RSD-TR-14-87

Subgoal Ordering and Goal Augmention
for Heuristic Problem Solving

Keki B. Irani
Jie Cheng

Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109

August 1987

Center for Research on Integrated Manufacturing

Robot Systems Division

College of Engineering

The University of Michigan

Ann Arbor, Michigan 48109-2110






RSD-TR-14-87

TABLE OF CONTENTS

1.  Introduction .........ccce.e.. ettt st s e be s bt s sa st sa s et e as s as s assenaas 1
2. Previous Subgoal Ordering Strat€gi€s ..........ccocceeeerererurcrerrreranens 2
3. A Robot Planning Problem .........c.cccccevveivriniecneerceinensneccnrsensnenas 4
4. A Systematic Approach to Subgoal Ordering ........c.cccceecveeunnen. 7
5. Goal AUGMENLAON ...ccceevreererrrsvecunsrneresseessessnesasssossosasssnssssssessoses 12
6. Integration of Subgoal Ordering & Heuristic Estimation .......... 15
7. EXAMPIE ....eiiriiiriirricecennetsnncneesteetsnesesaeestsesessnnesessnasssrassesssnas 18
8. SUMIMATY ..ccvverrriniininrerriisneseeesteesesssesssassasssssssasssssseessnsssesssesssasses 23
REfEIENCES ....vvreviiiniiniieiiineicrnetenntentesteeeseseesseesesssesssesssssssesssasssasses 23






Subgoal Ordering and Goal Augmentation
for
Heuristic Problem Solving

Keki B. Irani
Jie Cheng
Division of Computer Science and Engineering
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, MI 48109, USA
Tel: (313)-764-8517
E-Mail: Keki B Irani@um.cc.umich.edu

ABSTRACT:

In order to improve the performance of heuristic search for finding optimal
solutions, two high level problem solving strategies, namely, subgoal ordering and
goal augmentation, have been developed. The purpose of these two strategies is to
make explicit the knowledge embedded in a general problem formulation which
can be used to constrain the solution search space. These two strategies have been
incorporated into a methodology, which we previously developed for automatically
generating admissible search heuristics. The effectiveness of these strategies are
demonstrated by the application to robot optimal task planning problems.

paper type: full-paper

track /topie: engineering/reasoning, planning

subtopic: subgoal ordering; goal augmentation; automatic search heuristic generation;
robot planning.






1 December, 1986

1. Introduction

We have now augmented our previously published([IrY85]) general heuristic prob-
lem solving methodology by two systematic problem solving strategies, namely, problem
subgoal ordering and problem goal augmentation. This paper reports on these two stra-
tegies. These strategies, however, are not dependent on our previous work and may be
incorporated into any other problem solving methodology. Our goal with these two stra-
tegies is to make explicit the knowledge embedded in a problem formulation which can

be used to conduct a solution search effectively.

Problem subgoal ordering is an important strategy used to reduce problem space
search. Many different subgoal ordering strategies have been reported in the past([Das77|,
[ErG82|, [Sac77], [Sus75|, [Tat75], (Wal81], [War74]). However, we present in this paper
a novel approach for subgoal ordering. In contrast to the previously proposed
approaches, our approach is to preorder the problem subgoals correctly and systemati-
cally by efficiently reasoning on the problem formulation. The result of ordering is then

imposed on the search control to constrain the search space.

Goal augmentation is an approach to systematically discover the goal information
which is not explicitly represented but which can be inferred from the given problem for-
mulation. The augmentation reduces ambiguity and enables more accurate estimation of

the search heuristic.

Our research on problem subgoal ordering and goal augmentation are both parts of
the effort devoted to developing a general heuristic problem solving methodology. Previ-
ously, we achieved a method for systematically modeling problems and automatically
generating admissible search heuristics for the A '-like best-first search(see [IrY85!,

(IrY86:). Now, the subgoal ordering and the goal augmentation strategies have been



2 December, 19886

integrated with the search heuristic generation to constrain search by improving the

tightness of the heuristic while still preserving its admissibility and monotonicity.

The rest of the paper is organized in the following way. In section 2, the earlier
problem subgoal ordering strategies are reviewed. In section 3, a simple robot planning
problem is introduced to illustrate the ideas. The subgoal ordering problem is discussed
in section 4 while section 5 introduces the principles and procedures for goal augmenta-
tion. Section 6 reports the work on the integration of the aforementioned problem solving
strategies with the search heuristics automatic generation. An example illustrating the

power of the two stratgies is given in section 7. A summary is given in the last section.

2. Previous Subgoal Ordering Strategies

Subgoal ordering has been employed in many early problem solving systems.
GPS [ErN69] was the earliest to apply the subgoal ordering strategy. Subgoals are
arranged as row headings in the "Table of Connection”. The system waits to achieve
the subgoal heading at a certain row until all the subgoal headings at the higher rows are
achieved. A total ordering is thus imposed on the problem subgoals. In ordering problem
subgoals this way, one has to be sure that achieving a new subgoal does not violate all

the previously achieved subgoals.

Originally, the subgoal headings were determined and ordered by the users. Ernst et
al.[ErG82] later developed a procedure DGBS to mechanize this approach. Although
DGBS correctly generates subgoal ordering for several problems such as the Fool’s disk,
Tower of Hanoi, etc., this approach cannot always guarantee correct ordering of the
problem subgoals. For example, when the superfluous operator constraint is violated, and

the table of connection is in a diagonal form, the system is not able to judge the correct



3 December, 1986

order of subgoals. Another problem with DGBS is that in constructing a table of connec-
tion, it must initially consider all the problem operator instances, instead of just the
problem operator schemes as usually specified. This may cause DGBS to be computation-
ally intractable when encountering a problem with small number of operator schemes but

large number of operator instances.

Some systems, such as HACKER [Sus75], INTERPLAN|Tat75i,
WARPLAN [War74], order subgoals arbitrarily and then perform destructive reordering
in the case that a protection constraint violation is detected. WaldingerWal81| suggests
a goal regression strategy which amounts to a constructive subgoal reordering. All these

strategies make over commitment to subgoal ordering.

In NOAH [Sac?7], on the other hand, least commitment is made towards subgoal
ordering. Subgoals are attempted in parallel unless sequential order constraints are
imposed on them by the problem dependent knowledge in the SOUP code. Several critics
are then applied to detect and handle interactions among subgoals or to find and elim-

inate redundancies.

Another approach is the combination of sequential and parallel methods. In this
approach, a plan is expanded by choosing a subgoal to be achieved which least interferes

with the existing partial solution[Das77].

The subgoal ordering strategies of these systems either make too strong an initial
commitment to subgoal ordering without making use of the knowledge of the inter-
subgoal constraints at all, or make a commitment to ordering too late. The former
results in too much backtracking while the latter results in much redundancy as well as
conflicts in partial problem solutions. Consequently, these strategies, do not effectively

reduce search effort. Unlike these methods, the method of ordering subgoals that we pro-



4 December, 1986

pose is based on actively detecting the inherent constraints among problem subgoals.

3. A Robot Planning Problem

In this section, we introduce a robot navigation planning problem. The goal of the
problem can be stated as follows: The Robot is to move from room, to room, while boz,
is to be pushed from room, into roomg The initial state and the goal state of the prob-

lem are depicted in Figure 1.

In this problem, there are three pertinent problem objects, namely, Robot, boz, and
boz,. A state of this problem has two aspects. One is that of an object being in a certain
room and the other is that of an object being next to other objects. In order to represent
the status of the problem objects in a state, we define the functions INROOM and
NEXTTO. Each function takes a problem object and a state as two arguments and
returns a value to indicate the corresponding status of the problem object in that state.
Assume obj is an object and s is a state. Then INROOM (obj,s) gives a room identifier
indicating in which room the object is located in the state s. NEXTTO (obj,s) returns a

set of objects whose positions are next to obj in the state s.

The legal actions in this planning problem are modeled as rules. The rules use the
IF <precondition> THEN < postcondition> format. The precondition specifies what
must be true for the rule to be applicable. The postcondition specifies the effects of the
application of a rule. s, and s, are used to represent the states before and after the
application of a rule. We assume that if the postcondition part of a rule does not con-

tain the status of an object with respect to a certain problem aspect, then that status of

the object is unaffected by the rule. The rules for our problem are given below:



December, 1986

room 3 room 2 room 1 room 3 room 2 room 1
/ / / _/
o g Y &y
Y
N
room 4 room S room 6 room 4 room 5 room 6
=S\,
robot box 1 box 2

Figure 1. A Robot Planning Problem
(a). Initial state (b). A goal state

R, GOTO(bz*):
IF: INROOJM(Robot ,s,)=INROOM (bz,s,)

THEN: [V by<({boz,,bozs}-{bz})(NEXTTO (by,so)=NEXTTO (by,s,)-{Robot})}* A

(NEXTTO (Robot,s5)={bz}) A (NEXTTO (bz,s)=({robot}| JNEXTTO (bz,s,)))

R, GOTHROUGH(rz,ry):
IF: (INROOM (Robot ,8,)=rz) \(CONNECTED (rz,ry))
THEN: (INROOM (Robot ,8,)=ry) A (NEXTTO(Robot,s,)={}) A\
(V by€{bozy,boz,}(NEXTTO (by,s,)=NEXTTO (by,s,}{Robot}))

Ry PUSHTHROUGH (bz,rz;ry):
[F: (NEXTTO(Robot,s,)={bz}) NINROOM (Robot,s\)=rz) A

(INROOM (bz,8,)=rz) \ CONNECTED (rz,ry)
THEN: (INROOM (Robot ,85)=ry) NINROOM (bz,s,)=ry) A

(V by<s({b0z,,b0z,}-{bz })(NEXTTO by,s,)=NEXTTO (by,s,)-{Robot bz })) \

(VEXTTO(Robot,s,)={bz}) \(NEXTTO (bz,s,)={robot})

* bz{or by) and rz(or ry) are the variables which represent a boz and a room respectively.

* We are assumiag that in a state the robot can be near one box only, while a box can be near both @

the other box.

he robot ard




6 December, 1986

The initial state s;, is given by

(INROOM (Robot ,s;, )=room,) \(INROOM (boz,,s;,)=room,) NINROOM (boz,,s;, )=room,)

NNEXTTO (Robot 8,0 )={}) NNEXTTO (boz,,e;,)={}) NNEXTTO (bozs,s;,)={})

The goal state sz of the problem is specified by the following formula, called the

goal condition formula:

(INROOM (boz ,8; }=roomy) \(INROOM (Robot ,s; )=room,)

Although this problem appears to be very simple, a heuristic state space search can
be very inefficient. We tried to use the automatically generated admissible heuristic
function({IrY85]) to control the search in solving the problem. The search tree generated
is depicted in Figure 2. For this problem, 78 nodes are produced and 35 nodes are

expanded for deriving an optimal solution with length of 6 rules.

On tracing the search tree generated in the problem solving, we find that the
heuristic prefers to move the robot directly towards its own goal rather than moving the
robot to boz, and then pushing boz, into roomg. This is caused by the fact that the
difference in the locations of the robot in any non-goal state and the goal state always
dominates that for the boz,. The inherent ordering constraints between the two problem
subgoals are not recognized and used. Consequently, the robot is misled into going into
room, directly. It is not until the robot arrives at room, that the task of moving the

boz, is noticed.

The ineffectiveness of the heuristic in this problem is due to the lack of knowledge
about the ordering constraints among the subgoals. This motivates us to develop a sys-
tematic subgoal ordering strategy and to incorporate it into the automatic heuristic gen-

eration.



7 December, 1986

4. A Systematic Approach to Subgoal Ordering

If a problem goal can be represented by a predicate formula in a conjunctive normal
form, then we can conceive every conjunct as a problem subgoal. There are usually
interactions between subgoals which determine the natural order of achieving them in
solving a problem. Many types of constraints may exist among problem subgoals. We
use only one type of constraint to order subgoals. However, we mention two more types
of constraints below to intuitively motivate the third type of constraint which we use for

ordering subgoals. Actually, the third type of constraint is a conjunction of the first two.

(1). A subgoal g, cannot be achieved before a subgoal g, in any problem solution.
There could be two possible situations. One is when g, is satisfied first and the precondi-
tion of achieving g, cannot be established without violating g,. The other is if g, is satis-

fied first then any rule which achieves g, will force the violation of g,.

The subgoal ordering constraints in our robot planning problem is an instance of
the first situation. If we achieve the subgoal for the robot first, then when we turn to

achieve the subgoal for boz,, we will have to retract the established subgoal for the

robot.

An example for the second situation is the following. Suppose our goal is to have
clothes washed and dried. The actions we can use are 'wash clothes in a washer’ and
'dry clothes in a dryer’. If we achieve the 'dry’ subgoal first, then although we can still
'wash clothes in a washer’ to satisfy the other subgoal, the ’dry’ subgoal would be wiped

out because the clothes become wet after washing.

(2). Subgoals g, and g, cannot be achieved simultaneously by the application of a sin-

gle rule. For example, in our robot planning problem, the robot cannot get into room,



8 December, 1988

while the boz; is pushed into room,.

(3). A subgoal g, must be achieved before a subgoal g, in any problem solution in
which both are satisfied. As mentioned before, this constraint is actually a conjunction of
the constraints (1) and (2) and it is this constraint which is used in ordering problem

subgoals.

These three subgoal ordering constraints are intuitively clear and practically useful.
However, it is not intuitively clear how we can systematically detect these constraints
from a problem formulation. In order to automate the process of detecting these kinds
of constraints from the basic problem formulation and to order problem subgoals sys-
tematically, we have developed relations and procedures. In the following, the proposed
approach and the results are presented. First we introduce some notations:

oG represents the goal condition formula which is a ground predicate formula speci-

fying the desired state of affair for a problem. g; represents a subgoal condition for-

mula which is a conjunct in the goal condition formula. SG is the set of all subgoal

condition formulas of G.

oS, is a subset the problem states in which the condition g; holds.

eR,(s,) is used to denote the resulting state of the application of the rule R; to the

state s, in which R, is applicable.

eprec, and post, are the precondition formulas and postcondition formulas for the

rule R, respectively.

eproblem solution path: a sequence of states (sy,8,...,5,) such that s, is an initial

state, s, is a goal state, and for every state s;{1<i<n), there is a rule which can

transform s; into s;.,. A partial problem solution path in a path P =(s,,5,,...,5,) is a

subsequence (s;,53,...,5,) such that p <n.



9 December, 1886

We now define a binary relation over SG. A theorem is then provided which

relates this relation to the type-3 constraint.

Definition: "’<" * is a binary relation over §G. g, <y; iff

Y kY S{(R(5)ES, py) N (3ESpme))—>sES,]
9 é g; means that for any rule in the problem, if the rule can transform a state, say
s, to a new state in which both g; and g; are true, then s must satisfy g;.
The relation R2 appears to be complicated because quantifiers are used over the
rules and the states. However, in constructing this relation, only pattern matching, vari-

able binding and easy evaluations are needed. A procedure called SOC(Subgoal Ordering

Constraints) has been developed for constructing R, . A loose upper bound for the com-
<

plexity of this procedure is (m Xn)?Xk, where m, n, and k are the cardinalities of the
set of problem objects, set of problem aspects and set of problem rule schemes, respec-
tively.

In the following, we give two definitions and then give a theorem which relates the

relation R, to the type-3 ordering constraint among problem subgoals.
<

Definition: g, precedes g; in a problem solution path P if f there exists a partial solu-

tion path (8y,8y,...,5,) in P which satisfies:
(€5, A N 3 K(1<k<p) N(%€S,) NV h{(k<h <p)—(84 €Sy Ag))-

Definition: g; and g, are said both achieved in a problem solution path P iff there is a

partial solution path (s,,85,...,5,) in P such that

* In later discussions, the notations << and R, will be used interchangably.
<



10 December, 1988

(3565, py) NV K(1SE<p)—84ES 4, )

Now, we present the theorem which links the relation R. with the type-3 subgoal
<

constraint. The proof is omitted. In the theorem, we assume that the two subgoals g;

and g; are not both satisfied in the initial state.

Theorem: Let g; and g; be two subgoal condition formulas. g; <g; iff g; precedes g;

in any problem solution in which both subgoals are achieved.

By this theorem, it is clear that if g; <g,;, we have to achieve g; before achieving g;

in any problem solution. Although the relation R, is itself not transitive, for a given
<

problem, a partial ordering of subgoals can be created using this relation. A procedure
called GOAL_ORDER has been developed for that purpose. Every subgoal is assigned a
rank by the procedure. All subgoals of a certain rank must be achieved before a subgoal

of any higher rank can be achieved. As the example below will show, it is not necessary

that if gi%g,-, then g; has a lower rank than that of g;. However, in that case, the rank
of g; is at least as high as that of g;. A loose upper bound for the complexity of the pro-
cedure GOAL_ORDER is (m X n)’log(m Xn), where m and n are the cardinalities of the

set of problem objects and the set of problem aspects, respectively.

With the ranked subgoals, we can construct a goal sequence G'=Gl,Gz,...,G’,,,
where G; is called the i-th component goal of the goal sequence and is a conjunction of
all those subgoal condition formulas with rank i. This sequence imposes constraints on
the search for the solution path. It requires that G; always be achieved before G; if
i <j. It also ensures that in achieving G;, all the component goals G, 's(1 <j) which

have been achieved will be protected.



11 December, 1986

We illustrate the result of the procedure GOAL_ORDER by giving the following
example. Suppose we have a set of subgoals SG={g,,....9¢} and the relation

Ré={<95196>1 <9296>) <9n9+:>) <9691>) <96,94>, <91,93>}. The procedure

GOAL_ORDER assigns ranks to the subgoals as follows:

Rank: g5, 94

Ranky: g

Ranks: gy, 93, 94

gs and g, are ranked at the first level because no other subgoal can precede them
and there is no ordering constraints among them. g4 alone is ranked at the second level
because it has to be preceded by g5 and g, and it must precede the rest of the subgoals.
Finally, g,, g3 and g, are ranked at the third level because they have to be preceded by

all the other subgoals and they themselves can not be ordered further. Notice that since

91<93, g3 has to be preceded by all the subgoals preceding g, although g3 may not

relate with any one of them through R, . However, we cannot rank g, at a different level
<

than g,, because there exist no definite ordering constraints between g, and g,, and g3

and g,.
With this ordering result, we can get a goal sequence G =G 1:G2,G3, where
G1=y92 /\9s

Ga=gg

Gi=g1 \g3 N9«

In our robot planning example, there are two subgoals as follows:

(1) INROOM(robot,sg)=room,,

(2) INROOM(boz,,s;)=rooms.



12 December, 1986

The relation R, is R, ={<(2),(1)>}. After applying the subgoal ordering algo-
< <

rithm, the subgoals are ranked into two levels and the original problem goal is
transformed into the goal sequence G' =G,,G;, where G, is the same as the subgoal (2)
and G, is the same as the subgoal (1). This ordering complies with the constraints

inherent in the problem specifications.

Unlike NOAH which makes least commitment, the approach described in this sec-
tion represents an undercommitment to the ordering of problem subgoals, which means
that subgoals are always arranged in a correct order, although the ordering may not be
complete. Therefore, the ordering results can be used to guide the search and never needs

to be retracted.

5. Goal Augmentation

In a problem formulation, goals are often not specified completely in the sense that
many things are left as "don’t care”. Therefore, more than one state can be a candidate
goal state. However, as far as the optimality is concerned, only some of them can actu-

ally qualify to be the goal states.

For the robot planning configuration in our example, for instance, assume the goal
is simply that INROOM (boz,)=roomg. It seems that the Robot can be anywhere in the
goal state. However, if an optimal path is to be achieved, three other conditions need to
be also satisfied. These three conditions are (1) the Robot is in roomg, (2) the Robot is
next to only the boz,, and (3) no object is next to the boz,. The first condition and the
third condition are the immediate consequences of achieving the given goal, namely,

INROOM (boz )=roomg, while the second condition is a necessary precondition for



13 December, 1988

achieving the given goal and which is invariant over the rule that achieves the goal.

This reasoning can be used to augment every component goal derived by the
subgoal ordering. We have proved that for the goal with one component goal(and the
proof can be extended to multiple component goals) that the goal augmentation has two
properties. These properties are: (1) every state which satisfies the original component
goal condition formula and which is on an optimal solution path, also satisfies the aug-
mented goal condition formula, (2) the number of nodes expanded during the search for
the optimal solution path with the the augmented component goal is no more than that
with the original component goal. We do not present the theorems and proofs in this
paper for space consideration. In the following, we give the algorithm for the augmenta-

tion of all component goals of a goal sequence.

AUGMENT(G' ,G',R):
¢ =G,G,,...,G,
R is the set of problem rules.
—a! [... [
Define G;=g; /\; N, - (1<S1<n)

Define G'=G, NG, A\ -+ AG..

(0). If m is the largest index such that Gj,...,G are all already satisfied by s;,, then G,'=G, for

l=1,...m.

For each G;(m+1<I<n), do (1) to (8):
(1). For each conjunct of G, namely, ¢/(1<i<n), do (2) to (5):
(2). AUG;~FALSE;R '=R.
(3). For each R,eR’, if 3 s(sESpmj Jo! /\R;(s)ES i), then AUG;;—post] (post is post;

with substitution for variables), R "=R ‘~{R,} and do (4)-(5).

(4). for each prec;(the k-th conjunct of prec; with substitution), do the following: If precj;



14 December, 1986

is not affected by the operator j, then AUG;; —AUG;; Nprec),.

(5). AUG. "’AUG, V AUG,','

(6). G'—G, NAUG,\/AUG,\ - V AUG,). Return.

In the algorithm AUGMENT, step (0) finds the first component goal which is not
already satisfied in the initial state. The algorithm achieves the augmentation of each
component goal G, mainly in steps (3)-(6). For every subgoal g; in the component goal
Gy, every rule R; is checked to see whether it is applicable in a state in which the
subgoal g; is not satisfied, and whether its application to such a state can satisfy G,
and all those component goals which precede G; in the goal sequence. If the rule R,
passes the test, then besides the component goal condition formula G,, all its precondi-
tions which are unaffected by the application of the rule and all its postconditions are
true in the state resulting from the application of R;. These preconditions and postcondi-
tions are conjuncted into AUG;;. If more than one rule passes the test, then the condi-
tions derived from different rules are disjuncted and stored in AUG;. The disjunctions of
all the AUG,;’s is the total augmentation which is finally conjuncted with the correspond-
ing component goal in the step(6). A loose upper bound of the complexity of the pro-
cedure AUGMENT is (m Xn)2Xk, where m, n, and k are the cardinalities of the set of
problem objects, set of problem aspects and set of rules. Since usually only a few rules
are related with each possible subgoal in a problem, the computation of the goal augmen-

tation is often very efficient.

We again use our robot planning problem to explain the algorithm. From the
subgoal ordering, we derived a goal sequence G'-—-Gl,Gz with two component goals,

namely, G,;=INROOM(boz,,sg)=rooms, and G,=INROOM(Robot,s; )=room,.

Since G, has only one subgoal and that subgoal can only be achieved by Rj, the



15 December, 1988

augmentation result is

G| =(INROOM (boz,,s5 )=rooms) \INROOM(Robot,s; )=rooms)
NNEXTTO(Robot,sg )={boz,}) \NEXTTO(boz,,s¢ )={Robot })
NNEXTTO (bozys¢)={ })

Although the component goal G, also has only one subgoal, that subgoal can be

achieved by applying either R, or R 3. Therefore, the augmentation result is

G,_:=(INROOM(Robot,sG’)=r00m4) NINEXTTO(Robot,s¢,)={ })
/NRobot g NEXTTO (boz,,s5,)) NRobotg NEXTTO (bozysc,))]
V [(INROOM (bozs,s¢,)=room,) \(NEXTTO (bozy,s5,)={Robot}) /\

(NEXTTO(Robot,sg,)={boz,}) \NEXTTO(bozy,s¢,)={ })I}

8. Integration of Subgoal Ordering and Heuristic Estimation

In our previous research, we proposed a methodology for determining a general and
admissible heuristic function h(e,) for the best-first search for a problem solution(see
[IrY85], [IrY86]). According to this methodology, for each state e,, h(e,) returns an
under-estimated minimum cost for the path from e, to the goal set. We can now show
that the subgoal ordering constraints can be naturally incorporated into the heuristic
estimation. The new heuristic estimation is tighter than the original one while the
admissibility and monotonicity is still preserved. In this section, we first briefly explain
the original heuristic function and then introduce the integration of subgoal ordering
with the heuristic estimation. Properties of the new heuristic estimation are then

presented.



16 December, 1988

The original heuristic function A(e.) is derived as follows: The problem is first
decomposed object-wise and parallelly transformed into k simplified problems, where k is
the number of problem objects whose status in the state e, is different from that in the
goal state. Each simplified problem contains only one object in its problem space, in
goals and in operators. The specifications concerning other objects are simply suppressed.
The minimum cost for the optimal path in each simplified problem is then easily derived

by conducting an exhaustive search.

Although the derived cost in any simplified problem can be taken as the heuristic
for the original problem and this heuristic is both admissible and monotonic, further
derivations are made to get a tighter heuristic estimation. Three functions are evaluated.
The first gives the maximum value of all the minimum costs for solving the simplified
problems. The second is the sum of all the minimum costs divided by the maximum
number of objects affected by one operator in the original problem model. The third is
the same as the second except that the objects which are affected by all operators are
excluded from consideration. The maximum of the three computation results is taken to

be the final value of h(e,) for the state e,.

The search heuristic described above assures the admissibility and monotonicity.
However, as has been demonstrated, it may not be effective in guiding search for some of
the problems. The heuristic does not incorporate the knowledge of interactions among
problem subgoals. Therefore it sometimes leads search to achieve subgoals in a rounda-
bout order and consequently the search becomes very inefficient. We now introduce a

new heuristic function which incorporates the subgoal ordering knowledge.

We denote the component goal sequence generated by subgoal ordering to be

G,,G,y..,G,, the sequence after the augmentation to be G,,Gy,...,G,, and finally



17 December, 1986
we denote the goal sequence for heuristic estimation to be

m-1
{,G;,...,G;,=Gl !G; NGy, * + - ;Gr:: Ni=/\IG")
In the search process for the problem solution, for any state e, being evaluated, we

define an effective goal subsequence G," which is the remaining sequence of component

goals to be fulfilled. Formally,

Ge, =G/ Gis1s -+, Gn iff ¥V i((1Si<i;)—e,€5c) Ne:ESc,

In the following, we informally introduce the new heuristic function. When a state,
say e,, is to be evaluated, the problem is decomposed into k simplified problems as
before where k is the number of problem objects which do not have the same status in
e, and in all the component goals of the effective goal subsequence G,': . In the simplified
problem for an object a, the effective goal subsequence is relaxed such that only the
specification about the status of a is retained in each of the elements of the sequence.
The cost of the optimal solution path passing through each of the elements of this sim-
plified sequence is then determined. The final value of the new heuristic A™(e;) is the

maximum of the three values computed in the same way as before.

The properties of the heuristic function h*(e,) are presented in the following two

theorems.
Theorem: The heuristic function A¥(e,) as given above is admissible and monotonic.

Theorem: The heuristic function h*(e,) as given above is tighter than the original

heuristic estimation A(e,).

With the new heuristic function, the search becomes very efficient. As can be seen

from Figure 2(a), without the subgoal ordering and goal augmentation, the search goes



18 December, 1988

78 nodes generated 13 nodes generated
35 nodes expanded 6 nodes expanded
(a) (b)

Figure 2. Comparison of Search Tree Diagrams

(a). without subgoal ordering and goal augmention

(b). with subgoal ordering and goal augmentation
astray for a long time before it touches the right path. For this problem, 78 nodes are
produced and 35 nodes are expanded for deriving an optimal solution with length of 6
rules. However, as shown by Figure 2(b), with the subgoal ordering incorporated, the
heuristic value discriminates against the misleading path at the very outset. The search
tree generated for this problem contains only 13 nodes of which, only 6 nodes are

expanded. This demonstrates the advantage of the subgoal ordering when it is incor-

porated into heuristic estimation.

7. Example

In this section, we give an example to illustrate the application of the subgoal order-

ing, goal augmentation and the integration of these two strategies with the admissible



19 December, 1986

heuristic generation. The example problem is again a robot navigation planning prob-
lem. The problem is both described in Figure 3 and specified by the problem model for-
malism in the following. The results of applying each strategy are shown and finally, the
performance of the search with using and without using the subgoal ordering and the

goal augmentation are compared.

There are 7 problem objects involved in this problem, one Robot, one boz and 5
doors. The problem has three aspects. Two of them are the same as in the previous
example and we still use the functions INROOM and NEXTTO to represent them. A
new problem aspect is the status of a door, for which we choose to use the function
D-STATE to represent. D-STATE takes a door object and a state as its arguments

and returns the status of that door in that state. The value of the door status is either

‘open’ or 'closed’.

room 3 room 1 room § room 3 room 1

room 5 k
—

o
room 6 room 4 room 2 room 6 room 4 room 2
(a) oy, (b)
)
# S

Figure 3. A Robot Planning Example
(2). An initial state  (2). A goal state



20 December, 1988

There are 6 pertinent actions that are modeled as rules. The first rule is for the
Robot to walk to a boz if they are in the same room. The second rule is for the Robot to
walk to a door if the Robot is in one of the rooms connected by that door. The third
rule is for the Robot to go from one room to another if these two rooms are connected by
a door and the door is open. The fourth rule is for the Robot to push a box from one
room to the other. For this rule to be applicable, besides satisfying the preconditions for
action 3, the Robot must also be near the boz to be pushed. The last two rules are
opening and closing a door by the Robot which stands next to that door. It is assumed
that the cost of applying each rule is a constant. Therefore, a best solution is one com-
posed of least number of rules.

The rules are specified as follows:

R, GOTO(bz*):
IF:  INROOM(Robot,s,)=INROOM (bz,s,)

THEN: (Y dz€{door3,...,door 4} (NEXTTO (dz,s,)={ }))* A
(NEXTTO (Robot ,8;)={bz}) \(NEXTTO (bz,s,)={robot})

R, GOTO(dz):
IF: 3 rz,ry[(INROOM(Robot,s,)=rz) \NCONNECT (dz,rz,ry))]
THEN: (Y obj€({boz,door,s,...,door 4 }-{dz } (NEXTTO(0bj,82)={ }) A\

(NEXTTO(Robot ,85)={dz}) NNEXTTO (dz,s;)={Robot})

R; GOTHROUGH (dz,ry):
IF: 3 rz[(INROOM (Robot,s,)=rz) \(CONNECTED (dz,rz,ry))] NDSTATE (dz,s,)=open)

THEN: (INROOM (Robot,s5)=ry) N\(Y obj(NEXTTO (obj,s5)={}))

R, PUSHTHROUGH (bz,dz,ry):

* bzfor by), rz(or ry) and dz(or dy) are the variables which represent a boz. a room and a door respectively.

* We are assuming that in any state, the robot cannot be near both a door and a box and the box is never near any
door.



21 December, 1986

[F: (NEXTTO(Robot,s,)={bz}) N 3 rz[(INROOM Robot,s,)=INROOM (bz,8,)=rz)) \
CONNECTED (dz,rz,ry)] ND_STATE (dz,s,)=open)

THEN: (INROOM (Robot ,s5)=ry) NINROOM (bz,s5)=ry) \
(Y dz€{dooryy,...,door o} (NEXTTO (dz,85)={ }) A
(NEXTTO(Robot 85)={bz}) A\ (NEXTTO (bz,s,)={robot})

Rs OPEN(dz):
IF: (DSTATE(dz,s,)=closed) \ (NEXTTO (robot,s;)={dz}) A\
( 3 rz,ry [(INROOM (Robot ,s,)=rz) /\ CONNECT (dz,rz,ry)))

THEN : D_STATE (dz,s;)=open

Ry CLOSE(dz):
IF: (D.STATE(dz,s,)=open) A\ (NEXTTO(robot,s,)={dz})
( 3 rz,ry (INROOM (Robot ,s,)=rz) \ CONNECT (dz,rz,ry)])

THEN: D STATE (dz,s,)=closed

The initial state s;, is specified as follows:

(INROOM(Robot,s;, }=room;) \INROOM/boz,s;, )=room,) )\
(D_STATE(door,3,;, )=open) )\ -+ ND_.STATE(doorg,s;,)=open)

The problem goal state sg; is specified by the goal condition formula

G=g, \92 /\93 /\ 94 Where

91:(INROOM (R obot sq)=room ,),
92:(INROOM (boz ,s5)=roomy),
93:(D_STATE((door 5,55 )=closed),

94(D_STATE (dooryy,sg )=closed).

When trying to solve this problem by heuristic search without using the subgoal
ordering and goal augmentation, we find that the efficiency is very poor. However, there

exist inherent ordering constraints among the problem subgoals and there also exists



22 December, 1986

implicit goal state information in this problem formulation. By applying the subgoal ord-
ering and the goal augmentation strategies, we can detect and make use of this informa-

tion to enable a tighter search heuristic and to make the search efficient.

Using the procedure SOC, the relation R, is constructed as follows:
<

Ré={<91,94>,<92791>,<93’91>}

Applying the procedure GOAL_ORDER to the set of problem subgoals with the

relation R., we get a goal sequence G =G,,G,,G,, where G;=g; )\ g3 G,=g, and
<

Gi=g4
The procedure AUGMENT is then applied to that goal sequence and the following
results are derived. To make it easy to understand, we have simplified the augmentation

results.

G{=(INROOM(boz,sGl)=room6) /ND_STATE (doorys,sg,)=closed) N\
[((D_STATE(door 44,5¢ )=open) /\INROOM(Robot,sg )=rooms) /\
(NEXTTO(Robot s )={boz}) \NEXTTO (boz,sg )={Robot}) )\

(V de(NEXTTO (dz,6)={ })] V
[((INROOM(Robot s )E{roomy,rooms}) \(NEXTTO(Robot,sg,)={d3s} /\
NEXTTO(door 3,86 )={Robot} \Y (dz7£doory)(NEXTTO(dz,s6,)={ }|
G, =(INROOM(Robot 3¢ )=roomy) D STATE(doory,sg,)=open) /\
(V obj(NEXTTO (0bj,s6,)={ }
G3=(D_STATE (door s, )=closed) /\INROOM (Robot,sg )=room,) )\

(NEXTTO(Robot,s¢ )={doory}) \NEXTTO (doory,,sc,)={Robot})



23 December, 1986

Finally, we incorporate the above results into the heuristic generation and conduct
the heuristic search to solve for the optimal solution path. The effectiveness of the search
heuristic is greatly improved. Using the original methodology without subgoal ordering
and goal augmentation, 321 nodes are generated and 138 nodes expanded. However, with

the new methodology, 140 nodes are generated and 60 nodes expanded.

8. Summary

This paper is a contribution to the development of a general methodology for
automated heuristic problem solving. We have presented an improved procedure for
subgoal ordering and a novel procedure for goal augmentation. We then outline a pro-
cedure to integrate these two strategies with our previous methodology of automatic gen-
eration of admissible search heuristic. The combined package is a new methodology of

general problem solving.

REFERENCES

[Das?7]  Dawson, C., and Siklossy, L., The Role of Preprocessing in Problem Solving
Systems”’, Proc. IJCAI 5, Cambridge, Mass., August 1977.

[ErG82] Ernst, G. W., and Goldstein, M. M., "Mechanical Discovery of Classes of
Problem Solving Strategies”, JACM, Vol. 29, No.1, January 1982. pp. 1-23.

(ErN69]  Ernst, G. W., and Newell, A., GPS: A Case Study in Generality and Problem
Solving. ACM Monograph Series. Academic Press, New York, 1969.

[Ir'Y85]  Irani, K.B and Yoo, Suk I, "Problem Solving: A Methodology for Modeling
and Generating Heuristics”. Second International Conference on Artificial
Intelligence Applications., December 1985.

(IrY86]  Irani, K.B. and Yoo, S. I, A Methodology for Solving Problems: Problem
Modeling and Automatic Heuristic Generation”. Submitted to IEEE Transac-
tions on PAMI, 1986.

[Sac?7) Sacerdoti, E. D., A Structure for Plans and Behavior”, Elsevier North-
Holland, New York, 1977.

[Sus75] Sussman, G. J., A Computer Model of Skill Acquisition, New York: American
Elsevier. 1975.



[Tat75]
[Wal81]

[War74]

24 December, 1986

Tate, A., "Interacting Goals and Their Use”, The proceeding of the 4th IJCAI,
1975, pp. 215-218.

Waldinger, R., "Achieving Several Goals Simultaneously”. Readings in Al pp.
250-271. (1981).

Warren, David H.D., "WARPLAN: A System for Generating Plans”, Depart-
ment of Computational Logic Memo 76, U. of Edinburgh, July, 1974.



