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ABSTRACT

This report documents the achievements from April 1969 to March
1970 of continuing research into the development and application of mathe-
matical techniques for the analysis and optimization of multiple-computer,

multiple-user systems.
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1. INTRODUCTION

1.1 Contract Objective

This effort is for applied research in the area of mathematical tech-
niques for analyzing multiple computer, multiple console, real time on-line
data processing systems, and for analytical techniques and hypotheses to
assist system designers and users in determining the optimum configura-
tion, most complete utilization, and most efficient scheduling of this type
of system.

The main objective of this work is to make it possible, through de-
velopment and application of new mathematical techniques, to more opti-
mally design and control computer systems. A computer system consists
of a collection of electronic data processing machines, data transmission
channels, and multiple user terminals, organized to efficiently service
the computational needs of a geographically or functionally diverse popula-
tion of users. Such systems permit: remote communication and manipula-
tion of shared data bases; cooperative operations between user and compu-
ter (symbiosis); and immediate access to a high-capability facility for prob-

lem solving and data manipulation.

1.2 Contract Requirements

1) Fxploration of Queueing Theory to enable the analysis of more
general models of computer utilities and their subsystems.

Emphasis shall be concentrated on numerical techniques, and



shall include extension of earlier work on quasi-birth-and-death
(QBD) models and the Recursive Queue Analyzer,

Collection and analysis of statistical data from existing systems
to determine the validity of the mathematical models developed,
and to isolate problem areas in need of attention. The techniques
of computer data collection shall be studied.

Application of new mathematical techniques in conjunction with
those previously available, to the analysis and optimization of
hardware and software configurations of general purpose compu-
ters. These techniques shall be applied to typical systems in
order to test the analytical methods and provide specific analy-
ses/recommendations concerning the effectiveness of these
systems.

Continued development of general design guidelines for time-
shared computer systems with distributed processing capabili-
ties. Distributed processing has become economically feasible
because of rapidly decreasing small computer costs. This task
shall extend previous investigations of remote display terminal
structures.

Continued development of mathematical models for the optimal
structuring of communication networks associated with comput-

ing systems.



8)

Continued development of optimal design of storage systems and
data base structures.

Continued exploration of Discrete Optimization Theory and Graph
Theory in relation to applications concerning the scheduling of
programs in multi-processor systems. Also to investigate the
use of these theories in relation to problems of program organi-
zation.

Development of new conclusions and rules which can be used

by persons performing initial designs of real-time computer
systems having a large number of user consoles. Such rules
shall allow system designers to more rapidly choose the type of
hardware/software system needed to fit a particular organiza-
tion or problem.

Application of statistical analysis to data collected from various
computing systems in order to gain an understanding of user de-
mand structures and their effects on systems performance. A
search for other theoretical approaches to the analysis of mul-

tiple computer systems shall be pursued.

1.3 Progress Toward Contract Objectives

The following sections detail the progress made during the first

year of this contract. Section 2 reports progress in the area of design
of storage systems, data base structures, and communication networks.

In Section 3 we report research into the application of optimization theory



to the problems of program organization and program scheduling in multi-
programmed computer systems. Finally, Section 4 reports on efforts to
apply mathematical techniques to the analysis and optimization of the hard-
ware configuration of the central processor.

During this past year a report entitled, '""Selected Aspects of Large-
Scale Computer System Design, No. 1" [1] was published. Work on this
report was done under the previous contract. Also papers appeared in

the IEEE Computer Groups News [2] and in Proceedings Third Hawaii

International Conference on System Sciences [3]. These papers present

some results which were originally published as Systems Engineering
Laboratory Technical Reports Nos. 34 [4] and 36 [5]. Two other papers

based on the results in these reports will soon be presented [6 7].

References for Section 1

""Selected Aspects of Large-Scale Computer System Design No. 1 "
K. B. Iraniand A. W. Naylor (Eds), Rome Air Development Center,
RADC-TR-69-132, May, 1969 {Two Volumes),

J. D. Foley, "Evaluation of Small Computers and Display Controls
for Computer Graphics," IEEE Cowmputer Group News, Vol, 3, No. 1,
January/February 1970.

D. R. Doll, "The Optimum Assignment of Subchannel Capacity in
Multiplexed Data Communication Networks, ' Proceedings Third
Hawaii International Conference on System Sciences, 1970.

J. D. Foley, "Optimum Design of Computer Driven Display Systems, "
SEL Technical Report No. 34, The University of Michigan, Ann Arbor,
March 1969.



5.

D. R. Doll, "The Efficient Utilization of Resources in Centralized
Computer-Communication Network Design, " SEL Technical Report
No. 36, The University of Michigan, Ann Arbor, June 1969,

J. D. Foley, "Optimum Systems Design of Computer Driven Graphics
Terminals, " to be presented at Computer Graphics '70, Brunel Uni-
versity, Middlesex, England, 14-16 April 1970,

D. R. Doll, "Topology and Transmission Rate Considerations in the
Design of Centralized Computer-Communication Networks, ' to be
presented at IEEE International Conference on Communications, San
Francisco, June 1970,

(@7]



2. INFORMATION STORAGE AND COMMUNICATION

In this section we first (2.1) report research into the design of com-
munication nets to link terminals and computational facilities over a wide
geographical area. A related problem which is being attacked in this work
is that of assignment of data bases to each of the computational facilities.
In 2.2 we discuss the design of storage systems as a function of the type of

computational facility making use of the storage system.

2.1 Design of Message Processing and Communication Systems

In recent years the use of on-line time-shared, real-time computer
systems has increased rapidly. Barkleys Bank LTD is installing a 2500
terminal Burroughs 8500 system to bring all of its 4, 500, 000 customer
accounts on line [1]. The American Airlines SABRE system reserves seats
on several hundred flights each day from over 1000 agent sets in the United
States and abroad [2]. Ninety percent of all transactions must be processed
in three seconds. General Electric Corporation operates an on-line nation-
wide order system processing over 26, 000, 280 character messages per day
[3]. Messages from 136 terminals are concentrated at six message switch-
ing centers and directed to a computer data base in Atlanta.

Each of these sample systems has a basic configuration like that
shown in Figure 2-1. In each system, the user stations are connected by a
large telecommunication network to one or more processing facilities.

Fach processing facility may have its own data files or request the
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necessary data from other processing facilities through the telecommunica-
tion network. Certain properties are common to all of these systems:

Many users at widely separated geographic locations requesting

records of a sizeable data base.

A large data base consisting of files of homogeneous records.

. One or more processing facilities which select, process, and
answer the user requests for information.

o« An on-line real-time communication system linking the users
to the processing facilities.

. Quantitative measures of system performance such as average
message delay time, average line utilization, or maximum
hourly throughput.

. Performance constraints on the system, such as the require-
ment that the average message delay not exceed 3 seconds.

The goal of this work is to formulate a realistic comprehensive
mathematical model for such message processing and communication (MPC)
systems and to study this model seeking methods for the optimal design of
these systems. In this report we will discuss in more depth the model of
these systems being studied, the design problems which may be formulated
and solved with the model, and the nature of the solutions obtained.

A Message Processing and Communication System has four distinct
subsystems, a terminal (user) system, a message processing system, a

file system, and a communication system. Each of these subsystems will



be explained in the following paragraphs.

2.1.1 Terminal Systems

The terminals of a MPC system are not single user stations, but
homogeneous sets of such users. A terminal may represent 30 or more
individual users. For example, in an on-line banking system, the user
stations would be individual teller's cages for a branch office or for all the
offices in an entire city. The problem of gathering the users into terminal
systems is an interesting and difficult one., In this report, we will not con-
sider that problem, but will assume the terminals and user sets are inputs
to the analysis. Normally, a terminal system will include a moderately
large group of user stations, all of which request records of the data base
files in a similar manner.

A terminal (system) i will be specified by its location (Xi’ Yi) and a
measure hi of the relative cost of locating a processing facility at that ter-
minal. The terminals of a system serve not only as the origins of message
traffic, but also as the possible sites for the files of the data base. Hence
all messages in the system operation travel between the terminals via the

communication system.

2.1.2 Processing Systems

In the message processing and communication systems for which the
model of this work is applicable, the processing of each file inquiry is very

simple. A request for an airline seat reservation is checked to see if a



seat is available, and a simple confirmation or rejection message is re-
turned to the inquiring user station. An order is checked for validity and
a simple confirmation is given. Although the bulk of the processing sub-
system is a fast access storage system, this does not mean that the cost of
the central processors is negligibly smaller than the cost of the drums,
discs, and controllers of the file storage. The processor may serve as a
terminal's message switching center as well as an access device for the
files.

The system cost and performance are affected by the speed of the
processing sub-system. As the cost increases, the mean processing time
normally decreases. However, since the processing time is usually small
compared to message communication time, we will ignore its effect on sys-
tem performance. The processing system will be specified to have a cer-
tain fixed maximum processing time per message. For that particular con-
straint, a function can be defined giving the cost of a processing system
with any desired storage capacity. This function will be assumed to include
the cost of the appropriate central processor as well as the storage media.
Studies of the design of such storage systems have been made by Woolf
(Section 2.2 of this report), Chandy and Ramamoorthy [4], Gecsei and Matt-
son [5], and others. Hence this topic will not be discussed further.

An example of such a processing system is an IBM 1130 Computer
system with 2311 and 2314 disc storages. The monthly rental cost as a

function of capacity in bytes is given in Figure 2-2. For capacities of less
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than 63 x 100 bytes, 2311 storage units are used; for larger capacities

2314 units are used.

2.1.3 File Systems

A file system or data base is a large collection of records organized
in several homogeneous files, together with as much information as possible
about the usage of the records in each file.

As an example of a file system, consider the American Airlines
SABRE reservation system's data base. A file is the collection of reserva-
tion records for a single route. Each record is a single seat on a flight for
that route. The data base is the collection of all the flight files. Whenever
a ticket agent wants to reserve, release, or inquire about the status of a seat
on some flight, it is necessary to fetch a record from the data base, display
or alter the desired information, and return a confirmation to the agent.

A file is a collection of records, each of which has the same values
of the following basic parameters:

E(k) Size of record in bytes of file k.

R(k) Request rate for records of file k.

Pi(k) Probakility that a request for a record of file k came from

terminal i.
u Mean message length .

Q(k)  Length of reply to each request for records of file k.

12



For the reservation system example, the storage size of a record
might be 256 bytes per seat. In the file would be 125 records, one for each
seat. The probabilities of origin of record requests would be high for cities

along the route and low for others.

2,1.4 Communication Systems

For this research effort a complete survey of currently available com-
munication system types was made. Those systems best adapted to Message
Processing and Communication Systems are the leased private line systems.
Figure 2-3 is a chart of the basic variables available of this system type.
The communication system is divided into system segments which provide
message transfer capabilities among groups of terminals. The cost of each
segment is composed of two parts. There is a charge for the length of the
line of the minimal spanning tree joining all the terminals of that segment
and independent of the traffic on the segment. This cost is illustrated in Fig-
ure 2-4. There is also a charge for data sets (modems) and multiplexers at
each terminal to perform the digital-to-analog-to-digital conversions neces-
sary for message transmission. This charge, a linear function of the capac-
ity (maximum transmission rate) of the modems, is illustrated in Figure
2-5. In general, the cost of the communication system will be represented
by an expression of the form:

c= ) {ene,) + cM@ )}
wew

13
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where CL is the line cost function and CM is the modem cost function.
Great effort has been undertaken to design optimally cost-effective commun-
ication networks. The problems attacked and some of the solutions will be

discussed in the next section.

2.1.5 MPC System Problems and Solutions

In the preceding sections we introduced terminals, files, and commun-
ication networks. When the files of the data base are stored at some of the
terminals, traffic between source terminals and sink terminals is induced.
Location of the files at the ""proper' sites will result in minimizing this traf-
fic. To formalize the notion of "proper' location, the following definitions
are necessary.

Let K be the set of files, T the set of terminals, S C T the set of
sites where files may be stored. Then an assignment of the data base files
is any function with domain K and range S.

f: K-S

A file assignment will induce message traffic between the terminals
as follows. Let yij be the mean number of bits per second of message
originating at terminal i toward terminal j. This value includes requests
from i for files stored at j as well as replies from files at i to requests
from j.

o= R(K)P,(k ‘ R(k) P, (k)Q(k
vy = L 1) (RO + ezf_l(i){ (k) P, () Q(K)}

17



An assignment f also induces storage costs for the files. Let Fi de-
note the bytes of file storage required at node i by the assignment
f: k-8, i.e.,

F; = Ly {E®}
ke f (i)

-

The variables yij and Fi are the basic parameters in our system design
study. The main problem attacked in this work is to select that assignment

of a data base to a set of terminals which results in minimal system cost:

C = CClyyyr++ Vgp Tpog) + CP(Fp,eo, FY

res
for a class of communication systems represented by the cost function CC
and a class of processing systems represented by the cost function CP.

This general problem is specialized by a choice of the types of com-
munication, terminal, processing, and file systems to be used in the sys-
tem design. These more specific problems are then solved. In the design
of message processing and communication systems with this model three
classes of problems are studied.

One major problem area studied is the determination of the optimal
number and locations of sites for the system files. Several basic properties
of file site assignment on linear graphs are demonstrated and used in effi-
cient procedures for file assignment. When the topology of the communica-
tion network is a tree, some special properties of file assignment allow
especially efficient algorithms. Furthermore, on tree structured graphs,

the optimal assignments of files with respect to linear cost functions, are

18



also optimal with respect to a wide class of other functions.

After the file locations have been specified, the communication re-
quirements of the system are known. A second major problem area may
then be considered, the optimal design of communication channels and net-
works of these channels. A thorough study of stochastic message transmis-
sion channels has been undertaken. The effects of channel capacity with
one or more channels, message length distributions, message retransmis-
sion order, and departures from the model assumptions on message delay
are studied. Both analytic and simulation methods are used. Several chan-
nel and network performance measures are defined and compared. The
problem of optimally allocating channel capacities in the channels of a net-
work is solved for several important system models. A complete set of
guidelines is given to aid the designer of communication systems and
channels.

The third major problem area studied is the design of communication
networks. This inciudes the layout of the network line topology, the opti-
mal selection of the channel capacities (transmission rates) and the selec-
tion of appropriate modems, multiplexers, and other terminal equipment.
Throughout the study, a major effort has been made to model realistically
communication systems which might actually be constructed rather than to
design hypothetical networks which are entirely impractical. Several pre-
viously available techniques for the design of centralized networks are

carefully evaluated. New techniques for the design of centralized and

19



non-centralized networks are presented. These new procedures have been
extensively tested and compared to other design procedures and found to
yield solutions of higher performance and greater generality than those pro-
cedures heretofore available.

Work is continuing on the improved solution of all these problem
types. The solution methods in use include analytic, heuristic, and simu-
lation techniques, whichever are appropriate. In addition to developing im-
proved design procedures for each of these problem areas, research con-
tinues into the combination of these partial solutions into complete and
comprehensive design system tools for the effective design of entire sys-

tems rather than just the subsystems.

2.2 Storage Hierarchies

In general, storage hierarchies are found in almost all computing sys-
tems of any size. They are indicated by the presence of more than one
media of storage such as thin film, core, disk, data cell or tapes. The
particular kind of system which presents the largest problems are those
which are automatically managed. This includes such systems as the
cache-core relationship in the IBM 360/85, virtual memory systems such
as the IBM 360/67 and GE 645, and online file systems ordinarily found in
time shared systems and management information systems. It is the design
of this general class of automatically managed hierarchies which is the fo-

cus of this work,

20



Every mathematical model of a physical system is a tradeoff between
reality and complexity. The goal here as elsewhere is to devise a model
which is as useful as possible in one sense or another. In order to achieve
a truly useful and realistic model the dominant factors which influence the
performance of the system must be represented. Here we have chosen to
include:
1. Program Characteristics
a. Size
b. Paging characteristics
¢. Number of programs

2. Hardware Characteristics
a. Access times including for example the seek, latency and

transfer time of a disk.

b. Data paths
c. Storage capacity

3. System Characteristics
a. Queueing for channels
b. Queueing for devices
¢. Queueing for the processor
d. Choice of routing
e. Record size

In order to provide a qualitative understanding of the model we must consider

each of the various aspects of the model in more detail.
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We will begin by considering how programs and program characteris-
tics are modeled. Some of the basic concepts which were used as a founda-
tion for this model were provided by L. A. Belady, C. J. Kuehner, and
P. J. Denning. Let us begin by examining some of these concepts.

The lifetime function as such was first proposed by L. A. Belady and
C. J. Kuehner [6] in an effort to identify and describe the characteristics of
a computer program or process which affect the behavior and efficiency of a
paged storage system. Belady and Kuehner were not alone in attempting to
model this aspect of a process. Very similar constructs have been consid-
ered by Peter J. Denning [7]. These efforts at least in part attempt to deter-
mine what part of a progrm or process must be located in core to avoid an

excessive number of transfers between core and drum.

2.2.1 The Currently Active Part of a Process

It is generally agreed that most processes have a non-random storage
access behavior and that it is meaningful to discuss the currently active part
of a process. The concept of the currently active part of a process has been
expressed in several different and useful ways. This idea is basic to the
question of what part of a process should be in core.

P. J. Denning [7] refers to this currently active part as the working set.
Denning defines the working set as "...the set of information W(t,7) of a pro-
cess at time t to be the collection of information referenced by the process
during the process at time interval (t-7-t).' See Figure 2.6. There are many

other ways to define a set of currently active pages. For instance we may
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modify the working set by considering t and 7of W(t,7) to be real time instead
of process time. We might consider a different parameterization such as the
set W'(t, n) defined as the n most recently used pages as a function of process
time t. This is very similar in concept to the work by L. A. Belady and

C. J. Kuehner [6]. Belady and Kuehner define the locality of storage refer-

ences as a basic program property. 'Locality is defined as the total range
of storage references during a given execution interval." The remainder of
the paper [6] waould indicate that Belady's notion of locality is very similar

to W'(t, n).

2.2.2 The Two Level Hierarchy

The concept of a lifetime function was developed by Belady and Kuehner
[6] in the context of a paging system consisting of a core and a drum. Here
we will extend this concept in several ways but first we will consider it in a
form close to its original form as developed for two levels of storage.

When a program begins execution following a page fault some of its
pages will be in core and others generally will not. The precise information
contained in core will determine the number of executive cycles required to
generate another page fault. Since we are considering a paged system the
precise information contained in core is determined by three factors:

1. The method of selecting pages to be paged in and out.

2. The number of pages remaining in core.

3. The page size.

24



If we consider 1 and 3 to be fixed we may express the average number
of execution cycles required to produce a page fault as a function of 2. Being
more precise about units we will define f(s) to be the average number of stor-
age accesses necessary to produce a page fault as a function of s where

Number of Pages in Core (2.1)
Total Number of Pages )

Notice that f(s) is a property of a program. This "lifetime function"
is very similar to Belady's with some exceptions.

Let us consider some of the properties of this lifetime function. As
we have just pointed out if there are no pages in core, s= 0, the number of
storage accesses required to produce a page fault will be 1 thus f(0) = 1. At
the other extreme, all pages in core, s=1, the number of accesses required
to produce a page fault is without bound thus (1) = .

In order to get a feel for the general shape of f(s) let us consider the
simple case of completely random page accesses. In this case f(s) can be

shown to be

f(s)=1%s=1+s+s2+ss+... (2.2)

This function is clearly convex and a curve of this form is shown in Figure
2-1,

Another important measure is simply —f-(—lé—)~ the fraction of all storage
access which causes a page fault, In the random page access case this sim-

ply becomes

25
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ﬁ% - 1-s. (2-3)

Graphed, this appears as shown in Figure 2-8 and agrees with intuition.

As discussed earlier such random behavior is rare and in most cases
we can rely on some clustering of accesses. This will generally result in
curves of the form shown in Figure 2-9, (a) and (b).

Here we have shown the random behavior with the solid line and the
clustered accesses with the dashed line,

As is illustrated in the above graphs a clustering of accesses affects
f(s) so that for a given s = s',f(s') becomes larger. This simply means that
for a given storage allocation the program with clustered accesses will re-
quire more accesses to produce a page fault. Likewise for a fixed storage
allocation the program with clustered accesses will produce fewer page
faults.

We of course would like to be more specific about the shape of f(s).
Belady [ 6] has proposed an approximation for f(s) which when adjusted to fit

the definition of f(s) given here becomes:

i(s) ~ 1+a(s Q¥ (2. 4)
where a, k, and Q are constants for a given program. Of the three quanti-
ties, Q, the total size (bits) of the program, is the easiest to determine.

a and k must be adjusted to fit the behavior of a given program. Belady indi-
cates that k is generally in the vicinity of 2. It should be pointed out that

this approximation has only two reasons for its existence. First it seems
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Figure 2-9(b).
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to be possible to fit it to some real programs reasonably well and second it
is simple.
A considerable amount of work has gone into extending the basic life-
time function presented thus far. The following extensions have been made.
1. Extension for use in an N-level hierarchy in contrast to a sim-
ple 2 level hierarchy such as a drum and core.
2. Inclusion of page size as well as allocation as a parameter.
3. The development of a lifetime function model based on program
characteristics which includes the effects of page size,
The lifetime function is only part of the system model. We will now

turn our attention to hardware and systems aspects of the model.

2.2.3 The Hardware and System Software

The hardware and system software are being considered together be-
cause the hardware constrains the design choices available in system soft-
ware design. We will begin by considering what we mean by an N-level

hierarchy.

2.2.4 The N-Level Hierarchy

The model which is under development is for the general case of N
levels. For discussion here, however, we will choose N=4. The choice of
N =4 is attractive in that it is large enough to demonstrate all the complexi-
ties of hierarchies where N > 4 and yet it is small enough to be convenient

for discussion. Let us consider the 4-level hierarchy shown in Figure 2-10.
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Here we have shown a CPU and 4-levels of storage and on the left a feasible
set of devices is given. It should be clear that program information will
migrate up and down in these 4 levels in much the same manner as a 2-level

system,

2.2.5 Storage Allocation

When considering a system with N > 2 certain new questions arise
concerning the allocation of storage space. First we must allocate storage
at several levels rather than just core, and second we must be more precise
in stating exactly what is stored where.

We may resolve the first question as it relates to the model by simply
supplying the variable s with a subscript. Thus we will define s; as the
storage allocated to a process at level i. Figure 2-10 shows this vector as
si's associated with the 4-level hierarchy.

The second question is a bit more complex. Exactly what is stored
where ? We will follow the following convention: If the current copy of
some process information is resident at level k then a specific space must
be reserved for this information at all lower levels (i.e., levels i where
i > k). This space may or may not contain a current copy of the process
information.

As a direct result of this convention we may state:

s. < s, (2.5)
and

s =1 (2. 6)



Notice that 85 represents not only the storage allocation at level i but

also the amount of unique current information stored at and above level i.

2.2.6 Traffic Flow

Further complications arise regarding how traffic flows through the
system. Specifically, we need to know what is transferred, where it is
transferred and how much is transferred as the result of a program access
to some given level. In addition the resultant delay in execution incurred
as a result of these transfers is a result of the ordering and content of the
transfers. For instance, consider a case in which a user program accesses
the disk (level 4 in the example Figure 2-10) and as a result a block of infor-
mation is moved from disk to core (level 2) and then part of that block is
moved down in the hierarchy to the drum (level 3). Execution is certain to
be delayed during the disk to core transfer but not during the core to drum
transfers.

These detailed considerations of data transfers and their effect on
the system are represented in the model by a number of matrices and vec-
tors.

The performance of the system is also clearly dependent on the hard-
ware at each level. We not only consider the choice of hardware at each
level but its performance under loads imposed by the data transfers. The
average total waiting necessary for a read or write at each level is consid-
ered to be a function of the hardware at that level including the number of

channel paths and the average traffic of that level.
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The complete model relates the characteristics of programs being
executed, data transfer decisions, and hardware characteristics to system
performance. Using this model we may vary the parameters of the model
to study the system behavior and to optimize the cost effectiveness of the
system.

It is important to note that the model describes a multiprogrammed
system. We have ignored this here in order to simplify some of the dis-
cussion. Notice that in the following list of variables each process is t
treated distinctly. For instance there is a specific allocation si’ h for

each process h at each level i.

2.2.7 A List of System Variables and Functions

This is a list of the variables and functions used to describe the pro-
gram characteristics, hardware characteristics and the system character-
istics which together are used to describe the total system.

Qh size of process h (bits).

fh(-) a function used to describe the paging characteristics of

process h, the lifetime function.

W fraction of write accesses by process h.

M number of processes being multiprogrammed.

N number of levels in the hierarchy.

q record size at level i.

S allocation matrix whose elements Si, h= storage allocation

at level i for process h.
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a description of the data paths (non-zero elements) and data
transfer patterns. The elements of T
ti, k(" the number of bits transferred from level i to level
j as a result of a primary read (£=0) or write
(¢=1) to level k.
t.1~r- of the critical transfer paths in the system. Ele-
ments of G
gj’ K = weighting factor for the elemental read/write time at
level k when expressing a primary access time to
level j.
a description of the normal or base execution rate. The mean
time between storage accesses by the CPU when executing a
process contained entirely in level 1 of the hierarchy with no
other traffic in or out of level 1.
a function used to describe the hardware at level i, the average

waiting time at level i as a function of the average traffic at

that level Ci’
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3. MULTIPROGRAMMED SYSTEMS

In this section we discuss research into two problems related to the
operational optimization of multiprogrammed, paged computer systems.
The first problem is that of breaking up programs into pages in such a way
as to minimize the number of page faults when that program is run. The
second problem is that of scheduling the set of programs requesting service

in such a way as to maximize the throughput of the computer system.

3.1 Optimum Program Pagination

3.1.1 Background

The objective of this research is to explore methods of improving the
operating efficiency of paged multiprogrammed systems by optimization of
the paging process.

Multiprogramming, as the name implies, means having several pro-
grams occupy high speed memory simultaneously. Problems of effectively
using storage in a multiprogrammed mode are appropriately called problems
of storage allocation. When we consider these problems in the context of
the early days of computing, they were relatively straightforward.

In early batch systems where programs were run one at a time, each
program had the entire high speed memory (core) available. Problems
arose when a program was larger than the available core. In these cases
the programmer had to improvise by "segmenting' his program (instruc-

tions and data), and controlling the "overlaying' of segments. Segmenting,
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of course, referred to dividing the program into parts (segments), and over-
laying was the process of bringing the unused parts of a program into core
from auxiliary storage as they were needed during execution.

When the problem of segmenting a program was given to the operating
system instead of the programmer, we had what was called an automatic
segmenting system; the problem of segmenting a program in an optimum
manner, e.g., so as to minimize the number of overlays, became known as
the classical overlay problem or the problem of program segmentation. In
some systems, excessive overlaying could cause a serious decrease in the
system's operating efficiency.

In multiprogrammed systems overlaying or segmenting is intended to
increase the size of effective memory. A summary of techniques for over-

laying can be found in[1].

3.1.1.1 Paging

When high speed memory is divided into fixed size blocks called page
frames, and programs and data divided into similar fixed sized blocks called
logical pages, the process of mapping the logical pages to page frames is
called paging. It is the determination of efficient algorithms for the auto-
matic production of logical pages of a program which is the focus of this

research. We call such algorithms " pagination' algorithms.

3.1.2 Model

A rather natural model for study of program pagination is a linear

graph. Ramamoorthy [2] was the first to formulate the problem of program
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paginations as a problem of partitioning of a linear graph into certain speci-
fied sets of vertices.

Basically, the model for study of optimum construction of program
pages is as follows. Each vertex of a graph represents a block of instruc-
tions or data; the directed arcs between blocks represents transfers of con-
trol between blocks of instructions. Usually, undirected arcs are used to
indicate a block of instructions referencing data. Since the arc is undirec-
ted, control is to remain in the instruction block.

The abstract statement of the problem in graph theoretic terms is,
given a graph G with weighted arcs partition the graph into disjoint subsets
of vertices such that no subset of vertices is larger than some maximum
size and the sum of the weights of the arcs between the subsets is mini-
mized.

There are many practical applications, other than program pagination,
which makes use of this same abstract model. For example, the problem
of assignment of logic gates to modules such that the intermodule delay is

minimized is a problem with the same abstract model.

3.1.3 Solution Techniques

3.1.3.1 Optimal Solutions

It is possible to formulate the graphical partitioning problem in terms
of an integer linear program with a large number of constraint equations to
insure the feasibility of the subsets of vertices selected. However, for

problems of practical significance, i.e., number of vertices greater than

40



25, methods of integer linear programming techniques are not sufficiently
powerful to give solutions in a reasonable amount of time. For example,
the number of ways in which a set of 25 objects can be partitioned into 10
subsets is 1, 203, 163, 392, 175, 387, 500. Now given that many partitions
will be infeasible due to size constraints on the vertices, there will remain
an inordinate number of cases even after those infeasible partitions are

deleted.

3.1.3.2 Known Optimal Solutions

There has been reported in the literature one algorithm for the exact
solution for the graphical partitioning problem [3]. This algorithm uses an
enumerative technique, backtrack programming; hence it is impractical for
large graphs, i.e., on the order of 100 vertices. Therefore this technique
was not pursued in this research.

Another algorithm which gives an exact solution for a special case of
the partitioning problem was reported in[4]. However, the class of graphs
for which the methods are applicable is rather restrictive, i.e., the graph
must be a tree. The methods are efficient enough for graphs with hundreds
of vertices. The same algorithm was extended for acyclic graphs (directed
graphs with no cycles) but in this case vertices must be replicated; this

would correspond to placing certain blocks of code on more than one page.
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3.1.3.3 Heuristic Procedures

In view of the fact that most practical problems involve graphs with
numbers of vertices too large for any exact method, we have been evaluating
and developing heuristics for practical applications.

One previously reported heuristic is the so-called unit merge algorithm
[3]. Here a partition is formed as follows. Let Cj represent the weight of
arc between vertex i and vertex j; we examine the matrix [Cij] for maximum
cij’ if the vertices i and j are compatible, i.e., the sum of the sizes do not
exceed a given constant, then vertices i and j are combined (merged) to form
a single vertex; otherwise matrix [Cij] is scanned for the next largest value
c'ij until finally a merge can occur. After merging the graph is updated by
appropriately changing the weights of arc which previously were connected
to the merged vertices and updating the size of the merged vertex (the new
size is the sum of the sizes of the two vertices which were merged). The
process is continued until it is no longer possible, due to size constraints,
to make any other merges.

This technique is quite fast since each vertex, once it is merged, is
never removed from a merging. However, we have found that one can obtain
some very poor partitions using this technique. And this technique does not
work at all as a general partitioning procedure when the matrix [cij] is
Boolean.

Another procedure has been reported recently in[5]. This technique

is based upon a heuristic which was used to solve the traveling salesman
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problem. The procedure is based upon finding the optimum partitioning into
two blocks of a set of vertices. Basically, the procedure is as follows for

optimum two-way partitionings. Given an arbitrary partition {A, B} of a set
of vertices V such that |A| = |B| = n, hence | V| = 2n, an optimum partition

{A*, B*} is obtained as follows. For every a ¢ A compute an external cost

E , by
E = )
a yeB ay
and an internal cost Ia by
I = Z C
a yeA ay

Similarly, define Eb’ Ib’ for each be B. For eachve V we compute

DV = EV - Iv. Now the gain from interchanging a e Aandbe B is

g = Da+Db_2cab

The algorithm goes as tollows. First, compute D for each v ¢ V.
Next find a, € A, bj e B such that

g = Da +Db. - ?Ca.b. is maximum.

i j i7j

Then remove ail from A and bj1 from B. Now the D values are recomputed
for the sets A - {ail} and B - {bjl}. Then g, is computed, as was done for
gy, for somea, ¢ A -{a;} and b:i2 € B- {bjl}. This is continued until all
pairs of nodes have been exhausted. The gain for interchanging pairs

(a, , b, ), (a._z, bjz), v (ain, bin) is gy +gg+..0 +8p (Note that
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. i gy = 0). Choose k such that the partial sum G = il g; is maximum.
Ilsz;1 > 0, then a reduction in cost has been realized arll_;i the procedure is
repeated starting with the new partition just obtained. Ways of extending
this algorithm to the general problem are given in [ 5].

A procedure which we have found to be effective is to sequentially
select sets of a partition by solving a relatively simple quadratic program-

ming problem. Our procedure assumes that one can select a set of vertices

which is in a sense optimal by solving the following problem.

(1) maximize f ="12Jj cij(kxixj X - X+ 1)
)
subject to
(2) ) ;X < p
(3) X, € {0,1}, where .

x; =1, vertex v; selected for optimal block
0, otherwise.

ai-size vertex Vi

The cost function was motivated by the following consideration. We
would like to select a set of vertices for a block of the partitions which are
as tightly connected as possible. This we could do by using

f = Z C..X. X.
ij v

as a cost function. But a cost function of this form has been seen to leave

the remaining graph poorly connected. Therefore we've found that a cost

function such as
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f = k Z C..X.X, + Z c..(1-x.)(1-x.), k >1
I O

takes into consideration the connectivity of the graph G-V where V is the set
of vertices removed. The first term measures the connectivity of V, the
block of vertices which are removed; the second term measures the con-
nectivity of the graph G-V, the graph from which the remaining blocks of
the partitions are chosen.

We solve (1), (2) and (3) for the first block of vertices of the partition.
Then we resolve (1), (2) and (3) for the new graph minus those vertices
which were selected by the previous solution. The procedure is continued
until the size of the remaining set of vertices is feasible; now at each step
we are solving a smaller problem. We had some fairly effective ways to
solve (1), (2) and (3) which we are now in the beginning stages of program-
ming.

We intend to compare all the given algorithms of graphical partition-
ing to see which ones are the most efficient in terms of practical applica-

tions.

3.2 Optimum Task Scheduling

This section is a discussion of methods and models for determining
optimal task scheduling rules in multiprogrammed computer systems. In
this work an optimal scheduling rule is one which maximizes the throughput
of the computer system under consideration. This effort will lead to expres-

sions for optimal or near-optimal scheduling rules where these expressions
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will be functions of such system parameters as the current status of tasks
using the system and the arrival rates of incoming tasks. In Section 3. 2.3
we give a description of the mathematical model to be used for determining
optimal scheduling policies, and in Section 3. 2. 2 useful modeling and opti-
mization procedures are discussed. Section 3. 2.1 is devoted to a review
of material necessary to an understanding of the problem and the approach

to be taken to it.

3.2.1 Multiprogramming and Reentrant Procedure

Multiprogramming or the simultaneous residence of more than one
program in main (core) memory is widely used in today's large computer
systems in order to make the best possible use of system resources. The
wide disparity between speeds in the central processing unit (CPU) and
input/output (I/0) devices means that in a mono-programming mode the
CPU is likely to be idle a considerable amount of time while waiting for I/0
operations to complete. This is extremely undesirable because of the high
cost of having the CPU stand idle, Multiprogramming allows the CPU to
switch to another program when one program is held up by an I/O operation
and thus may considerably increase the CPU utilization. On the other hand,
the amount of main memory required for successful multiprogramming is
considerably greater than that required when only a single program is in
core. Since core memory is expensive it is desirable to use it as efficiently

as possible,
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The procedure in a computer program is made up of instructions in
that program as opposed to the data on which those instructions operate.
Reentrant or pure procedure is procedure which does not modify itself in
the course of being executed. Thus more than one user may execute the
same copy of a reentrant procedure and this is the definition of sharing as
it is used in this work. Three advantages accrue from using reentrant
procedure.

1. When several tasks use a single copy of a procedure simul-
taneously, a considerable space saving in core memory may
result.,

2. Since this procedure must be brought into core memory via
a channel, a reduction in required channel capacity may be
achieved by sharing.

3. Because the procedure is never altered it need never be
removed from core (it is simply overwritten and a copy is

maintained external to main memory).

In the model of Section 3.2.3 the procedure for each task is assumed to
be reentrant,

The sorts of routines which might be shared are those routines which
are heavily used such as translators, input-output conversion routines, and
library routines. The advantage gained by sharing a routine is dependent
on its frequency of use and the required response to users. There is not

much point in allowing a routine to be shared which is used only once a week
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when the required response time to users is one-half day. The addressing
structure and hardware features [6, 7] in many modern large computer sys-
tems [8] make possible the sharing of procedure among users without intro-
duction of very much additional supervisory overhead.

These same machines also include the ability to maintain in core only
those parts of programs currently in use. This allows a greater humber of
programs to share core simultaneously than would otherwise be possible.
Programs are broken into fixed-size units called pages and these units are
brought into core when needed and removed from core when they are no
longer being used. A common way of handling the paging in is to bring a
page into core only when it is referenced by a program (called page-on-
demand). At this point a program interrupt occurs and the program is
ineligible to execute until the referenced page is available in core,

Next we turn to a discussion of possible techniques for modeling

computer systems having the features just outlined.

3.2.2 Modeling Computer Systems

For purposes of obtaining a model which allows an investigation of
the effects on throughput of the scheduling rule used in the computer sys-
tem, we may look at the computer as a service system. A task requiring
execution arrives at the computer and passes through particular queues
and servers dependent on the task's computational requirements. Control

of these queues is carried out by the scheduler through an allocation of the

servers to tasks requiring the use of these servers,
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Two ways to model a system like this are by use of queueing theory
[9,10,11] to develop a formal queueing model and by use of Monte Carlo
simulation. Simulation models [12,13] have been used with success in mod-
eling computer systems although the expense of running them usually pre-
cludes their use for investigating more than a small number of system
parameter values, Markovian queueing models which have yielded closed
form solution [13,14,15,16] have given some insight into computer system
behavior, but the ability of a model of this type to portray the complexities
of computer systerm behavior is severely limited. An intermediate ap-
proach is to model the system with a large Markovian queueing system
which defines closed form analysis but which yields useful results by
application of numerical technique [17]. Models of this type have been
quite successful [18,19, 20, 21] by allowing a complexity approaching that
in many simulation models at a fraction of the computational cost. Fur-
thermore, Markov models lend themselves to application of optimization
techniques if appropriate objectives can be defined.

The computer system model developed in Section 3. 2.3 is a Markov-
ian queueing model. Specification of system parameters and a scheduling
policy for this model results in a value for the throughput of the system.
Additionally, we may define as our objective the maximization of system
throughput and use this model in the formulation of the optimization prob-
lem as a Markovian Decision Process [22, 23]. Part of this research effort

is devoted to improving the techniques available for handling this type of
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optimization problem.

3. 2.3 Scheduling Model

In this section a model of a multiprogrammed computer system is
developed. This model will be used to determine system throughput as a
function of system parameters and the scheduling policy used. The model
will be used to find scheduling policies which maximize the system
throughput.

Consider the multiprogrammed computer system shown in Figure 3-1.
A large external store is used to hold tasks which are queued awaiting
execution: the scheduler controls the movement of these tasks to main
memory where they may execute. The tasks multiprogrammed in main
memory are served by a CPU and a multiplicity of input/output devices,
and the scheduler determines which task has priority at the CPU. Thus
the scheduler takes action at two places in the system, and it should be
clear that these two types of decisions are not independent.

We assume M distinct kinds of tasks, each of which makes use of a
distinct reentrant procedure. Therefore there are M memory queues in
the system: one to hold each type of task. An arriving task is placed in
the appropriate queue. The probability that an arriving task is of type i is
a; and is independent of previous arrivals or of the number of other tasks

of type i in the system. Of course,



since an arriving task must enter some one of the M queues.

There are M distinct task types in the system and the model must dis-
tinguish among them. Thus at each point in the system where queueing can
occur, there must be M such queues. The following description is for the
generic queues and servers which make up the model while the reader
should keep in mind that each queue has multiplicity M.

A task arriving at the system queues up outside main memory. The
scheduler decides, constrained by availability of main memory, when to
load this task into main memory. Once loaded, the task queues at the cen-
tral processing unit. Again, the scheduler determines task priority at the
CPU. A task uses the CPU until it requests an input/output operation. The
task then relinquishes the CPU and carries out the I/O operation. When
this operation is complete the task either terminates or goes back to the
CPU for more execution and the cycle continues. Thus the scheduler makes
interrelated decisions at two points in the system: at the main memory and
at the CPU.

A diagram of the model is shown in Figure 3-2. Tasks flow through
the system as indicated by the lines. Tasks within squares are being served
while those in circles are enqueued. Constrained by available memory the
scheduler decides what type of task to load. When the CPU becomes avail-
able the scheduler determines which of the tasks enqueued there gets use of
the CPU. This is the basic model to which optimization techniques will be

applied. Future plans also call for the addition of paging to this basic model.
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4. CENTRAL PROCESSOR OPTIMIZATION

This section focuses on research into optimization of two facets of
digital computer central processors. The general study areas are

1) Choice of data paths in the CPU;

2) Choice of micro-instructions in a micro-programmed CPU.
In this work we wish to make these choices in a way which minimizes a

suitable cost-performance ratio.

4.1 Data Path Optimization

The problem under consideration here is that of formalizing the de-
sign of a digital computer and developing algorithms and procedures which
can be applied in optimizing the design of the central processor. Specifi-
cally, it is the problem of creating the optimum data path for a central pro-
cessing unit when the system architecture is given. The term data path is
used here to refer to a set of hardware logic units such as registers, ad-
ders, and counters and the interconnections between them for data trans-
fers. System architecture means a description of the computing system as
it appears to the programmer and is composed of definitions of such items
as data and instruction word formats, addressing and indexing structure,
and the operation of each instruction. Optimization requires maximizing
the ratio of performance, as measured by a weighted average instruction

execution time, to the cost of the data path.
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4,1.1 Example

The concepts involved here can be made clear through a simple exam-
ple. Assume the system description of a central processing unit includes
the definition of two registers, R1 and R2, which are accessible to the pro-
grammer and an instruction which swaps the contents of R1 and R2. Many
different arrangements of hardware logic units can be used to implement
this instruction and which will result in different hardware costs for the
computer and different execution times for the instructions.

Figure 4-1 shows a data path having one additional register, T1,
which is not accessible to the programmer and an adder. The instruction
can be executed on this data path in three steps:

1) Rl —> ADDER ——> T1

2) R2 ——> ADDER —> R1

3) T1 —> ADDER —— R2

Figure 4-2 shows a data path which has an additional shifting unit.
This allows the instruction to be executed in just two steps as follows .

1) R1 —> ADDER —> T1

2) Tl —> SHIFTER —> R2 and R2 ——> ADDER —— R1

Finally, in Figure 4-3 a new path has been introduced connecting R2
to the shift unit, This allows the instruction to be performed in just one
step:

1) R1 —> ADDER —> R2 and R2 ——> SHIFTER —> R1

o7
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Clearly, each of these data paths has a different cost and allows
different execution times for the instruction. The problem of determining
which of these is optimum requires calculating the cost of each of the data
paths and then comparing their performance-cost ratio.

Even for a computer with a very small instruction set this problem
quickly becomes unmanageable. The number of different data paths which
could be used becomes large and cost evaluation requires a detailed design
study of each one. As a result, the normal solution of this problem in-
volves a considerable amount of intuitive judgment on the part of the design-
er since it is just not possible to carefully consider all of the possibilities.
The objectives of the research on this problem are to gain an understanding
of the relationships between the definition of the instruction and the design
of the optimum data path to implement it, and to provide algorithms which
will allow the computer designer to systematically explore the set of pos-

sible data paths to find the optimum one.

4,1.2 Model for the Study

The overall structure of the model being used in this study is shown
in Figure 4-4. The architecture description is taken as input to the data
path design process. A catalogue of hardware unit designs and a library
of algorithms are used to produce a particular data path and a set of flow

charts indicating the implementation of each instruction on the data path.
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4,1.2.1 Architecture Specification

The architecture is specified in three parts:
1) Facilities
2) Instructions
3) Performance requirements.

The definition of the facilities is composed of a list of the program-
mable registers, data and instruction word formats, and interfaces of the
processor to external units.

The instruction set is described in a language which allows each in-
struction to be defined completely and unambiguously but does not specify
a particular algorithm. This is accomplished by using a rich set of opera-
tors in the language and by providing a means to distinguish those steps in
an instruction which must be done sequentially from those that can be more
freely reordered.

The computing power is measured by the mix method of performance
evaluation, that is, by computing a weighted average of instruction execu-
tion times over the entire instruction set. The data which is specified in
the performance requirement section of the architecture definition is the
weighting factor or percent usage figure for each instruction. Also a max-
imum allowable execution time is specified for each instruction as well as

maximum and minimum values for the weighted average execution time.
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4,1.2.2 Hardware Unit and Algorithm Catalogues

The hardware unit catalogue is a library of designs for the hardware
units that can be used in a data path—registers of various types, adders,
counters, etc. Each entry gives a list of the transformations that unit per-
forms and functions for calculating the delay and cost of the unit from the
manner it is used in the data path (the width in bits of the unit and the load-
ing on the unit ports).

The algorithm catalogue is a library of algorithms for translating the
set of operator symbols used in the instruction definition language intc the
set of transformations that can be performed by hardware units. An opera-
tor is translated by many different algorithms allowing a wide selection of

data path hardware units to be considered in implementing an instruction.

4,1.2.3 Data Path and Flow Charts

The results of the design and optimizing process are presented by
specifying a data path and a flow chart of each instruction.
The description of the data path is given as:
1) A list of the hardware units selected from the hardware unit
catalogue.
2) A list of the connections between the hardware units.
The flow charts or sequencing charts for the instruction set are cycle
by cycle descriptions of the operation of the data path for each instruction.

The information specified for each cycle is:
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1) Which connecting links between units are open and which are
closed.
2) Which transformation each hardware unit is performing (most

units can perform more than one function).

4,1.2.4 Criteria for Optimization

The desired solution to the problem, that is, the optimum data path

and flow charts, is one which satisfies the following conditions :

weighted average instructional execution time
total cost of hardware units

1) Maximize [
2) Weighted average instruction execution time is between the mini-
mum and maximum values given in the architecture specification.

3) Each instruction execution time is less than the maximum given in

the architecture specification.

4,1.3 Status of Research

At present, a mathematical model has been completed which allows a
precise statement of this problem. Effort will now be directed to developing
methods of selecting hardware units and algorithms for a design and to

searching systematically for an optimization.

4,2 Micro-program Control

This study centers on micro-program control of computer systems.
Micro-program control of central processing units has increased in the last
few years. Currently, there are micro-programmed channel controllers,

display devices, and other pheripheral devices. Therefore, both efficient
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design and efficient use of micro-programmed control units is very impor-

tant in a large computer system.

4.2.1 What is Micro-programming?

The invention of micro-programming is generally credited to M. V.
Wilkes [1, 2] who in the early 1950's suggested micro-programming as a
more orderly approach to the design of computer control circuitry. He was
particularly concerned with the signals needed to control the flow of infor-
mation among the registers and transformation units that comprise the cen-
tral processing unit. Wilkes felt that the execution of a machine instruction*
by the central processing unit (CPU) could be partitioned into a series of
register to register transfers in the CPU. Some of the transfers of data in
the CPU would, of course, be made to pass through a transformation unit
while going from the source register to the destination register. A typical
transformation unit might be capable of shifting, adding, logical disjunction,
etc.

A representation of Wilkes' scheme is shown in Figure 4-5 with the
nonvolatile "control memory' divided into a part A and a part B. Each col-
umn of part A represents a micro-operation. The excitation of a micro-
operation causes a predetermined action by one or more elements of the

CPU. Some of the actions that a micro-operation might cause are: data

%

Machine instruction: the binary code for an operation that is performed by
the central processing unit. The code is normally held in the main memory
until fetched into the CPU for instruction decoding and execution.
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gated out of a register, data gated into a register, data gated through a trans-
formation unit. Each row in the control memory represents a micro-
instruction. Part A of the micro-instruction controls gating in the central
processing unit (CPU), and part B of the micro-instruction contains the ad-
dress of the next micro- instruction to be executed. Thus the micro-
program controls the gating within the CPU and hence, controls the transfer
of data within the CPU.

The control of a central processing unit, according to Wilkes, is im-
plemented by the execution of a series of micro-instructions. The excita-
tion of the micro-operations specified by each micro-instruction causes
register to register transfers to occur. The series of register to register
transfers specified by the micro-instructions implement the desired machine
instruction.

There are two different approaches to micro-program control. In the
first, horizontal micro-programming, each micro-operation usually con-
trols one gate (either input gate or output gate) per flip flop for each flip
flop in a register. In some cases the micro-operation may control the flow
of information into or out of a portion of a register. In the second, vertical
micro-programming, each micro-operation controls all the gating necessary
to implement a register to register transfer.

Horizontal micro-programming employs the micro-operations of the
micro-instruction word in selecting the data paths within the CPU. Each

micro-operation controls gates (either input gates or output gates) within
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the CPU, thereby causing data to flow into or out of registers and transfor-
mation units. A register to register transfer is executed by the proper
selection of miero-operations, each execution at the same time. It is the
freedom of selecting the data paths, and therefore the register to register
transfers, which gives the horizontal micro-programming control method
great flexibility.

The flexibility offered by the use of horizontal micro-programming
has its price. The length of micro-instruction words for a horizontal
micro-program controlled machine are longer than those for a vertical
micro-program controlled machine. Also, the programming of a horizontal
micro-program machine is tedious, It is much easier to specify a register
to register transfer than to specify all the micro-operations required to
implement the register to register transfer.

Vertical micro-programming employs the individual micro-operations
of the micro-instruction word to specify register to register transfers. The
register to register transfer must be executable in one micro-instruction
cycle time. For most CPU's the number of different register to register
transfers that may be implemented is very large. Normally, a small sub-
set of all possible transfers is chosen as the set of micro-operations. Since
a restricted set of transfers is normally available in a vertically micro-
programmed machine, it is not as flexible as a horizontally micro-
programmed machine, However, the micro-instruction word length for

vertical micro-programming is normally smaller than the micro-instruction

69



word length for horizontal micro-programming. In addition, the vertical
micro-program machine is easier to micro-program than a horizontal
micro-program machine. Vertical micro-programming is very similar to
machine language or assembly language programming of a conventional

computer,

4,2.2 Advantages and Disadvantages of Micro-programmed Computer
Systems

The advantages and disadvantages of using micro-program control
will be listed and discussed in this section. The number of advantages pre-
sented in the discussion far outnumber the disadvantages which are pre-
sented. This was not done with any intentional bias, but is simply the
situation as it appears to us. Some of the advantages listed for micro-
program control are based on equipment and methods not yet fully devel-
oped. However, in all such cases current research supports the claims
made. The disadvantages of micro-program control will be presented
first.

One disadvantage resulting from the replacement of logic control by
micro-program control is the decrease in execution speed. This occurs
because the time spent accessing the control memory is usually greater
than the time required for the logic control network to act. The effective
micro-instruction access time can be shortened by using a micro-
instruction look ahead facility. However, the look ahead facility will in-

crease the cost of the micro-program control unit.
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The use of a changeable control memory implies some potential prob-
lems. First, the control memory can be changed accidentally. Any acci-
dental change in the control memory is equivalent to a component failure in
a hardwired control unit; therefore, some method must be used to check
the validity of the control memory. This can be done with control memory
against a copy held in the main memory. The problem is not insurmount-
able, but does require consideration.

Secondly, the micro-programs contained in the control memory should
not be changed haphazardly [2, 3]. It would be hoped that any changes in the
micro-programs would still allow older software programs to be run under
the new micro-programs. The integrity and continuity of the micro-
programs must be maintained with greater care than even present day
executive systems.

Micro-program computers were first proposed [1, 2] with the expec-
tation that such computers would be easier to design and hence less expen-
sive. Currently, the design and development of micro-program computers
can be justified for many other reasons. The advantages of micro-
programmable computers can be seen in areas of diagnostics emulation,
system compatibility, and special purpose applications.

The use of micro-programming does allow a more systematic ap-
proach to the design of computer systems. The basic design method
involves choosing a set of micro-operations which are to be implemented

by the control memory. The desired machine instruction is then formed
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from sequences of micro-operations. This method has a simplicity and
ease of understanding which is not available in the timing diagrams, ring
counters, and logic diagrams of hardwired control circuitry. Because
micro-programs reside in a control memory, they are changed more easily
than hardwired control cireuitry. Therefore, correction of mistakes in ma-
chine instruction implementation or addition of new machine instructions
may be accomplished more easily and at a later date in the design schedule.

In addition, the interaction of the machine designers and the system
programmers has a greater possibility of occurring. The reason for the
increased interaction is the necessity of programmers and logic designers
interacting an intermediate stage in the design of a computer. Micro-
programs can be written by system programmers and need not be written
by logic designers. However, the micro-programmers must have a de-
tailed understanding of the micro-operations if they are to write efficient
micro-programs. Also, if the logic designers are to select the most use-
ful set of micro-operations, they must have knowledge of the machine in-
structions that the system software designers require. Thus it can be seen
that micro-programming techniques will indeed require more interaction
between the logic designer and the system programmer.

The use of micro-programming for economic reasons and system
compatibility was fully exploited by IBM in their system 360 series of com-~
puters. The IBM [4] system 360 series of computers spans a broad range

of speed and price. However, the system design philosophy requires that a
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program written for one machine shall run on any other 360 series machine
unless basic I/O timing considerations are a factor. However, this re
quires that the least expensive machine have as large an instruction set as
the most expensive computer in the series.

One very nice attribute of a micro-programmed machine is the low
cost required to add more machine instructions to an existing set. In a
micro-programmed machine there is a fixed cost associated with the cir-
cuitry to execute and cycle the micro-operations stored in read only mem-
ory. However, once the fixed cost is absorbed the addition of more ma-
chine instruction involves only the cost of the memory as long as the ad-
dress bounds of the micro-program controller are not exceeded. Thus the
cost of the control for a micro-programmed computer with 100 machine
instructions is not that much more expensive than one with ten machine
instructions. This is not the case with hardwired machines where the cost
of control circuitry is almost a linear function of the number of machine
instructions. Thus the lower models of the IBM series 360 are micro-
programmed mainly to achieve a large instruction set at reasonable cost.
Micro-programming can indeed provide cost advantages and system com-
patibility.

One of the most fruitful applications of micro-programming techniques
is in the area of emulation [5,6]. Emulation is the execution of a program
written for one machine on another machine with no change in the original

program,
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Emulation was used extensively in the IBM system 360 [6] series
computers, The emulation of the IBM 1401 and 7090 series computers,
which were being replaced, allowed computing centers and computer users
to switch computers and yet retain much of their investment in software
for the older machine. Even if it is anticipated that software will be writ-
ten on the new computer to replace the old software, emulation can be very
valuable. Emulation, and hence utilization of the older software, allows
gradual replacement of the existing software.

The gradual conversion of existing software to the new computer has
two advantages. First, a gradual replacement will not require large a-
mounts of overtime and the added costs that are associated with any rush
job. Secondly, it is generally true that there are a limited number of peo-
ple intimately familiar with the existing programs. Therefore, if a rush
conversion is done those most familiar with the programs may not be able
to work on all the programs that need converting. The expanded time
scale will allow those most capable and most familiar with the programs
to actually implement the conversion. It should be pointed out that the rea-
son the software need be rewritten at all is to take advantage of the speed
of the new machine, It is very seldom that a host machine can perform a
task written in the emulated language as swiftly as the task can be per-
formed in the host's machine language. If the older programs run infre-
quently enough so that the cost of rewriting the programs exceeds the sav-

ings in execution costs, the older programs should not be rewritten, but
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run under emulation.

In some cases to speed up emulation some minimal amounts of hard-
ware have been added. However, the addition of hardware was for reasons
of speed and not completeness. The emulation could still have been per-
formed without hardware, but at a much lower speed.

It is conceivable that emulation [5, 7] may be used in the future so that
a new machine may replace several older machines with no intention of re-
writing existing programs in the host's machine language, if, in fact, the
host machine even has its own machine language. Since the cost of computing
power is decreasing and the cost of software preparation increasing, more
effort will be made to save existing hardware. It can be envisioned that a
person purchasing a new computer will buy the computer on the basis of cost
speed characteristics in the language it emulates with little consideration
given to any inherent machine language the computer calls its own.

There are also two areas of micro-programming use that appear to
have great future potential. The first is machine diagnostics utilizing micro-
programming. Currently, most diagnostic programs reside in the main mem-
ory. Therefore, if diagnostic tests are to be performed a large part of the
computer must be functioning correctly. The minimal amount of correctly
working computer hardware would consist of the memory required to hold
the diagnostic programs, the channels connecting the CPU to the memory,
CPU hardware to sequence the diagnostic program, and CPU hardware to

implement the diagnostic tests. If the diagnostic routines are located in the
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control memory, a smaller percentage of the computer needs to be working
correctly to perform the diagnostic tests. The basic philosophy of micro-
program diagnostic routines is that they can execute micro-order tests and
hence perform diagnostic tests to a finer degree than can a core resident
diagnostic program. Also, if the machine is designed with micro-program
diagnostics in mind, it is expected that even greater improvements will
result.

The second area of micro-programming that holds great promise is
the area of special purpose languages. Work done at Northwestern Univer-
sity [ 3, 8] has shown that it is possible to improve speed by a factor of ten
for nonarithmetic operations run on the same machine but under specially
oriented languages. Thus, if many languages are provided, it is expected
that computing power could be increased. It is expected that to utilize those
languages, dynamically alterable control memories will be utilized. This
should present no problem in the future, however, since several manufac-
turers are either currently offering read/write control memories or plan to

offer such memories in the future.

4, 2.3 Problem Statement

The objective of the study currently being undertaken is to understand
the relationships between control memory size, central processor organiza-
tion, micro-instruction organization, and the execution speed of higher level
instructions. One very useful result of the study is the method used to model

micro-program control. The model is useful for describing both a micro-
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control machine and the central processing unit organization. The model is
described in Section 4. 2. 4.

In this study certain simplifying assumptions will be made. The most
fundamental of these concerns the central processing unit organization. Many
different types of CPU organization will be studied. But for each optimiza-
tion problem the CPU architecture will remain fixed. The term CPU archi-
tecture encompasses the registers, transformation or functional units, and
the data paths. We distinguish between data paths and controlled data paths
in the following fashion. A data path is a connection capable of being con-
trolled which allows data to flow between the registers and transformation
units of the CPU. The most common example of a data path is the register
to register data path which allows the contents of one register to be trans-
ferred into another register. There is a choice of how the data paths are
controlled. In the register-to-register data path all the bits of a register
could be transferred or each subgrouping of the register bits may be trans-
ferred by a separate control. Once the choice is made, the data paths are
controlled. We will always assume the registers, transformation units and
data paths are fixed when attempting any optimization. In addition, much
of the time we will assume that the data paths are controlled and will not
change.

One of the questions that will be studied is that of choosing a branching
scheme for the micro-program sequencing unit. The greater the number of

unconstrained branches that are allowed, the greater the length of the micro-
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instruction word. However, greater freedom in branching will often result
in shorter programs. Therefore, it may be possible by lengthening the
micro-instruction word to allow greater freedom in the method of addressing

the next micro-instruction word and shorten the length of the micro-

programs. Shortening the length of the micro-programs could result in an
overall decrease in the size of the control memory and also decrease the
execution time.

Another possibility is to allow several different addresses but constrain
the choices of addresses and thereby shorten the micro-instruction word
length. One example of this method is Wilkes' suggestion to allow one bit
of an address to be controlled by a test flip flop. This allows two address
branching using only one address word. Of course, the two addresses are
different in only one bit of the address.

How micro-program branching effects the number of micro-instructions

required to implement higher level instructions is the relevant question.

4, 2.4 A Mathematical Model of Micro-program Control

The problems suggested for study in this report (Section 4. 2. 3) all
involve optimization in one form or another. Before any optimization can be
attempted, an accurate description of the micro-program control system to
be optimized must be available., With this end in sight, a mathematical
model of micro-program control systems will be developed. The model will
allow both a standardized and an accurate description of a micro-
programmed computer to be realized. The mathematical model will provide
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the framework needed to allow the optimization to be attempted. In addition,
the model will provide two other useful attributes. First, the model is ap-
plicable to some nonmicro-control computer systems. Secondly, it is be-
lieved that the model aids in the understanding of the operation of central
processing units.

The model is subdivided into three parts. The three sub-divisions of
the model have been given the names control function, branching function,
and testing function.

The control function is concerned with the modification and movement
of data within the central processing unit. The control section of each micro-
instruction will determine the change in the state of the register of the CPU
resulting from execution of that micro-instruction. The control function con-
trols the gating within the CPU, and therefore controls the flow of data from
register to register.

The testing function is used to describe tests specified by the micro-
instructions. The results of the test determine the sequencing of the micro-
program. The tests are specifically limited to prewired tests which may be
performed on the states of the register of the CPU or upon status information
provided by either the transformation units or input/output devices.

The branching function describes the range of addresses of the next
micro-instruction. The manner in which the sequencing of the micro-
program is accomplished is determined by a combination of the testing func-

tion and the branching function. The branching segment of each micro-
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instruction contains the possible alternate addresses of the next micro-
instruction. The results of the test specified by the testing segment of each
micro-instruction determines which address is chosen.

Why should the model of micro-program control be divided into the
control, branching and testing functions? First, from a hardware viewpoint
the separation is quite natural. The control function is determined by the
registers, transformation units, and data paths of the CPU, and is depen-
dent upon the CPU architecture. The branching function is determined by the
type hardware sequencing unit used to control the micro-programs and is
dependent upon the micro-control sequence unit design. The testing function
is determined by both the CPU architecture and the micro-control sequence
unit.

Secondly, the problems that are to be studied in this report are well
matched to the proposed model of micro-program control. For example,
one problem to be studied is that of selecting the best branching function to
combine with a preselected control function, testing function, and the desired
instruction set. Another problem is to determine the best testing function to
combine with a given branching function. A whole class of problems similar
to those given above are to be studied, each having the characteristic that

either branching, testing or control functions need to be optimized.
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