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Abstract

Stereo information can be obtained using a moving camera. If a dynamic
scene is acquired using a translating camera and the camera motion parameters
are known, then the analysis of the scene may be facilitated by Ego-Motion Com-
plex Logarithmic Mapping (ECLM). It is shown in this paper that by using the
Complex Logarithmic Mapping (CLM) with respect to the focus of expansion, the
depth of stationary components can be determined easily in the transformed
image sequence. The proposed approach for depth recovery avoids the difficult
problems of establishing correspondence and computation of optical flow, by
using the ego-motion information. An added advantage of the CLM will be the
invariances it offers. We report our experiments with synthetic data to show the
sensitivity of the depth recovery, and show results of real scenes to demonstrate
the efficacy of the proposed motion stereo in applications such as autonomous

navigation.
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1. INTRODUCTION

Depth determination is a continuing problem in computer vision. Research
in this area is motivated by the perceived need for autonomous vehicles, vision
for the blind, realistic flight trainers, models of the human visual system; ete.
There is a plethora of depth determination techniques. Many different stereo sys-
tems for depth determination have been developed just in the last few years.
The Marr-Poggio [Mar82] theory of human stereo vision forms a basis for several
of them. Grimson [Gri81] implemented a version of it by using the Laplacian of
the Gaussian to find matchable elements - zero-crossings of the same sign and
similar orientation - in each of two images. Four different filter sizes were used
and matches with the coarser filters were used to limit the search area for
matches in images from the finer filters. Disparity of the matched points in the
finest filter were used to determine depth. Smitley and Bajcsy [SmB84] use a
method similar to Grimson. However, they use a DOG operator on an image
smoothed with a non-linear filter which they designed, and a two stage matching
process. Burr {Bur84], Ikeuchi {Ike84], and Grimson {Gri83] address the problem
of recovering surface details by modifying the Marr-Poggio approach. Homma
and Fu [HoF84] match regions in two stereo images instead of lines or points,
where a region corresponds to an object surface having a continuous depth and

change of depth.
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Most of the above schemes use the human visual system as a model for cam-
era location. Many other camera geometries have been reported in the literature.
Wu, Wang, and Bajesy [WWB83] and Nevatia [Nev76] obtain multiple images of
the object for 3-D data acquisition by placing the object on a turntable and
rotating it. Luh and Klaasen [LuK79] describe a system for robot collision
avoidance in a work area. Three cameras are mounted orthogonally so they can
each view the work area. Matthias and Thorpe [MaT84] used the algorithm for
the Stanford Cart as a basis for developing a robot navigation system. Because
of the time required to process the information in the nine images obtained in the
original implementation, they used only two images. To compensate for the loss
of information, they use information from the previous pair of pictures and added
some constraints to the correspondence algorithm . The net result was signifi-

cantly faster runtime, with slightly degraded performance.

One of the main problems in stereo vision is the time it takes to process the
two or more images. Safranek and Kak [Sal{83] propose a hardware system to
implement the Marr-Poggio method, with provisions for using the peaks and val-
leys of the filtered images as well as the zero-crossings. A second serious problem
encountered in stereo vision algorithms is matching the points, lines, regions, etc.
in the two images. Several methods to solve this problem in a reasonabie amount
of time can be found in the survey article by Baranad and Fischler [BaF82].
Stockman and Esteva [StE84] describe a ‘“cluster space stereo’” which simplifies
the correspondence problem. They assume an industrial type environment with

few objects and known geometrical models of those objects. Berthod and Long
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[BeL84] solve the correspondence problem by mapping it to a graph matching

problem which they then solve using a parallel optimization method.

Gu, Yang, and Huang [GYH84] suggest a matching method for two images
of a moving object. Their matching is based on circuits in the graph representa-
tion of objects. The method can be directly applied to stereo matching, however.
Nishihara [Nis84] has developed a real-time, noise tolerant stereo matcher. To
achieve noise tolerance, he uses the sign of the convolution, rather than the zero-

crossings, as these degrade more gracefully in the presence of noise.

Stereo information can aiso be obtained using a single moving camera. [toh,
Miyauchi, and Ozawa {IMO84] present a method of obtaining depth information
using a single camera. The camera is constrained to move along its visual axis.
Corners of a cube are used as the points to be matched. Depth information is
obtained from camera parameters and the geometry of the situation. Zacharias,
Caglayan, and Sinacori [ZaC85,ZCS83] use a relaxed version of this camera/scene
relationship to model a pilot’s ability to navigate "by the seat of his pants”. The
problem they address is estimating self motion, which is essentially the dual of
object depth determination. They assume a stationary, textured visual field. N
points in the visual field are considered. For each one an "impact time” is calcu-
lated, that is, the amount of time untii the pilot would crash into the point if he
were aimed at it. This quantity is derived from a unit length line-of-sight vector

and a rate of change of this vector over time.

Jain and O'Brien {JaO84, OBJ84| initiated some studies using the same cam-

era configuration that Itoh, et al, describe. However, they approached this
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problem very differently; they map images into a complex log space where the
movement of the objects in two dimensions due to the camera motion becomes a
translation along one axis in the new space. Given this phenomenon, the
correspondence problem is greatly reduced, since only a small strip of the new
space needs to be searched. This constraint is similar to the epi-polar constraint
in stereo. In addition, the transform is scale and rotation invariant. It also has
an analogue in the human visual system - the mapping of the retinal space into

the striate cortex is very closely approximated by the CLM.

Recently, many researchers have been studying systems which acquire
images using a mo{ring camera. Optical flow has been studied with the aim of
recovering information about the environment and the motion of the observer. In
this paper, we discuss some characteristics of optical flow that are useful in
analyzing dynamic scenes, and then discuss briefly the Ego-Motion Polar {EMP)
transformation that is useful in separating stationary and nonstationary com-
ponents of a scene acquired using a translating camera [Jai83]. Next we present
some aspects of the CLM and then introduce the Ego-Motion Complex Loga-
rithmic Mapping (ECLM). We show that the ECLM maintains projection invari-
ance for arbitrary translational motion of the observer and can be used in recov-
ering the depth of stationary objects. We also present aspects of the mapping
that are useful in finding the precision of the information that can be recovered
using this mapping. Finally we discuss our experience in recovering depth in
laboratory scenes. Our aim in this paper is to show that motion stereo, in the

case of a translating observer, can be efficiently impilemented in the ECLM space.
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2. EGO-MOTION POLAR TRANSFORM

It has been shown that optical flow carries information about the structure
of the environment and the motion of the observer {Clo80,Gib79,Lee80,Prago0).
Optical flow is the instantaneous field of velocity at image points due to the
motion of scene points relative to the viewer. When an observer moves through a
scene, all points in the scene are in motion relative to him. Points which are close
to the observer appear to move relatively faster than points which are further
away. The flow vectors due to the stationary components of a scene intersect at a
point, as shown in Figure 1. This point is called the Focus of Ezpansion (FOE). It
has been shown that the FOE plays a vital role in the recovery of information

from the optical flow field [Lee80, Pra80].

The last few years have seen increasing efforts to use optical flow in the
analysis of dynamic scenes. Many approaches have been proposed for the compu-
tation of optical flow from images of a dynamic scene. Most of these proposed
approaches consider two frames of a scene to compute the flow field. Based on
the research reported in the literature, it appears that the computation of accept-
able quality optical flow for real world scenes is a very difficult problem [BrH83J.
Moreover, the methods for the recovery of the information are sensitive to the
noise in the optical flow. Thus, in most realistic applications, the information

obtained from the computed flow fields may not be reliable.

In many applications, such as robot vision, either the camera moves under
computer control or the camera motion parameters can be obtained using some

means. If the camera displacement betwecn two frames i1s 4X,dY,dZ, then the
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FOE for these frames is

dX
dY
Fy =— (2)

The information about the camera motion parameters, and hence about the FOE,
may be used in the recovery of information. Jain tried to explioit characteristics
of optical flow without actually computing the optical flow field [Jai83, Jai84]. He
used a transformation on images acquired using a moving camera to segment a
dynamic scene.into its stationary and nonstationary components. This transfor-
mation, called the Ego-motion Polar transform {EMP), is centered around the

FOE and converts the original image /(z,y ) intc an image /°(r,d) using

I'(r 8) = Iz ,y) (3)
where
r = /(z-F, J+(s-F, | {4)
and
y-Fy) -
0= arctan(z_FI) (5)

This transformation is shown in Figure 2.

It is shown in [Jai84], that for a moving observer, all stationary points in a
scene will show only horizontal displacement in the EMP transformed image.
This fact can be used to determine whether an object is moving or not. As

shown in Figure 3, the apparent motion of stationary points is converted from
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assorted directions, depending on their locations in the image plane, to unidirec-
tional motion in the EMP space. The stationarity of an object is judged by the
absence of a 4 component for the region corresponding to the object in the EMP
space. An algorithm was developed to implement this scheme. The results for

real world scenes are reported in [Jai84].

3. COMPLEX LOGARITHMIC MAPPING

Schwartz showed that the reitno-striate mapping can be approximated using
a Complex Logarithmic Mapping (CLM). Retino-striate mapping, a common
feature of vertebrate sensory information processing, is a spatial mapping of the
peripheral sensory receptive surfaces onto corresponding parts of the central ner-
vous system [Sch77]. In our own human vision system, as well as those of lower
animals, it has been found that the excitement of the striate cortex can be
approximated by a Complex Logarithmic Mapping (CLM) of the eye’s retinal
image. In other words, what we see as the real world and what is focused on the
retinas of our eyes, is reconfigured onto the striate cortex by a process similar to
complex logarithmic mapping {Sch77,Sch80,Sch81,Sch82] before it is examined or
interpreted in our brain. Schwartz further argued that this mapping is responsible
for the scale, rotation and projection invariances in the human visual system. As
is well known, these invariances play a vital role in human visual perception.
Cavanaugh [Cav78,Cav8l], however, showed that Schwartz’s claims about the
CLM resulting in the invariances are correct only under certain conditions. The

rotation and scale invariances are obtained if the object is in the center of the
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image and the rotation and scale changes are with respect to the origin. The pro-
jection invariance is obtained only if the direction of the observer's gaze and

motion are the same.

Let us look at the mathematical definition of CLM. Complex log mapping

may be written mathematically as
w = logz (6)
where w and z are complex variables:
z = z +iy = r(cosf+isinf) = re "/ (7)
and
w=u(z)+iv(z) (8)
In this way, a function or image in z-space with coordinates z and y is mapped to
w-space with coordinates s« and v. The mapping is obtained from the simplified
equations:

u(r,0) = logr (9)

v(r,g) =19 (10)

There are many attractive features of this mapping [ChW79, BGT79,
SaT80]. From the psychological viewpoint, it is the only analytic function which
maps a circular region, such as an image on the retina, into a rectangular region.
This is a desirable feature for the study and modelling of the human visual sys-
tem. The mappings of two regular patterns are shown in Figure 4 to result in

similarly regular patterns. It is seen in Figure 4a that concentric circles in an
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image or the z-plane become vertical lines in the mapped w-plane. This becomes
obvious when one examines the CLM definition above. A single circle maps to a
single vertical line since the constant radius, r, at all angles, 9, of the circle gives
a constant u coordinate for all v coordinates in the mapped spaée. Similarly in
Figure 4b, an image of radial lines which have constant angle but variable radii,

result in a map of horizontal lines.

Through these mappings, we can demonstrate some of the invariances of
CLM that may be helpful in image understanding. The first such invariance is
that of rotation. In Figure 4a, we saw that for a circle, all possibie angular orien-
tations of a point at the given radius will map to the same vertical line. Thus, if
an object is rotated between successive images, this will result in only a vertical
displacement of the mapped image. This same result can be seen in Figure 4b.
As a radial line rotates about the origin, its entire horizontal line mapping moves

only vertically.

Another characteristic of CLM is size invariance. This also can be seen in
Figure 4. As a point moves out from the origin along a radial line in Figure 4b,
its mapping stays on the same horizontal line moving only from left to right.
The mappings of the concentric circles of Figure 4a remain vertical lines and only

move horizontally as the circles change in size.

A third important invariance is that of projection. When an observer
translates in space, the images of objects appear to remain unchanged. Thus,
though the images of stationary objects do change on the retina, the object per-

ceived on the striate cortex does not change. This is due to the fact that in the
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CLM space, translation of the observer only causes the object image to be dis-
placed in the horizontal direction; the size and shape of the object image remain
uncaanged.

These invariances may be useful for object recognition. Reitboeck and Alt-
mann [ReA84] note that size and rotation variations become translations in the
complex log space when the object is in the center of the image. They propose
applying a translation invariant transform to the resultant images to get tem-
plates suitable for matching with templates of known objects for recognition.
The Fourier transform is dismissed as a candidate since there is no evidence that
it is used anywhere in the visual system. The authors propose a C-transform,
which is more consistent with operations that neurons can do. The Laplacian of
the Gaussian operator is applied to the images before they are mapped into the
complex log space. All the operations the authors do on the images can be per-

formed with special hardware.

Massone, Sandini, and Tagliasco [MST85] study some of the characteristics
of the CLM. They present a sampling algorithm based on the human visual sys-
tem. A template matching approach is used for object recognition, where the
center of gravity of a binary image of the object is used for the origin around
which the object is mapped. Templates of the known object are created in this
manner, as are maps of unknown objects.

Messner and Szu [MeS85] propose an architecture to perform an algorithm
that simulates the CLM. A nonuniform sampling grid similar to the sampling
algorithm of Massone, et al, is hardwired into a uniform grid. They show that

10 Motion Stereo
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this mechanism duplicates the properties of the CLM.

Reeves, Prokop, Andrews, and Kuhl [RPA84] compare the performance of
several shape recognition methods based on moments and Fourier descriptors.
Each of these methods requires a large library (hundreds) of views to compare
with the transformed image. This, along with the fact that these methods have
no analogue in the human visual system, makes them less attractive then a com-

plex log based approach.

Arsenault, Hsu, and Chalasinska-Macukow [AHC84] present a rotation and
space invariant pattern recognition system based on matched filters. The various
order circular harmonic components are used to differentiate between similar
objects. However, there is no way to tell, a priori, what order component will be
needed in a given situation. More work will have to be done before the perfor-

mance of this method can be compared with the CLM.

Chaikin and Weiman[ChW79] have pointed out several advantages of the
CLM in computer vision systems. In particular they show that the CLM space
may allow iconic processing and can be implemented in hardware. Other advan-
tages of the CLM for industrial applications are suggested in [ChW79, SWC81].
Thus, we see that efforts have been made by several researchers to use features of
CLM for object recognition. Some efforts are in progress to have a hardware
device that can transform an image from cartesian space to its CLM representa-
tion in real time [Ken83]. One very attractive feature of Complex Logarithmic
Mapping is that it is conformal and, hence, unlike most other commonly used

transformations in image processing, does not lose spatial connectivity of points.
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An important property for information recovery from images is that a surface in
the real world is mapped into a single region in an image. This surface coherence
is used in recovering the structure of surfaces from the corresponding regions in
images. The CLM preserves regions and hence also allows recovery of surface

structure.
4. EGO-MOTION COMPLEX LOG MAPPING

To achieve the invariances, which are so important, the images must be
obtained under certain constraints. The scale and rotation invariances are
present only if the object is centered in the image, and the scale and rotation
changes are with respect to the origin. In other cases, these invariances are not
obtained. The projection invariance is only obtained by a camera translating
along its optical axis. In this case the direction of the gaze and the direction of
the motion are the same. This is a serious constraint. Indeed, in this case the
FOE is (0,0) and hence the projection invariance really is the same as the scale
invariance. If the observer motion is transiational and is known, then the FOE
is also known. The CLM is then taken so that all radii, r, and angles, ¢, are in
reference to this calculated FOE. This transformation is called Ego-Motion Com-
plex Logarithmic Mapping (ECLM), since the mapping is performed with regard
to the motion of the camera/observer. Let us consider this transformation for a

point in the 3-D space.

When the observer moves in the direction of his gaze, the (X,Y,Z) coordi-
nates of objects which are stationary relative to the observer, change only in the

Z coordinate. With the perspective projection, the invariance resuiting from the
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ECLM gives only a horizontal displacement between images for corresponding
points. This is very similar to the size invariance and can be compared to it and

visualized with a little thought.

For a stationary point in the environment, with real world coordinates
(X,Y,2) relative to the observer at a time instant, the perspective projection,

(z,y), of this point onto the image plane, is given by

8
l

Ni ]

(11)

L
I

(12)

assuming that the projection plane is parallel to the XY plane at Z=1. For a
translational motion along the direction of the gaze of the observer, the relation-
ship between the distance, r, of the projection of the point from the FOE, and

the distance, Z, of the point from the observer is

dr _aaPeyt (13)
z dZ -z
By the chain rule
du du _dr
iz w (14)
and from equation (9),
du 1
T =7 (15)

Therefore, we have
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RSD-TR-3-86

du 1
iz =~ Z (16)
Similarly, to find 42 |
dz
_.1_3!_
g _ ) o (17)
dZ dZ o
and
dv dv d8
2z ~ a0 iz =° (18)

In equation (16) we see that the depth, Z, of a point can be determined from
the horizontal displacement, du, in the ECLM for that point, and from the velo-
city, dZ, of the observer. Furthermore, the axial movement of the observer will
result in only a horizontal change in the mapping of the image points since
dv/dZ = 0. There will be no vertical movemert of the mapped points and thus
correspondence of points between the two stereo pictures will become easier. Note
that this is similar to the epi-polar constraint used in the lateral stereo. Now,
assuming that there is sufficient control of the camera to be able to determine
the amount of its movement, both variables necessary to determine image depths
are readily available. Thus, it is possible to recover depth, in principle, if the

camera motion is along its optical axis.

What is more interesting is that the depth can be recovered using the above
technique even if the camera motion is not along its optical axis. To see that the
depth can be recovered for an arbitrary translatory motion of the camera, let us

assume that the polar transform is taken with respect to the point {¢,5) in the

14 Motion Stereo



RSD-TR-3-88

image plane. Then

r=vV{z-af+(y-b)

(19)
u=log r =log ( V(z - a)+ (y- b))
Now
du d _ L dr
Z =7 8T I (20)

Let us substitute for z and y from equations (11) nad (12}, and evaluate dr fdZ.

dr _ dV(X]Z-ay+(Y][Z-b)

4z z
1 ZdX/dZ-X ZdY/dZ-Y
=2\f(X/Z—a)2+(Y/Z—b)2 {2()(/2—,;) z* +AY[2-4) 22 } (21)

= \/(X/Z—G)2;+(Y/Z—b)2 ‘;— ’ [(X/Z—G)(dX/dZ—_X/Z)—}-(Y/Z_b)(dY/dZ_Y/Z)]

Hence

du 1 1 —a . . .
&~ T ¥ [0/ 2-a)axaz-x/ 2y+(Y  2-b)aY fiz-Y ) 2)]

Now suppose that we let (s,5) be the FOE, i.e.

X dY
a—-ﬁ and b-——d'zf

Then, substituting for dX/dZ and 4Y/dZ

du 1 1 2 2
7 T X[Z-ep+(¥ZbF T [/ 2-a - (v 2-+7]

1

Z

Now let us examine dv/dZ, when v is calculated with respect to any FOE (a,b).
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1
A b d (y-8)
¥4 (:z—a)2 dZ z-a

Considering only the second factor of this equation, and substituting for z and y

d (y-b) _ d (7 -8
dZ (z-a)  dZ & g
7 -
X dY 2 Y 74X 2
B L s SOl ek
- —
("Z— -a)
g g 7)) )
Z(iZ(- -a)?

Remembering that dX/dZ = s and dY/dZ =

X Y X Y
4 (b)) _ (5 -0} (b5 H7 -0} (- )
dZ (z-a) X
Z(-? —8)2
=0
Therefore,
dv
r7

Note that when the polar coordinates are obtained with respect to the FOE,
then the displacement in the u direction depends only on the Z coordinate of the

point. For other values of (s,5) the above property will not be true.
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Another interesting feature of this stereo approach is that, if required, we
can obtain many frames for solving ambiguities that cannot be resolved based
only on two frames. Moravec [Mor81] developed a technique for interpolating
over nine frames which he used with common stereo. This technique may be
even more applicable to motion stereo, because the series of frames can be natur-
ally extended each time the observer moves. The frame sequence can be con-
stantly updated by merely pushing back the current series by one time instant

and adding a new frame to the front of the sequence.

5. THE MAPPING

Mathematically, each point in the image space corresponds to exactly one
point in the space transformed through CLM. However, in computer vision sys-
tems where only a finite amount of memory space and computation time is avail-
able, an image can only be stored as a finite number of pixels and only a finite
number of intensities are representable. This quantization of the image leads to
ambiguity in the mapping, since an image pixel can map to a range of pixels in
the transformed space. For example, for a pixel in the first quadrant with coordi-

nates (z,y) at the lower left corner, the « coordinate in the transformed space will

range from logvz*+y? to logv(z +1)*+(y +1)° and the v-coordinate will range from

tan to tan These ranges can be quite wide for points close to the

a vy ay +1
z z
origin, or practically negligible for points far from the origin.

We considered several different interpolations of the image pixels to produce

the CLM. One very simple method we examined involved merely computing the
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range of each image pixel in the mapped space and setting each map pixel in this
range to the corresponding image intensity. This procedure resuited in a very
broken, choppy mapping. We also tried working inversely from the mapped
space. The image point corresponding to each pixel in the CLM space was deter-
mined, and then various interpolations of the intensities of the image pixels
around this point were tested. This method of inverse mapping resuited in a

much smoother CLM.

The combination of image pixels we found that resulted in the most continu-
ous and pleasing mapping was surprisingly simpie. It involved merely adding the
intensities of the portions of the image covered by a three pixel square centered
at the point found from the inverse mapping. An indication of how this worked
is shown in Figure 5. The resuits of such a mapping are shown in Figure 6. This
method may be refined by assigning weights to the various areas of the square.
In the future, if the CLM indeed becomes useful, it can easily be implemented in

hardware.
6. AVAILABLE RESOLUTION AND TIHE BLINDSPOT

8.1. Available Resolution

The degree of resolution available for the determination of depth in motion
stereo depends directly on the amount of resolution used for the images and the
mappings. The resolution determines how large the pieces of information are
that must be squeezed into each pixel. As the resolution increases, the informa-

tion can be kept more exactly. With infinite resolution we could determine
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depths exactly. Unfortunately infinite resolution requires infinite memory and

computation, which we cannot provide.

To distribute the entire image onto a mapping. The factor which we use to
distribute the u coordinate over the mapping will determine what depths can be
recovered, since it will tell what increments of du are possible. The u scale factor
was found in the foilowing way: The resolution for both the images and the
mappings was the same and shall be called . We produced images so that the
FOE was at the center of the image, therefore the z and y coordinates in an

image could range from - -% to + l;- . The maximum possible value for u, then,

U ax = log (é’— 2+ (-g— 2 == log(% v?2)

Thus, the u-axis of the CLM will range from 0 to u,, over p pixels, and every «

in the CLM determined from the image pixel locations is multiplied by —u—-’i— SO

max

that they are distributed over the entire CLM. We do not consider that « may
have negative values since all mapping is done in reverse from the map to the
image and there are only four pixels directly adjacent to the FOE which can have
distance less than one and result in a negative u. These pixels will be interpo-

lated into the map by their neighbors.

The smallest du that can be detected, for the camera displacement of one

)

uma.x

pixel, is —u;ﬂ and, therefore, the greatest distance that is recoverable is
No u displacement between mappings for corresponding points in the CLM
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indicates that the depth of that point is too much greater than this to be deter-

mined. Other dus can be found in integer multiples of ﬁ;ﬁ , Le.,

du=n X

for n = 1,23,...
and the depths which can be determined will be

Z = 1 x —2— for n = 1,2,3,...
n

% max
See Table 1 for depths recoverable with different resolutions.

It is interesting to note that as n increases, the depth Z decreases and there
is increasing accuracy available. In other words, the depth of points that are
closer to the observer can be more precisely determined than points that are
further away. This is similar to what we observe in our own vision, that we can

perceive depth best for objects which are close to us.

The numbers in Table 1 tell us some of the limitations of axial motion
stereo. At a very low resolution of 128x128, the greatest distance that can be
recovered is about 28 units (where 1 unit is the distance dZ traveled between
images). All points that are much further away than this will have no u displace-
ment. Also, for small u displacements of very few pixels in the map, there are
large intervals between the depths that can be recovered. Specifically, the second
furthest depth that can be determined is exactly half of the furthest depth! This

is quite a large distance, especially relatively.
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38.2. The Blindspot

The fact that closer points can be more precisely gauged makes good practi-
cal sense. The importance of five feet difference in depth between 1 and 6 feet is
much greater than the same difference between 25 and 30 feet. For objects that
are close to us, usually a decision must be made about how to treat or avoid that
object before a similar decision is made for more distant objects. It would be

advantageous, however, to have more precision available.

As was shown above, the available resolution depends on ug,,. In fact, the
resolution depends on the range of s values for the mapping. In the above dis-
cussion, the lower bound, ., was assumed to be 0. The resolution at the peri-
phery can be improved by sacrificing some vision along the line of sight. We can
introduce a blind spot at the FOE in the image, and thus increase up, Depend-
ing on the size of the blindspot, the range [u g, umd Will change and hence the
resolution will also change. The resolution at the periphery wiil improve with

increasing size of the blindspot. This can be seen from Figure 7.

7. EXPERIMENTS
7.1. Synthetic Images

We studied the precision of the recovered depth as a function of the location
of the object in the visual field, and also as a function of the camera movement
by generating synthetic images and simulating the movement of a single "block”

from a centered location toward the right. A series of 3 images taken from dif-
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ferent distances is simulated for each position of the block as it moves. Distances
of the object from the original ”camera position” are calculated using the first
and second images, the second and third images, and the first and third images.
The percent error in the distance calculation for each set of images is plotted for
each position of the block. The plots in Figure 8 show results of our study. The
percent error is a function of the distance of the camera from the object, the dis-
tance the camera moves, and the size of the object in the image. Data for two
sizes of objects, three camera distances, and two camera movement values are
included. For all this data, the location of the block after the camera "moves” is
calculated using perspective projection and then ”digitized”. For comparison, a
set of data is included for which the location of the block in the second image is
not "digitized”, that is, the double precision values are mapped rather than their
closest integer equivalent. Note that the error is constant in this case. This

shows that the fluctuation of the error is the result of digitization error.

The effect of the initial distance of the camera on the percent error is stu-
died directly by having the block remain at the same location relative to the
center of the image. This was done with the block at different locations with
respect to the center. Two sets of data with these constraints were collected. In
one, the size of the block in the image remained constant; in the other, the size of
the object in the space remained constant. The first case would be equivalent to
moving the camera back and using a larger object. This was done to study the
effect of the size of the object in the imagé on distance determination. In the

other set, the size of the object in the image is adjusted, based on perspective
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projection. In each series, data was collected until there was no change in the
location of the block in the image after the camera "moved” or until 22 sets of

data had been obtained. The results of the experiments are shown in Figure 9.

There does not seem to be a simple relationship between the error and any
of the variables studied. For example, in some cases, a larger camera movement
resulted in less error while in others it resulted in more. Digitization errors
appear to dominate and hence working with higher resolution images will be a
big help. It may be the case that the error is minimized when the map that is
used "matches” the object and its location, that is, when the "mask” of this algo-
rithm and the block fulfill the constraints of Massone, et al. It is an interesting

idea that needs more research.
7.2. Depths Using Real Images

To study the efficacy of the proposed approach for real scenes, we performed
several experiments in our laboratory. We mounted a camera on a PUMA robot.
This set up allows us to move the camera in a desired direction by a desired

amount.

The objects used were wooden blocks with dimensions less than 6 inches.
We were forced to place objects within a small depth of each other due to the
limited depth of field of the camera. By placing objects far away, we could do
some more experiments, but our laboratory set-up did not allow us to perform
these experiments. Moreover, we were more interested in studying the efficacy of

the proposed approach, which could be done by considering a limited set of
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scenes. In the first image the lower right corner of the farthest block was piaced
in the center of the image. A paper triangle was mounted on a block and posi-
tioned so an acute angle lined up with the block corner. The position of the tri-
angle was marked and experiments were done to guarantee the reproducability of
its position. The image was obtained with the triangle removed, then the camera
moved 6 inches forward. The triangle was replaced and the camera location
adjusted so the acute angle and the corner of the block lined up. This process
was repeated until 5 images had been obtained. The 512 x 512 images were
shrunk to 128 x 128. Three frames of the sequence obtained are shown in Figure

10.

Corners were found and the coordinates in complex log space of these points
were calculated. The corner detector used simple masks to find corners, so the
corner images produced were noisy. No effort was made to remedy this since it
served to make the problem more challenging. The corners obtained using our
algorithms are shown in Figure 11. Note that the location of the corners is noisy

and many false corners are detected.

The corners were mapped tp the ECLM space. Figure 12 shows the corners
of Figure 11 mapped in a composite frame in the ECLM space. The correspon-
dence between corners was established in the ECLM space. For each pair of
images, the coordinates in the ECLM space were calculated for all the ”corners”
and saved in a list. The algorithm knows the number of objects and the corners
for each object. The number of corners detected in different images varies signi-

ficantly, however. Theoretically, two matching points should have the same ¢
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value (v coordinate). Due to digitization error, blurring in the images from
shrinking, and errors in corner detection, maiching points do not have the same 4§
value. So a threshold for dv (the difference between the ¢ values) is used. Some
heuristics were used to establish correspondence for points that are within the

selected threshold.

The algorithm was run on every pair of images using three different thres-
holds for dv: 0.01, 0.02, and 0.05. A match is considered correct if the points
belong to the same object. By using two simple rules, all errors are detected by
the system. The rules are: a camera cannot see behind itself and if you pass an
object, it won’t be in the second image. This eliminates all matches with a dis-
tance less than the amount the camera moved. Figure 13 shows some examples

of matches and the results of applying the rules to the matches.

The effect on the average depth determination with a tighter bound on
allowable depths for individual pairs was also studied. An arbitrary value larger
than the distance the camera moved was chosen as the lower bound. An arbi-

trary value of 100 was chosen as the upper bound.

The depth of an object was obtained by averaging the depth obtained for its
corners. The data obtained using these real images reflects the noise inherent in
the system, as demonstrated by the work with the synthetic images. Several

trends are apparent, though they do not hold universally.

As the threshold increased for dv, the number of pairs that "matched”

increases as does the error rate. However, since the system is so good at finding
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the erroneous matches, the extra information from the larger number of points

makes the distance determinations more accurate, overall.

The calculated depths tended to be lower than the real depths. We did not
use the focal length of the camera in our depth computation, since for the camera
we used, the focal length is not known. Without the focal length, the depth
values should indicate the relative depth values, rather than the absolute depth.
Depth determination from images where the camera was closer to the objects was
more accurate. Larger camera movement gave better results when the camera
was far from the objects, but not from closer positions. Some results are shown
in Table 2. We ran the experiments for several other frame pairs. In some cases

the results indicated wrong depth order for the objects.

Note that in the above table for each object two distances are given: the one
on the left is generated using the two simple rules, the one on the right uses the

arbitrary upper and lower bounds in addition to the two rules.

Using the upper and lower bound usually made no difference in the depth
determination. However, this heuristic corrected several errors that the simple
rules did not catch. In some cases the threshold for dv does not affect the depth
determination. This is because the new points found with a higher threshold gen-
erated approximately the same depth value as the others. This gives an indica-

tion of the stability of the system.
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8. CONCLUSION

Most research in stereo has considered lateral placement of cameras. The
lateral placement of cameras is certainly a geometrically efficient placement for
recovering the depth information. An arbitrary motion of the camera allows a
rich set of camera geometries for recovering depth information. Structure-from-
Motion [Ull79] has attracted significant interest recently. The research in struc-
ture from motion has shown that in realistic cases the approaches to structure
from motion are too sensitive to be of much use. Two major problems in struc-
ture from motion are the correspondence problem and the sensitivity of the
methods to solve equations to get the depth values. Another approach to deter-
mination of depth using motion is to use optical flow. The approaches based on
optical flow have the problem of computing reliable optical flow that will allow
computation of its derivatives for recovering the depth. Looming combines
features of token based approaches for structure from motion and approaches
using optical flow. In fact, looming has been known to be a depth recovery tech-
nique used by animals in many different situations. In this paper we have shown
that looming can be efficiently implemented using the known camera motion. In
the proposed approach, the most complex probiem involved in structure-from-
motion, that is the correspondence problem, is simplified appreciably. Similarly
the problem of computation of optical flow is also avoided by exploiting the ego-

motion information.

The study of the synthetic images showed that factors inherent in the theory

and the digital nature of the data make it difficult to recover accurate depths
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using this method. However, relative depths with bounds on the quantitative

depth are certainly possible if information from several frames is used.

The results also have implications for determining correspondence of points
and objects. By using information about which points are matched across
frames, more accurate depth values can be obtained by eliminating bad matches
that the ”in the same object” criterion doesn’t catch. This in turn can be used to
refine knowledge aboﬁt which points match and which points belong to the same

object.

Our experiments with synthetic and real scenes indicate the efficacy of this
approach for recovering depth of ;tationary objects in those situations where the
observer is translating. The resolution of the depth recoverable using this
approach is poorer compared to the regular lateral stereo for the same displace-
ment of the camera. This limitatation will be more than offset when we consider
the fact that in most cases the depth will be obtained as a by-product of other
visual processes. A mobile robot will have to segment a scene as the first step in
its understanding of the layout around it. As was shown in [Jai84], ECLM will
be helpful in the segmentation of the scene. Since the depth recovery also
requires the same mapping with little extra efforts, the depth of stationary
objects may be recovered as a by-product of segmentation. Another major
advantage of this method of depth recovery will be that in most applications, one
may combine depth information obtained from several images, rather than from

just two images.
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Table 1

Recoverable Depths at Various Resolutions

I ) I 1 I 2 ‘ 3 l 4 ) 6

64 16.8 8.4 5.6 4.2 3.4 2.8

128 284 | 142 | 95 7.1 5.7 4.7

256 402 [ 246 | 164 | 123 | 98 8.2

512 86.9 435 | 290 | 21.7 |1 17.4 | 145

1024 | 1555 | 77.8 | 51.8 | 38.9 | 31.1 | 259

Table 2
Depths of Objects
Threshold | frame-pair | obj 1 (65) | obj 2 (&3) | obi 3 (75)

0.01 1-3 50 50 74 74 57 57
0.01 2-4 58 58 70 79 7777
0.01 1-4 53 53 7272 56 56
0.01 1-5 52 52 7171 51 51 °
0.02 1-3 S0 50 67 67 54 54
0.02 2-4 59 59 78 78 7171
0.02 1-4 49 49 7272 56 56
0.02 1-5 50 50 7171 51 51
0.05 1-3 S0 50 67 67 61 61
0.05 24 208 51 7272 64 64
0.05 1-4 82 49 7272 56 56
0.05 1-5 60 50 7171 52 52 °
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8 EMP Space

The assorted directions of the velocity vectors for a stationary object

are transformed to one direction in the transformed image.
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The CLM results in the transformation of certain regular patterns in

N

the z-plane into another regular pattern in the w-plane.
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details of the peripheral areas.
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Three frames of the laboratory sequence used in our experiments.
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(Iigure 111 Corners detected in the frames. Note the

poor quality of the corners.
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