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ABSTRACT

A study is made of the growth and development of the weak or undular bore.
Small amplitude theory is used and the solution is made valid over the time
range of interest through a variant of the method of multiple scales. The so-
lution implies the validity of Rayleigh's result for the speed of the bore.

Computed wave heights are in qualitative agreement with observations.






1. INTRODUCTION

The purpose of the present work is to study the growth and development
of the weak or undular bore. This phenomenon occurs ag the wave of transition
between uniform streams of slightly different depth., By contrast to the strong
bore, for which the transition region 1s narrow and vigorously turbulent, the
undular bore consists of a smooth rise of water level to a crest followed by a
gseries of undulations of gradually diminishing amplitude. Waves of depression
are seldom seen, but waves of elevation as described above are a common fea-
ture on rivers subject to tidal forcing.,

We will be concerned here with bores propagating into water at rest. Ob-
servations (Favre, 1935; see also Keulegan and Patterson, 1940, Sturtevant,
1965) show that in this situation the properties of the first few waves behind
the crest vary slowly in time, if at all, and these waves are similar to
conoidal waves. No breaking occurs if the ratio of the constant depths behind
and ahead of the transition region is less than 1.28, 1In addition, it is found
that the classical discontinuity relations (Rayleigh, 191L; Lamb, 1932, art.
187) are obeyed provided that data pertaining to the uniform streams is used
in the calculation.

It might be thought useful to base a theoretical treatment on the assump-
tion of steady flow in a suitably moving reference frame, but the observations
argue against this. For, for a steady state to exist, energy transported into
the transition region must be dissipated, and in the absence of breaking the

dissipation must take place in boundary layers at the channel bottom and sides



and perhaps at the surface; and a short calculation, based on Rayleigh's re-
sult for the rate of energy flux and on the assumption of no appreciable con-
vection of vorticity away from the boundaries indicates that, except for very
large times, there is a net accumulation of energy in the transition region.
It follows that a time-dependent theory is needed.

Meyer, in a recent paper (Meyer, 1967), makes roughly the same criticism
of steady-state theories. He neglects viscous effects entirely and shows
that for small amplitude waves the motion is characterized by the magnitude of
a dimensionless parameter T = (esg/H)l/2At, where H is the mean depth, €H a
measure of the wave amplitude, g the gravitational constant, and At the time
scale of the motion. He finds that for 7 << 1 linear theory is valid, for
T = 1 the waves are approximately concidal, and for T >> 1 the waves are simi-
lar to solitary waves. His analysis is valid only near the head wave, and con-
sequently a complete solution valid over the entire flow domain is not ob-
tained,

The aim of the present investigation is to supply such a solution for a
properly posed initial value problem., A variant of the method of multiple
scales 1s employed, and as a result the solution is not valid for all time;
it is believed, however, that it is useful over the time range in which conoidal
waves develop. The main deductions of Meyer's work are confirmed and reason-
able agreement with observations is obtained. However, one important goal is
not achieved, namely an estimate for the value of ¢ at which breaking occurs,

This is an object for future study.



2, FORMULATION

Let (x*,z*) be rectangular coordinates with the x¥-axis horizontal and
with the z¥-axis fertically upwards. Let z¥ = C*(x*,t*), where t* denotes
time, be the equation of the free surface, z*¥ = -H the equation of the rigid
bottom, and g the gravitational constant. We assume two-dimensional irrota-
tional flow with the velocity v = (u*,w*) given by the gradient of a po-

tential ©*, and scale the variables according to

er = m o, v o= (e o, or = (g8®)Y%

(1)
(x*,z*%) = H(x,z) , and t* = (H/g)l/gt .
Now set £ = en, © = ey, with € << 1. Then v o= (u,w) = €V is the di-
mensionless velocity, h = 1 + en is the dimensionless depth, and, with sur-
face tension and viscous effects neglected, ¥ and 7 are determined by
VY o= 0 for -l<z<en , (2.a)
v, = 0 at z = -1 |, (2.b)
-V, - SV o= 0,
at z = en , (2.c)
1
L B VeV = 0 ,

and initial conditions.

The initial conditions are such that



1 1
n(x,0) » -3 senx \lfx(x,z,o) >3 B(1 - sgnx) ,

as lx| > o, where B is a constant of order unity. It is convenient to intro-

duce new variables X and ¥ through

1 1 1
¥ o= y-Spxrgeft , X = x-Zept (3)

in order that Fourier transforms of the dependent variables have only alge-
braic singularities. The equations (2) are invariant under the transformation

X,0) » -= sgnX ¥ (X,z,0) » -= BsgnX (
n(X, 5 8 5 (%52, - Bs L)

as IXI + o, Thus, if k 1s the Fourier transform variable, the transforms of 7
and ¥ are singular at the origin like k™' and k_z, respectively, but are other-

wise expected to be ordinary rather than generalized functions.



3. ANALYSIS

Transferring the upper boundary conditions to z = O yields
v o= + \4 + 2
o= ony telnr), v o)
at z = 0 , (5)
1 2
— faead —_— . +
¥, n o+ e(nwtz +3 W) + 0(e”)

and we write

n(x,t) = 1 5 IZ ai ei(kX+Sam) k" tdk (6.2)
and
¥(X,z,t) = - I s [ ai Coii[ig:h+kl)] GL(IXrsat) oy (6.1)
where s is a sign parameter, equal to +1 and -1 in the summation, a; = as(k,t),
o = «ofk) = o(k,1), and
o(k,h) = k(tanh kn/x)2/2 | (7)

with positive square root. Laplace's equation and the boundary condition at
z = 1 are satisfied by (6), and (5) and the initial conditions determine a;.

Substitution of (6) into (5) gives the equations obeyed by a;,

5 _ 1 - fm fm (5 pS1828 S1 _se elt(Slw1+S2dé-Sw)

Ky + ks - Kk
K 2 51 s tw e Kikok Tky o ko B(ky + ke - Kk))

x dkqdks + 0( %) (8)



where an overdot indicates differentiation with respect to time, s; and sy are

additional sign parameters, ® = a(kv), and the interaction coefficients are
PP o o DR 4 B+ sase(me - 2] - (51 P45 ) (9)
klkgk k W1 kq kz
S S
The linear solution, obtained by setting ¢ = 0 in (8), is a, = a (k,0).

As might be expected, a perturbation series solution leads to secular terms,
g
For initial disturbances of finite extent a (0,0) = 0 and the secularity oc-

curs at a high order in the expansion. Here, however,
s
2 (0,0) = (1 - sp)/bn , (10)

which follows from (L4) and the rule

iNg(k) .,
. . 0

le.é——gf—— = ix sgn[g'(O)]elNg( )a(k) s (11)

N0
and the integrands in (8) are singular at k; = 0. Application of (11) yields

- it + - 1t( so-
T e’ (2015205~ 50) + ix sgnlsy - sgw']el (s2 S)a%(kl)

as t » o with k fixed, and the terms with s = s give rise to secularities

in the first iteration on the linear solution. In wave interaction langusge
this 1s a resonance, and the linear solution 1s valid only in the time range
et << 1,

In order to extend the time interval in which the lowest order approxima-
tion is useful we retain in the equations of this spproximation the small terms
which give rise to secularities. The other small terms will be neglected.

We note that the expression



s188 81 S $188 S1 S
1 1 251 g

ok %, %k~ Tokk o )

is o(ky) at ky = O and therefore innocuous. The terms with s X s also do
not give rise to secularities. Retalning only the secular terms on the right
side of (8), and noting that these terms may be taken out of the integrals, we
obtain as the equations for the lowest order approximation

1. s_s -8 .S, 8
. = 73 1€nk(caOI t Ta J )ak , (12)

where, with an obvious notation,

s e -1 -1 _-ist(w-wn-ap)
I7(k,t) = is = klik2=k ki~ e , (13.a)
I(k,8) = - is 7t [ gyt o st(wron-ag) (13.b)
’ kqtko=k * ’ ’
and
o(k) = 2 + ksech®k/w , (k) = 2 - ksech®k/w . (14)

Further simplification is possible, for, for the purpose at hand, IS

and J'S may be replaced by their limits as t + «, as is done when the method of
multiple scales is used (c.f. Benney and Saffman, 1966). In a naive applica-
tion of the method of multiple scales we would replace IS and JS by 1, the
limit as t » « with k fixed, But, though JS + 1 as t > », uniformly in k, the
limit process for T° is not uniform; Is(k,w) = 1lfork X O, IS(O,t) = 0,
It can be shown, however, that as t » e 1° +‘fs(k,t), uniformly in k, where
fs(k,t) is a tabulated function. We note alsc that a; and a; are independent

of t, since the right side of (12) vanishes when k = 0, so ai may be replaced



by (1 - sB)/lbn, from (10). Thus the equations (12) are linear and the solu-

tion is

as(k,t) = as(k,o) exp {- % iek[T(1 + sp)t + o1l - sB) ft‘fs aiy .
o

(15)

Substitution back into (6) then gives the solution for n and Y.

~S A~
I and I = I, since

To obtain‘is we need consider only I

+ -
I = (I )*, the complex conjugate. Set k;

1
k(N + E) in the integral de-

fining I. After a little algebra we get

I = - i(sgnk)n"?t fw (3 - %)'l eitp(k,k) an (16)
e}
where
o(0) = afk) - o[K(S +2)] - o[k(S - M) . (17)

~ o~
I is the right side of (16)with o replaced by 0, the sum of the first four

terms of an expansion of p in powers of k. We have

1 1
o= SE0E -

) (18)

~F
and we want to show that E = I - I > 0 as t » o, uniformly in k.,
o/
Evidently both I and I approach 1 as t + « in limit A, with k fixed, so
E > 0 in this limit. To treat limit B, t » w, k » 0, with k3t bounded, we

write



where n is greater than 1/2. We note that for any finite A the integrands are

o(1) in limit B, and that

0-% = 26l (eeF - DoE D) (20)

0 < © <1, which follows from the remainder formula for Taylor series.

Now the second integral is o(1) in limit B, by dominated convergence. As

1
regards the first integral, we note that since both p and Blvanish at » = 5
n n e:.Ltp eiﬁa n
"< T ——-———.dxstf = plldx ,
o] (0] }\2_.]_' o] >\2__.....
L L

i© i
upon use of the inequality |e' * - e 2| <

lo1 - 95|, and substitution from
(20) shows that the integral is O( |k|°t) which is 0(t72/3) in 1limit B. Thus
E~+ 0ast >, uniformly in k.

It is easily shown that

T =T - erf[elﬁ/u £2/2(x/2)3/2 (21)
with a branch cut in the k plane fromk = O tok = « in the lower half
plane. Also,

2 t - '\ an 8 1. K, %=
Mit) = A(5t) = [T (e = o3 (1) T (k,t)
o
e—in/u
+ £1/2(x/2)%/2 exp(-1k°t/8)} (22)

v

g0 the ai are expressible in terms of tabulated functions. For future refer-
ence we note that A(-k,t) = A*(k,t), A(0,t) = 0, and A > t in limit A,

t + « with k fixed,

Now let b (k) = a°(k,0) and let



GS = kx + st - ek[% Bt +-% 7(1 + sB)t + % o(l - sB) A(-sk,t)] .

(23)

Then, from (%), (6), and the preceding analysis,

o s i@s
n o= iz b(k)e Tkl , (2k.a)
and, apart from a function of t,
i@
1 © s s cosh[k(z + 1)]
= =Bx -2 b (k 2k,

v > Px s ° fw (k) e wk cosh k & (2h.D)

and this is the final form for the solution.

10



4, DEDUCTIONS FROM THE THEORY

It is instructive to consider the linear theory, obtained by setting
e = 0, and this will be done first. For large lxl and t asymptotic approxi-
mations are readily obtalned. Contributions come from the singularities at
k = 0 and from the stationary points of OS, with € = 0. Except for the
case ’xl = t, which will be discussed subsequently, the stationary points
are well separated from k = O and from each other, contributions from the

singularities are dominant, and we obtain

1
-2, U~o0 , for x>t (25.a)
1 1
ivle . welaien L e ki<t s ()
1
3 U~ eB for x< -t . (25.c)

For |x| = +t we use the method of Chester et al. (1957) with an adaptation to
take account of the singularities at k = O, For x positive the result for 7

is

1~ - g1 -8) ¢ A () ¢ () 1% a7 (26)
where
mo= [2(1-x/0)1ME , = (t-x)(2/)Y° (27)

and some approximations have been made based on m being small. A further ap-

proximation,

11



b (mm) = b(0) = (1+8)/brx ,
yilelds
1 1 a 2
N~ B gL BT A )an - 2T (28)
0
Obviously ¥ and u = wx can be found in the same way, and corresponding results

can be found for x = -t.

For o large and negative n reduces to -1/2, in agreement with (25.a); for
o positive the integral in (28) is oscillatory. It attains a maximum at
a = 2.3 with value 0.94, a minimum at ¢ = 4.1 with value 0.48, and con-
tinues to oscillate with increasing @, the maxima and minima converging to 2/5
ags o+ «, The absolute maximum 1s at the first crest, and the local wavelength
is proportional to tl/s.

Evidently the linear solution is in qualitative agreement with observa-
tions. Quantitatively the agreement is not so good. Rayleigh's formula for

the speed of the head wave would give, upon substitution from (25),

cg = (L +3eBI[1+Tep-DIL -5 T2 = 1+ e(1+36)/8+0(e)
(29.a)
for the speed of the wave progressing to the right, and
¢ = (1Bl +Te(p D)L+ )P p = 1 (1 +5p)/8
L 2 i 2
+ 0( €%) (29.D)

for the speed of the wave progressing to the left, and this result is known to

be in agreement with observations; the linear theory, by contrast, gives

12



1 ((gH)l/2 in dimensional units) for the speeds Cp and ¢_. Also, though it

L

has not been measured, the dispersion relation for waves far from the head

waves would no doubt prove to be

e
1l

Ak,1 + %eﬁ) +% e(l + Bk

k) + % e(l + Bk + % eBk® sech®k/w + O(€®) (%0.a)

for the wave progressing to the right, and for the other wave

@ = k) - % e(1 + Bk +"LlI eBk® sech®k/w + O(e®) (30.Db)

since the mean depth in [xl <tisl+ % eB and the mean velocity is
% e(l + B)., Finally, the wave amplitude is underestimated by the linear theory.
The ratio r, of the elevation of the first crest above the greater of the uni-
form depths to the depth difference, is 0.27, from (25) and (28). Values of r
as low as 0.3 are reported in the literature, but the range of values is be-
tween 0.3 and 1,

The reasons for the fallure of the linear theory are these. Far from the
lines [x] = t the mean depth and mean horizontal velocity are not 1 and O,
as is assumed in the calculation of the frequency w. This induces a secularity
in the first iteration on the linear solution, the secularity being of the
type which can be suppressed through use of the Stokes expansion. Near the
head waves, on the other hand, the local wave number 1s proportional to t'l/s,
the amplitude to €, and the quantity (wave amplitude) % (wave number)®, which

must be small for the Stokes expansion to be useful, is proportional to et2/3

and is not small for sufficiently large t. It is this lack of wvalidity of the

13



Stokes expansion which makes necessary the elaborate treatment of the integral
I and the distinction between limits A and B. Limit A, t > « with k fixed,
pertains to the Stokes expansion, and limit B, t + « with k3t bounded, pertains
to the flow near lxl = t where the Stokes expansion is invalid.

We return now to (24) and carry out an asymptotic analysis similar to that

given for the solution of the linear problem, Consider first the case

(1 - |x|/t) not too small. At k = O

4 0 = x + t[1 - ¢(1 + 58)/8]

dk T+ ’

(31)

d

O = ox- t[1 + (1 + 3g)/871 ,
from the definition of T and the fact that A(O,t) = O, and the stationary
points are well separated from k = O and may be calculated by replacing A by
t, its value in limit A, It follows that except near the lines IX] = %

n~ = THL - B) senlx + t(1 - (1 +56)/8)] + (1 + B) senlx - 6(1+38)/8)]]

(32)

plus contributions from the stationary points of

kx + t[w - = (1 + B)k + = ¢ K¥ sech®k/w]

N =
e

and (%3)

kx - t[w +% e(1 + B)k += ¢ k¥ sech®k/w]

=i~

The speeds Cp and cp given by (3%2) and the local frequencies deduced from (33)

are in agreement with (29) and (30). This serves as a check on the calculation,

1k



and in addition indicates that there is a net flux of energy into the transi-
tion region for a wave of elevation and out of it for a wave of depression, by
Rayleigh's theory.

An asymptotic evaluation for fx| = t can be made, using the methods which
led to equation (26), when et?/3 << 1. The major result is that when x = ¢t
the wave amplitude has a fractional rate of increase proportional to (1 + B),
and when x = -t a fractional rate of increase proportional to (B - 1). Thus,
at least initially, the energy flux into the transition region causes a change
in amplitude of the waves, a growth of the wave amplitude for a wave of eleva-
tion and a decay for a wave of depression. The factors (1 + B) and (B - 1) are
consistent with (32), which serves as another check.

When et2/3 > 1 the asymptotic expansion of Chester et al. is no longer
useful, and for this case numerical evaluation of (24) is desirable. The re-
sults of a number of these integrations are given in Table 1, For case I the

initial form for 7 is
1
n(x,0) = - 3 tanh( nx/2)

and the motion 1s started from rest. For case II the same initial form for
is used, but the initial distribution for ¥ is chosen to make b+(k) = 0, cor-
responding to a wave in one direction only. The quantity r was defined pre-
viously. The depths of the uniform streams ahead of and behind the transition
region are denoted by h; and h,, respectively, and s is the horizontal distance
from the crest of maximum elevation to the following crest, divided by hi. A

typical wave profile is shown in Figure 1, The forerunner ahead of the main

15



crest 1s to be noted., This 1s apparently not observed and is not found in

Peregrine's recent numerical solution of the long wave equations (Peregrine,

1966); its existence here must be attributed to some deficiency in the theory,

the origin of which is unknown,

TABLE 1

RESULTS

Nonlinear Theory

Linear Theory

Case ho/hi t r s r s
I 1,143 50  0.34 8.0 0.27 9.9
I 1,143 100 0.46 11,4 0.27 12,5
IT 1.133 50  0.45 8.6 0.27 10.6
II 1,133 100 0.50 10.7  0.27 13,4

One set of observations, made by Bazin (1865),

by Keulegan and Patterson,

of r ranging from 0.% to 0.5, the scatter being due

ments were made at different points in the channel.

For the depth ratios in

is quoted in the article
Table 1 Bazin finds values
to the fact that measure-

Bazin's results agree

nicely with the theory. Favre's observations, on the other hand, give a lar-

ger value for r, 0.87 for his run 22, with depth ratio 1.14. Favre also

measured s, and for this experiment found it to be 9.4. It is believed that

the discrepancy between the theory and Favre's value for r is due to the rela-

tively small value of t usged here; t

100, for example, corresponds to the

head wave having progressed only 10 meters down Favre's Th-meter channel, for

the depth of water used in his run 22,

16
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Numerical evaluations of (24) were also made for depth ratios exceeding
1.28, the ratio at which breaking should commence. The wave amplitudes for
this case are very large, with r > U4 for t = 100, and the wave profile is
wildly oscillatory., Whether this is to be interpreted as indicating breaking
or merely application of the theory beyond its range of validity is a moot

point,

18
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