U-Shaped Lines with Switchover Times and Costs

Seyed M.R. Iravani
Department of Industrial & Operations Engineering
University of Michigan Ann Arbor, MI 48109

Morton J.M. Posner
Department of Mechanical & Industrial Engineering
University of Toronto, Canada

John A. Buzacott
Schulich School of Business

York University, North York, Canada

Technical Report 97-13 October 1997



U-Shaped Lines with Switchover
Times and Costs

SEYED M.R. IRAVANI
Department of Industrial and Operations Engineering
University of Michigan, Ann Arbor, Michigan 48109-2117

MoRTON J. M. POSNER
Department of Mechanical and Industrial Engineering
University of Toronto, Toronto, Canada

JOHN A. BUzZACOTT
Schulich School of Business
York University, North York, Canada

Abstract

The advantages of U-shaped production lines over traditional production
lines have been encouraging more manufacturing companies to employ these
lines in order to increase their flexibility in adapting to changes in demand.
In this paper, a general definition for U-shaped lines is presented and different
versions of these lines are introduced. Then, considering the fact that a U-
shaped line is actually a tandem queue attended by moving servers, the effect
of switching costs and walking times are examined by decomposing a U-shaped
line into a number of tandem queues each attended by a moving server.
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1 Introduction

Traditional production or assembly lines are based on establishing a processing sequence
for parts being produced on the line. Parts move in a smooth, simple, logical and direct
path through a sequence of work stations each comprised of special purpose equipment
and single-functional workers. Although characterized by relatively high production rates.
these lines have their own limitations. For example; machine stoppages halt the line, the
slowest station paces the line and the line requires general supervision. However, the most
important limitation of traditional production or assembly lines is the inherent inflexibility
in changing the production rate. One way of increasing the flexibility of these lines in
adapting to demand changes is through attaining flexibility in deciding on the number
of workers. This is called Shojinka in Japanese (Monden [11]). Shojinka in the Toyota
production system means to increase or decrease the number of workers at a shop as the
production demand changes. Shojinka actually increases productivity by adjusting and
rescheduling human resources. This concept has created new flexible lines in which there
are fewer workers than stations in the line, and the workers walk to adjacent stations to
continue work on an item.

Two main factors in Shojinka are:
o multi-functional workers, and
¢ U-shaped layout.

Multi-functional workers have the proper skills to work in different work stations in the line,
and under a U-shaped layout, the walking times of workers between stations are reduced;
and furthermore, it is easier to broaden or narrow the range of jobs for which each worker
is responsible.

It should be noted that in some U-shaped lines the number of workers is the same as the
number of work stations. These lines, which we prefer to call traditional U-shaped lines, are
designed in a U shape for better material flow (entry and exit are located in the same side,
close to each other), layout design considerations, or for better supervision and control. In

this chapter, by U-shaped lines we only mean lines in which there are fewer workers than



stations, whether the line is U-shaped or not.
Recently, U-shaped lines have become very popular. Some reasons for their popularity
over traditional lines are as follows (Monden [11], Miltenburg [10], Bartholdi and Eisenstein

(5] and Japanese Management Association [9]):

¢ Flexibility to increase or decrease the necessary number of workers when adapting to

changes in production quantities (changes in demand).

¢ Having multi-functional workers rotating through stations in the line allows more

workers to participate in efforts to improve the process.

o Workers stay more alert by rotating through a variety of tasks as compared to re-

peating a single short cycle task.

e The number of stations is always less or equal to that required on a traditional line.
because there are more possibilities for grouping tasks into stations on a U-shaped

line.

o The worker moves the material automatically as a part of the task, so that usually

no special material-handling equipment is necessary.

Also, the advantages of U-shaped lines over traditional batch production in shops with
functional layout can be summarized as: lower inventories, simpler material handling, easier
production planning and control, opportunities of team work and problem solving, better
control of quality, and so on.

These advantages have increased the number of U-shaped lines in manufacturing compa-
nies. However, based on the nature of products and activities, different versions of U-shaped
lines with different features have been designed. In this paper a general definition for U-
shaped lines is presented and different versions of U-shaped lines are introduced. Then, the
literature on U-shaped lines is studied; and finally, considering the fact that a U-shaped
line is actually a tandem queue attended by moving servers, the effect of switching costs
and walking times are examined by decomposing a U-shaped line into a number of tandem

queues each attended by a moving server.



2 U-Shaped Lines

Based on the production resources and the level of technology which were required in
manufacturing units, different types of U-shaped lines have been designed to satisfv the
requirements of those units. Before introducing these lines, we present our general definition
for a U-shaped line which is used and referred to in this chapter as follows:

"A U-shaped line is a production or assembly system in which there are machines or
tools available to perform N different operations on an item, and all items that enter the
system require the sequence of operations 1,2,..., N. There are M workers (operators).
M < N, who use the machines and tools to perform operations on items. Each different
operation is usually performed at a different place which is called a work station. Therefore.
U-shaped lines actually consist of N work stations sequenced from 1 to N in a line which
is usually configured in a U shape. Workers move among work stations to process items
according to operational rules. The operational rules determine each worker’s next action
when an operation is completed. According to the operational rules, worker m (m € My,
where My = {1,2,....M}) may perform operations at a specific zone or the set of work
stations N,,, where U,A,f:l N,, = Np where Ay = {1,2,...,N}. In other words. worker m
is restricted to work in a specific zone in the line which contains work stations in set N,,.
This zone is called the working zone of worker m. It should be noted that for two workers
i and j, we may have N; N N; = 0. This means that the working zones of workers ¢ and
J may overlap.” Figure 1 shows a typical U-shaped line with N = 12 work stations and
M = 3 workers.

Our definition characterizes different aspects of U-shaped lines for better understanding
of the elements involved in these lines. In the next sections we present a new classification
of U-shaped lines with the objective of organizing the previous research and providing a

framework for further studies on these lines.

2.1 Worker-Oriented U-Shaped Lines

In a worker-oriented U-shaped line the operations on items require the presence of a worker

during the whole operation. In other words, one item at a time can be processed in each work
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Figure 1. A U-shaped line with N = 12 work stations and M = 3 workers.

station and exactly one worker is required during the operation in that station. Typically. in
these types of U-shaped lines, the machines or tools which are used are not highly automated
or advanced, and the line is actually established based on the workers’ skills and team work
rather than the capabilities of the equipment in the line.

Bucket brigade production systems are one type of worker-oriented U-shaped lines. In
a bucket brigade production system, exactly one worker is required during the operation on
an item of a batch. Each worker processes his batch from station to station until he reaches
a busy station where his successor is working on his batch. In this case, the worker must
wait until the next station becomes available, and then he continues to work on his batch.
When the last worker completes his batch on the last work station, the line resets. The reset
process is actually a takeover process as follows: the last worker returns and takes over the
batch of his predecessor, who in turn returns and takes over the batch of his predecessor,
and so on, until the first worker starts a new batch at the first station. This idea was first
commercialized in the apparel industry by "Aisin Seiki Co. Ltd.” a subsidiary of Toyota,
and named Toyota Sewn Products Management System or TSS (Bartholdi and Eisenstein
[4]). TSS lines were first developed in Japan in 1970’s and are widely used in apparel and

textile industries. However, the first implementation of TSS in the US was in 1986.

'In Riverside Fashions of Norris, South Carolina (Bartholdi and Eisenstien [4]).



TSS is actually a bucket brigade production system in which the bucket size is 1. The
operational rule in TSS lines consists of two separate rules (forward and backward rules),
and if the workers are numbered from 1 to M in the direction of product flow. then each

worker must independently follows these rules (adapted from Bartholdi and Eisenstien [4]):

Forward rule: Process your item at successive work stations taking into account that at
any station the worker with the higher index has priority. If your successor takes over
your item, or if you are the last worker and you complete processing your item in the

last station, follow the backward rule.

Backward rule: Walk back and begin to work on the item of vour predecessor, or if vou
are the first worker, pick up raw material and start a new item in the first station.

Follow the forward rule.

It is assumed that there is always enough raw material in front of the first work station.
In TSS lines (bucket brigades) there is always a possibility for workers to be blocked in
forward movements. In this case, they are not allowed to pass their successor or return to

take over the work of their predecessor.

2.2 Machine-Oriented U-Shaped Lines

In each work station n of a machine-oriented U-shaped line, there is a machine which
performs operation n (n € My) on the items. These machines are advanced and are able
to perform the main operation automatically on an item after being set up by an operator.
Here, the workers are machine operators, and the number of operators, M, is less than the
number of machines, N. Therefore, each operator is in charge of at least one machine. The
difference between worker-oriented and machine-oriented U-shaped lines is that in worker-
oriented U-shaped lines one worker is required during the whole processing time of an
item in a station; however, in machine-oriented U-shaped lines, when an item is attached
to a machine and the machine is turned on by an operator, the item can be processed
automatically without the operator. Therefore, the operator can switch to another machine
to continue his job and the item will be detached by the same or another operator later.

In a worker-oriented U-shaped line, the number of busy work stations is at most equal



to the number of workers; but, in a machine-oriented U-shaped line this number can be
more than the number of operators. One example of the machine-oriented U-shaped line is
the single unit production and conveyance ("lkko-Nagashi” in Japanese), which is applied
to a production line without conveyors to manufacture different kinds of relatively small
parts (Monden [11]). In this line, one operator is in charge of N machines. When the
operator visits a machine, his job is to wait for the processing of the preceding item if it
is not complete, detach the processed item from the machine, attach the item which he
has brought, turn the machine on and transfer the detached item to the next machine.
According to this operational rule and considering that the line has only one operator, the
new item enters the system only after one completed product exits. The work in process in
the system is constant, and to increase the production rate more operators may be allocated

to the system and zones assigned to each operator.

2.3 Static Working Zones Vs Dynamic Working Zones

Suppose in a machine-oriented U-shaped line that N,, is the set of machines which are
assigned to operator m (m € My),and N; N N; = 0 for Vi # j € My. Then, each machine
is actually assigned to one of the operators. In other words, the sets of machines assigned
to specific operators are mutually exclusive, and therefore, the operators’ working zones
have no common area. These working zones which remain fixed and unchanged during the
operation of the line are called static working zones. In worker-oriented U-shaped lines,
the static working zones appear when only one specific worker is allowed to work in each
working station. This means that operation n is always performed by worker m.

Sometimes static working zones are defined based on the fraction of work completed on
an item instead of the number of operations performed on an item. In other words, the
boundaries of a static working zone may not be the end point of an operation. If a boundary
covers a fraction of an operation in a work station, then the remaining fraction belongs to
another working zone. This means that there exists a work station which is used by two
workers: but these workers perform separate fractions of an operation on an item in that
station.

In U-shaped lines with dynamic working zones, set N, is not a fixed set and may



change in time. This means that each operator (worker) may be in charge of different
machines (may work in different work stations) in each cycle. Therefore, for each worker
different working zones are created in each cycle. Bucket brigades are a typical example
of U-shaped lines with dynamic working zones. In bucket brigades each operation is not
always performed by the same worker. U-shaped lines with dynamic working zones such as
bucket brigades actually eliminate the possibility of starvation in a work station and create
a self-organized line. On the other hand, workers in U-shaped lines with dynamic zones
must be more skillful, because they must be able to work in more stations compared with

the case of static zones designed for the same number of workers in a given U-shaped line.

2.4 Sequenced Working Zones Vs Mixed Working Zones

Consider a U-shaped line in which each worker is in charge of consecutive work stations. This
usually means that the servers are not allowed to pass each other in the line. Thus, the U-
shaped line will consist of M working zones which are located in a prescribed sequence. We
call these zones as sequenced working zones (Figure 2.a). In U-shaped lines with sequenced
working zones, each zone is a multi-stage tandem queue attended by a moving server. The
sequenced zones may either change in different cycles (dynamic working zones) or remain
the same all the time (static working zones). However, in both cases, the working zones
can be always numbered from 1 to M in the direction of production flow. A TSS line is an
example of a U-shaped line with sequenced dynamic working zones.

In U-shaped lines with mized working zones, the work stations assigned to at least one
worker are not necessarily consecutive work stations. In other words, at least one worker is
allowed to skip some work stations and go from work stationitoj (j > n > 1, 1,7,n € Ny),

where another worker is in charge of work station n (Figure 3.b).

2.5 U-Shaped Lines with Multi-Functional Machines

Consider the single multi-functional machine scheduling problem in which a single machine
is able to perform N -.different operations, one at a time. If this machine is used to process
items which require the sequence of operations 1,2,..., N, then this system is indeed a

U-shaped line with N work stations and 1 worker. The setup time required after operation
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Figure 2. A U-shaped line with (a) Sequenced working zones.
(b) Mixed working zones.




¢ to start operation j can be considered as the walking time between work stations  and j.
Now, if M (M < N) similar machines are used and the set of operations N,, is assigned to
machine m, where Ule N, = Ny, then for one operator per machine. this system may be
considered a U-shaped line with N work stations and M workers.

U-shaped lines with multi-functional machines are not usually configured as a U-shaped
line or at least the number of work stations is not quite clear to an observer. The walking
times in these lines, which are actually the setup times. are typically greater than walking
times in worker-oriented and machine-oriented U-shaped lines. In worker-oriented U-shaped
lines, there are usually no setup times, and walking times are relatively small, while in
machine-oriented U-shaped lines, the setup times are the times required to set the machine
to perform the same operation on the next item. This time is usually less than the time
required to set the machine to perform another operation on the next item (the setup time

in a multi-functional machine).

3 Literature Review

In the category of worker-oriented U-shaped lines, Schoer. Wang and Ziemke [14] published
the first paper on TSS lines in 1991. They analyzed a particular TSS line through simulation
to achieve some statistics they needed, but did not reach any general conclusions about TSS
lines. However, the first comprehensive paper on TSS lines (bucket brigades) was presented
by Bartholdi and Eisenstein [4] in the context of apparel industry, in which they introduced
a sufficient condition to achieve the maximum production rate. They assumed that all
items are identical, requiring the same total processing time, and work station j performs
a fraction p; of the total processing time of an item. They define the state of the system as
vector X = (z,,Z2,...,Z4), where z,,, the position of worker m in the line, is determined by
the fraction of the cumulated work completed so far on an item being processed by worker m
to the total work required for that item in the line. Therefore,0 < z; <z, <--- <1y <1,
because workers are not allowed to pass one another. They modeled worker m by work
velocity v, which can be interpreted as the number of complete items that worker m can

produce per unit time, while working alone in the TSS line. For deterministic processing
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times and almost zero walking times, they showed that if workers are sequenced from slowest
to fastest (v; < v < --- < vy), then the dynamic working zones in the line converge to
static working zones, and if each worker is never blocked, then the working zone of worker

m is bounded in the interval of work content [I{*), u{*)]. where

m

m-1
I(u') — Zn;l T (1)
Za:l vj
oL
) = Lzt (2)
ZI:I vj

and the production rate of the line reaches to its maximum rate 7™M v;. In other words.
by sequencing workers from slowest to fastest, the TSS line balances itsell. On the other
hand, they considered that if workers are not sequenced from slowest to fastest. then: (i)
the TSS line can fail to balance itself, (ii) adding a worker to the line can decrease the
production rate, and (iii) increasing the velocity of a worker may decrease the production
rate. However, in TSS lines where workers are sequenced from slowest to fastest (a balanced
TSS line), adding or speeding up a worker never decreases the production rate.

In their next paper with Bunimovich [2], Bartholdi and Eisenstein analyzed the be-
haviour of bucket brigade production lines with 2 and 3 workers. They simplified the model
by assuming that the work content is spread continuously through the line rather than
clumped in discrete amounts at work stations. Thus, when a faster worker follows a slower
one, he will not be blocked because the next work station is occupied by the slower one. He
will be blocked when his item reaches the same state of completion as that of the slower
worker, whereupon he remains blocked continuously with his work velocity decreasing to
the velocity of the slower worker. For bucket brigades with two workers, they concluded
that if v; < v,, then the system reaches to its maximum production rate v, + v,. How-
ever, in bucket brigades where v; > v,, the faster worker is continually blocked and the
production rate is 2v,. In bucket brigades with three workers, they labeled workers so that

Vmin < Umid < Umaz, and they concluded the following:

o If the last worker in the line is the fastest one, then the line will achieve the maximum

production rate Umin + Umig + Umar (irrespective of sequence of vmin and vpmia)-

11



o If the last worker in the line is the slowest one, then the line will achieve the smallest

production rate 3v,,;, (irrespective of sequence of v,,,, and vpm,q).

o If the worker are sequenced as (slowest, fastest, mid), then the line will achieve either

maximum production rate ¥y, + Umid + Umar OF production rate 2(vmyn + Umid)-

o If the workers are sequenced as (fastest, slowest, mid), then the system displays a

complex behaviour and will achieve a suboptimal production rate.

Bartholdi et al [2] also established the necessary condition v, < vy for a bucket brigade to
balance itself.

The application of bucket brigades in order-picking systems in warehouses is described
in Bartholdi, Bunimovich and Eisenstein [3]. In the order-picking version of bucket brigades.
the workers are pickers, the items are orders and the working stations are different bays
of the flowracks. The papers which describe orders are picked up by the first picker, who
opens a box, and then slides it along the line as he moves, picking up different items to put
into the box. This is the same job that other pickers do, except that each picker receives
his box from his predecessor according to the bucket brigade operational rule. The main
issue in the order-picking version of bucket brigades is that the order picking times are not
deterministic, because the amount of work varies from order to order. However, Bartholdi,
Bunimovich and Eisenstein claimed that although they have not been able to establish
the proof for the stochastic case, nevertheless an array of evidence, including plausible
explanation, simulation and field experiments have confirmed that if workers are sequenced
from slowest to fastest, the bucket brigade will continuously and spontaneously (re)balance
the work with the result that the average pick-up (production) rate is maximized. All results
presented in Bartholdi et al [4, 2, 3] are based on the assumption that in bucket brigades
the walking times between work stations are significantly less than processing times in work
stations.

In their last paper, Bartholdi and Eisenstein [5] examined 150 TSS lines and presented
some useful comments to help managers design bucket brigades. Some of these results are

summarized as follows:
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o The number of workers in a bucket brigade line must be less than 1/py,.. Where pp,

is the largest fraction of total work to be done in a work station.

o Bucket brigades with a small number of workers perform better than bucket brigades
with large numbers of workers. In the apparel industry, experience has shown that
team effectiveness is reduced if the team has more than ten members; while three to

six members is most common.

e Processing in large buckets reduces the variance of the work at each station and the

chance of blocking.
o The bucket brigade production lines are mostly recommended when

1. there are significant changes in demand,
2. work stations are inexpensive relative to labor costs,
3. the work in different work stations mostly need a single skill,

4. the workers can move easily among work stations and the work takeover process

can be done without difficulties.

Zavadlov, McClain and Thomas [15] analyzed different worker-oriented U-shaped lines
through an exporatory approach using both Markovian and simulation models. The first
model that they analyzed was a U-shaped line with three work stations, two workers and
mixed static working zones. Assuming exponential processing times, the system is modeled
as a Morkov chain and through a numerical éxample, the effect of variations in processing
times and WIP are determined. They found that lower CVs and higher WIP levels caused
lower idle time and increased throughput. The second model is a U-shaped line with four
working stations and two workers. They compared the performances of sequenced and mixed
working zones and they found that, in their example, the mixed working zone balances
the mean workload, whereas the sequenced working zone incurs an idle time. They also
concluded that doubling the buffer capacity improves the efficiency of systems with mixed
working zones, more than the efficiency of systems with sequenced working zones. In their

third model, they analyzed a U-shaped line with three work stations and two workers in
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which the working zones are sequenced and dynamic. Considering different operational
rules, the efficiency of the line was examined through a Markov chain formulation of the
system. For a longer line, they examined the effects of the relative size of the shared tasks
in a system of nine work stations and five workers. Finally, they analyzed the performance
of the two U-shaped lines with 12 and 9 work stations, and 6 and 5 workers. respectively.
and they concluded that the system with no specific assignment is the most flexible line. In
this system the workers can work on any machine if needed.

Miltenburg and Wijngaard [10] considered the line balancing problem of the worker-
oriented U-shaped line with zero walking times and deterministic processing times. They
introduced an optimization problem to find the optimal balance which defines the optimal
static working zones for the U-shaped line with a minimum number of workers for a given
set of tasks and cycle time. A dynamic programming procedure for computing the optimal
balance was presented along with two heuristic procedures which represent extensions of
well-known heuristics for the traditional line balancing problem. Finally, these heuristics
were evaluated through their performances on well-known line balancing problems in the
literature.

In the category of machine-oriented U-shaped lines, Ohno and Nakade [13] considered
the single unit production and conveyance system with N machines, single operator and
deterministic and constant processing, operation and walking times. Operation times are
actually considered as the time required for detaching the processed item, putting it on a
chute, and attaching a new item. They derived the operator’s waiting time at each machine
in each cycle and the cycle times. They also studied the same problem with M operators
and obtained the overall cycle time of the line for given static working zones. To find the
optimal static working zones for the operators which minimize the overall cycle time of
the line, they formulated the problem as a combinatorial optimization problem, and then
analyzed the optimal static working zones for the problem with two workers. Finally, they
derived the average throughput of the line for the stochastic version of this problem with a
single operator.

In another paper by Nakade and Ohno [12], two systems of machine-oriented U-shaped

lines with a single operator were considered, in which the stochastic processing, operation
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and walking times are comparable in the sense of an increasing convex order. It is shown
that as the operator is more skillful in the operation, in the sense of this order, the cycle
time is shorter. They derived the expected cycle time for the line in which the processing
times are Erlang random variables, and also obtained an upper and lower bound for the
expected cycle time for the line with generally distributed processing times.

Most of the literature on U-shaped lines has not considered a switching cost when the
worker moves (switches) from one work station to another, or if walking times are significant
compared to processing times. Therefore, the only cost involved is the holding cost in the
work station, and this can be minimized if a worker processes a single item instead of a
batch, and completes that item. moving from station to station. In the next sections we
examine the effect of switching costs and significant walking times on the optimal batch

size in some classes of U-shape lines.

4 TU-Shaped Lines with Multi-Functional Machines
and Switching Costs

Consider a worker-oriented U-shaped line with N work stations and M workers who work
in static and sequenced working zones. Consider 7,, and j,, as the first and the last work
stations in set N,,, sequenced according to the increasing order of the work station number.
Also, suppose a processed item is called a type j item when it is processed in work station
J — 1 and then requires processing at work station j. Hence, type 1 items are actually the
raw materials and type N + 1 items are final products.

In a U-shaped line with static and sequenced working zones, there is always a chance for
work station i,, to be starved. One way to eliminate this possibility is to have enough type
im items in the buffer of work station i,, (m € My). Applying this policy, the U-shaped
line can be decomposed into M mutually independent multi-stage tandem queues, each
attended by a moving server. This usually occurs in U-shaped lines with multi-functional
machines, in which machine m performs all operations in set N, and one operator is in
charge of each machine. Switching costs and walking times from work station : to j are

actually the setup costs and setup times, respectively, when operation j must be done after
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operation ¢. Since setup costs and setup times are involved, it may be optimal for operator
m to complete a batch of items before switching to the next operation. To find the optimal

batch size we need to introduce the following definitions and symbols:

e A greedy and ezhaustive policy in stages i to j (J > 1), is a policy in which the server
applies a greedy and exhaustive policy in stages t,i1+1...., J, and switches from stage

ktok+1(:<k<j-1)after each exhaustion epoch.

e ¢ ] jindicates a (j—1+41)-stage tandem queue (j > ) consisting of stages ¢,1+1,...,].

and buffer of stage j + 1.
k
e (1> 7) indicates a policy which serves a batch of size k in queue 7 1 .
rook k
e O (¢ D> j)indicates that policy (2 > j) is repeated r times.

To find the optimal batch size for operator m which minimizes the total average holding
and switching costs, consider the multi-stage tandem queue t,, T 7,, with random service
times S; in work station 7, random walking times D;; from work station : to j, holding cost
h; in work station j and switching cost A;; whenever the operator switches from operation
1tog (¢#J; 1,7 € Ny). If operator m completes a batch of size k in a cycle by applying a
greedy and exhaustive policy in stages i,, to j,, then the total average holding and switching

N S
costs in a cycle, Clim D> jm), is

Jm _ Jm _
Clim [;Jm] = kY Z heS. + ulLib Z het1S,

2 r=i 2 r=g
jm‘l jm _
+ Z I\'r,r+l + 1\']',,,,:',,, +k Z hr+lDr,r+l . (3)

Since it is assumed that there are always enough type i,, items available in the buffer of
work station i,,, therefore, the holding costs of these item are not considered in (3). Suppose
TCm(1]k) is the total average holding and switching cost per produced item in queue i, T jm
when batch of size k is completed in each cycle: then,

Clim B jim]
P

1

TC.n(1]k)

1.
kH,'m_)m + Ehim'jm + HDim,jm y (4)
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where

1 i -
Minin = 5 2 (he +hes)S: (5)
.. mot
Kiimn = Z Ko + K. (6)
1 - _
HD:im = 9 Z (hr = hr41)Sr + hesi Drryr (7)

r=im

Therefore, k* will be the optimal batch size in queue ip, | jm, if

TC(1|k") = TCo(1lk" +1) < 0

TCH(1k™)=TCm(1lk"-1)< 0,

or
Kim..im
Him»jm - k.(]{o + 1) > 0 (8)
Him,jm— k.(]\-._l) < 07 (9)

upon using (4). Combining (8) and (9), we conclude that the optimal batch size which
minimizes the total average holding and switching costs per produced item in queue i, | jm

is the integer k™ satisfying
k (k"= 1) < ﬁ’-u <k(k+1). (10)
imjm
It is clear that the optimality condition (10) is independent of the walking times. This is so
because the total average holding cost during the walking times is constant for any single
item of a batch, and is equal to E’,";im Brs1Dr i1
Example 1

Consider a U-shaped line with three multifunctional machines where Ny = {1,2}, N, =

{3,4,5}, N3 = {6,7.8.9.10} and
h=[23 5710 10 11 14 15 18]

§=19512382131]
K =1[250 200 45 80 75 90 60 70 20 100],
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in which A is the switching cost to operation (stage) 7 (1 = 1,2....,10). Assuming that
there are always enough items available in the buffer of each machine, the optimal batch

size k; for machine 1 (queue 11 2) can be obtained using (10) as follows:

K‘Lg = I\-1+1\-3

1 —
Hl,? = 52(’” +hr+1)5r

Since k] must satisfy

p— 450 e
1&1(1x1—1)<m<]\,(1\,+1),

therefore, k] = 3.

Using the same approach for machine 2 (queue 3 7 5) and machine 3 (queue 6 1 10), we

get
K;(K;-1)< Q_L:? < KJ(K5+1)
)
sl il 340 "= - A
K3(K;-1)< T82 < K3 (K3 +1)
which leads to k3 =2 and k5 =1 o

5 Worker-Oriented U-Shaped Lines with
Sequenced Static Working Zones

Consider a worker-oriented U-shaped line with N work stations and M workers in which:

o Working zones are static and sequenced, so that worker m (m € My) is in charge

of tandem work stations i,, to j,, (tandem queue i, T jm)-
o Walking times are insignificant compared with the processing times in work stations.

o Items arrive at the buffer of work station 1 according to a random process, and the

buffer of work station i,, is supplied by work station j,.;, m =2,3,...,M.

e the holding cost rate is h; per unit time in work station ¢, and the switching cost Kj;

is charged whenever a worker switches from work station ¢ to j.
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The differences between this model and the model in Section 4 are: (i) in this model
walking times are actually considered to be zero, (ii) the items in the buffer of work station
i, are received from work station j,,_,; thus, there exists a chance for work station i, to
be starved during the operation. Since static and sequenced working zones are considered,
the U-shaped line can be decomposed into M multi-stage tandem queues. each attended
by a moving server. Suppose that worker m applies a limited policy in work station i,
and a greedy and exhaustive policy in work stations z,, + 1 to j,,. Then the optimal limit
M[™ which minimizes the total average holding and switching cost in work stations i, to

Jm (queue %, | jn) can be approximated as follows:

1. For m = 1, since there are always enough items (raw materials) available in work
station 1, the multi-stage tandem queue 7; | j; with a limited policy behaves like the
multi-stage tandem queue in Section 4, and so the optimal limit M;! is actually the

optimal batch size k* which can be obtained using (10).

2. Multi-stage tandem queues ip, T jm, 2<m < M are G/G1—Ga—---=Gj_ i +1/1
queues with zero switchover times, a limited policy in stage ¢, and a greedy and
exhaustive policy in stages i, + 1 to j,,. These models are the same as those in-
troduced in Iravani, Posner and Buzacott (7], except that here the arrival process is
not Poisson. The arrival process to queue ¢,, 1 j,, is actually the departure process
from queue ¢,,_; T jm-;. Nevertheless, the optimal limits of the limited policy in high
traffic intensity can be used as an approximator for the optimal limits in lower traf-
fic intensities, even for systems with non-Poissonian arrival process for the following

reasons:

- In Iravani, Posner and Buzacott [7, 8], it is shown that the sufficient and necessary
conditions for optimality of limits 1 and 2 in a limited policy are independent

of the arrival process.

- In G/G, - G.,— --- = Gx/1 under low traffic intensity, limited policies with limit
My > 2 behave almost the same, and therefore, the total average cost TC'(My)

is very flat at the bottom; consequently, the difference in total average cost
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between the optimal limit and the limit which is optimal in high traffic intensity
is insignificant (see Iravani, posner and Buzacott [8]). On the other hand, as
p increases, the optimal limit in systems with lower traffic intensities approach

the optimal limit in the same system with high traffic intensity.

Therefore, when 2 < m < M, the optimal limit M;™ can be approximated for queue
im | Jm using Proposition 1 which yields the optimal limits of the limited policy in

high traffic intensity.

Proposition 1

Consider a multi-stage tandem queue i, | jm, (im < jm) with zero switchover times
in which a limited policy with limit M[* in stage i, and a greedy and exhaustive policy in
stages i, + 1 to j,, are applied. Then assuming a high traffic intensity, the optimal limit
M[™ satisfies

Mpm(Mi™ - 1) Ic o Mim(Mim 4+ 1)
2 S e —h)S, T kB 2

(11)

Proof

Since in high traffic the limited policy with limit M[* actually serves M[* customers in
each cycle, therefore to conclude (11) we now compare two limited policies with limits &k
and k + 1 over the time during which k(k + 1) customers are served. Let h; ., = 0; then

for M[* = k during k + 1 cycles, we have

T ok . k?kk 1), in
LB (i & G)] = (k+ 1)Clim & jm] + kK. i + + h,mZS,, (12)

and similarly, for M* = k + 1 during k cycles, we have

2 — Jm
CIO (i 2" Gl = KClim & gl + (k= DK, + 1)2’“(’“ D, Z 5. (13)
so that
C[O (im B jm)] = C[O (in & )] = KClim B jm] = (k+ 1)Clim  jim]
Jm
. k“ Jh S5, (14)

r=im

On the other hand,

(k lk 2) L In .
Clin & ) = FEDEH2) Zh5+ ) S R 4R, (15)

r=im r=im+1
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and

k(k+1) I~ kk-1) & -
Clim & jm] = ( ; )z h.Se + ( Y kS K. (16)
r=tm r=im+1
Therefore,
kClim 'S Gm] = (k + 1)Clim & jm] = ) =Koy o (17)
r=im, r=im+1

and by substituting (17) into (14), we obtain

Jm
Cl6 (im B )] = €O (im © )] S+ S A5,

r=igm r=im+1

—ft (18)

tmJm *

koo k+1 k+1
(

Since [O (im D Jm)] =[O (im [;j,,, ). thus, in high traffic, systems with limit M[* =k

have lower average cost than systems with limit M = k + 1, provided

k+1 k+1

CIO (im ' 5m)) = C[D (im & Gm)] 2 0,

or, equivalently,

k k ..I
( + ]‘) 2 ; K mijm _ . (19)
2 T ilhe S, +Z,_,m+1 h.S,_y

k- k -
Using the same approach and comparing C| @l (im > jm)] and C[® (im S Jm)], it can

be concluded that if

Kk=1 , )\,m,m . (20)
2 r':z +1( )5 + r—: +1h5r—1

then the system with limit M[® = k has lower average cost than a system with limit

M = k - 1. Combining (19) and (20), the proof is complete. O

It should be noted that applying an optimal limited policy by worker m in tandem
queue iy, | jm (m € My) does not mean that the U-shape line is optimized. Applying an
optimal limited policy only guarantees the local optimization in static working zones given

that limited policies must be implemented in working zones.



Example 2

Consider a worker-oriented U-shaped line with A = 10 work stations and M = 3
workers who work in sequenced and static working zones N, = {1,2}, N, = {3,4.5} and
N; = {6,7,8,9,10}. Also. suppose that the switching costs. holding costs and average
service times in this line are the same as for Example 1. If each worker applies a limited
policy in his working zone and items in the buffer of work stations 3 and 6 are supplied
by work stations 2 and 5, respectively. then using (11), the optimal limit M;™ for working
zone m (m = 1,2,3) must satisfy the following:

M (M- 1) 450 MM +1)

2 =32 2

M3 (M;? - D 200 M;?(M;2 +1)
2 =46 - 2

M3 (M - ) 340 MPB(MPB3+1)
2 <o s 2 ’

which lead to Mj' =5, Mj*=3and M;*=2. O

6 Bucket Brigades with Switching Costs

In the model introduced in Bartholdi and Eisenstein [4] for bucket brigades with M workers
and N work stations, the position of worker m is expressed as the cumulative fraction z,,
of work completed on her item (batch). Thus, the position of worker m is actually a real
number between zero and one. On the other hand, the total processing time of an item
(batch) in the line is normalized to one time unit so that the processing time requirement
in work station n is p,, which is a fixed percentage of the total standard work content of
the product. Therefore, if the standard processing time in work station n is S,-(”) (n € My),

then the interval of work content [I(*), u(*],

R (21)
©T LS
5(”)

u) = L= J(n)’ (22)
Zr:lsj

actually refers to work station n.
Suppose the work velocity of a standard worker who completes processing of an item in

its standard time is set at 1, and the velocity of the slower and faster workers are scaled
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according to this standard worker. Then a worker with work velocity v = 0.5 is half as
fast as the standard worker. The standard worker needs exactly time SU* to complete
processing of an item in work station n: however, a worker with work velocity v # 1 does
the same operation in S(*V)/v.

According to Bartholdi and Eisenstein [4], if the workers of a bucket brigade with
deterministic processing times are sequenced from slowest to fastest, then dynamic working
zones converge to static working zones, and if workers are never blocked, then the static
working zone of worker m is bounded in the interval of work content [I{*) u{*)]. A bucket
brigade under these assumption is called a balanced bucket brigade. Corollary 1 describes
how a ba]aﬁced bucket brigade can be analyzed in terms of tandem queues attended by a

moving server.

Corollary 1

A balanced bucket brigade with N work stations and M workers behaves like M identical
parallel N-stage tandem queues, each attended by a moving server who applies a greedy
and exhaustive policy in stages 1 to N; and as each server moves from stage 1 to N, his

work velocity increases in consecutive intervals of work content. 0

Corollary 1 actually decomposes a balanced bucket brigade regarding to the number
of workers (number of batches being processed in the line), M, rather than the working
zones of workers. Each batch is processed in stages 1 to N independent of the other M — 1
batches which are processed simultaneously in the line. In other words, it can be considered
that M batches are processed in M parallel N-stage tandem queues. These M parallel
tandem queues are identical and all servers have work velocity v,, in the interval of work
content [I%*), u{¥)]. As described in Section 2.3, the boundaries of working zones, I(*) and

ul¥" (m € My), do not necessarily refer to the boundaries of some work stations, l,(’) and

"' (i.j € My). In other words, worker m + 1 may take over the item of worker m in

J
the middle of its processing in one of the work stations. This means that an item may
be processed in two (or more) work velocities in one working station. Figure 3 presents a
tvpical example showing how interval [I{*), u(*)] describes the static working zone of worker

m " m
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? Static working zone of worker m

——(0)—0~o———0—— *—o *—o
R A

Figure 3. The static working zone of worker m in a bucket brigade.

Suppose Figure 3 refers to a TSS line; then worker m is actually in charge of work
stations 1+ 1,24 2,...,7 — 1. He also takes over the work of his predecessor (worker m — 1)
in work station 7 when fraction [{*) of work (compared to the total work required for an
item in the line) on his item is complete. On the other hand, his item is taken over by
his successor (worker m + 1) in work station j when fraction u{*) of work on the item is
complete. Since all items in work stations 7+ 1,74+ 2,...,j — 1 are processed by worker m

at work velocity v, the actual processing time on an item in work stations n, S, is

_ S(M
Sp= = o n=1+1,1+2,...,7-1. (23)
Un

However, the actual processing times S; and S, of an item in work stations ¢ and j, respec-

tively, are obtained from

1) — ) gty R N
i = ) (3)) (1- ) 1) (24)
’U,i - li vm—l ui - l" vm
(w) _ I(J) 5(:3) (w) _ 1(8) S(-“)
—_ u u
5]' - m J J + (1 m J J (25)

T (s))

10, .

J
Considering different static working zones, the same approach can be used to obtain the
actual processing time S, in work station n (n € My). Therefore, based on Corollary 1,
the TSS line with deterministic processing times in each work station can be decomposed
into M parallel G/D, = D, — --- = Dy/1 queues in which the service time in stage i is
Si (i=1,2,....N).

Now suppose that Figure 3 refers to a bucket brigade. Since worker m is in chz_xrge
of work stations 7 + 1,i + 2,...,7 — 1, all items in a batch will be processed at the same
work velocity v,, in these stations, and equation (23) is now also true for bucket brigades.
However, equations (24) and (25) will only be true if §; and FJ- are considered the actual

processing times of a batch in work stations i and j, respectively. To find the actual

processing times of items in a batch in work station j, let g; be the fraction of the job in
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stage j (Figure 3) which is done at work velocity v,,; then,

ulw) — Iﬁ.’)
g = RO (26)

If a batch consisting of k£ items must be processed in work station j, then kg; S}") is that
portion of the total standard work kS;”) in stage j which is completed at work velocity v,,,
and the remaining part, k(1 - g; )SJ(-”), is completed at work velocity vp,4;. This means that
fraction kg; of items in a batch are processed in stage j in actual time kg; S}-’”/vm and the
remaining fraction k(1 — ¢;) of items are processed in actual time k(1 — qj)S](-")/va.

Let J; be the work station in which the the work velocity changes from v; to v;,, during
the operation in that stage, and let J (J = {J;,J,..., N + 1}) be the set of these work
stations. Here, N + 1 is considered to be a hypothetical stage where the server changes
work velocity from vy to v,.

Corollary 2 describes the changes in the work velocity in the work stations of a balanced

bucket brigade.

Corollary 2

Let N, be the set of work stations in the working zone of worker m. Then in a balanced
bucket brigade the work velocity in work stations n € N,,N7¢ (J¢ is the complement of set
J) is the constant v,,. Now let S{u] be the largest integer less than u. Then, in a balanced

bucket brigade with bucket size k, the work velocity in work station J,, € 7, m € My is:

* v, for the first 3{kg,, ] items in the batch,
® un, for the fraction kq;, — S(kgy,,] of work on the (S[kg,,. ] + 1)th item,

® Upyy, for the remaining fraction 1 — (kgy,, — S(kgy,.]) of work on the (S[kg,, ]+ 1)th

item, and

® Upyy, for the last k — Slkgy, |- 1items. O

Remark 1
Corollary 2 only considers bucket brigades in which at most one change in work velocity
may occur in each work station. In other words, each worker is in charge of at least one

operation (work station) in the line, which is a realistic assumption. o
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According to Corollary 1, the balanced bucket brigades with deterministic processing
times and bucket size k can be considered as M parallel G/D; — D2 —---— Dy/1 queues in
which servers apply greedy and exhaustive policies in stages 1 to NV to process buckets of
size k and change their work velocities according to Corollary 2. Thus, finding the optimal
batch size for the balanced bucket brigade when switching costs are involved is equivalent
to finding the optimal batch size in one of these identical queues. Since there are always
enough items available in stage 1, obtaining the optimal batch size is almost similar to the
model in Section 4. However, the difference is that here in each queue the server changes
his work velocity in some stages while processing an item of a batch. Therefore, for the

batch of size k in each parallel N-stage tandem queue. we have
k k plk
ClL> N =Ci[1D N+ ) Keppi + Ky (27)

r=1

where Cj[7] is the average holding cost of applying policy 7. Therefore,

GILEN] = Gl h-1+ Y Gliv Ji+1]

J.eJ
+ Y Gl 425 Ja - 1], (28)
J.eJ
and
Kk+ 1)) k(k-1)h |
el a-n = DS, 5 D s, (29)
r=l r=1
¢ Kk+1) 78 o k=1 T o
CalJi +2D Jip1 —1] = (2 ) Y k.S + (2 ) Y kS, . (30)
r=J,+2 r=J,+2

k
However, Cy[J; > J; + 1] is different because the server changes his work velocity during
the operation in stage J;, (J; € J). Therefore, considering Corollary 2 and defining a;, =

3[kqy,], we will have

) k S‘(],t) k-a; -1 S_(,“)
CllivJi+1l] = h[( Y m)==+( > r)==]
r:k—aj‘+l i r=1 vi+l

(st) (st)
+hy(k=a;)| (kg - a.l,)":]'__ +(1-kqs, +ay,) =

]

1 141
ay -1 .(1”) k-1 S(at)
thil (X N2t ( ¥ 122

Ui r=ay, +1 Vit1

r=1
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(st) (st)
+hys1a,,[ (kgy - al.)% +(1-kqs, +ay,) = ]

Vi1
k(k +1), 5% k(k-1),5%
LA N UL L
2 Vigl 2 Vigl
which, after some algebra, yields
k SUY a;(ay + 1
Caldiv Ji+1] = hy{ f ["(;' )+kq,,(k-a,,)]}
SUY k(k+1) ay(a; +1
thy {22 ( ‘ ) ay(ay, )"kq.l,(k_a.l,)]}
Uigl 2 2
S a;(ay -1
ol (282D ) (ks - 00)])
Sy k(k-1)  ay(ay -1
tha o { =2 ( ) _ anle )-GJ.(/“IJ. - ay,)]}
Vit 2 2
SUY k(k+1 UV k(k -1
{22 (EE Dy Ly e MEZ Dy g
Tiv1 2 Vi1 2

Substituting (29) - (31) into (28), and (28) into (27), the total costs for batch of size & in
each of the parallel queues are obtained. Therefore, the total cost per produced item when

the batch size is k, TC(1]k), is

k
7
TC(1[k) = 9[_1;]\_],

and the optimal batch size in each of the M parallel queues, or the optimal bucket size in

the balanced bucket brigade will be the integer k* satisfying

TC(1|k") = TC(1Jk* + 1) < 0
TC(1|k") - TC(1]k* = 1) < 0 .

Remark 2
A simpler approach to approximate the optimal bucket size k* can be used by assuming

a constant actual processing time S for all items of a batch in work station J; € J as

following
_ Su) S(st)
S;,zq_z_ : +(1—q.y|)~—1-'—
Vi Vig1
Thus, optimality condition (10) can be used to find the optimal bucket size k*. o
Remark 3

Bartholdi and Eisenstein [3] claimed that even though they don’t have the proof, they

believe that if workers are sequenced from slowest to fastest, a bucket brigade with stochastic
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processing times balances itself and the production rate reaches to maximum. If this is true,
then the optimal bucket size which minimizes the total average holding and switching costs
can also be obtained for the stochastic version of bucket brigades using the same approach
as Section 6 by considering S, as the average actual processing time of an item in work
station n (n € AVy). 0
Example 3

Consider a bucket brigade with N = 10 work stations and M = 3 workers with work
velocities v; = 0.9, v, = 1 and v3 = 1.2. Also, consider that the holding costs, switching
costs and standard processing times of an item in each work station are the same as h, '
and S in Example 1. Suppose that the workers are sequenced from slowest to fastest and
the bucket brigade balances itself with no blocking; then the working zone of worker m.

namely the interval of work content [I{¥), u{*)], will be, for m = 1,2,3,
w) | (w 0.9
1,0 = [0.00, 3] =[0.00, 0.29]

1.9
(15, u*"] = [0.29. 37) = (029, 0.61]
) 3.1

(15, u{")] = [0.61, ﬂ] = [0.61, 1.00] .

However, work station n can be represented by interval of work content [I{*), u{*)] as follows:

n=1 ¢(st) n (
[l(’) u s)] - [Z S st Zr- 5 3‘)]
n 10 (u) Z (at)

[Z?:ll Sr”) Zrzl Sf('")
35 ' 35

].
Therefore,
1,6 = [0.00, 0.26)  [15,u$") = [0.26, 0.40] [, u{"] = [0.40. 0.43]
(15,04 = (043, 0.46] I, )] = [0.46, 0.57) [, ul”) = [0.57, 0.80]
7 Uz ] = (U.oU, L. vu8="' 9 1 Ug
(1,44 = [0.80. 0.86]  [I" 0.86, 0.89]  [I”, ul"’] = [0.89, 0.97)
[llo,ulo] [0-97, 1.00]

Figure 4 shows the working zones of the workers and work stations in terms of the

intervals of work content. According to Figure 4, J = {2,6,11}, which means that the
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Work Stauons

Working zone | Working zone 2 . Working zone 3
10 . 0890.97_,:
g 086
7 : : L —
6 5 0587
. : 0.46
4 : 08
3 : 04__
2 0.26_.;.__—
! : '
® o . 4 ﬂé
0 0.29 0.61 1 Work content

intervals

Figure 4. Working zones of balanced bucket brigade in example 8.3.

work velocities are changed in work stations 2. 6 and 11 from 0.9 to 1, 1 to 1.2 and 1.2 to
0.9, respectively. Hence

W -1 0.29-0.26

_ - =0.21
©= G T 540-026

u) — 18 0.61-0.57

= = =0.17
= T T 080- 057 ‘

Using Corollary 1, the actual processing times in work stations n € J¢, S, are

- 9 - 1 = 2 = 3
- —= =~-=1 e =-—-=
Sy 09 10 531 5412 5513
2 - 1 ~ 3 1
57—17—1.67 53—5—0.83 59-—'1—.5—2.0 Slo—E—O.SB
Considering (27), we will have
ClB10) = Cu[1510]+ S Krrpr + Kion
r=1
k
= Cy[l > 10]+ 990, (32)
where
k k k k
Call > 10] = Ci[l D 1]+ Ca[2D> 3]+ Cal4 > 5]
+CA[6 5 7] + Cal8 & 10] . (33)

On the other hand,

Kk+1), = k=)

C},[l ; 1] = hng-',
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= 25k* -5k, (34)

k — - k(k - _ —
Ci[d> 5] = k(k;l)(h454+h555)+ ( 5 1)(hs,s:,+h655)
= 47k - 3k, (35)
_ — — k(k-1), = -
Ch[8[; 10] = k(k+1)(h858+h959+h10510)+ ( )(h955+h1059)

= 60.76k>+ 3.31k . (36)

However, if a; = S(kq,) and as = S[kge), then according to (32) we have

G253 = h %[w%—ﬂ+0.21k(k—ag)]}
h{S[k(k+l) ar(a, + 1)

- 0.21k(k - a1)]}

2 2
+ha{ = > ‘“(032_ D 1 ay(0.21k — a)])
k—1) asfas—1
+h3{T[ 5 ) a'(aé )+ 02(0-21k - a)]}
1 k(k +1) -1
ENC LA FWE LU
= 26.35k% - 6k + 0.23ak — 0.06a3(a2 -1), (37)

and

8.as ae+ 1)

Cal65 7 = he{o (28T 4 017k (k - as)])

8 kk+1) as(a6+1)

6{ 5 — 0.17k(k — ag)]}
+he{2 [-‘-‘-"“"‘2—1) + ag(0.17k — ag)]}
+h7{ﬁ[ k mLL aﬁ(a‘;_ b, ae(0.17k — a)])
2 k(k+1 1)
phof Ry g 2B
= 93.1k* - 5.83k + 0.23ack — 0.67a2(a2 -1). (38)

Substituting (34) - (38) into (33), after some algebra we get

Chl1B10] = 252.21K% — 16.52k + 0.23k(az + as)
~0.56a5(as + 1) — 0.67ag(as + 1) + 990 .
Therefore,
TCIIk] = 25221k - {:(0.56a2(a2 1)+ 0.67ag(as + 1) - 990)

+0.23(as + a5) — 16.52 ,
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which implies that the optimal bucket size is k" = 2 with TC|1

k*=2]=9829. O

7 Conclusion

The amount of literature on U-shaped production lines started to increase in 1991 in an
attempt to analyze the behaviour of the TSS lines. The advantages of U-shaped production
lines over traditional production lines encourage more manufacturing companies to employ
these lines every day. Therefore, further investigations on the performance of these lines will
be required in the near future. In order to establish a framework for the analysis of U-shaped
lines, we presented a general definition and classification for these lines. We also showed
that these lines can be analyzed in several ways by decomposing them into tandem queues
each attended by a moving server. The decomposition may create completely disjointed
tandem queues (as in Section 4 and 5), or exactly similar tandem queues (as in section 6).
We decomposed three different types of U-shaped lines to examine the effect of switching
cost and walking time on the batch size through the line.

Further studies on U-shaped lines can be carried out on the different issues of their
design. These would represent an attempt to evaluate the performance of a specific line,
or to find optimal characteristics of the line such as the optimal number of work stations,

optimal number of workers, optimal working zones and optimal operational rules.
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