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ABSTRACT

The Cauchy problem for the B-plane form of the tidal
equations is solved for oscillatory initial data. The radius
of deformatiop is assumed to be much less than the radius
of the earth, and in accord with this assumption a ray
approximation is employed.

It is shown that, due to the rapid rate of propagation
of inertio-gravity waves, the motion in its initial development
tends toward geostrophic balance. However, the solution
given by the ray approximation is singular on certain surfaces
in space and time, the envelopes of the rays. A local boundary
layer theory is employed to correct this deficiency. The
existence of these caustics implies that the process of

geostrophic adjustment is more complicated than hitherto imagined.



1. 1Introduction.

One possible explanation for the well-known fact that
gravity waves play an unimportant role in the large scale
motion of the atmosphere is that these waves, because of
their high rate of propagation, spread out rapidly from
local sources, leaving the slower Rossby waves behind.

This process is called geostrophic adjustment. In the
standard treatment (Obukhov, 1949) a flat earth idealiza-
tion of the tidal equations is solved as an initial value
problem, and the motion indeed tends toward geostrophic
balance as time -+ «.

Among the defects of this model is the neglect of cur-
vature effects and the consequent omission of Rossby waves
and of refraction of the gravity waves. Accordingly, there
is some interest in a treatment in which the effect of
the earth’s curvature is not totally neglected.

In this paper we consider the RB-plane model and thus
allow for the above mentioned omissions of Obukhov's
study. A parameter N, the ratio of the radius of the earth
to the radius of deformation, is assumed to be large, and
an approximate solution is found on this basis. The ap-
proximation is similar to the ray method used by Keller (1958)
for the treatment of diffraction problems, though here it

is used to solve an initial value problem.



As in diffraction theory the ray approximation is
invalid on envelopes of the rays. A local boundary layer
theory is needed to correct this deficiency and is supplied
in part. Near and on the envelopes the amplitudes of the
dependent variables are large. This indicates that the pro-
cess of geostrophic adjustment is considerably more com-
plicated than would appear from a study of the flat earth

model.

2. Formulation.

Let A and 06 measure longitude and latitude on an earth
of radius R rotating about a polar axis with angular velocity
), and let g be the gravitational constant. It is assumed
that O?R/g is small so that ellipticity of geopotential
surfaces can be neglected. We consider here a homogeneous
fluid of uniform depth H with a free surface, but bear in
mind that the theory applies equally well to inhomogeneous
fluids provided H is replaced by an appropriate scale
height.

Let ¢ be the surface elevation, u and v velocity
components to the east and north, and let x and y be Mer-

cator coordinates defined by

X =N y = log ( ) (1)
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We ignore the tide-generating forces. Then, in accord with
the usual approximations of tidal theory (Lamb, 1932, Chapt. 8)

the equations of motion are

%% - 20fv + %?'%é = 0, (2)
%% + 20fu + %? %% = 0, (3)
Ly Bre wm + 2 (v/m] = o, (4)
where
f = sin 6 = tanh vy, m = sec 6 = cosh vy. (5)

In the R-plane approximation used here we replace
m by unity and f by y. Introducing this approximation,

scaling the variables through

£ = ht*,

(w,v) = h(g/H) Z(ur,v*),
(6)
(X:Y) = (X*:y*):

%

t = R(gH) t*;

where h is a characteristic amplitude of the surface elevation,

letting
Y
N = 2()R/(gH) ' (7)
and omitting the asterisks, we obtain
ou ot _
St Nyv + = - 0, (8)
v ot
<~ + Nyu + = 0,
ot A ®)



and

ot du v _
at+ax+ay—0.

(10)
These are to be solved subject to initial conditions

and to the requirements that the dependent variables be

bounded at |y| = «» and periodic in x with period 2r.
It proves convenient to cast the problem in terms of

v alone. Elimination of { between (8) and (10) and between

(9) and (10) and of u between the resulting equations yields

3

Similarly, the initial data becomes

N
v = v,
~ [aV]
vt = - Nyu - Cy’ (12)
N
Vg = Ny (€. - Nyv) + uxy + vyy

where a tilda over a variable denotes its value at t = 0.

We will suppose that N is large and exploit this in
seeking an asymptotic solution. Also, we take as initial
data

d=Y=0,
E _ A(x,y)eika, (13)

where k is a constant of order unity and where
_ eZWiNk A

A(x+27, V) (X, Y) . (14)

in agreement with the sentence following (10). Thus the
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initial disturbance is in the form of a wave with variable

amplitude and whose wavelength is short compared to the

radius of the earth.

3. The ray approximation.

We assume that the asymptotic expansion of v is of

the form
iNCP (X, y,7)
R
v o= wR(x,y,'r,N)e +
iNp, (X,y,t)
+
+ w+(x,y,t,N)e +
iNp (x,y.,t)
+ w_(x,y,t,N)e '
where
T = N't,
where the first term of the sum is to satisfy
i No
d > d e
292 = - T3 + N* == - N*y?)w_ e = 0.
(N°V" 57~ 3 R A
and where each of the last two terms satisfies
L No
y 8 d 0,
2 O _ L _ yoey2 2 -
(Ve m e F N TN v © 0.

The motivation for this assumption is due in equal measure

to known facts about long wave motions

in the atmosphere

and oceans and to what is now classical singular pertur-

bation theory.

We note first that there are two classes of long waves

which are often observed in geophysical contexts, the

inertio-gravity and the Rossby waves.

In elementary treat-

(15)

(16)

(17)

(18)
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ments their dispersion relations are derived by assuming
that the Coriolis parameter may be taken to be constant once
a scalar equation for a single unknown has been obtained.

In the present case this amounts to taking y to be con-

stant in (ll), whence the equation admits plane wave solu-

tions of the form

_ eiN(px + qy - wt)
where

®® - (p2 + g% + y®)w - N'p = 0.
With an error of order N? the cubic has approximate solu-

tions

N'p
(p? + g + y?@)

2

the dispersion relation for Rossby waves, and
1
o = *(p% + g® + yz)/2 .

the dispersion relation for inertio-gravity waves.

This calculation implies that v should be written as
v o= vR(x,y,T,N) + v (Ry, 6N+ v (XY, N,

where the notation is obvious. Now the location of the large
parameter N in (11) or in the amended form of (1l1l) with 7

as time variable indicates that this is a singular pertur-
bation problem, with either the time or spatial derivatives
of v large, of order N. Hence we are led naturally to

assuming the asymptotic expansion of v to be of the form



<
I+
"

vi_(xlylthcpi(XIYIt)lN)l (19,a)

\2
R

Ve (Xeye T, No. (%, y,7),N), (19.b)

where P, and Pr are additional unknowns. This prescription

is due to Mahoney (1962) and is designed to insure that

the asymptotic expansion be uniformly valid in space and time.
The next step would be to substitute (19.a) into (11)

and (19.b) into the amended form of (11), and to solve by

expanding v, and VR in a perturbation series in powers of

N'. It is reasonably obvious that if this procedure is
carried out the lowest order equation for either v in (19)
involves derivatives only with respect to Ny and is trans-
lationally invariant with respect to this variable.
Mahoney's advice is to pick ¢ so that, if the solution
involves a function of NFgp, where F is a functional of ¢,
F is a constant.

These last two sentences lead immediately to equation
(15), and we point out that assuming this form of solution
is the first step in the geometrical optics approach to
wave propagation problems.

In both (17) and (18) we impose the condition that
the coefficient of the highest power of N be equated to

zero. This leads to

®_ = ' (20)



which is obeyed by ¢R, and

-9, = *(0F + 92 + v 2%, (21)

which is obeyed by ?, - These will be referred to as dis-
persion relations but, in contrast to the case of wave
propagation in a constant medium, the phase is not a linear
function of its arguments.

To satisfy the initial conditions we require that
9, = 9, = §_ = kx. (22)

It can then be shown that

_ /2
(), = £(k2 + v?)
(23)
¥
= 2 2y 772
(9,) pp = 2y (kZ + y&) 7
at t = 0, and these eguations together with (12) and (13)
imply that at t = 0
wp W+ wW_ =0, (24)
1 i = -
N'(wR)T + 1(¢R)TWR + (w+ + w_)t Ay, (25)
and
-5 Y _ 2.
N2 (wp) o+ ANT[2(gL) (W) o+ (o) Wel - (pp) 2w +
S
oW W)+ iN[2 (k2 + y?3) W), o+
26
y (26)

+y(k2 + y?) -w) ] - NB(R2 4+ y3) (W, 4+ W)
= y(iN2kA + NA_) .

Thus far no approximations have been made. Now, how-

ever, we expand each w in an ordinary perturbation series of
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the form

(o) (1) -2 (2)

w=w + N1 w + N w + ...,

and substitute into (17), (18) and the initial conditions.

It follows that wéo) obeys
2 2 + y? + (2 -1 2
(o + o, * ¥ W + (20,0 YW, + P07 +

+ [@Tvzm + 2vp - VQT]W = 0,

(o)

where ¢ is Pp and that both of w/

satisfy

2(Vp-w - o W) + (V9 - o, - imx/wt)w = 0,

where ¢ is @ _. These will be referred to as the transport

equations. Substitution of (27) into the initial conditions

yields ~ (0) m(0)+ ~ (0)

w Ol
+ —
(0) | ~(o) _ _ . _ky
w +w o= -1 K21y2 A(x,Y),

whence

~(o) _ _iky
WR B k2+y2 A(x,y),

N(O) _ m(O) _ !._ lkz
W, W' 2 KB4y? A(x,y).
We consider first the Rossby mode, and as before
omit subscripts and superscripts whenever possible. Our

first task is to solve the dispersion relation (20). To

this end, let

P =0, v

so that

(27)

(28)

(29)

(30)

(31.a)

(31.b)

(32)
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o(p? + g2 + y?) - p = 0. (33)

The associated characteristic system of differential equa-

tions is (Courant and Hilbert, 1962, Chapt. 2)

xv = 2po - 1, yV = 290,
T, = p2 + g2 + y2, p, = 0, (34)
g, 20Y, g, = 0 ?, 20 (p=+a=) .,

where v is a parameter. Solving (34) subject to
X =\ Yy = W, T =0, p =k,

. (35)
= — , Q = kX,
k2+y2

at v = 0, where A and p are also parameters, we obtain the

solution of (20) in parametric form,

- - 2kZ+p® o 1 5 . bkv
P ¢R kA + P kv m I 51n(k2+u2) , (R6.a)
where
_ k2-u2 : 2kv s o
X=N+im,e @ Y=UH Cos(k2+u2)' T = (kZ+p3)v. (36.Db)

We designate the family of curves generated by assigning
constant values of )\ and u in (36.b) as rays. These are
not orthogonal to surfaces of constant phase, instead, as
may be verified, they are everywhere tangent to the local
vector group velocity of the waves.

We turn now to the problem of solving the transport
equation (28). Now from (34),

0 0 d d

ov Xy dx T Yy % v d7

(371

)
(QQXQT—l)§; + (2¢y¢T)§§ + (@i + ¢§ + yz)S?
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so (28) is actually an ordinary differential equation,
the differentiation in (37) being (¢§ + @; + v2) times
differentiation following points which move with the group

velocity. Furthermore, letting

_ (%, v, 1)
TR = 300 v) (38)

be the Jacobian of the transformation (36.b), we find after

a short calculation that
—3 2 .
(Tp), = 290 V2o + 2vp-vp_] , (39)
so that (28) becomes
2JRWv + (JR)VW =0 (40)

with solution

~n Hed ]/2
w = wW(A, . .
\ow) [T (vw) /3] (41)
Evaluating the Jacobian and using (3l.a), we obtain
_ 0 _ _ikp _2kv_
w = WR = K22 A(N\ W) [cos (k2+p,2)
k2 . 2Ky -1
+ 8 (k2+u2)2 sln (k2+|-.1:2)] 7 (42)
and the first term in the ray solution for the Rossby
mode 1is V(o) _ w(o) 1N¢R
R R
Since the treatment of the + and - gravity modes is
identical, we exhibit the calculations only for the former.
To solve the dispersion relation, let
P=0, . 1= 0, ® = -9, . (43)
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and we write the dispersion relation as
1
(P2 + a® + y2 - 0®) = 0. (44)

the characteristic system of differential equations is

XS = P YS = d, tS = W, ps = 0,
qq Y W 0, Pq )
where s is a parameter, and these are to be solved subject
to
X =€, y =1 t =0, p =k,
Y (46)
g =0, o = (k2+y2) 7, o = kx,
at s = 0, where £ and 7) are also parameters. The solution is
cp:cp =k€—']:"nzs—'];n2 Sin 25 (ll"? a>
+ 2 ! )
where
Y
x = £ + ks, y =7 cos s, t = (k2+n23)’<s, (47 .b)

and as before the rays, generated by assigning constant
values to £ and ) in (47.b), are everywhere tangent to the
group velocity.

Since
o

9 _ 9 9 o
ds  Px x T % 5y T Pt 3t (48)

the transport equation (29) is an ordinary differential

equation. Also, letting

3. t)
T = (ET ) (49)

be the Jacobian of the transformation (47.b), we find that
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= 2 -—
(3,) = 3,(p - 9.) (50)
so that (29) becomes
2aw_+ [(J) + ig k(k2+n2)—%jw = 0 (51)
+'s +'s +
with solution
-V
Y% -Yik(k24N2) “s
= w(e,mla, Em/a, J# oAk (k24N %) (52)
Evaluating the Jacobian and using (31.b), we obtain
_ (o) _ _1._ikn
w=w o= 2(k2+n2)A(€,7’))[cos s +
g
_n= Ve Veik (k2412)
+ %EaTE S sin s] ' (53)
and
1N
L0 _ (0
+ +
The solution for vfo) is obtained by changing (k2+702) % to
- (k32+n3) 7 in the above formulae.
The parametric solutions given above are complicated
and merit some discussion. Before undertaking this, we
give the solutions for u and f. For the Rossby mode,
let the column vector ( Upr Voo CR > be written in the
form
iNcpR
< Upr Voo Lo > =79 e ' (54)

where wR is another column vector. Substituting (54) into
(8), (9), and (10), and recalling the definition of T,

we find that
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— —
0 iy .
(o)
-1y 0 ) /] =0
A S (55)
Py ?y 0

where ¢ is P The matrix is rank 2 and one can solve for

)

the first and third components of wéo in terms of the second.

This yields

o
Px
C(o) _ i—l V(O) (56)
R Dy R
Similarly, for the gravity waves, we let
iNcp+
< ui[ V_|_.’ Ci‘ > = wi‘ e - ’ (57)
and obtain
o, 1Y 9,
-iy o o, |4/ =0 (58)
t y +
B Py Qy mt_
where ¢ is 9,. By virtue of the dispersion relation (21),
the matrix in (58) is singular and of rank 2, and uio) and
(o) :
Cy are found to be given by
- i
() PPt ~ ¥y (o) (59)

+ - °
+ @ywt + 1y¢x +
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y2 g2
o t o]
Ci ' - 0,9, + 1vo Vi ! (59
- y't X
We now turn our attention to the behavior of the
solution in the initial stage of the motion. Now for small
T, the transformation (36.b) becomes
k2_2
= i v
Yy = W (60)
T = (kZ+u®)v
with an error of order 12, and the Jacobian becomes k2+2,
with a similar error. Thus for small T
(o) _ _iky _yZ-k®
Ve = KEyye A(x + TEYBE N~t, V)
(61)
; _k 1 2
exp{iN[kx + (KZ+y2) Nt]) + 0(t2).
Similarly, (47.b) becomes
X = £ + ks,
y =1, (62)
1
t = (k2+n2)éé,
: . %
the Jacobian is (k2+N2)’%, and
1 i
+ 2 k=+y /_E§:§E
A (63)
exp{i[N(kx % ,/k2+y2 t) - L_k t]} + 0(t?3)
- 2 k2+y? ’

Equations (61) and (63) state that the energy of each

mode travels with the group velocity of that mode. Since
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the group velocity of the gravity modes is much greater
than that of the Rossby mode, the former disperse more
rapidly from local sources.

This much could have been anticipated, especially
in view of recent work on the concept of group velocity
(c.f. Landau and Lifshitz, 1959, section 66). What is
surprising is the formation of envelopes of the rays on
which the amplitude of the dependent variables is infinite,
at least according to the ray approximation. Consider, for

example, the solution

1
ik (k2+N3) A%

I

w(E, M) [3+<£,m/J+]1/2 e

W

¢ = ké -JN%s -AN? sin 2s,
where
x = £ + ks,
y =71 cos s,
t = (k2+n2)%%
for the + gravity mode. The Jacobian, given by

J+ = [ (k®?+N2) cos s + N2 s sin s]
S

vanishes for those values of 7) and s such that

k2 cos s
s sin s + cos s

772=_

and consequently for the curves described parametrically by

3 8 w2
cos® s s® sin s
t2=k

y2 = k2 -
Ccos s + s s1ln s S s1n s + COs S

On these curves, shown in Fig. 3, the ray solution for

(52 bis)

(47.a bis)

(47.b bds)

(64)

(65)

(66)
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vio) is infinite. Also, the curves are envelopes of the
rays, or caustics, and we must anticipate that at least
in their neighborhood the transformation is not one-one.
Actually, the situation is far worse.

Consider first the cusps of the caustics, y = 0,

t = k(j - ¥%) 7, where j is any positive integer. The pre-

images are found by solving

= 1y = (K24m2) 72
=1 cos s, k(] - BT = (k®+N?)"s (67)
One solution is N = 0, s = (j - %) m. The others are
-1y 2 o (m-l4) 2
s=m-yr  pe - xe QAo (68)

where m is any integer which is less than j. Consequently,
the first cusp has one pre-image, the second three pre-
images, the third five pre-images, and so forth.

For considering ordinary points on the caustics and
points off the caustics it is useful to plot surfaces of
constant y in the 7)-s plane. Using (47.b) and the derived

relation

3t _ dy.t) _ d(y.t) 8(y,SL )
3y - 3(v,s) ~ s/ ams) - S0 s (69)

we find that every ordinary point on the jth caustic

has 2] pre-images, while every point between the Jjth and
(J+1) th caustic has (2j+1) pre-images. The only region

for which the transformation is one-one is for those values
of t between zero and the first caustic. Elsewhere the

solutions are either multi-valued or infinite.
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A similar analysis can be made for the other gravity
mode and for the Rossby mode, and similar results are
obtained. Consequently, further discussion is necessary.
This is supplied in part in the next section and in Ap-

pendix A.

4, Asymptotic solutions near the caustics

The remarks in Appendix A indicate that in a region
in which solutions are multi-valued the correct solution
is obtained by adding the different values. Thus, for
example, at any point between the jth and (j+1)th caustic
for the gravity mode the ray solution has (2j+1) values
corresponding to 2j+1 pre-image points. The correct solu-
tion is obtained by summing over all the pre-image points.

In order to carry out this procedure one must assign
the correct branch to the square root of E/J. This is
known as finding a phase shift rule. Both the phase shift
rule and the correct asymptotic expansion near caustics
are obtained by making a. local boundary layer theory.

This theory is supplied here, in part, for the gravity
modes.

Consider the equation

VR

= g (k2 4+ —2Z—y7?=
t s (ke + - S) = F(s,V¥),

(72)
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which is obtained by eliminating 7) between the last two
equations of (47.b). Let overbars denote values on a

caustic, and let

b —

t =t + a, vy =y + b, s =8+ 0, n="n+p, (73)
where a, b, o, and p are small. We note from (69) that
Es = 0. Consequently, Fy is the slope of the caustic in

a (y,t) plane, and z = a - Eyb measures distance from the

caustic.
Now from (72) and (73),

a=Fb+WUF 02+2F ob+ F b3 + ... 74
Pt HE o, *+ F,.p%) (74)

and with the aid of Newton s diagram we find that (74)
considered as an equation for o, has two solutions which

tend to zero as a and b » 0. The lowgst order approximation

for these is

o=+ [;k fé

ss
and we similarly find that the corresponding values of p
are given by

p = (N tan s) o. (75.b)

Consider the first caustic. Since

F = (J cos s
Fss ( +)s/

is positive and z is positive for t S t and negative for
t ¢ t, we see that there are real solutions for ¢ and p
for values of y and t on only one side of the caustic.

In terms of rays, shown in Fig. 5, this means that through
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a point T near the caustic in region A there pass two rays
which touch the caustic and which coalesce if the point is
on the caustic. There is also a ‘non-singular’ ray through
I’ which does not touch the caustic in the neighborhood of
I' and which need not concern us.

Our starting point in the boundary layer analysis is
equation (18) which, when the dispersion relation is taken

into account, becomes

(S% + iNcpt) {(iN[2 (Vo v - cptwt) + (V3o - CPtt)W]+

+ (VB - w )] + N+ iNZp w = 0. (76)

tt
This equation was solved in section 3 by expanding w in
a perturbation series in powers of N?® under the assumption
that all derivatives are 0 (l). This assumption is not
valid near the caustic; instead we assume that the derivative
in the direction normal to the caustic is much larger than
the tangential derivatives.
The ensuing analysis is straightforward but very tedious,
and we give only the results. Let
Z =N (a-ﬁyb)=N z, (77
0=+ (2fF )" (78)
and

6 =29 (k2+772)l/2
-z — .

(79)

It is found after a standard boundary layer scaling and

much algebra that the boundary layer version of (76) is
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. Y w
W, + 16(Zz’wZ + 17 y =0, (80)
4z
and that near the caustic
Np = P+ 50 73/2 (81)

where P is a linear function of x, y, and t. The solutions
for w and ¢ corresponding to the positive value of Q are
associated with a ray which has already touched the caustic,
while the negative value of Q denotes a ray which has not
yet touched the caustic. Letting subscript 1 label the
former case and subscript 2 the latter, we find, upon

/2

solving (80), that

3
-1/3 isz sl 2/3
W, e (A pAil-(5)"7 2] +
sl 2/3
+ By 5 Bil-(3) z]l} . (82)
where A and B. are independent of Z and where the

1,2 1,2

standard notation for the Airy functions is used.
Now from (64) and (75), we find that near the caustic

(7,)

1,2 1s given by

(J+)l ~ -Z, (J+)2 ~n +2Z,

as z » 0, with the same proportionality constant. There-

fore w2 as given by the ray approximation is given by
—

W, =S 2
2

as z » 0, where S is independent of 2z, and we pick A, and

B, SO that W, as given by (82) matches this as Z » + .
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Also, we require that

iNcpl iN’(p2
w, + e w

v =
© 1 2
- 0 as Z » -», since there are no singular rays through

points on that side of the caustic with z ¢ 0. This de-

termines A, and B, and hence the solution, which is

1 1
.. 3/2
W, o= - C e_l/3léz (Bi(g) + 1 Ai(q)}, (83.a)
.. 3/2
w, = C e_l/3léz {Bi(q) + 1 Ai(q)}, (83.Db)

where g is the argument of the Airy functions in (82) and

where

C =28 v% (l%}ﬂ)l/6 eiw/M' (84)

This calculation serves two purposes. First, it shows

that near the caustic the amplitudes are large, of order

1/6.

N Secondly, since in the limit Z » o (83.a) becomes

Yy

7

-1 -1
= oI/ g A

it provides a phase shift rule, namely that the correct

-ir/2 ¥

1
branch of J/ when J+ < 0 is e A similar cal-

- |7 |
+ +
culation for the - gravity mode gives instead a phase shift
of + w/%, but otherwise the results are identical.

This analysis is incomplete in that it applies only

to ordinary points on the caustic. It is conjectured that
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near the cusps, which lie on the equator, the amplitude

is even larger. However, no treatment of this case has been
made. Also, the corresponding analysis for the Rossby

mode has not been developed, although at least for the or-
dinary points of the caustics the treatment is probably

not difficult.

5. Discussion.

The work presented here emphasizes how important it
is to take account of the earth’s curvature, since it is
the curvature which causes the waves to refract and to form
envelopes. If the gravity waves are considered to be
"meteorological noise," it must be said that at each
latitude there are periodically recurring bursts of noise
which have greater amplitude than the "signal," the Rossby
waves. It is no longer obvious, at least to the author, that
geostrophic adjustment through horizontal dispersion is
a feasible explanation for the dominance of Rossby waves
in the large scale motion of the atmosphere.

Another effect of the curvature is to produce the
phenomonon of equatorial trapping, in which the rays are
always confined in a latitude belt around the equator.
Bretherton (1964) and Longuet-Higgens (1965) have discussed

this effect at length for time periodic waves.
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An important assumption of the present work is that
N = 2OR/(gH)%,

the ratio of the radius of the earth to the radius of
deformation, is large. The commonly accepted scale height
of 8 km. for the atmosphere makes N = 3.3, which is not
particularly large. However, this scale height applied to
only one of an infinite number of vertical modes, and for
the other modes the scale height is smaller and N is larger.
The present work is therefore probably qualitatively inac-

curate for that mode corresponding to a scale height of 8

km., but accurate for the smaller scale modes,



APPENDIX A

Despite important work by Lax (1957) and Lewis (1964),
the ray method has not been used extensively for the solu-
tion of initial value problems. In this Appendix we dis-
cuss another motivation for the method and indicate how
to treat difficulties arising from the existence of caustics.

We begin by considering a function

o(x,t) = ‘ENPI/ZJF o (e) LN Ex-0(E) £+ E(E) )

~-~00

de , (A.1)

which may be thought of as the solution of an initial value
problem. When N is large,
6 = Z}vl'F(k)|"l/2 a(k) exp{i[N(kx-w(k)t + £(k)] +
- m/4% sgn F(k)} + o(N?) (A.2)
by the method of stationary phase, where
F(k) = tw" (k) - £" (k) (A.3)
and where the sum is over all values: of k such that
x -w(k)t + £'(k) = 0. (a4
Equation (A.4) defines a one-parameter family of
straight lines in the (x,t) plane, the slope of each line
being the group velocity w'’ (k). We define these straight

lines as rays and note that

26
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for any x and t the sum (A.2) is over those rays which
pass through (x,t). Alternately, we could introduce a new
parameter s such that

x = ks - £'(k), t=s

so that (A,5) defines a mapping from the (k,s) plane to the

(x,t) plane. Then for any point (x,t) the sum (A.2) is over

all the pre~image points.
On the locus of points (x,t) such that

d(x,t) _ -
dk,s) T =0

the method of stationary phase 1s invalid. This locus
is an envelope or caustic of the family of rays. Near

ordinary points of caustic (A.2) is replaced by the well-

known uniformly valid expression of Chester, Friedmann, and

Ursell (1957). Presumably it is possible also to find a
uniformly valid expression which is applicable to cusps of
caustics, but this has not yet been done.

These observations are useful for interpreting the

ray method of solution. The expression (A.2) implies that,

to find an asymptotic solution of the problem which has
(A.1l) as its exact solution, one should assume 6 to be of
the form

6(x,t) = A(x, £, 3 e @& H)
and then solve by expanding A in powers of N7!.

When the ray method is applied to problems which can

be solved exactly by Fourier analysis the solution should

(A.5)

(A.6)

(A.T)
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be and is identical to that obtained by approximating
the exact solution through an asymptotic integration.
Difficulties arise when the rays have envelopes, for
on such envelopes the ray solution is singular and a
local boundary layer theory is needed. Calculations by
Buchal and Keller (1960) and by the author for some sample
problems indicate that the boundary layer theory yields the
same solution as is given by the method of Chester, Friedmann,
and Ursell. A second difficulty associated with the envelopes
is that more than one ray can pass through a point, and
at this point the solution is multi-valued. This is resolved
by summing the different values in accord with the remarks
following (A.l4) and using the boundary layer theory to
provide the phase shift rule, A third difficulty is that
the initial data may not be of the form (A.7). Lewis (op. cit.)
indicates how this case may be treated and provides a sample
calculation.

A great advantage of the method is that it can be
used to solve equations with non-constant coefficients
provided that the scale over which the coefficients vary
significantly is much greater than the scale of the de-
pendent variables. Thus many apparently intractible problems
can be treated. An alternate procedure is to use the closely
related method of multiple scales (c.f. Carrier, 1966).

However, the ray method is more systematic and lends itself
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more readily to obtaining higher approximations.

APPENDIX B.

The calculations here have been carried out under the
R-plane approximation, and it is natural to inguire what
changes in the previous results occur when this approximation
is not made. The dispersion relations, at least, are
easily obtained, and are similar to those obtained under
the B-plane approximation. The method used is due to Lax
(op.cit.).

Let u and v be the non-dimensional velocity components,
and let

u = muU, vV = mv, (B.1)

and recall that

f = sin ¢ = tahh y, m = sec ¢ = cosh y. (5 bis.)
Then the non-dimensional equations of motion in Mercator

coordinates are

au ot _

S~ NEV £ S =0, (B.2)

oV ot _

at + NfU + ay 0, (B'3)
ot 29U oV, _ :
T el Sy = O (B.4)

As before, we assume that solutions may be split into

a Rossby mode with time variable T = N't and two gravity
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modes. For the Rossby mode, let
iNcpR
< UR" VR' QR > = "pRe i (B'5)

where as before the vectors are column vectors, and substitute

into (B.2) through (B.4). This yields

iAqg, + N Dy + N"2(¢R)T =0 (B.6)
where
0 if cpx
A = -if 0
i Qy
2 2
m=Q. mq)y 0 |
L —
(B.7)
| 2
[ ®r 0 ox
_ 9
D= I 0 ®r o)%
| 29 O
% " oy Pr

and ¢ is Pp - Expanding U in powers of N?, we obtain

(0)_ 4 (o) _

A Yy / ia ¢1§1)+ D ¢y 0, (B.8)

and higher order equations.
The matrix A is of rank 2 and has right and left null-
vectors such that

/A = Ar = 0, (B.9)
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where { is a row vector and r a column vector. These are

uniquely determined except for a multiplicative constant,

and a convenient choice is

b = (m2¢y, —mzmx, -if), r=<¢ Pyt Py if >.

From the first equation in (B.8) wéo) is a scalar multiple
of r,

(o)

¢éo) = 9R r;

and if we substitute this into the second equation in (B.8)

and multiply by £, we obtain

.enelio) r =0,

which after the necessary algebra is

{@T[mz(Qi + @5) + f2] - @x] Géo) = 0.

Hence the dispersion relation obeyed by Px is

cPx
- 2.2 2 2
T [m (¢X + ¢y) + f2]

The dispersion relation for the gravity modes is

obtained much more simply. Let
iNcp+

substitute into the equations of motion and expand ¢

in powers of N'. The lowest order equation is

(B.

(B.

(B

(B.

(B.

.10)

11)

12)

13)

14)

15)
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Py if Py
-if 9, o, | ¥ =0
| np mo, Py |
(o)

where ¢ is @ _, and for ¢ _~' not to be zero the matrix

must be singular. 1Its determinant is

o lof = £2 = nZ(ef + o) I,

and the case ¢, = 0 has already been incorporated in the

Rossby mode. Consequently, 9, obeys

v, = t[m2 (o2 + 92) + £21%
,(P+ - (px cpy

The ray paths for the different modes can be obtained
by quadrature, and are qualitatively similar to those

obtained through use the R-plane approximation.
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Figure 5. Ray paths near a caustic. (1) and (2) are rays which touch the
caustic (c), and NS is a non-singular ray.
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