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Abstract

In this study a complete second order perturbation solution to a modi-
fied optimal low thrust escape problem is presented. The optimal thrust
direction is shown to be tangential to first order, and oscillatory to sec-
ond order with period equal to that of the initial circular reference orbit.
The improvement of the optimal trajectory over a tangential thrust escape

trajectory is shown to be a second order resonance type effect.



I. Introduction

The problem of low thrust escape from an initial circular orbit has
been studied by many researchers using a wide variety of methods. Es-
cape using a specified thrust program such as tangential, circumferential,
or radial has been studied from both a numerical and an approximate ana-

lytical viewpoint (References 1-12) Escape using an optimal control, de-
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termined by the calculus of variations, has also been solved numerically
but little analytical work has been done in this area!® On the other hand,
numerous studies of the optimal close-orbit transfer problem, both ana-

lytical and numerical, have been reported (References 12,17-23),

In this study a modification of the problem of minimum time escape
from an initial near circular orbit under low constant thrust acceleration
will be considered. As a result of previous numerical studies, it is known
that tangential thrust is near optimal, and that the optimal control angle
exhibits an oscillatory behavior with a period near that of the osculating
orbital period, and with a mean value near tangential. The main purpose
of this analysis is to explain: (1) the relationship between the optimal and
the tangential controls, and (2) the physical significance of the oscillatory

behavior of the optimal steering angle.

II. Formal Problem Definition

The specific problem to be studied is as follows: given a space ve-
hicle in an initial near-circular orbit with energy E,, find the control angle
program which will take the vehicle to a specified energy level E ¢ in mini-
mum time. The vehicle is assumed to be subject to a low constant thrust
acceleration engine, the gravity field is inverse square, and all motion is

confined to the initial orbital plane. The equations of motion are:

r =V siny
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where

1

radial distance

polar angle

= total velocity magnitude

1t

flight path angle measured from the local horizontal

il

control angle measured from the velocity direction
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thrust acceleration

as shown in Figure 1.
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The optimal control program is obtained by application of the calculus

of variations, where the performance index and the Hamiltonian are

M.
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+ a(\z3 cos¢ + -)\v‘*sin o) ,

and the optimal control is defined by
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The multiplier equations are
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The boundary conditions are
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where the last four terminal conditions are given by the transversality
conditions, and the particular choice of the initial flight path angle will be

explained later.

III. Approximate Analytical Solution

Since 6 does not influence the problem and X\, (t) = 0, only the sixth
order system defined by (r,v,y,\;,X3 ,\s) Will be considered, A solution
in the form of an expansion in powers of a, the thrust acceleration, will be

assumed as follows:
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IIla. Zero order state variable solutions

After substituting the above expansions into the system of equations

and grouping terms in powers of a, the zero order state equations are
o = VQ Sln'Yo
vo = "‘p‘z sinvyg
To
o1 /Vg oo
Yo Vo \ T ;;z COS Yo

The solution of these equations subject to the given initial conditions is

ro(t) = Ro
Vo(t) = Rowp
Yo(t) =0

That is, the zero order solution is a circular orbit of radius Ry.

IIlb. First order state and multiplier solutions

The first order system of equations obtained from the expansions is

r; = Vysinyg + Voy;cosyo
Vl = ~E‘—2-<2H—ﬁ sinyg - chosYa + aq
- 5 V1 Ny LTy __l
= —— - + — — +
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VO 60
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Since the multiplier equations are independent of the first order state equa-

tions, they may be solved easily when the zero order state solution is

known. The general solution is



N () = c, +—§‘5 cos (wot + B)
=22 4 ot +
hay (1) =2 + £ cos urt + )

Agp (t) = c;sin (wet + B)

From the expansion of the terminal conditions in powers of a we find to

first order at tf that

)\11(tf)’ w'o)\31(tf) =0

)\41(tf) = (i
Malty) =27
which implies
) = 23
ha 1) = 3
Agy (t) =0
It follows immediately that
ag =1 — cosd =1
Bo =0 sind =0

Therefore, the optimal ""escape' control program to first order is tan-

gential thrust.

The first order state equations may now be solved using the tangential

control program. The general first order state solution is

1

2 .
r; ) =cg + -(;—t + Roc; sinwpt - Rgc, cos wot
0

- dwpcs - t 4+ RowgCy cOS wot = Rowoe sin wot

Vi (t)

2 .
v (t) = m + ¢y cos wot + ¢ sinwpt

The initial conditions for this system are

ry(0) =0

V,(0) =0
0) = ==

"o R



which implies

-2

ry (t) = "

Vi () = -t

(t) = ==
Y1 Rowo’

It should be noted that the above set of initial conditions, which correspond
to an orbit of low eccentricity, was first suggested by Lawden! in an effort
to simplify the higher order solutions by elimination of the oscillatory first

order motion of the escape spiral.

IIlc. Second order state and multiplier solutions

After substitution of the zero order solution into the second order

equations, we have
r; = Rowgyz T V1V

V, = -Rowe?yz + 2w’ Ty,
3 2(.\.)0 2 1

. () 2 1 2
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- w .
N2 = "ﬁ%‘ Naz - 2woPy A3,

. 2
Naz = ﬁz)\tzz = A1V

Mgz = ~Rowohjz + Rowo®hsz - ViNp - 2we?hs; 1y

B = My -
A31 Vo

The multiplier equations are independent of the state equations as in the
first order case, and may be solved easily when the first order solutions

are known. The general solution is

3 A
Nz (B) = wpAy - h—ogzt + E‘;'COS (wot + B)
Nsz (6) = Ay + 221 cos (gt + B)
Rowg
Nz (0) = - =3 + A, sin (oot + )
0

The second order terminal conditions obtained from the expansion of the
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boundary conditions in powers of a are

r v
Nz (b)) = wo{Naz ~N3y =2 =Ny =2 ) =0
f o Vo 4
f
A3z (tp) = 0
N4z (tf) =0

which implies
. 1
+ B) =
A,sin (wotf B8) __zwoa >0
2A

4 —L + =
A, Rowg cos (c.ootf B) =0

A, cos (wotf +p) =0

The second order multiplier solution is then

_ 3 1 .
pa .
N3p (t) = - W Slnwo(t-tf)
1
Mz () = - =z [1- coswolt- ty)]

From the control angle expansion given in the Appendix, it follows that

— : = a - -—
tan¢ = sin¢ —R_(;(:)—()T[l CcOS wy(t tf)]
The optimal control angle is, therefore, oscillatory with frequency wy and

amplitude of order a.

The second order state equations may now be solved using the oscil-
latory control program. The complete solution with zero initial conditions

on the second order state is

3 18 ~ cos wgt
. - 2 -
rs (t) Rowoz t 2R0w04 (1 CcOS (.Oot)
1 .
+ TR [coswp (t - te) + oot Sinwo(t- tf) - cos wotf]

18 - cos wqt

V, )= -‘—_m— (1 -~ cos wgt)

1 .
- m [cos wo(t - tf) +wet sinwy(t - tf) - coS wgt

f]
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8 1 18 - cos wgt
= 4+ = - —=T 1
V2 (t) RyZag? t YTII t coswy(t tf) < 2Ty g sin wgt

In the above expressions it can be seen that ""resonance' type terms
of the form tsint and tcost have been introduced by the control input
which oscillates at the natural frequency of the second order solution, It
will be shown that it is precisely these terms which make the optimal

"better'" than the tangential escape trajectory.

We now have a complete second order expansion for the state variables
and multipliers of the optimal control problem as defined in section II. The
only remaining unknown is the final time which may be found by application
of the terminal energy condition. Clearly, the solution as given will not
hold to escape, i.e., Ef = 0, since the various terms in the expansion will
become large and invalidate the assumed solution form. But if Ef is near
Ey, then the solution should be accurate. Furthermore, the control angle
for this energy increase problem should behave like that in the initial por-

tion of the escape trajectory.

IV. Energy Increase Comparison

The rate of change of energy is
E =aV cos ¢
The small parameter expansion form of this equation is
E = a[Voag +a(Voa;+ Vyag) +a% (Voap +a; Vo + V1))

since

t

V =V, +aVv, +a?V,

it

cosd = ap + aa, + afq,

From the solution in Section III and the angle expansion given in the

Appendix, it follows that

Qg < 1

a; =0 (optimal)
1

a, = -~ % W [l—COSwo(t-tf)]



For the tangential thrust program cos ¢ =1, which implies

Qp ~ 1
a; =0 (tangential)
G, = 0

The rates of change of energy on the optimal and the tangential tra-

jectories are then

E| a[Vy + aV, + a2 (V, + Voa,)]

opt opt

a[Vy +aV; + a?V, ]

1

E Itan tan

Since there is no difference between the optimal and the tangential trajec-

tories in the zero and first order solutions,

Vo| Vol

opt tan

i

V| ‘A

opt tan

The second order expression for the velocity along the tangential trajec-
tory can be determined easily. Since sin ¢ = 0 along the tangential trajec-
tory, then B; =0. After substituting f, = 0 into the second order equations
of motion above, the second order tangential state solution can be obtained.
The second order tangential velocity is

.8 _
V, itan = W (L - cos wqt)

Upon integration of the E-equations, the energy changes along the

two trajectories at any time are
2

4R00.)04

AE| | = a{Rowot -1 at? +

opt [(33+2 cos w(t - t))wot - 36 sinwet

+ 2 cos wotfsinwot - -é-sin 2wg(t - tf) - 4sin Zwotf]}

2
— ; a
AEltan = a{Rowot -iéadtZ + ZR—OJ(F[:;ZQ)Ot - 32Sinwot]}
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The energy difference between the two trajectories at any time is

a3

A(AE) ) 4R0w04

{[l +2co8s wy(t - tf)] wot - 451in wot + 2cos wpt, sin wet

f

-1 sin 2wt - te) - 4sin Zwotf}

At the final time

a3

= , + ._l. 1 - 1
A(AE)f W [3(30tf 5 Sin Zcootf 4sin wotf]

It can be shown that A(AE), is positive for all wgt In fact for small wyt

f f f’
the series expansion of the trigonometric expressions can be used to show
that

a3

A(AE)y = grm=—g (woty)”
Therefore, at the time the optimal trajectory reaches the specified termi-
nal energy, the energy level is higher than the energy level at the corre-
sponding time on the tangential trajectory. This implies that the optimal
trajectory will reach a specified terminal energy level faster than the tan-
gential trajectory. It must be noted, however, that at intermediate times
the energy on the tangential may be greater than on the optimal. In other
words, the tangential trajectory may reach intermediate energy levels
sooner than the optimal. This phenomenon should not be entirely unexpected
since the minimum time trajectory to a given energy level is not the mini-
mum time trajectory to all lower energy levels, It is only the minimum
time trajectory from the initial state to all of the states occurring along

the optimal.

It is well known that the tangential thrust program at each instant
maximizes the rate of energy increase along a trajectory!® . Therefore,
it is reasonable to ask how the optimal manages to improve on the tan-
gential. Since it has been shown that the optimal is tangential to first order,
higher-order terms must produce the difference. In looking at the second

order solution, we find that the difference between the tangential and
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optimal velocities may or may not be positive at any given time. However,
the difference between their mean values taken over a revolution-to-go,

fromt=1t,- QN+2)w/wy tot =1

¢ - 2N7w/wg , is greater than zero, i.e.

2

f

. — _ 3a% _
Vz[opt Vzltan AV = 2Rowe 0.

— ——

We conclude then that on the average the velocity is higher along the opti-
mal trajectory. If the tangential velocity is compared to the component of
the optimal velocity in the optimal thrust direction , the mean value of the
optimal velocity component is also found to exceed the mean value of the

tangential velocity, i.e.,

Y = _ 3a°
V cos ¢l0pt Vltan = m >0

Therefore, not only does the optimal velocity exceed the tangential velocity
on the average, but also its component in the direction of thrust exceeds
the tangential velocity. Recalling that the rate of energy increase depends
only upon the thrust acceleration and the velocity component along the
thrust vector, we see that the optimal improves on the tangential by main -
taining a higher velocity component in the direction of thrust. The key to
the higher velocity on the optimal is the existence of the ''resonance" type
terms in the optimal velocity expression which have been introduced by the

control angle oscillations.

Considering the motion from a physical viewpoint, on the escape
spiral the low thrust engine does work on the spacecraft causing its energy
to increase., The vehicle spirals outward increasing its potential energy
and decreasing its kinetic energy. The rate of energy increase depends
highly upon the vehicle's velocity, i.e., its kinetic energy, and therefore
decreases as the vehicle moves out. The tangential thrust program maxi-
mizes the rate of energy increase at each point along the trajectory but
makes no direct effort to control the vehicle's velocity. The optimal
thrust program, on the other hand, causes the energy to increase in such

a way that the rate of increase of potential energy and rate of decrease of
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kinetic energy are reduced. The higher kinetic energy on the optimal then
gives the vehicle more capability for increasing its energy as it moves out.
The vehicle uses this additional capability in the latter portion of the tra-
jectory to add more energy than it could on a tangential thrust trajectory,
and in this way achieves escape in less time. The oscillation in the opti-
mal control angle is a result of the trade-off between keeping the rate of

energy increase high and the rate of kinetic energy decrease low.

V. Numerical Results

In order to test the accuracy of the approximate analytic solution, a
comparison was made with an exact optimum energy increase trajectory.
The exact solution was generated by numerically solving the two point
boundary value problem using a secant iteration method. The initial val-
ues of the analytic multipliers were used as first guesses in the iteration
scheme and seemed to work quite well. The initial values for the state
variables were

r(0) = 6.67817 X 10® meters
V(0)
Y (0)

I

7.72580 X 10® meters/sec

2.19518 X 10" ° radians

These correspond to an initial orbit with the following eccentricity and

energy

H

-3
€y 2.0X 10

Eo

il

-2.98440 X 10" newton-meters/kg
The specified terminal energy was

B, =-2.86218 X 107" newton-meters/kg

which corresponds to wet, = 6 in the analytic solution. Since

wg =1.15687 X 107 , thefanalytic te = 1.629353 X 10* seconds. The termi-
nal time found in the numerical solution was te = 1.629351 X 10* seconds.
In Figures 2 and 3 a comparison between the analytical and numerical so-
lutions is made. The state variables are in close agreement, as are the

costate variables, with the primary differences appearing as a slight
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mean value offset in the velocity costate, and as a small period discrepancy
in both the velocity and flight path angle costates. The optimal control

angles are also close with only slight differences in period and amplitude.
A solution was also carried out using a terminal energy of

E, = -2.58695 X 10" newton-meters/kg

f
In the analytic solution this energy level occurs at wotf = 20w, or tf =
5.43117 X 10* seconds. Numerical resulis give a final time, tf =

5.43116 X 10* seconds; and again the analytical and numerical state and
costate variables differed only slightly. The determination of the full

limitations of this approximation are currently under study.

VI. Conclusions

As a result of this analysis we reaffirm the well known fact that for
low thrust spiral escape trajectories, tangential thrust is nearly time
optimal, and in fact, is optimal to first order in the thrust-acceleration
expansion solution, In addition, we now conclude that the observed oscil-
lation in the optimal control angle is a second order resonance type phe-
nomenon which reduces the velocity loss and therefore increases the rate

of energy gain along the trajectory.
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Appendix

In the solution of the systems of equations it was found easier to con-
sider separate expansions of the control angle functions rather than to use
the multiplier expressions directly. The optimal control program is de-
fined by

Ay

tan ¢ = NV

By assuming expansions of the form

V=Vy+aV; +a%V, +:--

i

a)\31 + az)\32 + 33)\.33 + e

A3

)\4 = a)\‘n + az)\.42 + as)\.‘r, +oo.

we obtain
tan ¢ =mo +an +afn, +---
where
_ gy
M0 N1 Vo
1 vV, >\32>J
= Nz - hgy | =L + 232
n A3y Vo [ SN 7N WA

— i o eeme—

= Ny - A Fhg ( D32L 4 232
nz N33 Vo [45 2\ Vo s 41<)\31Vo Ay VE N Vo

Next consider

\ Ay V
sin ¢ = ——2—— | cos ¢ = 32
NAZ +NZV? NAZ +aZ V2

which can be written as

-

cosd = [1 +tan?¢] 2

sin ¢ = tand cos ¢
Substituting in the expression for tan ¢ and expanding in a Taylor's series
about a = 0:

cosd = ap + aa; + ala, +-..

where
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@ = (L+mnd) 2

oy = -MeMm (I + TI(Z,)_ 2

-5 _3
oy =3B+ nd) 2 - P+ 2nm) A+ mY) 2.

Using the expansions for tan ¢ and cos ¢ we obtain

sing =By +ap; +atp, + -

where
Bo = mo(l + nf,)"i
2"l 2'%
Br =m (1 +nf % - mmo(l + np)
-4 -
B =M1+ M) % -3 (-3non; + 2ngna) (1 +m)

3
2 3

2

Ton;

-1
1+mnl) 2
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