A STUDY OF INFORMATION IN MULTIPLE-COMPUTER AND
MULTIPLE-CONSOLE DATA PROCESSING SYSTEMS

K. B. Irani

I. S. Uppal

J. W. Boyse
et al

The University of Michigan

Approved for public release;
distribution unlimited.

FOREWORD

This report was prepared by Messrs. K.B. Irani, I.S.
Uppal, J.W. Boyse, D.M. Coleman, D.L. Hinshaw, G.A. MecClain,
L.S. Randall, and A.M. Woolf of the University of Michigan,
Systems Engineering Laboratory, Ann Arbor, Michigan, under
contract F30602-69-C-0214, Job Order Number 55810000. Rome
Air Development Center Project Engineer was Rocco F.

Iuorno (ISIS).

The period of time covered in this report is April
1970 to March 1971. Contractor's identification number is
Annual Report No. 4.

This report has been reviewed by the Information

Office, OI, and is releasable to the National Technical In-
formation Service.

This Technical Report has been reviewed and is approved.

soved: fgcco ¥ Sesrno

ROCCO F. IUORNO
Project Engineer v
Information Processing Branch

Approved:

Chief, Ifformation Processing Branch
Information Sciences Division

ii

ABSTRACT

This report documents the achievements from April 1970 to
March 1971 of continuing research into the development and application
of mathematical techniques for the analysis and optimization of multiple-
computer, multiple-user systems. A summary of the theoretical
investigations conducted, the major conclusions reached, and some

typical applications are included,

iii

Section

1

TABLE OF CONTENTS

Page

INTRODUC TION 1
1.1 Contract Objectives 1
1.2 Contract Requirements 1
1.3 Progress Toward Contract Objectives 3
MESSAGE PROCESSING AND COMMUNICATION
SYSTEMS 6
2.1 Introduction 6
2.2 Some Problems in Computer Message

Processing and C ommunication System Design 9
2.3 A CMPC System Synthesis P rocedure 22
2.4 Example 28
2.5 Conclusion 45
MULTIPROGRAMMED AND MUL TIPROCESSOR
COMPUTER SYSTEMS 51
3.1 Multiprogrammed Systems Using

Storage Hierarchies 52
3.1.1 The Nature of the Problem 55
3.1.2 Objectives 56
3.1.3 The Model 57
3.1.4 An Example 66
3.2 Optimum Task Scheduling 72
3.2.1 Markov Renewal Decision Processes 72
3.2.2 Data Collection and Analysis 80
3.3 Selection of Optimal Sets with Application

to Computer Programming 89
3.3.1 Selection of Optimal Program Pages in

Multiprogramming System 90
3.3.2 Paging 91
3.3.3 Model 92
3.3.4 Solution Technique for Grahpical

Partitioning 92

Section

3.3.4.1 Optimal Systems

3.3.4. 2 Knowing Optimal Procedures

3.3.4.3 Heuristic Procedures

3.4 Multiprocessor Scheduling

3.4.1 Multiprocessor Scheduling - Assignment
and Scheduling

1 Hard Real-Time Environment

. 2 Soft Real-Tim e Environment

. 2 Scheduling Parallel Processes - A Zero-
One Programming Approach

3.4. 2.1 Model and Notation

3.4. 2.2 Assumptions and Limitations

3.4. 2.3 Formulation of the Optimization

Problem

Objective Functions

Constraints

3.4.1.
3.4.1
3.4.2

O'Irh

CENTRAL PROCESSOR DESIGN

Data Path Optimization
.1 Example

2 Model for the Study
2.1 Model Language

2. 2 Model Architecture

. 2.3 Hardware Unit Library
2.4 Algorithm Library
2.5
.2.6
2.1
.3

Model of the Data Path
Optimization Criteria
Generality of the Model
Progress Toward a Solution
Microprogram C ontrol

The General Design Method
PTL an Intermediate Language
Optimization

MNNNHH»—AHHHHHHHH

W py =~

DATA STRUCTURES AND THEIR

REPRESENTATION

5.1 Computer Memory Data Representation
5.1.1 Development of a Model

5.1.2 Optimization

5.2 Computer Graphics Systems

vi

92
93
93
96

99
103
109

111

113
114

116
116
119

125

125
126
130
132
133
134
135
135
136
137
137
139
139
144
149

151

151
153
158
160

Section

5.2.1 The General Approach

5.2.1.1 Topological Structure

5.2.1.2 The Picture Generator

5.2.1.3 Representation of the Topological

Structure
5.2.1.4 The Optimum Implementation

vii

161
163
170

172
172

Figure

S

W ny =

o
NS

2.6

2.1

2.8

2,17

2.18

2.19

LIST OF FIGURES

CMPC System Configuration

Offices and Branches of a Large Banking System
File Request Origin P robabilities for Two

Example Files

Variation in Processing Cost, Communication Cost
and Total System Cost with Degree of Centralization

Page

11
13

of File Assignments 15
Comparison of Point-to-Point and Multi-Point

Segments 15
Illustration of Changes in Edge Traffics and

Total Traffic When File is Moved from One Node

to an Adjacent Node

Average Message Delay in a Communication

Channel 21
Feasible Values of Channel Capacity in Two

Channel Communication System with Perfor mance
Constraint 21
A Methodology for Computer Message Processing

and Communication Design System _ 23
Modified T opologies Resulting from Tree Topology

by Deletion of One Edge and Insertion of Another 24
CMPC System Design Methodo logy 25
Terminal Locations and File Parameters for

Design Examples 29
Line Cost Function 30
CMPC System Designs Selected by Each Successive
Improvement Step 31,3233
Non-Optimal System Design Example 36
System Design Example with Network Topology

Selection 37
System Design Example with Optimal File

Assignments and Network T opology Selection 38
System Design Example with Optimal File

Assignment, Tree Segmentation, and Network

Topology Selection 39
System Design with Optimal File Assignment,

Optimal Edge Capacity Allocation and Network

Topology Selection 40

viiil

Figure

Page

2.20 System Design Example with Optimal File

Assignment, Tree Segmentation, Optimal Segment

Capacity Allocation, and Network Topology

Sele ction 41
2.21 Comparison of Several CMPC System Design Pro

Procedures 44
3.1 System Analysis Model 59
3.2 System Model 59
3.3 Detailed System Model, Part 1 60
3.4 Detailed System Model, Part 2 61
3.5 System Diagram 67
3.6 Performance Versus Number of Programs 68
3.7 Queue Length Versus Number of Programs 68
3.8 Performance Versus User Program Size 69
3.9 Optimal Number of Programs Versus Program Size 69
3.2,1 Cumulative Distribution of Time (t) f rom Page

Demand Until Page Available 82
3.2.2 Cumulative Distribution of CPU Time (t) Used

Between I1/0 During Fortran Compilations 83
3.2.3 Cumulative Distribution of Time (t) Used Per 1/O

Request During Fortran C ompilations 84
3.2.4 Cumulative Distribution of CPU Time (t) Used

Between Page Faults During Fortran Compilations 85
3.2.5 Cumulative Distribution of CPU Time (t) Used

Between Page Faults as a Function of the Number

of Pages in Core for Fortran Compilations 85
3.4.1 A Typical Task Set 104
3.4.2 Initial Configuration of Task List 105
3.4.3 An Example Graph and Schedule 108
4.1 CPU Data Path I 127
4,2 CPU Data Path II 128
4.3 CPU Data Path III 129
4.4 Overall Structure of Model 131
5.2.1 Interactive Display Program as Described

by W. R. Sutherland 162
5.2.2 A Picture and a Representation of Its Topology 164
5.2.3 Eamples of Pictures for which the Topology of

Each Picture Facilitates Response to Control

Language Inputs 167

ix

1. INTRODUCTION

1,1 Contract Objective

This effort is for applied research in the area of mathematical
techniques for analyzing multiple computer, multiple console, real-time
on-line data processing systems, and for analytical techniques and hypothe-
sis to assist system designers and users in determining the optimum
configuration, most complete utilization, and most efficient scheduling
of this type of system,

The main objective of this work is to make it possible, through
development and application of new mathematical techniques, to more
optimally design and control computer systems. A computer system
consists of a collection of electronic data processing machines, data
transmission channels, and multiple user terminals, organized to effi-
ciently service the computational needs of a geographically or functionally
diverse population of users. Such systems permit: remote communi-
cation and manipulation of shared data bases; cooperative operations be-
tween user and computer (symbiosis); an immediate access to a high-

capability facility for problem solving and data manipulation,

1.2 Contract Requirements

1) Exploration of Queueing Theory to enable the analysis of more
general models of computer utilities and their subsystems.

Emphasis shall be concentrated on numerical techniques, and

2)

3)

4)

shall include extension of earlier work on quasi-birth-and-
death (QBD) models and the Recursive Queue Analyzer,
Collection and analysis of statistical data from existing
systems to determine the validity of the mathematical models
developed, and to isolate problem areas in need of attention,
The techniques of computer data collection shall be studied.
Application of new mathematical techniques in conjunction
with those previously available, to the analysis and optimi-
zation of hardware and software configurations of general
purpose computers, These techniques shall be applied to
typical systems in order to test the analytical methods and
provide specific analyses/recommendations concerning the
effectiveness of these systems.

Continued development of general design guidelines for time-
shared computer systems with distributed processing capabili-
ties, Distributed processing has become economically feasible
becatise of rapidly decreasing small computer costs. This
task shall extend previous investigations of remote display

terminal structures.

5) Continued development of mathematical models for the optimal

structuring of communication networks associated with com-

puting systems,

6) Continued development of optimal design of storage systems
and data base strucutres,

T) Continued exploration of Discrete Optimization Theory and
Graph Theory in relation to application concerning the
scheduling of programs in multi-processor systems, Also
to investigate the use of these theories in relation to problems
of program organization,

8) Development of new conclusions and rules which can be used
by persons performing initial designs of real-time computer
systems having a large number of user consoles, Such rules
shall allow system designers to more rapidly choose the type
of hardware/ software system needed to fit a particular
organization or problem.

9) Application of statistical analysis to data collected from various
computing systems in order togain an understanding of user
demand structures and their effects on systems performance,
A search for other theoretical approaches to the analysis of
multiple computer systems shall be pursued.

1.3 Progress Toward Coniract Objectives

The following sections details the progress made during the second
year of this contract. Section 2 reports progress in the area of design
of message processing and communications systems, In Section 3 we

report research into the application of optimization theory to the problems

of program organization and program scheduling. Section 4 reports on
efforts to apply mathematical techniques to the anaylsis and optimization
of the hardware configuration of the central processor. Finally Section 5
concentrates on data structures and their representation in the computer
memory,

During the past year Systems Engineering Laboratory Technical

Reports Nos, 48[1] and 51| 2] were published. The other four reports

[3,4,5,6] are in the final stages of completion,

1)

2)

3)

4)

5)

6)

References for Section 1

V.K.M. Whitney, "A Study of Optimal File Assignments

and Communication Network Configuration in Remote - Access
Computer Message Processing and Communication System",
SEL Tech, Report No, 48, The University of Michigan,

Ann Arbor, Jan, 1971,

J. H. Jackson, "Optimum Implementation of Topological
Structure for Interactive Computer Displays,' SEL Tech,
Report No, 51, the University of Michigan, Ann Arbor,
Jan, 1971,

A. M. Woolf, "Analysis and Optimization of Multiprogrammed
Computer Systems Using Storage Hierarchies', SEL Tech,
Report No, 53, The University of Michigan, Ann Arbor,
April, 1971,

J.W. Boyse, ''Solutions of Markov Renewal Decision Process
with Application to Computer System Scheduling'', SEL Tech.,
Report No. 52, The University of Michigan, Ann Arbor, to be
be published.

L. S. Randall, "A Relational Model and its Optimization for
the Representation of Structured Data Within a Random-
Access Computer Memory ', SEL Tech.Report No, 54,

The University of Michigan, Ann Arbor, to be published.

D. Coleman, "On Binding Groups - A Quadratic Programming
Approach in Zero/One Variables with Applications,' SEL Tech.
Report No, 56, The University of Michigan, Ann Arbor, to be
published,

2. MESSAGE PROCESSING AND COMMUNIC ATION SYSTEMS

In this section we report research into the solution of several
problems involved in the optimal design of computerized message
processing and communication systems. The class of systems studied
includes airline and hotel reservation systems, and time-shared computer
systems, After a brief description of the general characteristics of the
class of systems to which this research is pertinent in Section 2.1, the
various subproblems encountered in the design of computer message
processing and communication systems are presented in Section 2. 2.

The various subproblems and their solution techniques are then integrated
into a comprehensive design procedure illustrated in Section 2,3, An
example of a complete system design using the techniques of the previous
sections is given in Section 2,4, and finally a summary of the specific
contributions of this research is presented in Section 2,5, The details

of the research reported in this section can be found in the

report entitled, ""A Study of Optimal File Assignment and Communication
Network Configuration in Remote Access Computer Message Processing
and Communication Systems' [5] , which was published during the last

year.

2.1 Introduction

This work is concerned with the design of large on-line real-time

computer communication systems. Both the size and the number of

such systems are rapidly increasing today. Three such systems are the
Barcleys Bank Ltd. on-line banking system serving 4,500,000 customers
through more than 2500 terminals [1], the American Airlines SABRE
reservation system [2], and the General Electric Corporation nationwide
order processing system [3].

The computer-communication systems studied will be composed of
the four basic sub-systems illustrated in Figure 2, 1., the user terminal
system, an on-line communication system, a message processing
system, and a file system. The user terminals are connected by a
large telecommunication network to one or more processing facilities,
Each processing facility may have its own data files or fetch the necessary
data located at the other processing sites through a telecommunication
network., Certain properties are common to all of these systems:

« Many users at widely separated geographic locations randomly

requesting records of a sizable data base,

. A large data base consisting of files of homogeneous records.

« One or more processing facilities which select, process, and

answer the user requests for information,

. An on-line real-time communication system linking the user

to the processing facilities,
o Quantitative measures of system performance such as

average message delay time, average line utilization, and

USER
TERMINALS

U 1

ON LINE

COMMUNICATION SYSTEM 7‘//&§

U1

PROCESSING SYSTEM

.)

Figure 2,1 CMPC System Configuration

maximum hourly throughput,

. Performance constraints on the system, such as the
requirement that the average message delay not exceed 3
seconds,

The goal of this research is the development of a comprehensive
realistic optimal design procedure for these computerized message
processing and communication (CMPC) systems. While this ambitious
goal has not been completely attained, considerable progress has been
achieved. A mathematical model of CMPC systems has been constructed
and studied to identify the important design variables and to isolate specific
problems for analysis and solution., Several of these specific design
problems have been solved and the solution techniques organized into
a unified system design procedure.

2.2 Some Problems in Computer Message Processing and Communication

Since the installation of a large computer system requires a
great initial investment of capital and time as well as substantial operating
expense, it is desirable to design the least expensive system which will
satisfy the system specifications and performance constraints, In this
section, several problems arising in the design of these large systems
will be discussed,

At the commencement of a system design certain information will

be assumed known. The location of the users, the records of the

system data base, the probabilities that individual users' requests will be
for specific records, and the rates at which users request records from the
data base must be known before the design procedure begins.

In addition to this factual data, certain decisions must be fixed betore
the design can proceed. A measure of system performance -—— mean mess-
age delay, for example — and the value corresponding to the worst accept-
able system pertormance must be selected. Often, additional constraints
on the types of equipment to be used in the system are decided before the
system begins. Many such possible constraints will become evident in the
following description of the system design procedure.

Designing a communication system linking thousands of users to files
containing billions of records is a very difficult problem. The first step of
the design procedure is to reduce the problem to a more manageable size.
The users af the system are gathered into a moderate number of terminal
user groups, with one user location in each group serving as a communica-
tions terminal. Each user can communicate with his terminal, and each
terminal can communicate with the other terminals. Users in distinct ter-
minal user groups may communicate only by using their terminals as relay
stations. The partitioning of 230 users into 11 terminal user groups for a
banking system example is illustrated in Figure 2.2. Since the selection
of terminal locations and the users connected to each is often a political or
managerial decision rather than a technical decision, and since the user

population of a system may change rapidly, a stable basis for system de-

10

o
e

* 11 BRANCHES
. 230 OFFICES

Figure 2.2 Offices and Branches of a Large Banking
System (from {4})

11

sign has been assumed by fixing in advance the terminal locations.

A second reduction in system complexity results from partitioning the
records of the data base into individual files of similar records. All record
of a single file are assumed equally likely to be requested by the users at a
specific terminal. Of course, the likelihoods of a record's being requested
by users at different terminals may be different. Sometimes the grouping
of files will be done by fiat or will be obvious. In the banking system, for
example, each file could contain the savings account records for customers
of a particular branch.

The file access request origin probabilities for two files are illustrat-
ed in Figure 2.3. At each of the twelve terminals is a number specifying
the probability that a request for a record of that file originated with a user
at that terminal. For file A nearly all request are from users in the west;
for file B most requests are from the east.

A major problem in CMPC system design is the selection of the pro-
per sites at which to store the files of the system data base. If the cost of
communication for a file is proportional to the product of the number of re-
quests made by the distance those 'requests must travel, we can calculate
the communication cost induced by locating the example files at each of the
terminals. When cost is the product of traffic rate by distance, the least
costly location for file A is terminal 4 (cost 1, 92) and for file B is terminal
10 (cost 1. 30), If, however, it is necessary to locate both files at the same

terminal, then the optimal location is terminal 6 with cost 3. 70. Note that

12

Figure 2.3 File Reque st Origin Probabilities
for Two Example Files

13

the communication cost for locating both files at the same terminal is great-
er than the cost of locating each file at its optimal site since then both are
located at nonoptimal sites. This example illustrates a problem in file site
assignment represented more generally in Figure 2, 4. There it is pointed
out that while a centralized file site assignment results in lowest storage or
processing cost, a decentralized file site assignment results in lowest comm-
unication cost, Hence neither a fully centralized nor a fully decentralized
file site assignment results in minimal total system cost.

It is appropriate to be concerned with this problem of file site assign -
ment, even though most existing computer communication systems are cen-
tralized. The number of multiple location computer systems is rapidly in-
creasing; as the communication facilities become more readily available
and less expensive, this increase will continue, Careful consideration of
the potential savings resulting from partial or full decentralizations should
be taken in the early phases of system design. If indeed, the results of
such a study for a particular system indicate that a centralized configura-
tion is most economical, that does not necessarily indicate that a decentral-
ized configuration should never have been considered in the first place.
Even though they are later rejected, as many options should be left open to
the system designer as possible.

Although the problem of file assignment is important for the design
of all message processing and communication systems, the other problems

studied in this work relate more directly to systems in which the commun-

14

TOTAL SYSTEM COST

PROCESSING COST

COMMUNICATION COST

CENTRALIZED
FILE ASSIGNMENTS

DECENTRALIZED
FILE ASSIGNMENTS

Figure 2,4 Variation in Processing Cost, Communication Cost, and
Total System Cost with Degree of Centralization of File

Assignments

o=

19

TWO POINT-TO-POINT SEGMENTS

®

ONE MULTI-POINT SEGMENT

©

Figure 2,5 Comparison of Point-toPoint and Multi-Point Segments

15

ication facility is composed of leased private lines configured with a tree
topology. This restriction of attention to tree networks deserves a word
of justification, Although network reliability is an important consideration
in system design, the additional cost of a redundant topology may not be
justifiable. The many corporate communication networks operating today
with a tree topology indicate a conscious decision that network reliability
is not worth the additional cost, But even if fedundancy is essential, the
design of tree networks is important for cost minimization., One of the
largest airline reservation systems has a communication network con-
sisting of a basic tree network used during normal operation together with
a minimal spanning tree used as a backup system when one of the links
of the basic system fails. Further considerations explored in this research
suggest that the random nature of message traffic is most economically
handled with as few channels as possible, Hence, in many situations where
there are alternate routes for message traffic, the system will be least
expensive when only one route is used and the other closed down completely.
The cost of a private leased line network consists of two basic com-
ponents, the line costs and the line interface costs., The line cost depends
on the lengths of the lines leased and their bandwidth or maximum infor-
mation transfer rate, The line interface costs depend on the actual trans-
fer rate or capacity at which the lines are operated. By using different

line interfaces, the same physical line may be operated at a variety of

16

capacities., Since higher capacity interfaces cost more, the system design-
er must choose interfaces to minimize cost but still satisfying the perfor -
mance constraint,

The non-centralized leased line networks for inter-terminal commun-
ication facility have also been studied. The notion of multi-point segments
is formulized and methods of finding segments which satisfy specified per-
formance constraints are introduced. Multi-point segmentation is a tech-
nique used to reduce the number of line interfaces required for a communi-
cation facility. The basic technique is illustrated in Figure 2. 5. In the
upper diagram terminals A, B, and C communicate with the aid of two point-
to-point communication lines which require four line interfaces. Traffic
from terminal A to terminal C must be relayed through terminal B. In the
lower diagram the three terminals are joined with a single multi-point line re-
quiring only three line interfaces. In this case, each pair of terminals may
communicate directly, but only one pair at a time. With certain traffic
patterns, multi-point lines may be significantly less expensive than point -
to-point line configurations.

When network traffics are low, interface costs are sufficiently small-
er than line costs that the least expensive line configuration, the minimal
spanning tree, is the optimal network topology. For higher traffics, the
interface costs increase, and the selection of the optimal topology becomes
a much more difficult problem. Methods for selecting inexpensive networks

subject to a performance constraint are studied. These will be explainec

17

I OPTIMAL
» @
-

L & -« ¢ ASSIGNMENT
COST=1+2+1+1=5
- ONE NODE
o >e % o / FROM OPTIMAL
COST=1+3+1+1=6
- TWO NODES
— ” N » FROM OPTIMAL
-

COST=4+3+1+1=9

Figure 2.6 Illustration of Changes in Edge Traffics and Total
Traffic When File is Moved from One Node to an
Adjacent Node

18

after a discussion of file assignment on trees and channel capacity allocation.

For a fixed tree topology, efficient methods of assigning files to opti-
mal nodes have been developed. A single procedure is vaild for a wide var-
iety of possible communication cost functions. The essential idea underlying
this assignment procedure is illustrated in Figure 2. 6. In that Figure are
shown the individual edge traffics and total edge traffic for a file with re-
quests equally likely to come from any terminal assigned to or located at
three different nodes. As the file is moved away from the optimal (lowest
total traffic) terminal node, the traffics in certain edges of the tree increase,
but none may decrease. Hence any cost function which is an increasing
function of each of the edge traffics must increase too, In this manner,
assigning files to minimize total traffics also minimizes any increasing
function of the edge traffics. Many possible cost functions satisfy this con-
dition, including some which accurately incorporate the stochastic nature
of message flow.

In the design of communication systems which must satisfy perfor-
mance constraints on the delay of individual messages, such as the require-
ment that the average message delay be three seconds or less, it is im-
possible to ignore the randomness of message arrivals and lengths. Rather
it is necessary to allocate additional communication channel capacity to re-
duce the expected additional communication channel capacity to reduce the
expected delays, and to provide storage for messages when several arrive

almost simultaneously. A graph of the reduction in message delay with an

19

increase in channel capacity is shown in Figure 2.7, As the capacity is
increased, the delay decreases, but a point of diminishing returns is reach-
ed.

A number of other methods for reducing message delay besides add-
itional capacity are also explored. Here we are concerned with the design of
the message switching computers which would bé placed at the nodes of a
network of store-and-forward communication links. Borrowing héavily from
the literature of queueing theory developed for scheduling jobs in computer
central processors, a number of interesting message delay reducing sch-
emes are evaluated. In general these message switching computers result
in more efficient utilization of communication lines than simple fixed sub-
channel multiplexers.

Another method used to reduce total capacity allocation in communic -
ation channels is possible when the measure of network performance is an
average of performance measures on channels of the network. Such aver-
aged measures are often appropriate for evaluating the performance of
CMPC inter-terminal networks. Averaging channel responses allows the
delay in one channel to be large while the delay in another is small, while
keeping the average at an acceptable level. This is useful since the effect-
iveness of additonal capacity and the cost of additional capacity vary from
channel to channel. This is illustrated in Figure 2. 8 for a two channel case.
In that figure is shown a curve of pairs of possible channel capacities which

yield the same performance for the system. Since the cost of capacity is

20

MEAN
MES SAGE

|
|
|
|
DELAY |
|
|
|
|
I
|
|
|

A p
CHANNEL CAPACITY

Figure 2.7 Average Message Delay in a Communication Channel

|
l
CAPACITY IN | ////////
CHANNEL B | FEASIBLE
} SYSTEMS
|
|
|
|
}\Bu "_—T— _________
A K

CAPACITY IN CHANNEL A

Figure 2,8 F easible Values of Channel Capacity in Two Channel
C ommunication System with Performance Constraint

21

likely to be different in the two channels, it is necessary to find the least
expensive point on the curve of constrant performance. In a simple two
channel case, the selection of the most economical system satisfying the
performance constraint is easy. For systems with many channels the pro-
blem is much more difficult. Several of these optimal channel capacity

allocation problems have been solved,

2.3 A CMPC System Synthesis Procedure

All of the design problems discussed so far are parts of a general de-
sign procedure for CMPC systems. This system design procedure separates
a computationally infeasible problem into sub-problems amenable to optimal
or efficient sub-optimal solutions and combines the solution of those sub-
problems into a solution to the original problem. The design procedure
follows the methodology of Figure 2, 9. An initial configuration consisting
of a star tree of leased lines, files assigned optimally, and channel capacity
chosen optimally is selected. 4Then other configurations based on topologies
which can be obtained from the base topology by the replacement of a single
edge are constructed and the optimal system cost for each of these modified
systems is calculated. A typical tree topology and several one edge modif-
iations are illustrated in Figure 2. 10 . That modified topology which re-
sults in greatest reduction in system cost is selected as the new base top-
ology. This iterative process of topology improvement continues until no

further feasible cost reductions are possible.

22

START

¢ Find optimal assignments,
Give base tree a N segmentation, and capacity
star topology allocations for new base
»| tree topology

Set base tree topojogy
to modified tree which
resulted in greatest

system cost reduction

Have all

modifications o
hase tree been

yes

checked
N7

|
yes

_~Did any
modified tree
reduce system

cost
?

Create next modified tree
topology and calculate line
cost.

Assign files optimally.
no Segment tree.

' Optimally allocate
QUIT channel capacity

Save modified tree
topology which results
in greatest system cost
reduction among all
trees tried so far.

s this
tree the best
tried so far?

l -

Figure 2,9 A Methodology for Computer Message
Processing and Communication Design System

23

.............. Deleted Edge
Inserted Edge

ORIGINAL TREE TOPOLOGY MODIFIED TOPOLOGIES

Figure 2,10 Modified Topologies Resulting f rom Tree T opology
by Deletion of One Edge and Insertion of Another

24

SYSTEM SPECIFICATION

GATHER USERS
INTO TERMINAL

GROUP RECORDS

SYSTEMS INTO FILES
SELECT OR - _1 ASSIGN FILES
IMPROVE OPTIMALLY
COMMUNICATION = 10 SITES
NETWORK
TOPOLOGY

I

ALLOCATE FIND BEST
CHANNEL - NETWORK
CAPACITY SEGMENTATION
OPTIMALLY

Figure 2,11 CMPC System Design Methodology

25

The heuristic nature of the solution procedure and the lack of compar -
able procedures make the evaluation of this total system design procedure
difficult. Several points of non-optimality are evident, but the degree of non-
optimality introduced is difficult to estimate or bound. Since the procedure
follows steps similar to those of a human system designer, and performs
some of these steps optimally, it can be expected to produce better solutions
than seat-of-the -pants design procedures. In general, as CMPC systems
become larger and more complex, the ability of the human designer to cope
with the design problems will decrease. The availability of comprehensive
procedures such as the one developed here, which handle large systems as
well as small systems can contribute to the development and feasibility
analysis of such large systems.

A sequence of steps used by a CMPC system designer is shown in
Figure 2, 11, The system design may be conveniently separated into two
basic activities, the system specification and the system design itself.

The activities that comprise system specification usually involve non-
technical inputs or constraints. For our purposes, according to the pro-
blem types studied, these basic inputs and constraints include the terminal
systems, the file system, and the performance constraint. Other real in-
puts are the cost functions for the various communication and processing
system structures allowable in the system design.

The problem of gathering the users into terminal systems and locat -

ing the terminals for each group of users is a difficult and interesting one,

26

which has not been addressed in this work. When complete freedom is
given to the designer, this problem may be formalized and an optimal solu-
tion sought. More often, however, the user groups and terminal locations
are specified by non-technical considerations, and therefore are not appro-
priate topics for research of academic interest.

Another important phase of system specification is the construction
and organization of the file system whose records are to be made accessible
by the CMPC system to the users. Here too, decisions are often made ad-
ministratively and not subject to engineering design considerations. It sh-
ould be noted, however, that were better design tools more widely available,
there would be more dependence on the system analysts in these decisions.

Once the terminal systems and file systems have been fixed, the de-
sign of the inter-terminal CMPC system may begin. At this point the de-
sign procedure specified earlier begins. This system design procedure
attempts to find the jointly optimal choice of file site assignment, communi-
cation network topology (restricted to trees), tree network segmentation,
and segment channel capacity allocation while guaranteeing an acceptable
measure of system performance. This problem is very difficult. Straight-
forward design techniques are corriputationally infeasible tor even the fast-
est computers.

The validation of such a comprehensive and complex design procedures
is a difficult problem, because of the lack of theoretical guidelines or solu-

tions known to be optimal. This total design procedure serves both as a

27

useful design tool and as a frame work illustrating the relationship among

the subproblems discussed earlier. Each step ot the procedure is impor-
tant in the overall design process. One evidence of this, explored in the
example of the next section, is that more costly solutions are obtained when
one or more of the optimization steps is deleted. These studies also relate
the procedure to manual design techniques, since often system designers
omit one or more of these steps attempting to achieve computational feasi-
bility. Ih particular, the optimal file assignment and optimal segment chan-
nel capacity allocation are often entirely ignored. In other cases where
these problems : re not ignored entirely, only partially optimal or very crude

design procedures may be used for their solution.

2.4 Example

In this section a CMPC systemdesign for a specific: problem is pre-
sented. Several other system designs are also presented to illustrate the

effect of ignoring some of the problem variables. Although the entire de-

sign procedure is of interest because of the complex problems it solves,
the basic emphasis of this section will be relating the separate steps of the
general optimization procedure, and showing their effect on the total system
design. With other cost functions than used in this example, the relative
importance of the steps of the design procedure might be different. Where
possible, however, general guidelinges will be drawn.

The system to be designed in this section represents a small airline

reservation system. The terminal locations and files are specified by the

28

A B N O
1 17 .31
2 |42 .30 [.21 .20
3 L4 .41 .31
4 +20 .09 |.10 .30
5 .22 .20 |.19 .29 .40 .33
6 .35 .29 {.10
7 .22 .21 .26 .35 .85/.55
8 . 44 .20 .65 .50 .41
9 . 28 .20 .15 .29 .11
10 .21 .23 .30 .45 .21
11 .27 .24 .11
12 .29 .19 .25 .09 .38
R |1.0 .90 .60(1.8 .36 .50 |.55 .64 .20 2.2 ,.80.08 |58 .70 .60
E |10 7 5|11 3 5|5 7 2[11 10 7 10 6

Figure 2,12 Terminal Locations and File Parameters for

Design Example

29

600 (-
500 -

400
$Per 3l

Month |
200 -

100 -

LINE COST

L I | l

0 100 200 300 400
LENGTH IN MILES

Figure 2.13 Line Cost Function

30

INITIAL CONFIGURATION

LINES 13501
MODEMS 1800
SEGMENTS 400

COST 15701

4
ABCDEFGH1JO

ITERATION 1

LINES 12331
MODEMS 2100
SEGMENTS 400

BDEFGH!1JO COST 14831

ITERATION 2

LINES 11372
MODEMS 2100
SEGMENTS 400

COST 13872

Figure 2.14 (Continued on the following page)

31

ITERATION 3

Z LINES 10599
MODEMS 2130
SEGMENTS 400

COST 13129

7 LINES 9873
MODEMS 2265
SEGMENTS 480

COST 11061

5 LINES 9291
MODEMS 2100
SEGMENTS 480

COST 11061

\

Figure 2,14 (Continued on following page)

32

ITERATION 6

LINES 8717
¥ MODEMS 2190
SEGMENTS 480

COST 11387

ITERATION 7

LINES 8436
MODEMS 2070
SEGMENTS 560

COST 11066

Figure 2,14 CMPC System Designs Selected by
Each Successive Improvene nt Step

33

parameters of Figure 2. 12, The inter-terminal communication system will
consist of store-and-forward concentrators joined by multipoint segments.
Line interface speeds are available only in the values 500, 1000, 1500, 3000,
3500, 4000 and 5000 bps. These values correspond to higher actual trans-
mission rates with redundancy for error correction and line control taken
into account in the lower TRIB values given. Modems for these lines cost
respectively 15, 30, 45, 90, 105, 120, 150 dollars/month rent. In addition,
each segment requires a single line control unit leasing for $80/month. Line
costs are given by the graph of Figure 2. 13. No consideration of processing
cost is given in this example, because maintaining message switching com-
puters at each terminal accounts for the fixed cost, and the processing and
file costs are assumed to be independent of file locations, The three vari-
able costs of the problem are the line cost, the modem cost and the segment
control cost.

The initial configuration and the system design after each iterative
improvement step with these costs constraints are shown in Figure 2, 14,
At each step of the procedure all possible single edge replacements are ex-
amined with optimal file assignments on the new tree, segmentation to re-
duce network traffic, and optimal segment capacity allocation. The tree
yielding maximal cost reduction is chosen and the next iteration begun. The
final system design is illustrated in Figure 2. 20 with all segment tratfics
and capacities indicated. The basic pattern of the iterative improvement

is to reduce the line cost as much as possible; as the line cost decreases,

34

however, network traffics increase, and modem costs increase. In the ex-
ample, modem costs and segment costs both increase with the reduction in
line costs. The procedure terminates when the next line cost reduction ex-
ceeds the increase in modem cost, or when no additional line cost reductions
can be made.

This solution will be compared to five alternatives, exhibited in Fig-
ures 2. 15 through 2. 20. In each of these five désigns one or more steps
of the procedure has been omitted or replaced by a non-optimal design tech-
nique.

Figure 2. 15 exhibits the least sophisticated design for the MPC sys-
tem example. In this system, all files are located at a single terminal,
modems are chosen to have the same transmission rate (the lowest poss-
ible), each link is a separate segment, and no attempt to minimize line
cost other than the selection of the central node is made. The solution cost
is high, but the design is simple enough to be performed manually without
the aid of computers.

Figure 2. 16 exhibits the system design when there is an iterative
tree improvement selection, but no additional attempts at optimization are
made. All files are located at the single best node, and each link is an in-
dividual segment. The tree improvement continues to reduce total link
cost until a constraint on the maximal link traffic (necessary because mod-

em capacity is limited) is broken.

35

SEGMENT NODE TRAFFIC CAPACITY MODEM

NUMBER SET COST
1 1,6 673 2000 120
2 2.6 1575 3000 180
3 3,6 1216 2500 150
4 4,6 783 2000 120
5 5,6 1849 3000 180
6 7,6 1833 3000 180
7 8,6 2837 4000 240
8 976 1900 3000 180
9 10,6 1976 3000 180

10 11,6 799 2000 120
11 12,6 1144 2500 150

MODEM COST 1800
SEGMENT COST 880
LINE COST 13501

TOTAL COST 16181

Figure 2,15 Non-Optimal System Design Example

36

' SEGMENT NODE TRAFFIC CAPACITY COST
NUMBER SET
1 1,2 673 4000 240
2 2,3 2248 4000 240
3 3,6 3465 4000 240
4 4,5 783 4000 240
5 5,6 2623 4000 240
6 6,17 1833 4000 240
7 8,6 2837 4000 240
8 9, 6 1900 4000 240
9 10,6 3920 4000 240
10 10,11 799 4000 240
11 10,12 1144 4000 240

MODEM COST 2640

SEGMENT COST

LINE COST 9661

TOTAL COST 13181

Figure 2,16 System Design Example with Network

Topology Selection

317

SEGMENT NODE TRAFFIC CAPACITY MODEM

NUMBER SET COST
1 1,2 673 4000 240
2 2.3 1978 4000 240
3 3,4 1587 4000 240
4 4,5 2181 4000 240
5 5,6 2926 4000 240
6 6,7 1662 4000 240
7 6,8 3602 4000 240
8 8,9 1900 4000 240
9 10,6 3920 4000 240

10 10,12 1144 4000 240
11 10,11 799 4000 240

MODEM COST 2640
SEGMENT COST 880’
LINE COST 8306

TOTAL COST 11826

Figure 2,17 System Design Example with Optimal File
Assignments and Network Topology Selection

38

SEGMENT NODE TRAFFIC CAPACITY MODEM
NUMBER SET COST

1 1,2,3,4 21217 5000 600

2 4,5,6 3905 5000 450

3 6, T 1622 5000 300

4 6,8 4062 5000 300

5 8,9 1900 5000 300

6 12,8 1144 5000 300

7 10,11,6 2716 5000 450

MODEM COST 2700
SEGMENT COST 560
LINE COST 8436

TOTAL COST 11696

Figure 2,18 System Design Example with Optimal File Assignment,
Tree Segmentation, and Network Topology Selection

39

EGMENT _ NODE TRAFFIC _ CAPACITY MODEM
NUMBER SET

i 12 673 1000 60
2 2,3 1978 3000 180
3 3,4 1587 3000 180
4 4,5 2181 3000 180
5 5,6 2926 3500 210
6 7,6 1662 3000 180
7 8,6 3602 5000 300
8 9,8 1900 3000 180
9 10,6 3920 5000 300

10 11,10 759 1500 90

11 12,10 1144 1500 90

MODEM COST 1950
SEGMENT COST 880
LINE COST 8306

TOTAL COST 11136

Figure 2,19 System Design with Optimal File Assignment
Optimal Edge Capacity Allocation and Network
Topology Selection

40

SEGMENT NODE TRAFFIC CAPACITY MODEM
NUMBER SET COST
1 1,2,3,4 27217 3500 420
2 4,5,6 3905 5000 450
3 7,6 1622 3000 180
4 11,10,6 2716 4000 360
5 8,6 4062 5000 300
6 9,8 1900 3000 180
7 12,8 1144 3000 180
MODEM COST 2070
SEGMENT COST 560
LINE COST 8436
TOTAL COST 11066

Figure 2,20 System Design Example with Optimal File Assignment,
Tree Segmentation, Optimal Segment Capacity Allocation,
and Network Topology Selection

41

The system design of Figure 2. 17 improves the solution of Figure
2. 16 by assigning each file to its optimal site. This reduces traffic in the
links so that additional iterative steps reduce total line cost as well. No
attempts at segmentation or optimal channel capacity allocation are made.

The system design of Figure 2. 18 considers tree segmentation to re-
duce system traffic, resulting in a further reduction in total system cost.
It can be seen, by comparing Figure 2. 18 with 2. ‘17 that considerations of
tree segmentation may alter the final system topology. Hence it is impor -
tant to consider the segmentation of each possible tree improvement, rather
than simply adding the segmentation procedure to the system design obtained
by selecting a topology on the basis of line lengths alone

The system design procedure whose final design is exhibited in Figure
2. 18 adds optimal segment capacity allocation to the procedure resulting
in Figure 2. 19, but does not perform a segmentation on each tree altera-
tion in the iterative improvement step. In this example, adding this optimal
capacity allocation does not change the final system topology, because the
total cost of the modems is considerably less than the cost of the topology
alterations. For systems with higher traffics, capacity allocation might also
affect the system topology.

Figure 2. 20 is the result of the most comprehensive design procedure
of this section. Each new tree in the iterative improvement steps is given
optimal file assignments, a segmentation to reduce system traffics, and

optimal segment capacity allocation.

42

These six design procedures are compared for the airline example
in Figure 2. 21, showing the cost savings and percentages resulting from the
consideration of more design variables in the system selection procedures.
Although these exact reductions cannot be expected for another sy stem,
there are some general conclusions to be drawn for systems using the same
cost functions, but possibly different file and terminal systems. It is clear
that segmentation does not result in such a large reduction as does optimal
channel capacity allocation. This would be reversed if the fixed cost assoc-
iated with individual system segments were higher. Optimal assignment
also resulted in an improvement in the system cost, both by its effect on
feasible topologies and for the actual reduction in link traffics (and total
modem capacity).

It would be unfair to claim now that the comprehensive procedure has
been shown universally valid, or even useful. Rather this example is in-
tended to demonstrate that many ditferent system designs can be evaluate
quickly and the least costly chosen, that the procedure of Figure 2. 9 pro-
vides a convenient framework for evaluating various types of systems, and
that for this example the most general design was significantly less costly
than the most restricted design. Note that system design tools such as this
procedure are most useful for the very large systems which are the most
ditficult to analyze by hand, and that a small percentage improvement may

represent a very considerable cost savings in a large and expensive system.

43

Star Tree
Figure 2. 15
cost = 16361
24%

Topology Vakiable
Figure 2. 16
cost = 13181
12%

Topology Variable

Optimal Assignments
Figure 2. 17
cost = 11826
L NI
Topology Variable Topology Variable
Optimal Assignments Optimal Assignments
Tree Segmentation Optimal Allocations
Figure 2. 19 Figure 2. 18
‘cost = 11696 cost = 11186
\ 1% %%
Topology Variable

Optimal Assignments
Tree Segmentation
Optimal Allocation

Figure 2. 20
cost = 11066

Figure 2,21 Comparison of Several CMPC System
Design Procedures

44

2. 5 Conclusion

A precise mathematical model of the systems being studied is formul-
ated to draw attention to the fundamental subsystems and to clarify the basic
independent variables of the design processes. Systems considered must
have a large data base organized into record files, widely distributed users,
an on-line communication network joining users to data base sites, a quan-
titative performance measure and specified performance constraints. The
most general system model studied uses a queuing model for individual
communication channels, with the channel interconnections specified by a
weighted linear graph. The data base is assumed to be organized into files
of homogeneous records, and the processing costs are specified by a single
function of the number of messages processed.

One major problem area studied is the determination of the optimal
number and locations of sites for the system files. Several basic proper-
ties of file site assignment on linear graphs are demonstrated and used in
efficient procedures for file assignment.

When the file locations are specified, the communication requirements
of the system are known. A second major problem area considered is the
optimal design of communication channels and networks of these channels.
A through study of stochastic message transmission channels has been under-
taken. The effects of channel capacity with one or more channels, message
length distributions, message retransmission order, and departures from

the model assumptions on message delay are studied, both analytically and

45

by simulation, Several channel and network performance measures are

defined and compared. The problem of the optimal allocation of channel

capacity among the channels of a network is solved for several important
system models. A complete set of guidelines is given to aid the designer
of communication systems and channels.

The third major problem area studied is the optimal design of comm-
unication network topologies. Several previously available techniques for
the design of centralized networks are critically evaluated. New techniques
for the design of centralized and non-centralized networks are presented.
These new procedures more faithfully model communication networks than
the other procedures by including more realistic cost considerations, and
yield more general solutions.

Finally the solution procedures of these problems are integrated into
a systematic design procedure for a general class of computer message
processing and communication systems. An example of a complete system
design is given.

Some specific contributions of this research, arranged in no particular
order, are listed below.

1. A comprehensive model of on-line Message Processing and Comm
unication Systems has been developed which explicitly considers
each of the following
a) Communication network line topology

b) Communication network tree segmentation into multi-point

46

segments
¢) Optimal allocation of communication channel capacity to min-
imize cost while maintaining acceptable system performance
d) Variation in inquiry origins for separate files and its effects
on optimal file assignment
e) Processing cost ior messages and storage cost for files
f) The stochastic nature of message requests
g) One or more copies of each file
The model allows the introduction of very general cost structures
in each of the basic sub-systems.
A procedure for the design of Computer Message Processing and
Communication systems has been devised which allows effective
consideration of each of the design variables included in the CMPC
model. While not necessarily yielding optimal system designs,
this procedure yields designs of lower cost and greater generality
than those generated by other currently available design proce -
dures.
Hakimi's theorem [4] that optimal assignments of files lie at nod-
es of a linear graph has been extended with a simplier proof to a
much more general class of communication cost functions.
Optimal assignments of files on a tree graph are shown to be in-
dependent of the edge traffics. Hence, optimal assignment to

minimize induced traffic also minimizes a wide class of other

47

cost functions, namely those monotone non-descreasing in each
edge traffic.

A careful derivation of the mean message delay in a network of
Poisson queues has been given. This exhibits clearly the under-
lying assumptions necessary to the use of this model for comm-
unication networks.

Efficient procedures for allocating channel capacity in a Poisson
message network have been developed and its validity proved
carefully. These procedures use a variety ot response functions,
both continuous and discrete.

A careful study of store-and forward message transmission cha-
nnels has been made. The effects of message length distribution,
retransmission order, butfer size, and channel capacity alloca-
tion upon mean message delay have been studied by numeric,
simulation, and analytic techniques. A comprehensive set of
channel design guidelines is presented.

The concept of segmentation of a tree and ite relationship to non-
centralized network design has been formalized and studied.
Efficient procedures for the selection of good segmentations of
afixed tree have been developed.

Procedures for the synthesis of centralized networks of multi-
point and multiplexed segments have been developed which yield

designs superior to any procedures currently available.

48

10,

A method of calculating the mean waiting time of and mean number
in system tor Poisson S-server queues with non-homogeneous
service rates has been devised. This method uses a combination

of analytic and numeric techniques.

49

1)

2)

4)

References For Section 2
"Look Ahead'' Datamation, April 1968, p. 53.

James Martin, Design of Real-Time Computer Systems, Prentice -
Hall, Inc., Englewood Cliffs, N.J., 1967, p. 629.

C. DeGabrielle, '""Design Criteria for an On-Line Nationwide
Order Processing System', pp. 71-75 in Disk File Applications,
American Data Processing, Inc., 1964, Detroit, Michigan.

S. L. Hakimi, "Optimum Distribution of Switching Centers in a
Communication Network and Some Related Graph Theoretic Pro-
blems', Operations Research vol. 13, no. 3, 1965,

V. K. M. Whitney, "A Study of Optimal File Assignment and Comm -
unication Network Configuration in Remote-Access Computer
Message Processing and Communications Systems', SEL Tech-
nical Report no. 48, The University of Michigan, Ann Arbor,

Sept. 1970,

50

3. MULTIPROGRAMMED AND MULTIPROCESSOR COMPUTER SYSTEMS

In this section we discuss research into problems related to the opera-
tional optimization of mvultiprogrammed and multiprocessor computer systems.
We first present (3. 1) a very comprehensive mathematical model of complex
computing systems using storage hierarchies ahd multiprogramming
order to predict and control the behavior of such systems. This model has
been implemented in the form of a fast and highly interactive computer
program which leads easily to an incremental optimization of the computer
systems under study by providing the user with comprehensive performance
measures as model parameters are varied. The research outlined in section
3. 2 uses queuing theore'tic approach to investigate optimal task scheduling
rules in heavily loaded multiprogrammed computer systems. The effects of
reentrant procedures and sharing of information in such systems is also investi-
gated., Sectioﬁ 3.3 is concerned with the problem of breaking up programs
into pages in such a way as to minimize the number of page faults, Using an
algorithm developed for the solution of a particular quadratic programming
problem efficient solution techniqﬁe for the above partitioning problem is
presented, Finally the scheduling of programs in a multiprocessor computer

system is investigated in section 3.4,

51

3.1 Multiprogrammed Systems Using Storage Hierarchies

The design and application of large computing systems involves
considerable risk, One can draw a parallel between those who have
designed and applied today's computing systems and those who, in the
early days of flight, strapped wings to their backs and jumped from the
roofs of barns, Neither had adequate methods of predicting system
performance, The work reported here attempts to contribute to computer
system technology through the development of improved methods of
predicting system performance,

Throughout the development of computing systems there has
been an effort to make a given hardware technology perform better
as a system, The primary emphasis in the early days of development
was on hardware technology, However, as computing systems have
progressed, there has been a continued and growing interest in the
design of system which makes the best and most efficient use of a
given hardware technology.

One important method of achieving efficient use of a given hardware
tecinology has been the use of storage hierarchies. Storage hierarchies
are not unique to computer systems. Your pocket, your desk or
dresser drawer and your basement represent a storage hierarchy.

The basic idea is simply to store those items used most frequently in

as easily accessible location., Those items seldom used may be stored

52

in less accessible and correspondingly less costly locations.

The storage hierarchy was first implemented in a computing
system developed at the University of Manchester in England in 1949,

As computer systems have progressed, two things have happened,

First, the complexity of the hierarchy itself has increased. We
can easily locate systems with 5,6 or more different kinds of storage
hardware capability. For instance, registers, cores, drums, disks,
data cells, magnetic tapes, punched cards, and punched paper tape. A
second and very important change has occurred in the management
responsibility of the hierarchy,

The gains achieved by the storage hierarchy have imposed consider-
able burden upon the programmer. At the outset the programmer was
responsible for deciding what information should be stored on what device
at each instant of time. In addition the programmer was responsible
for carrying out the necessary operations required to move the information
about as required, Lastly and very important, the programme r was
responsible for keeping track of how and where everything was stored
as it was moved about in the system. As we have progressed and
hierarchies have become more complex the operating systems and
hardware have assumed these responsibilities in varying degrees. In
some case all responsibilities for management of a hierarchy have
been assumed by the operating system and/or hardware and the hierarchy

is invisible to the programmer,

53

Another area of computer systems development has been in the use of
multiprogramming. A computer is often limited by its slowest (or most
overworked) component, often the I device. One of the methods used to
alleviate this problem has been multiprogramming or the practice of
working with more than one user program at a time,

One of the effects of multiprogramming is to provide the system with a
more balanced workload, If a system processes one program at a time, it
will find some programs using a great deal of CPU resources and leaving
the I devices idle, while others leave the CPU idle and do voluminous I@,
On the other hand, if a system is processing 10 or 20 programs at once, it is
unlikely that the system will see this group of programs exhibit the wide
variations in resource demand exhibited by the individual programs in t he
group., In other words system loading is more consistent and predictable
when the sample space grows larger.

The second effect of multiprogramming is to introduce parallel paths
in the workload as seen by the computing system. If a computing system
must follow a single thread of execution, a delay in any part of the system
holds up the entire system, Multiprogramming is one way of providing the
necessary parallel paths of execution, which if properly used, can increase
resource utilization,

The difficulty with multiprogramming is complexity. The problems of
resource scheduling are difficult, The problems of protecting one user from

another, protecting the operating system itself, and charging for resource

54

use become most complex, However, the rewards for efficient resource
utilization can be great. There has been considerable motivation for
complexity in the effort to better utilize computing system resources. This
has been added to by the response requirements of time-sharing and real-
time systems,

This need for complexity has placed the modern computing system

outside the capability of man's unaided intuition,

3.1.1 The Nature of the Problem

In very few words the problem is that of predicting and controlling
the behavior of complex computing systems using sforage hierarchies and
multiprogramming,

A computing system using a storage hierarchy generally involves 2
or more different types of storage devices. Different device types have
widely varying performance characteristics, Drums, cores and disks all
behave differently under load. A system's performance may be determined
by a complex balance of workload throughout the system of devices, or may
be determined by the performance characteristics of a single overworked
device,

User programs can be big or small, They can access data in a serial
or random manner, They can do large quantities of If) or almost none

at all.

55

The data paths and routing of information influences the load
seen by storage devices. The logical record sizes throughout the
system also influence the load seen by storage devices and in turn
their response times.

The number of programs running in a multiprogrammed system
effects the storage allocations of user programs. This in turn
influences the demands placed on the system by user programs.

All of these factors and many others combine to create an
enormously complex and remarkably difficult analysis problem, It is
simply difficult to determine what a given system will and will not do
in a given circumstance, It is even more difficult to design such
systems especially if some kind of optimal or near optimal design is

required,

3.1.2. Objectives

The specific objective of this research is to develop and demon-
strate a mathematical model of a computing system. The computing
systems in question here fall into the class of those systems using
storage hierarchies of 2,3 or more levels and multiprogramming,
The model developed exhibits the following characteristics:

1, The model includes the effects of user program behavior,

operating system characteristics and hardware performance.

2. The model is versatile and easily applied to a wide range

56

of system configurations, The model is useful as a tool
for the investigation of computing systems in general as
well as applicable to the detailed investigation of a parti-
cular system.

3. The model is useful as a tool for both analysis and opti-
mization,

4, The results obtained from the model approach the accuracy

and realism of those obtained from simulation models.

3.1.3. The Model

At this point we will attempt a broad preview of the model which
has been developed.

The overall model for computer system analysis is shown in
Figure 3.1. On the left we see 3 categories of independent variables.
First we have the user program description., This includes independent
variables such as the size of the user programs and other characteristic
of the user program behavior. Next there is storage device description.
This includes such items as drum RPM, disk seek time and
variables relevant to storage device performance. Last Wé have
data traffic dependencies and architecture, This includes CPU per-
formance characteristics, logical record size, data transfer timing
dependencies and other global system characteristics, As an out-

put for the model we show performance. In the narrow sense,

57

performance is defined as the mean rate at which the collection of user
programs running on the system make reference or access to data and
instructions. Inthe broad sense the performance also includes many
details such as mean queue lengths at various devices in the storage
system and CPU utilization.

Figure 3.1 shows the model as seen by the designer when being
used for analysis. Figure 3.2 shows the model in slightly greater
detail and from a different point of view, It is this form of the model
that we will be most concerned with, We see that the independent
variables on the left have not changed. However, the model shown
here does not give us the performance (mean user program access rate)
directly but rather tells us if an assumed performance is greater than
or less than a given system's capability. For analysis we will carry
out a simple search to find the performance of a given system, The
primary advantage of this particular approach to the problem occurs
in optimization where systems are compared in a search for a system
configuration with the greatest performance or mean user program
access rate,

Figure 3.3 and 3.4 show a detailed breakdown of the model of
Figure 3. 2. Beginning at the left of Figure 3.3 we see the User
Program Model. The independent variables supplied to this model fall

into two classes. The user program description consists of 5 independent

58

User Program D‘escription—\

. Computer
l§)toraqe Device > System |———=Performance
escription Model

Data Traffic Dependencies/

and Architecture

Assumed
User Program Performance
Description \ l
: Computer Assumed
Sfec;rcar%etg) envslce —» System |—————Performance
P Model to High and Low

Data Traffic Dependencies /
and Architecture

Figure 3,2 System Model

59

T 3red ‘[(9poIN weysAs parrersd ¢° ¢ oanSrd

SINBEIRLILTG)

suonesi1oads SUO11eJ1}103dS waysAs
921Aa(9beJ0)S d9jsues] ejeqd / abe.0}s
awi]
! 300 | |apOW |8POW
Alw|m.m_ba.M.m — m_u__w,o_z AP&E&EEPI J1jjed | TIUFWEWDI.] weJbo.id
8010 | g0 g MWL | yaishs weabo.d Jas
362I0)S 1S SEND _
o, uondiioasag
9)ey SS8JJy Wetbold weahoid

J8SM Ues pawnssy 19sM)

60

Z e d ‘19poIN wesAg porrelsd ¥ °g oanSidg

uoidiJosa(
84Nn)29)1yody
puenda
salouapuadag
bujwij
\ Jajsued] ejeq
M07 10 YbIH [9pOW uoljeWw.oju | [OpOW
9)ey SS90y aoueuw bulwij bulwi] puewaq
- — — — e —— e — e —— e ———
weJaboad Josn -10JJad uoljoun4 Jolew uonoun4 weaboad JasM
ues|y pswnssy wajsAg lolew
/I 9]y SS92IY m/ awl] asuodsay
weabodd Jasn 921A8(abe.0)s

ueal\j pawinNssy

61

variables which describe the characteristics of the user program, The
storage system characteristics consist of the storage allocation at

each level in the hierarchy and the logical record size at each level.

The user program model, given this information, determines what
fraction of a user program's accesses will be directed to each level in
the hierarchy of storage. This is referred to and shown in the Figure

as user program demand. For example, in a two level system with

a core and a drum, this wouldbe the fraction of user program references
or accesses to storage which are satisfied at the core and the fraction
which require drum activity.

The next block in Figure 3.3 shows the System Traffic Model,
This model has as its independent variables the assumed mean user
program access rate (assumed performance), the user program
demand and the data transfer specifications. The data transfer
specifications describe what happens when a user program accesses a
given level in the hierarchy. We are treating the user program access
to a given level as a cause and the activity generated in the system as a
result of that access as the effect. The effect takes the form of data
transfers in the system. The data transfer specifications describe the
data transfer which occur as a result of user program accesses to
some level in the hierarchy. Using this information along with the

mean user program access rate and the fraction of user program

62

accesses to each level (user program demand) the System Traffic
Model generates a description of the traffic environment at each level
in the hierarchy. The traffic environment is given in terms of the
mean rate at which records are being read and written at each level,
the mean record size being read and written at each level and the maxi-
mum number of requests for service that can be generated by the
system for each level,

We arrive now at the Storage Device Model at the right hand
side of Figure 3.3. The storage device is actually a collection
of models any one of which can be used to represent the hardware at
any level in the storage hierarchy. The device models give us the
mean time required to read or write a record of a given size at a
given level in the hierarchy. The model independent variables are the
traffic environment seen by the level in question and device specification
relevant to the device type at that level.

Models for core or random access devices, drums, disks and data
cells have been developed. The models are not particularly unique or
special in any real sense. They are based on finite- Markov chains
and require a numerical solution, The models were designed to
provide generality of application, realistic results and rapid solution,

Backing away from the details of Figure 3.3 we can review what

goes in and what comes out of this portion of the system model. We

63

provide as independent variables a description of user program
behavior and some storage system characteristics. From this we
learn how the user program behaves in the system., Next assuming

a mean user program access rate and given the data transfers which
occur at a result of user program behavior we compute the traffic
flows as each level in the system. Given this and a description of the
hardware at each level we compute the mean time required to read or
write records of various sizes at eachlevel. The principal result of
the portion of the model shown in Figure 3.3 is simply the mean re-
sponse time for each of the levels in the hierarchy.

We will now turn to Figure 3.4 where the second portion to the
system model is shown, On the left we have the Major Function
Timing Model. This model is responsible for timing information
such as the mean time that a user program remains ineligible for
execution following an access to some lower level or storage. The
independent variables of this model are the storage device response
times, the user program demand and the data transfer timing
dependencies, The data transfer timing dependencies require some
explanation,

Imagine a system having a core and a drum. If a user program
references some piece of data that happens to be on the drum a record
or page will be read from the drum and written in core, There may

also be a transfer from the core to the drum in order to make room

64

for the new information coming into core. Here we see the possibility
for 4 reads or writes. There is the operation of reading a record from
the drum and writing that record in core and reading a record from

core and writing it on the drum, However, in a typical system the only

delay experienced by the executing program is that of reading the record
from the drum, The other reads and writes do occur and do contribute
to the congestion in the system but are generally carried out in such

a way as to avoid a direct delay in execution, The data transfer timing
dependencies specify precisely which reads and writes contribute
directly to delays in program execution.

Finally on the right of Figure 3.4 we have the system performance
model, This model has as its independent variables the assumed mean
user program access rate, the major function timing information and
certain items of a CPU and architecture description, This submodel
determines if in fact the assumed mean user program access rate is
too high or too low, This completes the model giving us the final result
as shown in Figure 3. 2.

This description of the model has been necessarily incomplete and
simplified somewhat to aid in explanation. The detailed description
with examples will be available soon in Systems Engineering Laboratory

Report No, 53, Analysis and Optimization of Multiprogrammed Computer

Systems Using Storage Hierarchies, by A. M. Woolf,

65

The model has been implemented in the form of a highly inter-
active computer program which provides the user with an animated
view of the system performance as model parameters are varied,
There are roughly 50 independent variables in the model. (The number

of independent variables is dependent on the hardware configuration.)

3.1.4 An Example

A typical system is shown in Figure 3.5. The first level of
storage, Level 1, in this system is dedicated to the executing program
as is the code in the IBM 360/85. The space in the second and third
levels of storage are shared by all the programs being multiprogrammed.
. ulis case the third level of the storage hierarchy is a secondary level.
This means that an access to this level causes the executing program to
lose the CPU until the necessary data transfers are complete, There
are many other parameters relevant to the performance of this system
and included in the model which will be omitted in this brief discussion.

Typical results of analysis and optimization are shown in Figure
3.6,3.7, 3.8 and 3.9, In Figure 3.6 we show the performance of the
system as a function of the number of programs being multiprogrammed.
Figure 3.7 shows the behavior of the queue length at the drum under
the same conditions,

In Figure 3.8 we show the performance of the system as a function
of user program size. The lower curve in the figure indicates the sys-

tem performance when 13 programs are being multiprogrammed. The

66

(SPAOM 400€=~)

Ayoede 1ig uol||iw QT

Kouaje] sw 9 91

Wd ¥ 0081
K1epuodes-paleys ¢ |aAa]

(SPJOM X9T=)
(un Jad) Ayoeded 119 000 ‘00S
awl] ss80oy st 1

Aiewiad-pateys <2 [oAd]

(SPI0M 94¢)

Ayoede) 1g 2618

aWi] SSaJIY SU (Y
Aewiid-pajeaipaq T |9Ad]

piOM 1g ¢¢
)Ry SS929Y WNUWIXeW dW Q]

weiderq waishg

g'g aandrg

Wn4ya

3409

3409

34090

4d344n4g
JHIVI

NdJ

67

MEAN USER PROGRAM
ACCESSES PER SECOND

1, 000, 000

800, 000

600, 000

400, 000

200, 000

0

IS N R NS N S I N R

1011 1213 14 1516 17 18 19 20 21 22 23 24

NUMBER OF PROGRAMS

Figure 3.6 Performance Versus Number of Programs

50

40

30

209

QUEUE LENGTH LEVEL 3

10

—

SR [N U N NN (NN N N

01011

12 13 14 15 16 17 18 19 20 21 22 23 24

NUMBER OF PROGRAMS

Figure 3.7 Queue Length Versus Number of Programs

68

1,000,000 —

MEAN USER PROGRAM
ACCESSES PER SECOND

800, 000

600, 000 —

400, 000 [~

200, 000 —

a

\

N

| 1 | I

81920 163840 245760 327680 409600 491520
USER PROGRAM SIZE IN BITS

Figure 3.8 Performance Versus User Program Size

20

10

OPTIMAL NUMBER OF PROGRAMS

l I l I | |

81920 163840 245760 327680 409600 491520
USER PROGRAM SIZE IN BITS

Figure 3.9 Optimal Number of Programs Versus Program Size

69

upper curve shows the performance when an optimal number of program
of the given size are run, Figure 3,9 shows the optimal number of
program for each program size,

The results shown here are only a small sample of those possible
and are intended only to serve as an example of the kinds of results
obtainable.

The solution of the combined system model involves numerical
techniques, A complete solution requires approximately 1 second, based
on IBM 360/67. When the model is used in the context of optimization,
an evaluation can be obtained in approximately 50 ms. In practical
terms this means that in the case of analysis the printing of results
is more expensive than the analysis itself. In the case of optimization
over 1000 systems can be examined in 1 minute or over 60,000 per
hour,

The capability to explore the system, by modifying parameters
and observing changes in performance, is extremely useful in identifying
the important performance controlling characteristics of the system.
This capability to explore a system is the result of 3 factors:

1. Low cost of solution

2. Model flexibility

3. An interactive implementation of the model.

70

The CPU time required for analysis and/or optimization is
small., In the case of analysis and the simpler optimizations the cost
of solving for the result is generally less than the cost of printing the
result, The interactive nature of the implementing program is such
that the user spends much more time deciding what changes to make
than he does actually making the changes.

The approach taken in the design of the model deserves some
discussion, The model was developed specifically for use in the form
of a computer program. This has affected a number of important model
design decisions,

The model is modular. The most important aspect of this modu-
larity is the ease with which diverse mathematical methods can be
applied to different portions of the problem. In choosing a method for
modeling storage hardware there was no need to use the techniques
employed to model the user program behavior, In each case the method
used was developed for the specific application with little regard for
methods used elsewhere. This modularity of method, which would
lead to a uselessly cumbersome model outside the context of computer
implementation, was instrumental in providing the realism and speed
of solution,

If there is to be one characteristic of the mathematical model
identified as contributing most to its worth as a tool for modeling

computer systems, it would have to be this modularity of method,

71

3.2 Optimum Task Scheduling

The research outlined here is concerned with determining task
scheduling rules which will maximize the throughput (task completions per
unit time) in heavily loaded multiprogrammed computer systems. A
queueing model has been developed to simulate the behavior of the system
as a function of scheduling policies chosen. This model is documented more
fully in the previous annual report [15] and in the report which presents
the full results of this study.[16] In brief, we are interested in investi-
gating system throughput as a function of policies chosen and as a function
of whether or not reentrant procedure or other sharable information is
made use of in the system.

This model is Markovian and is formulated as a Markov renewal
decision process (MRDP) so that optimization of this decision process gives
optimum task scheduling rules for both core memory and the central pro-
cessors. Two problems arise out in the attempt to get useful results from
this - model. First, is the problem of finding a suitable solution technique
for the problem. Second, is the problem of obtaining values for the
parameters of the model and justification for assumptions made in the
model. These two problems are presented in more detail in the following

two sections and some results are given.

3.2.1 Markov Renewal Decision Processes

This section provides the preliminaries needed to understand

72

techniques for the solution of a Markov-renewal decision processes (MRDP'SL
first formulated by Jewell [1]. These processes are a generalization of

the Markov decision processes described by Bellman [2] and Howard [3].
Briefly, MRDP's are Markov-renewal processes with an finite pumber of
states in which the parameters of the process (pij and Fij(t)) are dependent

on a controller which makes one of a finite number of choices at each transi-
tion, With each decision made by the controller are associated transition
dependent rewards and the solution to the optimization problem consists of
finding the set of decisions which maximizes the expected return as deter-

mined by the rewards.

When occupying statei (i=1, ..., N), we choose one of a finite
number of alternatives k(i) (k(i) = 1, 2, ..., K(i)). For k(i) = k we have
associated a transition probability pli{j’ and distribution on transition
interval, Fl.:j(t). The reward under alternative k for making a transition
from state i to state j is Rlzj(t_l"r) where t < 7 is the elapsed time since the

beginning of the transition interval which is of length 7. Define

k k
Ry(r) = Ry (7]7)

Then

N 0 k
k k : k (r)dF.. (1)
‘11‘]23_1 Pi; joRij() 4

is the expected one transition return starting in state i and using

alternative k.

73

Note that if the transition interval is fixed and of length T then we have the

special case

P.. Ty (2)

where rli{j = Ri{] (T). This is the case considered by Howard [3] and for
this situation the more general rewards reduce to the above.

We may define two distinct objectives for the controller.

(1) Maximize the expected return per transition (which we call the

transition-optimal problem).

(2) Maximize the expected return per unit time (which we call

the time - optimal problem).

Bellman's "Principle of Optimality' [4] may be used to derive
recurrence relations for these processes. These recurrence relations
will specify the alternatives to be chosen at each transition in order to
maximize expected returns. The recurrence relations for the two
problems are

(1) The transition optimal problem. The recurrence relation is

N
¥y(n) = wax [) pf; v; (n-1)] ®3)

where
vi(n) is the expected return given that we start in state i and the
process makes n transitions before terminating,

vi(O) is the boundary reward received for being in state i at the
termination of the process.
74

(2) The time-optimal problem. The recurrence relation is

N 0
Wil = max 3, Py t aFg([RY €ln) + 55 6]
t
t k
+g d i (m) [Rij (1) + Wi t-n]t (4)

wi(t) is the expected return given that we start in state i
and terminate the process after time interval t.
wi(O) is the boundary reward received for being in state i
at termination of the process.
Sliz.(t, 7) is a boundary reward received when the process
terminates. It is a function of the two states involved in
the transition which is iriterrupted at the time of termination
and of the total time and elapsed time of this interrupted trans-
ition,
The first term in the recurrence relation represents the expected
return if no transitions are made before the process terminates. The
second term reporesents the return from one transition of time 7 <t
plus the expected return in the remaining time, t - 7. For convenience we

rewrite the recurrence relation as follows:
N t

w(t)-max{o (t)+Z p f w(t'r dF (’r)} (5)
k o

75

oF () = qf Z p1J {jt dFy [s (t 7)

-R (7)+R t|n1t (6)

For general distributions on the transition interval it is clear that
Equation (5) cannot be solved. We may, however, approximate Fli{j(t)

with a lattice distribution and obtain a solution in this manner,.

The recurrence relations given for the transition optimal and time
optimal problems formulated above provide a practical method of solution
for these problems providing the number of interations does not grow too
large. In many practical probl ems, however, this is not the case and in
fact we want to know the behavior of the recurrence relations as n-w and
t - in Equations (3) and (5) respectively. This in fact is the problem
we must solve to obtain solutions in the scheduling model and the research
is devoted to this end. Howard [3] and Jewell [1] obtain solutions to these
problems but their solution method requires matrix inversion and for large
models the computation required may be excessive. Therefore we would

like a method which avoids this.

76

Define a stationary policy, a, as an N-tuple which specifies a parti-
cular alternative in each of the N states. Then we may write recurrence

relations for the expected return when following stationary policy a. They

are
N
Voil (n)a:qg +.Z: p% V;Z n-1) (7)
wi (t) = of () + Z puL tT)dF (r) (8)

Under a stationary policy these recurrence relations may be shown[i] to

have asymptotic forms

v?; (n) = gan+ v? as n-= o (9)

% ¢4 wia as t = (10)

H

w

Because it has been shown [5] that there exists an optimal stationary
policy for each of the infinite stage and infinite time optimization problems,
it is clear that our objective is to find that policy, @, which maximizes ga

a
or % in Equations (9) or (10), respectively. ga is called the gain and f

the gain rate using policy a

The following theorem proves the result in Equation (9) along with

some other related results which are useful in obtaining solutions to MRDP's.

T

Theorem 2.1

If we are given a rec%}'rence relation

vi(n) =q + jZ_-l Pyj ¥ (n-1) (1)

v; (0) = ¢, (12)

where the NxN stochastic matrix P = (pij) is acyclic and has only one
closed communicating class of states sO there exists a vector of limiting

state of probabilities 7 = ('rri, ceey nn) , we have the following results.
lim - [vyn) - vi(n-1)] = g, (13)

a constant independent of i.

v, (n) ~ gn+ A as n-ow (14)

N
g =) mq (15)

Proof

Define gi(n) = vi(n) - vi(n-l)

gi(n) !
and G(n) =
g, ()
then G(n) = PG(n-1) (16)
Gn) = P*lg() (17)

18

T
Since lim P" = ()
n— m
1 i o B —_
we obtain r111_)rrc:ogi(n)--- nlgl(l) + + 'nngn(l) =g
It follows immediately that
vi(n) Y gn+ v, as n-o.

To derive Equation (15) define vectors

v =(vn’<n>) e (q)
Then V(n) = Q+ PV (n-1)
V(n) = Q+ PQ + p? V(n-2)

(18)

(19)

Vin) = Q+ PQ + P2Q+ cee Pn-1 Q+ Pn v(0) (20)

cm = P gL @ - P v(o)

79

(21)

3.2.2 Data Collection and Analysis

This section gives the background for the data collection and analysis
carried out on the multiprogrammed, time-shared system at The University
of Michigan and some results from that effort,

The computing system consists of an IBM System/360 Model 67 with
two central processing units and 384 pages of core storage (1024 words per
page). This is a virtually memory machine operated in a page-on-demand
mode with paging to two drums (and possibly disks). The system runs
under UMMPS (University of Michigan Multi- Programming System) which
is described in more detail by Alexander[[6] and Pinkerton [7,8]. In
addition to the supervisor there exists a reentrant program, MTS (Michigan
Terminal System), which controls remote terminal users and the batch
streams.

Code has been added to the system which allows data collection to be
initiated at the operator's console. The specific items which may be
collected are described by Pinkerton [7,8] . Events which occur along
with the time they occur are placed in buffers which are written onto tape
when they are full, For example, each time the CPU changes hands, the
time is recorded along with the indentification of the job relinquishing the
CPU and the job receiving the CPU, Pinkerton has shown that the process
of collecting data distrubs the system operation a negligible amount so no

cognizance need be taken of this when interpreting results.

80

Data were collected October 10, 1970 about 3:00 p.m, This time was
chosen in order to observe the system with as heavy a load as possible,
During the data collection period (approximately 22 minutes) there were, on
the average, about 50 terminal user and two batch streams active, The CPU
time used may be placed in four broad categories, MTS batch and MTS
terminal CPU time consists of time used by jobs in the batch stream and
terminal users, respectively, Non-MTS CPU time is time used by system
routines which cannot reascnably be charged to a particular job, Finally the
CPU may be idle. The number of seconds spent by the CPU in each of these
four categories is shown in Table 3,2.1. The average length of time a job
held a CPU was 5.7 ms,

Table 3, 2.1
CPU Use During Data Collection (seconds)

Non-MTS 601
MTS batch 341
MTS Terminal 1571
Idle 129

We now present some results of analysis of the collected data. Figure
3. 2.1 shows the cumulative distribution for the elapsed time between
occurrence of a page fault and satisfaction of the page request. The parti-
cular curve shown here is for page fault during runs of a Fortran compiler,
but the distribution is independent of the type of task. In the following

we present more results for a Fortran compiler,

81

AR

olqeIeAY adkd INUN putwa(9ded
wold (1) oW JO UOTINQLIISIJ dAE[NWND [°Z°¢ 9IN3ITA

(SANOJ3SITIIW) L
9% 08 9 8y 143 91

_ _ _ _ I _ _ _ _ _ _]

NVY.1404 =

90°¢T 'A°S
SW Z'0¢ uesiy
sajdwes 66

1=} AlI18va0dd

82

8¢l

suopjeridwo) uexjaod Suraing Q/1 usemisg
pesn (1) swiL NdD JO wOTINQII}SIJ SARINWIND g °Z "¢ 9Indid

(SANOJISITIIW) L

T T o 72 8 4 91
NVY1d0d
g 80" 2o T ‘|eiyusuodxasadiy
' }
¢le 'a’s

SW 69/ ueay
sa|dwes $0sz

jeljuauodx3

|enjusuodxatadAy

|ealdidwy

01

1=} ALlIT1dva0yd

83

suonyeridwo) uexlxod Suran(jsenbay
O/1 184 pesq (3) dWIL Jo UOTINGLIISIC dATR[NWIND §°Z °§ 9IN3TA

(SANOJISITTIW) 1

02¢ 08¢)24 00¢ 091 021 08 o
_ _ [[[[_ _ [] I _ _ _ _ [
NVY.LY0d -
. . _ : NA
o181 aG0 . 91 966 ° - T ‘jenuauodxatadAy i
l]
L6 Q'S —
SW G641 uesiy
S9|dwes 6€S2 —
|enpuauodx3 .
|enjuauodxaadAH _
jearndwy

9°0

8°0

0T

1=} ALI1gvaodd

84

(1743

suotyeTidwo) ueajro Surang syne g aded usamilag
pasn (1) swWLL NdD Jo uouNLIIsI 9ATIR[NWND §°g °§ 8an3rd

(SANOJISITIHW) L
08¢ (124 00¢ 091 0¢t 08 4

_ _ _ _ [_ | _ I _ | _ _ |
NVY1Y0d = -

¢elL as _
SW 202 uesy
sajdwes phg a

A

80

01

1=} ALIIAvaoud

85

suo 1yeridwio) uBI3I04 JI0J 810 Ul S8k d JO JaqwnN ayj JO uorjoung
® SB s)neq a8ed usamidd pasn (3) SWLL NdD JO UOTINQLIISTJ dARINWND G °Z g 9anS1d

(SANOJ3SITIIW) L

omm owu ovm 8N o£
1 _ _ _ _ _ _ _

NVY1d0d -

1

02l 08 oy K
| | 1 | | I

6£-0¢

61-01

1=1 AlLlIT19va0yd

86

This compiler is by far the most heavily used program run by users
of MTS. It is the IBM Fortran IV (G) compiler with a modified interface to
allow it to run with the operating system (UMMPS) used at The University of
Michigan. There were 41 requests (loads) for this compiler during the 22
minute data collection period. The mean elapsed loading time for those 41
samples was 5. 06 seconds with a standard deviation of 1. 75. Data obtained
during completed executions of this compiler are presented in Table 3. 2. 2.
This table presents means and standard deviations for elapsed execution time,
CPU time, I/0O time, and page wait time. The time the tasks are eligible to
use the CPU (ready) may be obtained by subtracting CPU time, I/O time and
page wait time from the elapsed running time. The mean number of I/0
operatings and the mean number of page waits per run are also given in
this table.

In addition the table shows virtual memory and real memory
assigned to tasks during execution. The virtual memory consists of the
memory assigned the executing task plus three pages of tables used by the
system to keep track of the job status.

Cumulative distributions are given for the length of time the task uses the

CPU between I/0 requests and for the length of time the task uses the CPU
between page faults. Also distributions are given for the time required to
carry out requested I/O operatings (time from I/O request until request

satisfied and task again eligible to use a CPU).

8

In Figure 3. 2. 2 we show the distribution of lengths of CPU intervals
between input-output requests for the compiler. In addition, two theoretical
distributions with the same mean as the empirical distribution are shown.

It is clear that the hyperexponential distribution fits the data far better
than the exponential distribution. Figure 3. 2.3 gives the distribution of
lengths of I/O operations during Fortran compilations and again we see

that a hyperexponential distribution fits the data far better than an exponential

distribution,
Table 3. 2. 2
Fortran Execution Data

Item Samples Mean S.D.
Elapsed Tine Per Run (sec) 40 19. 1 27.0
CPU Time Per Run 40 4. 90 5. 37
I/O Time Per Run 40 8. 13 16. 3
Page Wait Time Per Run 40 . 434 . 758
Number I/O Requests Per Runs 40 63.1 71.9
Number Page Waits Per Run 40 14. 4 24.1
Virtual Pages Per CPU Interval 2504 29 7
Real Pages Per CPU Interval 2504 24 7
Virtual Pages Per 1/0 Interval 2539 30 9
Real Pages Per I/O Interval 2539 25 8

88

Figures 3. 2.4 and 3. 2.5 give the distribution on the CPU time used
between page faults, Figure 3. 2.5 is a breakdown of the data in Figure 4
by mean number of pages in core during the period of C PU use between

page faults, Pertinent data for this figure are given in Table 3. 2. 3.

Table 3. 2.3
Data for Figure 5

Pages
in Core Samples Mean S.D.
0-9 29 7.54 13.6
10- 19 127 43.6 136
20- 29 325 205 775
30-39 57 620 1179
40-49 6 415 492

3.3 Selection of Optimal Sets with Application to Computer Programming

In the design of large scale systems it is frequently useful to formulate
a number of engineering problems as optimization problems in zero/one

variables,

Much effort has been directed towards developing algorithms for solu-
tion of these problems which are readily programmed and do not require

unreasonable amounts of computation and storage.

Linear programming has been one of the more successful techniques
developed to deal with problems of this nature. For example, special

algorithms have been developed for efficient solution of the chemical

89

transportation and assignment problems.
In this work we develope algorithms for solution of a particular

quadratic programming defined as follows:

Maximize L‘ C;iXX: - Z b.X,
lj 1 1] j 1]

1

k

Subject to), aik- X, < W k=1,2,...m
i

where x, €{0, 1}, ¢;; = 0 for all i, Cj; >0, ;.zk, aik, bj are real numbers for

k=1,2,...m and all

For the case of m<2, an algorithm utilizing generalized Langrange
multipliers [13] was developed for solution of the above problem. Using
this approach techniques were developed for solution of problems containing
a relatively large number of variables which did not require a prohibitive
amount of computation time or storage.

This problem can be shown to have a wide range of applicability in
both operations research and computer systems design.

In the following system we discuss a particular problem area where

we have found application of quadratic programming to be useful.

3.3.1 Selection of Optimal Program Pages in Multiprogramming System

Multiprogramming, as the term implies, means having several
programs occupy high speed memory simultaneously. Problems of
effectively using storage in a multiprogrammed mode are appropriately
called problems of storage allocation. When we consider these problems in

90

the context of the early days of computing, they were relatively straight
forward.

In early batch systems where programs were run one at a time,
each program had the entire high speed memory (core) available. Problems
arose when a program was larger than the available core. In these cases
the programmer had to improvise by "'segmenting' his program (instructions
and data), and controlling the "overlaying' of segments. Segmenting
referred to dividing the program into parts (segments), and overlaying was
the process of bringing unused parts of aprogram into core from auxiliary
storage as they were needed during execution.

When the problem of segmenting a problem was given to the operating
system instead of the programmer, we had what was called an automatic
segmenting system; the problem of segmenting a program in an optimum
manner, e.g., So as to minimize the number of overlays, became known as
the classical overlay problem or the problem of program segmentation.

In some systems, excessive overlaying could cause a serious decrease in
the system's operating efficiency.

In multiprogramming systems overlaying or segmenting is intended
to increase the size of effective memory. A summary of techniques for

overlaying can be found in [9].

3.3.2 Paging

When high speed memory is divided into fixed size blocks called

page frames, and programs and data divided into similar fixed sized blocks

91

called logical pages the process of mapping the logical pages to page frames
is called paging. The quadratic programming algorithm was used as a tool
for determination of the logical pages of programs. Comparative results with

alternative strategies and some applications can be found in [36] .

3.3.3 Model

Another natural model for the study of the optimal selection of program
pages or "pagination' is the linear graph. Ramamoorthy [10] was the first to
formulate the problem of pagination as a graph partitioning problem,

Basically, the model for optimal selection of program pages isas
follows. Each vertex of a graph represents a block of instructions or data;
the directed arcs between blocks represent transfers of control between
blocks of instructions. Usually, undirected areas are used to indicate a
block of instructions referencing data. Since the arc isundirected, control
is to remain in the instruction block.

The abstract statement of the problem in graph theoretic terms is,.
given a graph G with weighted arcs, partition the graph into disjoint subsets
of vertices such that no subset of vertices is larger than same maximum

size, and the sum of the weights of the arcs between subsets is minimized.

3.3.4 Solution Technique for Graphical Partitioning

3.3.4.1 Optimal Systems

It is possible to formulate the graphical partitioning problem in
terms of an integer linear program with a large number of constant

equations to insure the feasibility of the subsets of vertices selected,
92

However, for problems of practical significance, i.e., the number of
vertices greater than about 20, the methods of integer linear programming
are not sufficiently powerful to give solutions in a reasonable amount of
time. For example, the number of ways in which a set of 25 objects can

be partitioned into 10 subsets is 1, 203, 163, 392, 175,387, 500. Now
given that many partitions will be infeasible due to size constraints on the
vertices, there will remain an inordinate number of cases even after those

infeasible partitions are deleted.

3. 3.4.2 Known Optimal Procedures

There have been reported in the literature a number of optimal
procedures for special cases of the graphical partitioning problem. One
algorithm using backtrack programming has been used to solve the general
partitioning problem when the number of vertices is small [11] .,

Other algorithms for optimal solution suitable for large graphs
usually require that graph be tree structured see [12], [14]. Some
extentions of these methods have been made when the graph is acyclic
(directed but with no cycles). These extentions require that the partition
is not disjoint, i. e., certain vertices are duplicated and appear in more

than one block of the partition.

3.3.4.3 Heuristic Procedures

In view of the fact that most practical problems involve graphs with
the numbers of vertices too large for exact methods, evaluations of existing

heuristics methods and a heuristic based upon quadratic programming were

93

made.
The quadratic programming problem was used as vehicle for
selecting block of a partition as follows:

Selecting Maximum Weights Blocks

Let cij be weight of arc (i, j) and aj be the rize of vertex j, then

we can select a maximum weight block of vertices by solving,

Maximum Z C..X.X,
R § I
L]

Subject to), ax, < p
: >

(A)

X, € {0, 1}, where
x. = 1, vertex is is selected

= 0, otherwise;
L represents the maximum size of a block of vertices. Successive

solution of the above problem gives a partitioning of the graph.

Selecting Block Which Minimizes Inter-arc Weights

An alternative strategy for partitioning is to select the set of
vertices for a block of the partition which minimizes the total weight of
the arcs between the selected vertices and the vertices which are not

selected. This can be accomplished by solving the following:

94

Maximize

Zc XX, +2_,c (1x(1x)

13 ij
Subject to
Lagx < om
i
(B)
X, > 1

i

In this case the second constraint is used to avoid the nontrivial
solution X, = 0 for all_i. Successive solution of this problem also gives
a partition of the graph.v In comparing this method of partitioning with the
first strategy, it was found that the results were in general tetter using
problem (B). Typical solution times for problem (B) are shown in table
3.3.1, where N represents the number of vertices of the graph and M

represents the number of arcs.

Table 3. 3.1
N M Time (sec.)
4 4 . 012
10 .47
14 17 3.42
25 50 2,44
46 75 4, 80

95

3.4 Multiprocessor Scheduling

The basic characteristic of a multiprocessing system is the
existence of several processors which can operate independently and
have access to a common central memory, In cases where sufficient
processing power is not available from one processor, a system of
two or more processors closely connected through shared I and core
storage may provide sufficient capability. The efficient utilization
of such a system can be effective in decreasing the computation
times of many programs. This is especially important for real-time
applications but also lengthy computations, when the results are
needed more quickly than they can be provided by a single processor,
The stringent reliability and availability requirements of certain
applications including real-time process control, air traffic control
or air reservation systems, and radar control can be met through
the means of multiprocessing. The scope of this research is limited
to the operational and scheduling aspects of the multiprocessors
computer systems, and to the problem of making optimal use of a
multiprocessing system in reducing the computation times and meeting
the requirements of parallel processable and real-time programs
which are available for analysis and scheduling prior to execution,
The reliability aspects of such systems will not be of much concern,

In a typical multiprocessor computer system, the interaction

between the program and the system's demand environment is of

96

prime importance, The usual kind of demand environment of a multi-
processor computer system is statistical in nature and the system's
response to user's requests are constrained to occur within reasonable
time, Small variations in service are tolerated. The typical time-
sharing systems behaves in this manner and following Manacher [17},

we call such an environment a soft real-time environment., We will

also be concerned with another kind of environment, one in which the
external world presents the system with a set of rigid constraints or
timing bounds. Certain times before a program or a sub-program

cannot be started and certain times before which it must be completed.
The starting time constraint could result from lack of data for processing
before a certain time, When the external world is characterized in this

fashion, it is called a hard real-time environment. The reason for

considering this added complexity is that this type of environment is the
one which has provided the main impetus for the development of the
computer under consideration, Multiprocessor systems can be envisioned
as ones which possess a pool of computing resources, and which when
applied to a single program with sufficient degree of parallelism can
reduce its run time significantly and at the same time the surplus resources
can be shared with other programs.,

The advent of multiprocessing systems, with the added complexity
of parallel processing, has naturally introduced a new level of complexity or

better, a number of new research areas, in virtually all aspects of computer

97

systems. A number of significant abstract and concrete theories, at
different levels of detail and sophistication, have been proposed which
might serve as foundations for research in parallelism, Investigations
into program parallelism are going into two directions. The first is the
introduction of programming facilities that encourage parallelism to be
explicitely specified and used at the coding level. The otheris the
implementation of algorithms at the compiling level to investigate and
detect potential implicit parallelism in sequentially coded programs,
Algorithms have been proposed to recognize parallelism between program
blocks (macro-parallelism) of within a single or a collection of program
statements (micro-parallelism), Programming techniques which constrain
probleran solutions to a sequential order have merely hidden any inherent
parallelism in these solutions, Either this inherent parallelism can be
detected through algorithmic techniques or new programming techniques
can be introduced which relax the sequential constraints thereby allowing
the programmer to re-introduce the inherent parallelism in a problem
solution and use it to develop algorithms which are faster, However, to
exploit this parallelism a general sequencing mechanism has to be
developed which assigns program blocks to the processing units and

controls the interaction between them,

98

3.4.1 Multiprocessor Scheduling - Assignment and Sequencing

Assignment and scheduling problems arise whenever a set of
objects must be processed by a set of available facilities, and where
the goal is to distribute the objects to the facilities in a most effectiwe
manner, i.e., the questions are: '"Which object should be processed
by which facility and in what order ?"" and "In what order should each
facility process the objects assigned to it?'", Such problems arise in
particular, in the area of operations research where they are called
assignment problems, job-shop sequencing problems, and assembly
line balancing problems. Such problems also arise in making optimal
use of a multi-processing system.

Historically, assignment and sequencing problems were first
formulated for solving job-shop problems, Application to multi-
programming and multiprocessing has been considered only recently,
and most of such applications are attempts to use formulations and
solution procedures developed earlier for the job-shop sequencing
problems., Another related problem is that of project scheduling which
allows multiple resource constraints. A single project is to be under-
taken, consisting of a large number of individual jobs, Every job has
a set of immediate predecessors which must be completed before it can
be started, Thus, some pairs of jobs can progress simultaneously,
while other pairs must be done serially. How can the progress of the

project be monitored so that the due date of the project is met, if it is

99

possible to do so? Here the principle tool is the "critical path analysis"

of the project graph, [18]

A comprehensive review of the job-shop sequencing up to 1960

is given by Sisson [19] . Later work can be found in the survey paper

by Elmaghraby [20] . The books Industrial Scheduling [21] and Theory

of Scheduling [22] contain extensive discussion of this problem; they

list respectively, over 100 and over 200 references to works on scheduling.

A specific scheduling problem can usually be described by the following

types of information:

10

The jobs and operations to be performed, Using our
terminology, a job is identified with a computation and

an operation with a process., The partial ordering of the
operations that comprise the job, the processing times

of the operations, and the machines or resources required
to process each operation are also given as part of the
problem description , Problems differ in the number of
jobs that are to be processed and the manner in which

jobs arrive,

2. The number and types of machines (resources) that

comprise the shop.
Disciplines that control the manner in which assignments
can be made and the flow pattern between the machines,

The criteria by which a schedule will be evaluated,

100

Among the current methods being used to attack scheduling
problems are loading rules, heuristic rules, integer linear programming,
complete or partial enumeration techniques, and finally stochastic queueing
theoretic and simulation techniques. Loading and heuristic rules
specify a discipline to decide which of the large number of jobs waiting to
be processed should be worked on next, Some of these rules may choose
to work on the job that arrived first, the job that arrived last, the job that
can be completed most quickly, or the job that has the maximum number
of uncompleted operations still to be performed, Selection procedure
may even be completely random.

The job-shop scheduling problem can be modeled as an integer
programming problem., In order of increasing simplicity and compactness
the models are due to Bowman [23] , Wagner [24] and Manne [25] . None
of these authors claim that the formulations are computationally practical
but they are theoretical formulations suitable for further study, especially
in light of recent developments in integer programming. The other
approach to the problem that is guaranteed to given an optimal answer
is complete enumeration, which has been studied by B. Giffer and G. L.
Thompson [26] . The enumerative procedure has been improved by
some of the recent work of Schrage [28] . Schrage also presents a
branch and bound method for implicitely enumerating all schedules and
determining the optimum based on his enumerating scheme,

Unfortunately there are not extensive theoretic results available

101

for queueing networks in which there are arrangements of multiple-

servers, The most general result is the decomposition theorem due

to Jackson [27] . In essence, the Jackson result is that (1) if the

input to the shop is Poisson, (2) if the routing of jobs is determined by

a probability transition matrix, (3) if the processing rates are

exponential and, (4) if the dispatching rule is indenpendentof a job's

routing and processing times, then the network of queues may be

treated as an aggregation of independent queues. A case of tandem

queues, or queues in a series has been studied by Kleinrock [29] .

Multiple channel or parallel channel queues having a number of

identical servers working in a parallel are animpartant special case

of the generalized birth-death process with Poisson input, Some

interesting variations of parallel channel models in which there are

spécial purpose processors, processors with different service rates

and so-called cooperative processors have also appeared in literature [30] .
So far we have discussed the scheduling problem in a very general

manner without any special emphasis to the multi-processor computer

systems., In the remainder of this section we shall examine a few studies

which are directly relevant to such systems, The major point of departure

in such studies is the relative ease of preemption and the preempt resume

disciplines are especially important, We shall sub-divide our discussion

depending upon the kind of the demand environment of the system.

102

3.4.1.1 Hard Real-Time Environment

In hard real-time environment the processes constituting a job
have a set of rigid timing bounds associated with them, Each process
may have a definite starting and completion time. There is also the
implicit assumption that the programs in such an environment are
available for analysis and measurements prior to execution, Many
of the real-time and production run computations fall into this
category.

Properties of one of the simplest control structure applicable
to such an evironment have been studied by Graham [31] and Manacher
[17] . Their essential idea is as follows. Programs are divided
into segments called tasks (process); each task is executed by a
single processor, A program consists of one or more tasks; these
tasks are linked together by a precedence relation which specifies
the essential ordering among tasks. They further require that there
are no loops of tasks; that is all programming loops occur within
tasks and not over tasks, The precedence structure is therefore
that of a partially ordered set. Figure 3.4.1 is an example of such
a task set. Nodes correspond to the task and the directed arcs
correspond to the precedence relation. Thus task 6 can be started
only after tasks 1 and 2 have been completed. Their control
structure consists of a task list which is shown as a table in Figure

3.4. 2,

103

o

®

®

A Typical Task Set

Figure 3.4.1

Corresponding to each task in the task set, there is an entry in the table
containing four fields, The A field, called the absolute enable bit field
tells, at any time, whichtasks are ready for execution, The B field, or
enable decrement field, tells how many of the tasks just prior to the
task in question will have to be done, The C field, or successor field,
is a list of tasks which immediately follow the task in question, Finally,
the D field is a pointer to the program in storage corresponding to the

task.

104

>
(s8]
@!

D

Pointer to T
Pointer to T
4.5 Pointer to T

Pointer to T

B W DN e

- Pointer to T

- Pointer to T

O O O O o
_ DN e o O O O
]

- Pointer to T

3 O O

Initial Configuration of Task List
Figure 3.4.2

The procedure for maintaining control is quite simple, A
free processor enters the list and scans it from the top down,
looking for the first entry with the A field bit 'up' denoting readiness
of the corresponding task for execution. It then 'lowers' that bit
and enters the program specified in the D field. Upon completion of
a task, it looks in the C field of the task, The B field of every task
mentioned in this C field is decremented by 1, so that track of the
antecedent programs yet to be done is kept., When the B field of any
entry reaches O, the flag in the A field is put up, denoting that the
task so flagged is ready for execution, Programs are terminated

when no flag in the A field of any task is up, and no processor is busy.,

105

Note that the procedure outlined above would work for an arbitrary
precedence relation and even if the execution times of the various
tasks are unknown,

Changing the order of the entries in a task list effects the
run time of the program. No algorithm is given to find the optimal
task list (in the program execution time sense) but a bound on the
variation in the total program run time over arbitrary variations in the
list order has been given by Graham [31] . For n processors, the
run time can vary by a factor of (2 - —r'll_)’

Varying the list order is not the only way which can cause a
peculiar increase in total run —-time. Graham considers four types
of changes each of which are capable of such increases:

1. Changing the order of tasks in the list,

2. Removing some of the precedence relations.

3. Changing the number of processors, either increasing

or decreasing it.

4, Shortening the run-time of some tasks.

Graham's contributionis a theorem which states that given
two runs R and R', where R' is related to R by the application of
any combination of the four conditions above, the corresponding run

times w and ' are related by the bound.

n-1
n'

’

?
___02_< 1+
w-—....

106

where n and n' are the number of processors in runs R and R'
respectively.

This bound may be arbitrarily closely approached when any
one of cases 1 through 4 is applied and it is the best possible.
Manacher [17] hasconsidered the problem of, the possible increase
in the program run-time caused by shortening the run-time of some
tasks. His result consists of a stability algorithm which removes
the above anomaly by the addition of a modest number of additional
precedence constraints.

As illustrated in Figure 3.4.1, a weighted directed graph may
be associated with a task set. The nodes in the computation graph
correspond to the processes and the directed arcs correspond to
the precedence constraints, A weight is associated with each node
of the graph and is a function of the execution time of the corresponding
process. Thus, in graph theoretic terminology, the tasks sets con-
sidered above correspond to acyclic, weighted, and directed graphs.
Informally, a schedule or assignment for k processors and a given
computation is a description of the work done by each processor as
a function of time, Of course the schedule must not violate the
given precedence constraints, The simplest way of specifying a
schedule is to use a Guantt chart, which consists of a time axis
for each processor with intervals marked off and labeled with the

name of the process being computed. An example of a computation

107

graph and a schedule for two processors is given in Figure 3.4.3. Symbol

® is used to represent an idle period.

w1=1

t = 0 1 2 3
P1 . nl' n, ; ng '¢
P n

An Example Graph and Schedule
Figure 3.4.3

The general problem of efficiently constructing optimal schedule
for an arbitrary number of processors (in minimum time to completion
sense) and for an arbitrary acyclic ¢éomputation graph whose nodes have
arbitrary weights is still unsolved. Some efficient algorithms are known
under weaker sets of conditions, When the computation graph is a rooted
tree and the node weights are equal, a simple algorithm, due to Hu[32], for
constructing a shcedule for arbitrary number of processors is avaiable.
This result has recently been extended to the case of computation trees

with mutually commensurable node weights when processor preemption

108

is allowed (with no cost) [33] . An algorithm for constructing optimal

schedules for two processors from an arbitrary acyclic co nputation

graph with equal node weights has also been presented recently | 34] .
More sophisticated models describing program behavior would include, for
example, conditional branching and cycles. For these more general

models only heuristic scheduling techniques have proven fruitful,

3.4.1.2 Soft Real-Time Environment

In this environment, there is no apriori knowledge of the
processing times of the incoming jobs. Usually there is no fixed
priority among the jobs, With regard to the processor scheduling,
all of these systems operating under this demand environment tend
to have 'reasonable' response to user's requests and small variations
in response are tolerated.

In spite of the current existance of the multiprocessor computer
systems operating under soft real-time environment, very little work has
been done on modeling and analyzing such systems, The only point of
departure has been the 2-processor round-robin model studied by Coff man
[35] . For the case of 2 processors, Coffman extends the RR service
discipline as follows, Whenever there are two or less programs in the
system these programs are allowed to run to completion or until the number
in the system grows to three. As soon as there are three programs in the

system a quantum is imposed simultaneously on each processor as in the

109

single processor case. When a quantum expires before a program com-
pletion, one of the processors is loaded with a new program after the
interrupted program is returned to the end of the queue. It is assumed that
the interrupted program is the one which has had the longest uninterrrupted
operation up to the time of the quantum expiration. Ignoring the swap and
overhead times , Coffman has analyzed this model using the concept of

the imbedded Markov chain with the program completions or quantum
expirations as the points of regeneration. Expression for the steady

state probabilities of the number in the system and the expected value of
the number in the system were obtained. The analysis of the waiting times
was not carried out.

In view of the tremendous investments required to implement large
scale multiprocessor computer systems, the field of modeling and
analyzing such systems is an active one. For the case of hard real-time
environment, a generalized model is presented in the next section and the
optimal scheduling problem dealing with determining when a process should
be executed and how many processors should be applied to it is formulated
using 0-1 programming approach. Future work will be concentrated in
finding efficient solution procedures. Analysis and optimization of models
of multiprocessor systems operating in soft real-time environment will be
carried out. The optimal allocation of the processors to the various

queues in the model will be of interest.

110

3. 4.2 Scheduling Parallel Processes - A Zero-One Programming Approach

We consider systems in which all processors are identical and assume
that the computations submitted to the system have beén specified as a set
of processes and two binary relations defined on this set. The first of these
relations, called the precedes relation, is denoted by << and it specifies a
partial order on the set of processes with the following interpretation. If
P, and pj are processes and pi<<pj (read P, is immediate predecessor of pj
or, equivalently, pj is immediate successor of pi), then process P, must be
completed before process pj can be started and there is no process Py such
that pi<<p 1<<pj' The second relation, called commutativity relation, and
denoted by C specifies pairs of processes which can be executed in either
order but not concurrently. Commutativity is a necessary but not sufficient
condition for parallel processing of two processes. There may exist, for
instance, two processes which can be executed in either order but not in
parallel. For example, the inverse of a matrix A can be obtained in either

of the two ways shown below.

(1) (2)
a) Obtain transpose of A a) Obtain matrix of cofactors of A
b) Obtain matrix of cofactors of the b) Transpose matrix of cofactors
transposed matrix

c) Divide result by determinant of A c¢) Divide result by determinant of A

Thus, obtaining the matrix of cofactors and the transposition operations are

two distinct processes which can be executed in alternate order with the

111

same result. They cannot, however, be executed in parallel.

By associating a weight with each process, a function of the execution
time of the corresponding process, an optimization problem of interest is
to determine a schedule for the given computation (set of processes) for
J processors such that the total run-time of the computation is minimized.
Except for a few special cases, no general solution method is available. The
assumption of the partial ordering among the set of processes implies that
all conditional branching and cycles in the computation occur within the pro-
cesses and not over the processes. This is reasonable if the processes re-
present large functional blocks so that the model is a coarse description of
the computation. However, a certain amount of ' fine -structure'' may
not appear in the original process definition, Parallelism within
a process can also exist when individual components of a compound process
can be executed concurrently, and in fact, a particular process might itself
be represented by a model whose characteristics are identical to those dis-
cussed above. For this reason, the model is generalized by associating
with each process a set of mutually exclusive alternatives, only one of which
must be performed. These alternatives specify for each process a function
of the execution time when different number of processors are applied to it.
It may also be noted that the processors are not the only resources of inter -
est in a multiprocessor computer system. Due consideration should also
be given to memory and other peripheral equipment. With these considera-

tions the generalized model is presented in the following section.

112

3.4. 2. 1 Model and Notation

Consider a multiprocessor computer system with

J identical processors,

M units of memory,
and Rk amount of type k resources; k=1, 2,... K.
We assume that a computation P submitted to the system is specified as the
following tuple.

P=<P1, P, P

g Pgseee P << c>

where
Pi is the set of process alternatives associated with process i,
i=1,2,3,... N, and is given by the following:
Pi={ (pi]., bij’ a, e, di’ m,, and rik)/je J; € {1,2,3,...3}
pij denotes the ith process when j processors are applied to it
bij = number of time periods required to complete process i with j
processors
a; = period before which process i cannot be started
e, = earliest possible period by which process i could be completed
i = desired due date for process i
mi = amount of memory required by process i
T = amount of type k resource required by process i
<< is the precedences relation defined on {Pig/i=1, 2,...N; and ge Ji} with
the property that if pmg<<p K athen Vye J m and Vye J n me<<Pny

113

C is the cummutativity relation defined on »{pig/i =1,2,...N; and

ge J;} with the property that if P g C Py then Ve I

and Vye 3, P C P

°

3.4.2.2 Assumptions and Limit ations

1) No process preemption is allowed,
2) The execution times are mutually commensurable i.e.,
there exists a real number, w, such that all execution
times are integer multiples of w, This is not very restrictive

since we can still approximate a given set of execution times

arbitrarily close.

3) All the cycles and conditional branching occur within the
processes, This may be reasonable if the processes repre-
sent large functional blocks and the model is a coarse
description of the computation, We may also note that any
particular execution of a computation containing additional

branches and cycles can be represgnted as a partially

ordered set of processes.

4) The execution time of any process does not change if
additional resources besides processors (tape,drives,
memory, etc,) are devoted to it. In other words each

process requires m, and Tix units of memory and type k

114

resource, and providing additional resources to the

process does not change its processing time require-

ments,

The deterministic constraint bij associated with process pi].

can have several interpretations, The interpretation of {bi].} really
determines the meaning of the schedule constructed. If bij represents
the maximum execution time of the process, then, with certain
precautions [17] , the schedule length may be taken as the maximum
execution time of the compution, In this case minimizing the
schedule length (make-span) corresponds to minimizing the maximum
execution time of the computation., This interpretation is particularly
useful for hard real-time problems with fixed dead lines, A second
interpretation is that bij represents the mean value. of the process
execution-time considered as a random variable, Constructing a
minimum length schedule in that case is a heuristic procedure for

minimizing the mean execution time of the computation,

The scheduling problems considered here deal with determining
when a process should be processed, and how many processors
should be devoted to it, In the following formulation 0-1 variables
are used to indicate for select periods whether or not a process is

completed in those periods,

115

3.4.2.3. Formulation of the Optimization Problem

Determining the schedule depends upon the desired objective,

The following are considered here.

a. Minimize total throughput time for all processes.
b. Minimize the time by which all processes can be completed
(i.e., minimize make-span),

c. Minimize the cost of resources required to complete all

processes,

Using the following 0-1 variables, the objective functions are
formulated and equations are developed to insure that constraints
(precedence relations, limited resources, etc,), when they are

imposed, are met, Let t =time period, t =1, 2,..., max d,

xij ;=2 variable which is 1 is process i is completed in period t

when j processors are devoted to it; 0 otherwise, xi]. t need not be
treated as a variable in all periods, since it equals 0 for t<e,
and for t>di . X =2 variable which is 1 period t if all processes

have been completed by period t (i.e., completed in or before

period t - 1); 0 otherwise,

3.4.2.4 Objective Functions

Processes are to be scheduled in a manner that optimizes

116

some measures of performance subject to certain requirements and
limitations. The choice of an appropriate objective function may
differ for different environments, Several common ones are

selected for explicit formulation,

a. Minimizing Total Throughput Time

Individual process throughput time is defined as the elapsed
time between the time that the process can be started and the pro-

cess completion time, Throughput time for process i is

d,
i

L 2 Bt = A

Je Jl t:ei

Therefore, the objective function for minimizing the sum of the through-

put time for all processes is
N di
Minimize z =) [) Z txijt - a,]
Minimizing throughput time for a single process is equivalent

to maximizing the number of periods remaining after the process is

completed., Hence, we have the equivalent objective function,

117

(3.1)

N
Maximize z'= Z [d, - Z Z tx.. (3.2)
i=

b. Minimizing Make -Span

An alternative objective function is to minimize the time by which all
processes are completed, i.e., minimize make-span. This corresponds to
max d,
i

Maximize =z = Z X, (3. 3)

t=maxei

c. Minimizing The Cost of Resources

Let
Cp be the cost associated with the use of one processor per unit of time,
M be the cost of using a unit of memory per unit of time, and
c be the cost of using a unit of type k resource per unit of time.

In any given period t the process i is being executed with j processors
if it is completed in period ¢ (i.e., xijﬁ=1) wheret = ¢S t+ bij - 1L Let

NPt denote the total number of processors being used in any periodt. Then

N t + bij -1
Np = L LoL Ky o (34)
i=g jeJ, g=t)
1 t =mina,,..., maxd,).
1 1
Similarly N ¢+ bij 1
N. =)) mx.. (3. 5)
Mt i=1 jeJi 0=t iijoe

(t=minai,..., maxdi)

118

N t+b,, -1
1]

and N = 0)) . Xe. (3. 6)
Rt iy ger. =t ik je
! t = min a,..., max di', k=1, 2, K).
where
NMt = total amount of memory occupied by processes which are executing

in any given period t.
and

NR £ = total amount of type k resource being used by processes which are

k
executing in any given period t.

From the above equations the total cost of executing all processes is given by

e $ }
C..= {C. N _ +C N _ + C_. N (3.7)
T \in a, PPt "M Mt 2, TR, Rt

3.4.2.5 Constraints

The above objective functions are to be maximized or minimized sub-
ject to the following constraints and environmental limitatims.

a. Process Completion

Out of all the alternatives associated with each process, one and

only one of them must have exactly one completion period.

1
)) Xy S 1 (3. 8)

119

b. Completion of All Processes

Definition of the variable Xt requires that x, be zero until all the pro-

t

cesses have been completed. This requirement can be written as

d.

N
RIREDIN) %t
N i=1l je Ji .i',:ei (t = max ei,..., max dj)

A

X

c. Resource Constraints

In any give period, the number of processors, the amount of memory

and other resources cannot exceed the amount available. Therefore,

S =mi - .1
NMt M (t=min a,, , max di) (3. 10)
and
= = mi coe ; k=1211
NRkt Rk (t = min 2. Max di’ k=1,2,...K) (3. 11)

d. Sequencing

A sequencing constraint is required when a process cannot be started
until one or more other processes have been completed. For example, as-

sume p1j<<pmk. Ift " and tmk denote the completion times of processes

P1;

j and P i’ then

i
), tx,. . andt_ ., = t

2 ° mk xmkt’ the appropriate sequ-

Now since t,. =
L

encing constraint becomes

120

dﬁ dm
Z tx +b
ﬂ .
t=o jt = “mk

A

L% 3. 12)
Ji m

e. Communtativity

A communtativity constraint on the processes p 0 and P ensures that
they must not be performed simultaneously, but permits them to be performed
in any order. Processp 0] is being performed in period t if and only if

t + b’QJ -1

Z xﬁl = 1’
q=t

and similarly for process Pk Thus the desired constraint is

t+by -1 t+b -1

: mk
L

Xpig *) x_ . 51 (3. 13)
q=t '~

(t=max{e£, em}, cee, min{dﬂ, dm})

121

10.

11,

12,

13.

Reference For Section 3

W. S. Jewel, "Markov Renewal Programming'', Parts I and II, Oper-
ations Research, Vol. 11, 938-971 (1963). '

R. Bellman, "A Markovian Decision Process', Journal of Mathema-
tics and Mechanics, Vol. 6, No. 5, 1957, pp. 679-684.

R. A. Howard, Dynamic Programming and Markov Processes, MIT
Press, Cambridge, 1960.

R. Bellamn, Dynamic Programming, Princeton University Press,
Princeton, New Jersey, 1951.

D. W. Fife, "The Optimal Control of Queues, With Applications to
Computer Systems'', Technical Report No. 170, Cooley Electronics
Laboratory, The University of Michigan, October, 1965.

M. T. Alexander, '"Time Sharing Supervisor Programs'', Computing
Center, The University of Michigan, May '1969.

T. B. Pinkerton, '""Program Behavior and Control in Virtual Storage
Computer Systems', Technical Report 4, CONCOMP, The Univer -
sity of Michigan, April 1968.

T. B. Pinkerton, '""The MTS Data Collection Facility', Memorandum
18, CONCOMP, The University of Michigan, June 1968.

R.J. Pankhurst, ""Program Overlay Techniques', Comm. ACM, 11,
February 1968, pp. 119-125.

C. V. Ramamonthy, '""The Analytic Design of a Dynamic Look Ahead
and Program Segmenting System for Multlprogrammed Computer',
Proc. ACM 21st National Conferencs, August 1966, 11. 199-239,

Information Incorporated, '"Program Paging and Operating Algorithm, "
Technical Documentary Report, TRGB - 793- 1, September 1968.

E. L. Lawler, K. N. Levitt, and J. Tunes, '""Module Clustering to
Minimize Delay in Digital Network", IEEE Trans. on Computers,
Vol. c-18, No. 1, January 1969, pp. 47-57.

H. Everett, "Generalized Lagrange Multiplier Methods for Solving
Problems of Optimum Allocation of Resources'', Oper. Res. 11,
May -June pp. 399-417.

122

14.

15.

16.

17.

18.

19.

20,

21

22.

23.

24.

25.

26.

B. Kerningher, '""Some Graphical Partitioning Problem Related to
Program Segmentation', PhD Thesis, Princeton, January 1969,

K. B. Irani, J. W. Boyse, et. al. "A Study of Information Flow in
Multiple-Computer and Multiple-Console Data Processing Systems'',
RADC, Griffiss Air Force Base, New York, RADC - TR~ 70-87,
May 1970,

J. W. Boyse, "'Solution of Markov Renewal Decision Processes With
Application to Computer System Scheduling'', Systems Engineering
Laboratory Technical Report No. 52, The University of Michigan,
Ann Arbor, to be published.

G. K. Manacher, "Production and Stabilization of Real-Time Task Sche-
dules', JACM, vol. 14, no. 3, July 1967, pp. 439-465.

Andre F. Block, "'Critical Path Resource Allocation for Job Shop
Scheduling', Proc. of AIIE, 1968, pp. 183-187.

R. L. Sisson, '""Method of Sequencing in Job-Shops - A Review'', JORA,
Jan. 1959, pp. 10-29.

S. E. Elmaghraby, '"The Machine Sequencing Problem - Review and
Extensions', Naval Research Logistics Quarterly, vol. 15, no. 2,
June 1968.

J. F. Muth and G. L. Thompson, Industrial Scheduling, Prentice-Hall,
Englewood Cliffs, New Jersey, 1963.

R. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of Scheduling,
Addison-Wesley, Reading, Mass. 1967.

E. H. Bowman, '""The Scheduling Sequencing Problem', Operations
Research, vol. 7, 1959, pp. 621-624.

H. M. Wagner, "An Integer Linear Programming Model for Machine
Shop Scheduling'', Naval Logistics Research Quarterly, vol. 6, 1959,
pp. 131-140,

A.S. Manne, "On the Job-Shop Scheduling Problem', Operations Re -
search, vol. 8, 1960, pp. 219-223,

B. Giffler and G. L. Thompson, ''Algorithms for Solving Production
Scheduling Problems'’, Operations Research, vol. 8, 1960, pp. 487-
503.

123

217,

28.

29.

30.

3L

32.

33.

34.

35.

36,

J. R. Jackson, ''Job Shop-Like Queueing Systems'', Research Report
81, Management Sciences Report Project, UCLA, Jan. 1963.

L. Schrage, ''Solving Resource-Constraint Network Problems by Im-
plicit Enumeration - Non Preemptive Case", Operations Research, vol.
18, no. 2, 1970, pp. 263-278.

L. Kleinrock, "Sequencial Processing Machines (S. P. M.) Analysed
with a Queueing Theory Model", JACM, vol. 13, April 1966, pp. 179-
193.

Thomas L. Saaty, Elements of Queueing Theory McGraw-Hill, New
York, 1961

R. L. Graham, "Bounds ior Certain Multiprocessing Anomalies, Bell
System Tech. Journal, vel. 4o, 1966, pp. lob3-1081

T. C. Hu, "Parallel Sequencing and Assembly Line Problems', Oper-
ations Research, vol. 9, no. 6, 1961, pp. 841-848.

R.R. Muntz and E. G. Coffman, ""Pre-emptive Scheduling of Real-
Time Tasks on Multiprocessor Systems', JACM, vol. 17, no. 2, 1970.

M. Fuji, et. al., "Optimal Sequencing of Two Equivalent Processors'',
SIAM J. of App. Math., vol. 17, no. 4, July 1969.

E. G. Coffman, ''Stochastic Models of Multiple and Time -Shared Com -
puter Operations'', UCLA Eng. Report no, 66-39, June 1966,

D. Coleman, "On Binding Groups - A Quadratic Programming
Approach in Zero/One Variables with Applications", SEL Tech. Report
No, 56, The University of Michigan, Ann Arbor, to be published.

124

4., CENTRAL PROCESSOR DESIGN

This section focuses research into the design and optimization of
digital computer central processors. The general study areas are:

1) Selection of data paths in the CPU where the term data path refers
to the set of hardware logic units and the traffic between them,
(Section 4. 1)

2) The second study area is concerned with the optimal design of
micro-programmed computers, A general design methodology
has been formulated and is described briefly in Section 4, 2,

4,1 Data Path Optimization

The problem under consideration here is that of formalizing the design
of a digital computer and developing algorithms and procedures which can
be applied in optimizing the design of the central processor., Specifically, it
is the problem of creating the optimum data path for a central processing
unit. when the system architecture is given, The term data pathis used here
to refer to a set of hardware logic units such as registers, adders, and
counters and the interconnections between them for data transfers, System
architecture means a description of the computing system as it appears to
the programmer and is composed of definitions of such items as data and
instruction word formats, addressing and indexing structure, and the
operation of each instruction, Optimization requires minimizing the total

system cost subject to a constraint on the weighted average instruction

execution time,.

125

4,1.1 Example

The concepts involved here can be made clear through a simple exam-
ple. Assume the system description of a central processing unit includes
the definition of two registers, R1 and R2, which are accessible to the pro-
grammar andan instruction which swaps the contents of Rl and R2. Many
different arrangements of hardware logic units can be used to implement
this instruction and which will result in different hardware costs for the
computer and different execution times for the instructions.

Figure 4.1 shows a data path having one additional register, T1, which
is not accessible to the programmer and an adder. The instruction can be
executed on this data path in three steps:

1) R1—= ADDER—>T1

2) R2—ADDER—>RI1

3) TI—>ADDER—>R2

Figure 4. 2 shows a data path which has an additional shifting unit,
This allows the instructions to be executed in just two steps as follows:

1) R1—=>ADDER—>>T1

2) T1I—=SHIFTER—>=>R2 and R2—=>ADDER —=>R1

Finally in Figure 4.3 a new path has been introduced connecting R2
to the shift unit. This allows the instruction to be performed in just one
step:

1) R1I—=ADDER—=R2 and R2—=>SHIFTER —>R1

126

R1

R2

Tl

Figure 4,1 CPU Data Path I

127

R2 Tl
Y \/ y y
ADDER SHIFTER

Figure 4.2 CPU Data Path IT

128

"

"

R2 Tl
Y \/ y l y
ADDER SHIFTER

Figure 4,3 CPU Data Path Il

129

Clearly each of these data paths has a different cost and allows
different execution times for the instruction. The problem of determining
which of these if optimum is solved by finding the mi nimum cost data path
among those which satisfy the required minimum performance,

Even for a computer with a very small instruction set the number of
different paths which can be used becomeslarge and the cost of evaluation
requires a detailed design study of each one., As a resut, the normal
solution of this problem involves a considerable amount of intuitive judgment
on the part of the designer since it is just not possible to carefully consider
all of the possibilities. The objectives of the research on this problem are to
gain an understanding of the relationships between the definition of the in-
struction and the design of the optimum data path to implement it, and to
provide algorithms which will allow the computer designer to systematically

explore the set of possible data paths to find the optimum one,

4.1.2 Model for the Study

The overall structure of a model being used in this study is shown
in Figure 4.4. The architecture description is taken as input to the data
path design process which uses a catalogue of hardware unit designs and a
library of algorithms. The output consists of a description for a particular
data path and the execution times for each architecture instruction on this

data path.

130

Architecture

\

Specifications

Set of Optimum
e

Design Programs

Data Path

4

Hardware

Library

Figure 4.4 Overall Structure of Model

131

Specification s

4.1.2.1 Model Language

In the model used in this study a language is needed to describe the
transformations produced on data by the instructions, hardware units, and
algorithms. That is, a language is required so that these three aspects of
the model can be conveniently defined. A language which permits all three
of these functions to be treated by the same grammar has been developed
and will be described briefly here.

The basic unit of the language is an expression built of operator and
operand names which define some new value. This expression is set equiva-
lent to an operand name, thus forming a statement and indicating replacement
of the value of this operand by the value of expression. All operators are
written to the left of their operand and the operands are enclosed in
parenthesis and separated by commas.

For example, if R1, R2, and R3 are the names of three programmable
registers in the architecture, and + is the operator of binary addition, then
the expression

+ (R1,R2)
indicates the addition of the contents of registers R1 and R2, and the

statement

R3 < + (R1, R2)
is interpreted to mean that the register , R3, is loaded with the binary sum
of the contents of registers R1 and R2.

In this language a set of etatements is used in describing an instruction,

132

algorithm, or a hardware unit transformation, With each set of statements,
a partial ordering is defined to allow any desired time sequential relationship
between the statements to be specified. The intention here is to require a
definition of a time sequential ordering only between those statements for
which it is essential and allow the remaining statements to stand in an un-
specified time relationship to each other,

Although the grammar is uniform for the three portions of the model,
it is necessary in each of them to restrict the set of operators and operands
permitted in statements, To describe this we will definee [X,Y] to be
any expression in this language such that operand names are in the set X

and operator names are in the set Y, Also we will write

% «~ e [X,Y]
to mean any statements such that the operand which the expression replaces
is in the set #, The sets of operand and operator names which are useful in
the various model sections will be defined ia the later sections of the model

description,

4.1,2.2 Model Architecture
The system architecture is specified as
A = <R,P,Q,Y,d>

where
set of programmable registers

set of input busses
set of output busses
set of instructions

maximum allowable value of weighted
average instruction time,

o lLogw
nununnn

133

Each instruction I CU—'} is defined as

I = <E,p, T,O'_>'

where
E = {RUQ ~-e [RUP, 8]}

is a set of statements with S being the set of operators available for

instruction definition.

= a partial ordering on E

T = maximum execution time for I

o weighting factor for I in the architecture

4.1.2.3 Hardware Unit Library

The Hardware Unit Library is a set of transformational units from
which components are selected to form the data path. A unit in either the
unit library or in a data path is defined as

U = <R ,P Q' F,5,c>

where

R' = set of registers in the unit

P = setof input ports to the unit

Q' = set of output ports from the unit

F = set of functions which the unit performs
0 = time delay of the unit

¢ = cost of the unit

A unit may be able to execute many different functions but the restriction

is made that a unit can only do one function per cycle. So the selection of a

function for one cycle corresponds to the selection of that unit's micro-order

134

for a cycle in a microprogrammed computer, Each functionF is defined as
F ={Q ~e[RTUP §]}

where 5' is the set of operators available for the description of hardware

transformations, No partial ordering is required or permitted here since

all statements in afunction are assumed to be executed simultaneously.

4.1.2.4 Algorithm Library

The Algorithm Library,@ = {G} is a set of definitions which translate
the operators in S into operators S' which are respectively the instruction
and the hardware unit operators. G s ={z} is the set of ali algorithms which

i

translate S; € S. One such entry in the algorithm library for 8; is

gS = <% ~e [Z’Si] ’ {Z -e [Z, SUS”] }9p>
i

where Z is a set of dummy operator names and p is again a partial ordering

on the set of statements, An algorithm , then, is similar to a "macro" in

the context of computer assembly languages. But the algorithm library differs

from a macro library in that there may be more than one entry ge G for each

operator. This allows optimization to proceed with respect to alternate

algorithm choices.

4.1.2.5 Model of the Data Path

A data path, D, is simply a set of hardware units and a specification

of the connections between the ports of these units.

D = <{u},mM>

135

The inter- port connections are defined by a binary matrix, M, called the
connection matrix. If has one row for each output port and one column for
each input port in D. A one in the matrix designates a connecting buss from
the corresponding output port to the input port.

A cycle in the data path is a transfer of information out of the set of
registers, through the transformational units and back into the registers of
D. The time for each individual transfer is the sum of the delays in each
of the units through which it passes. For this model we assume a fixed
length synchronous computer and let the duration of the cycle, T, also
called the data path cycle time be the delay of the longest of such transfer
pata in D.

T = Max [25]

all all"
paths u
inD in path

Finally the cost, C, of the data path D is the sum of the individual

unit cost.

C = Ecu
allu in D

4.1.2.6 Optimization Criteria

For any fixed data path we can find the cycle time, T, andthen deter-
mine the minimum number of cycles, NI’ needed to implement each
instruction I on this data path. From these we can compute the weighted

average instruction execution time, @', as

136

J=T ZNO‘I
IC

An upper bound on this quantity is specified as part of the archi-
tecture definition. We will define the optimum data path to be that data

path having minimum cost, C, for which & < @.

4.1.2.7 Generality of the Model

The model which has been described in the previous section is
obviously very general. One important facet of this generality is obtained
by choosing to treat the operator sets S and §' as undefined , open-ended
sets rather than to tie the model to a particular, perminate choice of
operators. For a particular implementation of this model, of course, some
specific set of operators would have to be selected.

Similarly the Hardware Unit Library and the Algorithm Library are
open-ended and the success of an implementation of this model, that is, the
ability to accurately compute an optimum data path, will vary with the
richness of these libraries. But the model remains general here by not

presupposing a particular set of entries.

4.1.3 Progress Toward a Solution

For some given hardware library and algorithm library there are
a number of variables to be considered in arriving at the optimum data path
for an architecture. There is the selection of algorithms to translate S

into §' , a choice of the particular units to implement ' as well as the

number of copies of each unit to be included in the data path. Also there is

137

the choice of an interconnecting set of busses to be made. Unfortunately
this solution space is highly irregular and it is difficult to predict the overall
change in &' produced by a small change in the data path.

For example, the deletion of one buss may significantly decrease T.

But to determine the effect of on @ it is necessary to reevaluate N,. For

I
all I which use that buss NI can not decrease, and for all other I, NI will
be unchanged. However,

¢' = T Z NI OII
Icd

may either increase or decrease and only an exact computation will deter-
mine the effect of that data path change.

In order to move toward animplementation of this model the research
effort has proceeded along three lines. One aspect has been to develope
computer programs to implement selected portions of the model. Specifi-
cally programs toc compute T and NI have been developed in order to
estimate the computer execution time needed for these computations. These
two programs are at the core of the data path evaluation portion of the model
and hence are basic to the solution of the general problem,

Another aspect has been to try to discover relationships between the
many variables in the solution space in order to effectively reduce the number
of variables that must be treated. This approach has been rather unproductive
so far.

The final aspect has been to find some subset of the model for which

the solution space is more regular or more restricted. Some success has

138

been achieved in this area and there is hope that a full implementation of

the model subject to restrictions on the library entries can be realized.

4,2 Microprogram Control

The objective of the work done under this section of the contract is the
optimum design of microprogram computers. A discussion of micropramming
and the inherent advantages and disadvantages associated with microprogram-
ming were presented in last year's report. Since, last year an excellent
book [1] on microprogramming by Hussin has appeared.

In the past year work has been done on three major subtasks. First,
the general approach to the problem has been formulated. Second, the draft
of an intermediate language has been completed. Third, an optimization model
and algorithm for hardware selection has been developed., Each of the sub-

tasks will ke discussed in the following paragraphs.

4,2.1 The General Design Method

The general method of computer design we are suggesting is a two
part method. This first part is the selection of the hardware components
which make up the computer CPU. The second part is the preparation of
the control programs which control the registers, data path, and transfor-
mation units of the CPU.

Everything evolves from the program type statements which form the
intermediate language. The hardware selection is based on implementing

the program types, in the most efficient fashion, What is done is to assign

139

to each program type a measure of its frequency of execution and its
frequency of occurrence for a particular class of programs, The hardware
design group specifies a base set of hardware and a group of hardware options
and the cost of each. They also supply one or more (usually more) imple-
mentation methods for each program type. The different implementation
methods for each program type use different sets of hardware options. What
is done is to develop a cost performance curve. The curve specifies the
fastest average program type execution time which can be achieved for a
particular dollar expenditure on hardware. This allows the optimum
selection of hardware options if a fixed amount of money has been allocated
for hardware expenditures, or if a particular performance is requiredit gives
the fninimum amount of money which is required. It must be remembered
that the performance figure is based on the estimated frequency of occurrence
and the estimated frequency of execution,

The second part of the design problem is the development of the
microprograms to control the CPU once the hardware options have been
selected. The control program can be developed in two ways. The inter-
mediate language can be implemented via microprograms and thus become
the machine language, or, mainprograms can be described in terms of the
intermediate language and the main program can be implemented directly
via micro-code. The optimal selection of hardware assumed that programs
written in the intermediate language are turned into micro-code. That is why

the estimated number of occurrences of each program type is required as one

140

of the parameter input to the optimization program. What then must be
developed is a micro-code compiler. The compiler will take programs
written in the intermediate language and compile them into micro-code,
The inputs into the micro-cade compiler will be a description of the CPU,
program types, and program types implementation., The output will be the
micro-code required to emulate the program.

A description of the traditional method of computer design will be
presented and compared with the computer design method presented in this
report. Because the computer field is changing very rapidly and because
there are many different groups of individuals designing computers, there
are exceptions to what we described as the traditional approach to computer
design. However, most of the computer systems in existence today were
designed in a manner similar to what will be called the traditional approach.

The two methods arise from different hardware environments. The
traditional approach developed when instructions were implemented via
hardwared circuitry. The approach we are advocating assumes instructions
are implemented via micro-program control. Thus the cost constraints
imposed upon the two methods are different.

The computer design methods differ in the choice and implementation
of instruction sets. In the traditional approach, the computer is designed
to implement a limited set of machine or assembly language instructions.
The instruction set usually includes arithmetic, logical, branching, and

I/O instructions. The implementation of more complicated operations

141

(for instance list manipulation or square root) is usually accomplished
with a series of machine operations. The hardware implementation
(assembly language) of more complicated instructions occur only if the
instruction has extraordinarily high usage. The most obvious example of
such "'special" instructions are floating point instructions.

The more complicated instructions were implemented infrequently
for two reasons. First, the cost of implementation was prohibitive.
Second, the requirements of the user is not well known, The problem is one
of measuring or in some fashion asserting what the user wishes to do. The
user's real desires are often masked because he has been forced to modify
his methodsto conform to a limited instruction set,

In the method which we are suggesting, the first step is to try and

determine what the user would truly wish to do. This decision is arrived

at by studying higher level languages. Since higher level languages are
designed specifically to allow a user to solve his problems in a natural
fashion, the languages should represent a good measure of what people
would like to do. In addition, attention will be paid to formal studies of
compilers, sorting routines, graphic displays, etc. to determine what
operations are required to implement these functions. The net result is
an intermediate language which consists of a set of program types. Each
programtype is a function which a large set of users would like to have
available. The set of program types covers the set of operations

typically offered by an assembly language and much more.

142

The set of program types is not expected to be the ideal set or the
final set of program types. It is expected that the set of program types will
evolve and grow through feedback from users. Since program types are
implemented via microprogram control, the modification and addition of
program types should not be as difficult as it would be if they were imple -
mented via hardware control,

The two approaches evolve as follows. In the traditional approach,
a machine language is developed and a computer is designed to efficiently
implement the machine language. However, the machine language is not
powerful in the sense of performing in one instruction most operations
common to higher level languages, or compilers, or executive systems.
Therefore, each higher level language must be translated by a compiler
unique to the computers assembly language into the assembly language
and then into machine code.

In the method we are suggesting a powerful intermediate language
is first developed. This language is developed with the user in mind
and has many operations common to higher level language, executive
systems, compilers, etc. Then a program is developed which generates
micro-code from programs written in the intermediate language. Thus,
the program types of the intermediate language are implemented effi-
ciently. The higher level languages are *hen described in terms of the
intermediate language. The process of describing the intermediate

language is simplified because of the power of the intermediate language.

143

With the traditional approach the assembly language is defined,
and the higher level languages are defined. However, there is often a
mismatch between the higher level languages and the assembly language,
and thus a mismatch between the user and the computer. In our approach
the intermediate language is chosen, This language repvresents those things
which a large set of users wish to do. Then the computer is designed
to efficiently implement the intermediate language. The intermediate
language is well matched to the higher level languages and thus there is

a good match between the user and the computer,

4,2.2 PTL an Intermediate Language

The use of the program type language (PTL) was spelled out in
the preceeding paragraphs. The majorfeatures of the language will be
discussed and one group of PTL operations will be listed.

What should be the major features of the language ? The language
should be machine independent. The language should be easy to use. The
language should emphasize the basic but often powerful operations required
by the user.

The language should be machine independent. The program type
language is machine independent in the following sense. There are no
references to registers, storage, or particular arithmetic, or I/O units,
All references to data is made through named data quantities. However,
in another sense the language is not machine independent. The language is

not written for parallel or pipeline machines. There are no instructions

144

which operate on vectors in one operation or make use of parallelism. Thus,
the language is designed for the traditional CP U architecture.

The language should be easy to use. The language should emphasize
the basic but often powerful operations required by the user. What is a
convenient, easy to use language means different things to different people
and depends heavily upon what problems are being solved. Fortran is easy

to use if mathematical equations of the form (X2 - y)/2 are being written,

X X,
Fortran is more difficult to use if equations of the form Z s, -e ' are

L=k

being written, Fortran is difficult to use if one wishes to interchange the
3rd and 4th bits of an integer format work in the computer memory.

Many of the instructions of PTL have evolved by studying special
languages, or special problems and trying to select the basic operations
required for each,

The string manipulation instructions have evolved from a study of
the SNOBOL language. The instructions are the basic instructions required
for string manipulation. They allow a search for a pattern match, deletion,
insertion, replacement, and concatenation of strings. The instruction set is
not as complete as SNOBOL and hence not as useful. Such SNOBOL
operations as alternation and conditional value functions are not present in
PTL. However, the functions performed by alternation and conditional
value instructions can be accomplished by using two or three PTL
instructions, Thus, the PTL language is useful for string manipulation

since the string manipulation operations performed in SNOBOL can be

145

performed using PTL with a moderate increase in effort,

The stache operation, bit operation, iteration control, and the other
operations of PTL were generated in a similar fashion. The language could
be said to be useful in the following sense. A large set of basic operations
are provided where each subset provides a powerful set of instructions for
a particular problem area. The set of instructions for each problem area
is not as easy to use as a special purpose language written for the problem
area. However, the PTL is powerful enough to be easily used in not only
one particular problem area but a large class of problem areas.

The operators listed below are the string manipulation operations of

PTL. They represent the general type of operations that are provided in each

area of interest.

1. CONCATENAT S1 TO S2

String S1 is concatenated to string S2

EXAMPLE S1 = 'AB'

S2 = 'CD'
after CONC S1 TO S2
execution S2 ='CDAB'
2. MATCH S1 IN S2 S3 LABEL S

A pattern match search on string S2 using string S1 is
performed. If a match is found S2 containsthe position of
the first character of the match, The search is performed
from left to right. If no match is found a branch to LABEL

146

is executed.
EXAMPLE S1 = 'ABC'

S2 ='123ABCD'

after MATCH S1 IN S2 S3 LABEL
execution S3 =4
3. MATCH P S1 IN S2 S3 LABEL S

This operation is the same as g2 except that the serach is
started in S2 at the character position specified by S3. If no
match is found, or S3 points outside S2 a branch to LABEL is
executed.

EXAMPLE S1 = 'AB'

S2 ='ABCDABF'
S3 = 2
after MATCH P S1in S2 S3 LABEL
execution S3 =5
4, INSERT S1 IN S2 at S3 S

String S1 is inserted into string S2 after the character position
specified by S3.

EXAMPLE S1 = 'BC'

S2 = 'ADEF'

S3 =1
after INS S1 S2 S3 LABEL
execution S2 = 'ABCDEF'

147

5. GET S4 FROM S1 AT S2 THROUGH S3 LABEL S

The string of characters in string S1 between the character

positions specified by S2 and S3 is placed into string S4. If

S2 and S3 points outside of S1 a branch to LABEL is executed.

EXAMPLE S1 = 'ABCD'
S2 =2
S3 = 4
after GET S4 S1 S2 S3
execution S4 = 'BCD'
6. DELETE S2 THROUGH S3 FROM S1 LABEL S

The string of character between the character positions

specified by S2 and S3 is deleted from string S1.,

If S2

or S3 points outside of S1 a branch to LABEL is executed.

EXAMPLE S1 = 'ABCD'
S2 = 2
S3 =4
after DEL S2 S3 S1
execution S1 = 'A'
7. REPLACE BY $4 BETWEEN S2 AND 83 IN S1 LABEL C,S

The string S4 replaces the characters in string S1 between

S2 and S3.

is taken,

If S2 or S3 points outside S1 a branch to LABEL

148

EXAMPLE S1 = 'ABCDE'

S2 =3

83 =5

S4 = '2'
after REP S4 S2 S3 S1 LABEL
execution S1 = 'AB2'

4,2.3 Optimization

One of the objectives of this study is the optimal selection of the
central processing unit components. Therefore, a cost performance model
of the central processing unit was be devised. We view the CPU as a
collection of hardware units controlled by a microprogram. The functions
to be performed by the CPU consist of a set of program types. Each
program type is expected to be a frequently used computer
program.,

The hardware configuration is modeled as a base hardware unit and a
set of optimal hardware units, Each program type will have one or more
implementations. A program type implementation is a sequence of micro-
instructions which will cause the C PU hardware to perform the desired
function, Each different program type implementation will use different
hardware options and will have a different execution speed and a different
hardware cost. Thus, the speed and cost of a program type implementation

can be computed and the cost performance curve developed.

149

References for Section 4

1. Samir S. Husson, Microprogramming Principles and

Practices, Prentice Hall, 1970.

150

5. DATA STRUCTURES AND THEIR REPRESENTATION

The research reported in this section is concerned with data structure
and their representation within the computer memory. Section 5.1 approa-
ches this problem in a very general manner and a generalized computer
representation which is capable of representing any given collection of data
is developed. The next section focuses on a particular application, namely

interactive computer graphics.

5.1 Computer Memory Data Representations

The solution of any problem on a digital computer requires that certain
pieces of information or data be stored within the memory of the machine.
Assuming that we know what data are to be stored, we are faced with the
problem of determining a representation within the computer for these items
and the relationships among them.

Intuitively, we would like to utilize the "best' representation possible.
The definition of what constitutes a ""best' representation is, unfortunately,
very difficult to formulate, but it is generally agreed that the storage re-
quired to implementa given representation and the time required to perform
certain operations upon that representation are important factors in deter-
mining the "goodness" of the representation.

Under many computer operating systems the cost of solving a given
problem (i.e., rlunning a given program) is based largely upon the CPU
time required to achieve the solution, with the only constraint placed upon

storage being that the program and data representation must fit into the

151

available storage (usually, quite substantial). This is strictly true in a
mono-programmed environment and generally true in a multi-programmed,
paged environment (although in this case additional emphasis may be placed
upon the amount of storage required). For this reason we are concerned
with determining that representation which minimizes the time required to
perform certain operations upon the data associated with the solution of a
given problem, subject (possibly) to some restriction on the amount of
storage available.

The first step in this study was the development of a generalized com-
puter representation which is capable of representing any given collection of
data and of being reduced to the form of any other computer representation,
and a mathematical description for this generalized computer representation.

The next step was to develop measures of the storage required to
implement the generalized representation and the time required to perform
certain primitive operations upon the representation as functions of para-
meters contained in the mathematical description.

Finally, an optimization technique was developed and applied to these
cost functions, resulting in the eventual specification of minimum cost
representations.

The details of this work may be found in [1] and the following sections

will simply indicate in general terms some of the concepts involved.

152

5.1.1 Development of a Model

A propositional function defined on the Cartesian product A X B of two

sets A and B is an expression denoted by

P(x,y)

which has the property that P(a,b), where a and b are substituted for the
variables x and y respectively in P(x,y), is true or false for any ordered
pair (a,b) ¢ AX B.

For example, if A is the set of all cities in the United States and B is

the set of all states, then
P(x,y) = '"x is located in y"
is a propositional function of AX B. In particular,

P(Ann Arbor, Michigan) = ""Ann Arbor is located in Michigan"

P(Detroit, Ohio) = "Detroit is located in Ohio"

are true and false, respectively.

The expression P(x,y) by itself is called an open sentence in two varia-

bles or, simply, an open sentence.

A relation r consists of the following:

(1) asetA

(2) asetB

(3) an open sentence P(x,y) in which P(a,b) is either true or
false for any ordered pair (a,b) belonging to AX B.

Thus, r is called a relation from A to B and is denoted by

153

r=(A,B,P(x,y))
Furthermore, if P(a,b) is true, this fact is denoted by
arb

which is read "a is related to b"". On the other hand, if P(a,b) is not true,

this fact is denoted by
arb

which is read "a is not related to b".

Let r = (A, B, P(x,y)) be a relation. The solution set R of the relation

r consists of the elements (a,b) in AX B for which P(a,b) is true. In other

words,
R={(a,b) [ae A,be B, P(a,b) is true}

Notice that R, the solution set of relation r from A to B, is a subset of A X B.
Let R be any subset of AX B. Then one can define a relation r = (A, B,

P(x,y)) where P(x,y) reads
"The ordered pair (x,y) belongs to R".

The solution set of this relation r is the original set R. Thus to every
relation r = (A, B, P(x,y)) there corresponds a unique solution set R which is
a subset of AX B, and to every subset R of AX B there corresponds a rela-
tion r = (A, B, P(x,y)) for which R is the solution set. Since this one-to-one
correspondence exists betweenrelations r = (A, B, P(x,y)) and subsets R of

A X B, a relation can be redefined by the following:

154

A relation r from A to B is a subset of A X B.

Although this definition may seem somewhat artificial, it has the advan-
tage that the undefined concepts "open sentence' and ''variable' are not used.

The intrinsic structure of any collection of n data items may then be

described in the following manner.

Let the set A consist of the n data items in question:
A ={d;|i=1,2,...,n}

where d; is the ith data item in the collection.
Let the set P (capital rho) consist of all relations of interest in A

(i.e., from A to A):
P= {rj li=1,2,...m}

where I'j is the jth relation and m is an upper bound on the number of different

relations.

Corresponding to each datum di € A there exists some set Pi (which
may be empty) of relations such that

(1) P;C P, and

(2) for each relation rj € P; there exists at least one datum

dk € A satisfying d; rj dk‘

For specific values of i, j, and k, where d; € A, Ty € Pi, and dk € A,

di rj'dk is called a relation instance. di is called the source of the relation

instance, dk is called the target of the relation instance, and I is called the

relation symbol of the relation instance.

155

In order to minimize notational confusion it will be convenient to
introduce some set II which consists of n "indicators', one for each data

item in A:

I = {p|k=1,2,...,n}

where Py is an indicator corresponding to the kth data item dk € A. Asa
result, sets A and II are isomorphic.
Henceforth all relation instances will draw upon set II for targets

instead of upon set A which will serve to supply sources only. Thus, all

relation instances will be of the form

di r]. Py

where di € A, rj € P and p e II.

Now each r]. e P can be considered a relation from A to II.

At this point a number of entities, which will be used to characterize
our generalized computer representation for the intrinsic structure of a
collection of data, will be defined.

Consider the sets A, P, and II.

Corresponding to every source-relation pair (di r].) where di € A and

rj € P.1 C P there exists some set of targets II 2 C Il whereke {1,2,..., n2}

k

such that for every 7 € IIkz, di rj T.
Let II be partitioned into a number n, < n of mutually exclusive sub-

sets II].1 where j=1, 2,...,ny such that the following conditions are satisfied:

156

(1) Each IIk2 where k ¢ {1, 2,..., nz} can be constructed exactly
by the union of a number (> 1) of these sets II].I.

(2) No two of these sets IIji and IIj; where j; € {1,2,..., nl},
ig€ {1,2,... ,nl}, and j; # j, can be combined into a

single set without violating condition (1) .

Let each source-relation pair (di rj) be designated by Oij‘

Let set Zk where ke {1,2,..., nz} be the union of all o;; for which
di rj 7 for every 7 € IIkz. That is, Zk consists of all source-relation
pairs having sz as target set.

Let set nj3 where j ¢ {1,2,...,n,} consist of all those sets IL * of
which IIj1 is a constituent (subset). That is, IIJ.3 indicates all those sets
IIk2 where ke {1,2,..., n2} of which H:'ll is a subset.

Corresponding to each data item di € A there exists some set iPi2 of

relation-target set pairs (p IIkz) defined as follows:
2 2 2
P {(pIIk) |pe P,&Vrel", dp T}

2 C II and, hence, some
2

That is, for each p ¢ Pi there exists some II
2

k
2
such that di pmiforallzwe IIk . Thus, sets Pi and Pi

2
(I ") € P,
are isomorphic for everyie {1,2,...,n}.

Let each relation-target set combination (r]. IIkz) be designated by
Yik'

Let set Ajk C A be that set of sources & such that 6 r]. 7 for every

T € IIk2 (i.e., Ajk is that set of sources for which yjk is a relation-target

set combination) .
157

Let set Pil where ie {1,2,..., n3} be the union of all Yik for which
Ajk is the same. (Obviously, all Pil are mutually exclusive since each 'y].k
is unique). Each Ajk is put into correspondence with its Pil and hereafter
may be designated by Ai.

Then each Piz is composed of the union of all le for which di € A]..

Finally, let set A’i" C A be that set of sources 6 such that set Pi2 is
the set of relation-target set pairs for every o ¢ A’{. That is, every
o€ A;‘ has identically the same set of relation-target set pairs.

In our model for a generalized representation of a given set of data
each of the sets defined above is represented by a ring, where each element
of the corresponding ring and the set itself is represented by the head of
the ring.

This model is further characterized by some 39 decision variables
(0-1 variables which indicate the presence or absence of some entity within
the model). These decision variables indicate whether or not each of the
sets defined above is to be explicitly represented, if it is to be so repre-
sented in what form, etc. It is this set of variables which is used by the
optimization process to determine the optimal representation for the given

set of data.

5.1. 2 Optimization

As indicated in the previous section our model is characterized by 39
decision variables which indicates that there are approximately 1012 possible

states which the model may assume. Fortunately, there are a number of

158

constraints which reduce this number somewhat and by making certain

other assumptions we can reduce the number to something less than 105

states.

In any event it is desirable to perform the optimization as efficiently

as possible. Unfortunately, our cost function is rather ill-behaved and

does not lend itself to minimization by any of the well developed, classical

methods (dynamic programming, branch and bound, etc.). Therefore, we

have developed a procedure which is tailored to our particular problem.

Basically, the procedure is as follows:

(1)

(2)

(4)

Estimate a least upper bound for the cost function and set
the best cost so far T*, to this value.

Assign values to some (fixed) subset, S, of the 39 decision
variables and estimate a lower bound, L, for the cost
function.

If L is less than or equal to T*, systematically assign
values to the remaining unfixed variables and compute the
actual cost, T;, at each of the states determined in this
way. If the least cost T, = m%n T, is less than T*, set
T* to T,,.

If not all possible assignments to the variables in S have

been considered, go to step (2). Otherwise, T* is the

optimal solution.

159

Of course, the techniques for determining the least upper bound for
the cost function and for determining L for each assignment of values to S
are very much dependent upon our particular problem.

This technique compares very favorably with a less sophisticated
technique attempted earlier. For comparison, the earlier technique
required approximately 1400 seconds of CPU time on an IBM 360/67 for
solution of a problem which, using the current technique, requires only 90

seconds or less.

5.2 Computer Graphics Systems

The objective of the research reported in this section is to describe
the topological structure of an interactive computer display picture and to
compare the time which is required to operate on various implementation
of this structure. The purpose of an interactive graphical display system
is to make efficient use of both man and machine, allowing the user to
interact with the computer while his program is running in order to influence
the course of his computations. The designer may communicate with the
computer by means of line drawings and in some cases it may suffice to use
a simple list of x, y-coordinates of the endpoints of the straight lines which
make up the drawing. Depending upon the application requirements, however,
varying degrees of sophistication and complexity are often used in the data
structures representing the display pictures. For example, an interactive
graphics system which is to be used for computer-aided design has to

satisfy certain special requirements. A user may reference, at any

160

moment, any part of the drawing he has created. He may indicate, with a
light pen, a particular line or a segment of the drawing. When the pen sees
the light from the display, an interruption of the normal drawing occurs,

and the program can determine which line or the segment is being referred.
The structure should be flexible enough to find out how the line or part fits
into the rest of the structure before any actions (erase) can be performed.
Therefore, the display structure should be implemented to allow the
necessary searching and accessing of picture parts to be performed effi-
ciently. Also, during a design process actions like adding or deleting, and
moving or rescaling of picture parts may be required. So the structure
should be implemented to allow quick updating. Clearly these requirements
are application and equipment configuration dependent. The purpose of this
work is to determine the optimum implementation of the topological structure
for a given equipment configuration and application. Since the details of this
work have already been published in the report entitled, "Optimal Imple-
mentation of Topological Structures for Interactive Computer Displays",

[2], we shall briefly describe the general approach taken in this work and

the major decisions which affect the choice of an implementation.

5.2.1 The General Approach

The scope of this work may be clarified with the aid of Figure 5. 2.1,
which represents a simplified form of the general interactive computer
display program as described by W. R. Sutherland [3]. Each input which

affects the picture is an element of a one-dimensional control language,

161

Control
Language
Interpreter

Constraint
Program

Problem
Data

Topo-
logical
Structur

y

Picture
Generator

Analysis
Program

Figure 5, 2.1

Interactive Computer D isplay Program
as described by W. R. Sutherland

162

which consists of sequences of light pen motions, push button hits, etc.

In response to these inputs, the control language interpreter modifies the
structure of the picture which is being displayed. The resultant structure
is then further modified by a constraint program which compensates for the
coarseness of the control language inputs, and it is interpreted by the pic-
ture generator to produce a new picture. We are concerned with the topolo-
gical structure which is interpreted to generate the picture, the picture

generator, and the picture which is produced.

5.2.1.1 Topological Structure

The need for representing the structure of a picture, in addition to its
appearance, was originally demonstrated by SKETCHPAD [4]. A software
system which provided for the representation of the topology of a picture
on a more sophisticated hardware configuration was developed at Bell
Telephone Laboratories for use with GRAPHIC-2 [5]. Generally, a topolo-
gical structure describes both the topology of picture parts and the coor-
dinate transformations which are necessary to display these picture parts.
One use of this information is to permit the display of multiple copies of a
subpicture. The ability to display multiple copies of a subpicture eliminates
the necessity to store individual copies of identical subpictures. Consequently,
since the storage required for topology information is small relative to that
required to store copies of subpictures, the representation of the topology

of the picture in memory results in a reduced total storage requirement.

163

[

a. Picture

Picture

Trapezoid Row

Square Triangle
b. Representation of Topology

Figure 5.2, 2
A Picture Represention of Its Topology

164

Furthermore, all picture parts which are represented as copies of a
common subpicture can be modified simultaneously.

The topology of a picture identifies which entities are parts of other
entities, where the entities are defined to be the picture parts (or the entire
displayed picture) which are to be interpreted as a unit by the graphics
program. This procedure may be illustrated with the aid of Figure 5. 2. 2.
Figure 5. 2. 2a represents a picture to be displayed and Figure 5. 2. 2b shows
a representation of the topology of this picture. In Figure 5. 2. 2b, each
directed line indicates that a copy of the subpicture to which it points is
used as part of the subpicture at its tail. For this example, the picture
consists of a trapezoid and two rows of objects, each of which consists of
two squares and a triangle. The subpictures which are represented are the
trapezoid, the square, the triangle, the row, and the entire picture. Only
three of these subpictures are used to generate polygons in the picture:
the trapezoid, the square, and the triangle. However, seven polygons
appear in the picture because four copies of the square are displayed and
two copies of the triangle are displayed.

In order to use a copy of a subpicture as part of a larger subpicture,
some information about how the smaller subpicture is to appear in the
larger subpicture is needed. In SKETCHPAD, this information was repre-
sented by four variables: x and y coordinates, a rotation angle, and a
scale factor. (The values actually stored were the x and y coordinates and

the products of the scale factor by the sign and cosine of the angle of

165

rotation.) These four variables represented a transformation of coordinates
to be applied to each point in the smaller picture when it was displayed. A
set of values for these four variables, together with a subpicture, was
called an instance. A subpicture could then be defined in terms of smaller
subpictures as a collection of instances.

For the example in Figure 5. 2. 2, there are two instances of the square,
one instance of the trapezoid, one instance of the triangle, and two instances
of the row. Each of these instances is represented as a directed line in
Figure 5. 2. 2b. The number of instances of a subpicture is not necessarily
the number of times that that subpicture appears in the overall picture.

In this example, there are four squares in the picture, yet there are only
two instances of the square. Likewise, the variables which help define an
instance are not measured relative to the overall picture. In this example,
the coordinates of the two instances of the square and the instance of the
triangle are measured relative to the coordinates of each row.

As mentioned above, the topology of the picture is also used to identify
those other subpictures which are modified whenever a subpicture is referen-
ced by a demonstrative control language input (i.e., an input which consists
of identifying a picture part by pointing to it with a light pen, stylus, etc.).
Some of the applications of the topology of the picture to this problem may
be illustrated with the aid of Figure 5. 2.3, Figure 5. 2.3a shows a resistor

symbol as it might appear in a circuit analysis program. The symbol is

166

Resistor
1.0

Port Parameter Body

a. A Resistor from an Electrical Network Program

Machine Part

Quadrant

b. A Machine Part From a Drafting Program

Figure 5.2.3

Examples of Pictures for which the Topology of Each
Picture Facilitates Response to Control Language Inputs

167

considered to be composed of two ports, i.e., attachment points for con-
nections to other elements, a parameter value, and a body. In the picture,
each port appears as a small circle, the parameter value appears as the
number 1.0, and the body appears as the rest of the symbol. For pur-
poses of illustration, assume that a program is running which allows the
user to point at the symbol with a light pen and either (1) change the value
of the parameter to a value which has just been inputted on some other
device, or (2) move the symbol with the light pen if no parameter value
has been inputted. In either case, the light pen may reference any one
of several primitive subpictures: the port, the parameter, or the body of
the symbol. The resistor subpicture is identified as the subpicture which
consists of a set of instances of primitive subpictures and which was being
displayed at the time of the light pen hit. In the former case, the para-
meter subpicture to be replaced is identified as the primitive subpicture
which is part of the resistor subpicture and which represents a parameter.
(Whether or not a subpicture represents a parameter is determined from
information external to the topology, e.g., from an ordering imposed
on the parts of the resistor subpicture.) In the latter case, the coordinates
associated with the instance of the resistor subpicture which was referenced
with the light pen are modified in order to move the symbol.

Figure 5. 2.3b represents a picture which maintains symmetry about

the origin of the two axes shown. The program is assumed to be capable

168

of modifying only the quadrant subpicture in response to control language
inputs. The machine part subpicture is displayed as four instances of this
quadrant subpicture at angles 0, 7/2, 7,and 37/2. Not only does the topo-
logical structure provide the information necessary to identify what other
changes should be made to the picture when a quadrant is modified, but it
guarantees that the other quadrants will be correspondingly modified without
intervention by the program.,

In this work two topological structures are considered. One structure
provides for the independent modification of picture parts which are not topo-
logically related. However, as shown in Figure 5.2.1, a constraint program
is usually included as part of the interactive graphics program to refine the
structure after it has been modified in response to a control language input,
For example, when a character is removed from a line of text which is
displayed, the other characters in the line may be adjusted so that no gap is
left in the line, In a picture of a mechanical system, many parts may move
when a specified part is moved in order to simulate mechanical constraints,
The second structure provides for the enforcement of concatenation conr
straints among picture parts. In this structure coordinate transformations
are represented so that they depend on portions of the structure. The sub-
pictures which are used to generate entities may then be concatenated in a
manner similar to that described by Shaw [6] . The applicability of one
structure over the other depends the application and is normally determined

by the frequency with which the entities are to be concatenated.

169

5.2.1.2 The Picture Generator

The structures used by SKETCHPAD and GRAPHIC-2 were similar in
that they both described picture topologies. However, pictures were genera-
ted from these two structures in quite different fashions. SKETCHPAD
interpreted a list structure to produce a table of the coordinates of points to
be plotted on the display screen. Then the program generated the picture
to be displayed by transferring the coordinates in each point represented
in the table to the display processor. Consequently, the SKETCHPAD
picture generator was essentially a program. However, in GRAPHIC-2,
the general-purpose computer program interpreted the list structure only
to compute a pair of coordinates at which a primitive subpicture was to be
displayed and to locate a display processor program (leaf) for that sub-
picture. The display processor itself then executed the leaf and produced
the subpicture at the computed coordinates. Hence, the GRAPHIC-2 picture
generator was partly a program and partly display processor hardware.

A third form of a picture generator has also been implemented [7].
This structure was implemented entirely ag a display processor program.
Recent effort in the design of display processors has yielded devices which
interpret 3-dimensional data and plot perspective projections of this data on
2-dimensional screens. Examples of such devices are the Adage Graphics
Terminal [8] and the Evans and Sutherlands LDS-1[9]. The latter of these
devices .iS'sufﬁciently versatile to generate a picture from a topological

structure without the aid of a general-purpose computer program.

170

As evidenced by the above examples, the picture generator may be
either a program, a combination of a program and display processor
hardware, or entirely display processor hardware. No one of these
schemes has a clear advantage over the others for all applications. A
software point-plotting picture generator, such as the one which was
employed by SKETCHPAD, can be implemented with even the most primi-
tive display processor hardware. However, this scheme requires storage
both for the structure of the picture and for a display buffer. Furthermore,
unless the picture is produced on a storage tube or some similar device,
much computation time is consumed merely maintaining a static picture.
Less computation time is required for this process if a scheme such as
that used in GRAPHIC-2 is employed. Furthermore, no storage is required
for a display buffer. However, this scheme requires that a data channel be
available to send information to the display processor and that the display
processor include a display generator which is capable of producing some
basic geometric forms, such as vectors, which may be displayed relative
to given coordinates. Unlike the software point-plotting technique, this
technique often limits the flexibility with which copies of a subpicture may
be displayed. For example, a single leaf could not be executed so that
copies of its corresponding subpicture would be displayed at various angles
of rotation in GRAPHIC-2. Even more limitations are imposed if the display
processor hardware itself is to be used as the picture generator. In

particular, the words which appear in the topological structure must be

171

executable display processor commands. Furthermore, if this procedure
is used and emonstrative control language inputs are to be identified, the
display processor must contain a subroutining facility which saves return
addresses on a push-down stack which may be examined by the general-
purpose computer. However, this procedure has the advantage over the

others that no computation time is required to maintain a static picture.

5.2.1.3 Representation of the Topological Structure

The data structure used most generally in large graphics systems
is the hierarchical tree and ring structure. A hierarchical structure is
a structure with levels of hierarchy and is constructed with rings. From
one ring, there may be branches off from any element to its logically
related elements. Branches from these related elements to other related
elements may occur. This structure allows access from any data item to
any other data item via the rings. This structure is very flexible and
those operations which interrogate the structure can be handled very easily.
However, the operations which modify the structure are quite involved
because additional pointers have to be updated. Extra overhead in storage

is also caused.

5.2.1.4 The Optimum Implementation

All of the above considerations are applied to determine the optimum
implementation of the topological structure for a given equipment configu-

ration and application. As a preliminary step, a cost function which is a

172

measure of the performance of an implementation of the topological
structure must be defined. The cost of an implementation of the structure
is considered to be the average time which is required to modify and
interpret the structure in response to a control language input. For sim-
plicity, the computer which controis the display processor is assumed to
be dedicated to the use of that display processor. The discussion is also
restricted to display processors whose picture must be continually refreshed.
Furthermore, in order to avoid momentary losses of the picture, the process
of refreshing the picture is assumed to have priority over the process of
responding to control language inputs. Display processors whose picture
need not be continually refreshed are not considered because the response
time for these devices is independent of the picture generation process and
is generally insignificant when compared to the time which is required for
this process.

Certain constraints are also imposed by the hardware configuration.
One of these is a limitation on the amount of storage which is available to
represent the structure. A second constraint is a limitation on the amount
of storage which is available to represent the structure. A second con-
straint is a limitation on the amount of time which is available to produce
a picture from the structure. This time is the smallest time interval which
produces objectionable flicker (typically about 1/30 sec.).

Equations which express the above cost function in terms of major

design decisions (e.g., whether to use the display processor or a computer

173

program as the picture generator, whether to use the topological structure
which enforces concatenation constraint or not, presence or absence of
redundant pointers in the representation of the topological structure) are
derived. Each design decision is considered to be a binary-valued variable
and it represents a choice of one of the two possible methods of implemen-
ting some feature of the topological structure. The optimal implementation
is then described by the set of these design decisions which minimizes the
cost.

The storage which is required by the topological structure, the total
time which is arrested from the computer in order to generate the picture,
the time which elapses while the picture is generated, and the cost are
expressed as functions of these design decisions. Eleven design para-
meters, each of which may assume two values, are considered. The num-
ber of implementations of the topological structure which can be specified
for a given hardware configuration is 211.—. 2048. However, only 480 of
these implementations are possible because the design parameters are
not independent. Furthermore, for certain applications, not all of these
480 implementations are possible because of the constraints imposed by
the equipment configuration. The number of implementations is small
enough so that these implementations may be easily enumerated. Con-
sequently, the optimal design of the topological structure for a specified

hardware configuration and application may be determined.

174

A program which enumerates the possible implementations for a
specified hardware configuration and application, and the results obtained
by applying this program to several applications for the DEC 339 are

described in [2].

175

References for Section 5

L. S. Randall, "A Relational Model and its Optimization for the Repre-
presentation of Structured Data within a Random-Access Computer
Memory'", Systems Engineering Laboratory Technical Report no. 54,
The University of Michigan, Ann Arbor, to be published.

J. H. Jackson, "Optimum Implementation of Topological Structures for
Interactive Computer Displays', Systems Engineering Laboratory
Technical Report no. 51, The University of Michigan, Ann Arbor,
January 1971.

W. R. Sutherland, "The On-Line Graphical Specification of Computer
Procedures", Ph.D. Thesis, Department of Electrical Engineering,
Massachusetts Institute of Technology, Lexington, Massachusetts,
January 1966.

I. E. Sutherland, "SKETCHPAD - A Man-Machine Graphical Communi-

cation System', Proceedings of the Spring Joint Computer Conference,
1963, pp. 329-346.

C. Christensen and E. N. Pinson", Multi-Function Graphics for a Large
Computer System', Proceedings of the Fall Joint Computer Conference,
1967, pp. 697-711.

A. C. Shaw, '"Parsing of Graph-Representable Pictures", Journal of the
ACM, vol. 17, no. 3, July 1970, pp. 453-481.

J. H. Jackson, "An Executive System for a DEC 339 Computer Display
System', Concomp Project Technical Report 15, University of Michigan,
Ann Arbor, Michigan, December 1968.

System Reference Manual -- Adage Graphics Terminal, Adage, Inc.,
Boston, Massachusetts, March 1968.

Evans and Sutherland Line Drawing System Model 1 System Reference
Manual, Evans and Sutherland Computer Corporation, Salt Lake City,
Utah, January 1970.

176

UNCLASSI¥IED

Security Classificat_ilon

DOCUMENT CONTROL DATA-R&D

(Security classilication of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporue nufhor) 28. REPORT SECURITY CLASSIFICATION
The University of Michigan UNCLASSIFIED
Systems Engineering Laboratory 2b. GROUP
Ann Arbor, Michigen 48104 N/A

3. REPORT TITLE

A STUDY OF INFORMATION IN MULTIPLE-COMPUTER AND
MULTIPLE~CONSOLE DATA PROCESSING SYSTEMS

>

- DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical Report April 1970 - March 1971

5. AUTHORIS) (First name, middle - initial, last name)
K.B. Irani

I.S. Uppal
J.W. Boyse, et al
6. REPORT DATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS
August 1971 177 57
8a8. CONTRACT OR GRANT NO. 948. ORIGINATOR'S REPORT NUMBER(S)

F30602-69-C-0214
Annual Report No. L

Job Order No. 55810000

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

RADC-TR-T71-160

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

RADC PROJECT ENGINEER: Rome Air Development Center (ISIS)

Rocco F. Iuorno (ISIS) Griffiss Air Force Base, New York 13440
AC 315 330-7011

13. ABSTRACT

This report documents the achievements from April 1970 to March 1971 of con-
tinuing research into the development and application of mathematical techniques
for the analysis and optimization of multiple-computer, multiple-user systems.

A summary of the theoretical investigations conducted, the major conclusions
reached, and some typical applicationsare included. The material covers the
following areas: message processing and communication system, multiprogrammed
and multiprocessor computer systems, central processor design, and data struc-
tures and their representation.

DD 2™.1473 UNCLASSIFIED

Security Classification

A

UNCLASSIFIED

Security Classification

14.
KEY WORDS

LINK A

LINK B

LINK C

ROLE wT

ROLE WT

ROLE

Mathematical Models
Multiprogramming
Paging Algorithm
Data Bage Structures
Microprogramming
File Systems
Interactive graphics

UNCLASSIFIED

Security Classification

SAC--Griffiss AFB NY 7 Sep 71-88

