 0.78 -- 1.47.176 - -- 0.55 8.6 1.88 323-4A 1370 0.78 -- 1.47.179 -- -- 0.55 8.39 1.73 323-5 1000 0.74 -- 1.50.44 - -- 0.079 4.37.82 323-5A 1000 0.72 -- 1.46.432 -- -- 0.078 4.04.94 323-6 1000 (0.92) -- 1.47 - --- 323-6A 1000 (0.91) -- 1.43 323-7 1000 (0.77) -- 1.51 - --- 323-7A 1000 0.77 -- 1.50.339 -- -- 0.15 8.18 1.29 f 323-8 1000 (0.93) -- 1.51 - -- - 323-8A 1000 1.0 -- 1.52.191 -- -- 0.28 20.96 4.43 323-9 1000 1.03 -- 1.51.166 -- -- 0.31 12.59 3.10 323-9A 1000 1.07 -- 1.52.179 -- -- 0.14 12.75 1.83 323-11A 1000 (0.77) -- 1.50 323-11B 1000 0.77 -- 1.49.435 -- -- 0.079 5.35 1.01 323-11C 1000 (0.73) -- 1.50 323-11D 1000 (0.71) -- 1.51 - 323-11E 1000 0.79 -- 1.47.406 -- -- -- 5.38 1.83 323-11F 1000 0.74 -- 1.52.433 -- -- 0.059 3.97.84 323-11G 1000 (0.78) -- 1.52 323-12 1000 1.04 -- 1.53.19 -- -- 0.24 10.63 2.1 323-12A 1000 1.06 -- 1.51.207 -- -- 0.22 6.58 2.74 323-13 1000 1.12 -- 1.53.161 -- -- 0.386 15.42 2.7 323-13A 1000 1.13 -- 1.53.157 - -- 0.387 16.00 2.51 323-14 1000 1.17 -- 1.56.123 -- -- - 17.00 3.12 323-15 1000 (0.97) -- 1.55- - 323-15A 1000 (0.95) -- 1.55 -

Resis- Sonic Compr. Ult. real tivity Hard- Int. Mod. Str. Str. app. (g/cc) Q-cm ness Frict. psi psi psi Sample #Temp.jC (g/cc) He Xyl (x10) (DPH) (x103) (x10-6) (x10-3) (xl03) 323-19 1000 0.6 -- 1.50.549 - - 0.075 3.21.67 323-20 1000 0.85 -- 1.50.172 - -- 0.28 31.6 4.08 323-20A 1000 0.82 -- 1.50.186 -- -- 0.26 20.0 4.54 323-21 1000 0.92 -- 1.42.199 - - 0.23 11.72 3.03 323-22 1000 0.86 -- 1.49.179 -- - 0.29 27.45 5.01 323-23 1000 0.9 -- 1.37.192 -- -- 0.25 9.35 2.02 323-24 1000 (1.08) -- 1.59 -- -- -- 323-25 1038 0.66 -- 1.49.583 - -- 0.034 3.4.69 323-25A 1038 0.67 -- 1.47.444 - -- 0.036 3.1.54 323-26 1038 0.88 -- 1.47.223 -- -- 0.207 13.8 2.32 323-26A 1038 0.88 -- 1.46.228 - - 0.198 12.3 2.43 323-26B 1038 (0.94) -- 1.57 -- -- -- 323-27 1038 0.94 -- 1.45.492 - - -- 12.6 2.88 323-27A 1038 (0.89) -- 1.45 -- -- 0o 323-28 1038 0.93 -- 1.43.223 -- -- 0.207 -- 323-28A 1038 0.92 -- 1.44.267 - -- 0.18 8.71 1.59 323-29 1038 0.64 -- 1.47.705 -- - - 3.64.31 323-29A 1038 (1.19) -- 1.47 -- -- 323-30A 1000 -- -- 1.53 323-30B 1000 (1.18) -- 1.53 323-30C 1000 -- -- 1.54 -- -- 323-31 1038 0.82 -- 1.36.204 -- -- -- 9.21 2.05 323-32 1038 0.92 -- 1.46.233 -- - 0.199 10.4 2.5 323-32A 1038 0.92 -- 1.45.226 -- -- 0.21 -- 2.77 323-32B 1038 -- -- 1.42 -- -- 323-32C 1038 -- -- 1.45 323-32D 1038 -- -- 1.44 323-33 1027 (0.79) -- 1.45 -- -- 323-34 1038 1.06 -- 1.45.156 -- -- -- 11.68 2.59 323-35 1027 (0.82) -- 1.48 -- - -- 323-35A 1082 0.~ -- 1.44.23 - - 0.23 10.3 2.24 323-36 1027 0.71 1.5 -- -- — 5

Resis- Sonic Compr. Ult. Preal tivity Hard- Int. Mod. Str. Str. Papp. (g/cc) Q-cm ness Frict. psi psi psi Sample # Temp.~C (g/cc) He Xyl (x10) (DPH) (x103) (x10-6) (10-3) (x10-3) 323-36A 1082 0.68 -- 1.473.395 -- -- 0.081 5.52 2.53 323-38 1027 0.86 -- 1.5.24 -- -- 0.188 11.2 2.5 323-38B 1082 0.9 -- 1.53.211 -- -- -- 10.8 2.6 323-39 1082 0.99 -- 1.44.169 ---- 0.311 13.9 2.44 323-40 1027 0.98 -- 1.47.2 -- -- 0.208 11.9 2.34 323-41 1027 0.84 -- 1.49.26 -- ---- 3.96 1.62 323-42 1082 0.9 -- --.212 -- -- -- 4.2 2.14 323-43 1027 0.88 -- 1.48.23 -- -- -- 9.5 1.1 323-45 1027 0.82 -- 1.50.28 ---- 0.15 7.3 2.12 323-46 1027 0.87 -- 1.51.24 ---- 0.187 10.62.67 323-47 1027 0.91 -- 1.48.21 -- ---- 9.35 3.35 323-48 1027 0.87 -- 1.50.23 ---- 0.20 11.2 2.7 323-49 1027 0.90 -- --.228 ---- 0.25 11.66.94 323-50 1027 0.92 -- 1.51.15 ---- 0.29 35.6 4.58 co 323-51 1027 -- -- 1.55 - -- - 323-52 1027 -- -- 1.45 - -- - 323-54 1082 0.9 -- 1.45.184 -- ---- 10.02 1.83 323-55 1027 0.87 -- 1.48.22 ---- 0.20 12.1 1.28 323-56 1082 0.98 -- 1.45.153 -- ---- 15.3 323-57 1027 0.8 -- 1.54.25 ---- 0.175 9.11 1.48 323-58 1027 0.73 -- 1.54.33 -- -- 0.114 6.8 1.85 323-62 1027 -- -- 1.51 - --- 323-65 1027 0.92 -- 1.48.21 -- -- 0.199 10.8 2.64 323-66 1027 0.90 -- 1.49.23 -- -- 0.21 7.95 2.49 323-67 1000 0.97 -- 1.45.13 ---- 0.43 41.7 7.35 323-68 1000 0.82 -- 1.52.3 -- ---- 7.43 1.88 323-69 1000 0.86 -- 1.49.22 -- -- 0.173 7.71 2.18 324-1 1000 0.78 -- 1.49.29 -- -- 0.128 5.9 1.68 324-2 1000 0.79 -- 1.45.28 ---- 0.162 6.38 1.33 324-3 1000 0.80 -- 1.52.24 ---- 0.179 8.72 2.29 324-4 1000 0.99 -- 1.52.14 ---- 0.39 25.2 4.87 324-5 1000 0.75 -- 1.52.29 -- -- 0.12 6.73 1.99 324-6 1000 0.78 -- 1.53.295 -- -- 0.13 7.04 2.54

Resis- Sonic Compr. Ult. real tivity Hard- Int. Mod. Str. Str. Mapp. (g/cc) Q-cm ness Frict. psi psi psi Sample #Temp.0C (g/cc) He Xyl (x10) (DPH) (x103) (xl 6) (x10 3) (x103) 324-7 1000 0.78 -- 1.48.305 ---- 0.13 7.43 2.28 324-8 1000 0.78 -- 1.52.285 -- -- 0.137 7.6 2.19 324-9 1000 0.80 -- 1.53.28 -- -- — 7.21 2.16 324-10 1000 - - - 1.50 324-11 1000 0.94 - 1.53.14 -- 0.305 27.4 4.15 324-12 1000 0.86 -- --.19 --- 0.25 18.0 3.02 324-13 1000 0.97 -- 1.50.14 -- 0.337 32.9 5.37 324-14 850 1.07 -- 1.41.110 324-14 1066 1.09 -- 1.42.114 - -0.50 46.9 7.59 324-15 1066 0.96 -- 1.48.15 -- - 0.242 16.13 3.49 324-16 1066 1.0 -- 1.47.12 -- -- 0.37 30.22 4.6 324-18 1066 0.99 -- 1.56.127 -- -- 0.43 42.20 6.25 324-19 1066 0.83 - 1.54.215 ---- 0.189 14.88 2.41 324-20 1066 0.84 -- 1.49.249 ---- 0.162 14.47 1.99 co 324-21 1066 1.04 -- 1.49.117 -- — 0.486 46.03 5.0 324-21A 1066 1.03 -- 1.48.127 --- 0.4637.00 4.9 324-22 1066 0.9 -- 1.55.185 -- -- — 23.37 3.74 324-23 1066 0.97 -- 1.52.2 -- -- 0.295 14.39 2.33 324-24 1066 0.99 -- 1.55.183 ---- 0.256 15.73 2.4 324-25A 1066 0.84 -- 1.42.17 -- -- 0.275 28.32 4.0 324-25B 1066 0.75 -- 1.49.537 -- -- 0.039 2.99.42 324-25C 1066 0.74 -- 1.5.382 -- -- 0.089 3.82.46 324-25D 1060 0.91 -- --.165 ---- -- 22.99 4.84 324-26 1066 1.0 -- 1.54.119 -- -- 0.46 44.83 5.7 324-27A 1060 0.71 - 1.53.291 -- -- 0.089 5.05.95 324-27B 1060 0.5 -- 1.56 1.102 ---- 0.007.459.12 324-27C 1060 0.5 -- 1.54 1.472 -- --—.459.10 324-27D 1060 0.52 -- 1.53 1.116 -- -- --.391 324-28 1060 - -- 1.54 -- 324-29 1060 0.8 -- 1.44.269 -- — 0.105 3.11.76 324-30 1060 -- -- 1.60 324-31 1060 -- -- 1.40 324-32 1060 0.93 -- 1.54.25 -- -- 0.15 5.20 1.93

Resis- Sonic Compr. Ult. real tivity Hard- Int. Mod. Str. Str. app. (g/cc) Q-cm ness Frict. psi psi psi Sample # Temp.C (g/cc) He Xyl (xl0) (DPH) (x103) (x10-6 (x10- ) (x10 3) 324-33 1060 0.82 -- 1.50.165 -- -- 0.234 23.3 3.5 324-34 1060 1.02 -- 1.57.134 -- -- 0.31 22.2 4.04 324-35 1060 0.97 -- 1.56.204 - -- 0.20 9.59 2.03 324-36 1060 (0.872) -- 1.54 324-37 1060 0.87 -- 1.46.206 -- -- 0.19 7.20 1.83 324-38 1066 0.88 -- 1.49.232 - -- -- 9.11 1.94 324-39 1066 0.88 -- 1.51.278 - -- 0.17 7.91 1.99 324-40 1066 — -- 1.55 324-40D 1066 0.92 -- --.185 - -- 0.20 9.08 2.12 324-40E 1066 0.89 -- 1.43.198 - -- 0.21 5.84 1.57 324-40A 1066 0.89 -- 1.53.277 -- -- 0.105 4.28 1.02 324-41 1066 0.89 -- 1.50.219 - -- 0.19 10.1 2.34 324-42 1066 0.88 -- 1.48.203 - -- 0.18 6.07 2.06 324-43 1066 0.96 -- 1.54.173 -- -- 0.265 11.6 3.37 cc 324-44 1066 0.91 -- 1.51.204 -- -- 0.17 11.9 2.08 324-45 1066 0.92 -- 1.52.183 -- -- 0.27 12.0 3.47 324-46 1066 0.87 -- 1.59.184 -- -- 0.20 6.98 2.41 324-47 1066 0.94 -- 1.50.208 -- -- 0.17 6.12 1.53 324-48 1066 0.92 -- 1.59.195 - -- 0.20 9.7 2.47 324-49 1104 (0.78) -- 1.55 324-51 1104 1.11 -- 1.54.111 - -- 0.55 37.65 6.40 324-52 1104 1.0 -- 1.50.187 -- -- 0.22 9.64 2.10 324-54 1066 (0.97) -- 1.59 -- -- -- 324-56 1066 0.98 -- 1.43.202 - - 0.20 8.77 2.63 324-57 1066 1.04 -- 1.46.135 - - 0.45 21.5 324-58 1066 0.95 -- 1.53.183 -- -- 0.29 8.36 2.17 324-59 1066 (0.78) -- 1.52 324-61 1066 1.04 -- 1.45.129 -- -- 0.41 12.44 3.49 324-62 1066 0.98 -- 1.47.19 - -- 0.24 9.0 2.54 324-63 1066 0.95 -- 1.51.214 -- -- 0.26 9.88 1.95 324-64 1066 (0.69) -- 1.56 324-65 1066 0.81 -- 1.59.267 -- -- 0.13 6.81 324-66 1066 0.70 -- 1.56.347 -- -- 0.066 3.36.78

Resis- Sonic Compr. Ult. real tivity Hard- Int. Mod. Str. Str. app. (g/cc) Q-cm ness Frict. psi psi psi Sample #Temp~C (g/cc) He Xyl (xl0) (DPH) (xl03) (xl0 6) (x10) (x103) 324-67 1066 0.90 -1.59.251 - - 0.14 8.62 1.76 324-68 1066 (0.81) -1.59 -- -- -- 324-69 1066 0.78 -1.52.284 - - 0.12 6.39 1.31 324-70 1066 0.79 -- 1.55.274 -- -- 0.12 6.40 1.46 324-71 1066 0.91 -- 1.54.229 -- - 0.17 7.98 324-72 1066 0.72 -721.55.351 -- - 0.06 2.64.54 325-1 1066 0.88 -1.52.163 -- - 0.30 31.09 3.55 325-2 1066 -- -- 1.48 -- -- -- 325-2A 1066 (0.91) -1.51 325-2C 1066 (0.87) -- 1.53 325-2D 1066 (0.83) -1.5 325-2E 1066 (0.82) -- 1.5 325-3 1066 ---- 1.49 -- -- - -- - - I 325-5 1066 0.886 -- 1.54.260 -- -- -- 8.14 1.58 co 325-6 1066 1.080 -- 1.4.234 - -- -- 38.97 6.89 325-7 1066 0.939 -- 1.53.138 -- -- -- 11.33 2.83 325-8 1066 (0.72) -1.51 -- -- 325-9 1066 (0.85) -- 1.57 -- -- 325-10C 1066 0.852 -1.52.388 - -- - 7.73 1.78 325-11 1066 0.761 -1.54.411 -- 325-12 1066 0.784 -- 1.66.304 325-13 1066 0.820 -- 1.47.180 325-14 1066 0.912 -- 1.49.174 325-15 1066 ---- 1.56 -- 325-16 1066 (0.77) -- 1.52 325-17 1066 ---- 1.44 -- 325-18A 1066 0.747 ---.153 325-18B 1066 0.729- -.315 325-18C 1066 0.769 ----.313 325-19A 1066 0.705 ---.321 325-19B 1066 0.730 ---.311 325-19C 1066 0.715 - --.283 -- 325-20 1066 0.725 -1.65.369 - - - 7.32 1.49

Resis- Sonic Compr. Ult. real tivity Hard- Int. Mod. Str. Str. Papp. (g/cc)?~-cm ness Frict. psi psi psi Sample # Temp.~C (g/cc) He Xyl (x10) (DPH) (x103) (x10 6) (x10 3) (x10 3) 325-21 1066 0.807 -- 1.54.274 325-22 1066 0.868 -- 1.60.224 - -- 325-23 1060 0.848 -- 1.55.244 - -- 325-24 1060 0.830 -- 1.59.243- --- 325-25 1060 (0.72) -- 1.60 - -- - 325-26 1060 1.017 -- 1.57.285 - --- 325-27 1060 (0.93) -- 1.59 - -- 325-28 1066 0.844 -- 1.61.315 -- -- - 8.56 1.98 325-29 1066 (0.54) -- 1.51- -- - 325-30 1066 (0.80) -- 1.51 - --- 325-31 1066 0.768 -- 1.45.256 - -- 325-32 1066 0.791 -- 1.52.273 - -- 325-33 1066 0.878 -- 1.51.252 - -- 325-34 1066 (0.82) -- 1.45- -- - co 325-35 1066 0.896 -- 1.54.320 - -- -- 7.47 1.70 325-36 1066 0.952 -- 1.49.239 - --- 325-37 1066 (0.81) -- 1.47 - -- 325-38 1066 0.839 -- 1.53.329- -- 325-39 1066 0.907 -- 1.50.271 - --- 325-41 1066 0.766 -- 1.51.343 - -- 325-42 1066 0.802 -- 1.53.358 -- -- -- 7.69 1.26 325-43 1066 0.772 -- 1.59.406 -- -- -- 5.32 1.23 325-44 1066 0.724 -- 1.54.264 -- 325-45 1066 0.817 -- 1.51.291 -- -- -- 4.49 1.06 325-46 1066 (0.82) -- 1.54- -- - 325-47 1066 0.864 -- 1.57.270 - 325-48 1066 0.740 -- 1.52.383 -- -- -- 5.25 1.16 325-49 1066 (0.85) -- 1.52 - --- 325-50 1066 0.864 -- 1.58.251 -- - 325-51 1066 0.897 -- 1.56.273 - -- 325-52 1066 (0.77) -- 1.54 - -- - 325-53A 1066 (0.97) -- 1.51 325-54 1066 0.841 -- 1.60.285 -- -- -- 6.4 1.3

Resis- Sonic Compr. Ult. real tivity Hard- Int. Mod. Str. Str. Papp. (g/cc) a-cm ness Frict. psi psi psi Sample #Temp.~C (g/cc) He Xyl (x10) (DPH) (x103) (xlO 6) (xl0~3) (xlO3) 325-55 1066 0.937 -- 1.54.211 - - -14.94 2.9 325-55A 1066 0.708 -- 1.46.231 -- -- -- 4.79 1.15 325-56 1066 0.984 - 1.48.151 - -- -22.6 4.25 325-57 1060 0.853 - 1.57.268 -- -- -- 7.25 1.60 325-57A 1060 0.837 -- 1.55.277 -- -- -- 8.67 1.62 325-58 1060 0.873 - 1.52.301 -- -- - 5.5 1.25 325-58A 1066 0.839 -- 1.52.295 -- -- -- 7.85 1.76 325-59 1066 0.696 - 1.52.273 - - -- 2.47.54 325-59A 1066 0.719 -- 1.60.264 -- -- -- 2.52.65 325-59B 1066 0.815 -- 1.50.254 -- - - 8.32 1.83 325-59C 1066 0.835 - 1.46.247 - - -- 10.98 1.81 325-60 1066 0.919 -- 1.51.250 -- -- - 9.01 1.85 325-60A/W 1066 0.864 -- 1.52.316 - - -- 5.26 1.23 325-61 1066 0.919 -- 1.50.239 - -- -- 10.1 2.42 c 325-61A 1066 0. 8 2 3 -- 1.51.252 - -- -- 7.06 1.95 325-61B 1066 0.867 -- 1.48.222 -- -- -- 8.89 2.05 325-61C 1066 0.820 -- 1.47.282 - -- - 5.9 1.3] 325-61D 1082 0.838 -- 1.44.308 325-61E 1082 0.834 -- 1.49.282 325-62 1082 0.879 -- 1.52.221 325-62A 1082 0.877 -- 1.51.237 325-62B 1082 0.966 -- 1.50.179

TABLE 10 Physical Properties Correlated with Density PP /real rreal I f real s/app. app. app. [p cscp UTS a [ ) app app.,a app. aHep Sample # in(x10-6) in(x10-3) in(xl0-3) psi(x10-6) psi(x10-3) psi (x10-3) -cm(xl0) 310-35 -- 252.4 49.2 -- 18.8 3.67 -- 311-34 -- 333.3 325.9 -- -- 311-35 19.2 37.2 66.9 - 312-13 -- 1298.0 125.9 -- 312-14 -- 1000.0 -- -- 51.8* 312-16 -- 62.2 102.1 -- 3.26 5.33 312-27 -- -- 188.0 -- -- 312-29 -- 1030.6 -- -- 56.4* - - 312-32 -- 901.2 158.3 -- 47.7* 8.38* -- 312-34 -- 824.2 33.5 -- 40.9* 1.09* -- 312-49 -- -- 150.5 -- -- 7.86 - 315-2 50.3 58.5 14.3 2.76* 3.2* 0.78*.016* 315-14 -- 1235.5 136.0 -- 71.2* 1.04* -- 315-17 -- 1030.0 88.3 - -- - 315-20A 48.8 -- -- 2.82* -- 315-20B 49.3 -- -- 2.85* -- --.013* 315-20C 48.1 ---- 2.76* -- --.009* 315-21B -- -- 191.0 -- -- 10.45 315-21C 45.8 1428.6 217.6 2.51* 78.2* 11.9*.009* 315-21D -- 743.0 209.5 -- 40.6 11.47 315-25A -- 767.0 145.5 -- 38.9 7.39 315-25B -- -- 152.6 -- -- 7.75 315-25C 48.8 1120.5 232.9 2.41* 56.9* 11.8*.020* 315-26B -- 962.8 209.3 -- 50.3 10.92 315-26C 41.7 888.9 147.2 2.18* 46.4* 7.7*.003* 315-26D 46.2 1224.9 -- 2.34* 63.9* --.009* 315-28 -- 1079.3 127.0 -- 56.7* 6.68* -- 315-31B 50.0 1218.8 178.8 2.63* 63.4* 9.4*.007* 315-31C 49.3 -- -- 2.63* -- --.015 315-31D 48.8 1105.0 201.5 2.56* 58.1* 10.6*.014* 315-32 -- 1262.6 178.2 -- 65.0* 9.2* *Calculated with helium (otherwise with xylene).

/p /. prreal real real VsPapp. cs /app. UTS app s Pcs s pp Csap- TSpp. app. app app. Sample # in(x0-6in(n(x10-3) in(xl0-3) psi(x10-~) psi(x10-3) psi (xl-3) Q-cm(xl0) 315-33 44.9 -- -- 2.42* - --.010 315-34C 40.3 972.2 136.6 2.29* 55.3* 77*.011* 315-34D 51.5 690.2 114.9 2.91* 39.0* 6.5*.006* 315-37 31.9 744.2 131.6 1.70 39.7 7.01.009 315-38A 35.9 925.9 114.6 1.95* 50.3* 6.2*.011* 315-39A 51.5 1038.8 161.7 2.65 53.5 8.33.013 315-39B 51.0 824.7 127.6 2.62 42.5 6.57.002 315-41 -- 612.8 -- -- 31.1 --.001 315-41A 48.7 671.0 72.2 2.93* 40.3* 4.3*.002* 315-41B 45.9 563.0 69.9 2.69 33.8* 4.3*.007* 315-42 52.7 -- -- 2.79 -- --.015 315-43 -- 1335.5 ---- 71.1 315-44 52.1 -- -- 2.69 ----.011 315-45B 211.9 -- -- 12.74 -- --.002 co 315-46A -- 2.78 2.48 -- 4.4* 3.9* -- 317-1 — 1297.1 172.2 — 56.1 7.5 -- 317-2 35.6 922.0 116.2 1.85 48.4 6.07.009 317-5 -- 1175.0 266.0 -- 55.6 12.6 317-8 50.4 1120.9 63.4 2.62 57.6 3.30 317-9 -- 964.8 172.3 -- 61.1* 10.9* 317-10 50.9 1536.6 210.9 2.61* 78.5* 10.8*.001* 317-12 -- -- 181.6 -- -- 10.5* -- 317-14 -- 874.8 149.7 -- 46.9* 8.03* 317-15 -- 1025.6 124.8 -- 53.9* 6.6* -- 317-18 33.0 126.0 104.0 1.51 8.93 5.78.005 317-19 -- 693.2 215.1 -- 41.9* 13.0* -- 317-23 -- 254.0 63.4 -- 13.4 3.34 -- 317-24 52.9 1794.6 159.7 2.99* 101.4* 9.0*.009* 317-25 -- 1076.4 89.9 -- 54.6 4.57 -- 317-26 53.7 167.4 32.8 2.86* 8.9* 1.7*.010 317-29 32.3 615.0 92.8 1.73 33.0 4.99.006 33 7 —32 51.3 1380.0 113.0 2.63 71.0 8.11.014 317-33 -- 1092.0 152.0 -- 57.5* 8.0*

E /./ a ~/ E ~ 5 Preal) P (reali rtC 0real fea _ 317-38 31.1 1156.0 129.0 1.60 59.7 6.67.017 317-39 43.3 963.0 129.0 1.98* 44.0* 5.9*.002* 317-40 40.7 742.0 112.0 2.16* 39.4* 5.95*.011* 317-41 -- 298.0 70.0 -- 17.1 4.0 317-41A -- 228.0 58.8 -- 11.3 2.9 317-41B -- 668.0 96.5 -- 35.7* 5.15* -- 317-42 49.1 1266.0 169.0 2.63* 66.3* 8.8*.008* 317-43 -- 462.0 76.0 -- 23.4* 3.84* -- 317-44 44.6 903.0 70.4 2.43* 49.1* 3.83*.0004* 317-45 -- 1017.0 164.0 -- 51.4* 8.3* -- 317-46 43.5 1183.0 215.0 2.32* 63.2* 9.7*.006* 1 317-47 -- 785.0 160.0 -- 39.3* 8.05* -- 317-48 29.9 -- -- 1.57* -- 317-49 30.8 385.4 104.2 1.67* 20.9* 5.7*.018 318-1 24.8 -- 89.8 1.35* -- 4.9*.009* 318-2C 25.0 1076.8 148.9 -- -- 318-7 23.2 29.2 28.0 1.12 1.41 2.87 318-8 -- 526.6 162.6 -- 28.2* 8.7* -- 318-8A -- 936.4 -- -- 50.23 --- 318-9 -- 792.8 150.2 -- 42.8* 8.1* -- 318-11 45.3 -- 155.0 2.58* -- 8.8* -- 318-14 14.6 170.9 29.9.76* 9.0* 1.6*.015 318-16 42.3 831.0 118.0 2.26* 44.4* 2.3*.017* 318-17 44.2 1246.2 163.0 2.66* 65.5* 8.51*.019* 318-22 43.2 987.0 146.0 2.25* 51.5* 7.63*.014* 318-24 42.5 -- -- 2.35 -- 318-24C -- 752.0 134.0 -- 33.6 6.01 318-28 43.9 -- -- 2.30* -- --.010 318-29 -- 10.1 32.2 --.5* 1.7*.008* 318-30 39.2 563.3 149.62 2.10* 30.2* 8.03* -- 318-31 6.8 80.3 9.6 0.33 3.96 0.47.009

rp[real' P[ rPreal] E /Pa //o /D Ep f E fr Geal sPapp. cs /app. UTS appC P U ( app., app. app.He Sample # in(xl0-6) in(xl0-3) in(xl0-3) psi(xl0-6) psi(x10-3) psi(x10-3) Q-cm(xlO) 318-32 -- 650.0 -- -- 36.5* - - 318-33 46.9 1118.1 164.9 2.62 61.6 9.1.053 318-34 -- 742.0 125.0 -- 38.9* 6.57* 318-35 46.9 831.0 144.0 2.41* 42.9* 7.4*.070* 318-36 36.6 505.0 90.6 1.87* 25.7* 4.62*.008* 318-37 65.7 773.0 117.0 3.50* 41.3* 6.3*.007* 318-39 67.3 785.0 179.0 3.82* 44.5* 10.1*.007* 318-45 67.6 -- -- 3.34 - --.006 318-46 62.7 1149.0 200.0 3.35 60.5 10.5.029 318-48 -- 89.7 212.0 -- 4.63* 10.95* 318-51 26.0 546.0 45.3 4.23* 28.2* 2.3* -- 318-52 46.2- 486.8 6-9.9 2-3* 24.7* 3:5.-4-3T 318-53- 151.0 51.1 -- 7.9* 2.7* 318-58 2.8 -- 165.0.1 -- 9.3.154 318-59 60.1 886.0 117.0 3.00 44.2 5.9 --! 318-60 52.0 1055.0 222.0 2.7 54.1 11.4.010 318-61 40.4 620.0 109.0 2.00 30.9 5.4.029 318-62 -- 1195.0 201.0 -- 60.2* 10.1* 321-3 -- 1130.0 203.0 -- 64.1* 11.5*.021* 312-6 59.5 1061.0 210.0 3.43* 61.3* 12.1*.021* 321-8 45.6 1197.0 215.0 2.39* 63.1* 11.4*.034* 321-9 -- 1283.0 231.0 -- 59.3 10.7 -- 321-10 66.0 1207.0 238.0 3.18* 58.4* 11.5*.009* 321-11 44.9 1184.0 151.0 2.36* 60.9* 7.77*.076* 321-12 35.0 427.0 72.0 1.67* 20.3* 3.4*.089* 321-13 48.7 1032.0 176.0 2.64 57.2 9.54.007 321-15 -- 994.00 173.0 -- 56.1* 9.7* -- 321-16A 50.7 792.0 148.0 3.36* 52.6* 9.8* 321-17B 53.5 1089.0 155.0 2.71* 55.1* 7.9* 321-18B 80.1 1726.0 246.0 4.02 92.2 13.2 321-19A 58.4 1006.0 193.0 2.99 51.4 9.9 321-19B 49.9 1055.0 192.0 2.62 55.2 10.1 321-20B -- 1381.0 246.4 -- 74.6* 13.3* -

Es/P CJ /P CT /P. I 1real real real s app. cs app. UTS app. Pa as p UTS ) iH app. appp ao] ) s Sample #in(xl06) in(xl0~3) in(xl0~3) psi(xl-6) psi(xlO-3) psi(x1o-3) -cm(xl0) 321-21A 48.8 1344.6 187.6 2.54 70.2 9.8.013 321-21B 53.6 1288.9 171.1 2.83 68.2 9.1.014 321-22A 42.6 943.0 181.0 2.21 48.9 9.4.018 321-22B -- 986.4 129.8 -- 54.7 7.19 321-22C 42.6 1074.4 129.5 2.31 58.2 7.02.011 321-22D4 42.7 1013.9 154.9 2.27 53.8 8.23.012 321-23 54.8 1565.0 194.0 3.4* 98.0* 12.2*.008* 321-23A 47.5 1183.4 184.0 2.61 65.2 10.1.017 321-23B 48.4 1222.8 171.0 2.51 63.4 8.88.012 321-24 52.9 1297.1 173.0 3.06 74.9 10.0.012 321-24A 30.6 1430.5 205.1 1.6 75.5 10.8.009 321-24B 57.6 1170.8 175.5 3.1 62.4 9.4.011 321-25A 26.9 1103.0 213.5 1.41 58.2 11.2.006 321-26 -- 1466.7 42.8 -- 82.4 2.4 321-27 20.0 3 1 3. 3 4 3. 3 1.2* 17.1* 2.4*.006* 321-29 46.0 1157.0 172.0 2.81 59.2 8.79.012 321-31F 26.0 503.8 82.6 1.6 30.5 5.0.052 321-31G -- 599.0 95.2 -- 36.0* 5.7*.011* 321-31J 34.9 687.0 121.0 1.87 36.8 6.5.010 321-31P 36.1 777.0 111.9 1.63 35.1 5.1.017 321-31Q 46.3 1143.8 175.9 2.56 63.2 9.73.011 321-31R 27.0 388.0 58.9 1.45 20.8 3.15.011 321-31S 44.1 1063.9 160.9 2.22 53.4 8.08.012 321-32A 26.9 1049.0 111.7 1.45 56.6 6.03.011 321-32B 27.4 1098.2 171.4 1.50 60.3 9.41.012 321-32C 27.98 1245.5 183.8 1.52 67.5 9.96.013 321-32D 44.8 -- -- 2.38 -- —.016 321-32D1 6.59 -- -- 0.35 -- —.017 321-32E 45.9 1233.7 173.4 2.21* 59.28* 8.33*.017* 321-32F 26.3 963.5 123.8 1.4653.4 6.87 321-32G 45.45 926.5 131.98 -- -- -- 321-33A — 1171.9 175.5 -- 59.7* 8.94*.011* 321-33B 46.3 1666.9 208.0 2.46 88.53 11.05.02

E/p a reall real Kreal Papp. cs aTS/ PaSpapp. ] apc UTS ( pe app Pa-apP. ap p. Sample #in(x10-6) in(xlO-3) in(xl0~3) psi(xlO-6) psi(xl0-3) psi(xl6-) -cm(xlO) 321-34A 42.96 902.4 217.7 2.47* 51.8* 12.5*.016* 321-34B 86.56 980.5 85.98 4.97 56.3 4.94.011 321-34D 42.54 -- -- 2.29 -- -- 321-34E1 26.8 1191.6 158.2 1.17* 52.1* 6.92*.0298* 321-36A ---- 61.3 -- -- 3.19 321-36B 29.7 1303.7 187.0 1.45 63.6 9.12.023 321-37B 17.6 231.9 45.7 0.955* 12.57* 2.48*.0106* 321-37E 32.9 48.7 12.62.09 3.1.802.0198 321-37F 3.4 44.7 9.37.192 2.52.528 321-37Q 7.8 65.115.6.46 3.8.9.014 321-39 23.7 224.1 43.2 1.37* 13.0* 2.5*.012* 321-40 -- 23.0 2.8 -- 1.18*.14*.013* 321-42A 12.673.9 20.6.65 3.83 1.07.012 321-42B 8.5 48.7 17.9 4.6* 2.6*.96*.012* klo 321-43A 22.7 49.7 14.0 1.3*2.8*.79*.017* 7 321-43B 4.5 33.1 9.1.24* 1.7*.47*.019* 321-46B 5.4 69.1 16.6.28* 3.6*.85*.015* 321-48B 11.4 88.7 20.0.6*4.6* 1.0*.014* 321-50B 40.8 769.9 123.0 2.1* 39.5* 6.3.011* 321-51 20.5 255.0 38.2 1.1* 13.8* 2.1* 321-51A -- -- -- -- --—.013* 322-1A 9.11 135.0 26.2.52 7.76 1.5.012 322-1B 8.67 -- --.62* -- —.016* 322-3A 28.5 265.1 26.9 1.63 15.2 1.55.008 322-11A 9.4 66.2 22.07.50 3.56 1.19.010 322-11B 9.23 30.4 6.5.63* 2.09*.45*.010* 322-12A 12.1 112.2 12.1.62 5.80.62.011 322-12B 13.3 77.3 9.1.72 4.2.49.011 322-13A 20.9 144.0 -- 1.1 7.55 —.009 322-15B 19.9 238.9 -- 1.07 12.8 —.010 322-16B 12.4 140.9 29.1.69 7.84 1.62.011 322-1713 7.8 -- 14.4.42 --.77.018 322-18A 56.1 964.8 162.7 3.02 51.9 8.76.006 321-45B 10.9 1083.6 155.0.59* 58.7* 8.39*.007*

Ea/p ~ /p a /p real real real a I /P /P /P E app. j p s/app Cs app. UTc app. r Pal s P UTS Papp (H Sample in(x10-6) in(x10-3) in(x10-3) psi(xl0-6) psi(x10-3) psi(x10-3) 3 -cm(xlO) 322-19B 11.56 145.75 14.4.65 8.16.804.014 322-20 27.3 317.6 50.7 1.55 18.0 2.88.008 322-21 19.8 124.9 27.7 1.04 6.54 1.45.011 322-22A -- 129.0 37.4 -- 6.9 2.0 322-22B -- 161.7 37.0 -- 8.71 1.99 322-23B -- -- 135.7 -- -- 7.895 322-24A ---- 40.7 -- -- 2.22 322-24B -- -- 43.2 -- -- 2.48 322-25A 52.7 782.0 109.4 2.82 41.8 5.85.006 322-25A 46.6 619.0 68.25 2.76 36.7 4.04.007 322-26 57.6 766.8 101.7 -- -- -- 322-27A 52.7 831.7 87.7 2.7 42.7 4.5.005 322-28A -- 547.6 94.0 -- 28.5 4.89.006 322-29A 28.5 445.4 68.36 1.5 23.5 3.6.009 C..< 322-30 25.7 87.3 27.17 1.32 4.48 1.29.011 322-31B 9.63 74.2 14.56.55 4.24.831.015 322-32 13.5 114.5 17.4.78 6.62 1.005.011 322-33 23.4 108.2 51.46 1.37 6.33 3.01.010 322-34 39.5 495.6 142.1 1.91 24.0 6.88.007 322-35 24.4 424.2 63.62 1.26 21.9 3.29.012 322-36 40.6 723.4 117.6 2.13 37.9 6.16.006 322-37 16.7 131.2 41.8.87 6.83 2.175.011 322-38 35.37 423.1 93.65 2.14 25.7 5.68.007 322-39 33.8 473.8 137.9 1.89 26.53 7.72.007 322-40 39.9 488.74 120.9 2.29 28.1 6.94.005 322-41 31.8 372.7 98.46 1.83 21.4 5.66.008 322-42A3 33.8 414.0 114.2 -- -- -- 322-42A4 29.4 601.1 43.25 -- -- -- 322-42B1 28.9 414.7 82.2 1.5 21.6 4.28.009 322-42B2 32.1 486.8 81.9 1.69 25.7 4.32.009 322-42B3 33.7 735.5 117.9 1.78 38.8 6.22.0135 322-42B4 29.36 511.6 44.9 1.6 27.9 2.45.007 322-42B5 30.9 588.2 101.76 -- -- --

E /p / / Erral rreal Io sPapp cs app. UTS app. s P cs p UTS D p a-pp.- c Papp. Uapp.S app. He Sample # in(x10-6) in(x10-3) in(xl03) psi(xl0-6) px-) si(x (xlO-3) g1i-cm(xlO) 322-42B6 35.8 621.8 46.5 1.93 33.5 2.5.010 322-45 22.95 228.2 68.86 1.43 14.2 4.28.010 322-48 17.5 87.9 40.4 0.94 4.7 2.16.013 322-49A 27.7 462.5 78.48 1.46 24.4 4.14.008 322-50 21.2 269.57 216.6 1.17 14.8 2.87.007 322-61 14.96 146.62 37.78 0.79 7.73 1.99.010 322-62 34.9 475.7 89.95 1.88 25.6 4.84.006 322-63 46.8 990.87 113.76 2.64 55.85 6.41.005 322-63A 57.45 565.2 119.3 3.1 30.43 6.42.005 322-64 54.23 1287.9 152.79 3.13 74.45 8.83.005 322-64B 56.25 1157.7 176.5 3.27 67.34 10.27.005 322-67 43.0 1006.2 158.25 2.55 59.6 9.38.005 322-67B 44.9 941.7 151.2 2.29 47.97 7.7.006 322-68 19.8 284.3 54.98 1.09 15.61 3.02.009 lo 322-68A -- -- -- -- -- -.009 322-69 16.8 208.6 47.73 0.9 11.3 2.59.009 322-69A 16.1 201.7 53.05 0.86 10.4 2.82.010 322-70 15.2 244.3 45.73 0.79 12.7 2.38.011 323-2 40.8 947.4 153.65 2.14 49.6 8.05.006 323-2A 45.0 916.8 141.8 2.34 47.7 7.38.006 323-3A 60.7 1187.9 159.5 3.36 65.7 8.81.005 323-4 19.5 305.2 66.7 1.04 16.2 3.54.0093 323-4A 19.5 297.7 61.4 1.04 15.8 3.26.0095 323-5 2.95 163.4 30.7 0.16 8.85 1.66.0217 323-5A 2.99 155.3 36.1 0.158 8.19 1.91.0213 323-7A 5.39 294.0 46.4 0.292 15.9 2.51.0174 323-8A 7.75 580.1 122.6 0.426 31.9 6.7.0126 323-9 8.33 338.3 83.3 0.454 18.46 4.54.0132 323-9A 3.62 329.8 47.3 0.199 18.11 2.60.0126 323-11B 2.84 192.3 36.3 0.153 10.35 1.95.0225 323-11E -- 188.5 64.1 -- 10.01 3.40.0218 323-11F 2.207 148.5 31.4 0.121 8.15 1.72.0211 323-12 6.39 282.9 55.9 0.353 15.63 3.09.0129

0real,real real, a /Papp. cs app. UTS app. s app. cs app. UTS app. H Sample # in (x10 ) in (x10-3) in (x10-3) psi (x10-6) psi (x10-3) psi (x10-3) 3 -cm(xlO) 323-12A 5.74 171.8 71.5 0.313 9.37 3.90.0145 323-13 9.54 381.0 66.7 0.527 21.1 3.69.0118 323-13A 9.48 391.9 61.5 0.524 21.67 3.40.0116 323-14 402.1 73.8 22.67 4.16.0092 323-19 3.46 148.1 30.9 0.188 8.03 1.675.022 323-20 9.12 1028.9 132.9 0.494 55.8 7.2.0097 323-20A 8.77 675.1 153.2 0.476 36.6 8.3.0102 323-21 6.92 352.6 91.2 0.355 18.1 4.68.0129 323-22 9.33 883.4 161.2 0.502 47.6 8.68.0103 323-23 7.69 287.5 62.1 0.381 14.2 3.07.0126 323-25 1.43 142.6 28.9 0.077 7.68 1.56.0258 323-25A 1.49 128.1 22.3 0.079 6.8 1.18.0202 323-26 6.51 434.0 72.9 0.346 23.1 3.88.0133 323-26A 6.23 386.9 76.4 0.329 20.4 4.03.0137 323-27 371.0 84.8 19.4 4.44.0319 323-28 6.16 0.318.0145 323-28A 5.42 262.0 47.8 0.282 13.6 2.49.0171 323-29 157.4 13.4 8.4.71.0307 323-31 310.9 69.2 15.3 3.4.0123 323-32 5.99 312.9 75.2 0.316 16.5 3.97.0147 323-32A 6.32 83.3 0.331 4.37.0143 323-34 304.98 67.6 15.98 3.54.0114 323-35A 7.07 316.8 68.9 0.368 16.5 3.58.014 323-36A 3.3 224.7 102.9 0.175 11.9 5.5.018 323-38 6.05 360.5 80.5 0.328 19.5 4.36.014 323-38 332.1 79.9 18.4 4.42.012 323-39 1.03 388.6 65.4 0.45 20.2 3.40.012 323-40 3.13 336.1 66.1 0.312 17.9 3.51.013 323-41 130.5 53.4 7.02 2.87.015 323-43 298.8 34.6 15.98 1.85.014 323-45 5.06 246.4 71.6 0.274 13.4 3.88.015 323-46 5.95 337.2 84.9 0.325 18.4 4.63.014

real. real (real ap /P a /P aqi P cr Q app. Cs app. UTS app. sap.cs app. IUTS app. He Sample # in(xlO-6) in (xl0~3) in (x10-3) psi (x10-6) psi (x10~3) psi (x1O-) 3 -cm(xl) 323-47 284.4 101.9 15.2 5.45.013 323-48 6.36 356.3 85.9 0.345 19.3 4.66.013 323-50 8.72 1071 137.8 0.476 58.4 7.52.009 323-54 308.1 56.3 16.1 2.95.011 323-55 6.36 384.9 40.7 0.340 20.6 2.18.013 323-56 432.1 22.6.010 323-57 6.05 315.2 51.2 0.337 17.5 2.85.013 323-58 4.32 257.8 70.1 0.240 14.3 3.9.016 323-65 5.99 324.9 79.4 0.320 17.4 4.25.013 323-66 6.46 244.5 76.6 0.347 13.16 4.12.014 323-67 12.27 1189.9 209.7 0.643 62.34 10.99.009 323-68 250.8 63.5 13.8 3.5.016 323-69 5.57 248.1 70.1 0.299 13.36 3.77.013 324-1 4.54 209.4 59.6 0.245 11.3 3.21.015 324-2 5.68 223.5 46.6 0.297 11.71 2.44.015 324-3 6.19 301.7 79.2 0.340 16.6 4.35.013 324-4 10.9 704.5 136.1 0.599 38.7 7.48.009 324-5 4.43 248.4 73.4 0.243 13.64.03.014 324-6 4.61 249.8 90.1 0.255 13.81 4.98.015 324-7 4.61 269.7 80.9 0.246 14.1 4.33.016 324-8 4.86 269.7 77.7 0.267 14.8 4.27.015 324-9 249.4 74.7 13.8 4.13.015 324-11 8.98 806.8 122.2 0.496 44.6 6.75.009 324-12 8.05 579.3 97.2 324-13 9.62 938.8 153.2 0.521 50.9 8.30.009 324-14 12.70 1190.9 192.7 0.651 61.1 9.89.009 324-15 6.98 465.0 100.6 0.373 24.9 5.38.010 324-16 10.24 836.4 127.3 0.799 44.4 6.76.008 324-18 12.02 1179.8 174.7 0.678 66.5 9.85.008 324-19 6.30 496.2 80.4 0.351 27.6 4.47.012 324-20 5.34 476.8 65.6 0.287 25.67 3.53.014

Ireal r real reai E/ /p p /p E 3 a aTP{ sapp c app UTS. c app. C ap. UT app. s Ia HeJ Sample # in (x10-6) in (x10-3) in (x10-3) psi (xlO-6) psi (x10-3) psi (x10-3) 2-cm(xlO) 324-21 12.93 1225.0 133.0 0.696 65.9 7.16.008 324-21A 12.4 994.3 13.2 0.661 53.2 7.04.009 324-22 718.7 115.0 40.2 6.44.011 324-23 8.42 410.6 66.5 0.462 22.55 3.65.013 324-24 7.16 439.8 67.1 0.401 24.6 3.76.012 324-25A 9.06 933.1 131.8 0.367 37.8 5.33.010 324-25B 1.44 110.3 15.5 0.077 5.94.834.034 324-25C 3.33 142.9 17.2 0.180 7.74.932.019 324-25D 699.2 147.2 324-26 12.73 1240.8 157.8 0.708 69.04 8.78.008 324-27A 3.47 196.8 37.0 0.192 10.9 2.05.014 324-27B.387 25.4 5.54 0.0218 1.43.374.035 324-27C 25.4 5.54 1.41.308.048 326-27D 20.8 1.15.038 324-29 3.63 107.6 26.3 0.189 5.60 1.37.015 324-32 4.46 154.7 57.4 0.248 8.61 3.20.015 324-33 7.90 786.5 118.1 0.428 42.6 6.4.009 324-34 8.41 602.4 109.6 0.477 34.2 6.2.009 324-35 5.71 273.6 57.9 0.322 15.42 3.3.013 324-37 6.04 229.1 58.2 0.319 12.1 3.07.012 324-38 6.10 286.5 61.0 15.4 3.28.014 324-39 5.35 248.8 62.6 0.292 13.6 3.41.016 324-40A 3.27 149.3 31.7 0.181 8.25 1.75.016 324-40D.60 294.8 63.8 324-40E 6.53 181.6 31.7 0.337 9.38 1.64.012 324-41 5.91 314.1 72.8 0.320 17.0 3.94.013 324-42 5.66 191.0 64.8 0.303 10.2 3.46.012 324-43 7.64 334.4 97.2 0.425 18.6 5.41.011 324-44 5.17 361.9 63.3 0.282 19.7 3.45.012 324-45 8.12 361.0 104.4 0.446 19.8 5.73.011 324-46 6.36 222.1 76.7 3.66 12.76 2.77.01 324-47 5.01 180.2 45.1 0.271 9.77 2.44.013

Ep / ~P~real) jreal F real P a s app. cs a pp. UTS p. p. cs app. s UTS Papp, e Sample # in (x10-6) in (x10-3) in (x10-3) psi (x10-6) psi (x10-3) psi (x103) f-cm(x) 324-48 6.02 291.8 74.3 0.346 16.8 4.27.011 324-51 13.7 938.8 159.6 0.766 52.2 8.88.008 324-52 6.09 266.8 58.1 0.33 14.5 3.15.012 324-56 5.65 247.7 74.3 0.292 12.8 3.83.014 324-57 11.98 572.2 0.632 30.18.009 324-58 8.45 243.6 63.2 0.467 13.46 3.49.011 324-61 10.91 331.07 92.9 0.572 17.34 4.87.009 324-62 6.77 254.2 15.3 0.36 13.50 3.81.013 324-63 7.57 287.8 56.8 0.413 15.7 3.10.013 324-65 4.44 232.7 0.255 13.4.014 324-66 2.61 132.9 30.8 0.147 7.49 1.74.016 324-67 4.31 265.1 54.1 0.247 15.2 3.11.014 324-69 4.26 226.7 46.5 0.236 12.5 2.55.0146 324-70 4.20 224.2 51.2 0.235 12.6 2.77.0139 o 324-71 5.71 242.7 0.287 13.5.0135 324-72 2.31 101.5 20.8 0.129 5.68 1.12.0163 325-1 9.44 977.8 111.7 0.518 53.7 6.1.0094 325-5 254.3 49.4 14.1 2.75.015 325-6 998.7 176.6 50.5 8.93.018 325-7 333.9 83.4 18.5 4.6.008 325-10C 251.1 57.8 13.8 3.18.022 325-11.020 325-12.014 325-13.010 325-14.011 325-18A 325-18B 325-18C 325-19A 325-19B 325-19C 325-20

Ireal real, real, s/Papp. cs/app. aUTS/app. s app. cs Papp. UTSP app. [HeI ~~~-6) in (x103 — 3 — 6 — 3 -3 Sample # in (x 1 0 ) psi (xlO-) psi (x10 ) psi (x10 )!-cm(xlO) 325-21.014 325-22.012 325-23.013 325-24.013 325-26.018 325-28 280.7 64.9 16.3 3.78.017 325-31.014 325-32.014 325-33.015 325-35 230.8 52.5 12.83 2.92.019 325-36.015 325-38.018 325-39.016 325-41.017 325-42 265.4 43.5 14.7 2.40.019 325-43 190.7 44.1 10.96 2.53.020 325-44.012 325-45 152.1 35.9 8.30 1.96.016 325-47.015 325-48 196.4 43.4 10.8 2.38.019 325-50.014 325-51.016 325-54 210.6 42.8 14.5 2.47.015 325-55 441.3 85.7 24.6 4.8.013 325-55A 187.3 44.9 325-56 635.7 119.5 33.9 6.4.010 325-57 235.2 51.9 13.3 2.9.015 325-57A 286.7 53.6 16.1 3.0.015 325-58 174.4 39.6 9.6 2.18.017 325-58A 258.9 58.1 14.2 3.19.016 325-59 98.2 21.5 5.4 1.18.013 325-59A 97.0 25.0 5.6 1.45.012 325-59B 282.6 62.1 15.3 3.37.014

Preal, Preal real E /P cr /P /P 0 S/ E a p C s/PaCs app. UTS app. TS app. app Cs Pappj. UTS appj e Sample # in (x10-6) in (xlO03) in (x10-3) psi (x10-6) psi (x10-3) psi (x10-3) 3 -cm(xlO) 325-59C 363.9 59.9 19.2 3.16.014 325-60 271.4 55.7 14.8 3.04.015 325-60A/W 168.5 39.4 9.25 2.16.018 325-61 304.2 72.9 16.5 3.95.015 325-61A 237.4 65.6 12.9 3.6.014 325-61B 283.8 65.8 15.2 3.52.013 325-61C 199.1 44.2 10.6 2.35.016 325-61D.018 325-61E.016 325-62.013 325-62A.014 325-62B.012 C

TABLE 11 Comparison of Ultimate Strength Determined by Direct Tension vs. Disc Rupture Sample # Direct Tension Disc Rupture 317-38 3780 psi 5100 psi 318-59 4600 psi 4153 psi 321-16B 5306 psi 4705 psi 321-36A 4081 psi* 2462 psi 321-50B 3780 psi 5228 psi 322-23B 3163 psi 4050 psi 322-24A 1367 psi 1279 psi 322-24B 1122 psi 1279 psi *Broke in Grip TABLE 12 Comparison of Sonic Modulus and Mechanical Modulus HTT Sample # Temp.~C Mechanical Modulus Sonic Modulus 317-8 2000 1.27 x 106 1.82 x 106 317-26 2000 0.38 x 106 0.31 x 106 317-42 2000 1.4 x 106 1.5 x 106 317-46 2000 1.59 x 106 1.27 x 106 318-17 2000 1.16 x 106 1.18 x 106 318-52 2000 2.0 x 106 1.69 x 106 321-12 2000 1.01 x 106 1.22 x 106 -101

TABLE 13 Sonic Modulus vs. Pyrolysis Temperature psi(x10-6) ample # 700"C 8000C 900' C 10(00O 1 i577 C 1. 800'C 2000"C 318-59 #1L 1.02 -- -- 2.16.95 1.77 1.46 318-59 #2L 1.06 - -- 2.07 2.10 1.82 1.76 318-60L.93 -- -- 1.82 1.77 1.70 321-11L.75 -- -- 2.37 1.68 1.72 1.58 321-11CL.73 -- -- 1.75 1.75 1.72 1.66 321-12L.66 -- 1.49 2.03 1.23 1.18 321-13 #1L.80 -- -- 1.84 1.77 1.73 1.75 321-13 #2L.82 -- -- 1.84 -- 1.79 1.72 321-13 #3L.88 -- -- 1.91 --.75 1.72 321-15 #1.81 -- 1.69 1.92 1.91 1.84 1.69 321-15 #2 -- 1.53 -- 1.96 2.01 1.86 1.71 32-15L -- 1.69 -- 2.06 1.875 1.86. 79 321-16A -- 1.60 -- 1.88 1.87 1.70 1.55 321-16AL -- 1.57 -- 1.97 1.87 1.67 1.58 321-16B -- 1.68 -- 1.87 1.68 1.55. 48 321-17B.80 -- 1.80 2.12 1.96 1.91 1.81 321-18A -- 1.63 -- 2.2 2.14 2.09 1.98 321-18B #1 -- 1.73 -- 1.48 1.86 1.81 1.73 321-18B #2 -- 1.52 -- 1.97 2.09 1.74 1.73 321-18BL -- 1.56 -- 1.60. 90.83. 75 321-19A -- 1.53 -- 2.03 1.96 1.89 1.83 321-19B #1.75 -- 3.27 1.58 1.78 1.49 1.49 321-19B #2 -- 1.32 -- 1.69 1.61 1.61 1.55 321-19BL -- 1.40 -- 2.15 1.63 1.64 1.55 -102

TABLE 14 Resistivity vs. Pyrolysis Temperature 2- cm (x 10) Sample # 800~C 900"C 10000C 1577~C 18000C 2000~C 318-59 #1L ----.499.102.083.110 318-59 #2L ----.522.099.081.060 318-60L -- --.523.0108.016.170 321-11L -- --.643.116.120.120 321-11CL -- --.471.098.090.170 321-12L ----.542.148.120.06 321-13 #1L ----.506.120.170.100 321-13 #2L ----.521.106.160.110 321-13 #3L -- --.490.111.110.110 321-15 #1 --.143.014.0302.015.015 321-15 #2.448 --.029.0319.015.015 321-15L.324 --.110.115.170.110 321-16A.279 --.014.029.015.015 321-16AL.366 --.170.089.120.100 321-16B.445 --.030.0328.017.017 321-17B --.083.080.0357.018.018 321-18A.238 --.047.0333.017.017 321-18B #1.611 --.059.0334.016.016 321-18B #2.302 --.03.0325.016.016 321-18BL.374 --.160.114.110.110 321-19A.317 --.031.0332.017.017 321-19B #1 --.171.017.0368.018.018 321-19B #2.302 --.03.0325.016.016 321-19BL.355 --.150.081.110.110 -103

UNIVERSITY OF MICHIGAN 3 90 15 03126 3000111 3 9015 03126 3000