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SUMMARY

A Holzer-Myklestad type of procedure, using a matrix formulation, is de-
veloped for the determination of the natural vibration characteristics of a
pretwisted rotating blade in coupled bending and torsion. The nonrotating
blade is considered as a special case. Results of a limited parametric study
are presented. It is found that in the case of the rotating blade there can
be an appreciable effect of centrifugal forces in coupling the bending and
torsional vibrations.

In order to investigate the effects of Coriolis forces and the nonlinear
effects of large angular displacements, a study i1s made on the basis of a
simple model. Numerical results indicate that the Coriolis forces may intro-
duce substantial phase differences between bending and torsional vibration.
Limited numerical results on the nonlinear effects indicate that these effects
decrease slightly the frequency of the characteristic motions as determined
from a linearized analysis and introduce some coupling between the character-
istic motions.
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1. INTRODUCTION

In a previous report:L the natural vibration characteristics of rotating
twisted blades were studied for the special case of coincident mass and elas-
tic axes. This eliminates coupling between bending and torsional yibration,
and the problem was studied as one in bending vibration only. Bending de-
formation about both principal axes of the cross section was considered.

The present work represents an extension of this previous work to the
case of noncoincident mass and elastic axes, that is, the case of coupled
bending and torsion. This case has already been treated analytically in
rather complete fashion in Ref. 2, the problem being formulated in terms of
governing differential equations and also in terms of energy principles. How-
ever, very few results are presented in that reference, and they are for a few
special cases of a rather restrictive nature.

In the present work a different analytical approach has been used. It
involves essentially an extension of the Holzer-Myklestad method for deter-
mining the bending vibrational characteristics of a beam to the case at hand.
The Holzer-Myklestad method had previously been extended byTargoff5 to the
case of bending of twisted rotating blades and applied in Ref. 1. It was
found to be particularly well-suited to automatic digital computation, and,
for that reason, has been extended in the present work to include torsion as
well, and has been applied in a limited parametric study.

An effect of centrifugal forces in coupling bending and torsional vibra-
tion, considered initially in Ref. 2, is taken into account in the present
work. It arises when the mass and elas*tic axes of the blade are not coinci-
dent.

It should be remarked that the inclusion. of torsional deformation compli-
cates the effects of pretwist and rotation considerably. There may be a siz-
able steady-state or "pseudo static" torsional deformation of the rotating
blade in some cases. This is due to centrifugal twisting moment which, in the
case of negative pretwist and positive pitch, tends to twist the blade nega-
tively, and also to the twisting moment associated with tensile stress in the
longitudinal fibers, the so-called "centrifugal untwisting moment." These
two effects oppose each other in the normal case, and the extent to which one
or the other predominates depends primarily upon the amount of pretwist and
the pitch setting of the blade. An analysis of this deformation and presen-
tation of some results are given in Ref. L.

Additional effects relate to a departure of the torsional stiffness from
the value provided by Saint Venant theory. This departure is associated with



inclination of the longitudinal fibers of the blade with respect to the elas-
tic axis, due to both pretwist and torsional deformation. The normal stresses
in these fibers can be seen to have components in the plane of a cross section
and to exert a torsional moment about the elastic axis. They arise from two
sources. Firstly, there are normal stresses associated directly with torsional
deformation that are present even in a nonrotating blade. These stresses may
introduce a substantial nonlinearity into the torsional stiffness.’=D Secondly,
there are normal stresses associated with centrifugal forces, contributing to
the torsional stiffness in a manner which is essentially linear for practical
deformations; that is, there is a linear relationship between torque and elas-
tic twist.B)fL Some theoretical results for the case of torsiocnal vibration,
with some or all of these effects included, are presented in Refs. 4 and 6.

Because of the possibility of substantial pseudc-static torsional deforma-
tion and nonlinearity in the torsional stiffness, an accurate determination of
the natural frequencies of vibration of a twisted blade should be based on
linearization with respect to the pseudo-static deformation. This has not been
done explicitly in generating the results presented in the present report. The
values of pretwist selected must be interpreted to include pseudo-static de-
formation. This facilitates comparison with the results of Ref. 1, where
pseudo-static torsional deformation would have an influence on bending vibra-
tional characteristics, and where the values of pretwist must be similarly in-
terpreted to include such deformation.

Another interesting aspect of the rotating blade vibration problem is dis-
cussed in Ref. 7. It is shown that Coriolis forces, or so-called '"secondary
inertia" forces, associated with the combined vibrational and rotational mo-
tion introduce a phase difference between the bending and torsional vibration.
In order to investigate this effect more fully and to investigate the non-
linear effects of substantial angular displacements on the dynamic character-
istics of a rotating blade, an additional study, reported in Section 3, was
conducted on the basis of a simple model. The nonlinear effects considered
are those associated with inertia forces. Nonlinearity in the torsional
stiffness, as discussed above, and the effects of centrifugal tension on the
pseudo-static deformation and on torsional stiffness are not included, al-
though they could, in any extension of the present work, be included without
undue complication.



BLADE ANALYSIS

no

SYMBOLS

A = GJe + Tk2 + EB1(B')®

A

= |
1

= A/EI

By, Bz section constants defined in Appendix A
C = EBB'/A = C

E Young's modulus

EI;, Elz Dbending stiffness about major and minor principal centroidal axes,

respectively
EI, = EI./EI,,, Elp = EI»/Elz
e distance between mass and elastic axis, positive when mass axis
lies ahead
e = e/R
S distance between area centroid of tensile member and elastic axis,
positive when centroid lies ahead
e distance at root between elastic axis and axis about which blade is
rotating, positive when elastic axis lies ahead
e = e,/R
Gdg effective torsional rigidity
GJe = GJ./El1,
IQ’ I mass moment of inertia of cross section about { and 71 axes, re-
spectively, defined so that corresponding moments for an element dx
are chx and I,.dx
i
- 2 = 2
I = 1§/QOR I, = In/pOR



kA polar radius of gyration of cross-sectional area effective in
carrying tensile stresses about elastic axis

ky = kA/R

kC’ kﬂ mass radii of gyration about { and mn axes, respectively

J/ length of blade segment

1 1/R

My, Mo bending moment about major and minor principal axes of cross
section, respectively, when centrifugal tension is assumed to
act along undeformed position of elastic axis

m mass of blade segment

Pys pg, pn resultant loadings per unit length in the x,{,n directions,
respectively

Q resultant torque about elastic axis at any cross section

Oys At> qﬂ resultant torsional loadings per unit length about the x,{,n
axes, respectively

R blade radius
T centrifugal tension, dx = Qle
N
T = }: 143%4
i=1
N
T, = }: pilixl
i=1
u displacement in the x direction
Vi, Vo shearing forces in the direction of the minor and major principal

axes of the cross section, respectively

X, Y52 coordinate system which rotates with blade (Fig. 2.2)
X = x/R
2
Y = (EBpB') /EIs



Y = Y/EI,,
B angle between major principal axis of cross section and plane of
rotation, either in the undeformed or pseudo-static state
B' = dp/ax
B' = B'R
AR increment in B between blade segments
72 = Bl /Flz,
6y, 62 displacements of the elastic axis in the y and z directions,
respectively
1, 2 displacements of the elastic axis in the direction of the minor
and major principal axes of the cross section, respectively
¢, n coordinates in direction of minor and major principal axes,
respectively
e total twist in blade between x = 0 and x = R, @ = -RB’
A = oNp R*/EI,
VI Q*JQOR4/EIlO
o) mass per unit length of blade
o= o/o,
¢ torsional displacement, positive when leading edge is up
W natural frequency of blade vibration
Q rotational velocity
[ ] rectangular matrix
(] column matrix
Other symbols are defined in the text.
Subscripts
n order of natural mode



0 value at x =0
T value at x = R
(), ()" differentiation with respect to x

BASIC MATRICES

The governing differential equations of motion for a rotating blade with
offset mass and elastic axes have been derived and are reported in Ref. 2.
These equations are repeated in Appendix A. In the present report these equa-
tions have been adapted to a matrix formulation which permits rapid numerical
analysis. This method is essentially an extension of the one presented in Ref.
1.

The coordinate axes of the blade are shown in Fig. 2.1. The cross section
coordinates and displacements are shown in Fig. 2.2. The blade is divided into
a number of spanwise segmentis, not necessarily equal in length. The mass of
each segment is assumed concentrated at its center, and the bending stiffnesses,
EI, and EI-, the torsional stiffness, GJg, and the angle of incidence, B, are
assumed constant between masses, appropriate average values being selected.

The bullt-in twist 1s accounted for by relative rotations of adjacent uniform
bays (between masses) about a spanwise axis, the change in angle AP being
equal to the total twist in a segment and occurring Jjust outboard of the mass

(Fig. 2.3).

The quantities Vi, My, 81, 81, Vo, Mo, 82, 82, Q, and ¢ (Fig. 2.2), which
apply when the beam is at its maximum displacement in a free vibration, are
defined at stations along the beam and may be represented at any station in
the form of a column matrix:

{8)

Il
AN
=

52? (2.1)

Q
¢

The elements of this matrix will vary along the beam in such a manner that
the variation can be considered to occur in a series of steps. Moving from the
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Fig. 2.3. Blade segment rotation.



tip toward the root of the beam, the change in {A) occurring from a station
immediately outboard of one mass to a station immediately outboard of the next
mass can be broken down into three steps, the first involving movement across
the mass, the second involving movement from one end to the other of a weight-
less uniform bay, and the third involving movement across the discontinuity in

B.

The relationéhip between the (A} matrices as they apply at the two ex-
tremes of this travel can be represented as follows:

(Mps1 = RIE]IFIA), (2.2)

where [F], [E], and [R] are rectangular matrices representing linear rela-
tionships corresponding to the three steps discussed previously.

The [F] matrix, relating the {A) matrices on either side of a concen-
trated mass, is written as follows:

(1 0 0 Fia O O O TFig O Fiio
0O 1 TFas Fey O O O o 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 Fsa 1 0 0 Fsg 0 Fsi0
F = 2.
0 0 0 0 0 1 Fe7r Fesg 0 0 ( 5)
0 0 0 0 0 0 1 0] 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 Foy 0 0 0 Fgg 1 Fgi10
10 0 0 0 0 0 0 0 0 1 ]
where
Fia = ZLp(0f+0%sin®p)
2
Fig = - [pQ sin B cos B
Fi10 = lpe{uP+Q2(sin®B-cos2B)} - lpe,NBcos B
1307
Fog = Ppz— + AIn(0P+02) (2.4)



Foyu = - pix0?
Foipo = -p!exﬂz
Fsq4 = Fais
Fsg = pl{of+0®cos®p)
Fs10 = - 2p£e92sin B cos B - pmgeO sin B
For = 2L v pTp(aPee?)
Feg = Faq
Fosa = ple(w2+Qgsin B)
Fgg = - p!eﬂzsin B cos B
Foro = L(Ig+In)? + (In—IC)(coszﬁ—sineﬁ)lﬂg—lpeeoﬂzcos B (2.4)

The derivation of the elements of this matrix is given in detail in Ap-
pendix B, except for the contribution of centrifugal force coupling, which is
treated separately in Appendix D. It is seen that only the shear forces, bend-
ing moments, and torque are changed, since there are no discontinuities in
slope or displacement. The changes in shear force are due partly to the in-
ertia force associated with the vibrational motion of the mass and partly to
the component of centrifugal force normal to the undeformed position of the
elastic axis. Part of the change in torque is related to the change in shear,
since the mass and elastic axes do not coincide, and part is due to the inertia
force associated with the torsional vibrational motion. The change in bending
moment, except that associated with centrifugal force coupling, is fictitious
and arises from a special feature of the analysis. This feature involves the
replacement of the component of the centrifugal force parallel to the unde-
formed position of the elastic axis by an equal force along the line of the
undeformed axis and an appropriate couple to provide static equivalence. The
changes in bending moment indicated in the [F] matrix are then due only to the
applied couple, the moment due to the force applied along the undeformed axis
being accounted for in the [E] matrix. When moments due to both sources are
considered, the discontinuity in bending moment disappears. Note that, on
the basis of this procedure, the bending moment at any station is not M, but
rather M plus the moment of the tensile force T acting along the undeformed
elastic axis.

The elements in the [E] matrix are found by the solution of the differ-
ential equations of combined bending and torsion of the weightless uniform
bay between masses. These equations and their solutions are given in Appen-



dix C.

The resulting [E] matrix is:

1 0
Esq 1
Esx  Ea2
Esr Bz
0 0
) 0 0
E71  E7z
Eg1 Ea2
0 0}
| Er01 Bio2

where, if we define

the components of E are given below.

fined in Appendix C.

Eox

Ea1

P

0 0 0
0 0 0
Ezs Ess Eaze
Esa Ess  EBue
0 1 0
0  Ees 1
E74 E7s Eve
Egs Egs Ege
0 0 0
Eios Eios Eios

!

foEI,

- _Ps ginp pys o+ _Fo
EIipa EIipo

(pT-21)(pa-81)

(a1-as)(pF-p8)
(p5-81)(pa-as)
(al-as)(Pl-Pz)

(pa-8a) (pe-a1)

(a1-as)(pT-p8)

(p5-a3)(po-as)

(a1-ag)(pf-p3)

sinh pol

- P3 cosh p1f + P> cosh pol

10

0 0

0 o)
Ess Esio
Eso Es10

0 0

0 0
E7g 0
Eag 0

1 0

Eios Eiocio

(2.6)

The quantities pi, ai, and f5 are de-

-ifa2a6P4—a3a8P3)cosh p1d + [-apagPsi+aszag(Ps+l) Jeosh pglwasa%}'

(2.7)



E42

Il

a1EI1E3p

_Eégg;__ é— sinh p1l - l_ sinh p2%>
azasBls \p1 Do

82Py (. ]

az84Bls (cosh pyf-cosh pol)

a3E12E35

a3E12E36

- 2 2 2
—E [—(Pl"as)Pz cosh pil+(pz-az)pi cosh paf] + 2233
f2(pi-p3) fo

82ET Ean + EggW(V)

1
foET,

, 1 .
[agag(Pa+l)~azagPs ] o sinh pgfmasaaé}~

%}-a3a8P3+a2a6P4) %_ sinh pil
1

2, 2 =
1 [-Pl(Pz"a3)+a3(p2=a1) P

Ps
: - cosh pyZ + =% cosh pgl]
EI, (a1-a3)pips 5

Sl
= M0

P24
as(Pgmpz)Pl _ alga cosh pif + égga cosh pal

Pip= P1 b=

asP 2 =2 2 2
et [(p1~p2) + pzcosh pif - picosh p2£]
a324PpipsEls
Eas
a3E12E45
Ea7

11



2 pg . 2
————57—53- -(pT-as) 22 sinh pyL+(pz-as)

P1

agEl 1B + E4SW(N)

(cosh pyl-cosh pof)

alEIlE72

1
a3E12

(E77-1)

1

SoETs (Popy sinh pi4-Pspe sinh pod)

P> cosh pi1d - Ps cosh poi

N
agBEI E72 + E76W( )

24
asfolIq

_ asPy 1l . 7 - 1l . n 2
;;ET;-<£1 sinh p3 P2 sinh po

EI E72

12

2
P1 sinh pgé] +
D=2

) [-(pi-al) sinh py4 + (pB-ay) sinh pzl]

agasl
fo

B3236P2~3338P1)P1 sinh p14 + (-apagPstasagPy)ps sinh Pzé]

[Fa2a6P2~a3a8Pl)cosh p1l + (-apagPs+aszagP; )cosh pgz-aga%]



Bgs = 21EI Eags

1
i = Egw-1
s - i (sret)
N
86 T a3EI; (Egg-l)
Bg7 = L2 ginh pif - 58 sinh pof
D1 P2
Egg = Po cosh p1f - Ps cosh pol
a4 2
Egg = ——2—— |-(pi-a1)pB cosh pil+(pB-a1)p3 cosh pol | + 2184
: 2 2 f
f2(pI-p3) -2
N
Egio = agBIl Ego + EssW( )
1 (Pi“as) s
Eio1 = SaToET, - (azagP2-azagP1) sinh pil
(p2-as)
- _E%__é_ (azagPa-azagP1) sinh pol+tasasacs!
2
Py [ 2 =2 2 2 2 2 ]
E = ——fem—e—— | g, - - - h £+ -8, cosh )3
102 aépipSEIl s(Pl P2) (Pl as)pacOS b1 (Pa 3)pl b2

Py (p1-8a) (pa-a3)
Eios = =% |- 2ELX2237 ginh p1f + AEET232 ginh 1=y
az P b=

Ei0oa = aiFIiEice

Eios = —*““E%—g——— [}al(pﬁ-p§)+(p§-al)p§ cosh p14-(pa-a1)p1 cosh pz%}
a384PIpsEls

Eios = a3§ZEIg [sz;al) sinh pid - ﬁﬁ%gill sinh pgé]

Eio7 = aszklzakEjos

Eios = asgElzEjoe

13



- 2 2 2 2 2 2
-ajagl - (p1-21)(p1-83)ps sinh pid + (p2-21)(p2-a3)p1 sinh sz

2 2
: (p1-p2)P1 (p3-15)p2

1
Eico = 75

(2.7)

1 L 2
Eio10 = === z‘éi——j (ﬁ%(Pg-aa)—as(P§~al)] + P %-(Pl-as)Pg cosh pif
Pibz {\ai-ag) [ b
(N)

+

2 2
(p2-az)p1 cosh Paf}J”+ Ei06W

! !
Note that 53 and &2 are positive for increasing deflection in the positive x
direction.

The [R] matrix serves to rotate the coordinate axes through the angle AB
and is written as follows:

cos A8 0 0 0 —sin AB 0 0 o o0 0]
0 cos AB 0 0 0 -sin AB 0 0 0 ©

0 0 cos AB 0 0 0 -sin AB 0 0 0

0 0 0 cos AB 0 0 0 -sin AB O 0
sin AB 0 0 0 cos AB 0 0 0 0
R] = 0 sin AB 0 0 0 cos AB 0 0 0 0
0 0 sin AB 0 0 0 cos AR 0 0O -0

0 0 0] sin AB 0] 0 0 cos AB O O

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

L —
(2.8)

METHOD OF SOLUTION

By a successive multiplication of the appropriate matrices, a linear re-
lationship can be established between the [A} matrices at the root and tip of
the beam

(Apoot = [C](A}tip . (2.9)

Recognizing that the shears, bending moments, and torque are zero at the
tip of the beam, the [A}tip matrix can be reduced to a five-element matrix,
and the corresponding five columns can be eliminated from the first [F] matrix
at the tip of the beam; successive multiplications will then yield a 10 x 5
matrix product.

In order to satisfy the boundary conditions at the root of the beam, the

determinant of a 5 x 5 matrix formed from appropriate elements of the [C]
matrix must equal zero. For example, for a cantilever blade the third, fourth,

1k



seventh, eighth, and tenth rows form the 5 x 5 determinant, and for a fully
articulated blade with torsional restraint the second, fourth, sixth, eighth,
and tenth rows form the determinant. Other boundary conditions, such as
elastic restraint at the root, can be handled easily.

The elements of this determinant will be polynomials in ¢¥, and upon
expansion a polynomial equation in «? will be obtained. In principle, the
natural frequencies of the blade could be determined by solving for the roots
of this equation; however, such a procedure is far too cumbersome to be feas-
ible.

A more practical procedure involves the introduction of trial values of W
into the various [F] matrices and evaluating the elements of all matrices
numerically. The matrix multiplications can then be carried out numerically,
and the appropriafe determinant evaluated. The value of this determinant,
which may be termed the "residual," may then be plotted versus ®w or uR and
the location of the zeros of the residual will determine the natural fre-
quencies of the blade.

STEADY~-STATE DEFORMATION

As pointed out in the introduction, there may be a sizable steady-state
or "pseudo-static" torsional deformation of the rotating blade in some cases.
The loadings which produce this deformation are given in Appendix B along
with those induced by the lateral and torsional vibratory motion. It is
possible to determine this pseudo=-static deformation and to then find the
natural frequencies based on linearization with respect to the pseudo-static
deformation. In the numerical results which follow this has not been done
explicitly. The valuesof pretwist selected should be interpreted to include
the pseudo~static deformation.

In order to determine the pseudo-static deformation let us define the
following matrices:

—~
[

L
1}

column matrix of blade variables just outboard of mass i

(0}; = column matrix of blade variables just inboard of mass i

[FOJi = matrix [F] with ® = 0, across mass i

(d} = column matrix of steady state quantities across mass i

{g]i = column matrix of steady state quantities across bay between
masses 1 and 1+1

[D]; = [R];[E]y across bay between masses i and i+l.

15



Then it follows that

A
4 [8)4 [Fol, 1 (d}g] 2(a)4
{11} = |'w - 1l] 11} (2.10)
and
: A
(A)i+l [D]i e [8}{] [A]i
T ]by': N . (2.11)
Starting at the root where
{A}root {A]n+l ?
we have
[ (8) oot |) )] Jle)]
{Mi_r_qqt}z [’Lbl : 1] {'I'l’:f ) (2.12)
where
) el 2 (e Bl | @
O 1] " Sl o1 0TI
Equation (2.11) may be written

Satisfying the boundary conditions at the root and the tip of the blade, Eg.

(2.12) may be reduced to

(K) (1)
[T (a7,

16

(n(K)) (2.13)

b



where

(1)) =<8l (2.14)

and where K = 1 corresponds to a fixed root, and K = 2 corresponds to a fully
articulated root (My = Mz = 0). [H K)] is a square matrix of order 5, and
{h(K)} is a five element column matrix.

In the case of a fixed root, [H(l)j is obtained by deleting rows 1, 2, 5,
6, and 9 and columns 1, 2, 5, 6, and 9 from [H], and {h(l)} is obtained by
deleting rows 1, 2, 5, 6, and 9 from (h}. Similarly, in the case of a fully
articulated blade, [H(E)] is obtained by deleting rows 1, 3, 5, 7, 9 and
¢olumns 1, 2, 5, 6, and 9 from [H], and {h(g)]is obtained by deleting rows 1,
3.5, 7, and 9 from {h}.

Equation (2.12) may be solved for {A(l)}, and (A} then determined for all
stations by applying Egs. (2.9) and (2.10), starting at the tip and progress-

ing toward the root.

The matrices {d) and (g} asre each ten-element column matrices which are
obtained from the steady state terms in Appendices B and C. From Appendix B,

d1 = - ul?® sin Bley+e cos B)

d2=d.3=d4=d'7=d8=dlo=o

ds = plOf cos Bleyte cos B) (2.15)
de = -of x e
dg = (InmIC)ZQZ sin B cos B = pleeoﬂa sin B

Appendix C shows that the (g} matrix can be derived from the [E] matrix if
the terms involving Mz and Q are extracted and Mo and Q are replaced by‘TeA
and Tk;B', respectively. Thus,

gy = B, Tep + Eingiﬁ‘ . (2.16)

17



NONDIMENSTIONAL FORM

It is convenient and desirable to treat the problem in nondimensional
form. The (A} matrix can be redefined in terms of nondimensional forces,
moments, and deformations as follows:

@Rz/mlg
MiR/EIy,
51
81/R
2
@ = <;i§ /ﬁi:’ = (2.17)
82
52/R
GR/EI;

C?

The corresponding nondimensional form for the [F] matrix follows:

1 0 0 1*:14 0 O 0 Els o F 110
0O 1 Fag Fou O O O o 0 0
o o 1 o 0 0 o0 o 0 o0
o 0 1 o 0 0 o0 o 0 0
B 0O 0 0 Fss 1 O O Fsg O TFsio
Fl =16 o o 0 0 1 Fg7 Fga O O (2.18)
0 0 0 o o0 0 1 o 0 0
O 0 0 o 0 0 © 1 0 o0
0 0 O Fga O O O TFgg 1 Foio
O 0 0 o 0 0 o0 o 0 1

where
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— - - 2
Fia = Ip(N+0° sin® B)
ﬁig = = iﬁh? sin B cos B
_ -— 2 2 2 2 _— 2
Fi10 = ple{N +u (sin B-cos B)) - pléyp cos B

_-3.2  __
Fos = BLA + IL,05)5)

1z
Foy = = pixp®
— D2 T~
Foi10 = - pplex
Fs4 = Fis

(2.19)
Fse = BL(N+u"cos®p)
Fsio = - o0:%sin B(2€ cos Bt+eg )
—~3.2

- 22N - 2 2
Fgy = & + 1Te (N +
6 7 £ wo)
Feg = Foa
- =, 2 2 2
Foqg = Tle(h +usin B)
1':98 = - E:f—e-ugsin B cos B
Foio = (I§+In)£7\,2 + 21 cos 28(Iy-I¢) - Beeytucos B
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And the corresponding [E] matrix

where

Ezi

Eax

Eaz

=

33

=

34

Eag

Eas

=

37

=

38

Esg

1 0 0 0 0 0 0 0
Eoy 1 0 0 0 0 0 0
EB 1 E32 E—SS E3‘.1: E35 E_SS -E-B'? EB 8
E‘l 1 E-4 2 E‘1- 3 E44 E-4 5 E-4 8 -E-4 7 E‘L 8

0 0 0 0 1 0 0 0
0 0 0 0 Egs 1 0 0
E? 1 E'72 E7:3 E74 E’?S E_76 E?'? E?B
ES 1 EBZ E-SS E84 E85 EBS E87 EBB
_EJ_.Ql -E_:102 i:.3.03 ElO‘.‘: E105 ElOS i:.107 Ell-108

3

Eao

Eso

k79
Ess

Eio9

Ea1o0

Es10

E710

Bsio

(2.20)

- ?—_:JE'E-[—- «{(’525.6'134 -ﬁgﬁgﬁs )COSh D, 1+ [-—8.-2-8—.6—1544‘5:3—8:8 (?3"‘1) Jeosh 52 l—-'asé‘%
25i1

Ps T N
—=—=— sinh P14 - ==— sinh D2/
EIiDa EI D2

- P3 cosh P11 + P2 cosh Dol

T8I Esp

2= 5 —_
Y-82Ps h B I-cosh ol
= (cosh Pyl-cosh Pol)
-8.—3ET12 w

——;2;— Eas

BaBls =
asg = E36

—2— [(ﬁ-as )2 cosh D1I-(PE-33)B3 cosh ‘paf] - %22
T2 (p2-p2) f2
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Eaio0

Eq1

Faz
B4
L9

Eys

E7a
b7z
Eva

E7s

i

82BI1Egn + H2W(N‘>Ese

—L {( -838gP3+a28sF, ) i—— sinh D1l
ngIl Pa

[:533§(§é+1);§é§6T2] sinh §ET:§QESZi}‘

1 [-7:(Pa-8a)+aa(Pa-By) P b
_ _ 5 - - A o
= [ D1 pzv_asw fﬁi a1) _ :g cosh p1l + —= cosh pg/l]
EI, (81-85)D702 P 25
EI1Eap
_ 2 2= - =
- as(pémgg)lal - é}ga cosh p1d + a_']_‘ga cosh Pzl
PipP= PI P5
BoPy 7 2 .2, _2 _ -2 - —
:——i-%%ﬁ— [( 1-Pz )+D= cosh P1I-P1 cosh pgl:l
as84PIPSEI2
- Eas
ashls =
- Egs
22
Eay
—2 _2
bz

sinh Py T+(Da-Bs) %L sinh Iog‘[] +
2

—

2

a2a§[

(2.21)

7

= 24 [( ~BoBePotBaBaPy )P1 Sinh Py l+(828sPs-Bs8gP1 )Pz sinh "P'sz:‘]
azfzEly

3429 (cosh Dyi-cosh P=l)

aBEll

4P — e T =

%21 (<P1 sinh D1/+Dz sinh P2l )

ERVARNI
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E7s

E7s

Ez7

E7s

E7e

E710

Eea

Ee2

Eaa

Eaa

Ees

Egag

Eg7

Bes

Eso

Bsio0

2 — —_— —
2 (-PoP1 sinh P14+PsPe sinh Pal)

Egﬁg

—P-g cosh 51-1_ - ?3 cosh I)_g_[

EsE—ig "

540505
= -2 —2
f2(P1-Da

BoEL1E72 + U°W

é‘-g—aﬁ-— [(Egang:és—ég.P_l )COSh 51 T‘l'( '5256?34:5—‘358?1 )COSh 52 l-agas:l

£2EI,

- BaP1 G—- sinh P17 + 11)

ZoEl; \P1
EI;E72

B1EI1Ego

= _:g' sinh 517‘*‘ E—S sinh :527

JShR

Po cosh D1l - P cosh Dol

By

— —  \— —_ —_
—2s [‘(Pl'al)Pg cosh Py L+(pB-E1)

f2(P1-D2)

agﬂlﬁeg + }J.gw

) [}il-al)Sinh 517-(5é451)8inh §2E]

sinh 527)

% cosn 1] + B

—(N)=
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Eio1

5102
ElOS
Fros
i:7.1.05
Elof?i
E1o7
EﬁOa

Eiog

Eioc1i0=

L [3i%2) (5,8,5,-5.5: r
= [-pi-ag (2285P2-232gP;1 )sinh P11
apfokEl, P

_2
i (apag P5-8385P1 )sinh @J]
D2
i= .o _ _ s = o =
e e [?S(Pﬁmpg)m(Piﬂas)Pg cosh Py I+(P5-33)P3 cosh Pzé]
azpIpzEly
— o o
Py [(P1=33) sinh Bl - (Pz-83) sinh pl%]
an P D2
81EI1E1o2
P, _ 2 2 =R — -2 .2 _
e S [~=a1&pl-=p2)+(pl=al)pa cosh D1d-(P=-81)P1 cosh pzﬂ
asz84P1P2Bl2

"2? (_2'5 ) _ 2 _
L4 [ 178170 sinh Pal - 22721 ginp ﬁgfz]
D

fz -Dz P
i) = "’2
2 o I
(B5-5:) (5 55) B et w]
=

(2.21)
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i
%ﬁdﬁz
(V)
K - ? = 5‘8 - 8487
I U WO O R
T | = AT (= + = t o= = BpBg-ag(B1t83)+a18487
I, I, Bl EI,
wy2 LI (TR-®T%) = 85(818g-308e) (2.22)

(p1-8.) (F531)

(81-33) (P5-28)

(p3-81) (Pa-83)
(31-83) (P2-Ds)

n n
sin Bp > lipieiXi sin By + cos By Z lipieixy cos PBi
i= i=1

- cos By Z Zigigiii sin By + sin By Z Ziﬁigiii cos By
i=1 i=1
2L



The [E} matrix has

and the components

the components

= - 15° sin B(g,*€ cos B)

0
e
5
-

il
i
i)l
>
ol
gt

= (fh;TC)Ipz sin B cos B - ZEééOMZ sin B,

of (g} are

cos B(Ey+E cos B)

0

o= =_ = =-2-1
g = M (EiZTeA+Ei8TkAB )

(2.24)

For the case of zero rotational velocity, the [F] matrix is obtained

directly by substitution of u = 0.

When this substitution is made in the [E]

matrix, some of the elements are found to be of indeterminate form and a
limiting process must be applied.

Eog
Eax
Eaz

Eas

o

Eaq

i%l

=1

oI,

o

L=
H
i
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(2.25)

Eios

Ei09

=

>
+
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NUMERICAL RESULTS

A program of computations was performed for two representative cantilever
blades. The properties of these blades are given in Table 1. These blades
were chosen to have the same bending properties as blades for which numerical
results are reported in Ref. 1. For these two, the section constants I, Ip,
By, Ba, GJe, kp correspond to those for a thin-walled rectangular section, and
it was assumed that some nonstructural mass was distributed in such a way as
to provide an offset between the mass and elastic axes, and to provide suffi-
clent mass moment of inertia to made the uncoupled first torsional frequency
and the second uncoupled flapwise frequency coincide. The result in both cases
is a lightly coupled system as far as flapwise bending-torsion is concerned.

In both cases the blades were divided into ten segments, the cantilever
root condition was applied, and the four lowest frequencies were determined.
A range of values of pretwist and rotational velocity were chosen, and the re-
sults are presented in Figs. 2.4-2.6. 1In addition, results for beam No. 2
with rotary inertia neglected are presented in Fig. 2.6, and with centrifugal
force coupling neglected in Fig. 2.7.

DISCUSSION OF RESULTS

The influence of twist on the natural frequencies of nonrotating blades
is shown in Fig. 2.4. The fundamental frequency in each case is almost com-
pletely unaffected. The higher frequencies are affected by the coupling be-
tween flapwise bending and torsion, and by all three types of deformation
when twist 1s introduced.

The combined effects of rotation and twist on blade No. 1 are illustrated
in Fig. 2.5. In the untwisted, nonrotating case the fundamental mode is iden-
tified as predominantly flapwise bending; the second mode is uncoupled chord-
wise bending; and the third and fourth modes are coupled flapwise bending and
torsion. The effect of rotation and twist is to couple the first two modes.

A comparison of the results in Fig. 2.5 with results in Ref. 1 for a beam with
the same bending properties but with torsion neglected shows that essentially
no change has been introduced by the presence of torsion. The fourth frequency
in Fig. 2.5 differs slightly from the third frequency for the beam in Ref. 1,
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TABLE T

BEAM PROPERTIES

Beam No. 1 2
)
b —fe- 1,
- T,
h/L 2.285.10°% 6.225.102
/R 1.000.10"2 1.000.107%
e 0.25 L 0.15 L
A 0 0
Kp 0.015522 0.04926
Br 0 0
¥ 1.000.10-1% 1.000.10"%
I.[in.4] 2.355 h°t 8.1987 1%t
Io[in.%] (2.355.10)05t (8.1987-10%)n%
By[in.%] 32.692 h5t 15.345 h5t
Bo[in. "] 0 0
GT% 1.153 1.405
I, 2.190-1075 2.402:107°
EC 5.832:10723 7.114-107°2

*Aluminum is assumed.
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Fig. 2.k. Effect of twist on natural frequencies of nonrotating blades.
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while the third frequency in Fig. 2.5 is a new one introduced by the presence
of torsion. It i1s seen that twist has little effect on the third and fourth
frequencies shown in Fig. 2.5. A small difference between the results in Ref.
1 and the present results is introduced by the inclusion of rotary inertia

in the present analysis.

The results for blade No. 2 presented in Fig. 2.6 show that the funda-
mental frequency is essentially unchanged by the presence of torsion when com-
pared with results for a similar blade reported in Ref. 1. For this blade the
fundamental mode is predominantly flapwise bending. The second and third modes
for the untwisted, nonrotating blade are coupled flapwise bending and torsion,
and the fourth mode is uncoupled chordwise bending. When rotation and twist
are added, the three higher modes exhibit considerable coupling, and it be-
comes difficult to reach any general conclusions. When compared with the re-
sults in Ref. 1 for a similar blade without torsion, it is seen that the ef-
fect of the presence of torsion is to introduce a new frequency and to modify
the other two frequencies a moderate amount. That these two frequencies are
not modified more by the presence of torsion is to be expected since the coupl-
ing for this blade (and also for blade No. 1), as represented by the amount
of offset between the mass and elastic axes, is relatively small.

The neglect of rotary inertia has a negligible effect on the natural fre-
quencies except for those cases in which there is chordwise bending. For exam-
ple, in the case of the untwisted beam No. 2 the only frequency which is ap-
preciably affected is the uncoupled chordwise hending frequency. The magnitude
of this effect is shown in Fig. 2.6.

The effects of centrifugal force coupling on beam No. 2 are shown in
Fig. 2.7. Curves with and without centrifugal force coupling are shown for
© = 0° and 30°. Only the @ = 0° case is shown for the second frequency to
avoid confusion in plotting. The © = 30° case for the second frequency is
modified by a slightly smaller amount. The © = 0° case which represents
uncoupled chordwise bending (the fourth frequency for the nonrotating beam)
is essentially unaffected, as is the @ = 30° case for the third coupled fre-
quency. It can be seen from these results that centrifugal force coupling
can have an appreciable effect on some of the vibration characteristics.
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3. SIMPLE MODEL ANALYSIS

functions defined immediately following Eq. (3.13)
offset of mass c.g. from supporting rod, positive forward
nondimensional form of e, e/r

unit vectors along the x,y,z axes respectively
moment of inertia of mass m about supporting rod
moment of inertia of mass m about its own c.g.
moment of inertia of flywheel

kinetic energy of system

stiffness of bending spring

stiffness of torsion spring

mass

shaft torque

nondimensional form of Mp, MT/mr292

differential operator

length of supporting rod from shaft to mass m
radius vector from origin to element of mass dm
time

potential energy of system

velocity vector of mass element dm

magnitude of ;

3



X,¥,2

Xp YEs 2R

M

e

axes fixed to supporting rod and mass assembly
y-coordinate of mass element dm

stationary axes

orientation angle of bending hinge axis

angle simulating built-in twist

built-in coning angle

phase lag of motion in ducoordinate relative to motion in -6-
coordinate

elastic displacement about bending hinge
pseudo-static value of ©

departure of @ from Og

amplitude of 5, also initial value of ©

nondimensional radius of gyration of mass m about supporting rod,

NI/mr2

nondimensional radius of gyration of mass m about its own c.g.,

N Ig/mr2

nondimensional form of t, Ot

elastic displacement about torsion hinge
pseudo-static value of ¢

departure of ¢ from ¢s

initial value of 5

initial value of ¢!
amplitude of E
angular displacement of shaft

angular velocity vector of x,y,z frame
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Wy, Wy, Vg components of ® along the x,y,z axes, respectively

w natural frequency of characteristic oscillation
W 00 first and second natural frequencies of characteristic oscillation
Q rotational velocity of shaft

DESCRIPTION OF THE MODEL

In order to examine some effects of nonlinearity and Coriolis forces in
the free vibrations of a rotating elastic blade in coupled bending and torsion
and to consider the effects of certain parameters on the static deformation of
the rotating blade, a simple model with a small number of degrees of freedom
is set up and analyzed.

The model consists of a rigid weightless rod on one end of which is mounted
a mass and the other end of which is connected to a rotating shaft. The connec-
tion to the shaft is through a hinge with axis normal to the rod and set at an
angle to the shaft. A spring, restraining motion about this hinge, simulates
bending stiffness. In addition, the rod is free to rotate about its own axis
against the action of a spring, which simulates torsional stiffness. The mass
is -assumed to be distributed along a line normal to the rod, simulating the
major principal axis of a blade cross section, with its center of gravity dis-
placed from the rod, simulating an offset of the mass axis of the blade from
the elastic axis.

The orientation of the model relative to a set of fixed axes and the gen-
eralized coordinates defining its configuration are shown in Fig. 3.1. The
final orientation 1s reached by aligning the model initially with the fixed
axes and then executing a sequence of rotations. The fixed axes Xpy Ypo 2
form an orthogonal set oriented so that the xp-axis is coincident with the
shaft centerline. Their origin is at the intersection of the rod and the
shaft centerline and is coincident with the origin of the model axes x, y, z.
The x-axis lies along the rod, the y-axis is parallel to the line along which
the mass lies, and the z-axis completes the orthogeonal set.

The model is initially aligned so that the x, y, z axes are coincident
with the xp, yp, zp axes, respectively. The following rotations, positive

in the right-handed sense, of the x, y, z frame are then executed in sequence:

1. A rotation about the zp-axis through the angle ¥ to the position xi,
y1, Z1. V then defines the shaft rotation.

2. A rotation about the y;-axis through the angle -y to the position xo,
Y2, Z2. -~y then defines a built-in coning angle.
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Bending Hinge Axis

Zg, 2
Mass, parallel to

y - Axis
e X4y X
Phaft
Ax?s Supporting Arm
and Torsional
— ——Xg, X3 Hinge Axis
4
y
\
\
N\ e
Flywheel

Fig. 3.1. Model coordinates.
3. A rotation about the xp-axis through the angle & to the position Xa,
V3, 23. The yg-axis then defines the position of the hinge axis.
L. A rotation about the yg-axis through the angle -0 to the position x4,

V4, 24. This represents a rotation about the hinge axis simulating
bending displacement.

5. A rotation about the x4-axis through the angles P and ¢ in sequence

to the final position x, y, z. The angle B simulates built-in twist,
and the angle ¢ elastic twist.

The angles &, B, and 7y are constants and constitute parameters in the
problem. The angles ¥, ©, and ¢ are generalized coordinates representing
shaft rotation, bending, and torsional displacement, respectively.

DERIVATION OF THE EQUATIONS OF MOTION

The equations governing the motion of the model are now derived using
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Lagrange's equation. Toward this end it is necessary to obtain an expression
for the kinetic energy of the system in terms of the generalized coordinates.

Assuming a flywheel of moment of inertia Iy to be mounted on the shaft,
and defining m as the magnitude of the mass mounted on the rod, the kinetic
energy of the system may be written,

_ 1,21
K = 5 Ipy~ + 2\xrv2dm (3.1)

where v is the magnitude of the velocity vector v of an element of the mass m.

v may be developed from the relation,
> > >
v = wxR (3.2)

where & is the angular velocity vector of the x, y, z frame and R is the radius
vector of dm. Substituting

o = a&I + wyg + wzi (3.3)
- - ->
R = ri+y] (3.4)

> >
where i, j, k are unit vectors along the x, y, z axes, respectively, into Eq.

(3.2) the following is obtained,

> > > ->

Vo= -yl o+ rwgj + (Wx"rwy)k . (3.5)
Thus,

o= Yap v+ (exerey)® (3.6)

and Eq. (3.1) may now be written,

1 1
K = 5 IF¢2 * 5 mr2(¢§+u§) + % I(wiﬁmi) - mrewy Wy (3.7)
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Neglecting gravity forces, the potential energy of the system may be written
as follows,

U = %kggz +%k¢d2 (3.9)

where kg and k¢ are the spring constants of the springs restraining motion in
@ and d coordinates.

Substitution of Egs. (3.7), (3.8) and (3.9) into Lagrange's equation,

d (oK K ., dU ,
" = 0 =1,2 .10
at aq) a1 | O (1=1,2,5) (5.10)

where q; =0, go = é, gs = V¥, yilelds the following differential equations,

[mr2+I sin2(5+¢)]8 + [mre cos(p+d) 14 + {}mrg sin @ cos y+mre ap cos(p+d)

+ I sin(p+d)(-sin(B+d)sin a cos y+a: cos(B+¢)ﬂ ;&

+

EQI sin(p+g) (cos(B+g)sin & cos 7+ a1 sin(p+g))-2mreas sin(5+¢)] 8&

+

(21 sin(5+¢)cos(a+¢)]é8 + [-rme sin(B+¢)]%2

+

Bu2a1a2+mre[al cos(p+¢)sin a cos y+(aZ-a3)sin(p+d))

Iag sin(p+d)(cos(p+d)sin & cos y+a: sin(B+¢)i] @2

+k06 = 0 (3.11)
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2

[mre cos(p+d) 18 + 18 + [Iag—mre[cos(5+¢)sin O cos y+ay sin([3+gz§)]] s
+ I:Zmreag sin(p+d)+2I sin(p+d) {cos(p+d)sin & cos y+ay sin(B+¢)}:l oV
+ [-I sin(p+d)cos(p+d) 16°
+ l:mreag{-sin(ﬁﬂz?)sin Q cos y+ay cos(B+d))
, .2
+ I{-sin(p+d)sin & cos y+a1 cos(B+d)){cos(B+d)sin & cos y+ay sin(6+¢)}] ¥
tkyf = 0 (3.12)

[—mrzsin Q cos y+mreap cos(B+d)+I sin(p+d)(-sin(p+4)sin o cos y+ay cos (B+¢)}]5
+ [Iag-mre[cos(f3+;z§)sina cos y+ay sin(6+¢)):' 55

+ |:1F+m:r'2(sin2 o cos® y+a% )-2mreas{cos(p+d)sin & cos y+ai sin(p+d)]

+

Ia§+I{-sin(B+¢)sin O cos y+ajy COS(B"‘Q{))ZJ IV

+

|E~2mr2ala2+2mre{a§ sin(p+d)-a1 cos(p+d)sin A cos y-aias sin(p+d))}

+

2la1as-2Ias cos(pt+d){-sin(p+d)sin o cos y+ai cos(g+ ng)}:] &y

+ [-Emreag[—sin(6+¢)sin Q cos y+a1 cos(B+d))

2I{cos(p+g)sin o cos y+ay sin(p+d)}(-sin(p+ ¢)sin o cos y+a; cos(f3+;z§)):|g3¢

i

+

[21 cos(p+d) (-sin(p+d)sin & cos y+ay cos(B+¢)}:| og

+ [mre-ay cos(p+d)-Taz sin(B+d)cos(p+d) 16°

+

IEnre{sin(B+¢)sin Q cos y-a; cOS(B’rSlé)}] 52

= 0 (3.13)
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where

-sin © sin ¥ + cos © cos & cos ¥y

i

a1
ap = €08 O sin-y + sin © cos O cos ¥

SPECIALIZATION TO THE CASE OF CONSTANT SHAFT SPEED

The problem is now specialized to the case of constant rotational velocity
of the shaft by setting ¥ = 0, ¥ = @, and the equations are put into a nondimen-
sional form by defining the nondimensional parameters,

5 = ¢NI/m

e - ¢

B = g = gVEo/m?
S R A

and introducing the nondimensional time variable,

It is seen that p is the nondimensional radius of gyration of the mass about
the rod axis, € is the nondimensional offset of the mass center of gravity from
the rod axis and Eb and 5t are respectively the nondimensional natural fre-
quencies in restrained bending and restrained torsion when the shaft is not ro-
tating:

Division of Eq. (3.11) by Pmr2 and Eq. (3.12) by & I now yields,
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[l+52 sin®(p+d) 10" + & cos(p+d)g"

+

[}252 sin(p+d)(cos(p+d)sin & cos y+a; sin(p+d)}-28as sin(6+¢)] ¢!

+

25° sin(p+d)cos(p+d)o'd' - & sin(p+d)d'Z

+

[é1a2+é{al cos(B+g)sin o cos y+(aF-a3)sin(p+d))

]

62a2 sin(p+d) (cos(B+d)sin & cos y+ay sin(6+¢)}]

1
N

cos(p+g)e" + [? %5’32 sin(p+d)

.
+

ot ol
|

+ 2 sin(p+d) (cos(B+d)sin O cos y+ay sin(5+¢))] Q

- sin(B+¢)eos(B+¢)@'2+ [gg'ag{nsin(8+¢)sin a cos y+a, cos(B+d))
+ {-sin(p+@)sin @ cos y+a1 cos(p+d)}(cos(B+d)sin & cos y+a, sin(6+¢)ﬂ
+Tg = 0 (3.15)

where primes denote differentiation with respect to 7, and a; and as are as
defined in the preceding section.

Recognizing that constant shaft speed represents the limiting case of in-
finite flywheel inertia, the term IFW in Eq. (3.13) can be seen to remain finite
and equal to the shaft torque, which may then, from Eq. (3.13), be written in
the'following nondimensional form,
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Mp = [}sin Q cos y+8ap cos(p+d)

+ 72 sin(B+d)(-sin(p+d)sin o cos y+a; cos(5+¢)]] o"

+ [§2a2:§[cos(5+¢)sin O cos y+a; sin(5+¢)}] g"

+ [—2a1a2+2€[a§ sin(p+d)-a1 cos(p+d)sin & cos y-aias sin(p+d)}

+ 2p°a1a2-2p 82 cos(B+)(-sin(p+d)sin o cos y+ay cos(s+¢)}] 0!

+ [-zéag[-sin(s+¢)sin O cos y+ay cos(p+d))

- 25%(cos(B+g)sin O cos y+ay sin(B+d))(-sin(p+g)sin & cos y+a cos(5+¢>}]¢v

+ 202 cos(p+d)[-sin(B+d)sin & cos y+ay cos(p+d) ]6'd!

+ [Ea1 cos(p+d)-PPaz sin(B+d)cos(p+g) 6’2

+ E[sin(p+d)sin & cos y-a1 cos(p+d)]g'2 (3.16)
where

and Mp is the dimensional torque.

To facilitate solution, it is desirable to rearrange Eqs. (3.14) and (3.15)
in the form,

£10" + fog" = -f30'¢g' - fup' - f5¢'2 - “’-gb@ - fe (3.17)

£70" + ¢" = -fg0' - £g0'2 - TP - f1o (3.18)

where
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f1 = 1+ 02 sin®(p+d)

f2

€ cos(p+g)

fa = 29 sin(p+d)cos(B+4)

fa = =25° sin(p+é)(cos(B+d)sin & cos y+ay sin(p+d))-28as sin(p+g)
f5 = =-e Sin(B+¢)
fs = ajap + &{ay cos(B+d)sin & cos 7+(a§~a§)sin(6+¢)}

- Poas sin(B+g)(cos(B+d)sin & cos y+a1 sin(p+d))

f7 = %E cos(B+g)

fg = ejggvag sin(p+g)+2 sin(p+g)(cos(p+d)sin a cos y+a1 sin(p+d) )
fg = -sin(B+d)cos(p+g)

£10 = §§-a2[~sin(ﬁ+¢)sin O cos y+ay cos(B+d))

+ [(-sin(B+g)sin @ cos y+ay cos(B+d)){cos(B+d)sin O cos y+a; sin(p+d))

Solving Egs. (3.17) and (3.18) for 0" and ¢" in terms of © and ¢ and their
first.derivatives yields the differential equations in the following form,

" = E——%—;_ [=f3©“¢‘mf4¢'~f5¢?2~&%@-f6+f2f8®’+f2f9@’2+f2E§¢+f2flo] (3.19)
1=Iply
g" = ;I:%:F; [-f1f0" -F1750'2-F10RF-F1F10+F 751604
v f7Tap HE7Tsd B AALOH e ] (3.20)

Equations (3.19) and (3%.20) are now in suitable form for solution on a
digital or analog computer.
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SOLUTION OF THE PSEUDO-STATIC PROBLEM

It is of interest to determine the static configuration of the rotating
model, that is, the static displacements under the action of centrifugal
forces. This problem may be termed the pseudo-static problem. Its solution
permits the setting up and solution of linearized differential equations for
small motions about the pseudo-static configuration.

The appropriate equations are obtained by eliminating all terms contain-
ing derivatives of © and ¢ from Egs. (3.17) and (3.18), yielding,

We, +fe = O (3.21)
U)?G¢S+flo = 0 . (3.22)

These equations are nonlinear, with fg and f;o being transcendental func-
tions of the dependent variables. Since it is not feasible to obtain an ana-
lytical solution in closed form, the following iterative procedure was applied.

Equations (3.21) and (3.22) are linearized with respect to departures A®
and A¢ from trial values ©n and ¢n) respectively, of the variables, yielding,

age, +mbA@+f6n (af‘S) <af6 A = O (3.23)
n

¢+<uA¢+flo <a > <a—§;9 A = 0 (3.24)

where subscript n denotes values at 6 = O, 4 = ¢n'

Equations (3.23) and (3.24) are now rearranged in the form,
—_2 —2
(@p+f11)80 + f1opdf = - - T 6y (3.25)

f13,00 + (@F+F14p)0¢ = -Tio, - afd, (3.26)

where
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fio

f14

where

+

8% - a3 - S(as cos(B+d)sin Q cos y+hajap sin (B+4)]}
52 sin(B+g) (a1 cos(B+d)sin a cos y+(ai-ad)sin(p+g))

ofs
3¢
2 2

S(-a; sin(p+d)sin & cos y+(ai-az)cos(B+d))
p2as l}cos2(6+¢)~sin2(8+¢)}sin Q cos y+2ai sin(5+¢)cos(6+¢ﬂ

of 10
30

%5-[—a1 sin(p+d)sin a cos y+(a5-a3 )cos(p+d) )
p

as [}c082(5+¢)-sin2(6+¢)}sin Q cos y+2ai sin(6+¢)cos(6+¢i]
9f10

of

- EE az(cos(p+d)sin a cos y+a; sin (B+d))

(cos(B+d)sin o cos y+ay sin(6+¢)]2

(-sin(B+g)sin @ cos y+a, cos(B+¢)}2

Solution of Egs. (3.25) and (3.26) for A and A¢ yields,

-84 €2 teg T1o
Ao = St e (3.27)
63n
= SSninteepfisy (3.28)
esn

b7



er = E% + 11

-2

ez = af + fiq

es = ejep - f12f13
ey = 'mion + fg

€ = a%¢n + fi0

Equations (3.27) and (3.28) may be applied in conjunction with the iter-
ation formulae,

Op+1 = Op * A0 (3.29)

¢n+l = ¢n + AQ‘ (5'30)

using as initial values, ©; = O, ¢1 = 0. The process has been found to con-
verge rapidly in the cases that have been considered in the present work.

FORMULATION AND SOLUTION OF THE LINEARIZED EQUATIONS

In order to assess the significance of nonlinear effects in the problem
under consideration, it is desirable to obtain also solutions to linearized

equations for small perturbations 0 and ¢ from the pseudo-static configuration.

Application of small perturbation theory to Egs. (3.17) and (3.18) yields,

£158" + (@5+ £114)0 + fo " + fagh' + fiagd = O (3.31)

f7§5" + fssg' + f1336-+ g" + (E§+f14s)a. = 0 (3.32)

in which subscript s denotes values corresponding to the pseudo-static config-
uration 6 = 04, ¢ = gg.

Putting Egs. (3.31) and (3.32) into operator form, using symbol p to de-
note the differential operator, and expanding the determinant of coefficients,
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the following characteristic equation is obtained,

cip* + cop® +cg = O (3.33)

where

Cy1 = fls - fgsf7s

ca = fls(E%+fl4s) + AR+ fiag - Tagfisg - T7gfizg - fagfeg
=2 —2

ca = (@p+f11, ) (0g+f1ay) - F12 Ta1gg

The terms in p and p3 are seen to vanish.

The roots of this equation are
B2 = 3 (-c2 +VcB-heics)
Pg = = (-c2 -’JEE:ZZ:Z;)
and the characteristic frequencies are given by
® = Vs (3.34)
= =3 . (3.35)

The characteristic mode shapes may be determined by assuming a solution
of the form,

© = 6, cos BT (3.36)

!

g = 55 cos wr + ﬁg sin @t = 8} cos (wr-¢) . (3.37)
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introducing Egqs. (%3.36) and (3.37) into Eq. (3.31), and equating the sum of
the coefficients of the cos @t and the sin wT terms respectively to zero, the
following result is obtained,

7 5. - (£2,08-F1og ) (-F10 0+ 11) (3.38)
o0 T T (2P t1z, P + BB 27

65/60 = - wa( flswzﬂ”bﬁ“s) (3.39)

5
(fzs -flas) + f4s

where ® = ®;, Wp.

The mode shapes may be expressed alternatively in the form,

5/ - {9‘0 >} (5.40)
€ = tan” <§§rz> (3.41)

where, from Eq. (3.37) it is seen that 5;/@0 is the relative amplitude of dis-
placements in the two coordinates and € is the phase lag of the oscillation in
the é-coordinate relative to that in the ©-coordinate.

A solution involving only one characteristic mode of oscillation may be
obtained by selecting as initial conditions,

@ = GS + @o J SZ{ = ¢s + ¢o ) SZ{' = ¢c') (5.1].2)

where 50 may be selected arbitrarily within the limitations imposed by the as-
sumption of small perturbations, and @y and ¢5 are then determined from Egs.

(3.38) and (3.39).

It should be noted that the existence of a phase difference between oscil-
lation in the two coordinates is associated with the presence of the terms
f4s¢' and f885” in Egs. (3.31) and (3.32) respectively. These terms originate
in the terms in @Y and @V in Egs. (3.11) and (3.12), which are due to the pres-
ence of Coriolis forces.

DISCUSSION OF RESULTS

A series of computations on the simple model were performed using an auto-
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matic digital computer. There computations were limited to the case of con-
stant rotational velocity of the shaft and zero built-in coning angle (y = 0).

The pseudo-static configuration was determined by means of the iterative
procedure developed earlier, and corresponding characteristics of the linear-
ized system for small perturbations from this configuration were computed. In
each case additional computations were performed in which the terms f45¢‘ and
fgg®' in Egs. (3.3%1) and (3.%2) were omitted. As discussed previously, these
terms represent the influence of Coriolis forces, so that a comparison of re-
sults obtained with and without their inclusion provides a means of assessing
the importance of the Coriolis forces.

These results are presented in Figs. 3.2 to 3.8 inclusive. Figures 3.2
and 3.3 show the effect of varying the mass offset parameter €&, with the param-
eter Eb, representing the nondimensional radius of gyration of the mass about
its center of gravity,; and the parameters, &, B, 5b and 5t being maintained
constant. Since the parameter o must be varied accordingly, the maintenance
of a constant value for wy implies that the variation of e does not involve
merely a shifting of the mass relative to the supporting arm but involves also
changes in m or k¢ or both. The value of p, selected for this case represents
a rather extreme value, applicable to a short, wide blade.

Figure 3.2 shows the substantial pseudo-static deformation occurring in
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Fig. 3.2. Effect of mass offset on pseudo-static
displacements of model. « = 30°, B = 15°, oy =
1/3, ® =1, po = 0.1732.
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this case. It should be noted that the static twist decreases with increase
in offset, when the center of gravity of the mass is behind the elastic axis.
This occurs despite the fact that the relative values of the moment of inertia
and torsional stiffness about the supporting arm remain the same because of
the constancy of ®, which fact implies that centrifugal twisting moment, be-
fore deformation, remains the same. It must be concluded that the variation
in twist is associated with a component of centrifugal force normal to the
coning surface on which the supporting arm revolves. This effect is intro-
duced through the term in mrey2 in Eq. (3.12) and terms deriving from it in
later forms. It has been called "centrifugal force coupling"” in Ref. 2, and
shown there to have a substantial effect on natural coupled frequencies of vi-
bration. In the present case, since y = O, the coning of the supporting arm
is associated solely with the displacement Og. With positive Oy and a positive
value for (a+5+¢s), this effect opposes that of centrifugal twisting moment.
It can be expected to be more pronounced in the case of blades with built-in
coning angle.

Figure 3.3 shows the effect of mass offset on the natural vibration char-
acteristics of the system linearized with respect to the pseudo-static config-
uration. As can be expected, it is seen that the increased coupling between
bending and torsion assoclated with increasing mass offset separates the natural
frequencies and alters the natural mode shapes.

It is seen also that the Coriolis forces introduce substantial phase dif-
ferences between motion in the two coordinates, particularly in the case of
the first or predominantly bending mode, where the phase angle is large through-
out the range of € considered. In the case of the second mode, where torsional
motion predominates, the phase angle is substantial only at small values of e.
When e is zero the only coupling between bending and torsion is through the
Coriolis forces, and the phase difference is then 90°, ¢ leading O by this
amount in the case of the first mode and lagging by this amount in the -case of
the second mode. Furthermore, the Coriolis forces are seen to have a substan-
tial effect on the mode shape of, the first mode and a somewhat modest effect
on the corresponding frequency. The corresponding effects on the second mode
and frequency are seen to be small or negligible. It should be noted here that
the apparent absence in some cases of curves associated with neglect of Coriolis
forces is explained. by the fact that such curves are indistinguishable from
the corresponding solid-line curves, and the effect of these forces is thus very
small.

Figures 3.4 and 3.5 provide results corresponding to those of Figs. 3.2
and 3.3 for a different case, namely one involving a much smaller value of
py and consequently more realistic in relation to propeller or helicoptor
rotor blades. ©Similar trends are observed, except that Coriolis force effects
are considerably reduced, but still substantial with respect to phase differ-
ences in the first mode.
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Figure %.6 shows the effect of varying the bending hinge orientation
angle while maintaining the orientation of the principal axis of the mass fixed.
This involves varying & and B so that O+p remains constant, and simulates a sit-
uation in which mean blade angle is kept constant while built-in twist is varied.
All other parameters were maintained constant. Curves of ©4 and ¢s are not
shoWn, as variations in those parameters were small. For a variation of & from
15° to L45°, @4 varied from 0.78° to 0.97° and gy varied from -6.50° to -6.60°.
It is seen from Fig. 3.6 that first mode characteristics are affected very sub-
stantially by changes in &, the phase difference between the © and ¢ motions
especially varying over a very wide range. The effect on second mode charac-
teristics is much smaller, although still considerable.

Figures 3.7 and 3.8 show the effect of varying the rotational velocity of
the shaft while other parameters remain constant. The information in Fig. 3.7
is principally of value in estimating the pseudo-static torsional deformation
corresponding to a given rotational velocity. This deformation can be expected
to depend primarily on the parameter 5t in the case of a blade without built-
in coning angle, although from results discussed earlier it can be seen also to
depend somewhat on the parameters e and 6b' From Fig. 3.7 it can be seen that
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the torsional displacement will exceed 20% of the initial blade angle (a+B) if
5t is less than about 2, that is, if the rotational velocity is greater than
about one-half the value of restrained torsional frequency corresponding to zero
rotational velocity.

Figure 3.8 indicates an increasing prominence of torsion relative to bend-
ing in both modes as rotational velocity becomes large. It indicates further
a marked sensitivity of the phase difference between coordinates in the first
mode to variation in rotational velocity, at least in a limited range of rota-
tional velocity. The phase angle is seen to approach zero at large values of
rotational velocity. A somewhat different situation is seen to exist in the
case of the second mode, where the phase angle increases with increase in ro-
tational velocity.

Digital computer solutions to the nonlinear differential equations were
also obtained, using a Runge-Kutta procedure. Initial conditions were estab-
lished on the basis of natural vibration characteristics determined from the
linearized equations, that is, by applying Egs. (3.42), using values from Egs.
(3.38) and (3.39) and the pseudo-static displacements. With such initial con-
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ditions, the linearized system responds in only one of the natural modes, and
comparison with the corresponding response of the nonlinear system provides a
means of assessing the extent to which nonlinear effects distort the motion.

Results were obtained for only one case and are shown in Fig. 3.9. Figure
3.9(a) illustrates the response of the first mode when the initial bending dis-~
placement from the pseudo-static configuration is 10°. Displacement in the
bending coordinate predominates in that mode and its time history is seen to be
distorted only slightly by nonlinear effects. There is a slight increase in
period and a very slight but irregular variation in amplitude. The torsional
response is seen to be strongly influenced by nonlinear effects in a manner
which suggests that there is substantial coupling with the second mode. The
slight variation in amplitude of the bending motion is likely associated with
this coupling.

The response in the second mode for an initial bending displacement of 2°
from the pseudo-static configuration is shown in Fig. 3.9(b). In this case,
displacement in the torsional coordinate predominates and has an amplitude of
about 22.5°. It is seen that there is an appreciable increase in period caused
by nonlinear effects, but otherwise only a slight distortion of the motion in
both coordinates. Again, it is likely that this distortion is due to coupling
with the first mode.

The solutions were not carried far enough to ascertain whether there is
a decay or divergence of the oscillations. The fact that such may exist is not
inconceivable, in view of the fact that the system is not necessarily conserva-
tive. It has been seen to be conservative when linearized with respect to
small perturbations from the pseudo~-static configuration. However, with impo-
sition of the condition of constant shaft rotational velocity 1t 1s a driven
system, and it is possible that nonlinear effects may result in a transfer of
energy to or from it through the shaft.

The results obtained indicate that, at least for the case considered, any
such divergence or decay will be small and probably represent a negligible ef-
fect in comparison with aerodynamic effects in the case of an actual blade.

It is possible that a different choice of parameters or the introduction of
built-in coning may produce a different result. This requires further inves-
tigation.

On the basis of the present results it appears that the effect of Coriolis
forces 1s likely to have a greater practical significance than the effect of
nonlinearity, particularly since it does not depend upon the existance of large
motions. This relates mainly to the problem of blade flutter, since the flutter
phenomenon is highly sensitive to phase differences between motion in bending
and torsion. The phase differences associated with the presence of Coriolis
forces may conceivably alter the balance in the flutter problem sufficiently to
change the conditions for flutter significantly.
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Other effects which have not been considered in the present study, but
which can be expected to be of considerable importance in some cases, are
those of nonlinearity of the torsional spring and of centrifugal tension on
torsional stiffness and on pseudo-static deformation, as discussed in the
Introduction. Their introduction into the present analysis should not re-

sult in undue complication and would represent an appropriate and desirable
extension of the present work.
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L, CONCLUDING REMARKS

A practical numerical method, suitable for implementation on an automatic
digital computer, has been developed for determining the natural vibration
characteristics of twisted rotating and nonrotating blades in coupled bend-
ing and torsion. A limited numerical study indicates that the method is an
efficient one for including the effects of bendingtorsion coupling and pre-
twist. The nature of the coupling is complicated and a much more extensive
parametric study would be needed in order to draw general conclusions. It
can be sald, however, that centrifugal force coupling can have an appreciable
effect when there is a substantial offset of the mass axis from the elastic
axis.

In order to investigate some effects of nonlinearity and Coriolis forces
in the rotating blade vibration problem, a study has been made of a simple
model with a small number of degrees of freedom. Computations performed on
this model indicate the following:

(1) Thére is an effect of centrifugal force, apart from the familiar
centrifugal twisting moment, on the torsional deformation when the mass axis
of the blade is offset from the elastic axis. It may, in some cases, modify
the static deformation of the rotating blade substantially, and tends to in-
troduce additional coupling between bending and torsion when the blade is
vibrating, as discussed also in the case of the continuous blade.

(2) The presence of Coriolis forces causes a phase difference between
the bending and torsional oscillations which is equal to 90Q when the mass
and elastic axes are coincident. This phase difference decreases when the
mass and elastic axes are not coincident, but remains substantial in the
case of a natural mode of the model consisting primarily of bending.

(3) Nonlinear effects for large motions tend to change the natural fre-
quencies of the system slightly and introduce some coupling between the
natural vibration modes associated with solution of the linearized equations.
A limited amount of results did not provide any evidence of decay or diver-
gence of the free vibrations of the model.
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APPENDIX A

DIFFERENTIAL EQUATIONS OF MOTION

The differential equations for free motion of a rotating twisted blade

with offset mass and elastic axes are, from Ref. 2, with some changes in

notation,

- {[GJe-I-’I‘ki+EBl(f3')2 ¢ - EBga'(5§ cos B+3, sin a)}"

+ TeA(6§ sin B-8, cos B) + szxe(-6§ sin p+8) cos B)

+ QPpe(sin B)Sy +Q 2p[(k€-kﬁ)cos 2B+eey cos B

+ p(kz+ki)¢ - pe(t‘)y sin B-gz cos B) = + (Tkiﬁ')

- sz[(kf-k%)sin B cos Bt+eey sin B

(EI; cos® B+EIo» sin? B)8! + (EIo-EI)sin B(cos B)&!
z NS

- TeA¢ cos B ~ EBzB'd' sin B] "o. (T&é)' - (szxe¢ cos B)'

1

+ p(gz+e8 cos B) (Tey sin B)" + (szxe sin B)

n

(Tep sin B) + (ePpxe sin B)'

+ p(gz+e¥ cos B)

[(EIg-EIl)sin B(cos B)ody + (EI; sin® B+EI» cos® B)6§
+ TeA¢ sin B - EBoB'd' cos Bﬂ " (TB&)' + (Ppxeg sin B)'

+ QPped sin B + p(gy-ea sin B) - Qgpﬁy = +(Tep cos B)

+ (Ppoxe cos B)' + Bp(e,+e cos B)

An explanation of the origin of the various terms in the equations is
given in Ref. 2. The integrals which define the section constants By and Bs

S



are given below

Bo

It

By = 3[\(n2+cz-ki)(n2+cg)dA
[

(n®+£2-x5 ) ndA

A1l other symbols are defined in the list of symbols. The coordinate system
is as shown in Fig. 2.1.

It should be noted that Egs. (Al) are for small displacements from the
undeformed configuration of the blade when it is not rotating. The analysis
of the present report linearizes the problem with respect to small displace-
ments from the steady-state deformed configuration of the rotating blade.
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APPENDIX B

RESULTANT LOADINGS

The resultant loadings per unit length in the x, {, and n directions have
been obtained in Ref. 2 for a rotating twisted blade with offset mass and
elastic axes. The loads include the inertial, centrifugal and Coriolis force
terms. In the notation of the present report they are

px = -p(U-0Pu) - 20081 sin B + EQpég cos B
- pegla' + pedh + (2ped,p' - NPpedd - 20ped sin B + 02 px
Py = -ﬂga + Pp(-81 sin B cos B+dz cos2 B+e, cos B)
- 20ph cos B + (Ppe cos® B - Pped sin B cos B
- Ppeod sin B - 0Pped sin B cos B + 20pe cos B(-51B'+52)
Py = —pgl - Pp(-51 sin® P+do sin B cos Bte,sin B) + 20pu sin B
- peg - Bpe sin B cos B + Pped sin® B - 20pe sin B(-$16’+8é)
(B1)

- Ppeod cos B - Pped cos® B

A = -sze [1-61 sin B+d2 cos Pteg) sin B + eo¢ cos B]

+ pe(-8,+200 sin B) - P [KIC'IH) sin B cos B + (IC-In)¢ cos 2@]

- (IC+In)¥ - 2Q(Ig-In)(-éi sin B-81p'cos B+éé cos B-52B' sin B)sin B cos B

+ EQ(I? sin® B+I% cos® B)(éi cos B—élﬂ' sin B+é§ sin p+6oB' cos B)

Qzln(5{+525') - In(51+525') +20L8 cos B

e
=3
i

ag -Qape(x+u) + pell - 2pe9(-él sin B+52 cos B)

- aglgala' * nalgaé + T¢B1B' = Tpba +20Tyf sin B .

66



In the following, we eliminate terms in px which are dependent on dis-
placement variables and thelr derivatives, since these lead to nonlinearities
in subsequent analysis, and terms in all force and moment expressions which
involve u and its derivatives and first derivatives of the remaining displace-
ment variables. We also eliminate terms involving B', since these terms arise
when Bi and Bé are derivatives referred to the axes 7 and { rotating about the
x axis. In the lumped parameter treatment, &; and 8z can be considered to be
derivatives with respect to locally fixed axes.

=
Px = Qpx
pn = -pd2 - (Pp sin B (cos APy + 0%p (cos® Bpa
- 92p sin B(2e cos Btep)d + PBp cos ple cos Breg)
Pe = -081 + 0%p (sin® @B1 - %Pp sin B(cos B B2 - ped
2 /[\ 2
+ 0 p’Lé(sinz B-cos® B) - e, cos B ¢ - @p sin B(e cos Btey)
(B2)
aQx = -pegl + ﬂ2pe (sin2 A, - Qape sin B (cos ﬁbg
> r 3%
- 0 ‘Ifeeo cos 5+(I§-In) cos 2B ¢4 - (I§+In)¢
- P sin B{peeo+(1§—[n) cos 5}\
= 02I.5) - 1.5,
qﬂ n5l n51
a = Q2I§6é~ Iczsg“ - 0Ppex
Now, if we consider the matrix equation
By = [Flylaly (B3)

where (A} is
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(A} ==<. > (BL4)

and {A}y refers to the value of these quantities at station N just outboard
of the mass, and A}y refers to the values just inboard of the mass, it fol-
lows that

DR C DA py (W)

_ Vl(N) + p(N)l(N>(w2+92 sin2 B)Sl(N) } p(N)E(N)Q2 cos B in BfﬁéN)
+ p(N)Z(N) l}(N){u@+(sin2 B-cos® B)0F e N2 cos B] ¢§(N)

- oMMz o5y B(eo(N)+e(N) cos B)

ﬁl(N) _ Ml(N) N qn(N)z(N) i pX(N>£(N)51(N)

=M (0 (g2, (W) (W) In(N)l(N)(m2+Qa)6i(N)
gi(N) _ Bi(N)
gl(N) _ 61(N)
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B>

- P

D

2 -
W+~ cos

N)

o)y (Mg2 ¢4y a(e(Ma cos §+eO(N))¢(N)

EINe:

[(In+IC

(), (x

)

o
& c

), ()

(1), (1)

() () ,(m)

0o S

N

¢(N)

os Bleg N +e N cos B)

(0f+0® sin® B)Bl(N)

SF cos B fgin @5;N§ + Q(N)
o + (In-Ig)(N)(cosz B-sinZ B)E(N)Qz

eO(N)QE cos B] ¢<N)

(1 “IC>(N)£(N)Q2 sin B cos B - p(N)E(N)e(N)eO(N)QZ
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APPENDIX C

DEFORMATION OF A BLADE SEGMENT

Consider a segment of a weightless beam for which the values of the mo-
m?ﬁ%’ tOfﬁ%e, S?ﬁ%f, and(ﬁension at a station N are given as Ml(N?, Mg N),
Q s Vi , Vo and T . Then moments and torques at other points along
the segment are

My = Ml(N) + Vl(N)s + T(N)Sl U(N>¢
Mo = MM + v (Mg 4 oM, 4 W)y (c1)
o = oM, My

where U(N) and W(N> are the contributions of the centrifugal force coupling
as explained in Appendix D, and s is the longitudinal coordinate measured
from station N toward the root. These same quantities in terms of &; and ds
for a twisted blade are

My = E11[51+2a'62'+6”62-(5')261]
Mo = ElgEBQ-es'ai-B"Sl-(B')262J - Tep - EBoB'g! (c2)
Q = - [GTetm24EBy(p)2] ¢ - T2p!

+ EBap' [82-28'51-8"51-(8")%82]

For a straight segment Eq. (C2) reduces to

n
My = EI;8;
Mo = EIzbp - Te, - EBp'd’
Q = - [GJe+Tki+EBl(B')2] g - TkiB' + EB2(B' )82
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Equations (C1l) and (C3) may be considered and put in the form

8Y - 2181 - agp = Dbis + bg
83 - agds - asp' - asp = bas + by
agdl - a7d8 + agd' = -bs
where
() ALY
a = =
t El, * EI,
o TR
as = bg =
ET, EI,
(1) ()
as = b3 = -
Elz Els
_ EBgB _ o
aqg = ——2—— by =
EIz Elz
o 2 bs = !V
' El=
o = U(N)
a7 = EB2Bq
N
ag = A( ). GJe +Tki + BB, (p')?

These equations may be solved as they stand, however, considerable sim-

plification can be achieved at a modest sacrifice

the term asd by agd(N)u

This modifies the second of Egs. (C4) to read

82 - agdz - 248’ = Dbas + bs

1

in accuracy by replacing



where

W) Q(N) . MQ(N)
Els EIo

bs =

The characteristic equation for the new set becomes

fop* + f1p°2 + f2 = O (c6)
where
fo = (ag-asa7)
f1 = apag - ag(aitas) + ajazay
fo = ajasag - apasag

The roots of this equation are then

2 £, + 1 fl> 2
= - i+ = (= - fof . C
P1,2 ofg  fo ,h; ola (c7)

(N)

When the solution is carried out, with the elements of {A} as initial values,
and s is taken equal to £, the following form for the solution results

10
51 (L) _ Eajhy
J=1
10
(N+1)
61 = E4JAJ
J=1
10
, (N+1)
B2 = E7jAj (c8)
J=1

2



=
(@]

(N+1)
o2 = Egjdj
j=1
10 (c8)
+
¢(N R Ei10j4;
=1

where the Ejj are presented in Eq. (2.6) in the body of the report and Aj are
the elements of [A](N) given in Eq. (2.1).

The remaining Eij elements are found from the following equations which
apply across each bay

Vl(N+1) - v,
Y (), ()
ey, (c9)
Sy ) )
Q) _ ()

It should be noted that the bending moment and torque quantities in Egs.
(c9) by definition do not include the contributions of the centrifugal force
displaced to the elastic axis and of centrifugal coupling. These contribu-
tions are introduced separately through satisfaction of Eqs. (Cl) in the solu-
tion for the deformation variables.
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APPENDIX D

CENTRIFUGAL FORCE COUPLING

As shown in Ref. 2, there is a type of coupling between bending and tor-
sion associated with the presence of centrifugal forces. Explicit considera-
tion must be given to the derivation of the terms associated with this coupling.

If x; is used to denote the station where centrifugal force is acting and
x the station where bending moment is measured, the components of bending mo-
ment associated with offset of mass center from the elastic axis of the ro-
tating blade may be written as follows:

My - cos(B+g) | ©2pixier sin(By+gy)dxy

R
+ Sin(5+¢)b/\ (Ppixiey cos(Bi+dy)dxy
X

(D1)

&

R
- sin(B+¢)k/h Ppixier cos (Bi+dy)dxy
X

R
COS(B+¢)[ Ppixier cos(p+dy)dxy

where subscript 1 refers to values at xi.

Assuming ¢ to be a small angle and eliminating higher order terms, Egs.
(D1) become,

R R
M, - Ccos Bij szleel sin Bidx; + ¢ sin 5H£\ szlxlel sin Bi1dx;

R
- cos Bklﬁ Qpixieidy cos Bidx;

R
. 2 2
+ sin Bklw Q piXiei cos PBidxy + ¢ cos Bkl\ T pixie1 cos PBidxa

- sin B szlxlelél sin BlXm (DQ)

Th



il

R R
Mo - sin Bb/\ Q2p1x1el sin Bidx; - d cos ﬁ\/ﬁ szlxlel sin Bidx;
X X

- sin B./B Qgplxlel¢1 cos PBidx;

\.

X

R R
- COoSs B./m QPpixie; cos P1dxy + ¢4 sin {3\/w Bpixie1 cos Brdx;
X p'e

R
+ cos 5f QPpixie1dy sin Bi1dx; (De)
x

In each case, the first and fourth terms represent steady-state moments.
An examination of Appendix B shows that the term =-0Ppex in q, will give rise
to these moments. They are taken into account through the element dg in the
{d} matrix.

The third and sixth terms in each component represent the effect of tor-
sional displacement of the blade mass on bending about the torsionally undis-
placed positions of the n and £ axes in the M; and Mz components respectively.
This effect can be taken into account by an appropriate modification of the
[F] matrix, incorporating a change in bending moment across each mass given

by

My = - QPplxed (D3)
yielding the element

Foio = = Pplxe . (D4)

The second and fifth terms represent the effect of centrifugal forces
acting on the torsionally undisplaced masses between x and R on bending about

the torsionally displaced n and { axes in the M; and Ms components respectively.
They must be taken into account in the development of the [E] matrix. In terms

of the lumped mass model, the contribution to the bending moments in the bay
between the nth and (n+l)th masses is

S



=
'_l
]

2
sin By, ji Q?Iipixiei sin Bj+cos Bp ji Tpilixiei cos By ) ¢4
i=1 i=1

1
[

(D5)

n n
Mo -cos Bp ZE: Ppilixje; sin By+sin By j{: QBpilixiei cos B%) ¢
i=1 i=1

)

There is correspondingly an effect of bending on torque. It is associated
with the fact that with a bending slope 8i at station x the:. centrifugal force
Pp1x34x; on an element dx; at station x; outboard of station x has a component
—Q2plxldx16i nbrmal to the n-axis in the plane of the cross section at station
X. The moment arm of this force about the elastic axis is ey cos(B-B1), so
that the contribution to the torque from this source may be written,

R
Q = -~ 5ih/‘ Ppixie1 cos(B-B1)dxy

X

R R
- - <sin Bf Poixie; sin Bidxi+cos af Fo1xieq1 cos Bidxy);  (D6)
X X

Applying this result to the lumped mass model, the contribution to the
torque in the bay between the nth and (n+l)th masses is

n n
Q = - (sin By 2{: Q®piLixieq sin B +cos ang: 0Ppilixies cos Bi 61
io i=1 (D7)

and is taken into account in the development of the [E] matrix in Appendix C.
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