i 3030

Luigi Franchi et al.

European Journal of

Immunology

ights

FRONTLINE:

Eur. J. Immunol. 2007. 37: 3030-3039

Critical role for Ipaf in Pseudomonas aeruginosa-induced

caspase-1 activation

Luigi Franchi’, Joshua Stoolman’, Thirumala-Devi Kanneganti’,
Amrisha Verma®, Reuben Ramphal® and Gabriel Niifiez”

! Department of Pathology and Comprehensive Cancer Center, The University of
Michigan Medical School, Ann Arbor, USA
2 Department of Medicine, University of Florida, Gainesville, USA

Pseudomonas aeruginosa is an opportunistic Gram-negative human pathogen that is
responsible for a broad range of infections in individuals with a variety of predisposing
conditions. After infection, P. aeruginosa induces a marked inflammatory response in
the host. However the mechanisms involved in bacterium recognition and induction of
immune responses are poorly understood. Here we report that the Nod-like receptor
family member Ipaf is required for optimal bacterial clearance in an in vivo model of
P. aeruginosa lung infection. Further analysis showed that bacterial flagellin was
essential for caspase-1 and IL-1f and this activity depended on Ipaf and the adaptor ASC
but not TLR5. Notably, P. aeruginosa induced macrophage cell death and this event
relied on flagellin and Ipaf but not on ASC. Analysis of Pseudomonas mutants revealed
that different amino acid residues of flagellin were critical for sensing by Ipaf and TLR5.
Finally, activation of caspase-1 and IL-1f secretion by P. aeruginosa required a
functional type III secretion system, but not the effector molecules ExoS, ExoT and ExoY.
These results provide new insight into the interaction of P. aeruginosa with host
macrophages and suggest that distinct regions of flagellin are sensed by Ipaf and TLR5.

See accompanying commentary: http://dx.doi.org/10.1002/eji200737871

Received 5/6/07
Revised 31/7/07
Accepted 7/9/07

[DOI 10.1002/ji.200737532]

& Key words:

Host pathogen inter-
action - Inflammation
- Innate immunity

Introduction

IL-18 plays an important role in the induction of
immune responses and in the development of inflam-
matory disease, fever and septic shock [1]. In response
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to proinflammatory stimuli including pathogenic bac-
teria, the IL-1p precursor is induced in monocytes and
macrophages and processed into the biologically active
IL-1Bp molecule by caspase-1 [2-5]. The protease
caspase-1 is expressed in monocytes/macrophages as
an inactive zymogen that is activated by self cleavage in
large multi-protein complexes named 'inflammasomes'
[el.

The mechanism responsible for activation of caspase-1
in response to microbial stimuli has remained poorly
understood. Recent studies have revealed members of the
Nod-like receptor (NLR) family as critical components of
the inflammasomes by linking microbial sensing to
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caspase-1 activation [7, 8]. For example, Ipaf, an NLR
family member and the adaptor ASC have been implicated
in activation of caspase-1 in response to Salmonella and
Legionella through the cytosolic sensing of flagellin [7, 9,
10]. Notably, flagellin is also recognized by TLR5 [11].
However, it is unclear whether Ipaf and TLR5 sense
identical or distinct regions of flagellin. Similarly,
Cryopyrin/Nalp3 is critical for caspase-1 activation and
secretion of IL-1f and IL-18 in response to microbial RNA,
synthetic purine-like compounds and endogenous urate
crystals [12-14]. In addition, Cryopyrin regulates
caspase-1 activation triggered by exogenous ATP or
pore-forming toxins in macrophages stimulated with
several TLR agonists [15, 16].

Pseudomonas aeruginosa is a flagellated opportunis-
tic Gram-negative human pathogen that is responsible
for a broad range of infections in individuals with a
variety of predisposing conditions including cystic
fibrosis, immunodefiency, impaired pulmonary ventila-
tion and loss of skin integrity [17]. A component of
P. aeruginosa that is critical for virulence is the type III
secretion system (TTSS) that allows the bacterium to
invade hosts and to overcome host defense mechanisms
[18-20]. P. aeruginosa uses the TTSS to directly inject
effector proteins into the cytosol of the host cell [21].
Four type Ill-secreted effectors, ExoS, ExoT, ExoY and
ExoU, have been identified in P. aeruginosa. However,
the expression of exoS and that of exoU appear to be
mutually exclusive [22, 23]. Once inside the host cell,
these effector molecules promote cellular invasion by
modulating host functions important in cytoskeletal
organization and signal transduction [24, 25]. In
addition to the TTSS, other P. aeruginosa factors haven
implicated in virulence including flagellin [26, 27], but
the mechanism by which these factors contribute to host
infection remain poorly understood.

P. aeruginosa infections are usually associated with
marked inflammatory responses in host tissues [28].
Immune recognition of bacterial pathogens is mediated
by specific pattern recognition molecules, such as the
TLR and NLR that sense microbial structures at the cell
surface/endosomes and the cytosol, respectively [29,
30]. Recent studies have implicated several TLR and
their adaptors MyD88 and Toll/IL-1R domain-contain-
ing adaptor inducing IFN-f (TRIF) as well as Nod1 in the
cytokine/chemokine response elicited upon recognition
of P. aeruginosa by host cells [31-37]. Caspase-1 and
IL-1B are known to contribute to the inflammatory
response induced by P. aeruginosa infection [38-40].
However, the machinery whereby P. aeruginosa is
sensed by innate immune cells to induce the activation
of caspase-1 and secretion of IL-1p is unknown. In the
present report, we have identified Ipaf as a critical NLR
protein that is required for the activation of caspase-1
and secretion of IL-1f in response to P. aeruginosa.

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Results

P. aeruginosa induces IL-1p secretion in alveolar
macrophages through Ipaf

Ipaf has been implicated in the regulation of IL-1f
secretion [41, 42]. Therefore, we first tested whether
Ipaf is critical for IL-1B secretion induced by
P. aeruginosa infection by comparing the response of
WT and Ipaf-deficient macrophages isolated from mouse
lungs. Exposure of alveolar macrophages to
P. aeruginosa elicited production of IL-1B in WT
macrophages, but this response was almost abolished
in Ipaf-null macrophages (Fig. 1A).

To assess the role of Ipaf in vivo, WT and mutant mice
were infected intratracheally with 5x10° colony-form-
ing units (CFU) of P. aeruginosa and the production of
IL-18 in serum was determined by ELISA. We assessed
IL-18 as readout of caspase-1 activation because the
levels of IL-1p induced by the bacteria in vivo were small
and difficult to evaluate with reliability. At 5 h post-
infection, there were reduced levels of IL-18 in Ipaf-
deficient mice but not of TNF-a. when compared to WT
mice (Fig. 1B, C). At 6 h post-infection, there were
similar numbers of P. aeruginosa CFU in the lung tissue
of WT and mutant mice. By 18 h post-infection,
however, there was a significant reduction of
P. aeruginosa in the tissue of WT mice but not in Ipaf-
deficient mice (Fig. 1D). By 48 h post-infection,
P. aeruginosa were almost undetected in the lungs of
both WT and Ipaf-deficient mice (Fig. 1D). Nonetheless,
there was a modest but significant increase in the
number of bacteria in the liver, but not spleen, of Ipaf-
deficient mice when compared to WT mice 48 h after
infection (Fig. 1E).

Consistently, mouse survival was not reduced in WT
and Ipaf-deficient animals after intratracheal infection
with 5x10° organisms (Fig. 1F). In addition, we did not
observe a significant difference in mortality between
mutant and WT mice when infected with a higher
number of P. aeruginosa organisms (data not shown).
These results indicate that Ipaf is important for IL-1f
production by alveolar macrophages but it has a
transient and modest role in the host response against
P. aeruginosa in vivo.

P. aeruginosa flagellin induces caspase-1
activation and IL-1p secretion

Given that flagellin has been implicated in IL-1(
production and macrophage cell death induced by
Salmonella and Legionella [7, 9], we tested the ability of a
P. aeruginosa mutant deficient in flagellin to induce
IL-1p secretion and cell death. To ensure similar contact
of WT and non-motile P. aeruginosa with macrophages,
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Figure 1. Ipaf is required for IL-1p secretion in alveolar macrophages and early elimination of P. aeruginosa in vivo. (A) Alveolar
macrophages were infected with Pseudomonas at a macrophage/bacterial ratio of 1/40. Cell-free supernatants were analyzed by
ELISA for production of IL-1B 4 h after infection. Values represent mean + SD of triplicate cultures. (B, C) WT and Ipaf-KO mice
were infected intratracheally with 5x10° P. aeruginosa. Levels of IL-18 and TNF were analyzed in the serum 5 h after the infection
by ELISA. (D) WT and Ipaf’~ mice were infected intratracheally with 5x10° P. aeruginosa. Lungs were homogenized and plated for
CFU at 6, 18 and 48 h post-infection. (E) WT and Ipaf”’~ mice were infected intratracheally with 5x10° P. aeruginosa. Tissue was
homogenized and plated for CFU at 48 h post-infection. (F) Mice were infected intratracheally with 5x10° P. aeruginosa and
monitored for survival over time. Results are representative of three separate experiments with five mice per group per time; NS;
not significant.
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Figure 2. Flagellin is important in the induction of IL-1p secretion, cell death and caspase-1 activation in response to P. aeruginosa.
(A) BMDM were primed for 4 h with LPS and infected with P. aeruginosa or AfliC P. aeruginosa mutant at the indicated macrophage/
bacterial ratio. Cell-free supernatants were analyzed by ELISA for production of IL-1f 4 h after infection. (B) BMDM were infected
with P. aeruginosa or AfliC P. aeruginosa mutant at the indicated macrophage/bacterial ratio. The induction of cell death was
evaluated by the release of macrophage lactate dehydrogenase (LDH) 4 h after infection. (C) BMDM were infected with P. aeruginosa
or AfliC P. aeruginosa mutant at a macrophage/bacterial ratio of 1/10. Cell-free supernatants were analyzed by ELISA for production
of IL-6 4 h after infection. (D) BMDM were infected with P. aeruginosa or AfliC P. aeruginosa mutant at a macrophage/bacterial ratio
of 1/10. Extracts were prepared from cell and culture supernatants and immunoblotted with caspase-1 antibody. Arrows denote
procaspase-1 and its processed p20 subunit. (A-D) Results are representative of at least three separate experiments; (A-C) values
represent mean + SD of triplicate cultures.
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infections were followed by mild centrifugation as
described [7, 9]. Under these conditions, the secretion of
IL-1B and cytotoxicity induced by P. aeruginosa lacking
flagellin (AfliC) were greatly reduced when compared to
that observed with WT bacteria (Fig. 2A, B). In contrast,
secretion of IL-6 (Fig. 2C) and TNF-a (data not shown)
was comparable after infection of macrophages with WT
and AfliC P. aeruginosa.

To test whether expression of flagellin is important
for caspase-1 activation, extracts were prepared from
macrophages infected with WT and flagellin-deficient
P. aeruginosa at different times post-infection and
immunoblotted with an antibody that recognizes the
p20 subunit of caspase-1. Infection with P. aeruginosa
induced activation of caspase-1, but bacteria lacking
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Figure 3. TLRS is not required for caspase-1 activation, IL-1B
secretion and macrophage cell death after P. aeruginosa
infection. (A) WT and TLR5-KO macrophages were primed
for 4 h with LPS and infected with P. aeruginosa at the indicated
macrophage/bacterial ratio. Cell-free supernatants were ana-
lyzed by ELISA for production of IL-1B 4 h after infection. Values
represent mean =+ SD of triplicate cultures. (B) WT and TLR5-
KO macrophages were infected with P. aeruginosa at the
indicated macrophage/bacterial ratio. The induction of cell
death was evaluated by the release of macrophage LDH 4 h
after infection. Values represent mean + SD of triplicate
cultures. (C) WT and TLR5-KO macrophages were infected
with P. aeruginosa at a macrophage/bacterial ratio of 1/10.
Extracts were prepared from cell and culture supernatants and
immunoblotted with caspase-1 antibody. Arrows denote
procaspase-1 and its processed p20 subunit. (A-C) Results
are representative of at least three separate experiments.
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flagellin did not (Fig. 2D). Thus, flagellin is important
for caspase-1 activation, IL-1f secretion and cell death in
response to P. aeruginosa.

TLRS5 is not required for caspase-1 activation after
P. aeruginosa infection

Flagellin is recognized by TLR5 [11]. We tested next
whether TLR5 was required for IL-1f secretion, cell
death and caspase-1 activation in response to
P. aeruginosa. Both secretion of IL-1f and cell death
were unimpaired in macrophages deficient in TLR5
when compared to WT macrophages (Fig. 3A, B).
Similarly, the activation of caspase-1 was unaffected
by the absence of TLR5 (Fig. 3C). These results indicate
that the induction of caspase-1 activation and cell death
is independent of TLR5 in P. aeruginosa-infected
macrophages.

Ipaf and TLR5 sense different residues of flagellin

Flagellin is sensed by both Ipaf and TLR5. To determine
whether the sensing of flagellin by these two host factors
involves the same or different amino acid residues, we
infected macrophages with P. aeruginosa mutants which
express amino acid substitutions in a conserved region
of flagellin predicted to interact with TLR5 [43]. Two
flagellin P. aeruginosa mutants, L94A and Q83A,
retained normal motility and the mutations in purified
flagellin elicited slightly reduced and normal IL-8
production, respectively [43]. Notably, both
P. aeruginosa mutants, Q83A and L94A, were defective
in the induction of IL-1f secretion and cell death when
compared to WT bacteria (Fig. 4A, B). Consistently, the
activation of caspase-1 triggered by infection with both
mutants was reduced when compared to that observed
with WT P. aeruginosa (Fig. 4C). These results indicate
that Q83 and L94 of flagellin are critical for Ipaf-
mediated caspase-1 activation, IL-1f production and cell
death, but not for bacterial motility or TLR5 recognition.

P. aeruginosa activation of caspase-1 requires a
functional TTSS

We determined next the role of the TTSS, a factor that is
critical for virulence, in caspase-1 activation, IL-1f
secretion and cell death induced by P. aeruginosa. To
address this question, we infected macrophages with a
P. aeruginosa mutant that lacks PscC, an essential
component of the TTSS apparatus [25]. These experi-
ments showed that caspase-1 activation, IL-1f secretion
and cell death were greatly reduced in macrophages
infected with mutant P. aeruginosa (Fig. 5A-C). We
infected next macrophages with P. aeruginosa mutants
in which the genes encoding the TTSS effectors ExoS,
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ExoT and ExoY have been deleted individually or in
combination [25]. The analyses revealed that the TTSS
effectors were dispensable for the induction of IL-1f
secretion, cytoxicity and caspase-1 activation in
P. aeruginosa-infected macrophages (Fig. 6A-F). These
results indicate that a functional TTSS is critical for the
induction of caspase-1 activity, IL-1 secretion and cell
death, whereas the effectors ExoS, ExoT and ExoY are
dispensable.

P. aeruginosa-induced caspase-1 activation
requires ASC, but not Cryopyrin

We examined next the requirement for NLR proteins and
the adaptor ASC in IL-1B production and caspase-1
activation triggered by P. aeruginosa. Analysis of WT and
mutant macrophages lacking Ipaf, Cryopyrin or ASC
revealed that P. aeruginosa-induced IL-1p secretion was
greatly reduced in Ipaf- or ASC-null macrophages, but
not in Cryopyrin-deficient macrophages (Fig. 7A).
Consistent with the latter observations, both Ipaf and
ASC, but not Cryopyrin, were required for caspase-1
activation induced by P. aeruginosa (Fig. 7B-E). In
agreement with the results shown in Fig. 2, a
P. aeruginosa mutant lacking flagellin (AfliC) was
unable to induce caspase-1 activation (Fig. 7B-E). These
results indicate that caspase-1 activation in response to
P. aeruginosa relies on the Ipaf/ASC inflammasome.

Eur. J. Immunol. 2007. 37: 3030-3039

Differential role for Ipaf and ASC in P. aeruginosa-
induced macrophage cell death

We examined next the role of Ipaf, Cryopyrin and ASC in
induction of cell death by P. aeruginosa. At 4 h post-
infection, macrophage cell death was significantly
reduced in Ipaf-deficient macrophages but not in
macrophages lacking ASC or Cryopyrin when compared
to WT macrophages (Fig. 8A-C). Further studies
revealed similar kinetics of cell death in WT, ASC-
and Cryopyrin-deficient macrophages after
P. aeruginosa infection (Fig. 8D). In contrast, Ipaf-
deficient macrophages were greatly protected against
cell death at all times examined (Fig. 8D).

Discussion

In this study, we demonstrate a critical role for Ipaf and
its adaptor protein ASC in the activation of caspase-1
and IL-1B secretion in P. aeruginosa-infected macro-
phages. The activation of caspase-1 induced through
Ipaf required expression of the bacterium flagellin but
was independent of the TTSS effector molecules ExoS,
ExoT and ExoY. The sensing of flagellin by Ipaf appears
to involve different amino acid residues compared to
those required for TLR5 recognition [43].

Remarkably, both caspase-1 activation and IL-18
secretion were abolished or greatly reduced in response to
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Figure 4. Different amino acid residues of flagellin are critical for sensing through Ipaf and TLR5. BMDM were primed for 4 h with
LPS and infected with WT P. aeruginosa or AfliC or Q83A flIiC or L94A fliC P. aeruginosa mutant at the indicated macrophage/bacterial
ratio. Cell-free supernatants were analyzed by ELISA for production of IL-1p 4 h after infection. Values represent mean =+ SD of
triplicate cultures. (B) BMDM were infected with WT P. aeruginosa or AfliC or Q83A fliC or L94A fliC P. aeruginosa mutant at the
indicated macrophage/bacterial ratio. The induction of cell death was evaluated by the release of macrophage LDH 4 h after
infection. Values represent mean =+ SD of triplicate cultures. (C) BMDM were infected with WT P. aeruginosa or AfliC or Q83A fliC or
L94A fliC at a macrophage/bacterial ratio of 1/5. Extracts were prepared from cell and culture supernatants and immunoblotted
with caspase-1 antibody. Arrows denote procaspase-1 and its processed p20 subunit. (A-D) Results are representative of at least
three separate experiments.
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Figure 5. A functional TTSS is important for induction of
caspase-1, IL-1p secretion and cell death in P. aeruginosa-
infected macrophages. (A) BMDM were primed for 4 h with LPS
and infected with P. aeruginosa or PscC™ P. aeruginosa mutant at
the indicated macrophage/bacterial ratio. Cell-free super-
natants were analyzed by ELISA for production of IL-1 4 h
after infection. Values represent mean + SD of triplicate
cultures. (B) BMDM were infected with P. aeruginosa or PscC™
P. aeruginosa mutant at the indicated macrophage/bacterial
ratio. The induction of cell death was evaluated by the release
of macrophage LDH 4 h after infection. Values represent
mean + SD of triplicate cultures. (C) BMDM were infected
with P. aeruginosa or PscC™ P. aeruginosa mutant at a macro-
phage/bacterial ratio of 1/10. Extracts were prepared from cell
and culture supernatants and immunoblotted with caspase-1
antibody. Arrows denote procaspase-1 and its processed p20
subunit. (A-C) Results are representative of at least three
separate experiments.

aP. aeruginosa mutant lacking an essential component of
the TTSS machinery. A critical role for the TTSS apparatus
in caspase-1 activation is also suggested by the
observation that Salmonella requires SipB, a translocase
of the TTSS, for the induction of caspase-1 and IL-1f3
secretion [10, 41]. Similarly, the Legionella type IV
secretion system has been shown to be essential for the
induction of Ipaf-mediated caspase-1in macrophages [9].

Although the precise mechanism by which the TTSS
contributes to caspase-1 through Ipaf requires further
investigation, a reasonable possibility is that small
amounts of soluble flagellin might enter the cytosol
during the assembly of the TTSS across the macrophage
membrane or through the needle complex formed by the
P. aeruginosa TTSS apparatus. Thus, Ipaf may sense
flagellin directly or through another host factor in the

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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cytosol to promote the activation of caspase-1. Such a
mechanism has been proposed to explain the require-
ment of both flagellin and the TTSS for caspase-1
activation in response to Salmonella [10, 41]. Similarly,
peptidoglycan-derived molecules are delivered to the
host cytosol by the Helicobacter pylori type IV secretion
system for the activation of Nod1, another NLR family
member [44].

Alternatively, the TTSS might induce an activity at
the membrane of infected macrophages independent of
ExoS, ExoT and ExoY that is critical cofactor for the
activation of the Ipaf inflammasome. Because the TTSS
forms a pore in the membrane of the contacted host cell,
it may induce changes in cytosolic ion concentrations or
another event across macrophage membranes that
promote caspase-1 activation. However it should be
noted that the Ipaf-inflammosome is not modulated by
intracellular K* concentration [42]. Finally, there is the
possibility that there may be undiscovered TTSS
effectors that regulate caspase-1 activation. Further
studies are needed to understand the contribution of the
P. aeruginosa TTSS and flagellin to the activation of the
Ipaf inflammasome.

We found a critical role for the TTSS, flagellin, Ipafand
caspase-1 in the induction of rapid cell death in
macrophages infected with P. aeruginosa. This mode
of bacteria-induced macrophage cell death that relies on
caspase-1 is triggered by several bacterial pathogens
including Salmonella and Shigella and refereed as
pyroptosis [45]. The induction of pyroptosis by
P. aeruginosa proceeded normally in ASC-deficient
macrophages despite the absence of caspase-1 activation.
These results indicate that the function of Ipaf and ASC
differin asubtle manner and that the absence of caspase-1
activation is not sufficient to inhibit pyroptosis.

One possibility is that both caspase-1 activation and
the failure to induce pro-survival signals are required for
pyroptosis. In this model, ASC promotes survival signals
and in the absence of ASC, but not caspase-1 or Ipaf,
these ASC-mediated pro-survival signals will not be
induced leading to pyroptosis. Consistent with this
hypothesis, ASC mediates NF-kB activation [46-48] and
thus NF-kB or another activity induced via ASC
independently of caspase-1 might counter the induction
of pyroptosis in P. aeruginosa-infected macrophages. An
alternative possibility is that the inflammasome formed
in the absence of Ipaf and ASC might vary in a subtle
manner. For example, they may differ in the recruitment
of host molecules that regulate the induction of
pyroptosis in infected macrophages. Further studies
are needed to understand the differential role of Ipaf and
ASC in pyroptosis induced by bacterial infection.

Several studies have assessed the host mechanisms
that mediate the immune response to P. aeruginosa.
These experiments revealed a role for TLR2, TLR4 and
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Figure 6. The effector proteins ExoS, ExoT and ExoY are not important for induction of caspase-1, IL-1p secretion and cell death in
P. aeruginosa-infected macrophages (A) BMDM were primed for 4 h with LPS and infected with P. aeruginosa or ExoS, ExoT, ExoY or
ExoSTY P. aeruginosa mutant at the indicated macrophage/bacterial ratio. Cell-free supernatants were analyzed by ELISA for
production of IL-1p 4 h after infection. Values represent mean + SD of triplicate cultures. (B) BMDM were infected with
P. aeruginosa or ExoS, ExoT, ExoY or ExoSTY P. aeruginosa mutant at the indicated macrophage/bacterial ratio. The induction of cell
death was evaluated by the release of macrophage LDH 4 h after infection. Values represent mean =+ SD of triplicate cultures. (C-F)
BMDM were infected with P. aeruginosa or ExoS (C), ExoT (D), ExoY (E) or ExoSTY (F) P. aeruginosa mutant. Extracts were prepared from
cell and culture supernatants and immunoblotted with caspase-1 antibody. Arrows denote procaspase-1 and its processed p20

subunit. (A-F) Results are representative of at least three separate experiments.

TLRS5 in the cytokine/chemokine response of epithelial
cells and macrophages to the bacterium in vitro and in
vivo [32-36]. However, while analyses of MyD88-null
and TRIF-null mice have shown a critical role for this
adaptor in bacterial resistance, there is no or little
evidence that individual TLR are critical for suscept-
ibility to P. aeruginosa and bacterial clearance in vivo
[32-36]. The high susceptibility of mice deficient in the
adaptor MyD88 to P. aeruginosa in contrast to individual
TLR suggests redundancy of TLR in the host response to
P. aeruginosa and/or involvement of IL-1R in that this
pathway also uses MyD88 for signaling [49].

A role for IL-1 signaling in controlling P. aeruginosa
lung infection in mice is controversial. Recent studies
have suggested an important role for IL-1R using a
chronic colonization model whereas no significant role
was found in acute pulmonary infection with
P. aeruginosa [40]. Similarly, some authors have
reported that pre-treatment with IL-1p protected the
mice against bacterial infection, but other studies
showed that IL-1B-neutralizing antibody administered

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

after P. aeruginosa protected mice from sepsis and acute
pneumonia. These seemingly contradictory results are
likely to reflect differences in the experimental models
including the timing of administration and the dose of
bacterial inocolum. In a model of corneal infection
induced by P. aeruginosa, both caspase-1 and IL-1f3 were
found to be important in eliciting acute inflammatory
responses and tissue damage [39].

Our studies have revealed that the absence of Ipaf is
associated with a transient defect in the clearance of
P. aeruginosa in the lung tissue after intratracheal
infection. This modest effect is comparable with results
obtained in the Salmonella system in which no or
minimal effects in bacterial clearance were observed
after oral infection [50]. These findings suggest
redundancy between different NLR family members
and other pattern recognition receptors in host defense
against P. aeruginosa. Therefore, it will be important in
future studies to assess the role of Ipaf in the presence
and absence of other NLR and TLR in mouse models of
P. aeruginosa infection.
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Materials and methods

Mice and cells

Mice deficient in Ipaf, ASC, Cryopyrin, caspase-1, TLR5 have
been previously described [12, 41, 51, 52]. For in vivo
experimentsIpaf-KO mice werebackcrossed fivetimeson aBalb/
¢ background. Mice were housed in a pathogen-free facility.

Bone marrow-derived macrophages (BMDM) were isolated
as previously described [53]. Briefly, femurs and tibia were
removed from the euthanized mouse and briefly sterilized in
70% ethanol. IMDM was used to wash out the marrow cavity
plugs and bone marrow cells were resuspended in L cell-
conditioned medium containing M-CSF to stimulate prolifera-
tion and differentiation of the marrow progenitors into
macrophages. After 5-6 days, the resulting BMDM were
replated and used within 2 days. Alveolar macrophages were
prepared as previously described [54]. The animal studies
were conducted under approved protocols by the University of
Michigan Committee on Use and Care of Animals.

Reagents and bacterial infection

Ultrapure Escherichia coli LPS was from Invivogen. All the
bacterial strains used in this study were derived from the WT
P. aeruginosa strain PAK. P. aeruginosa deletion mutants pscC,
fliC, exoS, exol, exoY, exoSTY used in this study were
described elsewere. The bacteria were propagated in liquid
Luria—-Bertani broth or on Luria-Bertani agar plates. The
bacteria were grown at 30°C overnight. The next day cultures
were diluted 107! and grown for 4h at 37°C to late
exponential/early stationary phase before macrophage infec-
tion. Bacteria were diluted to the desired concentration in
IMDM + 10% heat-inactivated FBS and used to infect
macrophages at different bacterial/macrophage ratios. After
1 h, gentamycin (100 pg/mL) was added to limit the growth of
extracellular bacteria. In all the experiments immediately after
infection P. aeruginosa were spun onto the cells at 1500 rpm to
synchronize the infection.

Immunoblotting

Cells were lysed together with the cell supernatant by the
addition of 1% NP-40, complete protease inhibitor cocktail
(Roche, Mannheim, Germany) and 2 mM dithiothreitol.
Clarified lysates were resolved by SDS-PAGE and transferred
to PVDF membranes by electro-blotting. The rabbit anti-mouse
caspase-1 was a kind gift from Dr. Vandanabeele (Ghent
University, Ghent, Belgium). Anti IL-1p was from R&D
Systems, Minneapolis, MN.

Measurements of cytokines

Mouse cytokines were measured in culture supernatants, or
serum, with ELISA kits (R&D Systems, Minneapolis, MN).
Assays were performed in triplicate for each independent
experiment.

Mouse infection and statistical analysis

WT and Ipa-KO mice were infected intratracheally with
5x10° Pseudomonas, and the number of bacteria in the lungs

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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wasdetermined at 6,18 and 48 hpost-infectionbyserial dilution
plating. Comparisons between two experimental groups were
performed with Student's t-test. Differences in data values were
considered significant at a p value of less than 0.05.
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