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1. Introduction

In the simple linear regression model the dependent variable Y is a linear trans-
formation Y = 6Z + ¢ for an observed independent variable Z and an unobserved
error ¢. Under the “current status censoring” mechanism, we do not observe Y
directly, but only the variable X = (1{Y < C},2,C) = (A, Z,C) for a censoring
variable C. We assume that (Z, C) is independent of £. Then the distribution of X
is determined by the slope parameter 0, the distribution function F of €, and the dis-
tribution of (Z,C). The distribution function F is considered completely unknown
(and hence can contain an intercept), except for possibly qualitative smoothness
assumptions.
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The likelihood for the pair (6, F) can be defined as the conditional density of X
given (Z,C), which is equal to

Po,s(e) = Fle~02)" (1 - Fc - 0)'~".

In this paper we consider estimation of @ based on a random sample Xp,..., X,
from the distribution of X. More precisely, we are interested in likelihood based
procedures. The distribution of (Z, C) is assumed not to depend on (8, F), and
hence does not appear in the likelihood. It is considered fixed throughout the paper,
but need not be known. We assume that the distribution of (Z,C) is continuous
and has compact support.

2. History and Related Work

The above model has a long history in the econometrics literature, where it
is known as the binary response model. See, e.g., Manski [20, 21], Cosslett [5,
6], Horowitz [11, 12], and Klein and Spady [19]. Then C is not interpreted as
a censoring variable, but as another covariate besides Z. The coeflicient of this
covariate is set to unity in order to make the parameter identifiable. One can assume
that € and Z are independent, as in the present paper, or that the distribution of
(€, 2Z) ranges over a bigger class. When (Z,¢) is allowed to have an arbitrary
distribution, then the efficient information for 6 is zero; see, e.g., Chamberlain [4]
or Pollard [23]. This implies that there is no hope of constructing a n!/2-consistent
estimator in this case.

Manski [20, 21] proposed and studied the “maximum score estimator.” Kim and
Pollard [18] obtained the limiting distribution of the “maximum score estimator”
under some appropriate conditions. Interestingly and somewhat disappointingly,
the convergence rate is n!/3 instead of the usual nl/? rate. Horowitz [11, 12]
has studied “smoothed maximum score estimators” that obtain (optimal) rates
of convergence n=*/(2¥+1) in larger models in which ¢ and Z are not assumed
independent. Cosslett [6] calculated the efficient information for 6 and showed that
this is positive in the model where the covariate Z and the random error € are
independent, as we assume in this paper. Efficient estimators (with a V/n-rate)
are constructed by Klein and Spady [19], who allow some dependence of ¢ and Z
through a parametric heteroscedasticity factor. A special case of their method is
to replace F(u) = E(A|C ~ 0Z = u) in the likelihood by a kernel smoother (using
a known value of §) and maximize the resulting function over 4.

Concerning the maximum likelihood estimator (the estimator (4, F')) nothing
more seems to be known than its consistency, which was proved by Cosslett [5].
The purpose of this paper is to strengthen this to a rate result and to study a
related, penalized likelihood estimator. The rate n=/3 derived for the maximum
likelihood estimator in this paper is the best result obtainable by our methods, but
in many other situations these would yield suboptimal results. We do not exclude
the possibility that in the present case this rate is actually sharp. More precise
results are under study, but appear not easy to obtain.

Han [10], in studying a more general regression model with the binary choice
model as a special case, proposed the maximum rank correlation estimator. Sher-
man [28] proved that under the assumption of Z and e independent, Han’s esti-
mator is n'/2-consistent and satisfies a central limit theorem, but is not efficient.
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Huang [14] studied the maximum score estimator in the context of the current
status regression model when Z and ¢ are not independent.

Other regression models with current status or interval-censored data have been
studied recently by several authors. Huang [15, 16] studies maximum likelihood
estimators for the proportional odds and Cox proportional hazard models with
current status data. Rossini and- Tsiatis [25] consider efficient estimators based
on smoothing methods in the case of the proportional odds regression model. For
regression models with (“case 2”) interval-censored data, see Huang, Rossini, and
Wellner [17], Rabinowitz, Tsiatis, and Aragon [24], and Satten [26].

3. Estimators -
The first idea is to estimate (8, F') by the maximizer (6, F') of the log likelihood

n

Ln(6,F) = .71;2(5.- log F(c; — 0:) + (1 = &) log(1 — F(ci — 6z2)) ).

i=1

In Theorem 3.4 we show that, under some regularity conditions, this estimator is
consistent (and give a rate). We do not present results on the asymptotic distribu-
tion of 8, which remains an open problem.

It is possible that the maximum likelihood estimator is suboptimal, perhaps even
asymptotically, particularly if F is a priori thought to be smooth. The roughness
of the profile likelihood function

6 v sup L,(9, F)
F

can be taken as a suggestion that the asymptotic behaviour of the maximum like-
lihood estimator may be nonstandard. This suggestion is somewhat supported by
the fact that the behaviour of the maximum likelihood estimator for known error
distributions F is different in the cases that F' is smooth (when the model is a stan-
dard smooth parametric model) or discrete (when the model is more like sampling
from a uniform distribution).

The roughness of the profile likelihood function is caused by the fact that the
maximum likelihood estimator F for F is “not smooth”. More precisely, we note the
following properties of its support. From the form of the likelihood it is clear that F
is not unique, since only the values F(c, - Bz,) matter. It is convenient to take the
max1mum likelihood estimator discrete with support points in the set of values ¢; —
Hz,, augmented with the value co if necessary. Then the point masses at the points

; — 02 are essentially uniquely determined by the likelihood. Alternatively, the
pomt masses can be smoothed out over the intervals between the values ¢; — 0z. in
many ways, so as to change F into a continuous distribution, without changing the
value of the likelihood. However, even though the maximum likelihood estimator
can be taken infinitely often differentiable, the freedom in smoothing F is severely
limited. In line with results by Groeneboom [7, 8] (see Groeneboom and Wellner [9])
for current status data without regression, it may be expected that the point masses
of the discrete version of F are actually zero at most of the points ¢; — Bz, Then
any smoothed version of F will necessarily have a density that vanishes on many
intervals between the values c,: - (7:,- and is high on other intervals.
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We can control for the possible roughness of the estimator of F by adding a

penalty term to the likelihood. Our main results concern estimators (5, f‘) that
maximize the penalized likelihood

La(8, F) = N2 J3(F).

Here the penalty J(F) is defined as

JA(F) = /D F"(u)? du,

where the domain D of the integral is taken to be a finite interval that contains the
support of C' — 07 for every #. The size of the smoothing parameter \,, determines
the importance of the penalty. This parameter may be data-dependent, but should
satisfy

~ 1 1
(31) A'zl = OP ("m), ';X— = OP(le/s).

In view of the preceding discussion, the role of the penalty is not so much to
force F to be (twice) differentiable, but rather to upper bound the weights that F'
can allocate to the intervals between the values ci — gz,-. Presently, reversing the
discussion in the preceding paragraph, the (at least) twice differentiable penalized
likelihood estimator F could be discretized by moving its mass into the points
¢ — 0z; without changing the value of the likelihood. Since the penalty forces the
masses of F to be (more) evenly distributed over the intervals between the points
¢ — 52,-, the resulting point masses are bounded above. Thus, inserting a penalty
in the likelihood can also be viewed as a device to allocate the total mass 1 to the
points ¢; — z; more evenly than is done by the unpenalized estimator F.

Condition (3.1) leaves some freedom in choosing A,. Any choice satisfying (3.1)
will result in an asymptotically efficient estimator 8. The best convergence rate for
the estimator F is obtained by choosing An exactly of the order n=2/5, but this may
not be optimal (in terms of higher order properties) for estimating 6. Of course,
other penalty terms could be used as well, for instance the L,-norm of a higher
derivative. Using the second derivative appears to yield the minimal smoothness
of the estimators F needed to make our arguments go through. (Note that the
efficient score function given in (6.3) involves F” = f)

Throughout the paper we assume that the distribution of (C, Z) is smoothly
supported on a compact set. More precisely, the following assumptions are made
throughout the paper, without further reference.

The support of C — 027 is strictly contained in the interval D for every 6 € O©.
The support of C -6, Z is the closure of its interior. The support of (C, Z) contains
an interior point. The variables C—6Z and (C, Z) have densities that are uniformly
bounded (also in ).

Furthermore, we assume throughout that © is compact and that 6 is an interior
point of ©.

{
+
1
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We prove the following theorems. The main result is the asymptotic efficiency
of the penalized maximum likelihood estimator 8. Let Py  be the distribution of
(A, C, Z) under (6, F), and abbreviate Py, r, to Po.

Theorem 3.1. Both (5, 1?') and (5, F) ezist (but are not unique).

Theorem 3.2. Suppose that the conditions listed previously hold, that the func-
tions u > E(Z|C — 0Z = u) can be chosen three times continuously differentiable
and form a Po-Donsker class when 0 ranges over ©, and that Fy is three times con-
tinuously differentiable on the interval D with nonzero derivative. Then \/n(8,—60)
is asymptotically normal with mean zero and variance the inverse of the efficient

information Iy, Fy = Paq,Fols, For Jor €y F given by (6.3).

Our third theorem is used in the proof of the preceding theorem, but is also of
independent interest. Let || - ||2 denote the Ly-norm under the product of counting
measure on {0,1} and P%Z, the natural dominating measure for the densities
pe,r. In particular, with Pof denoting the mean of f = f(X) under the law of
X = (A, Z,C) under (6o, Fo),

2
lIpy, 5 — Poo,roll2 = 2/|F(C-9Z) — Fo(c—60z)|” dPCZ(c, 2) = 2Po(pa,r = Poo,Fo)’-

Theorem 3.3. Under the conditions of the preceding theorem:

(@) J(F) = 0p(1) and ipg p = Py pll2 = OP(An);
(ii) if the conditional distr:z;bution of Z lgiven C - 007 is nondegenerate, then
this implies that both |§ — 6| and ||F(c — 6oz) — F(c - 0pz)||2 are Op(An)-

The last theorem gives an upper bound on the rate of convergence of the (unpe-
nalized) maximum likelihood estimator, also in the L,-distance.

Theorem 3.4. Suppoéc that the conditions listed previously hold and that the
map 0+ E(Z|C — 02) is continuvous in square mean ai 6o. Then

@) lipg 7 — Poo,Follz = Op(n™1/%);
(ii) both |0—6o| and [5(F~F)*(z)dz are Op(n=1/3) for any interval E C D on
which f€—%2 is bounded away from zero, uniformly for 8 in a neighbourhood

Of 00.

The remainder of the paper consists of proof of the preceding theorems, the
proof of each theorem being in a different section, in the order Theorem 3.1, 3.3,
3.2, and 3.4. The last three sections start with an outline of the proof.

Qur proofs use entropy methods and maximal inequalities for the empirical pro-
cess, such as described in Van der Vaart and Wellner [29]. The role of the penalty
J(F) is made clear by the following technical lemmas. The first is due to Birman
and Solomjak [3] and extends the entropy bound for Holder classes by Kolmogorov.
Given a class F of functions f : X +— R defined on some set X’ let Ny(e, 7, 1D
be the minimal number of brackets of size € relative to the norm needed to cover
F. Here given two functions l, u: X ~— R a bracket [1, ) consists of all functions f
such that | < f < u, and its size is the norm |[u — {||.
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Lemma 3.5. Let F be a class of funclions f: D v R on an interval D C R
such that || flloo < M and such that the (k — 1)th derivative is absolutely continuous
with [ f*)(2)>dz < M, for some constant M. Then there ezists a constant C such
that ‘ ‘

1/k

log My (e, %, le) < 0(7) ", T 0<esm

Lemma 3.6. Let F be a distribution function with J(F) < co. Then
(i) IF’(s) - F’(so)l < J(F)|s = s0|'/? for every s, s € D;
(i) sup,ep|F(s)] < 1+ J(F).

Proof. By the Cauchy-Schwarz inequality |F'(s) — F'(so)| = lf:o F"(s)ds| <
J(F)|s — s0|'/2 for every s,s0 € D. Integrating this with respect to s we see that
|F(s) = F(s0) = F'(s0)(s — so)| < J(F)|DJ’/. Since F takes on values in the unit
interval only, we conclude that |F’(so)| and hence ||F||s is bounded by a multiple
of 1+ J(F). O

We use the following notation. The empirical distribution and empirical process
are denoted by P, = E;;lé x,; and G, = /n(P, — B,), respectively.
The notations 2 and < mean greater than, or smaller than, up to a constant that

may depend on the true parameter of the model, but not on any other parameter
values.

4. Proof of Theorem 3.1 .

We shall prove the existence of (6, F) only, the existence (and consistency) of
the other estimator following from Cosslett [5).

Write Ln (8, F') for the log likelihood (unpenalized). For a given 6 and a given
vector p € R", let Fy , be the set of all functions obtained by first ordering the points
¢i — 02z, yielding points t; <13 < --- < t,, and next requiring that J(F) < oo, that
F(t;) = p; for every 1, and that F is monotone on each of the intervals [ti,ti41]. For
0<p1 £p2 £ <pn <1 this is the set of distribution functions with J(F) < o0

and F(t;) = p; for every i. Then the supremum of the likelihood over all (8, F) is
equal to

supsup sup (Ln(ﬂ, F)- :\\2J2(F)).
e 4 Fefl,y

Here the second supremum is over all vectors p with 0 SEp2<---<pa <1
The inner supremum is taken for some function Fyp € Fgp. To see this, note
first that L,(@, F) is constant on Fo,p, and suppose that F,, € Fo,p is a sequence

with
J3(Fp) — G(p,0) := inf J2(F).
(Fn) = G(p,6) = inf JF)
By the parallelogram law applied to the Hilbert space norm J (F),
J2(Fin = Fn) + J2(F + Fa) = 2J%(Fpn) + 2J%(Fy).

Since (Fm + Fn) € Fo p, we have J2(1(Fyn + F,)) > G(6, p). Combined with the
preceding display, this shows that J(F,, — F,) — 0. Thus FY is a Cauchy sequence
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in Ly(D) and hence has a converging subsequence. By Lemma 3.6 (ii) (which uses
the fact that F is a distribution function only to infer that F is bounded at two
points) and the Ascoli-Arzela theorem, the sequence Fy, also has a subsequence that
converges uniformly to a function Fj,p. Conclude that Fy , € Fp,p and J2(Fyp) =
G(6,p)-

The function p +— J(Fs p) is convex. Indeed, since 3 (Fopy+ Fo.p,) € Fo(pi4p2)/2
and the semi-norm F — J(F) is convex,

J(Fay(P1+P2)/2) < J(%(FD»PI + Fﬂ,p,)) < %J(Fe.m) + %J(FO,P:)'

We conclude that p — J(Fy p) is continuous on R”" and in particular on the compact
set 0 < py < -+ < pn < 1. Therefore, the function p — Ln(8, Fp ) — N2J(p) is
continuous as well and hence attains its maximum. It follows that the supremum
on the right side of

9(0) := sup (La(0, F) - X J2(F))

is taken for some Fy. Since L,(6, F) < 0 and infg g(f) > —oo there must exist a
finite constant M such that

o0) =, swp (L,,(e,F) - XU?(F)).

The functions 8 — Ly (8, F) are equicontinuous when F satisfies J(F) < M, since
|F(c = 812) = F(c— 622)] < |F"llcolf — 8a]l2] S (1 + J(F))161 = 2],

in view of Lemma 3.6 (ii). It follows that the functions 8 — g(6) are continuous and
hence attain their maximum at some point 8. Now (8, F;) maximizes the likelihood.

5. Proof of Theorem 3.3
5.1. PROOF oF THEOREM 3.3 (i1). We shall use the following proposition,
due to Murphy and Van der Vaart [22].

The proposition concerns minimum contrast estimators in a general setting. The
purpose is to estimate a “parameter” 7 using a criterion function n — Pym, 3 , for
P, the empirical distribution of a random sample of size n in a measurable space
(X,A) and my : X + R given measurable functions. The random variables A,
are defined on the same probability space as the random sample and assumed to
take their values in a set A, C R. They play the role of a random “smoothing
parameter”. For a given n we consider estimators 7, that are restricted to a given
set H, and satisfy

Il’,,mﬁ" A >P,m

This is valid, for example, for 7, equal to the maximizer of the function n +
Ianm;n over Hy, if this set contains 7g.

Assume that the following conditions are satisfied for every A € An, every 11 € H,,

and every 6§ > 0

no:in *

(51) POm,"A - Pom,,m,\ 5 —di(ﬂ, 170) + Az’
(5.2) E* sup [Ga(m,, - mno,A)I S ¢n(0).
da(n,m0)<$
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Here d2(n,no) may be thought of as the square of a distance, but the following
theorem is true for arbitrary functions n — d2(n,7m0). (Contrary to what the
notation suggests, this function may even take on negative values. In the latter

case, set d(n,70) = (d2(n,n0) V 0)}/2.) The functlon én may be arbitrary, except
for the condition in the following theorem.

Proposition 5.1 Suppose that (5.1)—(5.2) are valid for functions ¢, such that
8 — ¢n(6)/6% is decreasing for some a < 2 and _sels Ap X Hp such that P(/\ €
An, € Hp) — 1. Then d5(7f,m0) < Op(6n + A) for any sequence of positive
numbers 8, such that ¢,(8,) < \/né2 for every n.

Proof. For each n €N, j € Z, and M > 0 define the set
S = {(0m) € An x Ho: 976, < da(m,m0) < 60,0 < 27 Mda(1,m0)

Then the intersection of the events A € Aqn, 75 € Hy, and d; 575, m0) > oM (6 + X)

is contained in the union of the events {(/\ 1) € Sn,j, M} over j > M. By the
definition of 735, the variable sup(, ;s . ,, P (m,, A — My, 2) is nonnegative on the

event {(A 75) € Sn,j,m}. Conclude that, for every § > 0,

P* (dx(fiz, m0) > 2™ (60 + %), X € An, 5 € Ha)
< P* sup  Pn(mya —mp,a) >0).
J;f (()‘171)651,“,M n( mA o /\) )

For every j involved in the sum, we have, for every (),7) € Sjn,m and every
sufficiently large M,

Po(mg,x = mag2) S —d3(n,m0) + A
< (1 - 2—2M)d (77:770) < _9%- 262

Thus, using Markov’s inequality, we see that the series is bounded by

SF (o [Gulma - )] 2 VA8

¢n 2i+1 bn ) Y
9ja~2j
23 T DR
/nb22% ooy
in view of the definition of 6,, and the fact that ¢,(c6) < ¢*¢n(68) for every ¢ > 1

by the assumption on ¢,,. The expression on the right converges to zero for every
M=M, -0c0. O

For the proof of Theorem 3.3, we apply this proposition with 5 = (8, F) and

1
mg = log PLEPI _ 232052 F) _ 12(Ry)).
2pn0 2
By the concavity of the logarithm and the defining property of 7,
Pamg 5 > 211» log _ %Xz(ﬂ(ﬁ) _ I (F))

1 p 1~
> = o _ _X0=0= ~
> 21[”,. log Do 2/\ 0=0 P"mno.)\

Thus, the preceding proposition applies to 7.

\
4
f
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By the usual inequalities relating the Kullback-Leibler divergence and the Hellin-
ger distance (see, e.g., Van der Vaart and Wellner {29], Theorem 3.4.4)

Pomn,x - POmno.A s —hz(pn,pno) - ’\Z(Jz(F) - J2(F0))
S-HPn - p'lo”% - ’\2J2(F) + ’\2v

since py, is bounded away from zero on D. Thus, (5.1) is satisfied for the choice

d2(n, m0) = |lPn — Proll3 + A2J*(F).

To verify (5.2) for a suitable function ¢,, we apply a maximal inequality to the
empirical process Gn(mp,x — Mpon) = Gamy,o. The functions my, ¢(z) are uni-
formly bounded in z and 5. Furthermore, since the derivative of the function
p — log(p + po) is bounded uniformly in po that are bounded away from zero, their
Lo-norm satisfies

Pom2o S llpn = paoll3

Since A~! = Op(n?/%) by (3.1) it is not a loss of generality to assume that
A > )\, for A, a small multiple of n—2/%, In other words, we may restrict A to the
set Ap = {A: A > An}. Then da(n,m0) <6 and A € An implies that

) 6
lon = prolle S8 IS TS

By Lemma 3.4.2 of Van der Vaart and Wellner [29] conclude that (5.2) is satisfied

for
60() =IO 1+ 7 7k),

where J(6) is the entropy-with-bracketing integral

J(6) = /06 \ﬁ+ log Ny (€, {my,0: 8 € ©,J(F) < &/An}, L2(Po)) de.

This is bounded up to a constant by 6%/ + 6/)\,1,/ 4 in view of Lemma 5.2 below.
We conclude by Proposition 5.1 that d5(%,1m0) = Op (n=%/54X,). This implies the
assertion (i) of Theorem 3.3, in view of (3.1).

Lemma 5.2. For every M 2> 1,

log Ny (e, {F(c—02):0€0,J(F) < M}, Ly(Po)) £ (.Aei)l/?.

Proof. Let Fip be the restriction of F to D. By Lemmas 3.5 and 3.6,

My1/2

log N (e, Fip: J(F) < M- l) 5 ()



416 S. A. Murphy, A. W. van der Vaart, and J. A. Wellner

Now we may construct a net over the class of functions of interest, by first choosing
an ¢/M-net 64, ... ,0p over © (for the Euclidean distance), next choosing an e-net
Fy,..., Fy over the functions Fip (for the supremum metric), and finally forming
all functions Fi(c — 6;z). Then for every (6, F) there exists (95, F;) such that

€
[P (e = 02) = File = 052)] < IF ol = 5 sl + 1Fip ~ Filloo S M-S+ ¢ S
We need at most 2|©|M/e points §;, and at most exp(C(M/e)!/?) points F; for

some C. Thus, the entropy for the uniform norm of the class of functions in the

lemma is bounded by a multiple of (M/e)'/2 + log(M/e) + 1. Consequently, the
bracketing entropy for the L,-norm is bounded similarly. O

5.2. CoNsISTENCY. By Theorem 3.3 (i) the density estimator P p 1s con-

sistent for py,,r, for the ||-||z-norm. Furthermore, J(F) = Op(1). In this section we
prove that these statements carry over into the consistency of g and F separately.
For § we use the Euclidean norm. Since the true likelihood evaluates the functions
F only at the points ¢ — 6yz, we do not have control over F off the support of the
variable C' — 6oZ. To assert that F is consistent, we may use the norm || - ||p,, for
Dy the support of C — 652, and, for a given set D,

IFllp = sup|F(y)| + sup|F'(y)|.
yeD yeD

For the consistency of the derivative F’ , we assume that Dy is the closure of its
interior, which is true, for instance, if Dy is an interval.

Lemma 5.3. For every fized M, the set of restrictions Fip of distributions
functions F with J(F) < M is precompact relatively 1o || - ||p.

Proof. By Lemma 3.6 the class of functions Fp is uniformly Lipschitz of order
3, hence equicontinuous, and IIFpl| is uniformly bounded, as soon as J (F) is uni-
formly bounded. Applying the Ascoli-Arzela theorem, we see that every sequence
of distribution functions Fy, with J (Fm) = O(1) has a subsequence such that both

Fm and Fy, converge uniformly on D to limits. The limit of F}, must necessarily
be the derivative of the limit of F,. 0O

Lemma 5.4. If ||ps,r — ps,,F, 2 = 0 for a distribution Junction with J(F) < oo,
then 6 = 0y and F = Fy on the support of C — 60yZ.

Proof. The condition implies that F(c — 6z) = Fo(c — 6pz) almost surely under
the distribution of (C, Z )- By continuity the functions must be equal on the support
of (C, Z). Partially differentiating the identity with respect to z and ¢, we find

f(c—02) = fo(c — 6o2), —0f(c —0z) = —0 fo(c — 8oz).

These identities are valid on the interior of the support of (C,Z). Since fy is
nonzero, conclude that 8 = 4,.

Next conclude that F = Fy almost surely under the distribution of C — 8,2 and
hence F = Fy on the support of C - 6oZ. O

&
-
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Lemma 5.5. 8 — 6o and ||F — Follp, L.

Proof. Suppose. that py,.,F.. — Péo,Fo in || - |2 and J(Fm) = O(1). By the first
lemma every subsequence of (6, Frm) has a further subsequence such that 6, — 8
and ||[Fm — Fllp — O for some 6 and F. Then llPom,Fm — Po,Fll2 — O by the
continuity of the map (8, F) — py,r. Thus, ||ps,r - Do, Foll2 = 0 and hence 6 = 6o
and F = F, on the support of C—0oZ by the second lemma. Under the assumption
that Dg is the closure of its interior, this implies that F’ and Fj agree on Dy as
well. It follows that Fr, — Fp and F. — Fg uniformly on Dy.

Combined with the preceding lemmas and Theorem 3.3 (i), this yields the lemma.

0

5.3. Proor oF THEOREM 3.3 (11). To see that the rate of convergence of
F(c—67) in the ||-||2-norm carries over into a rate for F' in the Lo(PC€~%7%)-distance,
we start with proving the differentiability of F(c — 6z) in (6, F).

Lemma 5.6.
Pa[F(c = 02) = Fo(e = 602) = (=2 F3(c = 003)(0 — 00) + (F = Fo)(c - 002)]’
< |6 = 00[*/2J(F) + |6 — 60> Po(F' ~ F§)*(c — 602).
Proof. The left side is equal to
Po[P(c = 02) = F(c— 002) + zFy(c = 802)(6 o) ?

< (0 — B0)?Po = (F'(c ~ £2) = F'(c = 602))] :
+ (8 — 60)* Poz?(F' — F§)*(c — 6oz),

for £ = £(c, z) between 8 and 6. Now |z| is bounded and |F’(c—fz)—F’(c—002)| <

J(F)|z]|€ — 60]*/2. The result follows. O

Since we already know that 16— 60| 2,0, that Po(F' = F§)?(c—o2) £.0,and
that J(F) is bounded, we see that

~ -~ 2
Py [F(c — 8z) — Fo(c - ooz)]
2 Po[~2Ff(c - 602)(8 — 00) + (F — Fo)(c - 003)]2 —0p(1)[0 - 6o}

By the assumptions that the conditional distribution of Z given C — 0y Z is nonde-
generate and F§ = fo is nonzero, the expectation on the right is bounded (below)

by a constant times = 00|2A+ Po(F — Fo)?*(c — 6oz), by the lemma below, ap-
plied ‘with g1 = zFj(c — 602)(8 — 8o) and g2 = (F — Fo)(c — f02). Indeed, by the
Cauchy-Schwarz inequality, for any function g,

(PozFlc — 802)g(c = 6:))* = (EoEo(Z| C — 8o 2) F4(C — 602)g(C ~ 602))*
£ EoEg(Z|C - 602)*(F3)*(C — 00Z) Eq g*(C — 002).
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The first term on the right is strictly smaller than Eq Z?f2(C — 6y Z) unless Z f(C —
60Z) is a function of C —6yZ, which is excluded by our assumptions. This concludes
the proof of Theorem 3.3 (ii). O

Lemma 5.7. Let g; and g, be measurable functions such that (Pg192)? 5
cPg%Pg? for a constant ¢ < 1. Then ) 4

P(g1+g2)* > (1 - Vc)(Pg? + Pgd).

6. Proof of Theorem 3.2

We shall use the following proposition, which is proved in Van der Vaart [30].

Suppose that the observations are an i.i.d. sample from a density pg, indexed
by a Euclidean parameter  and an arbitrary parameter 7. For every parameter
(0,7m) let Z;,,, be an arbitrary measurable vector-valued function such that Log 1m0 1S
the efficient score function for the parameter § at (f0,1m0). We consider estimators
(5,,, 7in) such that

| L 1
(6.1) ;Ze&,m(xﬁ) =% (;,"1/2)'
‘ i=1

The following proposition yields the asymptotic normality of the sequence \/1_1(5,, -
0o) under regularity conditions and the structural “no bias”-condition

~ 1
(6’2) Pin,ﬂoean»ﬁn = oP(nllz).

Proposition 6.1. Suppose that the model § D65, 15 differentiable in quadratic
mean at 6o, that (Pg, n, + Pono )l olI2 = O(1), and that (8,7) — &, is continuous
in Pyg n,-probability at (6 o). Furthermore, suppose that the class of functions Zg,,,
1s Pyo,no-Donsker for (8,1) ranging over a neighbourhood of (6o,m0). If (5,,,3,,) is
consistent for (6o, 10) and (6.1) and (6.2) are satisfied, then the sequence V(8. —bo)
is asymptotically normal with mean zero and covariance the inverse of Zio,no-

We shall apply this theorem with (6, n) = (6, F) and Z;,,, the efficient score
function for the model, for every (6,7). We construct suitable one-dimensional
submodels in order to show that the efficient score equation (6.1) is satisfied. For
this choice of functions Zg, F the bias condition (6.2) is satisfied trivially, with the
left side vanishing, as will follow from the direct calculation later in this section,
but is also explained by the linearity of the model in F.

6.1. EFFICIENT SCORE FUNCTION. The ordinary score function for 4 of the
model is the function

bo,r(z) = —zf(c - 02)Qur(z),

for :
é 1-6
F(c—6z) 1-F(c-06z)

Qs r(z) =

~ye
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The score function for the submodel given by Fy = F + 1B is equal to
Ag,rB(z) = B(c — 02)Qo,r(z).

Of course, the path Fy = F +{B defines a true submodel only for perturbations B
such that F, is nondecreasing and B(—o0) = B(oo) = 0. If we restrict the model
by requiring that J(F) < oo, as we do for Theorem 3.2, then B should also have
J(B) < oo. Comparing the formulas for Zo r and Ag rB, we see that minimizing
Pa'p(ea,p Ag rB)? over B is a weighted least squares problem that is solved by

Bo,r(u) = f(u)he(u),

for
Eo,r(2Q r(X)|C = 02 = u)

Eo 7 (@3 (X C — 02 = u)

(The last equality follows by direct calculation.) Since the support of C-07is
contained in the interval D, the function kg can be defined arbitrarily outside D. It
follows that this function By p certainly corresponds to a true submodel Fy provided
the functions f and hg are sufficiently regular. Then the efficient score function
for 0 is given by

(6.3) 2 r(z) = —[2 = he(2)] f(c - 02)Qq,F ().

Note, however, that the present function By r satisfies J(Bg,r) < 0o only if F is
three times differentiable, which is more than we initially assume for every F in
the model. Therefore, in the following subsection we use a more complicated type
of path Ft, which is well-defined as soon as J(F) < oco. From this it is clear that
la F is the efficient score function already under the condition that J(F) < oco. The
construction of this path is somewhat complicated, but 1t is necessary, because our
proof of asymptotic normality of 8 uses a perturbation of F for which the finiteness
of J (F) is quaranteed by definition, but possibly not a smooth third derivative.

ho(u) = =E(Z|C-0Z = u).

6.2. LEAST FAVORABLE SUBMODEL. By assumption the support Dy of the
variables C — 0Z (under P) is contained strictly within the interval D, for every 0.
Therefore, for every (6,t) such that [0 — t] is sufficiently close to zero, there exists
a strictly increasing, infinitely often differentiable function u — ¥ ¢(u) with

1/)9»1(‘“) =u, ucg DO,
Yot (u + (6 - t)_ho(u)) = u, ue€dD.

Moreover, we can ensure that (u,t) — t;¢(u) is infinitely often differentiable at

u € D, t =0 as well. The second identity in the preceding display, which, unfortu-

nately, rules out the identity function, ensures that ¥, (D) = D and will be used
to control the partial derivative of J(Fi(8, F)) with respect to ¢ in the argument
below.

For a given pair (8, F'), we now define a least favorable submodel as

Fy(6, F)(u) = F o g1 (u+ (6 — t)ho(u)).
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Then Fy(8, F)(c — 62) = F(c — 62) for every (¢, z) in the support of (C, Z), and,
with a dot denoting differentiation with respect to i,

Fy(6,F)(u) = F' o g, (u+ (0 — t)he(u))
X %, (u+ (0 — t)ho(u)) (+ (6 — t)h)(u)),
Fy(8, F)(u) = F' ot 1 (u+ (6 — t)ho(u))
X [des (0 = Oho(w) = g (u+ (6~ Do (w)ho(w)],

%logp,lp‘(g,p)(:c) = i [F,’(H, F)(C = tz)z + F,(G, F)(C - tz)} Qt,pt(g,p)(l‘).

Evaluated at ¢ = @ this yields the efficient score function Zo, F. Next, with ¢y ((u) =
Vo,t(u+ (6 — t)ho(u)),
F(6, F)"(u) = F" o ¢g 1 (u)d} (u)® + F' o bo,:(u)dg o(u).

For sufficiently small |6 — ¢| the map $o,¢ is a strictly increasing, three times differ-
entiable bijection on D. Therefore,

= 2 - 2 dv
J2(Fi(6, F)) =/ [F"()($4.00 67.(0) + F'(0) (5,0 474(0)) ]| .
D 9,6 ° ¢0,t (v)
It follows that J(Fy(8, F)) < co whenever J(F) < oo and |0 —t] is sufficiently close
to zero. Furthermore, some tedious calculus shows that this quantity is partially
differentiable with respect to ¢ in a neighbourhood of 8, with derivative at t = ¢

bounded in absolute value by a multiple of Jp (F"(v)? + F'(v)?) dv < J*(F).

Since (5, F) maximizes the likelihood and Fg(a, ﬁ) = F, the value § maximizes

the function ¢ lognpt'n(;ﬁ)(z;) — X2J2(Fy(, F)). 1t follows that
1iZA ) -2 (RGP =0
nis ol Ot|e=7 ’ ‘
In view of (3.1) and the fact that J(F) = Op(1),
1~
22 b p(X0) = 0, (n11%),
i=1
By the linearity of the model in F', or by direct calculation, it follows that
ng’lozo,')(X) = 0’ every 0) 7 7o-

Thus conditions (6.1) and (6.2) have been verified.

6.3. REGULARITY CONDITIONS OF PROPOSITION 6.1. In order to verify
the “regularity conditions” of Proposition 6.1, note first that

|F'(c - 82) — F'(c - 002)| < J(F)|8 - 6,172,
|F(c—8z) - F(c— 802)| S (J(F) +1)]8 — 6.
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Since 0,, £, B9, the right sides converge to zero in probability. Combined with
the convergence F F, Fy with respect to the uniform norm on the closure of
the support of C — 6pZ, and the assumption that Fy is bounded away from zero
and one on D, the functions Qg.p(:c) are seen to be bounded with probability

tending to one. Furthermore, the functions F(c — gz) are uniformly bounded.
Since also the functions hj; are uniformly bounded, it follows that the functions

€o~f.(z) are uniformly bounded with probability tending to one. Thus (Ps,,r, +

Py r,)|l8,FlI? = O(1) is bounded trivially. Furthermore, 1.’0 #(2) = Loy, p,(z) for
Pg,, Fo-almost every z.

It is straightforward to check that the model 8 — pg r, is differentiable in qua-
dratic mean at 6y with score function éao'po as given previously.

By Lemma 5.2 and the bracketing-central-limit-theorem of Ossiander (Cf. Theo-
rem 2.5.6 of Van der Vaart and Wellner [29]), the class of functions F(c—0z), with F
ranging over the distribution functions with J(F') < M, and 0 € ©, is Po-Donsker.
For the functions F(c — 6z) restricted to be bounded away from zero and one, the
functions Qg r(z) are Lipschitz transformations of the functions (F(c — 0z),6).
Thus, under this restriction, this class is Py-Donsker by Theorem 2.10.6 of Van der
Vaart and Wellner [29]. It is also uniformly bounded.

By Lemma 6.2 (below) and the bracketing-central-limit theorem, the class of all
functions F'(c — 6z) with J(F) < M is Py-Donsker. It is also uniformly bounded.

The class of functions z — hg(z) is Pp-Donsker by assumption.

Combining these results, we conclude by Theorem 2.10.6 of Van der Vaart and
Wellner [29] that the class of functions A F with @ ranging over © and F over the
distribution functions such that J(F) < M and such that ||F — Fy||p is sufficiently
small, is Py-Donsker.

Lemma 6.2. For every M 2> 1,

log Ng (e, {F'(c ~ 02): 6 € ©,J(F) < M}, Ls(Py)) S (-‘g-)

Proof. By Lemma 3.6 the class of derivatives F’ of functions F with J(F) < M is
uniformly bounded by a multiple of J(F)+1 $ M on D. Clearly, [, ( F’)’Z(u) du =
J2(F) < M2, Therefore, by Lemma 3.5,

log N e, (Fjp: I(F) < MY [I- 1) § (3
Furthermore, by Lemma 3.6 [F'(s) — F'(s0)| < |s — so|'/2J(F) for every 5,50 € D.
Now we can construct a net over the class of functions of interest, by first choosing
an (¢/M)%-net 0y, ... , 0, over O (for the Euclidean distance), next choosing an ¢-net
G, ... ,G, over the functions Fl’D (for the supremum metric), and finally forming
all functions Gi(c — 6;2). Then for every (6, F) there exists (6;, G;) such that

~s

|F'(c — 0z) = Gi(c — ;2)] S M0 = 6;['* + || F{p — Gilloo < MM +ese.
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We need at most 2|©|M?2/e? points §;, and at most a power of (M/¢) points G;.
Thus, the entropy for the uniform norm of the class of functions in the lemma is
bounded by a multiple of (M/e) +log(M/¢). Consequently, the bracketing entropy
for the La-norm is bounded similarly. 0O '

7. Proof of Theorem 3.4
7.1. PROOF OF THEOREM 3.4 (1). We use the following proposition to
obtain first a rate of convergence for Py 7 in the Hellinger distance h. Since

12  _1/2
llpg,p — Poo,pollg < 4/(Po,/F - Pe‘{,ro)z,

this rate translates immediately into a rate for the La-norm. The proposition is
due to Birgé and Massart [2] and Shen and Wong [27], and is also a consequence of
combining Theorems 3.4.1 and 3.4.4 of Van der Vaart and Wellner [29] (see bottom
page 328).

Proposition 7.1. Let P be a sel of probability densities on a fized measurable
space such that for functions ¢,, such that § — n(8)/6% is nondecreasing for some
a < 2, and every § > 0,

/6 JIog Ny(e, P, k) de < ¢,(6).
0 *

Suppose that 8, are positive numbers with #n(8n) < /082 for every n. Then any
estimator p € P such that P, log(p/po) > 0 satisfies h(p, po) = Op($,).

Thus, it suffices to compute the entropy-with-bracketing of the class of densities
pe,F for the Hellinger distance. For simplicity assume that Z > 0 almost surely.
(The general case can be treated by considering brackets for the values 2 > 0 and
z < 0 separately.) Then F; < F < Fp and 6, < 6 < 6y imply

Fi(c—612) < F(c - 62) < Fa(c — 6,2).

Thus brackets [Fi, F3] and [6;,6;] for F and 6, respectively, yield brackets
[Fl(c - 912’)6(1 = Fg(c e 922))1—6, F2(C = 022)6 (1 - Fl(c — 012))1—6]

for the densities Py p- The sizes of these brackets in the squared Hellinger distance

are equal to the sums of two terms, corresponding to the integrals over § = 1 and
6 = 0, respectively. The first of these two terms is

POZ(Fy%(c— 0,2) — F}1?(c - 0,2))?
S POH (B (e ~ 022) = F{/*(c - 0,2))" + POZ|Fy(c - 62) - Fi(c — 0,)|
S /(le’2 — F}/?)? apc-0:z +/P(C ~01Z < s < C~6,7) dFy(s)

S /,,(Fz" 2P dy+ 16, 6y,
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by the assumptions on the distribution of (C,Z). The second of the two terms
can be bounded similarly, and we obtain that the squared Hellinger distance of the
brackets is bounded above by a multiple of

/(F;/2 _F (- R)P-(1- F1)Y?)? dA + (61 — 6]

with ) the Lebesgue measure on D. The bracket is of size proportional to ¢ if the
Lo-distances between F, 12 and F}'? and between (1 — F1)!/? and (1 — F2)!/? are
smaller than ¢, and the Euclidean distance |6) — 6] is smaller than €2. We conclude
that, with h the Hellinger distance, d the distance with square

2(1,9)= [(VF-va)' + (VI=T - VI=9) i

F the set of all distribution functions, and Fp their restrictions to D,

log Ny (¢, {po,r : 0 € ©, F € F}, h) S log Ny (e, Fp, d) +1og(.i.),

The first term on the right is bounded by a constant times 1 /e. This follows from
the fact that the bracketing entropy of the set of uniformly bounded, monotone
functions is bounded by a constant times 1/¢ (cf. Theorem 2.7.5 of Van der Vaart
and Wellner [29]). Indeed, since the square roots F 1/2 of the functions F' € Fp are
monotone and take their values in [0, 1], they can be covered by exp(C/¢) brackets
of size € in L2(}). Similarly, the functions (1—F)'/? can be covered (independently)
by exp(C/¢) brackets. Then construct brackets of the form [a?V(1—d?), b2A(1—c?)]
for the functions F, if [a, b] and [c, d] are the brackets containing FY% and (1-F)!/?,
respectively. As F ranges over Fp, this gives at most exp(2C/¢) brackets, that cover
F and have d-size less than 2e.
Theorem 3.4 now follows from Proposition 7.1, applied with

5
#n(8) = /(; \ é +log%de.

7.9. CoNsISTENCY. The consistency of (6, F) is proved in Cosslett (5]
through application of Wald’s theorem, as modified by Kiefer and Wolfowitz. Since
we need the consistency for the proof of Theorem 3.4 (ii), we rederive this result for
completeness, as a consequence of Theorem 3.4().

The set of allsubdistribution functions is compact for the vague topology, and
by assumption 6 takes its values in a compact. Hence every subsequence of (F,b’)
has a (vaguely) converging subsequence. It suffices to show that (o, Fo) is the only
possible limit point. We already know that F(c - az) — Fy(c — 6pz) for almost
every (c, 2), at least along subsiquenggs. By the following lemma we conclude that
(F,08) — (61, F1) implies that F(c — 82) — Fi(c — 6,z) for every ¢ — 01z where I 3
is continuous. We conclude that Fo(c — 8oz) = Fi(c — 8, 2) for almost every (¢, 2).
By right continuity we can extend this to every (c, z) in the interior of the support

~ of (C, Z). This implies (61, F1) = (o, Fo)-
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Lemma 7.2. If F;, ~ F for the vague topology, £,, — = and F is continuous
at z, then Fp(zm) — F(z).

PROOF OF THEOREM 3.4 (11). By almost the same argument as in Lem-
ma 5.6 (but note that we evaluate the derivative at 6 rather than at 6;),

Py [F(c — 82) — Fo(c — 80z) — (~2Fi(c — 02)(8 — 60) + (F — Fo)(c — ez))] :
= 0('0 -— 00'2).

By assumption, as § — 6y,

Bo(Bo(Z|C ~ 02)FY(C = 02))* _ Eo(Ba(ZIC = 0D)FYC - 002)" _
Eo(ZF}(C - 02))* Eo(ZF}(C — 6,2))”
Therefore, by Lemma 5.7, applied with g; = —zF}(c — 02)(8 — 6,) and g» =

(F — Fo)(e - 6z),

Po[~2Fy(c — 6)(0 ~ o) + (F = Fo)(e - 02)|
> Po(2Fy(c— 02)(8 — 65))” + Po(F — Fo)(c — 62)?
z|o—oo|2+/(F-Fo)2dPC-"Z. '

Theorem 3.4 (ii) follows.
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