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SUMMARY

Microbial risk assessment (MRA) is a process that evaluates the likelihood of adverse human health effects
following exposure to a medium in which pathogens are present. Several different classes of models are available to
quantitatively characterize risks to human health from exposure to pathogens. Herein, we consider the question of
parsimony for specific realizations of representative static and dynamicMRAmodels and identify conditions under
which the more complex dynamic model provides sufficient additional insight to justify the added modeling
complexity. To address this question, a standard static individual-level risk model is compared to a deterministic
dynamic population-level model that explicitly includes secondary transmission and immunity processes. Expo-
sure parameters are based on a scenario defined by human exposure to pathogens in reclaimed water. A sensitivity
analysis is implemented to identify conditions under which static and dynamic models yield substantially different
results. Under low risk conditions, defined by a combination of exposure levels and infectivity of the pathogen, the
simpler static model provides satisfactory risk estimates. The approach presented here provides a basis for model
selection for a broad range of MRA applications. Copyright # 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Motivation

Microbial risk assessment (MRA) is increasingly being applied for regulatory and operational

purposes. Given the unique characteristics of pathogens compared with chemicals, a better

understanding of appropriate model forms is needed. Fundamentally, MRA is a process that evaluates

the likelihood of adverse human health effects that can occur following exposure to pathogenic

microorganisms or to a medium in which pathogens occur (ILSI, 1996). Quantitative methods to

characterize human health risks associated with exposure to pathogenic microorganisms were first

published in the 1970s (Fuhs, 1975; Dudley et al., 1976). Since that time many MRAs have used the

conceptual risk assessment framework for chemicals (National Research Council, 1983) as a basis for

waterborne (Haas, 1983; Regli et al., 1991; Rose et al., 1991; Gerba et al., 1996; Crabtree et al., 1997;
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Teunis et al., 1997; Mena et al., 2003) and foodborne pathogen assessments (Farber et al., 1996;

Buchanan et al., 1998; Buchanan et al., 2000). Consistent with the chemical risk framework, most of

these assessments assume that the number of individuals that are susceptible to infection is not time

varying (static) and, thus risk is characterized at an individual level (Eisenberg et al., 2002). Static

models have also been used by US EPA in the development of drinking water regulations (U.S. EPA,

2002, 2006a).

As the field of MRA developed, the advantages of modeling infectious disease processes such as

person-to-person transmission of infection and immunity became apparent (Eisenberg et al., 1996,

1998). Addressing these issues requires dynamic methods where the number of individuals that are

assumed to be susceptible to infection is time varying and risk is manifest at the population level

(Hethcote, 1976; Anderson and May, 1991; Hethcote, 2000). To facilitate addressing these needs, the

US EPA developed a MRA framework that highlighted the inclusion of person-to-person transmission

of infection and immunity (ILSI, 1996). This framework was tested through the conduct of two case

studies (Soller et al., 1999; Teunis and Havelaar, 1999) and was subsequently revised (ILSI, 2000;

Schaub, 2004).

Dynamic MRA models can take two basic forms: deterministic and stochastic. Deterministic

dynamic models are expressed as a set of differential equations that have defined parameters and

starting conditions, which determine the rate of transfer of individuals from one epidemiologic state to

another. This type of model is most suitable for large populations of individuals randomly interacting

with one another (Soller et al., 2003; Eisenberg et al., 2005). In the stochastic form, the model

incorporates probabilities at an individual level and is evaluated by an iterative process. Stochastic

model forms are suitable for small populations and heterogeneous mixing patterns (Koopman et al.,

2002.). Dynamic MRAmethods have been used for numerous specific case studies in the United States

(Eisenberg et al., 1996; Eisenberg et al., 1998; Soller et al., 1999; Koopman et al., 2002; Soller et al.,

2003; Soller et al., 2006) and recently to support regulatory decisions by US EPA (U.S. EPA, 2006b,

2006c).

From a modeling perspective, biological ‘realism’ can be achieved, but at the cost of analytical

complexity. The increase in the complexity of the model structure increases variability due to the

uncertainties associated with model specification, and increases the computational demands (U.S. EPA,

2004). On the other hand, a simpler model form involves implicit or explicit assumptions that may or

may not be realistic or appropriate for a particular situation. Herein, we employ representative

realizations of static and deterministic dynamic MRA models to consider the question of model

parsimony and to identify conditions under which the more complex dynamic models may provide

sufficient additional insight that the added complexity is warranted.
1.2. Conceptual health effects models

1.2.1. Static MRA model. Assessments using a static model for evaluating microbial risk typically

focus on estimating the probability of infection to an individual as a result of a single exposure event.

These assessments generally assume that multiple or recurring exposures constitute independent events

with identical distributions of contamination (Regli et al., 1991). In most cases when this type of model

has been employed, it has been implicitly assumed that secondary (person-to-person or

person-to-environment-to-person) transmission and immunity are: (1) negligible, (2) of the same

magnitude and effectively cancel each other out, or (3) scale linearly with the number of predicted

infections. Notable exceptions to this generality include the work by Teunis et al. (2002) and the U.S.

EPA (2006a) on Cryptosporidium in which immunity is addressed in the dose–response modeling.
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Inclusion of secondary transmission may increase or decrease the level of infection attributable to a

specific exposure to pathogens (Eisenberg et al., 2004), while inclusion of immunity will decrease the

level of infection in a community attributable to a specific exposure to pathogens.

Conceptually, static models employ two or three epidemiological states: a susceptible state and an

infected and/or diseased state (Figure 1). Susceptible individuals, when exposed to the pathogen of

interest, move into an infected state with a probability that is governed by the dose of pathogen to which

they are exposed and the infectivity of the pathogen. The critical health effects information required for

the static model, therefore, is summarized in the function that represents this probability of infection,

P(d), the pathogen-specific dose–response function. Equation 1 describes the dose–response function

employed herein (Haas et al., 1999). In static models, the probability of infection is often multiplied by

the number of exposed individuals to estimate the expected number of infected individuals.

PðdÞ :¼ 1� 1þ dose

b

� ��a

(1)

1.2.2. Dynamic MRA model. In a dynamic risk assessment model, the population is classified into a

group of epidemiological states (Hethcote, 1976; Anderson and May, 1991; Hethcote, 2000).

Individuals move from state-to-state based characteristics such as the duration of infection, duration of

immunity, etc. Thus, only a portion of the population is susceptible at any point in time, and only those

individuals can become infected or diseased through exposure to microorganisms. The probability that

a susceptible person moves into an exposed state is governed by the dose of pathogen to which they are

exposed, the infectivity of that pathogen, and also the number of infected/diseased individuals with

whom they may come into contact (Hethcote, 1976; Anderson and May, 1991; Hethcote, 2000).

For this investigation, a dynamic model that includes person-to-person transmission, immunity, an

incubation period, and asymptomatic infection was used (Figure 2). This model is representative of

those used previously for waterborne microbial risks investigations (Soller et al., 2003; Eisenberg et al.,

2004; Soller et al., 2006; U.S. EPA, 2006b). In this dynamic model, the population is categorized into

six epidemiological states. Rate parameters specify the movement of the population between

epidemiological states. The epidemiological states and rate parameters are summarized in Tables 1

and 2, respectively. Mathematically, the movement of the population between epidemiological states is
Figure 1. Static risk assessment conceptual model
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Figure 2. Dynamic risk assessment conceptual model
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modeled as a distributed delay process using a series of ordinary differential equations. A full

description of the mathematics for the dynamic model is presented in the Appendix.
1.3. Pathogens considered

Waterborne infectious agents of intestinal origin are discharged in human and animal feces, and the

presence of microbial pathogens in wastewater has been a concern for decades. Conducting an

assessment of the public health risk associated with exposure to pathogens requires the selection of a

representative pathogen or set of pathogens on which to conduct the assessment.

Although a wide range of pathogens have been identified in raw wastewater, relatively few

pathogens are believed to be responsible for the majority of the waterborne illnesses caused by
Table 1. Epidemiological states for dynamic model

Labels in Figure 2 Epidemiological
states of population

Description

S Susceptible Individuals who are not infected and are not
protected from infection

E Exposed Individuals who have been exposed to a pathogen,
but are not yet infected

C1 Carrier 1 Individuals who are infected but do not have
symptoms of disease

D Diseased Individuals who are infected and do have symptoms
of disease

C2 Carrier 2 Individuals who were diseased and no longer
exhibit symptoms of disease, but are still infected

P Post-infected Individuals who are neither infected nor
symptomatic, and have resistance to infection
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Table 2. Symbols used to specify rate parameters and probability of response in dynamic model

Symbol Description

a Rate of movement from an exposed state to a carrier (infectious and asymptomatic) state or a
diseased state (infectious and symptomatic). 1/a corresponds to the latency period prior to infection
for the pathogen of interest

s Rate of movement from a carrier state to a post-infection state. 1/s corresponds to the duration of
infectiousness, or equivalently the duration of asymptomatic shedding of pathogen in feces

d Rate of movement from a diseased state (infectious and symptomatic) to an asymptomatic (carrier)
state. 1/d corresponds to the duration of symptoms during infection

g Rate of movement from a post-infection state (not infectious, asymptomatic, and not susceptible to
infection) to a susceptible state. 1/g corresponds to the duration of immunity or protection
from infection

b1 Rate of movement from a susceptible state to an exposed state due to exposure to pathogens from an
environmental source (i.e., not person-to person transmission). It is a function of the number of
pathogens to which an individual is exposed and the infectivity of the pathogen of interest. The
infectivity is described quantitatively through a dose–response function which for this investigation is
comprised of two parameters

b2 Rate of movement from a susceptible state to an exposed state due to exposure to pathogens
from secondary (person-to-person or person-to-environment-person) transmission

psym Probability of a symptomatic response. Based on clinical data describing the proportion of infected
individuals that develop symptoms

MICROBIAL RISK ASSESSMENT MODEL PARSIMONY 65
pathogens of wastewater origin (Mead et al., 1999). The pathogens that have been reported to be

responsible for the vast majority of illnesses in the United States from all sources were the focus of this

investigation. From a list of pathogens of concern identified by EPA (2003) for waterborne exposures,

and the Center for Disease Control estimate of disease levels in the United States (Mead et al., 1999),

the pathogens investigated herein include: enteroviruses, rotavirus, Cryptosporidium parvum, Giardia

lamblia, Salmonella spp, E. coli 0157:H7, and Shigella spp. Although noroviruses were also of

particular interest, sufficient quantitative information was not available for inclusion in this

investigation.
1.4. Human exposure

The goal of evaluating the two risk assessment model forms was to identify conditions under which the

static and dynamic models predict substantially different levels of risk. To identify these conditions, we

employed a case study paradigm and investigated exposure scenarios that are consistent with reclaimed

water applications and with properties of the pathogens of public health concern for human exposure to

reclaimed water. The use of reclaimed water is becoming increasingly common as a means to

supplement municipal water supplies for nonpotable purposes, and human exposures to reclaimed

water are common and vary substantially in magnitude.
2. METHODS

2.1. Simulation approach

A total of 11 parameters are required for the dynamic model, 3 of which are also used by the static

model (Table 3). For each parameter, representative minimum, median, and maximum values were
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Table 3. Parameters required for modeling static and dynamic disease processes

Class Parameter Static model Dynamic model

Exposure-related parameters
Pathogen dose� X X
Exposure intensityy X

Pathogen-related parameters
Duration of incubation X
Probability of symptomatic response X
Duration of infectiousness X
Duration of disease X
Duration of protection X
Dose–response parameter a X X
Dose–response parameter b X X
Person-to-person transmission potential X
Effective background concentration level X

�The product of concentration and volume yields the pathogen dose.
yThe product of the proportion of population exposed and the frequency of exposure yields the exposure intensity.
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identified from the available literature (See Subsection 2.2) resulting in 177 147 (311) possible

combinations of parameters for the dynamic model, and 27 (33) possible combinations of parameters

for the static model. The static and dynamic models were each run using the 311 parameter

combinations. The output from each simulation is the incidence of infection attributable to the

reclaimed water exposure per 100 000 individuals. For the dynamic model, the incidence of infection is

defined as the number of individuals entering either a diseased (State D) or carrier state (C1). To

determine the risk attributable to the reclaimed water exposure, the dynamic model was run twice for

each parameter combination: once without the reclaimed water exposure (background), and once with

the reclaimed water exposure. The number of cases of infection attributable to the reclaimed water

exposure was computed as the difference between these two simulations. Thus, any infection resulting

from person-to-person transmission following a primary infection from exposure to reclaimed water is

included in the analysis. For the static model, the risk attributable to the reclaimed water exposure was

equal to the probability of infection times the number of people exposed. Based on this methodology, a

total of 312 simulations were run. The attributable risk obtained from the two models was compared for

each parameter combination.
2.2. Model parameterization

We conducted an extensive review of peer-reviewed literature to identify appropriate values for the

pathogen-dependent variables for each of the representative pathogens of concern. Minimum, median,

and/or maximum representative values were obtained to the extent feasible for each model parameter

for each of the pathogens (Table 4). Blank cells in Table 4 indicate that data were not found in the

literature. Based on these data, the minimum, median, and maximum values for all pathogens were

noted for each pathogen-dependent parameter. These values are shown in Table 4 in the rows labeled

‘Composite’ and are used in the simulations. Detailed summaries for each pathogen including the

literature used to support the parameter values are available elsewhere (Soller et al., 2004).

Minimum, median, and maximum representative values were also developed for each of the

exposure-dependent parameters (Table 5). The exposure-dependent parameter values are based on
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Table 4. Pathogen-dependent parameter values

Pathogen Duration of incubation� Proportion of infected
individuals with

symptomatic response

Duration of
infectiousness�

Min Median Max Min Median Max Min Median Max

Enteroviruses 0.29 8 0.25 0.75 0.13 4
Rotavirus 1.33 4 0.1 0.45 0.20 0.5
Cryptosporidium spp 0.57 4 0.2 0.7 0.15 2
Giardia lamblia 0.07 1.3 0.2 0.7 0.04 0.8
Salmonella 1.33 16 0.14 0.4 0.01 0.27
E Coli O157:H7 0.33 8 0.23 0.5 0.14 0.31
Shigella 0.57 4 0.29 0.5 0.40 0.8
Composite� 0.07 1.6 16 0.1 0.4 0.75 0.01 0.3 4

Pathogen Duration of disease� Duration of protection� Dose–response
parameter ay,z

Min Median Max Min Median Max Min Median Max

Enteroviruses 0.19 4 0.06 0.13 0.67
Rotavirus 0.36 2 0.004 0.01 0.13 0.5
Cryptosporidium spp 0.15 2 0.01 0.02 0.67
Giardia lamblia 0.04 0.8 0.004 0.13 0.67
Salmonella 0.14 1.3 0.14 96 0.31 0.89
E Coli O157:H7 0.13 0.6 0.05 0.11 0.22
Shigella 0.16 2 0.005 0.1 0.21
Composite� 0.04 0.7 4 0.004 0.06 96 0.13 0.5 0.89

Pathogen Dose–response
parameter by,z

Person-to-person
transmissionx

Effective background
concentrationk

Min Median Max Min Median Max Min Median Max

Enteroviruses 1.26 48 76 0.04 1.6E�04
Rotavirus 0.21 0.84 0.06 1.4E�05
Cryptosporidium spp 165 0.04 6.0E�04
Giardia lamblia 34 0.01 5.0E�04
Salmonella 2884 4.4Eþ 05 0.003 10
E Coli O157:H7 8723 0.03 0.01
Shigella 43 0.04 5.0E�04
Composite� 0.21 39 440000 0.003 0.04 0.06 1.4E�05 5.0E�04 10
�The parameter values shown are the ‘scale’ parameters, l, of a gamma distribution. The ‘shape’ parameter, k, is assumed to be 4.
Therefore l¼ 4/n, where n is the mean value reported in literature. Unit: day�1.
yBeta Poisson dose–response functions used for all pathogens. Refer to Soller et al. (2004) for details, unitless parameter.
zE. coli dose–response data are from high dose studies and are most likely estimates, bounded by EPEC and Shigella (flexnerii and
dysenteriae pooled). Enterovirus parameter estimates are for the beta Poisson dose–response function and are based on reported
exponential functions for Poliovirus I, Adenovirus 4, Echovirus 12, and Coxsackie viruses, where adenovirus and coxsackievirus
data are from respiratory pathway studies. Cryptosporidium spp. and Giardia lamblia beta Poisson parameters are based on
reported exponential functions.
xEstimates based on an SIRmodel using data from an outbreak and from reports of the duration of the infectious period. See Soller
et al. (2004) for details. Units are infections/person/day.
kValues shown are concentrations of each pathogen required to result in a median prevalence consistent with levels reported by
Mead et al. (1999). Units are pathogen units/liter.
�Composite values are the minimum, median, and maximum values across all pathogens investigated for each parameter.
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Table 5. Exposure-dependent parameter values

Component Parameters Min Median Max Min Median Max

Dose from reclaimed
water exposure�

Reclaimed water conc.
(pathgens per liter)

0.00001 0.001 10 1.0E-08 1.0E-04 1.0

Volume ingested (liters) 0.001 0.01 0.1
Exposure intensityy Proportion exposed (unitless) 0.001 0.01 0.1 3.33E-05 1.43E-03 0.10

Frequency of exposure (day�1) 0.033 0.14 1

�Dose from reclaimed water computed as (reclaimed water conc.)� (volume ingested).
yExposure intensity computed as (proportion exposed)� (frequency of exposure).
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reported data and best professional judgment to the extent necessary, and are specific to our reclaimed

water scenario. Based on these data, minimum, median, and maximum values were calculated for the

pathogen dose and exposure intensity model parameters. These calculated values (far right column of

Table 5) were used in the simulations.
2.3. Model parsimony decision metric

The decision metric used to evaluate model parsimony was the absolute value of the difference in

incidence (Id) between the results from the static and dynamic model for each parameter combination.

The simulations resulted in 311 unique values for Id.

A Classification and Regression Tree (CART) sensitivity analysis (Steinberg and Colla, 1997) was

performed to determine which parameters in the model and combinations thereof impacted Id most

strongly. The CART analysis produces a tree structure that prioritizes the importance of the model

parameters in determining the conditions under which Id meet a specific criteria (Eisenberg and

McKone, 1998). The CART analysis was carried out for three values of Id: 10/100 000, 1/100 000,

and 0.01/100 000. Identifying a level at which the difference in incidence between the models is

considered tolerable is a risk management issue. The three threshold levels identified above were

selected based on expert opinion (Soller et al., 2004).
3. RESULTS

3.1. Simulation results

The Id results from the simulations are presented in Figure 3. Substantially more positive than negative

values of Id suggests that immunity more commonly impacted the dynamic model results than

person-to-person transmission relative to the static model results. A large range for both positive and

negative Id (�106 to 106/100 000 exposures) suggests that there are parameter combinations that

strongly impact the resultant predictions of risk in the dynamic model relative to the static model. The

absolute value of Id for the simulations is presented in Figure 4.
3.2. Sensitivity analysis

CART sensitivity analysis was conducted using the absolute value of Id to determine which of the

model parameters impacted the difference in incidence between the two models. Threshold Id values of
Copyright # 2007 John Wiley & Sons, Ltd. Environmetrics 2008; 19: 61–78
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Figure 3. Incidence difference between static and dynamic simulations (per 100 000 exposures)

Figure 4. Absolute value incidence difference between static and dynamic simulations (per 100 000 exposures)
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10/100 000, 1/100 000, and 0.01/100 000 were investigated. Results representative of these analyses are

presented in Figure 5. Terminal nodes are presented as rectangles with the total number of observations

in that node in bold font. Terminal nodes representing model parameter combinations with Id< 1/

100 000 are white, and those with higher Id are shaded gray.
Copyright # 2007 John Wiley & Sons, Ltd. Environmetrics 2008; 19: 61–78
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Figure 5. Representative CART output
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Based on the results of the CARTanalyses, it may be inferred that the parameters that most strongly

impact the difference in predicted incidence between the static and dynamic models are in order of

decreasing importance: dose of pathogen, exposure intensity, dose–response parameter b,

dose–response parameter a, and duration of infection.
3.3. Model parsimony

The combinations of model parameters that generally result in low Id are summarized in Table 6.

Inspection of Table 6 indicates that specification of three model parameters is generally sufficient to

determine whether Id will be low, depending on the threshold level selected (10/100 000, 1/100 000, or

0.01/100 000). Given that there are three levels for each of three critical parameters, there are 27 (33)

critical parameter combinations. These critical parameter combinations are summarized graphically in

Figure 6, which presents three 3� 3 grids: one for each of the Id threshold levels investigated.

In each Figure 6 grid, the levels of exposure intensity (proportion of the population exposed times

the frequency of exposure) vary by row. For each threshold grid, the bottom row is low exposure

intensity (3� 10�5), the middle row is medium (10�3), and the top row is high (0.1). Similarly, in each

grid the levels of average pathogen dose vary by column. The left column represents a low dose (10�8),

the middle column a medium dose (10�4), and the right column a high dose (1.0). The relative levels of

the dose–response parameter b vary by shape. In each grid, low b values (0.21) are represented by

circles, medium (39) by squares, and high (440 000) by triangles. In Figure 6, gray shapes represent

small differences in predicted incidence, and thus, conditions under which the static risk assessment

model yields results similar to the dynamic model. White shapes indicate that the difference in

predicted incidence is higher than the selected threshold, and thus are the conditions under which the

dynamic risk assessment model would be necessary.
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Table 6. Model parameter combinations that result in incidence differences below selected threshold

Threshold difference in predicted incidence¼ 10/100 000

Parameter Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6

Dose of pathogen Low Medium/High Medium Medium Medium Medium
Exposure intensity — — High Low Medium Medium
Dose–response b — High Medium Low/Medium Medium Low
Dose–response a — — — — — Low

Threshold difference in predicted incidence¼ 1/100 000

Parameter Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6�

Dose of pathogen Low Medium/High Medium Medium Medium High
Exposure intensity — Low/Medium High Low Medium High
Dose–response b — High High Low/Medium Medium High
Dose–response a — — — — — Low
Duration of infectiousness — — — — — Low/Medium

Threshold difference in predicted incidence¼ 0.01/100 000

Parameter Condition 1 Condition 2 Condition 3 Condition 4

Dose of pathogen Medium High Low Low
Exposure intensity — Low Low/Medium —
Dose–response b High High Low Medium/High
�Condition 6 results in low difference in 86% of cases, medium difference (1-100/100 000) 12.5% of cases, and high difference in
2% of cases.
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3.4. Discussion

The concept of parsimony in model selection is well known—models should be as simple as possible,

but no simpler. This has become relevant in MRA, where dynamic models are being used in

conjunction with or as alternatives to static models. The sensitivity analysis employed in this study

illustrates that the two classes of models do, at times produce substantially different results, and

provides a quantitative means to assess whether the static model is appropriate or the more complex

dynamic model is required. The results summarized in Figure 6 suggest that a static model provides

satisfactory risk estimates under conditions where the risks associated with direct exposures to

environmental contamination are low. These direct risks are defined in the models presented here by

four factors: the percent of the population exposed, the frequency of exposure, the average dose levels

to which individuals are exposed and the infectivity of the pathogen.

As the direct risks increase, the effects of secondary transmission and immunity also increase,

resulting in greater differences between the static and dynamic models. These differences justify the

need for a more complex dynamic model. Although the criteria for model selection provided in this

analysis are specific for the exposure levels and pathogens explored in this study, analogous estimates

could be obtained for alternative exposure scenarios by altering the exposure parameters in Table 5 and,

if necessary the pathogen parameters in Table 4. It should however be emphasized that a relatively wide

range of pathogen characteristics were evaluated in this analysis.
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Figure 6. MRA model parsimony summary
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For the specific scenario explored in this study, Figure 6 in combination with Tables 4 and 5 provides

quantitative information on the definition of a low direct risk condition. For example, exposure

intensity is defined as the proportion of the population that is exposed times the frequency of exposure

for a given individual (exposure events per day). A low exposure intensity is defined here as 3 in

100 000, which corresponds to 1 exposure per 1000 individuals at a frequency of once per month. This

level of exposure intensity could describe incidental exposures, whereas a high exposure intensity is

defined here as 1 in 10. A low dose is defined as 10�8 (average number of pathogens ingested)

compared with a high dose of 1. Finally, the infectivity ranges from highly infectious viruses such as

rotavirus to less infectious bacteria such as Salmonella. As the tolerable level of predicted incidence

difference increases, use of the static model becomes appropriate for more combinations of the critical

model parameters.
Copyright # 2007 John Wiley & Sons, Ltd. Environmetrics 2008; 19: 61–78
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Our finding that a low direct risk condition suggests that a static model is sufficient, is largely a

function of the metric used for model selection, which is the absolute difference in incidence between

the two models; that is, the bias of one model over another is measured by the number of cases of

infection (or illness) that is either over- or under-reported by one model over the other. The reason that

this metric was chosen was that incidence difference provides a public health relevant measure of bias.

We use this form of model selection because traditional measures of validation that show one model

form as superior over another are not appropriate. This is largely due to relatively low risk conditions

(e.g., 1 in 1000 or 1 in 10 000) and the sparse nature of environmental and health data (Eisenberg et al.,

2002). Under these conditions, mechanistic models that incorporate what we know about the

environmental and disease process become important and useful tools in risk assessment. These models

provide a systematic means to integrate information on what is known about a process. Model selection

techniques like the one presented here provide a framework to examine how different model forms

perform under different circumstances and whether two models predict similar or different risks.

The results presented herein are only applicable within the bounds investigated and for the model

forms evaluated. Thus, extrapolation of the results presented herein to routes of exposure, pathogens,

and/or other model variants not investigated must be done with caution, because the parameter

combinations that define when risk differences are sufficiently high to require a dynamic model are

dependent both on the model structure and parameter ranges explored in the simulation analysis.

Transmission rate parameters are particularly difficult to estimate and have the greatest potential for

misspecification. We used a common technique to estimate the transmission rate from outbreak data

where the initial and final number of susceptible individuals is known. Care must always be taken when

generalizing these estimates. We use wide upper and lower bounds in the parameter estimates to help

address this issue.With regards to model structure, transmission in the dynamic model presented here is

characterized in a specific form, capturing one person–person pathway. Use of other model forms may

result in findings different than those presented here. For example, using a model that included multiple

routes of transmission including a person-environment-person route, Eisenberg et al. (2004) found that

important factors for quantifying risk included the pathogen-shedding rate of infectious individuals, the

person-person transmission potential, and the duration of immunity. Additionally, the model structure

presented here assumes homogeneous mixing of individuals. Thus, further work is needed to examine

the role of multiple transmission pathways and heterogeneous mixing on risk estimation.
4. CONCLUSION

We considered the question of parsimony for specific realizations of representative static and dynamic

MRA models and identified conditions under which the more complex dynamic model provides

sufficient additional insight to justify the added modeling complexity. The approaches presented

provide a basis for model selection for a broad range of MRA applications. The results indicate that

under low risk conditions, defined by a combination of exposure levels and infectivity of the pathogen,

the simpler static model provides satisfactory risk estimates.
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APPENDIX: MATHEMATICAL EQUATIONS FOR DYNAMIC MODEL

This appendix presents the equations that correspond to the model depicted in Figure 2. The model is

defined by the following six state variables:
S N
Copyri
umber of individuals in susceptible state.
E N
umber of individuals who have been exposed but are non-infectious.
C1 N
umber of individuals in carrier state (asymptomatic and infectious).
D N
umber of individuals in diseased state (symptomatic and infectious).
C2 N
umber of individuals in carrier state (asymptomatic and infectious).
P N
umber of individuals in post-infection state.
and the following parameters:
a T
ght #
ransition rate out of exposed state. Inverse of incubation period.
psym P
robability of symptomatic response.
d T
ransition rate out of diseased state. Inverse of disease duration.
s1, s2 T
ransition rate out of carrier state. Inverse of duration of shedding.
g T
ransition rate out of post-infection state. Inverse of duration of immunity.
bs1 T
ransmission rate (susceptible to exposed from environmental exposure).
bs2 T
ransmission rate (susceptible to exposed from person-to-person contact).
Movement within the E, C1, C2, D, and P states is characterized by a distributed delay. This delay is

realized by a series of ordinary differential equations. In such a characterization, the time spent in any

state is described by a gamma distribution defined by two parameters: n, the number of first order

processes; k, the rate constant governing the movement of one first-order process to the next. For

example, the following set of equations depict the transition through the exposed state, where Ii is the

rate of entering and Io is the rate of leaving the exposed state.

dE1
dt

¼ Ii � kE1

dE2

dt
¼ kE1 � kE2

dE3

dt
¼ kE2 � kE3

dE4

dt
¼ kE3 � Io

The parameters n and k determine the mean and variance of the gamma distribution:

Mean ¼ n

k

Variance ¼ n

k2
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For the above equations the mean transition rate out of the exposure state, a, is n/k. For

computational purposes, n was set to 4 in all cases. The mean transit time for each state, therefore, is 4

divided by the corresponding transition rate parameter.

The change in the number of susceptible individuals is governed by three possible events. Two are

transmission events that result in a decrease in the number of susceptible individuals through either

contact with an infectious individual (a individual in either the D, C1, or C2 state), or contact with

pathogens from reclaimed water or from background concentrations in the environment. The third is a

transition event in which a protected individual becomes susceptible again. The following equation

describes this change in the number of susceptible individuals.

dS

dt
¼ �b2SðDþ C1 þ C2Þ � b1Sþ gP4

For details regarding description of the parameters and their values, see the main text. The parameter

b1 is defined as follows:

b1 :¼ 1� 1þ rec dose�exp intensityþback dose
b

� ��a

where the recreational dose and exposure intensity are exposure-dependent parameters; and the

background dose, b and a are pathogen-dependent parameters (effective background concentration

level, dose–response parameter a, and dose–response parameter b, respectively).
To incorporate the concepts of incomplete and waning immunity, four protected states (P1, P2, P3,

P4) were included in the model. In the first state (P1), all individuals are completely immune to

re-infection. In the subsequent three states (P2, P3, P4) re-infection becomes possible to a varying

degree; in each successive protected state the level of protection decreases until, finally, the population

is completely susceptible once again. As a result, movement from three of the protected states (P2, P3,

P4) to the exposed state (E) is possible and is regulated by the following relationship:

bpji ¼
bsjði�1Þ

n

where j takes on the value of 1 or 2 corresponding to environmental or person-to-person transmission; i

takes on the value of 1, 2, 3, or 4 corresponding to the particular protected state; and n corresponds to

the total number of protected states (four in this case). The following equation describes the immune

process.

dP1

dt
¼ s1C14 þ ks2C24 � gP1

dP2

dt
¼ gP1 � gP2 � b2ð1=4ÞP2ðDþ C1 þ C2Þ � ð1=4Þb1P2

dP3

dt
¼ gP2 � gP3 � b2ð2=4ÞP3ðDþ C1 þ C2Þ � ð2=4Þb1P3

dP4

dt
¼ gP3 � gP4 � b2ð3=4ÞP4ðDþ C1 þ C2Þ � ð3=4Þb1P4

Individuals enter the initial protected state, P1, from either of the two carrier states (see model

diagram in Figure 2). The transition through the protected states occurs at a rate, kg . For the remaining

protected states, P2, P3, P4, there are two transmission events possible on through contact with another

infectious individual and the other through contact with a contaminated environment.
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Once infected individuals are in the exposed state that represents the state of being infected but not

infectious. Four transmission events enter into the initial exposed state, E1. This state is governed by the

following set of equations.

dE1

dt
¼b2SðDþ C1 þ C2Þ þ b1Sþ b2ð1=4ÞP2ðDþ C1 þ C2Þ þ b1ð1=4ÞP2

þ b2ð2=4ÞP3ðDþ C1 þ C2Þ þ b1ð2=4ÞP3 þ b2ð3=4ÞP4ðDþ C1 þ C2Þ
þ b1ð3=4ÞP4 � aE1

dE2

dt
¼ aE1 � aE2

dE3

dt
¼ aE2 � aE3

dE4

dt
¼ aE3 � aE4

Once an individual completes the transition through the exposed state, a proportion, psym, enter the

diseased state,D (infectious and symptomatic) and then transition into a carrier state,C2. The remaining

proportion, 1S psym, enters a carrier state, C1 (infectious and asymptomatic). The following equations

describe the transition through the diseased and two carrier states.
dD1

dt
¼ psymaE4 � dD1

dC21

dt
¼ dD4 � s2C21

dD2

dt
¼ dD1 � dD2

dC22

dt
¼ s2C21 � s2C22

dD3

dt
¼ dD2 � dD3

dC23

dt
¼ s2C22 � s2C23

dD4

dt
¼ dD3 � dD4

dC24

dt
¼ s2C23 � s2C24
dC11

dt
¼ ð1� psymÞdE4 � s1C11

dC12

dt
¼ s1C11 � s1C12

dC13

dt
¼ s1C12 � s1C13

dC14

dt
¼ s1C13 � s1C14
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