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ABSTRACT

The hydrodynamic stability of divergent jets is studied under the condition
of small but nonzero Rossby number. ©Small disturbances to the basic state con-
sist of fast waves of inertio-gravity type and slow waves with speed comparable
to that of the basic current. It is shown that the fast waves are stable and
do not amplify. It is shown also that, for a velocity profile resembling that
of the Gulf Stream, the slow waves are destabilized by the presence of nonzero
Rossby number., For very shallow jets it is found that the complex wave velocity
is small and that, in general, disturbances will be stable unless the jet has

a countercurrent.






1. INTRODUCTION

This paper is devoted to a reexamination of the hydrodynamic stability of
divergent jets with special reference to the stability of the Gulf Stream.
Despite the many recent studies of this problem there are a number of unresolved
guestions, even in sgituations for which the quasi-geostrophic theory would sSeem
to apply. In addition, for the Gulf Stream problem, there is a legitimate
doubt that the quasi-geostrophic theory is valid even as a low order approxima-
tion. Since intuition alone is unlikely to suffice in resolving these matters,
an analytical treatment is presented.

The first question to be discussed is that of the stability of inertio-
gravity waves. The fact that these waves are unimportant is exploited in all
of the models used for simplifying the primitive equations; the reason why they
are unimportant is an open question, at least as far as formal mathematical
proof is concerned. It will be shown below that, when the Rossby number is
small, the class of perturbations corresponding to inertio-gravity waves is
stable and will never amplify, at least under barotropic conditions. This
result provides a formal justification for ignoring inertio-gravity waves.

Next, we will consider the effect of small but nonzero Rossby number in
modifying the stability characteristics of quasi-gecstrophic disturbances to
a velocity profile resembling that of the Gulf Stream. There are a number of
reasons for doubting the validity of quasi-geostrophic theory as applied to
this problem; nevertheless, such treatments have been made (Stern. 1961, Lipps,

1963 ) and it is of interest to calculate the effects due to finite Rossby num-



ber. The result of the calculation is to prove wrong Lipps' speculation that
the reason his computed growth rates are higher than observed (c.f. Stommel,
1965, p. 196; also, Gulf Stream Summaries) is due to his neglect of higher
order Rossby number effects. The Rossby number effect, for the profile studied,
in fact proves to be destabilizing.

Finally, we will consider a situation in which the Rossby number is small
but the fluid is still divergent. This appears to be more applicable to the
Gulf Stream problem than the usual gquasi-geostrophic theory. The conclusion
reached for this model is that the existence of a countercurrent is necessary

for instability.



2. FORMULATION

We consider a two-layer fluid on the P-plane, the density p of each layer
being constant. Let x, y, and z measure distance to the east, the north, and
the vertical, and let subscripts 1 and 2 refer to the upper and lower layers,
respectively. The layers are of finite depth, with depths Da(a=1’2> in the
absence of motion. We take the upper boundary of the fluid to be the free
surface z = Dy + Do + (£p/p2)n1, where Ao = po - p1, the interface between the
layers to be z = Do + n2 - (p1/p2)n1, and the lower boundary to be the rigid
plane z = 0. Also, we assume shallow water theory to be valid and denote by

i@ the horizontal velocity and by D/Dta the material derivative,

D Q , =
—_— = (=— + q
pt - 56 T %Y
a
The equations of motion are then
>
Dg A
—2 4 fkxq +g'Vn =0 (no sum convention) (1)
Dt 9y 7 &8 Vg ’
a
Dha N
— +h Vg =0
Dta oav Yo ’ (2)

where the depths h; and hs are given by

hy =D1 + m1 - n2, hp =Dp + no-(p1/p2)n1, (3)
and where f = fo+6y'is the Coriolis parameter and g' = gAp/pg is the reduced
gravity.

Our aim is to study the stability of small perturbations to the flow



>

a0 = (V(y/L), 0), @z = O,
V being a characteristic velocity and L a characteristic length. Two approxi-
mations will be made at the outset. First, we will neglect entirely motions in
the lower layer and thus eliminate potential energy conversion as a source of
instability. This is Jjustified in the quasi-geostrophic case, provided that
a source of kinetic energy is present and that D; < Dy (Pedloskey, 1965, Sec.
L). We assume that it is true also for the ageostrophic case. Secondly, we
restrict our attention to horizontal length scales so small that I «< V/B.
It is then permissable to neglect By next to fo provided that we simulate the
trapping effect due to the earth's curvature (Jacobs, 1967). This will be
achieved here by supposing the fluid to be confined between walls at y = IA,
y = LB, B> A,

It is convenient at this point to scale the variables. Omitting sub-
scripts, which are now superflous since aé = ne = 0 by assumption, we define

nondimensional variables by

> >
(x,y) = L{x*,y*), t = (L/V)t*, g =V g*%, n = (fOVL/g’)n*, h = Dh*, (k)

The nondimensional equations obtained through use of this scaling are, with

asterisks omitted,

>
Dq A ->
e tkxq+ V=0, (5)
and
Dh
— 4+ hVv:qg = 0
where



h =1+ e, (7)
The nondimensional parameters are the Rossby number,

¢ =V/fL, (8.a)

and a nondimensional radius of deformation y, given by

y = £ 1/(g'D)*/2. (8.5)
If we now take
->
q=(U(y) +u, v), n=0+9, (9)
where ®' = -U, and neglect products of the perturbation quantities, we obtain
the linear equations
3 3 X
— —— + - + =
elxp + U wv) + (Htvyu) + (5, ay) 0, (10)
and
2,90 o) O(Hu) . o(Hv)
- + U)o + + =0
€Y (at aX)CP 3 Sy s (11)

where H, the unperturbed depth of the layer, and {, the unperturbed total vor-

ticity, are given by

H=1+¢%0, t=1-cU'. (12)
As is usual in stability problems (see, however, Case, 1960), we bypass

the initial value problem and instead separate variables according to

F(x,y,t) =‘§(y)eik(x-Ct) k>0, c=c +ic,, (13)

r T = r i

where F is any of u, v, or ¢. Equations (10) and (11) then become a homoge-

neous system of ordinary differential equations with the homogeneous boundary



conditions ;(A) = v(B) = 0, and ¢ plays the role of an eigenvalue. The values

of ¢ for which

B, \~2 . ™
[y (Tul®+ [v]2 + 5%e|®)ay # o
will be called the spectrum for this system, and if c, > 0 the motion is un-

stable,
Invoking (13%) and eliminating'a, we obtain two equations for the two re-

maining unknowns. With the definitions

w = U(y)-c, $ = ;H/ik, q = H(t-ek%%% )71, @ = (H-e%y%%%)71, (1k4)

and with the tildes omitted, we have
alewp' - @) + ¥ = 0, (15)

Qlewy' + t¥) - ¢ = 0, (16)
to be solved subject to Y(A) = ¥(B) = 0. Alternate formulations in terms of

a single equation for a single unknown are

N T A L (1 R
() - (F+3 =0, (17)
or
(g')' - (x%q + 9% + q'/ew)p = O, (18)

the latter equation being subject ot ¢ = ewp' at y = A and y = B.
We note that if |c| = 0(1) as € - O, then, in the limit, ¢ = ¥ and (17)

becomes the quasi-geostrophic equation

Wy - (KB + U - 9By = 0, (19)



for which one can show that c lies in a certain circle I' in the ¢ plane., If

U, and Us are constants such that

Ur < U(y) < Uz, U2>0,
then the center of I'is at ¢ = 1/2 (Uz + b) and its radius is 1/2 (Uz - b),

0 otherwise. We will refer to I' a number of

where b = Uy 1f Uy < O and b

times in what follows.



3. LOCATION OF THE SPECTRUM

It would be desirable to proceed without making any further approximations.
This is impractical, however, and we will be content instead to consider only
the case € << 1. If we can show that for unstable waves |c| = O(1) as ¢ + O,
then the quasi-geostrophic theory is a valid first approximation and may be
improved upon by carrying out a perturbation expansion in powers of €. Accord-
ingly, it is desirable to show that for unstable waves ¢ lies in the circle T,
and this is the object of the present section.

It should be noted that it is untrue that all the eigenvalues lie in I'.
For example, if U(y) = 0, the spectrum consists of the points c = 0O, the geo-
strophic mode, ¢y®c®= 1, the Kelvin waves, and ¢%y%c® = 1 + k™2[Z + n®+%/
(B-A)%], n = 1,2,.... the Poincare waves. In general, even for U(y) # O, we
must anticipate the existence of eigenvalues c¢ such that elcl % O in the limit
€ - 0, This is because the solutions of the initial value problem defined by
(10) and (11) must during part of their temporal history have a time scale of
order ¢ ' in order that all the initial conditions be satisfied, a fact which
is reflected in the modal analysis. The question, then, is whether the fast
waves have imaginary parts.

We start by showing that for unstable waves e[c| is bounded. Let

-1/a HA(Y) 1/ag M) (0 (20)

¢ =H o(y), v=H

where

AMy) = - eky fz-H'l/g w dy. (21)



Substituting into (15) and (16), we obtain

'

e2w2(y2p + ikyT) + €WH1/2(T' + % %; T) + Hl/z(CT - Hl/ep) =0, (22)

and

+ EwP(y%p + ikyT) + iyele/2(p' - % %% o) + iy(tr - Hl/2p) = 0. (23)

For c¢|c| large we may expand o and T in inverse powers of elc[, the result

being that in the lowest order approximation

yo = * ikt, p' =71' = O. (2k)
If ¥ is identically zero, so are ¢ and u. Otherwise, picking the solution for

¥ which vanishes at y = A, we have

Vo= 0/ 4gin A + o(e™*e]™) (25)
as e]cl + o, We note that this asymptotic integration is uniformly valid in

the ¢ plane, i.e., there are no turning points. In the limit as ele] » o

eky fi H/2y dy = + Nn, N integral, (26)

and ¢ is real. Conversely, if c has an imaginary part, elcl must be bounded.
We turn now to the case where elc[ tends to a positive constant as € - O.
Let o(e) = ec. We will show that if ¢(0) = o, # 0 and if € is sufficiently

small, then o is expressible in a convergent power series of the form

o=oo+eol+6202+..., (27)

and that all of the coefficients o (v = 0,1,2,...) are real. This result,
v

together with the above one concerning unbounded o, serves to establish that



if ¢ has an imaginary part then e|c| +~ 0 as € -~ 0.

With ¢ = ec, we have from (15) and (16)
(eU-0)p' - ¢ + H™*(¢ - k%(eU-0)%)¥ = O, (28)

(eU-o)¥' + t¥ - (H - 72(eU-0%)g = O, (29)
with ¥(A) = ¥(B) = O, and we note that if o # €U throughout A <y < B, i.e.,
if ¢ is not real and in the range of U, (28) and (29) have no singular points.
Thus, for eigenvalues o whose absolute value is bounded away from zero, the
solution of (28) and (29) satisfying (say) V(A) = 0 and ¢(A) = o is an analytic
function of e and o, the other parameters being held constant. The eigenvalue
relation is then

¥(B) = F(e,o0) = 0. (30)

where F(e,o) is an analytic function of € and o. It follows that o is a con-
tinuous function of €.

Now if ¢ = O,

¥(B) = F(0,0) = (®c®-1)sin[p(B-A)]/n, (31)

where

b= (K32 - (k2 + 7)) /2 (32)
and where V(A) = 0, @(A) = 0. have been imposed. The eigenvalues o satisfy-
ing F(O,oo) = 0 are given by 720§ = 1 and u(oo) = nn/(B-A), n=1,2,..., and
are the same as if U = 0. We note that FO(O,UO) # 0. Therefore, by a theorem

of Weirstrass,
F(e,o) = [(0~OO)FO(O,GO) + r(e)] E(e,o-co), (33)

10



where r(e) and E(e,c—oo) are analytic in a neighborhood of O and (0,0), re-
spectively, and where r(0) = 0, E(0,0) = 1. As o-0_=0(1) as e >0, E# O

o}

for small e. Therefore, since F(e,o) = O,

o=o0_ - r(é)/FG(O,OO), (3h4)

0
and o(e) is a convergent power series in € in a neighborhood of ¢ = O.
We now need to show that all the coefficients in the expansion are real,
and for this purpose it is convenient to cast the problem in integral equation

form. Consider the following rewritten form of (18),

(a@")" - (k%q+q'/ew) = y%0, (35)
with ¢ = ewp' at y = A and y = B. The existence of an eigensolution of (35)
with the right side replaced by zero is equivalent to the existence of an
eigensolution for the original system with y set equal to zero where it appears
explicitly in Q = (H-¢5y%w®)~*. From (15) and (16), we see that under this

condition ¥ = O implies ¢ = O which in turn would imply u = 0. If ¥ is not

identically zero, it solves

' 2
() = G - (ym /ey = o,

from which it follows that ¢ lies in I'. Conversely, if c does not lie in T,
the operator on the left side of (35) has a bounded inverse, and (35) is equiv-

alent to the integral equation

oly) = »° fi Gly,y's e,0)e(y")ay'. (36)

The Green's function G solves

11



(q¢')" - (k%q + q'/ew)C = 8(y-y'), (37)
with G = ewG' at y = A and y = B, It is symmetric in y and y' and is real for
neutral waves. Furthermore, since c being outside I' implies ¢ is not in the
range of U, G 1s analytic in € and o, and all derivatives with respect to these
parameters are real for real o.

We now apply the usual Rayleigh-Schroedinger perturbation theory. Let

o =9 (y) + epr(y) + ..., (38)

e}

0=o0 +eot ..., (27 bis)

and substitute into (37). FEquating powers of e, we obtain

2 (B ', ' L.
®O(y) -y fA Gly,vy's O,co) @O(y ) dy' = 0, (39.a)

B
o1(y) - 77 [, 6ly,v's 0,0 ) paly') dy' =

- A2 B 1 1
=y, (G + oG ) o (v')dy', (59.v)

0=0
o)

etc. Note that ¢ (v = 0,1,2,...) appears in the vth equation, and that for

1%
v > 1 it appears linearly. Note also that G and all its derivatives are real
for e =0, o= Oy and that the operator on the left side of (39) is Hermitian.

Therefore, by the Fredholm alternative theorem,

(o ox,) = [, o % dy =0, v=12,..., (40)

where xv(v =1,2,...) is the right side of (39.b) and of subsequent equations,

and an overbar denotes complex conjugation. This condition, together with the

12



normalizations (®O,¢O) =1, (¢o,wv) = 0, v> 1, determines a unique solution
of (39).

Applying (LO) to the right side of (39.b), we find that oy is real. This,
together with the normalization, implies that ¢; is real, and proceeding on in
this way we find that all coefficients in the expansion (27) are real. It
follows that if c¢ has an imaginary part, efcl > 0 as € » 0.

Our last result, that for small ¢ ¢ lies in I' if it has an imaginary part,

is implicit in the above result. For c, # 0, let

2 Y -1
¥ = (wHe®” © [y H Wy, (41)

Under this transformation, Eq. (17) becomes

(w®H%0')' - v (X®H - yPc/w)e = (2ey®ew’QH)O' = M(y)e' (ko)

0. Assume that c is outside I'. We can then show that (L2),

(O]
=
S—
Il
D
los]
N
il

with zero on the right-hand side, has no eigensolution. Hence (42) is equiv-

alent to the integral equation

o(y) = 3 uly') By Sw oyt = - E Kralel Dy, (1)
where
Ky,y') = =5 iy Naly,y ). (1)

Applying the Schwarz inequality, we have

le(y)|® < fﬁ?e(y')!gdy' fi IK(y,y")|%ay", (45)

and integration over y and division by (9,6) yields

1< fi ff K(y,y")|® ayay ', (46)

13



which is a necessary condition for an eigensolution to exist. Now |K| + O as
¢ - O because G is bounded and M » 0 as ¢ -~ O for c, # 0. Hence for small ¢

(L6) cannot be satisfied, and this implies that c must lie in T.

1h



4. MARGINALLY STABLE WAVES

We anticipate the results of the next section in stating here that mar-
ginally stable waves, i.e., neutral waves which are the limit as c, > O+ of
unstable waves, occur only for ¢ in the range of U. A necessary condition for
the existence of these waves can be obtained by multiplying equation (17) by

¥, the complex conjugate of |, the conjugate of (17) by Vv, subtracting, and

then integrating. The result is

, 2
Imfi (%ig v|2ay = Imfi Qv [® + zﬁﬁ lv[*1dy. (k7)

If we take the limit as c, ” O from above with c. in the range of U, we obtain

2
v |

. 101

(ag); = o. (48)

<™

(el

Here yc solves = U(yc), and the subscript c¢ denotes the value of a function

i

evaluated at y yc. Since wc = 0 by definition, we have upon recalling that

2. 2\=-1
Q:(H~€27W> »

v |?
C
Ye |U‘|

C

(£) = o. (49)

H'e

The quantity (¢/H) is the potential vorticity of the basic state, and (L9) is
a natural generalization of the results obtained through use of the quasi-

geostrophic theory.

For monotonic profiles, U' % O and there is only one critical layer at
which ¢ = U. Also, in this case, V_ # 0. To show that wc# 0, we note that

the exponents of ¥ relative to the point y = yc are O and 1, and that if Wc =0

15



Vo= (y-yc) P(y) (50)

throughout [A,B], where P(y) is analytic in y and can be taken to be real.
Let y1 be the boundary at which U(yi) < U,, and for definiteness we take U' > 0O
so that yi1 = A. Multiply (17) by ¥ and integrate between y; and Y, After an

integration by parts, we obtain

2 2 1
e tav)? + (5 + 2o - {82y < o, (51)

the integral being convergent because of (50). After a number of integrations

by parts, (51) can be put into the form

(QH-1

2
p— V12 + [ + & —=—]®)ay = o. (52)

Ve ‘
fyl (Qly' +

For e sufficiently small, Q > O on [yl,yc], and c¢/(c-U) = UC/CUC-U) is non-
negative in this interval. Consequently, (52) cannot be satisfied and there-
fore wc # 0. It follows that for monotonic profiles yc must be the point at
which the potential vorticity gradient vanishes, and c = UC.

For nonmonotonic profiles it can be shown that, provided the profile has
not more than two interior extrema, with U > O at the maximum and U < O at the
minimum, c¢ cannot equal U at an extremum. It can also be shown that wc # 0.
The argument is similar to that given above. However, even for symmetric pro-
files, it is not true in general that the points yc coincide with maxima or
minima of the potential vorticity, since the potential vorticity is not sym-
metric. This limits the usefulness of (L9) in finding marginally stable waves.
On the other hand, since we anticipate the existence of a neutral stability

curve and since (L49) holds for marginally stable waves, the potential vortiecity

gradient must vanish somewhere in the flow domain if the motion is unstable,

16



and this is the major result of this section.

17



5. EFFECT OF ROSSBY NUMBER ON STABILITY CHARACTERISTICS

As mentioned at the start of Section 3, a perturbation analysis can be
carried out to improve upon the results of the quasi-geostrophic theory. Some
of the labor involved in this procedure can be circumvented through use of the

following device, which is due to Howard (1963). Consider the functional

2
mlo) = (5= |7 - [} (al(9)? + K%67] + a'o®/enlay) + [, ofay. ()

It is readily verified that I[¢] = 72 and that I is stationary in the sense of
the calculus of variations (though not an extremum), from which it follows
that the derivative of I with respect to any parameter does not involve con-
tributions coming from the dependence of ¢ on that parameter. Letting n be

any of ¢, k, or y, we have

2
O~ _ 9L, oL ¢
T e m (5k)

c
from which %t can be calculated. It should be noted that if ¢ is real but not
) ac |, . . .
in the range of U, ¥ 18 real and the neutral wave in question is not a mar-

ginally stable wave.

Now, from (54), we obtain

o = (B 2 2 2 42 2
(50) coo = U, faallp))® + ko] + 2 9_Jdy
e (0101 ¢ 17 1= Bay, (55)
O

where P is the solution of the quasi-geostrophic Eg. (19), W= U(y)-c , c

18



being the zero order wave speed, and q, = évq/éev)e_o. This provides the first

order term in a perturbation series for c.

From the definition of g, we have

= U+ 5%, g = 2[(U)% + H%0U" + K2 (w_)7]. (56)

If the velocity profile U(y) is even in y and if A = -B, @O(y) is either even
or odd in y, and ($é)2 and @i are even. Then g; is odd, go is even, the nu-
merator of (55) integrates to zero while the denominator is nonzero. Hence,
for a symmetric flow ¢ = co + 0(52), i.e., there is no first order Rossby num-
ber effect on c.

The velocity profile which will be treated here is not symmetric and hence

there will be a first order Rossby number effect. The flow is

U(y) = cos ny +h%§; A=-17/6,B=5/6, (57)

and is plotted in Figure 1. A countercurrent is included, since (57) is meant
to model the mean velocity of the Gulf Stream. The marginally stable waves
corresponding to the above profile (with €=0) are readily calculated using
standard methods, and these will be used in the formula for dc/de. In this
way we find the perturbation off the neutral stability curve due to the Rossby

number.

Of the two possible modes solving (19) with e=0, the more unstable sym-

metric mode is given by

P = cos [-g (y + %)], k = T, ¢ = J(E+yZ) + 10+, (58)

> 7o

G,. .G,
2 2

In evaluating the integrals in (55) we will regard c, as being the limit of an

19



Figure 1.

Velocity profile.
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unstable wave, as indicated by the last equation of (58). These integrals,

with one exception, can be put into the form

Q+27
fa

R(cos ©, sin 8)de

where R is a rational function, and hence can be evaluated as contour integrals.
The exception 1s due to a term linear in y because of the presence of ¢. This

. . 1y . . . . . .

is treated by expanding (y + =) in a Fourier sine series in the interval

6

1
-1< (v + g) < 1 and evaluating each integral by converting it into a contour
integral. The resulting infinite series can be summed exactly.

The details of this calculation will be omitted and we present only the

final result. With

N3y
o Ay
and with
1 -'!gfr 1 -5§?}“+ % (1-r2)/2
P(r) = 2 Eyiye Lo | ] + log N3 - 2r], (59)
o
2 -

we obtain after a number of nontrivial integrations

\/'—‘ 1 -\/EF
P _oar(1-r?) N3 2
) o= U2 e 0

(60)
B

1 r

+ T cos™t(-I)] - T szfé%T7§ [1 + n/EAfE‘- F(I)1}.

We note that for y = 0 (I' = 0) the right side of (60) vanishes. This is to be

expected, since in this case there should be no Rossby number effect. The

21



J3 2

formula is inaccurate in the limit y >« (I » 5 ) because the product ey

has been treated as being small; accordingly, the calculation is wvalid only
when 672 < 1.

The result is given in Table I. As can be seen, for this flow the Rossby
number effect is destabilizing in the sense that a marginally stable configur-
ation for zero Rossby number is unstable for finite Rossby number. This is a
surprising result; it had previously been felt that Rossby number effects would
be stabilizing. Further calculations based on different profiles have shown
that the Rossby number effect may in some cases be stabilizing, in some cases
destabilizing. We therefore can come to no definite conclusion regarding this
matter except to say that in the present case for a profile resembling that
of the Gulf Stream in many ways, the first correction to quasi-geostrophic

theory indicates a destabilizing Rossby number effect.

TABLE I
ac;
7&5 vs., T
Bci
) S
.0 .0
.087 .038
173 .086
.260 L1hh
346 212
.520 379
.693 .581
.866 .782

22



6. SMALL ROSSBY NUMBER DIVERGENT FLOW

The obvious difficulty in applying quasi-geostrophic theory to the Gulf
Stream problem is that the Rossby number, based on a relative vorticity of 0.4

“! (Stommel, op. cit.) is not particularly small. Not so

or 0.5 x 107% sec
obvious but equally important is the fact that the slope of the interface must
also be small if the fluid is to be nondivergent in the lowest approximation.
In the present paper this slope is the quantity 672, and the conditions for
quasi-geostrophic theory to be valid are ¢ << 1, 672 << 1. The first condition
is satisfied marginally, the second not at all, for based on the data in Stom-
mel's book 672 ~ 1 if the 10°C isotherm is taken to be the interface. This

can be seen either by taking as the characteristic depth D the depth of the
10°C isotherm at the midpoint of the stream or else by directly computing the
slope of the isotherm.

It is pertinent to mention at this point that Stern (1961) discusses the
case € < 1, ey® < 1, ¥ >> 1. Tt is difficult to see how this could apply
to the Gulf Stream, but one of Stern's conclusions, namely that an increase
in 72 is stabilizing, turns out in the sequel to be true.

The foregoing remarks imply that any low Rossby number theory must be
modified by taking the quantity A = 672 to be of order unity even though € is

small. Turning to Eqg. (18), we find that in the limit ¢ » O, 72 + o, with

A=,
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with @ = O at y = A, y = B, We note that unless ¢ is of order ¢ (1) is a
singular perturbation type of equation which can be treated through use of the
W.K.B. method. This treatment, omitted here, reveals that in this case ¢ must
be real. The remaining possibility is that c is of order €, say ¢ = e\, and we
see that the joint limits e » O, 72 + o imply that the complex wave speed is
small.

Now, if U does not vanish anywhere in A < y < B, we may neglect c = eA
next to U, and (61) is a regular self-adjoint Sturm-Liouville type of equation

with real eigenvalues A. In this case the perturbations are nonamplifying.

However, if U = O at some point y Y, @ neglect of eN next to U is not uni-

formly valid. In this case with A =A_ + i\, , xi > 0 we have

r i
1 1 in
i = - 4 -
Lig == = P(3) o] 5(y-y,)> (62)
where P denotes principal value, and (61) becomes
L AN-(EU) i
(o) + ARV g <0,y 4y (63)
where @(A) = ¢(B) = 0, and
YT Vo im@o
=0, ¢ = ——2 [(HU')' - ar].
cp _y_ - 2 (P y - H IU" [( o O) A ] (6)4')
o o o' o

We will not pursue the implications of this last set of equations except
to remark that it is highly probable that complex eigenvalues result. The main
points of interest are that in the model discussed in this section, which ap-
pears to be more relevant to the Gulf Stream than the usual quasi-geostrophic

model, the complex wave speeds are small and the motion is stable unless the
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velocity profile has a zero. The fact that the existence of a countercurrent
plays a role in the stability problem may appear bizarre, but is explained by
the fact that a critical layer is in general necessary for instability and for
very small wave speeds such a layer can exist only if the unperturbed velocity

profile has one or more zeros.
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7. CONCLUDING REMARKS

When the theory of Section 5 is applied to a profile resembling that of
the Gulf Stream it is found that first-order Rossby number effects are desta-
bilizing. Since growth rates predicted by the quasi-geostrophic theory are
already too high, one must conclude that the quasi-geostophic theory is com-
pletely invalid for studying the stability of the Gulf Stream. The theory of
Section 6, which takes account of the divergence of the Stream, is more ap-
plicable and gives results in better qualitative agreement with observations.
Nevertheless, the asymptotic analysis is rather delicate, and a numerical study
is necessary to answer the question of whether the theory of hydrodynamic sta-

bility is relevant at all to the problem of Gulf Stream meanders. Such a study

is now in progress.
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