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ABSTRACT

DESIGN AND ANALYSES OF TALL TAPERED
REINFORCED CONCRETE CHIMNEYS SUBJECTED TO EARTHQUAKE

by Nelson M. Isada

The object of this study is to formulate rational and orderly
rules to be followed in the design and analyses of tall tapered rein-
forced concrete chimneys on rigid foundations ag determined by aarth-
quake stresgses.

The study is divided into four major pheses, namely:

(1) The asccumulstion of accelerogram records and e decision
to use the records taken at El Centro, California on May 18, 1940 with
N-8 component, Vernon, California on October 2, 1933 with NOSE compo-
nent, and los Angeles Subway Terminal on October 2, 1933 with N39E
component,

(2) the accumulstion of experimental results on the coeffi-
alent of demping and a descision to use 5% and 7-1/2% of critical dsmp-
ing for each mode,

(3) the development of the dynamic analyses, divided as
follows:

a, Derivation of the instantaneous displacement, shear,
and bending moment equations along the height of the chimmey
by the use of lLagrange's equations. These equations are ex-
pressed as the sum of the effects of the various modes of
vibration,

b. Determination of the fundamental mode dynamic struc-
tural properties of the chimney by the use of the Stodola
Newmark method. These properties are the vibration mode
shapes, shear factors, moment factors, natural frequencies,
and the generalized co-ordinate factors. The effects of
damping in these properties are also discussed.

¢. Determination of the second and higher mode dynamic
structural properties of the chimney. This part requires
the use of the orthogonality relationship of the various
modes,

d. Solution of the generalized co-ordinate differen-
tial equations for each mode, The Laplace transform and
Newmark's step by step methods are summarized. However,
in this study the electronic enalogue computer is used.
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e. Determination of the design shears and bending mo-
ments. Here the instantaneous shears and bending moments
are computed from the results of the different steps above.

f. Determination of the magnification factors. First,
the ghears and bending moments are determined by the use of
empirical seismic coefficient Ky for a particular locallty.
This seismic coefficient is multiplied by the weight of the
chimney sbove the section under consideration to get the
forces acting on the chimney. Then the meximum shears and
bending moments ag obtained from the dynamic analysis in
step e are divided by the corresponding shears and bending
moments as obtained by the W'/g Keg method to get the mag-
nification factors. These magnification factors are the
bagls for the suggested design rules. They are also com-
pared with the magnification factors suggested by the ACI
(49-26) Code. It is concluded that the ACI (49-26) Code
requires modification and a new design formule is needed,
and

() the determination of the suggested design formulas. En-
velopes are drawn for the different magnification factor curves. Formu-
las are then derived from these envelopes which are recommended for use
in the preliminary design of tall tapered reinforced concrete chimneys
on rigid foundations subjected to earthquekes. The recommended design
formulas for the shears and bending moments for reglons where earth-
quakes occur are:

V = WEKeh" [1.8+ (X 22 x » |5y,
-5h
= 1.8 W'Kph"
X £ ,5h,
and ;
' [x - .2n\2
M = W'Keh" |1+ 8 |- = x 2 ,2h,
- .68n
= 1'0 ";'Keh" X % oeh’
where

V = ﬂhear,

W' = weight of chimney above section under consideration, including
any portion of lining supported from the chimney shell,

K = gelsmic coefficient; which is equal to 0.20 for localities where

the accelerograph records ghow meximum accelerations of not more

than 0.325 of the scceleration due to gravity; 0.06 for localities

where the accelerograph recorde show maximum accelerations of not
viii



Units Used

NOMENCLATURE

Kip~foot units where 1 kip = 1,000 1bs.

latin Letter Symbols

Ay B,

Al: A;Z) E.z‘?
a, b,
8

E

h"
iy

h" t
m

constants

mode shape purifying constants
constants

El +m

Young's modulus of elasticity
acaeleration due to gravity
height of stack

distance from section under consideration to the section
that is 1/5 of the total height of the chimney above base

distance from section under consideration to center of
gravity of chimrey mass above the section

shear magnification factors

bending moment magnification factors
moment of inertia

gseismic coefficient

spring constant

bending moment factor

bending moment coefficlent

bending moment

mess per unit length

concentrated mass

generalized force corresponding to q;
total resistance of structure

genéralized co-ordinstes which are functions of time alone
X



vertical reactions

symbol used in Laplace transform operation

total kinetic energy of entire vibrating system
time varieble

new time variable

total potential energy of entire vibrating system
shear factor

gshear coefficlent

shear

load per unit length along the beam or stack

weight of chimney above section under consideration, includ.
ing any portion of lining supported from the chimmey shell

welght per unit length along the beem or stack
distance from bage to a general point P on neutral axis
absolute horizontal deflection of mess

relative horizontal deflection of the mass with respect to
the ground

horizontal motion of the base of the beam or stack

mode shape or charscteristic function

Greek letier Symbols

e
Ps
A

characteristic number

ratio of assigned damping to critical damping
denotes increment

dynamic structural constant

constant which is equal to wﬁ + a2
logarithmic damping decrement

glope of the beam

length of a segment of a stack
xi



Subscripts and

damping factor

natural perlod in seconds per cycle
natural frequency in radians per second
demped frequency in redians per second

M+ EI

%”FJ

Superscripts

J

b

Qe

-
.

e n

LRT)

LA LN

refers to the mode of vibration

refers to the base of the stack

refers to the top of the stack

denotes final condition

denotes initial condition

gubscript for the rth mode of vibration
subscript for the sth mode of vibration
3/t

P/

3y/ 3t

Py/n?

Py/ot?

oz/ax

Pz [ax?

BQZ/axs

Stz ax*
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DESIGN AND ANALYSES OF TALL TAPERED

REINFORCED CONCRETE CHIMNEYS SUBJECTED TO EARTHQUAKE

CHAPTER I

INTRODUCTION

The object of this study is to formulate rational and orderly
rules to be followed in the design and analyses of tall tapered rein-
forced concrete chimneys on rigid foundations as determined by earth-
guake gtresses.

During an earthquake, the base of the chimney is subjected to
variable ground motion, which causes dynamic stresses along the height
of the chimney. These dynamic stressges are the cause of the failures
2f chimneys during an earthqusake.

The digsertation progrem is divided into four major phases.
The first involves the accumulation of accelerogram records and a deci-
8ion as to whieh earthquakes to use. From the work of Alford, J. L.,
et al. (1)¥ it is decided to use three accelerogram records. The first
accélerogram’chosen is the record taken at El Centro, Jalifornia on May
18, 1940 with N-S component. This accelerogram takes care of the local-
ities where the meximum accelerétionkrecorded is 0.09g or mere. The de-
eislon for choosing this accelerogram for localities subjected to strong-
motion earthquekes is based on the "gpectrum analyses' of Alford, J. L.,
et al. (1). Their "spectrum analyses" show this earthquake to :cause
maximum response. The second accelerogram chosen is the record taken

at Vernon, California on October 2, 1933 with NOSE component. Thig

¥This snd subsequent numbers in perenthesis refer to the bibliography
on page 90.
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acovers localities whose recorded accelerograms show meximum accelera-
tions of from 0.05g to 0.09g. The third accelerogram chosen is the
record taken at the Los Angeles Subway Terminal on October 2, 1933
with N39% component. This accelerogram covers localities whose ac-
celerogram records show maximum accelerations of less than 0.05g.

The gsecond phase of the program is the accumulation of ex-
perimental results on the coefficlent of damping., Hisada, T. (2),
Merritt, G. (3), White, M. P. (4), and others have studied and per-
formed experiments to determine the values of the coefficient of damp-
ing. From their studies it has been concluded that 5% and 7-1/2% of
critizal damping for each mode should be used in this study.

The third and most important phase is the series of analyti-
cal studies, divided as follows:

1. Derivaetion of the instantaneous displacement, shear, and
bending moment equations along the height of the chimney. These equa~
tiong are expressed as the sum of the effects of the various modes of
vibration. This derivation 1s discussed in detail in Chapter II.

2. Determination of the fundamental mode dynamic structural
properties of the chimney, These properties are the vibration mode
shapes, shear factors, moment factors, natural frequencies, and the gen-
eralized co-ordinate facztors. The effezts of damping in these properties
are also discussed. Chapter III covers this part of the study.

3. Determination of the second and higher mode dynamic struc-
tural properties of the chimney. Thig part requires the use of the or-
thogonality relationship of the various modes. The various steps are

discussed in Chapter IV.



3.

b, Solution of the generalized co-ordinate differential
equations for each mode. The Laplace Transform and Newmark's step by
step methods are summarized. However, in this study the electronic
analogue computer is used. Chapter V covers thisg step.

5. Determination of the design shears and bending moments.
First, the instantaneous shears and bending moments along the height
of the stack are computed from the results of the different steps
above. Thig step is done in Chapter VI,

6. Determination of the magnification factors. First, the
shears and bending moments are determined by the use of the empirical
seigmic coefflicient K, for a particular locality. This seigmic coeffi-
clent 1s multiplied by the weight of the chimney above the section undef
congideration to get the forces acting on the chimmey. The maximum
shears and bending moments from the results of Thapter VI are also
plotted. Then the maximum shears and bending moments as obtained from
the dynamic analysis are divided by the corresponding shears and bending
moments as obtained by theW'/g Kog method to get the magnification fac-
tors. These magnification factors are the basis for the suggested de-
sign rules. They are algo compared with the magnification factors sug-
gested by the ACT (49-26) Code. Tt is concluded that the ACI (49-26)
Code requires modification and a new design formula is needed,

Determination of the suggested design formulas. Envelopes
are drawn for the different magnification factor curves. Formulas are
then derived from these-euvelopes which are recommended for use in the
preliminary design of tall tapered reinforced concrete chimneys on rigid
foundations subjected to earthquekes. The recommended design formulas
for the shears and bending moments for regions where earthquakes occur

are:



and

M

h =

M =

~le

e vt | fx - 5D

= W'Kgh {1.8 + \“"73‘591] , x ® ,5h, (1.1)

= 1.8W'Kgh" X %+,5h, (1.1a)
" { X - ,2h 21

= W'I(eh tl + 8 —-"—é;l—-—- J, X =2 .21’1, (1.2)

= 1.0W'Kgh" x ¢ .2h, (1.2a)

shear,

weight of chimney above section under consideration, including
any portion of lining supported from.the chimney shell,

selsmic coefficient; which is equal to 0.20 for localities
where the accelerograph records show maximum accelerations
of not more than 0.325 of the acceleration due to gravity;
0.06 for localities where the accelerograph records show
maximum accelerations of not more than 0.0875 of the aceel-
eration due to gravity; and 0.05 for localities where the

ceelerograph records show maximum accelerations of not more
than 0.050 of the acceleration due to grayity,

= Qistance from section under consideration to center of grav-

ity of chimney mass above the section,

digtance of section under consideration above the base of the
chimney,

height of chimney,

bending moment,

and for reinforced concrete chimneys whose fundamental periods are from
2.4 to 3.0 seconds per cycle.



CHAPTER II

THE DISPLACEMENT EQUATION

If a sudden load is applied to an elastic system such as a
mess-3pring system, a building, or a beam, the system is no longer in
equlilibrium because the unbalanced forces cause it to be in vibratory
motion, Systems like beams are capable of vibrating in different
modes (5).

Take a simple case wherein a system can vibrate in one mode
only. This system is called a single degree of freedom system., An ex-
ample is glven below.

In Fig. 2.1, let k be the spring constant and m; the mass.
Then 1f the meass m; 18 given a dlsplacement y, then by Newton's princi-
ple the differential equation for free vibration of the system is

my éfl +ky = 0, (2.1)
at2
or
&y +.2 = 0, (2.1a)
dt?
vhere

(,02 = "}—{- ’ (I?olb)
The solution of eq. (2.1a) is

y = Acoswt+B silnut, (2.2)



b

vhere A and B are constants which are determined from the boundary condi-
tions. The term . 18 known &s the natural frequency. Eq. (2.2) shows
that the mass is vibrating in such & way that the motion is repeated
after an interval of time 7 which is known as the period of vibration.

The value of 7 i8
,r’ = .-2-!(- . (2»3)

The maximum value that y may have is called the amplitude.

Now teke as an example a two-degree of freedom system as shown
in Fig., 2.2. The combined stiffness of the columns for each story corre-
sponds to the spring constant for that story. The sum of the mass of
the floor, walls and columns for each story corresponds to the mass for
that story. The building is idealized as shown in Fig. 2.2(b). Again
by Newton's principle the differentlal equations for free vibration for
the configuration shown in Fig. 2.2(c) are
d®y,y

at?
and (2.4)

m +kyyy - k2 (y1 = y2) = O,

2
d v L ( v\ =
Kp q;%§'+ ks (yo - ya) 0.

Eqs. (2.%) may be golved by means of the Laplace Transform or by some
other method. Since the object 18 to arrive at the differential equa-
tions Lin this stage of this study, the solutions of egs. (2.4) are not
discussed at this point.

A three-degree of freedom system may be exemplified by a three-
story building. The building may also be idealized in the seme manner as
in the example in Fig. 2.2.

Eq. (2.1) and eqs. (2.4) can also be derived by means of

lagrange's equation. This equation is
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a ‘dary  dr . v
? | - + = Q3 (2.5)

where
T = total kinetic energy of the whole system,
a. = jth generalized co-ordinate,

U = total potential energy of the whole system, which is a func-
tlon of the configuration of the system only,

4y = dq,fdt,
QJ = jth generalized force, which is a function of time only.
In the example shown in Fig. 2.1, we may regard y as the gen-

erallzéd co-ordinate q. The expression for the kinetic energy T is

T = -él-mli’z.!

where
y = ﬁ‘l,
dt
and
oT or m).f
- = = = my ,
aqj 3
Sem ) z
a [3r) a ) .
; - = my (2.6)
T Ay AT
where
. &y
Y at2
Also,
6%% = 'grs; = 0, (2'7)

gince T does not contain y explicitly. The expression for the poten-

tial energy U is

and so

oU U (2.8)
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The values of QJ as explained before depend only on forces which are
functions of time only. Since there are no damping and applied forces
- in this example, the generalized force is zero, that is,

Qg = 0. (2.9)
Substitution of eqs. (2.6), (2.7), (2.8), and (2.9) into eq. (2.5)

yields

d2
m &S+ ky = 0 2.10
1 ] Y ’ ( )

which is the same as eq. (2.2).

In the example shown in Flg. 2.2,

» L] 2
T = % myy,° + % WaY2 (2.11)
and
2
U= zkn® 43k (e - va) . (2.12)

Differentiation of T with respect to §; or 7, gives

oT or .
% = ¥ = mh
Thus,
a (ar) _ & /3ty . ..o
= (Sa-]—) = @-ﬁ) myi o (2.15)
and
oT QT
E = m = Q. (2-15&)
Differentiation of U with respect to q, yields
é%% = éyé = kiy1 - k2 (y1 - y2) . (2.1%)

Furthernmore,
Qi = O. (2.1%a)

Therefore, eq. (2.5) becomes,

myy + Kiyy - ko (y1 - y2) = 0, (2.15)
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which is the same as the first equation of egs. (2.4). Similarly,
el

a /ar) a (a7 o
o) (5§;> = X (§§é) = Waya ,

oT oT
"y 0
ég% = é;% = ko (y2 - y1)
Qg = 0.
Therefore, eq. (2.5) becomes L
mey2 + ko (y2 - 1) = 0, (2.16)

which is the same as the second equation of eqs. (2.4).

In the examples given above, in the derivation for the expres-
sions for the kinetic and potential energies the vertlical component of
the motion of the system is neglected. This assumption can be applied to
all systems with horizontal oscillations which are large compared to the
vertical oscillations.

The differential equetions of motion may also be checked by
lagrange's set of equations for any system. Treatments of more compli-
cated systems msy be found in books on advanced vibrations or dynamigs.
The adventages of Lagrange's equation are not apparent in the examples
given above. Advantages will appear if one desls with "normal co-ordi-
natesg" which are defined and exemplified by an example below.

The lateral vibration of a beam is analyzed (6) with the fol-

lowing assumptions:
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(1) The cross section of the beam is smsll compared to its
length so that the effect of shesr and rotary inertia on the configura-
tion of the beam may be neglected.

(2) The beam is elastic.

The beam equations below are found in books on mechanics of

vibration (5):

EI %zg = M, (2.17)
é% E1 g;g) S gg = -V, (2.18)
%:-22 éx%@ = ~{:¥ = W, (2.19)
vhere

E & Young's modulus of elasticity,

I - moment of ilnertia,

x = distance from base to a general point P on neutral axis of bend-

ing,

vy = lateral displacement of neutral axis of bending,

M = bending moment,

V = ghear,

W = load per unit length.
If the beam is vibrating, the load per unit length W of eq.
(2.19) is the inertis force per unit length. By Newton's principle the

load per unit length is

WV = --H-a—a-—y— = -méiz, (2.20)
g o2 ot

where
W = weight per unit length,
t = time variable,

R = mass per unit length along the bean.
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The negative sign in eq. (2.20) is from the fact that the direction of
the inertia force is opposite the direction of the acceleration. Substi-
tution of eq. (2.20) into eq. (2.19) yilelds

32 (. Py Py

which is the general equation for the free lateral vibration of beams

without damping.

If the flexural rigidity EI and the cross sectional aree of

the beam are constant eq. (2.21) becomes

EI%% = -m%%:

or
a2§+§% = 0, (2.22)
where
a2 = LI, (2.23)

Particular solutions of eq. (2.22) are of the type (7)
y = 2 (x)q(t), (2.24)
where Z(x) is a function of x alone and q (t) is a function of t alone.

From eq. (2.24) one obtains

%miq, %%""“Z:é,

(2.25)
g% = 74 g%g = 74 .
Substitution of eqs. (2.25) into eq. (2.22) gives
8 2q = 7§ . (2.26)
By separation of variables, eq. (2.26) becomes
7 = -;ls%- (2.27)
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Since the left-hand side of eq. (2.27) can not vary with t and
the right-hand side can not vary with x, both sides of eq. (2.27) must be
equal to a constant. Call this constant y, so that

ez =0, (2.28)
and

4+ yafq = 0. (2.29)
By means of the theory of ordinary differentiel equations the solution
of eq. (2.29) is

q = Acoswt+ Basindot, (2.30)
where
w = dyae . (2’31)

The constant w is called the natural frequency and the constants A and

B are determined by the boundary conditions. The solution of eq. (2.28)

is
Z = Csincx + Dcos ax + E sinh ax + F cosh ox , (2.32)
where
2
a‘ = 3:23—. . (2'35)
For a cantilever beam whose clamped end is at x = 0, the
boundary conditions are: ~
(1) ()., = 0, since the deflection at the clamped
Y& %20
end is gero.
(2) (dZ/dx)xzo = 0, since the slope at the clamped end is (2.38)
v Zero. 2.3
(3) (dgz/ﬁxe)xzh = 0, since the bending moment at the free
end 1s zero.
() (a%2/ax3j. , = O, since the shesr at the free end is
x=h = zero -

~t

Substitution of the four boundary conditions above into the
generdl solution in eq. (2.32) gives the frequency equation

cogs 0h cogh oh = -1 . (2.35)
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The roots of eq. (2.35) can be determined by series expansion of cos oh
and cosh oh. As soon as the different values of a4 are known, the corre-
sponding characteristic function or mode shape Z‘j can be obtained from
eq. (2.32). The corresponding natural frequencyxuj can be obtained from
eq. (2.35). Thus, the constants in eq. (2.32) become Cys Dy, Ey, and F
are also determined by the boundary conditions of the beam. It has been
shown (7) that the characteristic funetions Z4 form an orthogonal set
with respect to the weight function m over the interval from O to h,

that is,
h
0
By superimposing all possible solutions of the type
vy o= 2y (x) a4 (t),
the general equation for the free lateral vibration of a uniform canti-
lever beam without damping becomes
0
y = le Zy (Ajcostojt + By sin th) . (2.37)
Therefore, the equation for the jth mode of vibration from
eq. (2.37) is

vy = Ly (A‘j cos wyt + By 8in wjt) . (2.37a)

Differentiation of eq. (2.37a) twlce with respect to time glves

2
?.li = - Q)JQZJ (Aj cos wyt + By sinwyt) ,

atE
or 5
%E%i = ~w¥yy (2.38)
But from eq. (2.37a)
Z; = meximm value of lvsl > (2,38a)

if'Jﬁgw:wE%'= 1 or if the meximum value of |qJ| =1,
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80 that the differential equation for the jth mode of vibration becomes

d2 [ 3%z ‘
5z -\EI 2) = -mo.-d'g ZJ .

Equation (2.38b) may be solved by the Stodola-Newmark method.

(2.380)

The first step ig to assume ZJ. Then multiply the assumed deflection
curve Zj by -muﬁa and integrate the product twice with respect to x.

The result of the double integration 18 equel to EI (aaza/axa). Divide
the result of the double integration by EI and then integrate twice.

The final result is the derived deflection curve. If the derived deflec-
tion curve for ZJ.is the same as the sssumed deflection curve, then the
agsuned Zj is the Jth mode ghape. The Stodola~Newmark integration method
is used in this study, and the method ip explained in detail in Chapters
IV and V.,

If a meximum value of, say, unity is assigned to ZJ at the top
or free end of the beam, the deflection factors slong the beam in terms
of unity et the top are obtained. Corresponding to the unit deflection
factor at the top of the beam for a perticular mode are the shear and
bending moment factors. These deflection, bending moment, and shear
factors are also discussed in detail in Chapters IV and V.

Now consider the cese where there ig ground motion during en
earthquake. Let
vb(t) = motion of the base,

Y,(t) = horizontal absolute motion of the x*B point along the neutral
axig of the bending of the hean,

vx(t) = motion of the xth point relative to the base.

Thus,
T, (8) = 5 () 4y, (&) .
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Since the inertis force in eq. (2.21) is based on absolute accelera-

tion, eg. (2.21) becomes

2l - -G

Based upon the experience derived from the separation of variables in
the cege of free vibration, let & solution of eq. (2.39) with the bound-

ary conditions in eq. (2.3%) also be of the form
y = 2 (x)a (t), (2.40)

where, as before, ZJ(x) is a function of x alone and qj(t) is a func-

tion of t alone. Hence,

* *P .
g‘yﬁ"zﬁa%”&i: s iam - W
(2.4)
dy oz . 3y 3?7z .
> = %% = Za, X = e = Z9.
Substitution of eq. (2.41) into eq. (2.39) gives
152 L, (ehq) = - (Za+%, ) . (2.42)

Direct. separation of variasbles can not be used in eq. (2.42). There-

fore we resort to Lagrange's equations.
In eq. (2.40), Timoshenko (6) has shown that 2y and‘ij are

orthogonal functions with respect to the weight function m, i.e.,

h
[ mz.(x) 24 (x)a&x = 0, wvhen r £, (2.43)
(o]

and
h .
/] mZ, (x) 2g (x)dx = 0, vhenr £ s . (2.43a)
o}

Now, let

= Z, (x
vy = 2, (x) g (1)
be a solution of eq. (2.39). Superimposition of all the possible solu-

tions gives the general solution
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y = L Ziq1 . (2.44)
5ol J9d

For free vibratvmaaju 0, so that Lagrange's equation becomes

4 [ar\ _3r . du

From elementary strength of materials, the expression for the potential

energy of a bent beam is

h
1, 48
U = J =M% ax, (2.46)
o 2  dx
where
M = Dbending moment,
9 = sglope.
But,
F
M = -EI-&%,
and
6 =-Lmx = + ¥ ax
EI ox2
Therefore, eq. (2.46) becoumes
1 "L [\ 2
U = .2_ f EI (axz d.X ;) (2‘1‘7)
o
or,
1 h ®
U = -2-f EI ( T Zya4)® ax , (2.47a)
o J=1
Dr,
l h L .o e .s 2
U= 2 B (ia* Zetat Zatat .o Lol ) 8%+ (2,47D)
0

Since EI can be expressed in terms of & constant times m, the terms
containing the products'irk; when r 18 not equal to s vanigh accord-

ing to eq. (2.43a). Therefore, the expression for the potential energy

becomes
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h )
U = 17 BT L 7,%q,%ax . (2.48)
2o  J=l
Since'ij are functions of x alone and qy are functions of t alone, eq.
(2.48) vecomes
1 . B2
U == 2 g2 [ EI (2,)ax, (2.48a)
2 41 J J
and for a uniform beam, EI is constant, thus eq. (2.48a) becomes
o  h .,
U = 2 Tqf ) (25)° & . (2.48p)
2 =1 o

Hence, for a uniform beam,

h,,
J 0

The kinetic energy T of a beam during free vibration is

h \
1 Bya
T-é.ff)m(&) ax (2.50)
or, i
L B o o
T=xz | m(szqJ) ax , (2.50a)
25 J=1
or,
1 h . .\ 2
T = 3f m (23Q1 + ZoQs + Zads + -«. + Zole) 4X . (2.50b)
- 0

Again, From eq. (2.43) the terms contalning Z,Zg vanish when r # s.
Therefore, the expression for the kinetic energy T is

h
T o= 2
2

O

m L 7.2§.2dx . (2.51)
o1 99

Since Z; are functions of x alone and an are functions of t alone,

eq. (2.51) vecomes
h

¥ a2 [ mzPax . (2.51e)
J=1 )

L=
#
PO
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For a uniform beam m is constant, and

o h
T = % m L§2 /[ z2ax, (2.51p)
J=l 0
also
3T h
533 = méj / ngdx . (2.52)
o}
Also
h
d faT oo 2
E k@) = mq'jg ZJ- dx , (2'55)
and
o = 0. (2.54)

%
Therefore, Lagrange's equation for the jth mode free vibration of a

uniform beam without damping becomes

h h,.
‘dm /[ z22x -qFEI [ 2% = 0, (2.55)
Jog J J o J
or,
.. 2 .
q; +ay,qy = 0, (2.552)
where
52 = .E—I.:. ’
m
M7 20
y, = =22
J Pz 2ax
o J

It is interesting to note that eq. (2.55a) is the same as eq. (2.29).
This shows clearly the advantage of using Lagrange's equations to-
gether with the orthogonal conditions of the mode shapes which 1is
the reduction of the problem to solve one differentisl equation for
4y at a time, provided the mode shapes and the natural frequencies

are known.
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In eq. (2.55a) let the natural frequency
o, = vy, , (2.56)
J J
thus (2.55a) becomes
‘45 +ws®ay = 0, (2.57)
whose golution by the theory of ordinary differential equation is

Qy = Ay cos it + }3J sin wyt . (2.58)

The constants Aj and BJ are determined by the boundary conditions.
Therefore, the equation for free vibration of a uniform beam without
damping is the sum of all possible solutiona, i.e.,

o0

y = ng ZJ (AJ 208 “ﬁt + BJ gin @Jt) 3 (2-59)

whizh is again the same as the solution given by eq. (2.37) which is
obtained by direct separation of variables.

Now, consider the case during an earthquake. The expression
for the potential energy will remein the same. The kinetic energy T
will be different because the kinetic energy is based on absolute ve-

locity. The kinetis energy becomes

h
T = % [ m(¥)® ax , (2.60)
0
or,
1 h . - .
T = 'é'f m [yb+ % qujlg ax , (2.€0a)
o) J=1
or,
1 h o . . Y]
T = 5 i m [ J, + 2141 + ZeQz + ZaQs + .- qum] ax (2.600)

Again, from eq. (2.43) the terms containing Z.Zg vanish when r # s.

Therefore, the expression for the kinetic energy during an earthquake is
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T = Z quj) ax , (2.61)

oj—

h
f m (Yb+
0 J=1

or,

©
T = -]é'- j m "Zl (&be + 25’ij(§_3 + ZJEQJE) dax y (2-61&)
) J=

) h ® h
0 J=l (§] J:l 0
Also, for a uniform besm,
T . h R P
355 = my, g Zjdx + m, g Zj dx , (2.64)
éL <: ) = iy f Z ax + mqj f Z 2dx , (2.65)
and 3
T
= 0. (2.66)
o

Thersfore, Lagrange's equation for the jth mode during an earthquake

without damping bezomes

h h h
why, [ Zyax +md, [ 2,24 - qEI [ Bax = 0, (2.67)
o ¢ o) o}
or, | h
EI £ 78ax m £ 2..4x
. J 3 ..
4 -5 Q % TR Yy o (2.67a)
m [ Zjadx n [ Z.2ax

0 Q
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or, . .o
QJ + Lk}ejqj = 'rbe b (2‘6%)
where h
m [ 2 jdx
[ = -2 : (2.68)
'j m fh Zjadx
0

Now take the case of a tall tapered chimney. A tall tapered
chimney may be considered as & slender cantilever beam provided the
foundation is rigid. Therefore, the steps in the analysie will be the
seme as the steps for the uniform beam. The modification required is

to use the general expresslions for U and T. The potential energy

U becomes
0 h
U = % qf] BT ax (2.488)
J=1 0
and
U S
BTJ- = q £ EIZde. (2.69)

The kinetic energy T becomes

h 0 h o h
T=132) ndx+j I gy [ mZde+}. T qjaf mzfdx, (2.62)
2 o =1 Yo 2 =1 0
and
- h h
a} = ¥y £ mzjdx+qJ£ medx (2.70)
Thus,
a [T\ _ - b o 2
% (35;) - ybg m7 ,dx + qj({ mZ,%dx , (2.71)
and
oT
= = 0. (2.72)
aqd

Hence, Lagrange's equation for the Jjth mode of a tall tapered chimmey

during an earthquake without damplng is
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h h ho,,
Vo | mZydx +'qy [ mZgedx - qy [ EIZ2Ax = 0,  (2.73)
¥ O o)
or, . o ..
4 +oay = o[y (2.73a)
where h e
[ EI z’jdx
wi¥ = e e, (2.74)
P nz 2ax
o JJ
n
[ mZ; ax

[N, = . (2.75)

The praztice in taking damping into azcount is to introduce
demping assumed effectively to be vis:ous, for each mode. This is
done by introduzing a fraction of criticel damping for the particular
mode. The term is Qﬁjuﬁﬁj: where B, 18 the fraction of critical damp-
ing. This damping term is discussed in detall in Chapter III.

With the viscous damping term, eq. (2.73a) becomes

4y + Bgogy + oYy = [Ty (2.76)
Lat
T
'

Thus, eq. (2.76) vecomes
.¢.J + eﬁ‘jwjéj + (Dje¢J = "'.y.b . (2'763‘)

Tq. (2.76a) may be solved elther by the Laplace Transform method,
Newmark's step by step method, or by the use of the electronic ana-
logue computer. Since the function on the right hand gide of eq.
(2.768) does not follow & simple algebraic or trigonometric function
and since there are infinite values ofamj, the electronic analogue
computer is used. However, for the sake of completeness, the proce=-

dures for the first two methods are explained in Chapter V.
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Therefore, the general solution of the tall tapered chimmney
with demping during an earthquake 1s
00
y = L 2] 48y . (2.77)
J=1
The procedures in getting the values of ZJ and f~3 are ex-
plained in detail in Chapters III and IV. In getting the values of Zj,
the corresponding Shear Vj and Bending Moment MJ factors for a unit Zj
at the top of the stack are also derived. Hence, if the shear Vj and
moment M.j factors for each mode are known, then the total shear V and

moment M may be obtained by adding the effect of each mode, i.e.,

V = Viyer = & Vi 'f., (2.78)
5=l JveJd =1 RN Lagh
and
M = JE‘]_ MJ[_}¢J ¢ (2'79)

The advantage of this sapproach is the fact that the deflec-
tion, shear, and moment factors for each mode are based on the struc-
tural properties only. Hence, these factors can be studied separately.
The generalized co-ordinates ¢j depend on the frequencies, damping and
accelerograchs only. Therefore, ¢J may be studied directly by changing
the values of damping and natural frequencies for a particular accel-
erograph., The values of demping to be used in this study are 5% and
7-1/2% of oritical damping. With the above values of eritical damping,
the values of ¢J for different periods of the chimney, say from 0.3 to
3.0 seconds per cycle, are obtained.

I the response curves for ¢J sre availeble then the shear
and bending moment curves along the chimney at different ﬁime ingtances

may be obtained., The next step is to draw envelopes of these shear and
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bending moment curves and these values compared with the shear and bend-
ing moment curves as obtained by using the ACI specificationsg. These

steps are explalned in detail in Chapter VI.
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CHAPTER III

DYNAMIC STRUCTURAL PROPERTIES: FUNDAMENTAL MODE

Any elestic curve y(x) which may be induced in the stack can be
split up into a series of "orthogonal" curves (8).

As stated in Chapter II, the first step in the solution of eq.
(2.21) is to £4nd the orthogonal elastic curves.

To find these elastic curves (ZJ) which are oftentimes called
mode shapes, Stodola's method 18 essentially used, A modification based
upon Newmark's assumption of regional parebolic shape of elastic and in-
ertia load curves are used in the integration processes to find the de-
rived elastic curve.

This modified Stodola's method for the first mode is briefly
divided into different steps below:

1. Divide the stack into equal segments and then record the
mass intensities, moment of inertias, and length of each segment;

2. Assume a reasonable deflection curve Z;(x);

3. Multiply the assumed deflections by the product of the mess
and the square of the unknown frequency. The result of this operation is
the assumed inertia load per unit length mwj2Z;. Equivalent concentrated
inertia loads are computed and the results are added to the additional
coneentrated inertia loads due to the concentrated masses. Newmark's
method of integration 1s used to get the equivalent concentrated inertia
loads from the inertia load per unit length;

L, With the concentrated inertia loads, the deflection curve
Z; 1s obtained by means of the Newmark's method. Newmark's method of ob-
taining the deflection curve is explained in later parsagraphs;

26
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5. Repetition of steps (2), (3), and (4) until the derived de-
flection curve obtained from the assumed inertia load coincides with the
agssumed deflection curve. It is shown later that this procedure converges
rapldly;

6. To obtain the natural frequency from the derived deflection
curve.

The procedures for the second and higher modes of vibration are
discussed in the next chapter.

The different steps in the Stodola-Newmark's method for the
fundsmental mode of vibration are now discussed in detail:

1. The first step simply requires straightforward computations,
that is, by dividing the stack, say, into ten equal segments. Then com-
pute the mass per unit length and the moment of inertias for each segment.
Concentrated masases are recorded separately. In this chapter an example
is given. The data and results are given in Fig. %.2 at the end of this
chapter. Note thet in Fig. 3.2 there is a column at the extreme right
marked "Multiplier". This multiplier is used simply to avoid large
figures.

2. The second step is to assume a reasonsble deflectlon curve
Zy+ This assumed deflection curve must be based upon previous studies
made in this field. Since there is hardly any data avallable regarding
the natural mode shapes of tapered.:himneys, it is hoped that this study
will be of gome use, at least as a gulde for this purpose as well as in
analysis and design.

3., The third step is the computstion of the inertia load. The
inertie load, if damping is neglected, 18 equal to the right side of eq.

(2.38p). Equation (2.38b) 1is
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o T 2 moy 2y (2.58)

However, for purposes of comparison, damping which 1s assumed
to be effeastively "viszous" 1s now taken into account. The Jjth mode equa~-

tion for free vibration with damping from eq. (2.40) is

The differential equatlon for q; is
.CiJ + EBJNJQJ + u)leQJ = 0, ’ (3-1)
Lat
i = 2 K . 3n2
VJ ga J (3-2)

Thus, eq. (3.1) becomes
d; +ydy oy o= O (3.3)
The Laplace transform method is used to solve eq. (3.3). The
symbols used by Churchill (9) are also used. Thus, eq. (3.3) takes the
form

SEQJ<3) - SQJ(O) - QJ(O) + wgSQJ(S) - ?jQJ(O) + WJEQJ(S) = 0. (3.4)

Let
¢y = QJ(O) ’
. (3.5)
Cx = QJ(O) .
Then eq. (3.4) becomes
q(s) = % + ©18 . (3.58)
’ (a2 + *5)2 (0B -2 4®) (82 + ‘ﬁ)a + (o = L2)
70 TR 2 T TR
Let
' - o
wi' = Vos2 - (1/&)%2 . (3.5v)
Thus eq. (3.5a) becomes
1 Co C.'Q]_(.‘.’o*l-l"}r )---]-'-Gl
QJ(S) L p—— + 5 J 2 Y.j (BoSC)

@) (a2 + g.vj)a +y)2 (824 .21.«4,3 2 + ())2
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The value of (u)'j' )2 18 large compared to B%x? For exemple, if B = 0.1,

then the error is approximastely 1% if it is essumed that w3 is approxi-

mately equal to Wi

eS)

Thus eq. (3.8) reduces to
[Sﬁ%’. e*Bj’»ﬂjt sin 4y)
®J

3
—~ -__ijl e Pyt
B
- B.¢
_-_._...B‘j t e P It sos
W' J
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e PIt Los uost] [-28 ey ]
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-~

J tJ [-28 J;_QBLJJ]

+ [c‘.‘]_a.‘-ﬁ'jw*jt cos m:jt]{*(o}:j )1

+ [cle"ﬁjiﬁ‘jt sin d&t][*@ﬁjw}}'ﬁj] .

(3.9)



The terms containing -quwéaﬁ are small compared to the terms containing

Q@B)g because (uﬁ)a is larger than -2}« plus the fact that the sine and
cosine functions are 90° out of phase. Several authors on vibration have
shown that the terms containing ~Eang@i are negligible. 1In fact, almost

o

8ll text books on vibrations neglect these terms. Thus eq. (3.9) becomes

.Cix”;ﬂ {Sg,' e'BJ'th gin »lt - ELL“-J. e-—ﬂjwjt gin m:‘]t

d wj J ‘:’JJ'
(3.10)
B a0t
+ ¢ P12® cos ot] [=(0)2] .
J | J
or
4~ =) q (3.11)
Jv T J )
Therefore, the inertla load per unit length becomes
fy .
T e = - '2 . = - {1}'2 N
m S5 m75q 5 me =2 5 5 mey=ys (3.12)
If Y3 is maximum, then the equation corresponding to the Jjth mode is
3 BZZ; 2 ,

What remains now is to show that the damped frequency«ﬂé can be

regarded as the undamped natural frequency :v;. Equation (3.5b) glves

N I VS (3.5b)

wy = undamped natural frequency,

i

demped natural frequency,

263@3 = demping factor.

G
o
]

Experimental studies express values of ¥ in termg of eritical
damping.

The expression for the critical damping given by Myklestad (10) is

o] = ZmUh ] (3.14)
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But experimental datae usually give the viscous constant cJ es a fraction
of the eritical damping oy The demping constant cy expressed mathe-

matically is

=

e Bjccj 2Bme ’ (3.1ha)

where BJ is the fraction of critical damping. But

wd = E‘l; (3'lhb)
Thus,
¥y o= 285 (3.142)

Now, consider the effect of damping on the undemped natural fre-

quency o), let B, be equal to 10%, then

J
/ = = 20 . .

oy = VOf -(1/8)(L0keT) = 0.9950 (3.1ke)

Hence, it 1s seen that the effect of damping on the undamped frequency is
only around 0.5%. Therefore, the conclusion thet the undamped natural fre-
quency 1is approximately equal to the demped natural frequency iz Jjustified.

One may ask about the physical significance of the damping fec-
tor WJ or the demping coefficlent B,. The physical significance is seen
readily in the last term

cle'(l/QT*Jt cos:ndt ,

of eq. (3.54). In this term, the amplitudes diminish in the ratio
e-(l/?)\ht . l R

between time t and (t + 74), where T 18 the period in seconds per cycle.

Timashenko (11) expresses the term (1/2)¢J¢J as the difference between the

logarithms of the two consecutive amplitudes st the instants t and (t + TJ).
The symbol usually given to the logarithmic damping decrement is

83, 80 that



o 1‘ 1 N 2n :
or
' §; = 2m, . (3.14g)
Therefore,
5 0
o, = dd (3.14h)
J ¢
in the equation
ﬁdj + :Jéj + muﬁqJ = 0. (3.141)

Therefore, if damping is neglected, eq. (3.13) becomes

%;? (EI g@ = Cmagly (3.138)

Equation (3.13a) is similar to eq. (3.13). The difference lies only in
the assumption that «j = «}, whose error has been shown to be only 0.5%.
Therefore, the above result leads to the conclusion that the undamped
mode shapes are practically equal to the damped mode shapes.

4. Having found the inertia loads, the deflected curve can
then be construcied by means of the conjugate beam, graphizal statics,
or Newmark's method. Aztually, the three methods are based on the same
basic steps of integration of the inertia load -mahezj twice and divi-
sion of the result by EI and then integrate two times more. The inertia
load WJ is Integrated twice to arrive at the bending moment MJ. The
first integration performed on the inertis load WJ glves the shear VJ,
the second the bending moment MJ. Integration of the MJ/EI-diagram
twice gives the deflected curve Zj, which is derived from the relation-
ship, MJ/EI = d%25(x)/dx®. The Newmark method (12) affords an orderly
arrangement and a very rapid means of making these integration proce-

dures, which gives as its final result the deflected curve Zj. The
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difference from the conjugate beam method is the fact that the inertia
load is assumed to be regionally parabolic instead of a straight line
and that the figures used in the computations are tabulated. As an ex-
ample, a stack is shown in Fig. 3.1. Figure 3.la divides the stack
into ten gegments, Fig. 3.1b shows the ilnertia load per unit length,
Fig. 3.lc shows one segment cut from the stack, and Fig. 3.1d shows

two segments cut from the stack, The equation of the parabola is y =
21%% 4+ 2pX + 24. By taking moments about point a one finds that the

infinitesimel reaction 1is

dRpg = Eyf-x‘- ’ (5-15)
and integration of eq. (3.15) ylelds
)\ k 3 2 -
R = [ M o [ ourom® v e (3.26)
5 X . \
1 |oyxt  cox® csxe]l
ALk 3 2
0
Thus,
Ryg = f% (3620% + bo\ + bea] . (3.16a)

But the equation of the parabpla is y = 21%2 + cpX + cg, and the boundary
conditions are:

when x = 0, y = a8, -]

when X = XA, y = b, (3.17)
when X = 2\, Yy = c, J
thus,
c = a, (3.17a)
b = c1A2 + cph + &, (3.170)

2 = e 4 c2) 4w . (3.17c)
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Substitution of eqs. (3.17a), (3.17b), and (3.17c) gives

o, = 5%5 (& - 2b +¢c), (3.18s.)

p = .£~ (-35 + hb - C) 3 (§.l8b)
2\

e, = a. (3.18¢)

Substitution of egs. (3.18a, b, ¢,) into eq. (3.16a) gives

Rpg = o5 (1.5 + 56 - 0.52) . (3.19)

Similarly, if moments are teken about b,

Rgy = {»_2_ (3.5 + 3 - 0.5¢) . (3.20)

Also, if the same procedure 1s used for the segment be,

Rpe = %2_ (-0.5a + 5b + 1.5¢) , (3.21)
and
Ry, = 2 (3.5c + 3b - 0.58) . (3.21a)

12
Addition of the effects of the two segmentas gives the reaction at b,
which is,
R, = Ry, +Ry, = -17.‘2_ (a + 100 + ¢). (3.22)
For the sake of completeness, the formulas for the reactions if

a straight line connected the points a, b, and ¢ are given below. They

are:
é.b = %2_ (h-ﬂ. + 2b ) ’ ‘/«""/ \~~.._
Y - |
Rb& = _]_2_ (28. + L“b ) I Jf// . g
R, = Ao+ 2c), # { cz
~ | f
and TR!' ! T TR! R! (3019)
R, = %% (28 + 8b + 2c). b Toa ,Rbc o

It can be seen that the formulas for the reactions are quite different

for the parabolic and stralght line assumptions.
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Newmark (15) and others have shown that the reactions based
upon the parabolic essumption do not differ much from the trigonometric,
3rd order, and 4th order algebraic equations. However, a zonslderable
deviation has been found from the straight line assumption. In addi-
tion, the paraboli: assumption glves excellent results of the first
mode shape if a uniform stack is divided into ten segments or more
and gives satisfactory results if divided into as low as six segments.
The three resction formulas based on Newmark's parabolic assumption whiczh
are uged in this study are summarized in Fig. 3.1.

The three reaction formulas, egs. (3.20), (3.21a), and (3.22)
are used to compute the concentrated inertis loads due to the distributed
inertis loads. To these concentrated inertis loads which are computed
from the distributed inertia loads, are added the concentrated inertis
loads caused by the concentrated masses like floors, corbels, and water
tank. Then the two computed concentrated inertia loads are added to-
gether to get the total concentrated inertia loads at the various sta-
tions slong the stack. Since the shear at the top of the stack (the
free end) is zero, the total concentrated inertia loads are summed from
top to bottom to get the average shears at the midpoints of the various
adjacent stations along the stack. Actually, this peragraph is equiva-
lent to the first integration of the relationship W; = di’MJ/de.

After the ghear is found, one can easily compute the bending
moments at any station along the stack by recalling that the ares under
the shear diagrem is the bending moment. 8ince the segments are of
equal length which is denoted by A\, the bending moment contributed by
each segment is the average shear multiplied by A which is the area of

the shear diagram for that segment. For convenience the factor A is
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taken out and combined with the previous multiplier. Therefore, to get
the bending moment, the average shears are summed from top to bottom
since again the bending moment at the top of the stack is also zero
(free end). The factor )\ is also teken out and is incorporated with the
previous multiplier. This process is the second integration of the re-
lationship Wy = dEMJ/de.

The next step 1s to divide the bending moment dlagram by EI to
get the MJ/EI-diagram. After the division 1s performed, the concentrated
Mj/EI-values are computed by using the same procedure that is used in
computing the concentrated inertia loads. Here, the same reaction form-
ulas are used. Similarly, these concentrated MJ/EI-values are summed,
only this time the order of summstion is from the bottom to the top of
the stack since the bottom of the stack has zero slope (fixed end) to
errive at the average slopes. The physical significance of this proce-
dure is the fact that the MJ/EI-values is the rate of change of slope,

80 that the rate of change of slope contributed by each segment is be-
ing added. This process 1s the first integration of the relationship
My/EI = d275(x)/dx® .

Similarly, the area under this sglope-diagram 18 the deflection.
For the same reagon that the average shear 18 multiplied by A, the aver-
age slope is also multiplied by A which 1s the area of the glope-diagram
for that segment which is really the deflection contributed by that sgeg-
ment. Since the bettom of the stack is fixed, the deflection at the bot-
tom of the stack is zero and therefore to get the total deflection at any
station along the stack, the order of summation is from the bottom to the
top of the stack. Agein, for convenience the factor M\ is taken out and
is combined with the previous multiplier. The process in thls paragraph

1s the second integration of the relationship M./EI = a2z (x)/ax2.
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It must be noted, however, that when the deflection is com-
wuted, the effect of the bending moment only is taken into account. In
other words shear and rotary inertia are neglected. Timoshenko (1L4) has
shown that the effect of rotary inertia is very small and can be neglected
for practical purposes. However, the effect of shear becomes increasingly
large when the beem gets chubby, i.e., when the length of the beam is not
large compared to its cross-sectional dimensions. Jacobsen (15) made a
comprehengive study of the effect of shear on the natural periods of uni-
form cantilever beams. He found that for a square box cross-section,
the error in neglecting the shear effect on the lower mode natural peri-
ods is small as long as the ratic of the length to the width of the beam
is grester than seven, For a cylindricel cross-section with & length-
width ratio of seven, the width here being the dlameter, the effect is
even less. In the Clifty-Creek Plant stack (1€), the height is 707' and
the average diameter is 42' so that the length-diameter ratio 1s 17.
Since this study is confined to tall reinforced-concrete chimneys whose
length-diameter ratios are large, the effect of shear and rotary inertis
on the lower mode shapes is neglected.

5. If the derived deflection curve Z;(x) coincides with the
originally essumed deflection curve Z(x), then Z;(x) is exactly the
normal elagstic curve. If, however, the derived Z,(x) does not coincide
with the assumed 7(x), then steps (2), (3), and (4) are repeated, only
thig time the derived Z;(x) from the previous trial is used as the as-
sumed deflection curve. It is fortunate that for the fundamental mode,
which is the most significant mode, the procedure is & very rapidly con-
verging process. The proof of the convergence of Stodola's method may be

found in den Hartog's (17) book.
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Figure 3.2 shows the tabulated computations for the fundamen-

tal mode.

€. The natural frequency is obtained from the fundamental
mode shape arrived at by using steps (1) to (5). Yor example, at the
top of the stack the way to obtain the natural frequency is by using

the relationship

4.,.2
1.0Z¢y = ¢ W;E;u Zey (3.24)

where

A = length of segment

Q
L}

figure arrived at the top of the stack by steps (1) to (5)
w = weight per unit length

g = acceleration of gravity

E = modulus of elasticity

I moment of inertia.

i

In the example shown in Flg. 3.2, the natural frequencies baged on dif-
ferent stations along the stack are computed and the average of the val-
ues taken., If the natural frequencies agree closely, then the mode ghape
igs relatively accurate. It is to be noted again that the average natural
frequency 1s really the undamped natural frequency but as discussed pre-
viously, the error being around 0.5%, it s used as the damped natural
frequency for the first mode.

Figure 3.2 shows how the different steps and data are tabulated
to obtain the fundamental mode ghape and natural frequency of the tapered
chimney.

For comparison, Muktabhant's uniform chimney (18) has been ana-
lyzed also. The results of this method show close agreement with his

data, both for the fundamental mode ghape and the natural frequency.
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Note that in the computation of the mode shape and the natu-
ral frequency, the shear and bending moment factors are automatically
computed. Hence, it can be concluded that the Newmark-Stodola method
of finding the natural frequencles, deflection, shear, and bending mo-
ment factors is orderly and efficient. These factors are plotted at
the end of Chapter IV.

In this Stodola-Newmark's method, the effect of shear along
the height of the stack and the rocking or rotetion of the base may
also be congidered. One extra line is needed after the EI line. This
line is for the shear spring constant which is the shear required to
produce a unit deflection for the segment., Three more lines sre needed
after the deflection line due to the bending moment. The first line is
for the increment of deflection, contributed by each segment, due to
shear. The gecond line 1s for the deflection due to shear which is ob-
tained by summation of the increment of deflection due to shear from
right to left., The third line is for the total derived deflection curve
which 18 obtained by adding the deflection due to shear and the deflec-
tion due to the bending moment.

In the case of the rocking or rotation at the base, 1t is nec-
egsary to compute the stiffness of the foundation in terms of the bending
moment at the base due to the jth mode, Then the concentrated ¢ at the
base due to rocking 1s added to the cone. ¢ at the base in line 12 of
Fig. 3.2 to get the total conc., ® at the base., Since the effeczt of ghear
and ro¢king is not consldered in this study, the details of the computa-
tions are not discussed.

As a numerical example, consider the computations shown in

Fig. 3.2. Line 1 is the station designation. ILine 2 is the distributed
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weight per unit length. ILine 3 is the EI value. Line 4 is the as-
sumed deflection curve. Multiply the figures in line 4 by the corre-
gsponding figures -in line 5 to get line 6, and at the same time multi-
ply the multiplier by 1/gw32. For example for station e, line 6
becomes
(1.000 x 7.5)[(012 Zey + 12g) x A/12] .

Iine 7 is obtained from line 6 by Newmark's method of integration dis-
cussed previously. For example for station e, line T becomes

(3.5 x 7.500 + 3.0 x 7.591 - 0.5 x 6.954)[Aen2 Zgy + 12g] .
Line 8 is obtained by multiplication of line 5 by line 3 with the prod-
uct multiplied by 12/X to balance the factor A/12 in line 7. TFor exam-
vle for station e, line 8 becomes

(1.000 x 87.0% x 12/70.7)[(en2 Ze1 + &) x 3/212] .

Line 9 is obtained by addition of line 7 and line 8, At station e, line
9 is (45.55 + 14,77). The other lines follow the same procedures. Be-
fore leaving this discussion, note that the inertia load per unit length
hasa discontinulty in station 2. In this station, eqs. (3.20) and (3.21a)

are used.
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CHAPTER IV

DYNAMIC STRUCTURAL PROPERTIES: SECOND AND HIGHER MODES

For the second and higher modes, the procedure outlined in
Chapter III is not a convergent process. This 1s because in process-
ing any apsumed mode shape, any impurity of the lower modes is magni-
fied more than that of the higher mode. After a large number of repe-
titiong it is found that the higher modes digappear altogether and
that only the fundamental mode remasins (19). However, the process can
be modified a little by utilizing the suggestion made by N. Newmark
that the modification requires purification of the lower harmonie
impurities.

To give a clearer insight into the nature of "normal modes of
motion", & brief discussion of the theory of "normal functions” and
their applications is necessary.

It is known that for a string and the beam on two hinged sup-
ports, the various normal elastic curves are sine functions, that is,

uy = Ajsin Q%f . (4.1)
From the theory of Fourler series, it is & well-known fact that eq.
(%.1) form an "orthogonal" system (20) in the interval 0 < x < h; that
ig, the integral over that interval of the product of any two distinct
functions of the system is zero. The statement above is expressed mathe-
matically by the equation
h

[ sin Eﬁﬁ sin ﬁﬁﬁ ax = 0, ¢ r £ 8, (4.1a)
o

1]

1/2h , if r = s . (%.1p)

Ly
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The orthogonal or orthonormal relationship derived above means
that any elastic curve Z(x) which may be glven to the simply supported
uniform beam can be split up into a series of "normal" components. This
is true not only for the uniform beam on two hinged supports with its
sine functions as the "normal functions", but it is also true for any
elastic system. However, for the case of a uniform cantilever beam or
of a stack with variable cross-section, the normal elastic curves are
not simple sine or cosine functions hut are complicated curves.

If the normal elastlc curves of a system of length h are
Z1(x), Za(x), ... Zj(x), then any arbltrary deflection curve of that
system can be developed into a series

72(x) = $121(x) + @aZa(x) + ... ¢JZJ(X) . (%.2)
Moreover, the relation

h
[ m(x) 2,.(x) 2g(x)ax = o, if r # s, (4.3)
o

holds, 8o that any coefficientﬁj in eq. (4.2) can be found to be

gh n(x) 2(x) z,(x)éx
¢J = Vh . . (l*'l*)
g m(x) Zj (x)ax

Equations (4.2), (4.3), and (4.%) give a generalization of the theory of

Fourier series.

A rigorous proof of eq. (4.3) is found in den Hartog's (21)
book. The proof is not necessary here because in the computations of
the higher mode shapes, the orthogonality condition of eq. (4.3) has to
be satisfied first.

With eq. (4.3) as a tool, one can proceed with the computations
for the second and higher modes of vibration. As stated previously, for

the second mode, the first step is to purify the assumed deflection curve

of the first mode impurity. let Z(x) be the assumed second mode which
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of course contains some first harmonic impurity, call it A;Z;(x). Then
the purified gecond mode shape is

Za(x) = 2(x) - A1Za(x) , (k.5)
vhich is free from first harmonic impurity. To solve for A;, substitute

eq. (4.5) into the orthogonal relationship of eq. (4.3) to get

h
J m(x)[2(x) - 237;(x)] Zy(x)ax = © (4.6)
[#]
or J;h n(x) 2(x) 2;(x)ax
Ay = e . (’*-63)
[ m(x) Z,2(x)ax

Again, Newmark's method of integration, with the regionally
parsbolic assumption of the curves m(x)Z(x)Z;(x) and m(x)Z;(x), iz a
fast and orderly way of integrating the numerator and the denominator
of eq. (4.6a) and algo in finding the value of A;. To provide a check,
Muktsbhant's (18)  uniform stack has also been analyzed and the re-
sults are consistent. The operations are shown in Figs. %.1 and 4.2
at the end of this chapter for the tapered chimmey.
In Fig. 4.1, the denaminator of eq. (4.6a) is computed first.
The stack is also divided into ten segments as in Chapter III. The
steps are self-explanatory. After getting the value of
h
J m(x)212 (x)ax ,
then the value of °

h
J m(x)Z(x)Z, (x)ax
o]

1s computed. To get the value of A; the latter integral is divided by
the former. The results of the processes are tabulated in Fig. L.1.
After finding the value of A;, then the assumed deflection

curve is purified. ZEach value of Z; is multiplied by A; as shown in
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Fig. 4.2 and then the corresponding Z;A; is subtracted from the as-
sumed Z. The relative purified deflections are then computed. The
game procedures used in Chapter III are uged to obtain the derived
second mode deflections from the assumed relative purified deflections.
If the derived deflection curve Z» agrees with asgumed Z, then the re-
sult 1s exactly the second mode deflection curve, but if not then the
process 1s repeated only this time the derived Zs is the asgsumed deflec-
tion curve which has to be purified. It is shown in Fig. 4.2 that the
derived deflection curve Zp agrees closely with the assumed Z meking
further trials unnecessary. The second mode shape of Muktabhant's
uniform stack has also been analyzed and the results are also consis-
tent with his results.

The computation of the natursl frequency for the second mode
is the same as that of the first mode., The natursl frequencies based
upon the various stations are computed and then the average is teken.

The procedure is similar for the third mode. However, this
time the assumed deflection curve has to be purified from both the
firast and second modes by the same orthogonality relationship of eq.
(4.3). For the third mode, let the assumed deflection curve be Z(x),
80 that the purified deflection Z,(x) becomes

Za(x) = 2Z(x) - AoZy(x) - BaZa(x), (4.7)
where
7(x) = =assumed third mode deflection curve,
Za(x) = purified assumed third mode deflection curve,
Zy(x) = from previous computations of first mode shape,
Zo(x) = from previous computations of second mode shape,

Ap and By are constants of purification.
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Substitution of eq. (4.7) into eq. (4.3) gives

h
[ m(x) (2(x) - 827;(x) - BoZa(x)] Zo(x) &x = O, (4.8)

- gh m(x) Z(x) Zn(x) dx - Ap fh n(x) Za(x) Zz(x) ax

B2 = Q . (14-.8&)
cj:’m(x) 752 (x) dx

But the integral
h
[ mx) 2y(x) Zo(x) dx
o

is zero if 7,(x) and Zs(x) are pure first and second mode shapes, 8o

that eq. (4.8a) reduces to

[ m(x) 2(x) Za(x) ax
By = 2 . (4.8v)

thm(x) 702 (x) dx

Similarly, substitution of eq. (4.7) into eq. (4.3) gives

h
J m(x) [2Z4(x) - AoZy(x) - BaZo(x) Z3(x)] &x = O, (4.9)
Q
or
f m(x) Z(x) Zy(x)ax - B» g“ m(x) 73 (x) Za(x) ax
A‘E = (1‘”9&)
2 mlx) 222 (x) ax
0
Also,

h
J m(x) 2a(x) Za(x) ax = O©
0
if Z;(x) and Zo(x) are pure first and second mode harmonics, so that eq.

(4.98) 1is reduced to
éﬁAm(x) 7(x) Zy(x) ax

gh m(x) 7§ (x) ax

(4.140)

Newmerk's method of integretion, with the parabolic assumption

of the curves m(x) Z(x) Zo(x), m(x) ZB(x), m(x) Z(x) 2;(x), and m(x)2%(x)



-o.

<

within three adjacent stations, is used to get the values of Ay and Bs.
It 18 noted here that the value of

h

J m(x)z3(x) ax

0
had been evaluated already in finding the second mode shape,

The computations of Ap and By are shown in Fig. 4.3. The pro-
ce@ure here is the same as 1n evaluating A; for the second mode., The
computations of the derived third mode shape are shown in Fig. %.4. The
vrocedure is also similar to finding the deflection curves for the first
and second modes, only this time the assumed third mode shape is cor-
rected for both the firsgt and second harmonics by -AsZ;(x) and by -BeZo(x)
respectively, giving the purified assumed curve Zg(x) shown in Fig. 4.h,
If the derived third mode shape is not the same as the assumed third har-
monic, then the procedure is repeated and further trials are needed until
they become close.

The results of the procedure for the third mode shape for the
uniform stack also agree with Muktebhant's computations.

The natural frequency computation is the same as for the first
and second modes. Figure 4.4 shows the natural frequencies hased on the
various stations with the average also computed.

The procedure for the fourth and higher modes of vibration is
the same as for the first, second, and third modes. The only difference
is that the assumed higher mode has to be purified from the lower modes.
Therefore, the Stcdola-Newmark method requiresg the computations of the
lower modes before proceeding with the higher modes. It is fortunate
that the effect of the higher modes i1g small so that in this study only

the first, second, and third modes are consgidered.
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Now, the constants [—3 can be evaluated. The formule for [ﬂj
from eq. (2.75) is

gh m{x) Zj(x) dx
£h m(x) Z?(x) dx

(k.10)

[y =

Again 1t is fortunate that some of the previous computations can be

used, Wherever more computetions are needed Newmark's method of integra-
tion is used, with the essumption that the curves m(x) Zj(x) and m(x)Z?(x)
are regionally parabolic within three adjacent stations. The computations
and results are shown in Fig. 4.5. The steps are self-explanatory. Al-

ready, the data for the first two terms of the equations

n
vy = L 240 485, (2.77)
J=1
n \
J=1
n
M = 351 MJFJQJJ (2.79)

are availeble.

The values of ZJ, Vj and MJ for the 707' Clifty Creek stack are
plotted at the end of this chapter. The curves for the 605' Modified
Selby (22) and the 562' Kyger Jreek (23) stacks are in the appendix.

The next step 1s to find the values of ¢j' This step is dis-

cussed in the next chapter,



-51-

"'SNOILVTINDOTIVI ALITVYNOOOHLYO 3AOW ANOD3S 'I't '914

18°682 .
IO 0 + = - A — = 'y ey ‘Alun=%%z-'°7 sous
92¢2°¢ KUNN _NERA
y
. 0
(0g)9z2°e - SNN_NE.H
. Y
Je 922°¢c| OEv'e| S8E'G| L68'II| bI6'b2 | 8OILb|2bb Ll | 2997101 8E 201 ¥26°0G | (?z'zw 2u09)
o0 | 0S0f0- Gblfo- €0gf0- 996/0~- 8IIfi— <I9li- 19— 96ifo- zzzlil 2LLb! W
bzi<+ °2'%zvy bGI[O- 0I8[I- 602[9— IGPH[2I 920(12- 612'82-609/22-92G'0—- 88I'0t 202°9¢ ?27'zwou09
6+%92'%z 0  Loo[- vom%”u SOG|— 61071- 9G4/1- L6Y['2- €66/I- 28I~ .BZ'¢ 00§ 2z'zw
?%z'®z - 0 €000/~ 200- zIO[- S€O/— . 920/~ €z2I- 2el- 9lO[- 9be" 00O ?2'z
22z 0 I20j— 980|— ¢8I[- €62/— 18¢— .6 — .62 - 920/~ €€b" 000 27 pawnssy
! ° |
(00)ig8°682 = Xp'zw % w
Ty
oQ 18'682 22,682 |68'882 |£9°982 | v2'182| 2069229 bb2 | €1'902| 21'061| 802G @wEdSSN
oa ¢ 0 L0[/0  OIf0 €20 6G[0 S2'l 2b'Z SS'b 6902 L. bl . .
m~_+_ww< $OfO  18/0  9If2z  9I'G 8G[II 02'€2 .L0O['9¢ 9v|IS &gzl Is2b 4 ZW 0u0D
b=z 0 © <¢POL 89" Loy v26 6267l 066[2 bt 1909 00GL LW
%z 0 ¢ 100 $OOF IO OvOl S60" 86l 2ZLE 8€9' 000 2Z
'®z ¢ 9o00f 920 ¢90f M 66l 60€ St oI9 664" 0007 'z
(SdiY) tM PopPPY L8°G/SE2 8Y[L2b 0O'6tI OS[S6 69798 bg'L.L 06[IL €0O[2L B8O161 €018 ouoy
)y ded sdiy g9, 026 m“mw I'edy 1’62 I'ee  ¢roz I|'Gl b G'6 mm (M) iybiam
silun diy-44 g [ 2 € v S 9 L 8 6 9 uol4D}S
HITILINN 4 !
y M
/ _ I 9POW PpuodI3g
Y —=
7 Y Y Y »




'S31143d0dd JOINVNAQ 3AOW ANOD3S 40 SNOILVTINDIVI "2'v 914
3|9ko 19d puodas gg'0 Np pollad

puooas idd suDIpPJ4 GO'L = ¢y AOouanbai4 apow puooag aboisay

"

.N.m.m_n_\Eot ,NmNNBO_.mm.mu._w:n:::s_co:omZoo
T 9~ ,

5(Puodas 1ad supipou) ofet clevr o6y glevr o6+ o6t 96y o6t IEb  9of6H Zm
9w o0[1- 929/~ 89¢f- 90— 280 zozf Zlezf oog  izif  8<of 0 TN 2AlDIRY
ZIN 000I- | 666 018~ | b6S - | 968 — | 8OI'— | SII' | vbe | Sc2' | s8I ZA 3A1iD|RY
%37 ¢ 120[- ¢80— Llf- 282/- 89¢- b8E~ 982~ 6I0~ LEb[ OO0 77 amyopy
B3p 41 +792%m Yy 0 L0f82- SEbIS— BY[L99- 62[G90I- 692881~ LL/6bbl- O8O0~ 8IflZ~  19[8b9l bo[GLLe = uond3143@

oa v.08L- _NN.meI_Om_.mmm| 6le'86¢- mmw._NmnmwO.Nwlm 129714¢€ [ L16'9001 86.2°6121620221¢

% ado|s "bay

B33t 51 +7%2%m y bL08L- L6IBGH- 65891~ 68I[G- 92r[9L 80862 9SL'eet 9v2Ses 1882l 1€2/L0b ¢ ouod

621321 <22 %m .y GHOZFb2ofel- 216/6- Glib- £28[G 11812 S28'GE G69/ES 1629 9lbbE O CIREERD

b2 +*°Z%m v sefcesi- m¢.m¢m.\.mmw_m- 90€UbI- 8LGI21 LSHI282LLETIEE  GIZ622 £L9(891 8EbIES O (W) Luawop

°Q  BOS2SH-92S62h- IE999¢- 88 '892-16.8'091-026'8Y ~1291'2G |2¥S Ol GE2 SIIBEL'ES (A) 409yS "Bay

TT T 7T To@ 0 Lesis- zIg'9- bOLlt- v08[b- H69'G- Ole'G- 22L'e- £Ob/— €6l 2ll[bl L
21 +?%2 Zm Y €8S bI- £85°9G- €HO[€6— 102/€0I- mwmﬂwo_-mmh.mm; 8G9O[bS~ 062 - vm.wwv 999f8¢ pooT "ul "9uoy

b2z %m 0 260[I- Eeol5C le8f2~ €9f8- Ov6 8- 2z2le- 909[t- 9.8/— 9.0+ O00S[2 "bu| "p DIjdaY|

%z 0 120/~ /80'— 98I~ [/62/- /BEg[- SOb- GOg- ¢€eoi- 62b°  OOO[I %Z paij1ind aA14D|2Y

27 0 I20/— 980[- +b8I- +62/- €8¢- 10b- 20¢[- €€0/- b2v" 686 ¢z paijring

H \ - _wm~ 6 9 o w00 100 200" €00° goo[ .oof 600" nof 'z'v

°°z 0 120[— 980/- ¢8I- ¢62/- I8¢~ L6€[~ 262[- 920/~ €£€b 00O[I 27 pawnssy

®|306GI1 g2f69 gB'IS 08[6E 0./02 G621 G2[6 02[S 0.2 SS1 OOl t3

(sdi¥)iM PePPY |  .8'ClsEe 822t OO[6bI OE[G6 69'98 be Z. O6[IZ <0[2. 80161 €028 EICR
't} Jad sdiy gl9s  0f2S ﬁ_u“mw i'zé 1’62 Ig2 €02 ISl [ mm.m Glz (M) 1ybram
syun diy-414 q _ 2 € 14 S 9 L 8 6 9 uolinis
¥317dILTINW

"

AN
f-<
<

~<

3pOW Ppu0d23S



"SNOILVINDOTIVO ALITVNOOOHLYO 3A0ONW Q¥IHL1 ‘¢ '9Id

62121'0— = (18'682) = (SI'Sg~) =V uayi ‘Ayiun =£37 =197 aouig
°Q gIrge— ANN_NE.ocoovN
°oa 0 2If 62 St 19[ Lyl 2.[- zef2- oSs[v— 9¢gfi- 1./ bl . .
b2 +£°2'°2 cel be'e  lef8 96[2l BEL  bO[vl- Ob[Ib— 96[Sb- 69—  GIj22 £7'zw ouo09
b -£27'37 ¢ 910/ ow%m_” 8S.  90If1I egLl LIif1- 609/¢- S6I[b- 665f- 0062 £72'7w
€971z ¢ o000 0O 810 8€O[ 2€0 GSO[- 62/~ 89¢ - 2bO[- 000! £2'z
"z 0 900 920 €90 6l 661 60%] Sbp| 019" 664 000/l 'z
812100+ = (Lb'Ob2)=(€6°2) =28 uay} ‘Ayjun = 27 =737 aouig
oqQ €62 . (£Z7%Zzw du00) 7
oQ ob|- 60]I- Z¢[I- ®S[I- <6/- g6 66/l b2/ Glf— L.l W o
b2i= £%2%%2v¢ GI'l-  8b[Il- GG[92- 8€/Ig—- G8[GI- €9[GI o0gf92 2§+ bSS  8b[se £227w 2u0)
6 -°7%%z ¢ z2sof- §EJ| T e€i2{2- s9oL2- SSvfi- 29b[1 I19bf2 822  6I2— 00S|L £27zw
£972%z 0  100[- GIO|- $SO[- G60[— €90/- 2.0  €9If 020 €20f- 000f £2°%z
£97 0 6vOf 1Zt- 2ez2  elgf 29" 8.iI- 9¢S/- 09— €S0/~ 000 £7 pawnssy
eQ)ipopz=xpizuf
0q |.b0b2 (2zw 2u09)—Z
og 0 gifo 8G[0 680 2|l 12z sile  wIfl I0fo  l6ls L.l . .,
bz1+%%z2Y LS[0  Sg['9 98[21 GG[0e tSfob 9i8e 8¢{LI  92[¢  66[b2 6b(lE ZZw "2u0)
b-?77 0 czo 45| vivf1 19gfe sov[e sezele vob|i no{'  8bZfl 0OGS[L 2zw
¢z 0 vv000] 800 GeO 88O OSI 9 €60 100/  ©8If  0OOfl ¢z
297 0 120~ .180|  98I[- L62/— [BE[- GOb'— GOE/- ¢€€0— 62b 000 °z
(sdix) iM PappPYV 18°G|S€2 8b[L2b 00/6bI 0€'G6 69/98 +belLL 0612 ¢0'2. 80[l6l <OoL8 ouoy
4y Jed sdiy grey ofzs L&Y ey ez I'ez  ¢loz2 1[Gl Bl gl vl (M) 4+ybrom
siun dijy-144 -q [ 2 ¢ % S 9 L 8 6 3 uolID4S
4314 LINW
/ .
m _ 9POW Py
A : ¥ v




-5l

'S3NLYIJ0Hd OINVNAQ 3FAOW A¥YIHL 40 SNOILVINDTIVO "v'v 914
a|9ko Jad puodssge0=fy poliag

puogas Jtad supipps p'9| =£» Aouanbaig apow pJiy) aboiaay

_(pu03as Jod SUDIPOI) 692 89z 69z .:mmm : ‘muﬁi edle 692 69 692 69 ‘ foo
fIN00 1 29y’ 200"  IBe[— Lf€- m_Nmn l20/- o’ wSI 20 ® FN aA1iD|aY
f9A | 0001 | 968" | 92S' | HOI' | 1Z2- L9 — 082~ 9bO'- . €SI | bEl £A emiD|oy
9z o svo s ev2" 962"  gsI'  esi- 1Lt 6iS~ 800"  0OOJl £7 aniiDjoy

633541+ €37 Foo i e Lb2IE mg.mo_iwm__hw_ 2b6502 6911801 +89'SOI- Emﬁm,mm-wmm 196~ 116'S  ££9[969 =7 uoyd2|}aq

°oq  speis 202 8L, 8222,  GG.8I | €4226-1968'€l2-06G'22e- 20Ige - 288'99¢| 921169 =" ?dojs "bAy

B33y =92 Lo IbelE SG6'9b bOb— .£86/8G- 82S'9l- 08O9I~ L£L'8~ 88v'68I 68666¢ mmm?mm | ewﬁo:cmo:oo
691321=925m Y 69¢€'S 96I'F 920"  088/b- 6110~ BSHOI- I8¢ IEG’SI 6SSGE 89882 0 CEEL
b7 x m_n 229 018282 2b€l  OlLfbii- 89v'602- G2b'GE1 2. L 21— 192708 80096 ovLby O (W) iuswow
,Ji¢oo | mowwmmMW¢wwN;~nowh:mmnvm mvovn.memﬁ-mmmmm-_N¢Nm_r 29G°IS  9bLbb (n)ioeys bay

°0 | 66l b9bIl €88[9 L6 I1G°2 SI9Tl— 092G- by8'G- GEI'l 2Ll ] ]

b21+53zfmy  zcoo¢ 2ve'8E Olb "b¢l $88°COl 620 9b SOG.2- 920/€4- §99°09~ IBE'S  bL6|E mu "pDOT DIjIdU| (OUOD

T T b2zfm 6 ovez 2§39 isvill ove's ei6'c Leb'z- 80S'9- 6bbG- £E€°  OOS[L  Hul pooT onieul
27 o gv0'  8SI° Nﬁmw pOe" 22" g2’ Igvi- 8ip°— Ge0° 000l £Z payuing aripiay
£27 0 0SO° Sl 208" lgg" 6l  9¢l'— 8lt— O0€S— 6£0° 6011  £7 panyiind
237 0 "0  100— 200- 0O - moo..‘m@o.k\vamw% o coo0°  =ziof 777g

Z ® 100~ €00— 800'— bHIO- vmo_ LSO~ $G0— L0~ L60— I2I[- . 2%y
€97 0 640" 121" ze2l  elgT 290 8Ll 9¢G- H09'- €G0'- 00O/ €7 pawnssy
1306fGII 269 SBIS O08BfSE 0L°02 GS6[21 G2'6 oz's 02 ,Ss1 00 o 13
(sdiX) IM PappV Nwmmmm 8b 22t OO[6t1 0€'G6 69798 be'L. 06IL £0/2.' 80O[lI6I €O[L8 ou0y
”HMMMWism*mwama; m.op_ o Nm,mmﬁww‘;.wm¢ 162 1[ez. m_oN ﬁmfiiw.:f‘gm&wtf‘mwg:km. iﬁzvzma;.l.
sjiun diy-14 9 _ 2 ¢ v g 9 L 8 6 3 uoliD4S
¥IILINN
\“ | M ! I 3PON PIIYL
y : 4 X v




~55-

‘(oQ)18'682

‘(0gyLvove

‘SAILIINVND U

(

16v'I +=62v22 -1G°beeC

¢8B Il —=.Lb0b2 TG 2GY—-

80’2+ =18682+.5¢6G

] (o4
P zu f f1'p7o14 woy

Z ° Cmey -
X w wou
P2z ,.\ S v 914 }

o

xpfzu f +xpfzu

dH1 40 SNOILVINDIVI ‘G 914

]

Y
xpZzu’ = xpZzuw’
cNN;% nN‘%

Xp MNE e\‘
J

= xp! ‘
.GNJ\

"
)

1
C

11
[

£

a10j219y) ‘Ajun 7 .23, 35

puo

o
‘(0Q) 25°€6G = XP _N,u\, ‘2'e 914 woyy

7]
“(0Q)1g°2s - =xp ‘7w [ ‘2pooly wou

‘(°a)ezpez = xPIzw T tgpolg woy Joo:m.vmmnxonNE.o\. ‘pb914 Woiy
Y y
 (0Q)ezp22=Xp ZW

°Q 62'v2e ~ AMNE .ucoo,vN

°a os/ 181 281 6v[1 by 02 L2l 6l/2 €0 14/l . .
b21~£37Y( 602 elfel 8S[ge 8S0E  16/6 SS9 66[0f 18/82 020l 86 b2 £Zw ou09
b-5%Z o woir BEQN  cnfe 2i9'2 ¢69f  g0g” 608’2 66G°2 0107 006G fzw
%7 © 200/ 620] wiOf 260" 020/ GO 98 82z 100" 0001 £7
£z & svol scll ezzr  voe” 2z gz~ Igb/- 8ib'— S€O° 00O £7

(sdi) IM PappY 18°5lse2 8Y[22b 006t OE[S6 6998 ve L. 0612 £0'2. 80161 £078 ouoy |
4y sedsdiy g9y ofzs  AGY ey ez iz g0z i'st v 6 SL (M) iybrom
syiun diy -4 g _ 2 ¢ % S 9 L 8 6 ) uol4Dis

¥317d1 LINW
4 DA i 2 Y Y




DUQIA

PUOP3

§SH

3405
1

i

|

o} 9

I
1
i

b

e

Sbg

)

!
|
i

|

‘.;l_q oy




i
e
i

£t

1 4o olioy

1s

0




MI3HO AlLAD
WOW ONIaN3E

) 1Q1A |40 sbpow |

puopeg |t

Lild

(-

B S}




CHAPTER V

GENERALIZED CO-ORDINATE RESPONSE TO EARTHQUAKE

The general equation for the generalized co-ordinate ¢J with

the effezt of ground motion as derived in Chapter III is

.

%J + Qﬁujﬁj + w§¢J = -y (2.768)
Equation (2.76a) can be solved either by the Laplace Transform
method, Newmark's step by step method, or by the use of the analogue
computer. Since the function Yy, does not follow a simple algebralc or
trigonometric function, the analogue computer is used in this stu§y.
In the case of the earthquake, the initial condltions for eq.
(2.762) are:
g(o) = o,
¢(0) = 0,

since the stack 1z assumed to be in its neutral position.

(5.1)

By the use of Churchill's (9) lLaplace Transform symbols for solv.
ing the differential equation, eq. (2.76a) bezomes
s26(s) - sf(0) - 3(0) + 28uef(s) - 2804(0) + w2f(s) = -£(s) . (5.2)

Substitution of the boundary conditions in eq. (5.1) into eq. (5.2) gives

(82 + 2808 + w?) f(s) = -f(s), (5.2a)
or
¢(5) T - f(s) = - f(s) ’
82 + 2Buws + w2 82 + 2808 + (280) +_[;z.. £§§§951
4 L
or
#(s) =~ (o) =~ it . (5.3)
(82 * 2&92 o2 ‘n(a%)a (2 + Bw)2 + (wV1-p2)2
2
Let
o = wV1-p2. (5.3a)

59
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Thus, eq. (5.3) becomes

(s) = L __£ls) o . (5.30)
fla) w (82 + B + ()2
Therefore,
p(t) = -.L...i.'.'y'b(t) xe Pt gin e, (5.4)
or t
#(t) = U%Tf eBt-1) ¥ gin o (t - 7) ar. (5.5)
0

Since we have ghown that ' is approximately equal tow, eq.

(5.5) zan be written in the form
1 (6-7) =
gi(x) = ol ePBET) § stn (¢ -T) aT, (5.52)

for the jth mode of vibration.

Equation (5.5a) can be used if small time intervals are taken
because of the random nature of the accelerograph ﬁb. To complete the
analysis of one accelerograph plus the fact that there are many values
ofcpj is time-consuming and hence this method is not used in this study.
The analysis is presented only for the sake of completeness and for the
use of those who might not have the analogue computer at their disposal.

The response ¢J(t) is actually the response due to a single
degree of freedom system which is best exemplified by a spring-mass sys-
tem. The maximum value of f;(t) is often called the "displacement
gpectrum”" (1).

For the benefit of those who are not famillar with the laplace
Transform method, the Newmark's step by step method is discussed briefly.
In eq. (2.76a), the mass is essumed to be unity, and therefore the Resis-
tance Curve has a slope equal to w®. The velocity ¢J 1s expregsged in

J
terms of the acceleration (aj) and the increment of time (At). The
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displacement ¢J can be expressed in terms of velocities and increment

of time. These relationships are;

¢'f' = ¢o + %?'(ao +‘¢f) ’ (5.6)

po = P+ Atﬁo + 923".'550 + %t'.fif s (5.7)
where the gubscripts £ and o denote final and initial conditions respec~
tively. These relationships for increment of time, acceleration, veloc-
ity, and displacement are the basic tools of Newmark's Method. TFirst
agsume & trial total resistance Q. Then subtract Q from the aspplied force
P (in this case -y, ). The quantity (P - Q) is really the net force in
Newton's second law of motion. Divide the net force (P - Q) by the mass
m which 1s unity in this case to get the trial acceleration. The trial
velozity and displazement are then derived by the use of the relation-
ships discussed above. Then the damping force Eﬁuﬁﬁj is obtained from
the velocity, and the resistance fOTCG!ﬁ§¢J is derived from the displace-
ment. The derived total resistance force 1s obtained by adding the damp-
ing force to the resistance force. Detalls of the theory and computations
éan be found in Newmark's (2h) paper. As in the Laplace Transform method
the process is laborious.

Since the electronic analogue computer is available for this
gtudy, it is used.

The theory, design, and operation of the analogue computer can
be found in the report of ¢. E. Howe and R. E. Howe (25). According to
the sbove report, the bvasic computing element is the operational ampli-
fier which consists of a high-gain d.c. amplifier plus an input impedance
and a feedback impedance. The operational amplifier can do three basic

operations, namely; addition, sign inversion, and integration. The first
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smplifier is called the “"summer", the second, "sign inverter", and the
third "integrator". 1In all the operations, voltages proportional to the
physical quantities are used as the inputs and the outputs are also vol-
tages. For example if a voltage equlvalent to % is fed into an integra-
tor, then the output voltage is equivalent to -@. Note that the sign is
shanged hesides the integration process.

Potentiometers are also available to control the voltages simu-
lating the physical quantities.

Besides the computing element and potentiometers, a separate
unit known as the function generator is also required to simulate the
forcing function which in this case is the aczcelerograph.

In this study the Reeves Electronic Analogue Computer (REAC
Model No. C101 ) with the Reeves Servo is used. The Reeves Function
Generator (Model No.IC-101)is also used, The Brush Recorder is used to
rezord the physical elements. Detailed descriptions of the above units
can be found in the manuals issued by the Reeves Compeny and the Brush
Jompany.

Before leaving the units, it might be well to say that the
Servo has been used in this study to put voltages with more accuracy in
the potentiometers and the integrators (for initial conditions). In the
Function Generator, there 1s a drum around which is wrapped a stiff paper.
In this gtiff paper a wire following the outline of the forcing funetion
is glued. The maximum value of the ordinates is +100 volta and the mini-
mum 18 -100 volts. One sweep of the drum is 190 volts.

In this part of this study Mr. F. L. Bartman 'and Professor R, E.

Howe have glven indispenseble assistance.
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Since the range of the periods of chimneys is from 0.5 to 3.0
seconds, it 1s advisable to express eq. (2.76a) in terms of a new vari-

able t'., Let,

£ = ot . (5.8)

Then,
g2-& % -0f, (5.9)

and

a2 a4 (af) _ 4 [ & a [ ap) a _ _ae
—d-.g(dtj -&E (mdt') dt' (”O dtl) d.t (1’92 a‘t‘.gg M (5010)

at=
Similarly, 25 , 5, (
2 < g 5.11)
Therefore eq. (2.76a) be:omes
o %;gs + 2p.8 %%T + 8 = -2 %;¥%' (5.12)
or,
Ternfres - -FH - -HER (5.128)

The computer circuit for eq. (5.12a) is shown in Fig. 5.1.

As aﬁ illustration, the response curves ¢J for the El Centro,
California earthqueke of May 18, 1940 with N-S component are shown in
Fig. 5.2. These curves are for the Clifty Creek Stack (h = 707') whose
first three periods are T; = 3.0 seconds/cycle, Ty = 0.88, and»lra = 0.38,

and for a damping coefficlent By = 0.050 for each mode.
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CHAPTER VI

DESIGN SHEARS AND BENDING MOMENTS

From the results of Chapters IV and V the instantaneous shears
and bending moments can be computed by the use of eq. (2.78) and eq.

(2.79) which are:

V = ‘Z vjr"JgAj , (2.78)
J=1
M = 321 M, | J¢j : (2.79)

The procedure is as follows:

1. Multiply the first two dynamic structural properties to get
Vj{—E and M;[ ; and exjress the results in terms of the maximum value
which occurs at the base of the stack of the first mode. Call these quan-
tities shear coefficients (ijﬁj).and bending moment coefficients (Mjfﬂj).

2. Multiply the results of step (1) by the response ¢j(t) at
different instants as given in Chapter V.

3. Plot the results of step (2) and obtain the maximum shears
and bending moments at various points along the stack.

The Clifty Jreek Stack (h = 707') is used as a numerical exam-

ple, taking the base of the stack first. For the ghear at the base,

Vo[ 1 = (593.6xf + 12g)(2.048) = 1215.70F + 12g , (6.1)
Vpal 2 = (-452.508 + 12g)(-1.882) = 851.6MB + 12g (6.2)
ng[—; = (334.508 + 12g)(1.401) = Lo8.7:nB + 12g , (6.3)
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CHAPTER VII

CONCLUSIONS AND DESIGN RECOMMENDATIONS

The ghears and bending moments along the helght of the chimmeys
are computed by the use of the empirical seismic coefficlent K, for a
particular locality. The seismic coefficient is multiplied by the weight
of the chimney above the section under consideration to get the forces.

The maximum shears and bending moments along the height of the
gtack obtained in Chapter VI are also plotted.

Then the shears and bending moments derived from the previous
chapter are divided by the shears and bending moments derived by the use
of the seismic coefficient. The result of the division is defined as the
magnification factor. These magnification factors are the basis of the
re:ommendation for the preliminary design rules of reinforced concrete
chimneys.

The results of the computations for the 1lluatrative gtack are
shown in Figs. 7.1 and 7.2. Figures 7.3 and 7.% show that the shear and
bending moment magnification factor curves for damping coefficient of
7-1/2% ere below the curves for 5%  but the deviation is not signifi-
cant enough to affect the recommended design formulas.

The most recent ACI Code (26) Title No. 49-26 reported by the
ACT Committee 505 is quoted below:

403 - Moments due to Earthquakes

() Where earthquakes are likely to occur, chimneys shall

be designed to resist the forcea set up by an earthquake of the
maximum severity anticipated from the earthquake experience rec-
ord for the region under consgideration. The moments from earth-
quake shock, My, shall be computed by eq. (51) and (52).

T2
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1. Vhere the section under consideration is at or below
1/5 of the total chimney height measured from the base of
chimney

Mg = Fh" (51)

2. Where the section under consideration is more than 1/5
of the total chimney helght messured from the bage of the
chimney

Me = Fh" [1 + %%Rﬂ (52)
where

F = Wafg=WkKg,

W' = Weight of chimney above sectlon under consideration,

~including any portion of lining supported from the
chimney shell, 1b.,

h" = Distance from section under consideration to center
of gravity of chimney mass above the section, in.,

h' = Distance from sectlor .under consideration to the
section that is 1/5 of the total height of the chime
ney above base, ft.,

a = Acceleration due to the earthquake, fps per sec.,

Acceleration due to gravity, fps per sec.,

"

g

i

afg = Selsmic coefficlent to be determined for lozal-
ity where chimney is to be constructed.

Ke

The megnification factors corresponding to (1 + h'/100) based
on the ACI Code gquoted above are plotted. Thesé magnification curves are
compared with the ones obtained by means of the dynamlic analyses made in
this study. The ACI Code 1s found to be insufficient as shown in Fig.
7.5, for regions where strong«motion earthquakes occur even if the value
of Kg = 0.20 is used. Therafore, .iew formulas for the magnification fac-
tors need to be derived.

An envelope is drawn for the magnification factor curves, and

narabolie fitted curves are obtained and recommended for preliminary de-

sign. The fitted curves are shown in Figs. 7.3 and 7.5.
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After the formulas for the magnification factor curves have
been derived, it is necessery to assign values to the seismic coeffi-
clents Kg for different localities. The ideal thing to do 1s to make
gimilar studies of avallable accelerograph records of earthquakes for
the particular locality and then determine K,. However, in the ab-
gence of accelerograph records, the engineer is referred to the map
showing oceurrences of earthquakes of various intensities for differ-
ent localities in the U.S. put out by the American Standards
Association (27).

In this study, earthquake regions are divided into three
groups namely:

1. Strong-motion reglon, where the accelerograph records
show maximm accelerations of from 0.0875 g to 0.325 g,

2. Medium-intensity reglon, where the accelerograph records
show maximum accelerations of from 0.05 g to 0.0875 g, and

%. Iight-intensity region, where the accelerograph records
ghow maeximum accelerations of less than 0.05 g.

The recommerded design formulas for the shears and bending

moments are:

V = WKgh" [1.84- 8(%1 s x 2 .,5h, (7.1)

= 1.8W'Kgh" X ¢ .5h., (7.1a)
ony?

M = W'Kh" [“8(“:5?—)} , x * .2h, (7.2)

= W'Kgh" , x ¢ .2h, (7.2a)

for stacks whose fundamental periods are from 2.4 to 3.0 seconds per cycle.
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The recommended seismic coefflcients for the different regions
digcusged sbove are:
Region (1), K, = 0.20,
Reglon (2), X, = 0.06,

Region (3), Ke = 0.03.
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