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SUMMARY

This report gives an adaptive procedure for selecting a discriminant
for a pattern recognizer. No a priori knowledge of the probability density
on the observation-space is assumed. Moreover the pattern recognizer is
assumed to have a finite memory.

A mathematical model of the problem of pattern recognition is con-
structed and several theorems are proved. With the help of these theorems,
the adaptive procedure is developed. This adaptive procedure is, in effect,
a method of using the finite memory efficiently in "training' the pattern

recognizer.
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1. INTRODUCTION

The problem of pattern recognition is a problem of separating objects into
two or more classes. Given an object, a set of measurements is made on this object.
Based on the results of these measurements, the object is assigned to one of two or more
classes.

Most of the problems of pattern recognition have been reduced to a common
mathematical model in which an object is represented by a point in an n-dimensional space
(the measurement-space). Each coordinate in the space corresponds to one of the measure-
ments made on an object. By a "'pattern' we shall mean a point in the measurement-space
which represents an object to be classified. We shall sometimes refer to the measurement-
space as the pattern-space.

The problem of classification is then reduced to the problem of defining
simply-connected or multiply-connected boundaries (discriminants) in the pattern-space.
The region on one side of each boundary is associated with one class of patterns, i.e.,
points in the pattern-space representing one class of objects. If a received pattern falls
on the side of a boundary which is associated with a class, then the pattern (with the
associated object) is declared to belong to that class; otherwise it is declared not to belong
to that class. The boundary may be included with one region or the other. The boundaries
are said to be optimally selected if the "cost" (to be defined later) resulting from mis-
classifying patterns is minimum.

It becomes obvious that the problem of defining boundaries is greatly sim-
plified if the patterns belonging to each class are clustered together in the measurement-
space. This simplification can be achieved if the distinguishing features of different
classes of objects are recognized and if the measurements made on an object are the mea-
surements of these features.

Unfortunately, it is not always possible to directly measure the distinguishing



features of an object. This may be due to the fact that either the distinguishing features of
the different classes cannot be recognized, or direct measurements of these features are

not possible. Under these circumstances one does the '"best’ one can in selecting features

to be measured.

In this report we shall not concern ourselves with the method of selecting
the features. We shall assume that the features to be measured have been selected, and
objects are represented by patterns or points in the n-dimensional space, n being the
number of features being measured. The problem we are concerned with is the problem

of selecting the optimum boundaries which separate different classes of patterns.



2. BACKGROUND

Considerable work has been done in determining the optimum boundaries in
the measurement-space. A large percentage of this work is devoted to linear discriminants
(hyperplane boundaries) in the measurement-space. Hu (Refs. 1,2,3,4) and Singleton (Ref. 5)
determine conditions under which two classes of binary numbers are linearly separable (i. e.,
can be separated completely by a linear discriminant). Highleyman (Ref. 6) determines the
optimum linear discriminants for the case of not-necessarily linearly separable classes.
Cooper (Ref. 7) investigates the problems in which a linear discriminant is optimum.
Sebestyen (Ref. 8) shows that the correlation and regression line techniques are also examples
of linear discriminants.

Discriminants other than linear are also considered in the literature. For
example, Cooper (Ref. 9) considers problems for which a hypersphere forms the optimum
boundary of separation between two classes of patterns.

Transformations are sometimes applied to the measurement-space in such a
way that the patterns belonging to each class are brought together.or in such a way that in
the new space the boundaries have simple geometric forms. Sebestyen (Ref. 8) considers
several linear and nonlinear transformations. In some cases of linear transformations, he
identifies the eigenvectors of the transformations with the features of the objects and the
eigenvalues with the weights to be attached to these features.

For the cases where the occurrence of the patterns is stochastic, the theory
of pattern recognition falls within the framework of statistical inference and decision theory.
As Cooper (Ref. 10) shows, if the probability densities are known, classifications can be
done on the basis of one of the four classical criteria, viz, Bayes, maximum-likelihood,
minimax, and Neyman-Pearson. All four criteria are optimally satisfied by a decision rule
in which the test statistic is a likelihood ratio which is compared to a threshold k. Chow

(Ref. 11) describes a functional diagram of such an optimum system.



In actual practice, however, the exact probability densitites, more often than
not, are not known a priori. If the probability densities are known except for a few param-
eters, the optimum discriminant can be determined by an adaptive process. See, for ex-
ample, Cooper (Ref. 9).

In many problems of practical importance, however, probability densities
are completely unknown. Discriminants have to be determined from a few typical samples
with known classifications. This is called the "'learning mode' of pattern recognition. In
such cases, it is natural to select discriminants which are optimum with respect to the given
samples. As illustrated by Sebestyen (Ref. 8), these "optimum" discriminants may turn
out to be very poor as far as the unknown patterns are concerned. The remedy is to con-
tinue with the learning mode even after the '"recognition mode" (i. e., the mode of operation
in which a discriminant is used to classify unknown patterns) is started. The process is thus
made adaptive by continuously improving upon the discriminant employed. This is possible
if the correct classification of a pattern is made known by some outside agency after a
classification decision is made about it. The process converges to the optimum discriminant
or discriminants (if there are more than two classes of pattern); if the system has infinite
storage capacity (infinite memory).

Infinite memory is not required if the patterns are known to be linearly
separable. This has been demonstrated by Widrow and Hoff (Ref. 13) with the Adeline and
Rosenblatt (Ref. 14) with the Perceptron. The convergence is proved mathematically,
among others, by Novikoff (Ref. 15) and Albert (Ref. 16).

In this report, we shall consider a problem in which no prior knowledge of
probability densities is assumed, the patterns are not necessarily linearly separable, the
discriminants are not necessarily linear, and only a finite storage space is available. We
give an adaptive procedure for obtaining the optimum discriminant at any time, and for se-
quentially "improving'' the discriminant. For simplicity, we restrict ourselves to the case

in which a pattern is to be classified into one of two classes.



3. THE MATHEMATICAL STRUCTURE

Assuming that there are n measurements made on an object and that the
values of these measurements are real numbers, a point w in the real n-dimensional space
R"is a pattern, and the space R" is the pattern-space. Objects represented by these
patterns belong either to a class A or to a class B. Due to noise, either in the measure-
ments or in the system through which these measurements are transmitted, a point in R"
sometimes actually corresponds to an object of Class A and at other times an object of
Class B. We shall refer to the product space R" x {A, B} as the observation-space, and a
point (w, .), which represents an object and its true classification, as an observation. Thus
a pattern is the first of the two elements of the ordered set which we call an observation.

The probability density on the observation-space will be denoted by p(w, . ).
Sometimes, for convenience, we shall drop the argument (w, .) and denote this probability
density by p. At this time we want to point out that in the problem we shall be considering,
we shall assume that p(w, .) is not known.

Let T" = {cl, CoseeesC } be the set of all discriminants (boundaries in the
pattern-space Rn) under consideration. We assume that M is finite. Each discriminant ¢
divides the space R" into two disjoint sets Q ; and Qé The points in Q; are classified as
patterns belonging to Class A, and those in Qé are classified as patterns belonging to
Class B.

If the probability density p on the observation space were known, one plausible
way to define the '"best' discriminant is to say that it is a discriminant which minimizes a

given loss function L(ci, p). One such loss function is given by

Lic;,p) = [ p(w,A)dw + [ p(w,B)do .
1 1

QB QA

This loss function assumes that the loss is one if a pattern is incorrectly classified, and is



zero if it is correctly classified. If we define Ei as the event that the discriminant ¢ classi-
fies an unknown pattern incorrectly, then L(c.l, p), defined above, is the probability of the
event Ei' In the future when we refer to the loss function, we shall mean the loss function

defined above.

Since p(w,.) is not known, we cannot use the simple criterion of minimizing
the loss function L(c.l, p) to select the best discriminant. We now give an intuitive explana-
tion of the criterion we actually use for our case.

It is not necessary to know the probability density p(w, . ) completely in order
to determine the best discriminant defined above. It is not even necessary to know the
exact values of L(ci,p) of the loss function. It is sufficient to know the correct ordering of
the discriminants according to the values of the loss function, or, what amounts to the same
thing, the ordering of the events Ei's according to their probabilities.

In the absence of any information, all possible orderings (which are M! in
number)” are assumed equally probable. The absence of any information about p(w,. ) im-
plies that the probability distribution over the space of all possible probability density
functions on the observation-space is uniform. We consider a more general situation in
which the probability distribution over the space of all possible probability density functions on
the observation-space is not necessarily uniform, yet the M! orderings of the events Ei's

remain equally probable, in absence of any other information.

To describe how such a situation may arise, we first define a class of sets

(M-1)...(M=-k+1)
k!

range [0,1]. There is a one-to-one correspondence between the elements of Ak and subsets

Ak’ k=1,2,...,M. Each set Ak is a set of M positive numbers in the

of k distinct elements of the set Al' The numbers in the various sets are compatible in the
sense that if the numbers in A1 represent the probabilities of M events, each number in the
set Ak represents the probability of the intersection of the corresponding k events. With
this definition of the Class {Ak} we describe the general situation we referred to before as

follows:

1We consider M! distinct orderings, even though it may happen that the probabilities of two
or more events are equal.



A one-to-one mapping is known to exist between {E1} and A1 such that if a.j
in A1 corresponds to Ei , then aj is the probability of Ei' Though such a mapping is known
to exist, the actual mapping is unknown. In other words, knowing {Ak} , one knows the
numbers which are the probabilities of various events E.l's and their intersections, but one

does not know which number in A1 is the probability of which event. As such, all the M!
orderings of the events Ei's still remain equally probable. What makes the situation more
general than that implied by the complete lack of information about the probability density
p(w,.) is that we assume that the probability distribution over all possible values of {Ak} is
not-necessarily uniform.

In such a situation, one way of selecting a discriminant would be to select a
discriminant conditional to knowing {Ak} and then somehow weigh the discriminants for
various values of {Ak} according to the probability distribution on {Ak}. Fortunately, it
turns out this does not become necessary, because the way we select a discriminant condi-
tional to knowing {Ak} is independent of the assumed value of {Ak}. From now on we shall
assume that {Ak} is known.

Corresponding to a given {Ak} there is a set ¢ of the probability densities
on the observation space which lead to the probabilities of various events Ei's and probabili-
ties of the intersections of these events as given by {Ak}. This set 4 is divided into M!
subsets Bl’ PIRRRE BM! . Each Bj is a set of probability densities on the observation-space
all of which correspond to one ordering of events Ei's. The probability of the actual proba-
bility density p(w, . ) belonging to any subset Bj conditional to knowing {Ak} is '1\'/[17 , when no
other information is available. At the beginning, therefore, there is no reason to consider
that one discriminant is '"better' than any other.

At any future time in the process when some information about the observa-
tion-space is available, a discriminant (to classify unknown patterns) is selected on the
basis of the available information. The selection rule for the discriminant is called a

decision function. A decision function is a ”mapping"z of the space of available information

into the set I' of the discriminants.

2In the entire text, the term ""mapping' as applied to a decision function is intended to in-
clude the case when the values of a function are not deterministic but probabilistic.



Since, for our problem, we are assuming that we have a limited amount of
memory available, we can store only a limited amount of available information. (We shall
assume that the amount of memory available is less than that required to store M numbers.
This is necessary because otherwise, as will become apparent later, the process becomes
trivial.) The available information can be in the form of observations (i. e., patterns with
their true classifications) or the discriminants that were selected in the past with the number
’of errors these discriminants made in classifying patterns (or the number of patterns cor-

rectly classified by these discriminants). For convenience, we break up the space of in-

formation into subspaces and shall refer to the restrictions of a decision function on different
subspaces as decision functions of different types. What these different subspaces are and
what the corresponding different types of decision functions are will become clear in the next
section. For the time being we shall concentrate on one of the subspaces which we shall
denote by Z. A decision function 6 of the corresponding type "maps' the subspace Z into the
set T" of the discriminants.

Instead of defining the best discriminant as we do when the probability density
on the observation-space is known, we now define the best or the optimum decision function
of Type Z. Towards that end we first define a risk function R, whose values for a given de-

cision function 0 and a given subset Bi is given by

M

R(3,B,) = ),

L(c., p) P(Z.[p€ B.) .
o1 j i

Here Zj is the set of all elements of the information subspace Z which are mapped by 6 into
the element c]. of the set I', and P(Z].Ip € Bi) is the probability density p(w,.) on the obser-
vation-space is an element of the subset Bi' It is well to remember that the value of R(9, Bi)
actually depends on which element of Bi is the probability density p(w,.). However, we have
chosen not to depict this fact in the symbol for the risk function in order to avoid awkward-
ness in notation.

Since initially the probability density p(w,.) on the observation-space is by
assumption equally likely to come from any one subset Bi of the set )@, we define the

average risk R(d) as



1
M!

Here again we would like to point out that, though we have chosen not to show it symbolically,
the fact is that R(8) is a function of the particular elements of the subsets Bi’ i=1,2,...,M!,
which are assumed to be the probability density p(w,.). For a fixed set of these elements,

we define an optimum decision function &* by the following inequality:
R(6*) < R() ,

where 6 is any decision function of Type Z which maps the subspace of information Z into
the set I'.

Though we have defined the optimum decision function for a fixed set of M!
elements, one from each subset Bi’ i=1,2,...,M!, it turns out that R(6*) does not depend
on this set but only on the Class {Ak} , while the optimum decision function of the Type Z is

independent even of {Ak}.



4. THEOREMS AND USEFUL RESULTS

In this section we consider decision functions of various types, i.e., the re-
strictions of decision functions which map various subspaces of the information space into
the set T of discriminants. We also state and prove theorems concerning optimum decision
functions of various types.

Recall that by an observation (w,.) we mean a pattern and its correct classi-
fication. A set of m observations will be called a sample of m observations, and will be
denoted by S™. We denote the cardinality of an aribtrary set T by p(T). Thus p(Sm) =m.
The symbol p(Sm n Ei) then denotes the number of errors that the discriminant ¢ makes in
classifying the m patterns of the sample S™. We also define po(Sm) and 4 O(Sm) as follows:

po(Sm) - min p(Sm n Ei)

E,
i

and
&™) = {c;|ps™ NEY = p°™)} .

Thus po(Sm) is the minimum number of errors made by a discriminant in classifying m
patterns of a sample Sm, and /2 o(Sm) is the set of all the discriminants which make the

least number of errors in classifying the m patterns of the sample s™. An arbitrary ele-
ment of éo(Sm) will be denoted by co(Sm)

m
I

s™s into T'. Here we have defined one type of decision function.

For a fixed m, a decision function 8. is a mapping of the space J M of all

Theorem 1
*
o (8™) = ¢%s™)

for Sme)fm

10



Remark: To put it in words, the theorem states that given a sample of m
observations, the best decision that can be made about selecting a discriminant is to select
any one of the discriminants which make the least number of errors in classifying the m

patterns of the sample s™,

Proof: We shall prove this theorem first for two special cases before proving it for the

most general case.

Case (i):
r = {cl,cz}
= {B,B,}
P(E1|pe B,) = P(Ezlpe B,) = a
P(Ezlpe B,) = P(El\pe By = 1-a

1]

PE, N Ezlpe B,) = P(E, N E2|pe B,) = 0

Thus, for this case, A; = {a, 1-a} and A, = {0}. This is the case of only two discrimi-
nants, and these two discriminants are such that if one classifies a pattern correctly, the
other does not.

Let a decision function 6 (for convenience we shall drop the superscript m and
the subscript I for this proof) be such that Fiy 4 P[o() = ¢y |p € Bl] = probability that the
value of the 0 is q if the probability density p(w,.), on the observation-space, is some ele-
ment of subset Bl; F22

the probability density p(w,.), on the observation-space, is some element of the subset E2 .

2 P[5(:) = czlp € BZ] = probability that the value of the 0 is c, if

aF,., +(1l-a)(1-F

R(5,B,)

11 11)

and

R(6,B2) = (1-a) (1-F22) +a F22 .

11



Consequently, since for this case

1

R(®) = 5 R(6,B

DO =

we have

+ F

D =

R(6) = (1-a) + 5 (2a-1) (F

11 22) )

Ifa = 1-a, any decision function is optimum and the theorem is proved. If a # 1-a, the
optimum decision function minimizes F11 + F22. Let us assume that a > (1-a). The
proof for the case (1-a) > a should follow similarly.

Let us look at this problem from the point of view of hypothesis testing (Ref. 17).

Let the hypothesis to be tested by H: Probability of E, > probability of E., against the alter-

2 v

nate K: Probability of E1 > probability of E If the hypothesis is accepted when G(Sm) =€y

9
and rejected when 5(S™) = Cy, then F, . is the level of significance of the test, and F,, = 1-3,
where j is the power of the test.

According to the fundamental lemma of Neyman and Pearson (Ref. 17), there
is a most powerful test for which F11 is minimum for a given F22 . If the result of that
lemma is applied to the case of the testing of the above hypothesis, then the most powerful
test is given by the following:

For a fixed F22’ F11 is minimum if

5(s™) = ¢, for pS™NE) > kps™n E,)

9)

m m
= ¢y for p(S ﬂE2)<kp(S ﬂEl)

= ¢y with probability y
m

for ps™ N E) = pS" NE

2) -

= ¢, with probability (1-y)

2

Here k > 0 and 0 < y < 1. The dependence of F22 onk and y are given by:

Fyy = {P[p(s™ N Ey) < kp(s™ n El)lp € Byl}

+ (1-9) {P[p(s™ N E,) = kp(s™ N E,)|pe Byl}

12



if k is such that r é

=
8

is an integer; otherwise, p(Sm n EZ) cannot be equal to

g
(=Y

+
k p(s™n El), and so

Foy = P[p(s™ n E,) < k p(s™ N E )|pe Byl .

The various probabilities involved in the equations for F22 can be easily calculated by

applying binomial distributions. Thus

; m-i m-r
i=0

i=r-1 m i m-i m r m-r
Foo = > ( )a(l-a) +(1-'}/)< )a (1-a) )

if r is an integer; otherwise, the second term is zero and the summation in the first term is
taken up to the largest integer less than r. For a fixed value of FZZ’ the minimum value of

F11 which is obtained by using the most powerful test described above is given by:

F, = P[p(s™ N E,) < k ps™n El)lp € B

+

yPp™ N E,) = kp(s™ N E1)|p ¢ B,]

il (mn_li)(l- ::1)i am_i + y(mn_lr> (l-a)r 2T

i=r+1

if r is an integer; otherwise the second term in both the above equations is zero, and the
summation in the first term of the second equation starts with the smallest integer that is
larger than r.

Using the above equations for F11 and FZZ’ it can be easily deduced that
F11 + F22 is minimum, and the resulting decision function is optimum, if k = 1 and y takes

any value in the closed intervai [0,1]. Thus for the case (i)

o*(S™) = c, if p(s™n Ey) > ps™n E,)

€1

= ¢y if ps™n E) > ps™ n E,)

= c1 with probability y

. m m

if p8 N El) = p(ST N Ez)
= Cg with probability (1-y)

13



where vy is any number in the closed interval [0,1]. In other words 6*(Sm) = co(Sm). This

completes the proof for the case (i).

Case (ii):

I = {c_l,cz}

= 1By, By}
P(Ellpe Bl) = P(E2 pE B2) =a+c
P(Ezlpe B = P(Ellpe B,) =.b+c

PE, N Ez‘pe B)) = P(E, N E2|pe By) = ¢

a+b+c<1

Thus, for this case, A1 ={a,b} and A2 = {c}. This is the case when the two events El
and E2 are not necessarily disjoint and all-inclusive, i.e., the two discriminants c 1 and Cy
are such that there are patterns that can be correctly classified by both the discriminants,
and there are patterns which are incorrectly classified by both the discriminants.

For a decision function 6, let F;.t be the probability that a sample s™ which

satisfies the conditions

l
-

p[s™ n E) N (8™ N Ey)] =

n

p[(s™ N E)UGETNE) = m-t,

is mapped into cj when the probability density p(w, . ) on the observation-space is an element
of the subset Bi , i=1,2,. Notice that r is the number of patterns in the sample s™ which

are incorrectly classified by both the discriminants q and ¢, , and t is the number of

2’

patterns which are correctly classified by both q and Cy- For this case

R(5)

[\C] P

[R(5,B

) + R(,B,)]

1 rt rt rt rt
=3 tE; (aF11+a F22+bF21+bF12).

14



The summations are taken over all possible values of r and t. But

rt A _rt rt rt rt
F = F11+F12=F21+F22.
So
rt rt
F F
= 1 t 11 22
R(6)=§ZZ Fr (b+c)+(a—b)<—?t-+——r—t—)
tr F F

If a = b, any decision function is optimum, and the theorem is proved for Case (ii). If

a # b, the optimum decision function minimizes [(F.Il'tl/Frt) + (F;;/Frt)] , for every r and t.
Minimizing [(F}/F") + F;tz/Frt)], for fixed r and t, is similar to minimizing F, + F,,
in the case (i), where a sample consists of m - (r +t) observations, each pattern being cor-
rectly identifiable by one and only one of the two discriminants ¢y and Cy- This is also evi-
dent from the fact that the patterns which are either correctly classifiable, or incorrectly
classifiable by both the discriminants, do not help in the selection of one discriminant over

the other.

The decision function which minimizes [(Flitl/Frt) + (F;;/Frt)] , for fixed r
and t, is the optimum decision function of the case (i) when applied to the sample of m - (r+t)
observations which are correctly classifiable by one and only one discriminant. However,
since adding the remaining (r +t) observations does not change the value of the decision
function, we conclude that for fixed r and t, the optimum decision function of the case (i),
when applied to the complete sample S™ of the case (ii), minimizes [(Fitl/Frt) + (F;tz/Frt)].
Since this is true for each r and t, the optimum decision function of the case (i), when applied
to the complete sample S™ of the case (ii), minimizes R(6) for the case (ii). Thus the opti-
mum decision function of case (i) is also the optimum decision function for the case (ii).

This completes the proof of the theorem for the case (ii).
Case (iii): This is the most general case.
T = {cl,cz,... ,cM} .

72={By,By,..., By} .

15



For an arbitrary but fixed class {Ak} , Bi's are the subsets of probability

densities on the observation-space as defined before.

For this case, the theorem can be proved by applying the result of Case (ii)
successively. Thus according to the case (ii), given a sample Sm, if the choice is between

¢ and c; the optimum decision function has the value ¢
with probability 1 if p(S™ N E) < p(s™n E)
with probability 0 if p(s™ N E) > p(s™n E)
with probability y if p(S™ N E) = p(s™ N E))

where 0 < y < 1. Notice that the last part of the above statement is equivalent to saying:
Select c, or cj arbitrarily if p(Sm n Ei) = p(Sm n Ej)'

This optimum selection between ¢ and cj is true for all pairs of i and j.
Combining the results of all such pairs of i and j, we conclude that, given a sample Sm,

the optimum decision function selects ¢ from the set T’
. . . m m o
with probability 1 if p(S™ N Ei) < p(s N E].) forall j #1,
. . . m m .
with probability 0 if p(S™ N Ei) > p(8 N Ej) forany j £ 1,

with probability y if p(S™ N E) < ps™ n E;) for some ] i,

pS™ N E.) for rest of j # i,

and p@8™ N E,) J

where 0 < y < 1. This is equivalent to saying that the value of the optimum decision

function for a given sample s™ is co(Sm). This proves Theorem 1.

Corollarx:
I I

ROG™) > ﬁ[a(m”)*] , for i> 0.

The proof of the corollary follows by observing that, given a sample s™ of

m + 1 observations, one way of selecting a discriminant is to disregard i of the observations

16



*
and use the decision function G;n on the remaining m observations. But this is not neces-
1)*
sarily the best decision function 6§m+1) . The equality holds for the trivial case when all

Ei's are equally probable.

We now define another type of decision function. For this decision function,
the domain is (a,c ) me, where o is a fixed positive integer less than or equal to m, and
c 8 is a fixed discriminant. - The number ¢ and the discriminant c 8 indicate that sometime in
the past there existed a sample S™ for which pO(Sm) = a and co(Sm) = CB , i.e., the mini-
mum number of errors made by a discriminant in classifying m patterns of that sample was

@, and one such discriminant which made a errors was ¢ This type of decision function

8"
will be denoted by 6;111/01. We shall further assume that for a given pair (o, CB)’ the decision
function 6;;]/0 tirst maps Jm into {[ai(Sm), ci]}, where a.l(Sm) denotes the number of

errors made by a discriminant ¢ in classifying the m patterns of a sample Sm, and then the

decision function maps (a, CB) x{[ai(sm), ci]} into I'. With the definition of this new type

of decision function we prove the following:
Theorem 2:

m/ao*

m
GII )

N
o
=

i)

/\o
()

(8

¢y With probability ¥

= ¢%(s™) with probability (1-y)

Here 0 < vy < 1.

Remark: To put it in words, the theorem states that if the minimum number
of errors that a discriminant can make in classifying m patterns of a given sample s™ is

greater than o, then it is better to select the discriminant ¢, which made only a errors

B
while classifying m patterns of some sample s™. If the minimum number of such errors is
less than @, then it is better to select any discriminant which makes the minimum number of

errors while classifying m patterns of the present sample s™, If, however, the minimum
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number of errors is equal to &, any one of the two discriminants is selected arbitrarily.

Before we prove this theorem, we shall prove three lemmas.

Lemma 1:
Given two disjoint subspaces Cl and Cz of the total information space, a deci-
sion function 6 which maps tl U Cz into T' is optimum if and only if the restriction of 6 on

ti is optimum for i = 1, 2.

Remark: There are three types of decision functions involved in the above
lemma—one that maps the subspace of information Cl into I, the second that maps the
subspace of information ¢ 9 into I', and a third one which maps the union Cl uUcg 9 of the two
subspaces i;’l and Cz into I'. The lemma asserts that a decision function of this third type
is optimum if and only if its restriction on the subspace Cl is an optimum decision of the
first type and its restriction on the space CZ is an optimum decision function of the second

type.

Proof: Let Ri(é), i=1,2, be the average risk if the decision function 0 is restricted to the
subspace ¢ i Let Fi’ i=1,2, be the probability that the available information z is an ele-
ment of the subspace ¢ i when the probability density p(w,.) on the observation-space is any
one of the M! (equally probable) possibilities used in evaluating ﬁi(é). Then the average

risk R(6) of the decision function & (unrestricted either to subspace Cl or to ?;’2) is given by

R(6) = F,R,(0) + Fzﬁz(é)

11(

The proof of the theorem follows immediately from the fact that a decision function &, which

maps 5;’1 U Cz into T, is optimum if and only if it minimizes Ri(é) for i=1,2.

Corollary:

Let )Jm/a 4 {Smlpo(sm) = a}. Let G;n/a denote a type of decision function

* *
that maps Jm/a into I'.  Then Gin/a is the restriction of G;n onJm/a .

m/a m/a
61 and 611 s

should be recognized. The domain of 6;11/0: is the set Jm/a, i.e., the set of all samples

Distinction between the two types of decision functions,

S™ for which the minimum number of errors a discriminant can make is @. The domain of

the decision function 6?11/0! is the product space (a, cﬁ) X J m’ where o and ¢ are fixed.

B
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Lemma 2:

where m > a > 1.

The equality sign holds if and only if all the events Ei's are equally probable, i.e., all the

M numbers in the set A1 are equal.

Remark: This lemma suggests that if there is a choice between two discrimi-
nants, one of which makes (a- 1) errors in classifying m patterns of a sample Srllf1 for which
the least number of errors a discriminant can make is (o - 1), and another discriminant
which makes a errors in classifying m patterns of another sample S;n for which the least
number of errors a discriminant can make is o, then it is "better' to select the first of the
two discriminants for the nontrivial case when all the events are known to be not equally

probable. In the trivial case any one of the two discriminants can be selected arbitrarily.

Proof: As in the case of Theorem 1, we shall prove this lemma for two special cases be-
fore proceeding to the proof of the third and the most general case. For this proof, we shall

drop the subscript I and the superscript * from the optimum decision functions.

Case (i):
I = {cl,cz}
B = {Bl,Bz}
P(E1|pe B1) = P(Ezlpe Bz) = a
P(Ezlpe Bl) = P(E1|pe By) = 1-a
P(E1 n E2|pe Bl) = P(El n E,lpe Bz) =0
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For this case

a -a
. @ a-o

) = <.
' (B a%1-2)™ s (3 (1-2)7 2™

The lemma is proved for this case, if we prove that

R(bm/a,Bl) > R(om/""l,Bz) .
Now
a m-2a-1 a m-2a+1
R(Gm/a B.) - R(Gm/a_l B.) 1+(_1-_a> ) ! +(Ta
s | ’ 2 a m-2¢a a m-2a+2
1+ _a_) 1+ (_)
-a 1-a
2
(_a_ 21 (1 _3_> 1<_a_)]
1-a 1-a 1-a
=a m-2a N m-~2a+2
[1 + (—) ] 1+ (——-) ]
1-a 1-a
>0

The equality sign holds if and only if a = 1 - a. Notice that a or (1-a) cannot be equal to

zero, because otherwise ,Jm/a, for o # 0, is empty. This completes the proof for Case (i).
Case (ii):

T = {cl,cz}
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B = {B},By}

|
o
+
o

(E1|p6 B,) (Ezlpe By)

|
=3
+
(¢

(Ezlpe By) = P(Ellpe E,)

PE, N E2|p6 B,) = P(E, N Ezlp € By) = ¢

a+b+c<1
The lemma is proved for this case if we prove that R(Gm/a Bl) R(Gm/a Bz)
> R(Gm/a-l,Bl) + R(6m/a-1, Bz). The risk R(Gm/a i), for i = 1,2, can be written as

m/aB)—ZZR m/az i)’

m/a

where Rst is that portion of the risk which corresponds to all the elements of /J which

have s patterns correctly classifiable by both ¢y and c,, and t patterns incorrectly classi-

2 ’

fiable by both ¢y and ¢ Using the procedure similar to the one used in the proof of Case (i),

9
it can be shown that

R (5“‘/0‘ B,) + R t(am/"‘ By) > RSt(ém/a_l,Bl) + Rst(ém/a-l,Bz)

for every possible value of s and t. The equality holds if andonlyifa+c =b + ¢, i.e., the

two events E1 and E2 are equally probable. This completes the proof for Case (ii).

Case (iii):

—
1

= {cl,cz,...,cM}
= {Bl,Bz,...,BM!}

where the sets Bi's have been defined before. For this case

B,) .

M!
= m/a N _1_ m/a
R(6 T 121 ;
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Because of their properties mentioned before, the subsets Bi's of the set 72

can be paired off. Each such pair (Bil, Biz) has the following properties:

P(E. B. |\ = P(E. B.
(lee 11) (32pE ‘2)
Pl|E. e B. = P{E. € B.
( Iy P 11) < Jllp 12)
P[E. NE, [peB. \ = P(E, NE, |[peB, ),
LR 4 1 g 9

Also P(E,|p e Bil‘) = P(Eklpe Biz) for k = 1,2,...,M except j, and j, .

We can, therefore, write

_ 1
RE™Y - MT L R(am/"‘,Bil) + R(ém/“,Big)

where the summation is taken over distinct pairs (11, 12). Each pair of terms under the
summation represents Case (ii). Thus we consider the case (iii), and hence the lemma,
proved, with the observation that the equality in the lemma for this case will hold if and

only if

n

for ‘11,12 = 1,2,...,M!
and k = 1,2,...,M.
Corollary to Lemma 2:
—_ — =k
RE™™) > R/

The equality holds if and only if the probabilities of all the events Ei's are the same.

This is a generalization of Lemma 2 and can be proved by successive applica-

tion of the lemma.
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Lemma 3:

Let ¢ , ¢ 0 be £ disjoint information subspaces. Let 6.1 denote a deci-

18

sion function of the ith type which maps §i intoT", fori=1,2,...,4. Let d denote a decision

1= 1=

Iy
maps {1i,6.(z.)} x{j,6.(z.)} into I, where (z.,z.) is anelementof [ U ¢.) x [ U ¢.] with
i‘“i i 7 i=1 ! i=1"1

2 L
function of the type which maps (‘Ul Ci) X (_U Ci ) first into {i,éi(zi)} x{j, Gj(z.)} and then

z; € Ci and zj € CJ.. Then

* - B% ; R(5* R(5*
) (Zi’zj) 6j(zi) if R(Gi) < R(GJ.)
= 6%(z, if  R(6*) > R(6*
*(z,) 03) > Roy)
= either G’i*(zi) or 63."(z.) arbitrarily if
R(6*) = R(6*
for i,j = 1,2,...,¢

Proof: By Lemma 1, it is sufficient to prove this lemma for every restriction ﬁij of the
decision function 6 on the subspace §i X C]. , ,j=1,2,...,L. Letthe value of a decision
function 61j be Gi(zi) with probability a and Gj(z].) with probability (1-a). Then the average
risk ]E_{(()ij) is given by

ﬁ(aij) = aﬁ(éi) + (1-a) ﬁ(aj) )

It now becomes evident that ﬁ(ﬁij) becomes minimum, and consequently Gij becomes opti-
mum, for a = 1 and 61 = 6’1* if ﬁ(é’i*) < I—{(é’J!‘); a =0and Gj = 53!‘ if ﬁ(éa.") < ﬁ(ﬁ’{); a arbitrary

and ﬁi = 6=i'< and Gj = 63.* if ft(f)’{) = ﬁ(é’l!‘). Thus the lemma is proved.

Proof of Theorem 2:

The decision function 6;}] / @ can be looked upon as a part of a mapping of the
o m/i o m/i m/i, m/i m/j, m/j
space 'UO'J b 'UOJ first into {1,61 s/ N} x {j,éI (s7/?)} and then into
1= 1=

_— 1% —_ 1%
the set I'. According to the lemma 2, R(t');n/1 ) > R(G;n/] ) for i > j, where the equality
sign holds for the case when the probabilities of all the events Ei's are equal. The theorem

2 follows from Lemma 3.
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Corollary 1:

oy /oyt
)< )

if ay < Q- The equality sign holds only for the case when the events Ei's are equally

probable.

Corollary 2:

Rom/?) < Re™/y .

The equality sign holds only for the case when the events Ei's are equally probable.

Theorem 3:
* - *
RO/ = R ome)/0
for m > a .
Proof:

Given a bsm/ @ (i.e., a sample of m observations such that the minimum num-

ber of errors a discriminant can make in classifying its patterns is a), one can always pick

(m-a)/0

a sample bs from it, if m > «a.

h/a*
The discriminant Gin/a (bsm/a) is any element of the set Co(bsm/a), the

set of all discriminants which make a errors in classifying patterns of the sample bsm/ ¢
m/a) (m-a)/0

One can choose to select this element of C o(bs by first selecting a sample s

- * -
from the sample bsm/a and then taking the value 6§m @)/0* [bs(m a)/O] . This proves the
theorem.
Corollary:

m, /o * m,/a*
= 1’71 = 2772

if (m1 - ozl) > (m2 - az), with the equality holding only for the case when all the events Ei's
have equal probabilities.

Before going on to the next section we would like to point out that though we
assumed the knowledge of the class {Ak}, none of the optimum decision functions depend on

this class.
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5. DESCRIPTION OF THE PROBLEM

In this section we describe the pattern-recognition problem we have con-
sidered. The problem is described below in the form of a list of assumptions and related

remarks:

A. We assume that the observation-space is known to be R" xq A, B}. This
means that an object is known to be represented by a set of n measurements and that it is

known to belong to one of the two classes A and B.

B. The probability density p(w,.) on the observation-space is assumed to be

unknown a priori.

C. We assume that observations are made available as a sequence in real
time, not necessarily at fixed intervals. Note again that by an observation (w,.) we mean

a pattern and its correct classification.

D. The instant of time immediately after a new observation is available will
be called a "stage'" of the "process. ' At every stage a fresh discriminant is selected to
classify unknown patterns. The discriminant is selected from a given set I' = {cl, Coreves cM]
of M discriminants, where M is finite. In some special cases where the discriminants are
simple geometrical boundaries, it may not be necessary to require M to be finite. In any
case, in order that the problem does not become trivial, M is required to be larger than the
amount of available memory, so that it is not possible to count the number of errors made
by each discriminant in classifying known patterns and to select a discriminant on the basis
of those numbers by the application of Theorem 1.

In general, we make no assumptions about the relative geometric properties
of the discriminants. However, we shall point out wherever advanté.ge can be taken of
simple relations, if they exist, between the elements of the set I'. For example, if all the

elements of I are completely arbitrary, each one has to be stored separately. However, if
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the elements of T are, say, equally-spaced concentric hyperspheres, or hyperplanes in-
clined at equally~spaced angles to a fixed hyperplane, then it is sufficient to have an algo-
rithm that would generate these discriminants when required.

E. Storage space is available to keep a record of the past observations.
However, this storage space is not infinite; therefore, there comes a time after which all
the past observations cannot be stored. To be very specific, we shall assume that there
are A units of storagerspace available to store information about past observations, one
unit equivalent to the space required to store one observation. We shall refer to this storage
space as the "information memory." Note that it is not necessary that all the A units be
used up in storing past observations. However, the information memory is to be used only
for the purpose of storing information about the past observations. The information we shall
be concerned with storing will be old observations and discriminants with known numbers of
errors these discriminants have made, or known numbers of patterns these discriminants

have correctly classified.

F. At every stage, after making the decision about the discriminant to be
selected, there is another decision to be made if the information memory is full. This con-
cerns the question of how the presently available information in the information memory is
to be rearranged, and how much of that information should be destroyed in order to make a

unit available for a latest observation.

G. If a new observation arrives before the step of making room for it is com-

pleted, that observation is not taken into account.

H. The "process,'" therefore, consists of repeating the cycle of storing a
new observation, selecting the "optimum' discriminant from the information available in
the information memory, and making room in the information memory for a fresh observa-
tion in such a way that the "optimum' discriminant can be "improved' in real time. The
cycle is repeated as long as new observations are available.

I. We shall mention one more constraint on our system. In the adaptive
procedure to be described later, very often before the "optimum'" discriminant is selected
at a stage, we want to find a discriminant which makes the least number of errors in

classifying patterns associated with the observations which are stored in the information
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memory at that stage. It is possible that there is more than one such discriminant. In
fact, let us say that there is a subset I"o of discriminants which satisfy this requirement.
If 1"0 contains more than one element, then the adaptive procedure requires an arbitrary
selection of one of the elements of FO.

We assume that there is no storage space available to store the subset I‘o.
We assume that there is enough storage space for two discriminants and two numbers in
addition to information memory to compare two discriminants according to the number of
errors they make in classifying the patterns in the information memory. Thus we have
the constraint that only one element of the subset 1"0 can be known at a time.

If we wish to make the selection of this element of 1"0 arbitrary, we start
testing discriminants at an arbitrary point in the sequence T" = {cl, Cgsev-sC } and go
through the set I" systematically. We arrange to select the first discriminant that made
the least number of errors.

It is not necessary to go through the entire set I", if the elements of I" are
geometrically related. For example, suppose the elements of I" are concentric hyper-
spheres with the points in the inside of each hypersphere representing the patterns of one
fixed class. The procedure in such a case would be to select a hypersphere arbitrarily
and determine the number of errors it makes and to store them. Then test the next larger
hyper-sphere and determine the number of errors it makes. If the latter makes fewer
errors than the former, store it and the number of errors it has made in place of the
former; otherwise retain the former. Then test the next larger sphere and continue the
process until the number of errors made by a sphere is twice as many as the one that is
stored. It can be easily established that there is no larger sphere that can do better than
one that is stored. At that stage start testing spheres smaller than the one that was first
tested, and repeat the procedure for the smaller spheres. It can be shown that this pro-
cedure leads to the selection of an arbitrary element of I‘0 without necessarily testing all

the elements of the set T'.

21



6. RESULT OF THE INVESTIGATION

We now give the result of our investigation in the form of the following

theorem:
Theorem 4:

Let XirXgyeo s Xpye oo be a sequence of independent observations in real
time (i.e., t; < tj for i < j, where t; is the time of arrival of the observation xi). Let
Vi be the discriminant selected from the set I' (to classify unknown patterns) at a stage k
(i. e., at the instant of time immediately after the obseravtion X is stored). Then if Vi
is selected according to the adaptive procedure given below, it is "adaptively optimum" in

the following sense:

(i) For the content of the information memory at the kth stage, the decision

function used to determine Vi is the optimum.

(ii) The information retained in the information memory after the discrimi-
nant Vie is selected is such that the type of decision function anticipated to be used at (k+ 1) st-
stage is better than (i. e., its average risk is less than that of) the type of decision function
actually used at the kth~stage, unless there is not enough information in the information
memory at the kth-stage. In the latter case the information retained after the discriminant
Yk is selected is such that the anticipated type of decision function to be used at the (k+ i) th-
stage is better than the one used at the kth-stage, when i > 1; and the decision function to be

used at (k+ 1) st-stage is as good as the one used at the kth-stage.

Remarks:

1. The difference between the "type of decision function anticipated to
be used' and the "type of decision function actually used, ' should be noted. One anticipates
using a certain type of decision function before one knows the actual value of the newly ar-

rived observation. One knows what decision function was actually used, after the decision
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has been made.

2. The adaptive procedure can be described roughly in words as
follows: There are three modes of operation. During the first mode space is available in
the information memory to store new observations. In this mode any one of the discrimi-
nants which make the least number of errors in classifying stored patterns is selected.
During the second mode of operation the information memory is filled with observations
and a number which shows the errors made by the discriminant in classifying patterns in
the memory at the time it was selected. A new observation is accommodated by removing
the oldest observation from the memory. A comparison is made between the number of
errors of the present discriminant and the least number of errors that can be made in
classifying patterns in the memory by an element of the set I'. If the former is larger than
the latter, a new diccriminant is selected which makes the least number of errors in classi-
fying the patterns in the information memory, and the number of errors it makes is stored
in the memory instead of the number that is presently stored. Otherwise, no change is
made. This mode is continued until all patterns in the memory are correctly classified by
a discriminant. At that stage the adaptive procedure goes in the third mode of operation.
To describe the third mode of operation roughly, a comparison is made between the number
of ""successive'' patterns correctly classified by the present discriminant and the number of
""'successive'" patterns correctly classified by an "appropriately' selected discriminant. If
the former is larger than the latter, the present discriminant is retained; otherwise it is
replaced by the other discriminant. In the latter case, another discriminant is "appropriately”

selected for future comparisons. The process is continued ad infinitum.

6.1 The Adaptive Procedure and the Proof of the Theorem

It will be assumed that no element of the sequence {xi} is either correctly
classifiable or incorrectly classifiable by all the elements of the set I'. If such elements
exist, they are taken out of consideration, because such elements do not contribute any
information towards the selection of a discriminant but use up the information memory.

The adaptive procedure is broken down into three modes of operation and
into six steps. The first mode extends from Step 1 through Step 3, the second mode con-

sists of Step 4 and Step 5, and the third mode consists of Step 6.
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We now give the adaptive procedure step by step and simultaneously the

step by step proof of Theorem 4.

Mode 1

1. Initially, when no observations are available and when the information

memory is empty, the discriminant Yo is any aribtrary element of the set I'.

Proof: This is obvious because in the absence of any available observations, all the ele-

ments of T' are equally likely to be the best discriminant.

2. Aslongask < X, where X is the number of units of available informa-

tion memory, the new observation X is stored in the information memory and

o&*
Ve = Op (KppXgseenx)

Note: As mentioned in Point I of Section 5, we have, in addition to the A units of informa-
tion memory, memory units available to store two discriminants and two numbers, to assist
us in the selection of a discriminant which makes the least number of errors in classifying

patterns in the information memory.

Proof: As long as there is room for a new observation in the information memory, there
is no need to destroy any of the old observations. Also, since all the old observations are
preserved, there is no need to preserve any discriminant which may have been tested or

selected in the past. The choice of Vi follows directly from Theorem 1.

3. For k = A, after Yy is selected, the need arises to make a place for a
new observation. The course of action depends on the value of po(xl,x2 o0 Xy ), i.e., the

minimum of the numbers of errors made by the discriminants in the set I", in classifying

the patterns of the observations x;,%,,. .. 2y - If the value of po(xl,xz,. . ,xx) isOor 1,
the process goes into Mode 3 which consists of Step 6; otherwise the process goes to Mode 2

which begins with Step 4.

Mode 2

4. The first thing to do is to reorganize the information in the information
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memory. An arbitrary X which is not correctly classifiable by the discriminant Yy is re-
moved from the information memory. The observations x]., j > i, are moved one step up-
wards in the information memory. The last unit of the information memory is thus made

empty. From henceforth, the content of this memory unit, at any stage k, will be called o -

For k=2, .

is made equal to po(xl,xz,. PR TR SR IRRRRE ).

Note: 1 The only reason for eliminating an observation this way, for making room for the
number %, is to show that in the process of making room for o the optimum decision function
is not "degraded. "

Note: 2 We recognize here that what we called a unit of information memory (viz. the
amount of space required to store an n-dimensional vector i.e., a pattern, and its correct

classification) is a lot more storage space than required to store the number po(xl,  SYRRETE P

X . xx). One .could use the remaining space to store some other information. However,

i+’
for the sake of keeping the procedure simple we will not use the remaining fraction of the
unit of information memory, for storing information.

At any future stage, a newly arriving observation is stored at the end of the
sequence of observations in the information memory. This place at the end of the sequence
is created by destroying the observation at the head of the sequence and moving the rest of
the sequence up by one step. We shall denote the sequence of observations in the informa-

tion memory at the kth-stage by S The discriminant Yasl is selected by Vael =

A."l/ax* . k
GII (S)\+1), ie.,
. (o]
Vag1 = Yy oy <08, )
(o] . 0
= ¢, o > pS )

Yy with probability v

.. O B
o if p (SA+1) =%
=C (S)\+1) with probability (1-1v)

where 0 < vy < 1.
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Moy 1*
Proof: The decision function used at the Ath stage was 61 A+l , which is as good as the

A=1/ap* ;
decision function 6 /e , according to Theorem 3. The decision function anticipated to

! x=1/0n*
I
, which was the decision function actually used at the Ath stage.
A-1/ap*
11

of X - 1 observations which is formed from the old X - 1 observations and newly arriving

be used at » + 1 stage is 6
I

, which by Corollary 2 of Theorem 2 is better than

At the stage x + 1, the decision function 6 operates on a new sample

observations, by destroying an arbitrary observation from the A - 1 old observations. We

choose to destroy the oldest one.

5. At any future stage k > X + 1, after selecting the discriminant Yier if
po(Sk) = 0, the process goes to the third mode and Step 6; otherwise the process runs as

follows:

. )
4 =0 g H oo <SPS
) .
=p (Sk) otherwise.

The new discriminant Ve 1 selected at the (k+ 1)st-stage (i. e., after the
newly arrived observation is stored at the end of the sequence) is

A- l/ozk*

Vke1 = O &

k+1) )

After that Step 5 is repeated.

a- l/ak_ 1*

Proof: If pO(Sk) >a then the decision function actually used at the stage k is 51

k-1’
the decision function that is anticipated to be used at the (k + 1) st-stage is

L . a-1/ o 1*
which is better than the decision function 61

With o = % _qs

5% 1/og*
II

of Theorem 2.

, according to Corollary 2

If po(Sk) # 0 and po(Sk) <o _;ando = po(Sk), then the decision function
a-1/p°(Sy)*
that is anticipated to be used at (k + 1) st-stage is GII k , which is better than the

o-1/p%(Sk)*

I which was actually used at the kth-stage.

decision function 6

If pO(Sk) = 0, there is a perfectly separable sample (i. e., a sample of ob-

servation for which the least number of errors a discriminant can make in classifying its
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patterns is zero), the third mode of operation is followed. The proof for Step 5 is complete.

Note: (i) Consistant with our policy of treating the case where there is no
geometrical relation between the elements of the set I', we are giving the third mode of the
adaptive procedure which does not take advantage of the geometrical relation, should it
exist. It must be pointed out, however, that special procedures which take such geometrical

relations into account turn out to be much more efficient.

(ii) In the third mode it is not necessary at every stage to find a dis-
criminant which makes the least number of errors in classifying patterns in the memory.
As such the storage space of two discriminants and two numbers (mentioned in the note in
Step 2) reserved for that purpose is free to be used in the intermediate stages. We shall
use the storage spaces for one of the discriminants and one of the numbers, The content

of the storage space for the discriminant will be called z,_ at the kth stage, and the content

k

of the storage space for the number will be called %

6. In coming from Step 3, make room in the information memory for a
number whose value at any future stage k will be called - This is done by removing the
observation in the information memory whose pattern is incorrectly classified by the dis-
criminant Yy s and moving the subsequent other observations in the sequences one step up-
wards in the information memory, if po(xl,xz,. .. ,x)\) =1 If po(xl,xz, . ,x)\) = 0, the
spaces for o) can be made by remvoing any observation arbitrarily, and moving the subse-
quent observations one step upwards. For k =), oy is made equal tox - 1if
po(xl,xz,.. . ,75\) = 1, and equal to A if po(xl,xz,. .. ,x)\) = 0. In otherwords, o will
represent the number of patterns correctly classified by the discriminant Vie© Zy is made

equal to Yy s and "y is made equal to a -

If coming from Step 5, after, say koth-stage, o is set equaltox - 1.
)
Zko is made equal to yko and yko is made equal to O‘ko
At any future stage k > ), if coming from Step 3, andk > ko if coming

from Step 5, the following procedure is followed:
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Vo1 = Vg B <

= Vi if Y = ¢ and the pattern in the new observation
is not correctly classifiable by zy
= 2y if Y =@ and the pattern in the new observation

is correctly classifiable by Zy -

If the pattern in the new observation is correctly classifiable by Zys then

kel T % T 1
and
Zyel T %
Also, if % = Y then %1 = Yeel-
If the pattern in the new observation is incorrectly classified by Zyes then
%%+l T %
)
Zga1 5 C (Sk)
o}
ey = A1)

Remark: Zy is the discriminant which we previously referred to as the
"appropriately" selected discriminant. Yk is the number of "'successive' patterns correctly

classified by Zy up to the stage k, and a is the number of "'successive' patterns correctly

classified by Ve In Mode 3, Vies1 is made equal to one of the two discriminants Y and Z)

depending on whether the number of "'successive' patterns correctly classified by Yy OF 2y

is larger.

Proof: We notice that

. éak/O* Sak
Yk I
3
o %/ 0 (syk)
k - 1
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The decision function used in Mode 3 is of the type mentioned in Corollary 3

of Theorem 2. Here at the (k+1)st-stage the choice is between the values of two types of

oy /0% Vi 1/ ¥
decision functions; one is 61 and the other is equivalent to 611 If % = Yo then
Yk+1/1*
the anticipated decision function is equivalent to GHk+1 which, by Corollaries 2 and 3 of
o, /0%

Theorem 2, is better than & which was the decision function used in the kth stage. If

1
0*
o > Vs then the decision function at the (k+ 1)st-stage is equivalent to G?k which is the

same as the one used at the kth stage. Because there is not enough information the antici-
pated decision function at the (k+ 1)st-stage cannot be made better than the one used at the
kth-stage in the case Yk < o - However, the anticipated decision function at the (k+1i)th-

stage, where i = & = Ve is again of the type mentioned in Corollary 3 of Theorem 2. This
o, /0%

time the choice is between the values of two decision functions GIk and a decision function

Yie+i/ T

1I

This completes the proof of Theorem 4.

which is equivalent to 6 This decision function at (k + i)th-stage is better than

Olk/ 0*

o
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7. ILLUSTRATIVE EXAMPLE

A pattern recognizer, which uses the adaptive procedure given in the last
section, was simulated on the IBM 7090 digital computer to work out a problem of signal
detection in the presence of additive noise.

The usual problem of signal detection is the following: Given a waveform
x(t), it is required to determine whether it is pure noise n(t), or signal-plus-noise, s(t) + n(t),
for 0 <t < T. It is well known (Ref. 12) that if the signal s(t), with energy E, is known
exactly, and if the noise is white Gaussian noise with power per bandwidth known to be
equal to No’ and if the probability P(SN) of signal occurring with noise is known, then the
2 fT x(t) s(t)dt > c,

Ny ¢

then the hypothesis that x(t) contains the signal s(t) is accepted; otherwise the alternate hy-

decision rule which minimizes the average "cost" is the following: If

pothesis that x(t) is pure noise is accepted. The value of the threshold level ¢ is given by
c = TE— +Ing,
o}

where § depends on P(SN), and on the cost. In this report the cost has been taken equal to
unity if there is an incorrect classification, and zero if there is a correct classification.

For such a cost, B is given by

5 - 1z BGN)
= TPBEN)

With known E, No’ and P(SN), the value of the optimum threshold ¢ can be calculated.
For this illustrative example we are assuming that the knowledge about E,
No’ and P(SN) is not available. It is the job of the pattern recognizer to select a threshold
(discriminant), according to the adaptive procedure given in Section 6, from a given set T’
of thresholds. The set I' actually used is the set of all 41 odd numbers from 1 through 81.
The input to the pattern recognizer is a sequence of observations. Each ob-
servation, for this example, is the value of the integral I and the information that the cor-

responding x(t) is s(t) + n(t) or n(t). In the language of this report, I is the one-dimensional
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pattern w, and the information about x(t) is the classification of the pattern. Thus we may
say that the pattern w represented by a value of I belongs to Class A if the corresponding
x(t) is n(t); otherwise it belongs to Class B. The unknown probability density on the ob-

servation-space is given by

p(w,A) = P(SN) p[I|x(t) = n(t)]

p(w,B) = [1- P(SN) p(I|x(t) = n(t) +s(t)] .

For white Gaussian noise, the probability densities p[I|x(t) = n(t)] and p[IIx(t) = n(t) + s(t)]
are normal, each having a variance equal to i{- , and means differing by %—E; .

The simulated pattern recognizer has an information memory of 10 units, i.e.,
the pattern recognizer can store, at the most, 10 observations at a time.

For each set of values of 12\1—12 and P(SN), twenty runs of the adaptive process
were made. Each run was carried up to 100 stages. Five sets of values of -‘% and P(SN)
were considered.

The (a) parts of the five graphs show the values of the losses (as defined in
Section 3) for the 41 discriminants. The number with the arrow, in each graph, shows the
best discriminant. In some cases there are two "best' discriminants. The (b) part of each
of the five graphs shows the average over twenty runs of the loss of the discriminant selected

at each stage. These graphs clearly show a decreasing trend in the average value of the
loss of the discriminant as the number of the stage increases.

This decreasing trend indicates the fact that the pattern recognizer is
learning. The learning is very rapid in the beginning. Howeéver, the graphs clearly show
that the process of learning continues even after the tenth stage. This is especially true
when the signal-to-noise ratio is small. This result clearly indicates that the adaptive
procedure leads to a better discriminant.than the one that would be selected on the basis of
the first ten observations. The latter would have been selected if the observations beyond
the first ten were ignored because the pattern recognizer has memory to store ten observa-

tions at a time.
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8. CONCLUSIONS

An adaptive procedure is given whereby a pattern recognizer continually
"earns" to recognize patterns. The learning is demonstrated by the continual "improve-
ment" of the discriminant selected for recognizing unknown patterns, as long as new ob-
servations (patterns and their respective correct classifications) are made available to the
pattern recognizer. No a priori knowledge of the probability density on the observation-
space is assumed. Moreover the pattern recognizer is assumed to have a finite-memory.
The adaptive procedure not only makes efficient use of the finite memory in storing past
information, but uses "optimum' decision rules to select a discriminant on the basis of
the stored information. At any stage of the process, a discriminant is selected from a
prescribed set of discriminants. The factors affecting the choice of this prescribed set

of discriminants have not been discussed.
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