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SUMMARY

Nonlinear interactions in a rotating, stratified fluid with a free
surface are considered., The field variables are expanded in terms of eigen-
functions of the linearized problem, with coefficients dependent on time.
Orthogonality relations are developed to obtain evolution equations for the
coefficients, and these are simplified through use of the method of averag-
ing, for weakly nonlinear motions.

The geostrophic mode, which alone possesses potential vorticity, is
found to obeythe quasi-geostrophic equations, even though wave modes are
present. The phases of the wave modes are affected by the presence of the
geostrophic mode, with frequency splitting for steady geostrophic flow, but
there is no energy transfer between the geostrophic mode and the wave modes.
Resonant interactions between waves are found to occur for a resonant triad
consisting of two external waves and one internal wave. When the wave
vectors of the external waves are colinear, the internal wave generated by
the interaction has a frequency very close to the inertial frequency, but
exceeding it slightly. The growth rate for inertial motions generated in
this manner is comparatively slow.



INTRCDUCTION

In recent years extensive interest has been shown in the effect of non-
linearity on wave motions, both for wave motions in the sea (Hasselmann,
1966) and in other branches of physics as well. The interest stems from the

fact that nonlinearity, though small, may have an important cumulative effect
over long periods of time. In particular, for oceanic motions, the nonlinear-
ity serves to modify the energy spectrum of external gravity waves and perhaps
of internal waves.

Past attention in this area has been largely confined to periodic waves,
elther with a continuous or discrete spectrum. In both cases, the point of
interest is that secondary waves, generated by the nonlinear interaction,
may stay in phase with a forcing wave, thereby allowing a continuous transfer
of energy. This phenomenon is called a resonant interaction, and when it
takes place the effect of nonlinearity is significant.

The purpose of the present study is to develop a formalism for treating
nonlinear interaction of nonperiodic waves, such as would occur in a bounded
basin. The particular case treated is that of the motion of a rotating,
stratified fluid with a free surface on the B-plane. In the linear case,
solutions can be obtained, in principle, by expanding in terms of normal
modes. Solutions of this type, for fluids confined entirely by a rigid sur-
face, have been obtained by Siegmann and Howard (Howard, 1968). The expan-
sion procedure can be modified to accommodate the nonlinear case by allowing
the coefficients in the expansion to be functions of time. It is then quite
easy to set up the interaction equations.

A particular point of interest concerns the geostrophic mode, which is
an equilibrium solution of the linear equations with B effect neglected.
Perhaps not surprisingly, the geostrophic mode, with nonlinearity and B
effect included, proves to obey the quasi-geostrophic equations, Also of
interest is the generation of internal waves due to nonlinear interaction of
external waves. It is found in the case of motions periodic in the horizon-
tal that motions with a frequency slightly exceeding the inertial frequency
are generated by the interaction of colinear external waves, However, the
growth rate of such inertial motions is comparatively slow.

We do not attempt in this study the development of a statistical theory,
and consequently the results are not directly applicable to situations of
goephysical interest. For this reason, no attempts have been made to compare
predictions of the theory with observations.



2. FORMULATION

Consider an inviscid stratified fluid of constant mean depth H on the
rotating earth. ILet x = (x,y,z) denote the position vector, with x measuring
distance to the east, y to the north, and z vertically upwards, and let v o=
(u,v,w) be the particle velocity. The upper boundary of the fluid is a free
surface at z = f(x,y,t), with 1 = O in the absence of motion. External
forcing and surface tension will be neglected. Let 5(2) be a basic density
distribution, and let the bouyancy b and the gauge pressure p be defined by

b

-e(p - o(2))/p,, (1)

? + el B2z, (2)
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where p and ¥ denote the dinsity and pressure, and o, = 9(0). The vertical
unit vector is denoted by m . In the P-plane and Boussineq approximations,
with Coriolis parameter f = f5 + By and Brunt-Vaisald frequency

1/2
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o

the equations of motion are

v . .‘-; = O, (h‘)
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Db 2

— + —

N 0, (6)
for -H < z < 1, with boundary conditions

W(X)y"H;t) = 0 (7)
and
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e (z-1n =0 p = gf_ o(z)dz, (8)
at z = 7.



It is convenient to scale the variables and deal with nondimensional
equations, but there is a difficulty in interpreting the results. For any
scaling there will arise nondimensional parameters

a¥ = ratio of time scale to an internal wave period,

B*¥ = ratio of residence time to a Rossby wave period,

y¥ = ratio of time scale to an external gravity wave period,

0% = ratio of vertical length scale to horizontal length scale,
€*¥ = ratio of time scale to residence time,

r* = ratio of time scale to an inertial period.

In general, it is incorrect to make approximations based on the magni-
tude of these parameters and to expect such approximations to be valid for
all conceivable scales of motion. The only exception involves €*, a measure
of nonlinearity, which we anticipate is small for all scales of motion. The
scaling to be used here is appropriate for external gravity waves with a hor-
izontal length scale equal to the depth of the fluid., In this scaling y* =
d* = 1 and all the other parameters are small, but approximations will be
based only on the condition &* << 1.

With this in mind, we let V be a characteristic velocity, N, the maximum
value of N, and introduce dimensionless variables through the scaling

X = Hx*, t = H/g)l/2 Vo= Vv,
1/2 1/2

nos e, b - wen? e, b = VN b

= * 3 = _*
N NN, o o, O¥. (9)
With this scaling, the nondimensional parameters are

1/2 2

ax = (H/g) B¥ = BH/V,
1/2 1/2

e v/<gH>/, o= (1) e (10)

and have the meanings discussed above. Omitting asterisks, the boundary con-
ditions at z = €n are

W l—”:/

> EN -
w = T + gV - v-rl’ Ep = jén p(z)dz, (ll)

where the nondimensional density distribution satisfies



dp 2 2 -
£ -, 5(0) = 1. (12)
dz
For € small, we can transfer the second of these to the level z = 0, obtain-
ing
op 1 2

nospre(R 2N 0o () (13)

at z = 0. Transferring the kinematic condition to z = O and eliminating n
yields

2
d - d o 2 R 2
—a—%-w = -a—:[vl-(pu)+w(—a-—lz3 +0o N p)+pazapt]+o(e)
2
= P+ 0(e), (14)
where
v, :v-?n%, 0 o= vo-omw (15)

The lower boundary condition is

w(x,y,-1,t) = O, (16)

and the other equations governing the flow become

-
Vev = 0, (17)
dv A
-> > > ->

:;% Fromox v+Vp-ab no= -s{ﬁ Byxv+(v.V)v]}) =c¢ U,
(18)

A

-%wL(YNgw = g v - Vb = €B. (19)

In addition, we assume either that the fluid is confined in a closed region
bounded by a vertical wall or that the motion is periodic in the horizontal.
Obviously, the latter case connot be precisely correct, since there must be
refraction of waves due to the sphericity of the earth. This will be ne-
glected here.

We now introduce the vectors

e = (—\;) b, p); ® = (:GJ B, P)~ (20)



Then the above equations define an initial value problem for O, with weak
nonlinearity as expressed by the presence of € ®. For the linear problem,
eigensolutions can be obtained by assuming the time dependence of the form

exp (-i o t), and the initial value problem can be solved by expanding © in
terms of the corresponding eigenfunctions. This expansion can also be employed
for the nonlinear problem, but the coefficients in the elgenfunction expansions
must be allowed to depend on t. Of course, ® must also be expanded in terms

of the eigenfunctions, and the resulting equations are quite complicated.

Nevertheless, there are many advantages to the use of this interaction repre-
sentation, as will be seen shortly.



5., AN EIGENFUNCTION EXPANSICN

The eigenvalue problem is described by

Vev = 0, (21)

iov+trmx v+ Vp = ab &, (22)
] 2

~iob+alN w = O, (23)

for -1 <z < 0, with
w = Oatz = -1, w = -iopatz=0. (2k)

In addition, the flow is either periodic in the horizontal or has vanishing
normal component of velocity at vertical walls. In what follows, the symbol
V will stand either for the volume of a periodic cell or for the total volume
of the fluid, the symbol S for the upper boundary, and the symbol R for the
vertical walls in the second of the cases mentioned above.

The geostrophic mode, for which o = 0, must be present in general. De-
noting this mode by subscript g, we have

_ oA _ o
r vg = mx Vy, a,bg = o (25)

where

= . 6
) P, (26)

The function ¥ is undetermined at this stage, other than being periodic in

the first of the cases mentioned above or being such as to make the normal

component of vg vanish at R, in the second of the cases. For arbitrary o,

elimination of p between the horizontal momentum equations and substitution
from the continuity and energy equations leads to the result

>

A
o m*Vxv+

= (o)) = o. (27)

Also, integration of the continuity equation over the horizontal area of V
and substitution from the energy equation yields

s { [[pvda} = o, (28)



and elementary operations provide the additional relations

g (b} = Oatz=-1, o[b+062N2p]:Oatz=O. (29)

Consequently, the bracketed quantities assume nonzero values only for the
geostrophic mode. In particular, identifying the term in (27) as the poten-
tial vorticity, we see that the geostrophic mode alone possesses potential
vorticity.

We next determine an orthogonality relation. Let o, and o, be eigen-
values, with eigenfunctions 0, and ©,, and let an asterisk denote the complex
conjugate. It is easily shown that

- -> 2 - ->
i(g*% - . ¥ + b*/N + V- * + p¥ = 0 0
ox -0 ) (v + vk+D DX/ (p, vE+pXv) , (30)
and integration over V and use of the boundary conditions leads to
¥ - = 1
(Gm On) (@m; 91’1) 0, (5 )
where
(0,6) = [[f (v - v*+1b bx/W)av + [[ p praa (22)
= . " +
m’ n - n " n m S Py Py @4

and may be considered to be an inner product.

We will call any mode with o % 0 a wave mode. Putting o, = O in
(31), so that O = Og, we find that the geostrophic mode is orthogonal to all
wave modes. Putting m = n and noting that (Qn, en) is positive definite, we
find that the o's are pure real. Finally, we have the orthogonality condi-
tion

(6,0) 0 min (33)

Actually, (31) implies orthogonality only if the eigenvalues are different
for different modes, and the possibility does exist that an eigenvalue o may
possess more than one eigenfunction. If this occurs, we use the Schmidt
orthogonalization process to insure the validity of (33).

From now on, the subscripts on o will be reserved for wave modes only.
Assuming the completeness of the eigenfunctions generated by the above eigen-
value problem, we expand © in the series



6 = o (%, t) + VA ()8 (%) e 1%n® (34)

in which we now allow Og to depend on time but still satisfy the geostrophic
relations given in (25).

To compute the initial values for ©_ and the A's, we note that if 0 =
O1, a known function, at t = O, the conditions

> > >
V. = v_+LA v
T g n n n
b. = b + LA b
I g n n n
= —I-Z —
P voE L An 1 at z =0 (35)

must be satisfied at t = 0. To find An(o), we compute the inner product
(6, ©1) for some m. Invoking the orthogonality condition, we readily obtain
the initial condition

An(O) = (@n; o

I n

)+ (0, 9,). (36)

To obtain an initial value for Og, we compute the potential vorticity for ©71.
Since the potential vorticity vanishes for each of the wave modes, this
ylelds the equation

5>
<
)
<4
+

o > r 9 2
T o 8z(bI/N) = m- VX Vg + o 'az (bg/N )- (57)

In similar manner, using the conditions implied by (28) and (29), we obtain

2 2
= = - + = + t :O
bg bI at z 1, bg alN ¥ bI a N pI at z ,
(38)
and
I b s = [] o, aa. (39)

Together with equation (25), these yield
G2, L X0 2 1Ay vx b+ I 2 (o P .
1Y 2 3z <N2 , = v Vv e 57 (oM, (40)



to be solved subject to

oy -

S, ab at z = -1

oV 2 2 ~ 2 _

———az+ozN i —oz(bI+ochI) at z = 0 (L1)

the lateral boundary conditions, and
—é—-HWdA:ocffb dA. (42)
dz I

It is of interest to show why the last equation is needed. In the peri-
odic case the condition (L42) is satisfied identically, but if the fluid is
confined between rigid walls (L42) is not identically satisfied and the solu-
tion for W%, 0) is apparently not unique. This is because the requirement
that the normal conponent of ¥_ vanishes at R implies only that ¥ = f(z) on
R, for arbitrary f(z). To determine f(z) (42) must be used. The simplest
method appears to be as follows. Let ¥ = ¥y + y,, where ¥y satisfies (LO)
and (41) and vanishes on R, while V¥, satisfies the homogeneous form of ( L40O)
and (41) and assumes the value f(z) on R. Both {7 and V5 are uniquely de-
termined, as 1s easily shown, and ¥; does not depend on f(z). 1In place of
(L42), we use

ffvlgll/dA'—‘-rffI/T\l‘Vx_\;IdA, (43)

which is derived by integrating (40) over the horizontal area of V and sub-
stituting from (42). Since ¥y may be regarded as a known function of X,

(43) implies that

2
v, v, da = ¥(z), (k)

where F(z) is a known function of z. We now let A5 and hj(z) be the eigen-
values and eigenfunctions satisfying

2
r 4 ,1 dh
-5 n (55 = a0, ()
al N
with
2 2
h'(-1) = h'(0) +a N (0) h(0) = o. (L6)



The eigenvalues are pure real and positive, and the eigenfunctions form a
complete set (Courant and Hilbert, 1953, Chapter V). Expanding f(z) and
Wg in the series

00

£ = .L £,y (z), v, = jzll £ 9, (%, ¥) hj(Z), (47)

with Qj =1 on R. Then, since

™~ 8

2
F(z) = £ (/] v 0, d4) n(z), (49)

I

J=1
we determine fj by expanding the known function F(z) in terms of the eigen-
functions h1 and equating coefficients.

To complete the proof of the validity of this method, we must show that
the area integrals in (L19) do not vanish. To prove this, we note that the
maximum principle for elliptic equations (Courant and Hilbert, 1962, Chapter
IV) implies that wj(x,y) > 0 everywhere. Hence

2
\Y LA A = A, ,dA > 0
/oo, Jlegan 2o,

and we can make this an inequality by using the fact that ¢. =1 on R and a
continuity argument. Consequently, the above procedure for determining f(z)
is valid.

We turn now to the solution of the initial value problem. Substituting
the expansion (34) into the equations defining the initial value problem, we
obtain

>
ov .
- =io t > >
SEe g - b (50
db _—
' © -ig
_g?é ¥ % An " bn = &5 (51)

for -1 <z < 0, and

10



. -io %
n - tz = 0.
A e 1 eP atz=0 (52)

oy
3t

S

Invoking the orthogonality condition, the coefficients An(t) are found to
obey the equations

o i t .
A o= e e 'n (e, ® % (8, 0). (53)

Also, carrying out a calculation similar to that involved in determining
. ->
WX, 0), we find that y(x,t) solves the partial differential equation

2
d 2 r ¢ ,1 3V > d 2
SOV 5 (5 S0 - er [ Vx Ur S (30,
o N
subject to
2
3
E?E(E%% + a2 N2 ¥) = ae(B+a N2 P) at z =0, (56)
62
ST, Jvaa = ae [/ Baa, (57)

and the lateral boundary conditions. If 6, B, and P were known functions,
the initial value problem is solved by integration of the above equations.
However, ©® is actually a function of © and therefore must also be expanded
in terms of ®g'and ©n. The procedure use here thus replaces the original
set of partial equations with an infinite set of ordinary differential equa-
tions, for A,, and a partial differential equation for V.

Substitution of the expansion (3k4) into the definition of © yields

@ =g [6]+ X ot [0,0,14 ;4
eg g T ew tg’ it i
v glid) -i(og + 03)t
J, G (80 851 Ay Ay e , (58)
S

where the subscript gg denotes the interaction of thé geostrophic mode with

11



itself, gw the interaction of the geostrophic mode with the wave modes, and
ww the interaction of the wave modes with themselves. If we let X denote
(Og, Ay, Ap, ...), then X satisfies an equation of the form

LX= gFXt), (59)

where F is an almost periodic function of t and L is a linear operator with a
bounded inverse. The component of F corresponding to the evolution of the
geostrophic mode has Fourier exponents 0, -0i, (-0i -0j), and the component
of F corresponding to evolution of the wave mode n has Fourier exponents o,

(on - 01), and (o, - 05 - aj).

Now, it is obvious that an ordinary perturbation expansion in powers of
e will fail due to the presence of secular terms, which may also be called
resonant interactions. For the geostrophic mode, the resonant interaction
is due to a gg interaction and a ww interaction involving all modes i1 and j
such that oy + 05 = 0. For the wave mode n, the resonant interactions are a
gw interaction involving the modes i1 such that o4 = on and ww interactions
involving modes i and j such that o + o3 = on. The resonant interactions
will cause the O(e) term in an ordinary perturbation serier to grow like a
power of t. To avoid this possibility, we use the method of averaging, which
has been justified both for ordinary differential equations (Bogoliubov and
Mitropolsky, 1961) and for partial differential equations of elliptic or
parabolic type (Khasminskii, 1963). 1In this method, the 0(€0) term in a
perturbation expansion must satisfy

LX = eFX), (60)
where
- T
F(X) = Lim = [ F(X,t)dt, (61)
T-»00 T o

with integration over t where it appears explicitly. Thus in the averaged
equation for the evolution of X only the terms giving rise to resonant inter-
actions appear on the right side.

Turning first to the evolution of the geostrophic mode, we see that
equation (57) has the form

2
P > >
mff\lrd}\ = -oca{ffvg-ngdA+ %[ffvi.ng

-io;t

>
+V Vb, ]A, e
g i.-71

12



~i(oi + 0j)t

3 (62)

V.- Vbsi)] A, A
+ v, ° s . . €
J t 173

Since ; is solenoidal, it can be moved inside the gradient operator and the
horizontal divergence integrates to zero, by virtue of the lateral boundary
conditions. The vertical velocity Wg = 0, and consequently there is no gg
interaction in this equation. There is a gw interaction, but it does not
contribute to a secularity. The integral occuring in the ww terms takes the
form

> N d
[[v (vi bJ_ + vj bi)dA = g;ff (wi bj + wj bi)dA, (63)

and substitution from (23) yields

o i J =2

— . + 'b d — — + — .

5 ) (g byt b )aA = o(op +o) oW [fb bodA (1)
This vanishes when (Oi + oj) = 0, and consequently in this equation there is

no resonant interaction. Therefore, the averaged equation is simply (62)
with zero on the right side.

The calculation for the other equations governing the evolution of the
geostrophic mode is more complicated, but the ultimate result is quite
simple. The ww terms either vanish identically or have (oi + cj) as a factor
as in equation (64). Consequently, the averaged equations involve only gg
interactions. Defining

D d

Et-‘g '&— + € Vg . Vl, (65)

it follows from use of the method of averaging that the evolution of the
geostrophic mode is governed by

2

D 2 r 8,1 29% _
g (M Vrrey S (S50 = o (66)
o7 N
to be solved subject to

32

Staz Jvar =0 (67)
D d _ - -
D_tg—‘zl-o at z = -1 (68)
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Dy (Ov, 24P - -
g (5 TN W =0 stz=0, (69)

and the lateral boundary conditions. These are simply the quasi-geostrophic
equations. Hence the quasi-geostrophic equations can be derived, even when
wave modes are present, simply by requiring that a perturbation expansion
remain uniformly valid in time.

In discussing evolution of the wave modes, we must consider the inner
product (@n, ©®) occurring on the right side of (53). Substitution of (3L)
into the definition of this inner produce leads to complicated expansions
which may be simplified by considering only those terms which have nonzero
average in the sense of equation (61). For equation (53), the gg terms have
zero average, the gw terms have a nonzero average involving wave modes i
such that o, = o4, and the ww terms have a nonzero average involving modes
1 and j such that o4 + o3 = Op. The resulting averaged equation is

i = % + % +(
A e { ; L,h tio 155 Hij_n A Aj) (@n, en), (70)

where Ijn and Hjj-pn are functionals of ©
wave modes.

g and of the eigenfunctions for the

It may appear paradoxical that a gw resonant interaction takes place,
since the geostrophic mode evolves by itself. However, this interaction
leads only to phase modulation of the wave modes. The interaction coeffi-
cient for the gw interaction is

> A ->

L, © féf{3; x 31) -(a% xmBy) + A~ (ZE ' ;;) +

(Ci bg +Trg bi) Y (b;;/Ng)}dV - I pX ([2V. -

S. 1
> > ow, 3
+ + Y(=— - i
for o; = oy, ana I, = O otherwise. Here
> -
w = Vxv (72)

is the vorticity and E is the horizontal velocity defined earlier. It can be
shown that I;, is skew-Hermitian,

Iin B _Ini’ (73)

1k



and this implies that if there are no ww resonant interactions and if the
geostrophic mode is independent of time, the gw interaction serves only to
modify the frequencies of the wave modes. 1In the general case, we tempo-
rarily normalize the eigenfunctions so that (o _, @n) =1 and the energy of
any wave mode n is proportional to |An|2. The rate of change of this energy
due to the gw interaction is

d 2
— = % 4 TH * L
dt (IAnl )gw % (Iin Ai An Iin Ai An)’ (7%)

and the sum of (74) over all modes having a common frequency o, venishes, by
virtue of (73). Consequently, there is no net energy transfer between the
geostrophic mode and the wave modes.

The ww interaction coefficient is more easily written in terms of a
symmetric expression Hjjn. By a change of n to -n we mean changing on to
on and o, to -o,. Also, let P(i,j,n) denote cyclic permutation over (i,j,n).

Then Hj jn vanishes for of + o5 + oy # 0, and otherwise is given by

1 1 2 2
= =P (i,] = + + dA
ow
1 n - > 1 >
i ffff— — u, cu,+—w,u *V. W,
1
R % dz i j o, im 3

1 >
+ = .V av.

o Wt VW) av (75)

15



L. INTERACTIONS FOR PERIODIC WAVES

To solve the eigenvalue problem, we use the method of separation of
variables. Let

( A
u === (i 0VF+rmxVF), W
k2 1 1

-io009F,

o 2

b = -aN oF, P [(o° .- r2)/k2]@'F, (76)

i

where F = F(x,y), © = ®(z), and k is a separation constant.. Then F solves
2 2
(v, +x)F = o, (77)

with F either periodic or with G having vanishing normal component at R, and
¢ solves

o' (2) + (- K)F = O, (78)

9 (-1) =  (0) - of o' (0) = o, (79)
where

v = Koot - D), h(z) = NA(z) - (r/a)’. (80)

Substitution of «(76) into (75) gives the interaction coefficient, and solu-
tion of the eigenvalue problem determines whether resonant ww interactions
can take place. Some interesting effects are produced by the presence of
walls, particularly the interaction of Kelvin waves (Saylor, 1970), but we
will l%mit ourselves to the study of periodic waves. Let F = exp(i z x\
where k is a horizontal wave vector. Then (77) is solved, with k = ;kj,
and we are left with the problem of finding the vertical eigenfunctions and
evaluating the interaction coefficients.

It is seeﬁ that any subscr}pt i for a wave mode must denote four
numbers, the two components of k, the number of zeros of  in [-1,0], and
the sign of o. Denote dependence on k by a subscript, and let a superscript
s be a positi&ejor negative integer, with ]sl being thé number of zeros of
¢®. The sign convention is that sgn o = sgn s, with o invariant under the

16



Qhangc k> -k. In addition, ¢ is invariant under a change of «ign of eoithor
k or s, and hence

- (A)* (81)
X %

-
is a reality condition. Letting subscript i denote ki, si, and A the area
of a periodic cell, we have

sis_—sn
H, = 8T T (82)
- >
i K K -k
iy n
where
Sis'sn -> > >
R k. +k vk £0, o o +to #0,
k.k k J 1
iJn
1., . 1,2
‘EP(l;J;n) {3(01 to,+0, 0.)0,(0) ¢(0) -
0 ¢,0,0' N
=22 (5.0 k +k +0,0 k_*k)+
2 i n i n J n J n
-1 k
k.- k 2
o 9. 0! (0, o, ——3 +Z - ETARE
i73 mi kE k2 3 k2 k2 k2 i J
i3 i J n
| SRR B | ]
¢ 0.0.0
A > > i"j 'n i"3'n
frfe (K - K)o, - o) ( - =218z ),
1 J 1 J K k2 K
J n
(83)
otherwise.

Returning to the eigenvalue problem for ¢, we assume that the unscaled
Brunt-Vaisald frequency exceeds f for all z. Then h(z) is positive, and

A = Dlol/H[e], (8u)

where D and H are the positive forms

17



0

2 2 2
[ w? ey as,

D[]
2 2 0 2
il = o (0)/o" + [ h o az (85)

It is convenient to regard A as the eigenvalue with o to be determined by

the first of the relations (80). It is then seen that the eigenvalue problem
is characterized by a variational principle, with D/H the Rayleigh quotient.
The largest value of lc[, corresponding to the least value of A, 1s the fre-
quency of the external mode, and the other frequencies are for the internal
modes.

The following results can be obtained without the aid of an explicit
solution.

o] > r, with equality for k = O. (86)

(ii) The phase velocity ¢ = |o|/k and the group velocity U = d |o|/dk
satisfy

de

2
F T /ckB, U<ec, 0< U, for k # O. (87)

Since D/H is an extremum when ¢ is an eigenfunction, the derivative of D/H
with respect to any parameter involves only the explicit appearance of the
parameter. Therefore, A\ is an increasing function of k, which implies the
first inequality, the first implies the second, and k/k2 is a decreasing
function of k which implies the third.

(iii) For the external mode

1

sinh“[k(1 + )] dz]}E (88)

sinh k

2 0
o] > (r +ktanhk[l+a2fh
-1

This is obtained by taking © = sinh [k(1 + z)] as a trial function.

(iv) For the internal modes,
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P oo

y k- +r T A X
=% )" < a. (8¢)
kK + 1

lo] < (*

If h is replaced by its maximum value, (1 - r2/a2), the eigenvalues are
decreased. The altered eigenvalues can be found by integrating (78) and
using a graphical solution to solve a transcendental equation. The values of
the altered eigenvalues imply the first inequality of (89), which implies

the second.

(v) For the external mode, there exists a k, such that

au-
% < O for k > k.. (90)

Equation (88) implies X/k2 << 1 when (k tanh k) >> ag. Then ¢ = sinh [k(1+z)]
is the first term in an asymptotic expansion, and this implies (90). For
small o, k, << 1.

For a resonant three-wave external mode interaction to take place, the
equations

: ->
oF = o3 toj ,k - K xk, (91)

must be satisfied simultaneously. Using equations (87) and (90), we can rule
out this possibility if the wave numbers are sufficiently large. There is

no possibility of an interaction involving two internal modes and one exter-
nal mode, 1f the wave number of the external mode is sufficiently large, as
can be seen by use of (88) and (89). Interactions between three internal
modes are possible, but have not been investigated here. Finally, as regards
interactions between one internal mode and two external modes, it can be seen
that the interaction

’s, 1 1 - > >
ckn = 0 Ei t g Ej , ko= ki i'kj, ls] > 1, (92)

is impossible for the sum interaction, if k; and ks are sufficiently large,
but is possible for the difference interaction if k; > kj, and if (ki - kj)
is sufficiently small.
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This last possibility has been investigated for no rotation, r = 0, both
for a two-layer-model (Ball, 1964) and more generally (Thorpe, 1966). It is
of interest to study the effect of rotation for this interaction. We note
first that (ki -'kj) must be very small, since in general o << 1 and the
internal modes have frequencies which do not exceed a. If k; and kj are co-
linear, then k, is also very small, and the frequencies of the internal modes
so generated 1s very close to the inertial frequency, r, but exceeding it
glightly. If the angle between the wave vectors of the two external modes
is increased, then k, increases and for fixed s the frequency of any internal
mode which can be created by this mechanism also increases.

The follcw1ng case serves as an example. Consider two external modes
with wave vectors ko and kl, ko > kq, and let Al‘> = 0, so that these vectors
are the directions of wave propagatlon Also, normalize the vertical eigen-
functions by taking

Dlo] = (k/0)°. (93)

1 1
With this normalization, (6, © ) = 21, and p 7} (0) =1, so that the A 's
are effectively the scaled amplitudes of surface gravity waves. Letting

Sl |71 ]
Ai = »E; Gi = UE ’ ISOI = lsl, = 1, (9&)
1 i
and
5
1|72] -1
T o= T, . (95)
12 Yo
the interaction equations are found to reduce to
A = 1
o ie Go T Al AQ’
I = i * *
Al ieg Ol T AO A2,
A = i T A *
5 leo, o A% (96)
where
K +k K
= + = N
1 2 o’ 7% % (97)
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quation (9() was solved as follows. Tirst, adopting the tractible but
unrealistic model of constant I, the eigenvalue problem (78) was solved using
a perturbation approach, for small r and o. Next, values of r, «, Ko’ Is2l,
and X, the angle between Ko and Kl, were chosen. Then (97), regarded an an
equation for determining ki, was solved numerically. The procedure was
repeated for different values of X and of the other parameters. As antici-
pated, the calculation showed a continuous increase of oo with X. Compari-
son with a seperate calculation for r = O showed that the effect of the
earth's rotation is felt only for fairly small values of X, that is, when the
wave vectors Eo,and §1 are colinear or almost so. When x = 0°, 0o =r, as
anticipated; when [x| > 15°, very little effect of r is seen.

Returning to (96), it can be seen that if A and A, are infinitesimal,
then Al is slowly varying, and the equations for A, and A, are effectively
linear with constant coefficients. The solutions prove to be neutrally
stable. However, if A and A, are initially infinitesimal, they grow expo-
nentially with a growth rate

1
2
R = (0y/0))" Q, (98)
where
Q = eo, IAO T|.

This is in accord with a general result (Hasselman, 1967a) and indicates that
a short external wave tends to lose energy to a longer external wave and an
internal wave. From the numerical calculations, Q, a measure of the initial
growth rate for the internal mode, proves to increase monotonically with ¥,
for small ¥, and hence is favorable to the growth of short internal waves
with frequencies large compared to the inertial frequency. The exponential
growth rate, on the other hand, has a sharp local maximum at x = O. For a
variety of conditions typical for the oceanic case, the e-folding time for
the growth of internal waves with inertial frequency is of the order of a

few days.
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5. CONCTUDING REMARKS

For application to realistic situations, the work reported above must be
modified in a number of ways. The effect of variable depth must be treated
and, under certain circumstances, it is necessary to provide a realistic
treatment of refraction due to the sphericity of the earth., When such
effects are included, the low frequency oscillations are strongly affected,
and the treatment of the geostrophic mode 1s somewhat different. Also, it
would be desirable to include higher order nonlinear effects. These modifi-
cations could be made in the context of the formalism used here, but it would
be extremely difficult to solve the linear eigenvalue problem.

Much more serious is the problem of constructing a statistical theory.
For motions in an unbounded fluid, with constant mean depth, this can be
accomplished formally either by introducing a Gaussian approximation for the
Fourier coefficients and passing to the limit of a continuocus spectrum
(Hasselmann, 1966) or by a formal multiple time approach in which a continu-
ous spectrum is assumed from the start (Davidson, 1967). An important point
is that the statistical theories which have appeared to date are based on
the assumption that the field variables are homogeneous random functions of
the horizontal spatial coordinates. This assumption is built into the mul-
tiple time approach, and appears in Hasselmann's work also, particularly in
his proof of the approximately Gaussian character of the wave amplitudes in
the linear case (Hasselmann, 1967b). If the field variables are not homo-
geneous random functions, the multiple time approach must be modified con-
gsiderably or some other method must be found to effect a closure of the
moment equations.

The difficulty is that for motions in bounded basins, and in parti-
cular for the longer waves, the assumption of statistical homogeneity is un-
tenable. Though statistical homogeneity is not needed to prove the Gaussian
character of linear wave fields, or rather of the wave amplitudes, one does
need a mixing condition which expresses the asymptotic independence of field
variables at two different points for large separatidn between these points
(Volkonskii and Rozanov, 1959). It is hard to see how-such a condition could
be satisfied for long waves in a bounded basin, when the wavelength is com-
parable to the dimension of the basin. A similar problem arises for system-
atic changes in depth. For such cases, creation of a statistical theory is
an important and difficult problem, as yet unsolved.
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