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CONSISTENCY IN A PROPORTIONAL HAZARDS MODEL 

INCORPORATING A RANDOM EFFECTi 


Pennsylvania State University 

The frailty model is a generalization of Cox's proportional hazards model 
which includes a random effect. Nielsen, Gill, Andersen and Sorensen pro- 
posed a n  EM algorithm to estimate the cumulative baseline hazard and 
the variance of the random effect. Here existence and consistency of the 
estimators are proved. An example using truncated and censored data is 
considered. 

0. Introduction. The frailty model, which is a multivariate generalization 
of the proportional hazards model, allows for heterogeneity of hazard by incor- 
porating a random effect. Estimation in the frailty model has received much 
attention; for example, see Clayton and Cuzick (1985), Self and Prentice (1986) 
and Nielsen, Gill, Andersen and SBrensen (1992). The parameters include re- 
gression coefficients, parameters describing the distribution of the random ef- 
fect; and the cumulative baseline hazard. In the usual proportional hazards 
model, the maximum likelihood estimator (MLE) of the regression coefficients 
and the nonparametric MLE (the Nelson-Aalen estimator) of the cumulative 
baseline hazard have been shown to be consistent and asymptotically efficient 
[Greenwood and Wefelmeyer (1990)l. This paper addresses the problem of con- 
sistency for the one-sample frailty model. The method of proof should generalize 
to the regression setting. To form MLE's, the counting process approach out- 
lined in Nielsen, Gill, Andersen and SBrensen (1992) and Andersen, Borgan, 
Gill and Keiding (1993) is used. In Section 1a brief introduction is given. The 
consistency theorem and proof are in Section 2. The Appendix contains techni- 
cal details. 

1. Statistical model. As mentioned above, much of the following descrip- 
tion is a review of the counting process approach presented in Nielsen, Gill, 
Andersen and Sorensen (1992). Using their notation, the frailty or random 
effect is defined on the probability space (Of, G', PL) and is denoted by Z = 
(Z1, . . . , Z,,). Let (Qff ,{G:G[o,.Tlj,P;,) be a filtered probability space for each Z = z, 
so that under P;, (i.e., conditionally on Z = z) the multivariate counting process 
N = (Ni: i = 1,. . .,n) has intensity process X given by 

hi(u) =ziYi (u)a (u) . 
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The Ni can be thought of as the aggregate of the counting processes for group 
i, so that each Ni can have more than one jump. The members of the ith group 
share the same frailty, Zi. The Zi are assumed to be independent random vari- 
ables, each distributed according to a gamma distribution with mean 1and 
variance 9. Of course this means that if 9 = 0, then the random effect Zi is iden- 
tically equal to 1and the random effect does not induce a dependency between 
members of group i. The Yi are observable, nonnegative, predictable processes, 
and a is an unknown baseline hazard rate. Note that this model would have 
to be reformulated to allow for a discrete hazard. In a discrete model the in- 
tensity Zia(u) is bounded by 1, which certainly does not allow Zi to have a 
gamma distribution. 

The goal is to estimate 9 and the cumulative baseline hazardA(t) = Ji a(u) du 
based on observation of (N,Y) only and via maximum likelihood estimation. 
There are two ways to form the likelihood of (N,Y).The first method is to write 
the likelihood of (N, Y, Z) as the density of (N, Y) given Z = z times the density 
of Z and to integrate out over the variable z. Actually, only a partial conditional 
likelihood of (N, Y) given Z = z is specified, and it is assumed that the remaining 
term in the conditional likelihood does not involve z [Nielsen, Gill, Andersen 
and Sgrensen (1992) state this in Assumption 2, "Conditional on Z = z, censor- 
ing is noninformative of z"]. The partial likelihood for (N, Y) given Z = z is 

fi { n(ziyi(t)a(t))mi(t) exp{-zi lTyia}} 
i = l  t 

Multiplying by the density of Z and then integrating over z yields the partial 
likelihood 

nt( ( 1+ e~i(t-))yi(t)a(t))
ANi(t) 

(1.1) 
i 

rI 
= 1 (1+ 9 J,' Yi(t)dA(t))

l/O+Ni(T) . 

It is also straightforward to see that the distribution of Zi given (N,Y) is a 
gamma distribution with mean 

and variance 

A second method of forming the partial likelihood of (N,Y) is to use the 
innovation theorem [Bremaud (1981)l; that is, in order to derive the intensity 
of N with respect to the observed history (i.e., the product of the trivial sigma 
field on R' with G"), Zi is replaced by its conditional mean relative to this history. 
Therefore the intensity of N is 

Note that if 6 = 0, then the intensity of N takes the multiplicative form with Zi 
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identically equal to 1.The partial likelihood function is given by 

Since A is continuous, (1.1)and (1.2) can be shown to be equivalent via inte- 
gration by parts [see (1.3)l. Both are full likelihoods for (8, A) if the omitted 
term does not depend on (8, A) [Nielsen, Gill, Andersen and Sprrensen (1992) 
call this noninformative censoring for the parameter (8, A)]. The true values 
of the parameters [say, (Oo, Ao)l lie in [O, CO)X {absolutely continuous cumula- 
tive hazards}. However, maximization of the log-likelihood over this parameter 
space leads to the same difficulties as in estimation of a density function. The 
problem is that there is no absolutely continuous estimator 2 which will max- 
imize the likelihood. There appear to be two approaches to this problem. If an 
estimator of the hazard a is desired, then it is necessary to restrict the pa- 
rameter space further for a finite sample, for example, employ the method of 
sieves or penalized likelihood estimation. The interest here is in the estimation 
of the cumulative hazard, and a second approach is used. This second approach 
extends the parameter space so that the estimator 2 is allowed to be discrete. 
The parameter space is then [O, m)x {cumulative hazards). This is the type 
of extension of parameter spaces which allows one to consider the empirical 
distribution function as a nonparametric maximum likelihood estimator of a 
continuous distribution function. To allow for a discrete estimator, replace a(u) 
by AA(u), the jump ofA at the point u, in (1.1)and (1.2). Unfortunately (1.1) 
and (1.2) are no longer equivalent and will not lead to the same estimators. The 
natural logarithm of (1.1)is given by 

n 


If 8 = 0, the second term above is defined by its right-hand limit at  0, that is, 
YidA + Ni(7). The natural logarithm of (1.2) is 
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In fact, 

Note that the last two terms would cancel if A were continuous. Nielsen, Gill, 
Andersen and Sgrensen (1992)maximizeL, via the EM algorithm. In this paper, 
only estimators derived by maximizing L, are considered. 

Taking the derivative of L, with respect to the jump sizes of A and setting 
the derivative equal to zero yields the following equation for 2: 

where R ( u )= n - l ~ ; =lNi(u).This equation also results from the M step of the 
EM algorithm; see Nielsen, Gill, Andersen and Sgrensen (1992)for details. 

2. Existence and consistency. Assume that the (Ni,  Y i )  are i.i.d. copies 
of ( N ,  Y ) ,  where Y is a.s. left-continuous with right-hand limits and takes on 
nonnegative integer values. Both N and Y are bounded in supremum norm. 
The counting process N satisfies 

for C left-continuous and adapted to the filtration u{N(s); Y(s ) ,  s f< + ; - d - ~ [ O ,  T I .  
The variance parameter 80 lies in a known interval, say, [ O ,  MI. The cumulative 
baseline hazard A. is strictly increasing and is continuous on [O,  T I  for T < m. 
Call the first jump of N ,  T I .  

THEOREM I f  maxi N ~ ( T )  = (it,X ) ,1. > 1, then a maximizer of Ln(8, A) ,  ( 8 ,A )  
exists and is finite. 

The proof of this theorem is in the Appendix. 

THEOREM Assume the following: 2. 

(a) Y is a nonincreasing step function, and P[Y(t) 2 11 has at most a finite 
number of discontinuities in t E [O,T I  [or (a') Y is a step function with at most a 
bounded number of steps and an upper bound on AO(r) is known]; 

(b) inf, E (0,TIEY(u)> 0; 
(c) PIY(Tl+)2 11 > 0. 
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Then 

and 

REMARKS.Assumption (a) is used to prove that 2 does not diverge to infin- 
ity, but it should not be necessary. Note that it excludes applications requiring 
Y to be nonmonotonic. However, if one is willing to make the assumption that 
Ao(r) belongs to a finite range, then Y is allowed to be nonmonotonic. It  is 
unclear whether the assumption of a finite range for Bo is necessary. If this 
assumption is necessary, then this may indicate that there is a sequence of 
large values of 6' which maximize the partial likelihood and are inconsistent. 
Assumption (b)ensures that N has sufficient activity on the entire interval so 
as to estimate the parameters. Note that (c) excludes the possibility of N having 
at most only one jump. Some version of this assumption should be necessary 
because, as pointed out by Nielsen, Gill, Andersen and S~rensen (1992), the 
model is unidentifiable if all of the Ni have only one jump. The method used 
in this proof should extend to the regression setting as long as an assumption 
which excludes colinearity of the covariates is made. 

EXANPLE(Survival analysis with left-truncated, right-censored data). As 
in the above, assume that the frailty Z has a gamma distribution with mean 1 
and variance 00. Given Z, let (XI,. . . , Xk) be i.i.d. survival times with hazard 
Zao(.). Let (TI, .  . . , Tk) and (C1,. . . , Ck) be truncation and censoring times which 
are independent of both Z and the Xj's. Define 

Gt = a{Z, I{XJ < s}, I{Tj < s < Cj},s < t, j = 1,.. . ,k) .  

Then N,(t) = I{Xj < t},j = 1,.. . ,k, is a multivariate counting process with 
intensities I{X, > t}Zao(t),j = 1,. J~~. . , k. Now define N(t) = I{Tj < s 5 
Cj} dNj(s). Because I{Tj < s < Cj} is left-continuous (considered as a function 
of S) and adapted, N has intensity Y(t)Zao(t), where Y(t) = ~ j k =lI{Tj < s < 
Cj)I{X, 2 t}. Since the conditional distribution of (TI, . . . , Tk) and (C1, . . . , Ck) 
given Z = z is certainly independent of z,  the innovation theorem [Bremaud 
(1981)l can be used to derive the intensity of N with respect to the observed 
history Ft = a{N(s),s 5 t; Y(s),s < t} to obtain (2.1). The filtering approach 
to truncation follows Keiding and Gill (1990). Note that the survival times are 
indeed truncated in that Xj is observed only ifXj A Cj 2 Tj and Xj 5 Cj. 

As in the beginning of this section, assume the observations of (Nil Yi, i = 
1,.. . , n)are i.i.d. copies of (N, Y). Let (q2)be the maximizer of L,. A. will be 
strictly increasing if a 0  # 0 a.s. Since Y will not be monotone, assumption (a) 
cannot be satisfied; but if there is a knownp, p E (0, I), for which P(X1 5 T )  < p,  
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then (a1) will be satisfied. I t  is intuitively clear that it must be possible to 
observe a failure time in any subinterval of (0, TI in order estimate A. on that 
subinterval. To ensure this, assume that inft LO, ,I E;= lPITj it 5 CjI > 0. I t  is 
also clear that one needs to ensure the possibility on two or more failure times 
occurring in (0, TI in order to estimate the variance of the random effect. Here 
a stronger assumption is made; assume that P[inft, LO, ,I $, lI{Tj < t 5 Cj)  2 
21 > 0. This is enough to satisfy both assumptions (b) and (c). 

An outline of the proof of consistency. Under (a1), 2 is not allowed to diverge 
to infinity. However, if (a) is assumed, then the first step, and the hardest, is 
to show that 2 does not diverge to infinity. A natural approach is to show that 
since 2 maximizes L, it cannot diverge. Because (& i)maximizes the likeli- 
hood, L,(& 2)minus L,(B,A) must be nonnegative for any ($,A) in the param- 
eter space. The idea is to show that if 2 diverges, then the difference in the 
log-likelihoods must be negative eventually. This will be a contradiction. Un- 
fortunately ifA is continuous, L,(B,A) will be infinite for finite n, thus excluding 
the choice ofA = Ao. However, as long as A has jumps a t  the jump times of N, 
L,($, 2)-L,(B, A) will be finite. A possibility for A is 

which can be shown to converge to Ao. If Oo andAo were used as the initial val- 
ues in the EM algorithm [Nielsen, Gill, Andersen and S~rensen  (1992) explain 
how to use the EM algorithm], then the one-step estimator of the cumulative 
baseline hazard is very similar to (2.2). In the proof it is shown that, for 2 di-
verging to infinity, L,($, 2)- L,(B, A) diverges to negative infinity. This rules A 

out a diverging A as a maximizer of L,. 

Since 2 is not allowed to diverge, Helly's selection theorem can be used to 
prove the existence of a convergent subsequence of ($,2).The second step is to 
show that any such convergent subsequence of (& A) must converge to (Oo, Ao). 
The approach taken here is classical, in that it depends on the positivity of the 
Kullback-Leibler information. This approach has been used with some success 
in sieve estimation [see Karr (1987) and Gzenander (1981)l. The idea i_s to 
characterize the limit of a subsequence of ($, A) by using the fact that L,($, A) -
L,(Bol Ao) 2 0 for finite n, yet the limiting version of L, (say, L )  is maximized 
a t  (Oo, Ao). These two facts will yield L(0, A) - L(Oo, Ao) = 0, where (0, A) is 
the limit of the convergent subsequence of (82).Now the problem reduces to 
identifiability of the parameters; that is, the parameters are identifiable if and 
only if L(0, A) -L(Oo, Ao) = 0 implies that (0, A) = (Bo, Ao). Note that L(0, A) -
L(Oo, Ao) is minus the Kullback-Leibler information. As before, L,(0, A) will be 
infinite a t  A = Ao; instead use A = A from (2.2). Since A converges to A. the 
proof goes through essentially as outlined above. The identifiability equation, 
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L(0, A) -L(Oo, Ao) = 0, implies that 

This is indeed a question of identifiability, as these are the integrated intensities 
when (0, A) and when (00, Ao) are the true parameter values, respectively. The 
question becomes "Does equality of the integrated intensities imply equality 
of the parameters?" In the proof it is shown that sufficient conditions are (b) 
and (c). 

THEOREM Since this is a proof of a s .  consistency, most of 
the proof will be for w fixed in a set of probability 1. This set (say, A) is the 
intersection of sets each of probability 1.Each of these is a set on which a strong 
law of large numbers holds for some average. Instead of listing A explicitly, the 
component sets will be obvious as the proof proceeds. It is important to be careful 
that the intersection only include a countable number of sets of probability 1 
since an uncountable intersection can have probability less than 1.See Lemma 1 
for an example in which such care is taken. 

,-. 
Step 1.Fix w E A and suppose that, for some subsequence, limn,, ,A(r) = 

co.If necessary, choose a further subsequence for which 5converges (say, to 0). 
Choose 8 = 00. The goal is to show that L,,($, 2)-Ln,(Oo,A) will be negative 
for large nk. In the following, any terms which are bounded away from positive 
infinity will be represented by 0(1),and, in an abuse of notation, n will be used 
instead of nk . Recall that 

PROOFOF 2. 

Since $ and 00 constrained to lie in [0, MI, only the last two terms above are 
important to consider, 
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~ u b s t i t u t i n ~ xfrom (2.2)yields 

Let K be a common upper bound on N(T)and sup,, I,, Y(u) .Since 

Intuitively, as 2 diverges to infinity, the second term above will diverge to neg- 
ative infinity and the third term will diverge to positive infinity. The idea is 
to show that the rate of the second term is faster than the rate of the third 
term, so that eventually the difference is negative and a contradiction ensues. 
To understand the following argument better, combine the last two terms above 
to obtain 

In the sum over j, the terms with J,' Y,& >> J; Yihwill be approximately 
zero if 2 is large. So the only terms to pay attention to are the terms that are 
smaller or of comparable size to J; Yid2. The key is to show that there are 
enough of these terms so that their average times 1+ 8̂J: Yid i  diverges to 
positive infinity. For simplicity assume that P[Y(t)> 11is continuous in t. 
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Partition both of the terms in (2.4) according to a nonnegative strictly de- 
creasing sequence r = so > sl > . . . t 0 to obtain 

and 

Combining these two sums term by term yields 
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The sequence {si)i 0 needs to satisfy three conditions: 

(a) the last term above does not diverge to positive infinity; 
(b)SN+1 = 0 SO that the second-to-last term is zero; 
(c) the coefficients of ln[l + c ( s p ) l  are positive for large n. 

Recall that $converges to 8. Choose U > 1and so = 7. If 8 = 0, choose s l  = 0. In 
this case it is easily shown that lim 2(7)= co implies that L,($, 2)-L,(O0, A) 
diverges to negative infinity, and the first step is completed. Assume that 8 > 0. 
Choose sl to be the smallest value (greater than or equal to 0) for which 

Unless s l  = 0, continuity of P[Y(T) >_ 11implies equality above. Then given sp, 
p 2 1, choose s,+~to be the smallest value (greater than or equal to 0) for which 

Once again, unless sp + 1 = 0, continuity of P[Y(t) 2 11 implies equality above. 
If there exists an N < co for which s ~ +  = 0, stop. Suppose this does not occur. 1 

Then the kth partial sum is given by 
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which implies that 

Since the sequence {s,) is decreasing and is nonnegative, it converges (say, to 
so). Taking the limit as k goes to infinity of the above, results in 

This is a contradiction; so there exists a finite N for which S N +  1 = 0 and both 
conditions (b) and (c) will be satisfied. 

All that is left is to verify condition (a), that is, that the last term in (2.5) 
does not diverge to positive infinity. This term is bounded above by 

Inequality (2.5) becomes 
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This last term is just - E ~ = , E ~ f ~ ' i - ' ( i / n )ln(i/n),where 

SinceN is finite and each N ( p )converges to a positive value, the last term does 
not diverge to positive infinity. 

If P[Y(t)2 11has a finite number of discontinuities, then a similar argument 
involving both the discontinuities and the sp's will achieve the same result. 

Step 2. Once again fix w E A. Step 1 implies that limsup;l^(t) < cb,that 
is, there exists some a, depending on w, which serves as an upper bound on A. 
Any infinite sequence in the product of the set [O,MI with the set of bounded 
cumulative hazards has a pointwise convergent subsequence, say, for the sub- 
s2qEence & k l .  In an abuse of notation, denote the convergent subsequence of 
(8 ,A) by ( 8 , A) and use n instead of nk.Let (8,A) be the limit point. In Lemma 1 
it is shown that A is continuous. The goal is to show that L(8, A) -L(Bo,Ao)= 0 
and then to conclude that (8,A)= (60,  Ao).Recall that is given by (2.2). 

To begin, consider 

x dNi(u)-
1 +eoNi(u-) 

yi (u)  f i (u ) ]  [ 1+ 80 it-Y i a o  
(2.6) 

( [1+ FN~(U - ) I  / [1+Bit-YiL])YI(u)AZ(U)  
i = l  ( [ I  + 80 Ni ( ~ - ) ] / [ 1 +  yi (u)  AX^)60&'- yi ao]) I 

A - A -
+ [Ln(e, A) -Ln(eO, A)-L:,(e, A) +L:,(eO, A)]. 

Note that, for x 2 0, ln(x)- (x- 1) 5 0, implying that the second term above 
is nonpositive. In Lemma 2, it is shown that the first and third terms above 
converge to zero; this implies that the limit of the second term is zero. Recall 
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that 2 satisfies 

In Lemma 1, it is shown that the above integrand, d&&, converges in supre- 
mum norm to y, where 

and A(t) = J; ydAo. Similarly, the second term in (2.6) converges to minus the 
Kullback-Leibler information [L(0, A) -L(OO, A,)], 

([1+ B N ~ - ) ]/ [l+ 0g-Y dA])Y(U) 
(2.7) 

([I+ eoN(~-) I/ [I+ eoJ;- Y ~ A ~ ] ) Y ( U )  

The above is equal to zero as stated earlier. Formula (2.7) depends on w and the 
subsequence { n k )only through the choice of (0, A). 

Next show that (8, A) = (00, Ao). As Grenander [(1981), page 3981 demon-
strates 

- 7 - 1 for < X< i,
ln(x)- (x - 1)5 

-qlIx - 11, for 0 5 x 5 i, x 2 $, 

where 7 and 7' are positive constants. Applying the above equation to (2.7) 
yields, after some easy manipulation, that 

If the parameters are identifiable then the above equation should imply that 
(8, A) = (00, Ao). This equation depends on w and the subsequence nk only 



725 CONSISTENCY IN A PROPORTIONAL HAZARDS MODEL 

through the choice of 8 and y. Lemma 1 implies that y is a bounded left- 
continuous function with right-hand limits. Therefore, y has at  most a count- 
able number of discontinuities. Because of the left-continuity of all functions 
involved, (2.8) implies that 

for all u and a.e. P.Let TI be the time of the first jump ofN. Note that PIY(T1) 2 
11= 1and the probability that T1 is not equal to any of the discontinuity points 
of y is 1.Take the intersection of all of these sets of probability 1(including the 
a.e. set in the last equation) to get a further set of probability 1.Intersect this 
set with {Y(T1+) 1 1). This last set will have probability greater than zero by 
assumption (c). On this set, one has that both of the following hold: 

and 

Noting that Y(T1) and Y(T1+) are positive, take the difference of the above 
equations [leaving out Y(T1) and Y(T1+)l to obtain 

This implies that 8 = 80. 
All that is left to this step is to show that A =Ao. Equation (2.8) yields 

a.e. dAo x dP, which, combined with the left-continuity of Y implies that 

for all u E (0,TI. If y can be shown to be identically equal to 1, then the proof 
will be done. The supremum and infimum of y on [O, TI are either attained at a 
point or attained by evaluating a right-hand limit of y at a point. For simplicity 
assume the former; the proof is similar if the latter holds. 

Suppose that the maximum of y on [O, TI is attained at to and y(to) L 1. 
Setting u = to into the equation for y results in $to) = 1. Suppose that the 
minimum of y is attained at to and that y(to) 5 1.Once again setting u = to 
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into the equation for y results in y(to) = 1.These two results imply that y is 
identically equal to 1.Therefore y = 1a.e. dAo. 

So if (g,2)is a convergent subsequence, then it must converge to (80, Ao). 
Helly's selection theorem then implies that the entire sequence of ($, 2)must 
converge to (Bo, Ao). The proof can be carried out for each w E A. Since A is 
the intersection of a countable number of sets of probability 1, P(A) = 1and 
(g,2)+ (80, Ao) a.s. The continuity of A. then gives the a.s. convergence in 
supremum norm. C! 

APPENDIX 

PROOFOF THEOREM An outline of the proof goes as follows: 1. 
1.Observe that 2 must be discrete with positive jump sizes at  the jumps of 

Cr=iNi. 
2. The log partial likelihood L, is continuous function of 8 and the jump sizes 

ofA, that is, it is a continuous function on the set [O, M 1 x [O, U ,where U is 
finite and N. = Cy=,Ni. 

3. Show that there exists a U such that for each possible value of (8, A) E 
{[O, MI  x [O, ca)N~}\{[~,Ml [O,Ml xx [O, U p , }  there is a value of (8, A) E 
[O, U which has a higher value of L,. This can be easily done by using a 
proof by contradiction, that is, assume the existence of BU, AU E {[O, MI x 
[O, ca)N,)\{[O, M 1 x [0, U IN ), which maximizes L, for each U. Then show that 
Ln(BU, AU) can be made as small as desired by increasing U. This is the desired 
contradiction. 

The proofs of the above steps are relatively straightforward. However, care 
must be taken in step 3 because ofthe possibility that BU is equal to or arbitrarily 
close to 0. C! 

LEMMA 1. Assume (b) of the consistency theorem. Then 

sup Ix(t)-Ao(t)(-+O a.s., 
t E LO, 71 

and for each w E A and any subsequence of (6L),converging to some (8, A) (2 
converging to A at all continuity points of A), 

d'i 
sup 1 =(t) - y(t)l 4 0, sup i;i(t) -ltdAol - 0, 

t E [ O , 7 1  dA t E [O, 71 

where y is defined by 

and A is continuous. 
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PROOF.The 2 is given by 


Rao's (1963) strong law of large numbers implies that both the integrand and 
the integrator converge in supremum norm to their expectations. So 

The first term goes to zero in supremum norm since N(T) is bounded. To show 
that the last term goes to zero, note that the integrand is left-continuous with 
right-hand limits; hence a Helly-Bray argument can be used, that is, the inte- 
grand can be approximated in supremum norp by a function of bounded varia- 
tion. This plus an integration-by-parts argument suffices to prove convergence 
to zero in supremum norm. 

In order to prove the second result, it is helpful first to characterize the pos- 
sible limit of a convergent subsequence of 2,A. The following says that A must 
be continuous. Let f be any nonnegative, bounded, continuous function. Then 

where M is the bound on $ K  is the bound on Y; and a is larger than lim sup2(r). 
The law of large numbers implies that n - l ~ ? ,  lYi andm converge in supremum 
norm to E(Y) and 

respectively. Also, E(Y) is bounded away from zero by assumption (b) of the 
consistency theorem. So 
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Choosing f appropriately implies that A must be continuous at  the continuity 
points of Ao. 

Consider 

The numerator converges in supremum norm to its expectation by the strong 
law of large numbers. One expects that the denominator will converge to 

This requires a more careful argument. Consider, 

Note that the first term above is bounded by the difference between $ and 0 
times a constant, and therefore goes to zero. The second term also goes to zero 
since it is bounded above by a constant times the supremum norm of lê;i -OAI. 
Since A. [,, is continuous, A is also continuous, and therefore sup,, l ~ ( t )-
A(t)l converges to zero. At first thought it appears that the strong law of large 
numbers is sufficient to prove that the last term in (A.2) converges to zero. Recall 
that A in Theorem 2 can be at most the intersection of a countable number of 
sets of probability 1.However, the set of probability 1mayAchange with A, and 
each w can have more than one limit point for the sequenceA. Since there are an 
uncountable number ofw's and therefore possibly an uncountable number ofA's, 
the intersection of the corresponding sets of probability 1may have probability 
0.Here is one way around this problem. The space of continuous distribution 
functions is separable under the supremum norm. Let {Gl)l be a countable, 
dense set. Include in the intersection of sets forming A sets for which 

converges to zero for each rational pair (q, ql) and I > 1.Continuing with the 
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proof that the last term of (A.2) goes to zero, 

As n increases, the above terms can be made as small as desired by proper 
choice of r ] ,  r]' and 1. The denominator of (A.1) converges as expected and the 
second result is proved. 

The third result follows by one more application of the Helly-Bray argument. 

L E M M A2. Assume (b) of the consistency theorem, for each w E A. Then the 
following hold: 

converges to zero; 

([I +TN~(u-)] /[l+TJoY-Y, dn])Y, (u)&(u) 

([I +00Ni(u-)]/[l+ 60 yi d ~ o ] ) y i ( u )f i (u )  -11) 
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converges to 

and 

converges to zero. 

PROOF. In the first two equations above,&/acan be replaced by its limit, 
y. This is justified by the second result of Lemma 1.Arguments similar to those 
used in proving the second result of Lemma 1can also be used to justify the 
substitution of A for 2 in the equations in Lemma 2. Finally, both results can 
be proved by employing the Helly-Bray argument outlined in Lemma 1, the 
{Gl)l> 1 and the first result of Lemma 1. 

~ e c a l lthat 

Since both 2 and A converge to continuous limits, it is easily shown that the 
above difference evaluated either a t  (8,A) = ($2)or (8,A) = (80,a)converges 
to zero. 
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