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ABSTRACT

We consider the relation between conformation, normal frequency dis-
tribution, and force field of a backbone chain. In particular, it is
asked whether a conformation can be identified from the analysis of the
frequency distribution and whether information about the force field can
be gained by examining the frequency distribution at different conforma-
tions,

To determine the frequency distribution, we use the symmetry of the
dynamical matrix and the property of Sturm sequences. We discuss the
performances of the Givens' transformation and the negative eigenvalue
theorem of Dean and Bacon.

In Chapter III we consider chains with one degree of freedom per re-
peat unit. A fold at a unit j in the extended chain tends to uncouple
the vibrational motion on both sides of j. Conversely, the local unfold-
ing of a folded chain enhances the coupling and produces out-of-band
modes. From the ordering of the out-of-band modes, statistical afteref-
fects can be detected. The out-of-band modes are determined by the
Green's function method. Such a model could be used to follow the helix-

coll transition.

In Chapter IV we consider chains with two degrees of freedom per re-
peat unit. In addition to the uncoupling effect, the fold also couples
the motions of the two species. When the force constants are of the same
order of magnitude, the uncoupling effect is dominant. Otherwise, the
coupling effect is dominant.

In Chapter V we calculate the dynamical matrix elements of the
Kirkwood=Pitzer model of a folded polyethylene backbone chain. The nu-
merical calculations:wikh: the Givens-Sturm procedure indicate a one to
one correspondence between modes (~6T0 cm'l) in the stretch-bend gap and
folds, for low concentrations of folds. The distribution of the modes
in the forbidden gap also reflects the fold distribution along the chain,

We compare thermodynamical functions for several concentrations and
correlations of folds in Chapter VI. These functions have a vibrational
and a potential component. The latter is derived from the one-dimensional
Ising model, which also yields the average ratio of T to G configurations
and the pair correlation as a function of the temperature dependent con-
figuration energy J and the temperature independent correlation energy U.
Volume exclusion and three-dimensional nonbonded interactions are, how-
ever, expected to modify the result.

ix



ABSTRACT (Concluded)

We conclude that conformations have two characteristic parameters
reflected in the frequency distribution, namely the range of allowed di-
hedral angular values and the ordering of configurations along the chain.
The frequency distribution for a given conformation depends, however, on
the force constants ratio when the number of degrees of freedom is greater
than one. Hence, the interpretation of frequency distributions is to be
made in terms of both conformations and force field. We suggest that
chains generated by a Markov process and by a random walk with no self-
intersection could be separated by their frequency distribution.



CHAPTER I

INTRODUCT ION

A polyethylene chain is composed of several thousand CH2 repeat units
linked by carbon to carbon bonds. The combinations allowed by the tetra-
hedral carbon bonds configuration are not energetically equivalent and
the structure in which the carbon to carbon bonds are coplanar is favored.
Accordingly the backbone of the isolated chain is represented as a planar
zigzag. Chains in a sample do not conform to this state. In fact planar
sections of a chain are found, however the chains also exhibit folds along
the C-C bonds.

Experimental evidence indicates in which way folds are distributed
along a chain. X-ray diffraction patterns show a com.binationl of ordered
and disordered structures. This interpretation is particularly convinc-
ing when the patterns are examined from fusion to room temperature.

The widths of nuclear magnetic resonance absorption lines decrease5 rap-
idly for temperatures above the glass transition temperature. This nar-
rowing is interpreted as the onset of internal rotations about C-C bonds,
and since the rotations are assumed forbidden in the crystal structure,
there must be other regions in which they take place. Density measure-
ments also indicate that the liquid state solidifies only partially into
the more dense crystal structure. Other experiments illustrate the same
point, that ordered and disordered regions coexist or that folds tend

to concentrate in so-called amorphous regions.
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In this perspective a quantitative description of chain structure
is given by the crystal volume percentage. Data from the above experi-
ments are used to evaluate this quantity. Their interpretation creates
difficulties which are of interest to consider. The intensity curve of
the diffracted X-rays shows two peaks of different shape which are as-
signed to crystal and amorphous volumes, respectively. It is arguedu
that the area under the amorphous peak provides a good measurement of
amorphous volume; this area is evaluated with respect to a curve extra-
polated from the liquid state. However this peak also contains a con-
tribution from the diffuse thermal scattering by crystal regions. The
difficulty in density measurement is of the same nature. One also takes
the liquid state as a "standard density" for amorphous regions. But
molecules in an amorphous region are Jjoined to neighboring crystalline
regions, which exert constraints and produce local variations from the
standard density. The assumption in the nuclear magnetic resonance tech-
nique is not valid.5 Internal rotations do take place in crystalline
regions and thelr contribution has to be separated from the observed
value.

The difficulty in interpreting these experimental results is attributed
in part to the lack of resolution of methods of observation and to the
inherent ambiguity in wave interaction, as reflected in the phase problem.
An important part is however due to the simplifying assumptions on the
structure of the chains. There is in fact a multiplicity of structures

confirmed by experiment. In the theory of fringed micelles, planar



sections of several chains are seen to form crystallites with an or-
thorhombic lattice. The chains separate at each crystal boundary, tra-
versing successive regions of random and aligned arrangements. Keller
and O'Connor have observed with an optical microscope thin lozenged
shaped platelets disposed in layers. A surprise came in 1958 with the
interpretation5 of their experiment. It was first established by low
angle X-ray scattering, that the platelets have a thickness of 100 A°.
Next, electron diffraction patterns revealed that the c axis of the chains
runs perpendicular to these platelets. The conclusion from these re-
sults was that the chain folds back and forth between the 2 lozenges'
faces. In this theory, the amorphous contribution™ comes from lattice
defects such as a chain escaping and reentering the same crystallite.
The difference in these two structures was later traced back to the
polymerization process. The first is more likely to occur in a sample
produced by cooling melted polyethylene. The second occurs in samples
grown from dilute solutions. For certain a.uthors6’7 the two concepts
of fringed micelles and folded chains are not "exclusive of each other."
The degree to which these structures interpenetrate is however unclear.
At this stage, we give a more detailed quantitative description of
chain structure by the following characteristicsS:
-average sequence length of chains in the crystalline regions,
-average sequence length in amorphous regicns,

-expected number of crystalline sequences per chain,

-expected number of amorphous sequences per chain.



We now mention briefly, for later reference, some factors involved in
the determination of these characteristics. In the molecular field
theory, they are determined by weak forces of long range. However,

the same characteristics can also be derived from stronger forces of
shorter range. Their effect is expressed in form of a transfer matrix,
whose elements are fitted to reproduce the observed characteristics.

Several authors obtain the size of crystallites as a result of
thermodynamical equilibrium. In one approach the free energy has two
components.9 The first is the harmonic vibration component and is a
decreasing function of N, the number of atoms in the chain. The second
is the molecular field component and it is an increasing function of N.
The increase is caused by the thermal smearing of the periodic potential.
The total free energy reaches a minimum at a given ﬁ, from which the
size of the crystallite is determined.

An important consideration in amorphous regions is the entropy per
link.lo This quantity is a measure of the number of permissible ways
of adding a new link to a chain. Because of the volume exclusion prin-
ciple, the entropy per link is a decreasing function of N. This effect
is recognized to be important, but difficult to evaluate.

For other authors the size of crystallites does not correspond to
a minimum of free energy. They claimll that the "anharmonic nature of
the thermal motion of atoms must destroy the long range order at a quite

characteristic distance."



The other issue raised by the interpretation of experimental data
is the choice of «n observable which would best reflect the structure
of chains in a sample.

It was seen that the interpretation of the scattering curve for X-
ray diffraction is ambiguous because the contributions of structure in
disordered regions and of thermal activity in crystal lattice do not
separate. An alternative approach is to consider the chain as a system
of coupled oscillators and observe the normal frequencies, in the form,
for example, of the frequency distribution. The spectrum is known to
be very sensitive to dimension of the lattice, range of forces and,
‘hopefully, structure. Methods to detect normal frequencies are infrared
absorption, Raman scattering, and inelastic neutron scattering. It is
interesting to note that the proton spin states provide a mechanism both
for the incoherent neutron scatteringl2 and the nuclear magnetic reso-
nance techniques.

The effect of folds on the frequency distribution was formulated
some time ago.15 The problem is the interpretation of the spectrum for
the noncrystalline structure. A program was established "to achieve
complete interpretation of the spectrum, to study spectral difference
which arise from presence of noncrystalline structure and identification
of such structures."15 The spectrum is sensitive to chain folds in two
ways: the environment15 and the intramolecular or direct forces. The
environment can be thought of as a molecular field. Its dependence on

structure is for instance given by the averaged squared polarization



vectors which produce a "smearing”" of the potential. Or it can be thought
of as the effect of weak intermolecular forces. There the overall chain
structure is reflected by the intermolecular distances. As for the intra-
molecular or direct forces, they are locally modified by the change in
relative orientation of C—C and C-H bonds. The binary interaction strength
may be invariant under a fold. It was indeed verified5 that a chain in

the orthorhombic lattice can twist by an angle of 82° and fold without
affecting valence or interatomic distances. The resultant of forces exerted
on one atom will however change if they are differently oriented with
regspect to each other. Since in the vicinity of a fold the relative
orientations of binary interactions do change, resultant forces are
modified.

It is significant that the author in Ref. l% mentions environment
before direct effects. Important results have been related to environ-
ment such as limited growth of crystallites. On the other hand, direct
effects modify the stronger bonds and cannot be overlooked as the con-
centration of folds increases. Their calculation is a prerequisite to
the evaluation of the field in Ref. 12, since the averaged squared har-
monic amplitude depends on structure. Also, the refinement of force
constants is only meaningful if the noncrystalline bands are identified.

A controversy has actually developed as to which effect is dominant:

7 22

some authors argue for direct effects,’ others show in recent calculations
the importance of environment, especially in the acoustic range of the

harmonic spectrum. Controversies on the relative importance of force



range, force constant, and dimensionality are known elsewhere, as in the
Ising problemglbr The isgue in the Ising problem is the singularity of
the phase transition. The same singularity can be related either to a
weak molecular field in a one-dimensional lattice or to a stronger near-
est neighbor interaction in a two-dimensional lattice. Here local fold
defects are opposed to three-dimensional lattice effects in the inter-
pretation of the unidentified features of the harmonic spectrum.

The polyethylene spectrum can be divided into two parts, one associated,
with internal modes of the.CH2 group, the other with the skeletal vibra-
tions. A separation line can be drawn at 1150 cm_l, although the CH?
rocking mode overlaps into the skeletal band. We are concerned here
with this lower part of the spectrum. This region of the spectrum has
been investigated only recently using the far infrared and neutron scat-
tering techniques. The interpretation of observed data is still con-
troversial because of lack of resolution and because these modes are
most sensitive to the effects of configurations. For instance Kirk-
wood 12 argued that "evidence that modes are not greatly affected by the
configurations among which the molecule is distributed is provided by
the sharpness of the Raman lines of the hydrocarbons. However this
statement need not to be taken too seriously as far as lower frequencies
are concerned, since there seems to be no reason why their pattern might
not be considerably affected by configurations and by interaction with
the torsional modes." This interaction is indeed a key issue. The

torsional motion of the isolated planar skeleton is an independent, one



dimensional motion. Folds of the chain introduce local couplings with
the stretch-bend motion. On the other hand these modes are uniformly
mixed in the orthorhombic lattice model. They produce a splitting and
a shift in the dispersion relations, and singularities in the frequency
spectrum which will be interesting to compare with the local effects.
There is a great variety of polyethylene chain models, varying in
complexity. Fach model has its strength and each has its weaknesses.16
The Stockmayer-Hechtl7 model is certainly the simplest and it has produced
an astonishing amount of information. It consists of parallel linear
chains disposed in a rectangular three-dimensional lattice. Each mass
unit, which represents a CH2 group, is dynamically related to its nearest
neighbor on each axis and to the next nearest neighbors on the diagonals.
A bending force along the C axis is introduced at each vertex. The Kirk-
wood—Pitzerl8 model treats the isolated backbone chain with next nearest
neighbor interactions in the zigzag plane, and third order interactions
in the out of plane motion. A common19 feature of simple models is the
grouping of the CH2 atoms into one mass point. The high carbon to hydrogen
mass ratio Justifies this procedure. However contribution of some hydrogen
mction is known to be important in the backbone spectrum.
In the choice of a model, the following factors come into account:
the order of the dynamical matrix is proportional to the dimension of
the lattice and the number of atoms; the disposition of the nonzero ma-
trix elements in the matrix depends on the degree of interaction. A

numerical calculation is limited both by the size and the bordering of



the matrix. When the chain is incorporated in a lattice, translational
and other symmetries allow a decomposition into blocks of smaller order.
When the structure of the chain is random, partial diagonalization is
impractical. A compromise has then to be made between dimension of the
model,)range of interaction, and length of the chain. We shall first
consider very simplified models (Chapter III). Our aim is however to
derive information from the Kirkwood model (Chapter V).

These models deal with the isolated chain. A major problem is to
take account of the environment. We shall introduce the latter in the
form of correlations between configurations of neighboring vertices
(Chapter III). These correlations can be determined by comparing ob-
served and calculated frequency spectra and thermodynamical functions
(Chapter VI). Frequency distributions of the extended chains are cal-
culated from the dispersion relations and the uniform mode distribution
in the reciprocal lattice. The calculation is performed analytically
for the simple models in which case the result has the form of a histo-
gram. The analytical derivation has the advantage of listing all the
singularities and determining the type to which they belong. The type
is the number of negative coefficients of the second order Taylor ex-
pansion of the dispersion relation at the singularity. The periodicity
of the lattice requires that there be at least 1 maximum, 1 minimum, and
6 saddle points‘,eO Genensky and Newell21 derived however 18 singularities
from the Stockmayer-Hecht model (Table I). The position of each one of

them in the frequency scale 1s gilven as a function of the force constants.
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TABIE I

COMPARISON OF SINGULAR FREQUENCIES FROM DIFFERENT MODELS

(cm™1)
Chain in A
Chain in
Isolated Stockmayer- Crystal; Grouped Crvstal
Chaimt* Hecht Model* Methyl Unit yeLe
(Ref. 22)%*
(Ref. 19)%*

28
61
7

80
100

110-¢, 110
11h-¢, 11k 117
139
190 188
200 220
240

319

321

5352

555
520 500 500 500

Note: These singularities are calculated from the dispersion relations
for phonon propagation. The singularities of the S-H model are all
saddle point types with the exception of 114 em™t which is a maximum.
The value of ¢ is 72/hm, where y is the force constant for the diagonal
bond, and k the bending force constant.

1

*The S-H results are normalized to the 500 cm™~ cut off (S-H is the

abbreviation for Stockmayer-Hecht model).

**The values of the force constants are (millidynes/A°):
4,10; 0.2676: 0.035 for the isolated chain (stretch)
4.0; 0.25; 0.03, for Ref. 19 (bend)
L,622; forRef. 22 (torsion motion)
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In this way the typical features of the polyethylene chain could be dis
tinguished from the three-dimensional cubic lattice. It was for instance
found that the torsion "cut off peak” is the coalescence of two slope
discontinuities which degenerate into a logarithmic singularity as the
diagonal force constant tends to zero.

Experimentally detected peaks are listed in Table II. Results of

Ref. 7 were discussed before the calculations of Ref. 22 were known.

TABIE I1¥

SOME OBSERVED SINGULAR FREQUENCIES AND FREQUENCY ACCUMULATIONS

(em)
Attribution Infrared
Ref. 7 (Ref. 7) Ref. 23 (Ref. 2L)
60 fold
130 fold 130
160
340 fold
540
560
575
600
617
622

*
These data do not include the well known events such as
500 cm™L.

It is seen from Ref. 22 that although intermolecular forces are weak,
they nevertheless produce a displacement of the dispersion maximum, in
1

a range beyond 60 cm™*. The argument in favor of chain folds need not

however be overlooked. In this respect it is interesting to consider
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the spectrum beyond the glass transition, as reported in Ref. 7. The
high frequency cutoff of the bend mode is washed out, whereas the "tor-
sion" peak remains. The secondary peaks are shifted from 390 and 125
em™t to 250 and 90 em™L.  The peak at 60 cm'l disappears and the neglig-
able continuum in the forbidden stretch-bend gap rises to the density
level of the bending continuum. The authors emphasize the "different
departure" of the 2 acoustic modes from normal behavior. They inter-
preted this feature by a change in boundary conditions between crystal-
line and amorphous regions brought about by the onset of internal rota-
tions. This enhanced rotational activity would have to perturb the
stretch-bend propagation more than the torsional motion. If there are
no amorphous regions as proposed in Ref. 1, one can conclude that these
rotations occur at the regularly spaced folds of the crystallites and
the defects distributed along the planar section of the chain. The
latter are considered in Ref. 3.

Planar and transverse contributions are superposed in the frequency
distribution of Ref. 7 by random orientation of the crystallites. Stretch-
ing the polyethylene sample makes them aligned. The chains may also
unfold. Scattering on such a sample25 allows separate investigation of
in and out of plane activity. The authors of Ref. 23 found however a
"persistence" of the torsional mode in the longitudinal component, which
indicates a coupling between these motions. Contrary to the previous
explanation they suggested that this coupling is the result of inter-

molecular forces. One could also argue that the chains are not really
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unfolded and that the residual folds provide the mixture of the modes.
Table II lists the observed "structures" of the acoustic modes un-
identified with respect to the planar isolated chain.
Although their interpretation tends to be given in terms of inter-
molecular effects, it is reasonable to inquire into the direct effects
of folds regularly spaced in crystals and randomly distributed in amorphous
regions. The forces involved are an order of magnitude greater than inter-
molecular forces and evidence 1s given that the folding concentration
1s not negligible. The mechanism through which forces applied to a
particular mass point are altered 1s the reorientation of their respective
directions, which can considerably affect direction and magnitude of their

resultant.



CHAPTER II

CAILCULATION AND INTERPRETATION OF FREQUENCY DISTRIBUTIONS

Two approaches25 have been recently formulated on the statistical
inference of complex systems. In such problems only a limited amount
of information is available. The information is however sufficient
either to define the nature of a system or to specify the state in which

25

it is. The two approaches are based on the "renouncement®™ of exact
knowledge" of either nature or state of the system. The outcome of the
analysis depends on the approach. Typically, a system of harmonic oscil-
lators has a well defined nature. Its states are the occupation numbers,
whose probability distribution only is known. The outcome is the deter-
mination of the overall thermodynamical behavior of the system. In the
example of the heavy nucleus,26 the states are on the contrary observed
with great accuracy, yet the laws of interaction between elementary
particles are unknown. There, statistical mechanics predicts laws on

the nature of the system such as the repulsion of levels.

What is included under nature and state of a system depends on the
particular problem. The two aspects may overlap and a different dis-
tinction is then more appropriate. We consider a system with several
characteristic parameters and call extent any particular combination
of them. The extent to which exact knowledge is renounced determines

the amount of information that can be derived from the system, We want

to show a relation between this extent and methods of observation

1k
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of the system. We have an ensemble of chains of CH2 units. The angle
¢ between two adjacent bonds connecting units is allowed to take certain
values and the sequence of all angles 1s the conformation of the chain.
In a small angle X-ray experiment, the scattered intensity I is averaged
over all unit positions, implying a renouncement of the exact knowledge

of conformations. An overall behavior, derived from the Ornstein-Zer-

nicke theorem,27 is given by

lim I = N(v) - (N(v))? (II-1)
b0

where b is the momentum transfer and N(v) the average number of units
in volume v.
In a neutron inelastic, incoherent scattering experiment we renounce
to the exact knowledge of the proton spin states. The overall behavior
. C e e L2
which we derive is however the frequency distribution  weighted by the

squared polarization vectors (with the notations of Ref. 12)

). 7@ 7 (a) Fy(a) (11-2)
d

Relation (II-2) reflects the structure of the system in a less ambiguous
manner than (II-1) and yields more information.

In the next chapters we shall calculate frequency distributions as-
sociated with given conformations and conversely derive the necessary
information about chain structure from the frequency distribution. The

hamiltonian of the system is

Be) = Hyc) + Hyc) - (113)
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where ¢ indicates the dependence in conformation; H-p is the sum of po-
tential energies associated with each $; Hy is the hamiltonian for har-
monic vibrations.

If we isolate H_ , we call a conformation a state of the system.

p.’
The thermodynamic behavior of a sample of chains is determined without
exact knowledge of these states. It will however be seen in Chapter VI
that the temperature dependence of the thermodynamic functions yields
information on the ordering in the sequence of angles $.

When we consider the harmonic activity, the state of the system is
the set of occupation numbers for each frequency and the frequency dis-
tribution. These depend on conformation which in some sense belongs to
the nature of the system. In principle, the frequency distribution is
observable to any degree of accuracy, independently of what is knbwn
about conformations. The problem is to derive information about the
conformations from a measurement of the frequencies.

Problems described above have received considerable attention under
the name of spectrum of random matrix. The matrix elements are scalar
products of the hamiltonian of the system in a convenient representation;
the ensemble of matrices corresponds to the collection of systems.

A standard procedure is the following: one assumes a probability
law for each matrix element over the set of elements identically labeled.
One then determines the eigenvalue distribution, and compares it with

the observed spectrum. The matrix element probability law is adjusted

to provide a best fit between calculated and observed spectrum.
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In the context of our problem the system is the chain of N points.
To each j there corresponds a random variable ¢j from which the matrix
elements are derived (see Chapter III). The set of allowed values of
¢ is S. The probability distribution of $ over the set Zj of points
labeled j in the collection of chains is P(j)(t) for the continuous
case, ij otherwise. As N + «, P(j) tends towards the probability
distribution of ¢ along the chain. Namely, "by an argument familiar
in the statistical mechanics of systems containing many particles, the
same frequency spectrum will be found for an arbitrary chain chosen out
of the ensemble, except for an exceptional class of chains whose total
probability tends to zero as N - m."28

A well-known method to calculate the eigenvalue spectrum consists
of integrating the joint eigenvalue aistribution over all variables but
one. This expression is well known if the matrix elements are indepen-
dent gaussian random variables.26

Another method calculates the eigenvalues density as the (generalized)
derivative of the ordering function O(x), which is the number of eigen-
values smaller than x. It has been applied in different ways to singly
bordered or tridiagonal (or Jacobian, if symmetric) matrices and it is

2
interesting to follow the evolution of the problem from Dyson28 to Dean.

Iet the matrix elements 8y of A be noted

,441 T Bia1,1 = B 84y = 0 l1-3l > 1 (I1-k)
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Dyson consideres matrices of order 2N-1, for which @; = 0. This corresponds
to the isotope defect in a linear chain (¢ = 0) where B; is inversely pro-
portional to the mass at site 1. The frequency distribution is derived
from the ordering function Og(x) for the squared eigenvalues, i.e., O/ (x)

is the number of modes for which the squared eigenvalue are less than x.

Dyson's result is:

Os(l/x) =1 - Re [(in)-l lim Q(-x + ie)] (I1-5)
oN-1 7o
where a(x) = Zii log [1 + £ (x)]
a=1

2

xBa
and §a(x) = — (I1-6)

, 1 + §a+l(x)

The distribution P(a) of B over Za yields the distribution Wg of &(x)
from relation (II-6). In the limit N + w, Wy becomes Wy [£,(x),s] ds
and is the probability that ﬁa(x) be in the interval (s, s + ds). If

5a is independent and if the range S of B, is continuous, Wa satisfies

the integral relation:

0

Wals) = [ W] B e A + 8 e (11-7)
0

If S is discrete, Wy satisfies a difference equation. An exact solution

-t

of the integral equation was found for the case P(t) ~ e This is the

heavy isotope problem, where the range of masses reaches to infinity.
As a result, a considerable shift of the spectrum towards lower frequencies

was found. This can be compared with the Brout and Visscher2© discovery
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of an approximate localized mode produced by a heavy isotope with mass
ratio about 25.
. . . 29 .

In other cases Eq. (II-7) is solved by iteration. Dean” generalized
Egs. (II-5) and (II-6) to the case of the tridiagonal matrix A as in (II-L).
His result also is the "direct" eigenvalue distribution (not the squared
eigenvalue distribution). Later he gave a simpler result, which we shall
use.

1
Schmidt5 considers the matrix A such that:

This is also the isotope problem. He determines the eigenvalue distribu-

tion from the nonhomogeneous problem of order N + 1.

(X -xI)u = e (11-8)

~

where A is augmented from A with only one nonzero element &n,n+l and where
e has all but its last components zero. The ratio of 2 successive com-

ponents of u satisfies the recurrence relation

(%) .

— (11-9)
2-x/an-zn

- Zn+l(x)

1"WLn+l(X>

Equation (II-8) satisfies the eigenvalue problem

(A -xI)u=0
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for @y,,(x) multiple of 21 , where z_ = tg(@n/2). Since @,(x) is a
monotonic nondecreasing function, ¢n+l(x) counts the number of modes

smaller than x. More precisely
o(x) = (@, (x) - ¢, (=)
o N+1 N+1

The evaluation of @N+l(x) is made from the equality between the integer
[oy+1(x)/2n] and the number of pairs (@y(x), P+1(%)) in the sequence
{@z(x)], ! =1,..., N which separate a multiple of 2n. Further, there

is a one to one correspondence between any such pair and a negative zk(x).
That there must be a negative zk(x) is seen from the condition ¢k+l(x) -
@k(x) < 2n. Conversely, if there is such a z,(x), the relation (II-9)
implies that @, = 2nh + x be followed by ¢y ,q = 2x(h-1).

The number of roots smaller than x is then equal to the number of
negative terms in the sequence {z,(k)}, k = 1,...,N. This result is
however also a consequence of the fact that [uk(x)} is a Sturm sequence.52
For increasing N one introduces the density of zk(x), wlz(x), slds,

the number of points along the chain for which z(x) is in the interval

[s,s + ds]. One has then:
o(x) = fW[z(x),s]ds (II-10)
By the argument quoted above, we also introduce

W, [zk(x),s]ds = Wlz,(x)]dzy
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the number of chains for which the points labeled k have a zk(x) in the
interval [s,s + ds]. To determine Wy, Schmidt considered the set of chains

having the same wvalue & at point k. In this set
W’k[zk(x)]dzk = wk-l[zk_l(x)]dzk-l

From relation (II-9) the change of varisble zj_1 into zp yields

Wk[zk(x)] = W [e-x/a - l/zk(x)]

2 k-1
7 ()

In the limit N + «, Wy tends towards W, for all k. If oy is an indepen-

()

dent random variable with probability Pj and values @ "', we can write

from this equation Schmidt obtains W[z] and O(x). He calculated in this
way the out of band distribution of electronic states.
29 . o :
Dean ~ considers the general tridiagonal matrix A. The sequence

of principal minors of A,

Aj+l(x) = (aj-x)Aj(x)—BiAj_l(x) (I1-11)

with A (x) =1, is a Sturm sequence. A root X of by = O separates

Aj-l(x) and Ajwl(§) with opposite signs. The number of roots of

An(x) = O smaller than x is the number of changes of signs in the sequence

A Al(x)"°"An(X) or the number of negative terms in {yj(x)], where

O)

0
yj(x) = Aj + l/Aj. Therefore O(x) = i Wly(x),s]ds, where W is defined
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as above. In Schmidt's derivation there is:
un+l(x) = (2 - X/an) un(x) - un_l(x) (I1-12)

Letting Ul(x) = 1 as a normalizing condition, {uk(x)} satisfies the con-
ditions for Sturm sequenées and property (II-10) follows.

Relation (II-12) is an ordering of eigenvectors, as pointed out in
Ref. %2. Relation (II-11) is an ordering of eigenvalues. An(x) and un(x)
have the same number of zeros.

The previous argument for the determination of W from the probability

law of (ak,Bk) yields here

(3)° (3)°
_ B s
J

(1I-13)

. xey(x))” [l xey(x)

if the random variables are independent.

Schmidt has also considered correlation of neighbors; we apply his

derivation to Dean's W[y(x)].

let S =Q11,Bl)102,62) be noted by 1,2. Consider next:

Ej(l), the set of chains with value 1 at points J
Ej(e), the set of chains with value 2 at points J

(1)
Wl[yj(x)], the probability distribution of negative yj(x)over Ej

(2)

Wz[yj(x)], the probability distribution of negative yj(x)over Ej

pll the probability that 1 in j-1 be followed by 1 in J

P the probability that 1 in j-1 be followed by 2 in j, etc.
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One has:
Wl[.')’j(X)] = Pqq Wl[yj_l(x)} + Poy WE[yj-l(X)]
W2[yj(x)} = Ppp wi[yj_l(x)] + Pos Wé[yj_l(X)] (11-14)

if the variable Vj-1 is changed into yj, each W on the right side has
a form similar to right side of Eq. (II-13).

The effect of the correlation is to change (II-13) into a vector
relation; when the range of the random variable is infinite, (II-14) is
an integral relation.

Numerically however the determination of O(x) is much more accessible
by counting the negative elements in (yk(x)} obtained from the recurrence

(II-11). Tridiagonal maetrices of order 10° have been treated in this
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manner.

DeanBA has extended the method of Sturm sequences to any symmetric
matrices. The idea is to partition the matrix into 4 blocks, whereby

the block matrix is tridiagonal

The partitioning can be done in N - 1 ways. However, one of these is
found to be the most convenient. The negative eigenvalue theorem (NET)

states that the number n(x) of negative eigenvalues  of (A - x I) is:
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where n(X) is the number of negative eigenvalues of X and n(L) is the

number of negative eigenvalues of

L = z - yT XL y

One recognizes the previous pattern. L is of reduced order; n(L) can
again be calculated as the sum of 2 contributions, and so on until ex-
haustion of matrix elements.

Let Ny be the order of X; if Nl = 1 the number of steps is N-1,
however each one involves trivial operations. For N, = 2, the number
of steps is N/2 but the auxiliary calculations grow in importance.

For numerical purposes, the Givens55-Sturm procedure competes with
the NET. We compare bbth methods for the case of a matrix A of order
N with no zero elements. Givens' method transforms A into a tridiagonal
(singly bordered) matrix T by (N-1) (N-2)/2 successive rotations. Each
rotation involves 18 (N-k) operations, where k is the index of the line
at which the transformation occurs. The frequency distribution is there-
after obtained by counting the negative terms in the continued fractions
(II-10) applied to elements of T. If the frequency range is divided in
M intervals, there are LMV additional operations to perform.

The application of the NET requires on the other hand N-1 steps per
)2

interval and 2(N-k)  operations per step, where k = 1,..., N.

Comparing the numbers

*Number of eigenvalues of A smaller than x.
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N
9(N-1) (N-2)Z (N-k) + 4bMN = L,5 1\1(1\1-»2)(1\1,-1)2 + LMN
k=1

and

N
2MN z (1\1-1:)2 = 0.33 N2(2N-1)(N-1)M
k=1

we find that GiYens’ procedure is more advantageous, especially since
M is only proportional to the first power of N.

In most problems the nonzero elements are scarce and somewhat ordered
diagonally. In this respect, Dean and BaconBu pointed out that the multi-
plication may involve léss operation than (N-k)2 at step k, for certain
types of matrices.

In applying both methods, we found that Givens' transformation gives
the result faster. This was however to be expected since we did not take
special provisioﬁ for zero elements.

The advantage in the treatment of Jacobian matrices is that the
elements need not be stored in memory. They are generated as the line
progresses. If this procedure could be reproduced at least partially
in the application of the NET or in Givens' trénsformation, the effects
of complicated orderings could be obtained for more realistic models of
the chain.

Givens' method provides a direct proof that the degenerate modes
are counted in the spectrum. The roots of A are the roots of T and a
root of a Jacobian matrix is multiple only if some aii+; = O. In that

case we have the polynomials 1, (a~x),(a-x)2, etc., where for x > a, there
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are 2 changeés of sign.

The problem of the frequency spectrum has been solved by a perturba-
tion method, where the parameter is the concentration of defects and where
the modes are labeled by the phonon propagation vector k. Langer56_pointed
out that this technique has the advantage that it yields information on
the phonon lifetime and the attenuation coefficient of the localized modes.
The assumption here is that the phonon is a meaningful object of measure-
ment, since it has a pseudo momentum k; and a "m.easurem.ent57 that fixes k
will yield a spread in frequency.' Calculations were made for mass de-

4 which give the width I'x. Also an experi-

fects56 and spring impurities,
ment was suggested to measure the lifetime of an approximate localized
mode.Bo The perturbation method is reétricted to small defect concentra-
tion. We shall however consider disorders such that the pseudo momentum
k 1s no more meaningful. Meaningful experiments are then observation of
the spectrum and thermodynamical measurements, where only the distribu-
tion of the modes is relevant.

The moments method has also been applied to order-disorder problems.
The usual objection to this method is that our out of band modes and
singularities in general do not emerge clearly. However, it was pointed
out that the Padé approximate of the moment expansion could yield precise
information on the location of these singularities. (See also Refs. 38,
39, and 40 kindly communicated by Professor L. Cesari.)

In the next chapters we use the Sturm sequence method and its ap-

plication in the NET and Givens' transformation.
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The third step in the standard procedure consists of adjusting the
matrix element probability law to conform to an observed spectrum. Here
the matrix elements depend on the conformation of the chain (see Chapter
IIT). Consider a sequence of carbon atoms J = 1,..,N. We say that the
carbon atom j is in transconfiguration 1f it is in the plane of its 3
predecessors. Otherwise it is in gauche configuration. The conformation
is then the sequence TG, etc.; such a sequence is called diastereosequence
when the equivalence relation is tacticity.

We start by enumerating types of order along linear chains, as
given in the literature. Thereafter we consider the relation between
a particular order and the vibrational frequency distribution. ILet NQ
be the number of T's and Ny of G's. The concentration of T's is then
P, = Ny /(N +N_).

¥or P, = 0.5, the short rangeul order parameter op is defined from

the probability Ps of occurrence of unlike pairs as
og = 2P, -1 (11-15)

The value og = O indicates disorder. opg < O indicates a clustering of
T's (and consequently of G's). op > O indicates a tendency for alterna-
tion of T and G. The notion of short range order can also be extended
to concentrations P £ 0.5,

The sequence is called Markovian of order ng, if ny 1is the smallest
n such that the conditional probability for configurations at any j is

independent of configurations beyond j &+ n. A formulationue of this con-
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dition is that for all m,n

. n£J<n>,v<no}s e ) pyteo) w<m>} (1116)

n n,ngtm

where U n) is a sequence of n configurations, V(no> an adjoining sequence,
V(no) w(m) the joint sequences v{0o) ang W(m); Pn,nO{U(n)lV(nO)} is the
conditional probability that a given V(no) is followed by U(n).

A sequence of n, vertices of the chain is called a cell; a sequence
of configurations U(n0> is called a state of the cell.

Properties of Markov chains are derived from the transfer matrix 7
relating the states of 2 adjoining cells. The matrix elements of T are
the conditional probabilities mentioned above for the case n = ng; they

n
are noted Pij where i,j label one of the 2 © states. The states of 2

cells r -apart are related by:
‘r .
gl ld) (I1-17)

(3)

n
where U is written in form of a 2 © components vector. As n increases
i+
U(J u) tends towards the eigenvector t associated with the eigenvalue

A =1 41if A is simple and of greatest module. A sufficient condition for

43 of

this property is that v be irreducible and primitive (theorem
Perron-Frobenius). A matrix is primitive (or l-cyclic) if the greatest

common denominator of the length of all cycles

szl; p£1£2’°°°’plqj for enyq = 1,...,N; any j =1,...,N,
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of nonzero elements 1s unity. If the matrix is irreducible and p cyclic,
there are p eigenvalues of module 1. In this case, the order depends on
an 1lnitial state. This 1s called long range order.

Long range order based on the degeneracy of A = 1 plays an important
role in the theory of phase transition (Ising model). Phase transitions
however are only considered at the limit ng = o, ruling out one-dimensional
problems.

Long range order associated with finite matrices and multiplicity
in module has not been considered as a meaningful model. A requirement
for degeneracy in module is, for instance, that all diagonal elements
of the transfer matrix be zero (otherwise the g.c.d. is 1) and there is
no reasonable justification to introduce this value. Also, transitions
from order to disorder are not associated with one-dimensional mecdels
(with the exception of molecular field theory).

For small n,, & component tj is easily calculated as the cofactor
of any matrix element in the J column of (I-t). The expansion of the

determinant of this matrix is namely:

}: p.. Cij = 0 , foralli

where Eij is the (i,J) element of (I-T). The component t; is interpreted
as the rate of occurrence of the state labeled j in a cell. TFor example,
with ng = 1, if P = 1 - AM is the conditional probebility that T follows

T, pp; = 1 - BM that T follows G, we have:
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5= o 1-BM) where ( is a normalization factor.
t = aAM
2
No/N, = (1-BM)/AM
p, = N /(Ny +N)) = (1-BM)/(1-BM+AM)
(11-18)
b, = Nl/(Nl +N) = AM/(1-BM+ANM)

The rate of occurrence of doublets TT, GG, ete., is given by multiplying
P,(py) by the appropriate metrix element.

For N, = 2, there are four states: TT, GG,TG, CT. When n, increases,
the number of matrix elements becomes prohibitive (namely 22n0). It is
however possible to construct a reduced transfer matrix tp with knowledge
of the conditional probabilities that a state is followed either by a T
or a G configuration. The order of 7p is still 2n0, but the number of

n,+l
nonzero elements is only 2 © ~. The relation between T and TR is

The case ny, = O describes the random or Bernoulli process. n, = 1 is
called simple Markov order. When for n, = 1, py = Po1 (which implies

P1p = p22) the simple Markov order degenerates into a Bernoulll process.
The case Py = Pop is confusing for both interpretations are valid. There
is an example in the literature where this order is random (Bernoulli)

for some authors and simple Markov for others. It concerns the inter-
pretation of the famous Bovey and Tiers reporthu that free polymeriza-

tion of methyl-methacrylate is describable by a single parameter a,
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whereas anionic polymerization is not. Consider the sequenceME of methyl

groups:

H H H H H R H H
C C -1C C -1 ¢Cc ¢C -1 C C
H R H R H H H R

if we assume that the conditional probability that I follows [ is «, that
d follows d is &, that [ follows 4 is 1 - ¢, and that d follows £ is 1 - Q,

l+5)

the process is indeed Markovian of order 1 with the transfer matrix (Price

If we introduce the tacticity as a relationship between neighboring groups,
the same sequence 1s written as

1 ] S
where I (for isotactic) indicates that the 2 groups have some stereocon-
figuration and S (for syndiotactic) that the two groups have opposite con-
figurations. The rate of occurrence of I is @, the rate of occurrence

hg)o (See

of 8§ is 1 = ¢, the process 1s of the Bernoulll type (Coleman
also Figure II-1.) We recognize in 1-Q the parameter o in Behte's short

range order. This process is nothing but a degenerate simple Markov or

Bernoulli process.
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-f (a) (b)
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{c) (d)
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Figure II-1. 8Squared frequency distribution for simple chains with
equal concentration of T and G configurations. The short range order
parameter ¢ is defined in (II-15); AM, BM are the transfer matrix ele-
ments or conditional probabilities as defined in (II-18). The order
of the T, G sequence is simple Markovian; the order of the complemen-
tary sequence (s,d) where s indicates similar and d dissimilar pairs,
is however random (Bernoulli). Compare with the random T, G distribu-~
tion on Figure III-6, Chapter III.

(a) g = 0.6 H AM = 0.8 H BM = 0.2
(b) o 0.2 ; M=0.6 ; BM-=0.h4
(¢) o=-0.2 ; AM=04 ; BM=0.6 NO/Nl =ling =1
(d) ¢=-0.6 ; AM=0.2 ; BM-=0.5
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The concept of short range order is readily extended to a nondegen-

erate Markov process. We have namely:

@ = Dy Po1 T Py Pio
for a Bernoulli process:

a = 2p(1-p)
The short range order is defined as:

og = 2(a - )

Anticipating the results of Chapter III we count the number of the classes

of states, for a given n,, that are invariant under circular permutation.

From the cycle index, we get typically:

m(no =h4) = % (x% + x. + EXA) « = 6
X =2
the total number of states being 2& = 16.
For the first few integers we have:
)
n, K(no) 2
1 2 2
2 3 Y
5 L 8
L 6 16
5 8 32
6 18 69
7 20 128

We shall note that the normal frequency distribution associated with a
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Markovian order n, is approximatively decomposed into m(2no) frequency
distributions components corresponding to each class.
If one distinguishes between even and odd vertices of the chain,

the Bragg-Williams long range order parameter S is defined as
S=2PL-1

where Pp 1s the probability that T belongs to an even vertex. S =0 is
a random (Bernoulli) process. S > O indicates a preference for even,
and S < 0 a preference for odd vertices.

Such a long range order is, for example, meaningful in a lattice
of even sites and a superlattice of odd sites. It indicates the place-
ment preference of (T,G) with respect to the 2 frames of reference. This
interpretation may not agree27 with the ordering of conformations. How-
ever the reference frame need not be geometric: Coleman and Fox  have
described a polymerization mechanism in which a "growing chain has two
reactive states, capable of adding a monomer each with its own stereo-
specificity.” Here P would be the probability that T is associated with
one of these states. This mechanism is non Markovian. It provides an
interpretation anionic polymerization, recognized as being of a non
Bernoulll type.

The treatment of semi crystalline polymers by Tobolsky and Gupta8
uses the same concept. The chain is in one of the two states—erystal-

line or amorphous; there are here, however, two independent parameters:



55

Q. , probability of persistence in a crystal.
P , probability that it escapes into an amorphous region.
These authors describe their mechanism as Markovian, they obtain crystal-
linity percentage, average sequence length in crystalline and in amorphous
region as a function of (o, p).
An obvious example of non Markovian order is the non-self-intersecting
chain. If a chain satisfies the volume exclusion, the number of ways
for adding a new link decreases as its length grows; in fact "almost all
configurationslo permitted by the unrestricted theory are ruled out."
The evaluation of the numbers C, of such non-self-intersecting walks
of n steps has at present only been approximately determined. It has

been proven that the limit

exists.

Temperleylo has conjectured that p is related tothe "corresponding limit-
ing ratio to the terms in the expansion of the Ising partition function”

(with the notations of Ref. 16)

N NC/2 T
Z(T) = 2 (cosh K) / z n(r) tanh (K)
r
where K = J/pp. It was asserted that
u = lim E&Eiil coth KC
rw 0(T)

where Tc ig the Curie temperature. In a discussion of the Faraday Society,

L7
Fisher ' showed however that because of the contribution of S shaped walks
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L > coth Kc

The issue here is to determine how closely the results of the Ising model
fit to the problem of nonintersecting chains.

Another problem is to decide whether a chain occupies all possible
sites. If the volume exclusion is satisfied, voids may appear; In the
graph théory,u8 a walk going exactly through each vertex is a Hamiltonian
circuit. Whether a graph process is such a circuit depends on the degree
of each vertex. A lattice 1s crystalline when these degrees are equal.
OtherwiSé the lattice is amorphous. The condition that a set of vertices

form a lattice is that27

27

is independent of the regular volumes V.

Coleman and FOXAE pointed out that in the absence of information
about order, it 1s appropriate to derive such characteristics as con-
centrations of T, G and departure from randomicity, from calculations
that do not imply Markovian order. Statistics of non Markovian chains
are also valid for Markovian order., In view of Chapter III, we shall

use their theorems II and III: we consider successively closed sequences

of G's and T's. The quantity of interest i1s, for the first sequences:
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which is the probability that the recurrence time for T has length n.

(o]
The mean recurrence time is x(T) = n f,. Theorem IT states:
n=1
1-9
x(T) =
Po

where ¢ = lim pn{Tn}, assumed to be zero, and where py is the occurrence
00

probability of T. Theorem III determines the mean length w(T) of closed

sequences of T. It states:
Py-4

WE) = p; -p(GG)

where P is the probability for occurrence of G, and p(GG) for occurrence
of the doublet GG. For a Bernoulli process, pg(T) = 1/p;. Coleman and

Fox define the persistence ratio,

p(T)
HB(T)

o =
and the "statistical after effect" p - 1, which gives a measure of the
departure from randomicity.

Given a certain order, the above formula allows the calculation of
characteristics such as:

- concentration of singlets T, G

- concentration of doublets TT, TG, etc.

- concentration of multiplets.
In the inverse problem one infers order from the knowledge of these
characteristics. There are known techniques to determine the latter
from a frequency distribution, or other observables. There is a small-
est number of characteristics required to specify order. We consider

L

here the example of Bovey and Tiers '; the rates R of occurrence of the

following triplets of o methyl groups are given:
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oL L4l fda + dds
R + H R + ;
2
1 ddd dld RB +201d + ALl

where £, d are the 2 configurations of a group. An identical representa-

tion of this table is:

II S5
R + H R + ; {281 + 2IS}
1 ITI 2 S8 RB

where I, S indicate the tacticity of a doublet. To infer that the (I,S)

sequence 1is random (Bernoulli) the rates must be in the proportion

2 2
Ry = o© 3 Ry = (1-0) ; R5 = 2(0-07)

This was verified for methyl methacrylate polymerized from free radical
monomers. The data of anionic polymerization did not fit with this pat-
tern. It was therefore concluded that the (I,S) sequence is not of the
Bernoulli type. Coleman and Fox argue that the data are not sufficient

to decide whether the order is simple Markov or not. Indeed if the transi-

tion matrix is

P21 P22

If the order is simple Markovian,

P12 = 1l-pj; 5 Py = 1Py 3 Pyp tPpp = 2-P117Pos

It is seen that R5 could be equal to Q-Rl—R2 without Poy and P15 satisfy-

ing the above requirements. Hence nothing more can be inferred.
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If a process is known to be Markovian of order ng, (Qno - 1) "o
elements are to be specified. Otherwise the 2no X 2no elements are
needed to infer that the process is Markovian of order n,.

Deanu9 has given a method to derive rates of occurrence of multiplets
from the harmonic frequency distribution of simple systems. In this
method we suppose, for example, that the concentration of T is smaller
than the concentration of G, and that a T yields out of band modes.

From the property of ordering of out of band modes in terms of typical

T, G sequences, a relation is established between areas of the frequency
distribution and rate of occurrence of these sequences. In Chapter III
we use the Green's function method to perform the identification. De-
termination of some transfer matrix elements from the frequency distribu-

tion is then possible.



CHAFTER III
FREQUENCY DISTRIBUTIONS OF SIMPLE CHAINS

Here we consider a sequence of mass points j(Jj=1,...,N) joined by
bonds of length £. The bonds are not necessarily aligned. The comple-
ment of the angle (j-1, j, j+1) is the configuration of (j-1, j, j+1)

and is noted wj. The sequence

is the conformation of the chain. A special case is the ‘regular con-
formation wj = ;, for all j. When E = 0, the chain is extended. Notice
that the conformation does not specify completely the structure of a
chain since a configuration Wj is invariant under a rotation about the
J-1, j axis.

We suppose that the chain is maintained in a given conformation by
a potential V. If we insert springs of force constant y between each
successive pair, a longitudinal vibration can take place. We may also
imagine that the springs act perpendicularly to the bonds, in which case
the vibrational motion is transverse.

Simple chains provide amodel50 for the harmonic activity of long
molecules in the frequency range where the grouping of several atoms into

one, is valid. The frequency distribution for regular conformations

with cyclic boundaries is given by the inverse square root law. The

L0
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squared frequencies for regular conformation have been related to the
zeros of GegenbauerSo polynomials, where the result is applicable to

free and fixed boundaries. In general the squared frequency distribution
is identical51 to the elgenvalue distribution of a tridiagonal or singly
bordered matrix. Ordering of eigenvalues of such matrices is easily
performed on a digital computer%9 It leads to the eigenvalue distribu-
tion as defined in Chapter II. Calculations have been made for the iso-
tope and spring defects on a regular chain. Calculations as a function
of conformation seem however hot to have appeared in the literature (ex-
cept in Ref. 52).

We first consider qualitative results from a regular chain with a
single "defect," i.e., a value wj 4 ;; this is called a singly folded
chain. It is natural to distinguish the cases where the reference value
is $ = 0 from the case $ # 0; namely, in the first, the defect value
lel can only be greater than W, whereas in the second ijl can be greater
or smaller than ﬁ. We shall see that the absence or presence of out of
band modes is related to this distinction.

The case E = 0 is easily solved. Figure III-1 shows the dynamical
matrix A in Cartesian and in internal displacements coordinates. For
cyclic boundaries Ai is of order one less per fold than Ac; the extra
mode corresponds to a zero frequency motion in the y-direction,

If Mo(w?) = Ai - wgl, where Ai is the dynamical matrix of the ex-
tended structure with cyeclic boundary conditions, there corresponds to

the singly folded chain a matrix M which, according to the Green's function
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Figure ITI-1. Dynamical matrix for the harmonic activity of a simple
chain with a single fold, in Cartesian (A®) and in internal (Al) ais-
placement coordinates. The B matrix transforms the Cartesian displace-
ment vector y into the internal displacement vector £. The equations
of motion are given in (IV-1l). The angle is noted B instead of Wj in
view of later application.
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method,55 is written as:

o -1
Maw™) = M(I+M D)
o] 0]
The frequencies are the roots of:
T+t (F)D] = 0 (ITI-1)
The "defect" matrix has the form
d, .
J-1,3...
D =
i,3-1 0..
where
d. . o= d, . = 1l - |cos V. III-2
1,3 o1 = 7k - leos vyl (I1I-2)

The elements of the matrix Mgl are the Green's function of the extended

conformation; they are written
M = g/ , n= |i-j]

In this case:

(n) cotg N8/2 .o sin|n|e

g = - : :
2 7 sind 27y sind

wgﬁwi = sin26/2 ; wi = hy/M

For the extended structure the squared frequency distribution is:
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Go = lﬂbL w(l-wg/u)i)l/2 (III1-3)

A single fold introduces a correction to the squared frequency dis

tribution of the form (Figure III-2)

MG = £ G
¢

- 1/N (S(wg-w%) + 6(&2))

[0, v<oO

N
) g%—l s(a2-(2/2)(1 + (1 + v/2)(1 + v)"H?)),
Lv >0

so that the squared frequency distribution of a singly folded chain is:

G = GO + AG
2 2,2 2,2
where f = (1+v/2) v/Na(v" + 32 (w /wL)(l+w ﬁwL))
and v = cos2 v, - 1

J
hence a fold from the extended chain connot produce an out of band (or
localized) mode. Its effect is to attenuate the transmission of the motion
by a factor proportional to | cos wjlo When Wj reaches /2, the two half
chains are independent and the defect is analogous but not equivalent
to the infinite mass isotope. The difference lies in the boundary con-
dition.

50

Brout and Visscher” have found an "approximate" localized state

for the very heavy isotope case, which decays into the continuum at a
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AG (w/w ): J>l= 120°

in plane

out of plane

Figure III-2. Correction to the frequency distribution for a single
fold, calculated by the Green's function method. The exact normaliza-
tion of these curves is given by Eq. (III-L4).
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rate slow enough to be observed. It corresponds to & complex root
w, T ie
of the determinantal equation

1
[T +M D] =0 at the limit N + w .
o}

There is a similarity between the heavy isotope and the fold defects in
the aligned chain. The determinantal equation for the latter is written
as

(1 +ag(1))" - & g0) = o

where d = 4, .
J-1,J

a(

g°(1) - g(0)) - 2a g(1) +1 =0

4, = (1) + g0))™*

Inserting the definition of d and g(n), we get:

(cos & + 1) Sotg NO/2 = ( L l)
- 1

2 sin © -Cos Yy 2
- €p cotg 8/2 = tg NO/2
(I11-5)
e tg 8/2 = tg No/2
cos VYs-1
where  eg = ———*—Q:I (I1I-6a)
cos Wj

For the mass defect, the determinantal condition reduces to5u:
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€ tg 8/2 tg No/2 (I11-7)

m

1-M/M (II1-6b)

M
i

where

The sharp resonance in the continuum reported by Brout and VischerBo would
be observed for values of €, lower or equal to -25. From (III-6a) it is
seen that €p cannot be lower than -1. Hence we argue that the effect of

a single fold in the extended conformation is not .observable by a resonance
as in the case of the very heavy isotope.

25

Using the transformation
2
W

o = —2;'- (Q—é-él)

the determinantal condition for the isotope defect is then:

-1

1o (2-8-¢7) (6t o, ltl<1

1-e (2-6-eH(e-eDHT -0, e >1

N

for the fold defect it is:

—l>-l

-1

1+ v E(E - ¢

It

o, gl <1

it

1+v g(E - ¢t o, el >1

We note that in neither case is there a complex root in the physical &
sheet.

We now turn to the more general case % % O; the two half chains may
decrease or increase their fold angle as reflected by the sign of Wj - %.

The dynamical matrix is:
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2y -7cos§
—7cosE 2y -7cosE
-7cos$ 2y —7coswj
-7COSWJ 2y -7cos$
-ycosV 2y
-ycosV

where y; is the "defect" value.

We use again relation (III-1). The Green's function, however, has
an additional factor cos % in the denominator which modifies the integra-
tion path given in Mahanty, et El'55

The Fourier transform of the squared frequency distribution is de-
termined in this reference from:

2
{ 1
AF(a) = f e ™ d log [T + M D (III-8)
C

The appropriate change of variable is here:
2 ~ -1
@ = (/) (2-cosy(k - £77)) (111-9)

The correspondence is given in Figure III-3 and Table III.

An out-of-band mode above the continuum arises from the F5 integra-
tion, eand another below the continuum arises from the I'y integration.

Thus, the Green's function is
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TABLE III

CORRESPONDENCE BETWEEN w AND ¢

e

Contour

0 to (¢£/2) (1 - cos )

(a)%/E) (1 - cos ¥ cos Q)

(af/2) (1 + cos ¥)

1/cos ¥ % (l/cos2 ¥ -1)
to 1

eiQ;OSQSﬂ

P6, F7

Fl, FE’ F F) Fl’_

-1 to 0 l"5
to »
y
€ plane.
\
\
| "

Figure III-3.

sity of modes w (Eq. (III-9)).

axis.”?

Integration contour in the € plane to determine the den-

The difference between this and the iso-
tope problem is in the contribution of a portion of the positive real
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- 1 gn

Ty cos ¥ & - -l HES
gln) = < o

- le] >1

|y cos ¥ -l e

The squared frequency distribution of the unperturbed chain is

o 2 —1/2

1 2~ 2
G, = - (cos ¥ - (1-2w /wL) )
L

The additional term due to the defect is

AG = £G
1 2 2 ~ 2 2 ~
- o5 (8(e”-wr(1+cosy) + 8(w -wr(1-cosy)))
o O, p < 0

/2

+.

Y,

2
2(1+y) [8(cu ) (ED.T: (1 + cos?lr(lw/e)(lm)_l )

N

wg
| L
+ 3w - —

2

(1-cosy (1a/2)(10) Y 2)] w0

'—b
il

(1+u/2)20/N(u"H(8/ cos?Y)(cos™y - (1-20)2/0%)2)

=
I

(coszwj/cosgﬁ) -1

Then p the squared frequency distribution for a singly folded chain is
G = GO + AG

For ;> ¥, the defect reduces the singularities at (ai/E) (1 + cos ).
In the range wj < $ two out-of-band modes appear: one lower than the low-
est, the other higher than the greatest cut off. The separations (“b/di)g

are gilven as a functioncﬁ?¢j in Figure III-4. The presence of these modes
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1.08 |

J

3 104
N

o .00

3

Vi
0] 20 40 60

Figure III-L. Separation of the upper (or lower) out-of-band mode from
the continuum as a function of ¥4, calculated by the Green's function
method. There is one such curve for each ¥ (Eq. III-13).
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could have been conjectured using Hadamard circles (see Chapter IV)

centered about the ajj and aj+l 341 matrix elements of Ai. Their radii

increase as Wj moves away from n/E providing an increased "allowed” region

for eigenvalue location. Conversely, when wj moves toward n/2, these

2 circles shrink, forbidding any eigenvalue to escape from the continuum.
Two other out-of-band modes appear below this continuum for fixed

boundaries. Again, a prediction could have been made. The mechanism

is different however since the radii associated with first and last rows

are not modified. Here the centers of the 2 circles are displaced from

81, to all/2 and & to ann/e. The necessary condition for appearance

of these modes is then

2 a1 - 2 a;, cos ¥y > 0

~

811 - all cos ¥ <2 all -2 8y, cos ¥

which is always verified for E £ 0.

In Reference 54 the importance of out-of-band modes is illustrated
by the evaluation of the vibrational self-energy, i.e., the difference
between the sum of all frequencies (square roots of eigenvalues) in the
perfect and the defect states. The in band modes are shifted by an
amount proportional to wL/N, where wL‘is the largest unperturbed eigen-

mode. A localized (out-of-band) mode w_. contributes to (mo - wL,), which

0

is an order of magnitude greater than wL/N.
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We determine now the harmonic frequency spectrum of a simple chain
in a given conformation, and inversely from a given spectrum we derive
the characteristics of the family of conformations with which it is as-
sociated.

The frequency distribution, subsequently noted ¥F.D., is in fact a
distribution averaged over an ensemble of chains. It also is the F.D.
of a typical chain as N - «». Hence a formulation of the inverse problem
is to determine the configuration distribution (C.D.), which is the
probability that the angle ¥ of a given vertex lies in a certain in-
terval. Two characteristics of the C.D. are:

- the range of possible { values at each vertex

- the ordering of V along the chain, in the sense of Chapter II.
One appropriate case in the study of the carbon backbone is the discrete
range (0,V¥). The value ¥ is given by the tetrahedral geometry and the
type of motion considered. For the longitudinal motion, one has (see

Figure IV-1):

~

2
cos wz = 1-sina (1 - cos ¢) (I11-11)

where 20 and ¢ are respectively the valence and internal rotation angle.

For the transverse motion one has
cos ¥, = cos ¢ (IT1I-12)

At low temperatures the internal rotation angle is restricted to one of

the 3 angles O, 2ﬂ/5, hﬁ/Bo Since the 2 last configurations yield the
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same cos Y, we restrict ourselves to the two values of ¢ = (O’$Zt) also
denoted (T,G) for trans and gauche configurations. The effects of various
values of ¥ and various ordering of (G,T) are seen in Figures (III-5, I1I-6,
III,7). The pure G frequency continuum has a width equal to cos ¥ and is
centered at wg/wi = 1/2. Figure III-6 shows the F.D. for various concen-
tractions of G configurations randomly distributed (Bernoulli type). One
can see three components in these F.D.: the pure T continuum for p < O.k4;
the 2 branches of the periodic TG conformation for 0.4 < p < 0.6; the pure
G conformation for p > 0.6. In Figure II-1 and Figure II-7 the order is
Markovian simple. It is measured by the parameter op defined in Chapter
II. The effect of og is to enhance one or two of the above components,
with respect to the Bermoulli case (og = 0).

The inverse problem is solved in two steps. The first is the iden-
tification of "structures" in the F.D., in terms of sequences of configura-
tions. By "structure,” we mean a typical frequency pattern in a certain
frequency interval. Only certain sequences of T,G can be identified
with structures. For instance for p > 0.5, the configuration T pro-
duces a localized mode 5, but the sequence TT produces the mode ® + A&,
® + ; . There is no meaningful identification of ® in terms of'T since

the mode associated with T depends on the configurations in the vicinity

of T. Dean49 found however that sequences of the type:

GIF, GGTGG, GGGTGGG,

where T is bordered with an equal number of G configurations, can be iden-
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20L p=0I99 - p=0282 - p=0405 - p=0503
{a) (b) (c) {d)
151 = - L
IOF - -
57 I
O | I ]
f
20 p=0604 - p=0.689 - p=0.80 . - p=0307
(e) (f) q)]|° (h)
E E
3 - rE E
8
| I
C
D
F
§ 6 B LCL 0 B
G D
1 | 1 JJI | F.xG
05 10 05 1.0 05 10
2 2
w /w

Figure III-6. Squared frequency distribution for 8 concentrations p
of randomly distributed folds Wj = 2ﬁ/5. The remarks of Figure III-5
apply here; however the case p = 1 corresponds to the inverse square
root law distribution, centered about w?/w% = 1/2 in the range (l/h,
3/4). The intervals (0,1/4) and (3/4,1) are the "forbidden" gaps;
these are gradually filled as p departs from 1. The structures in the
forbidden gaps (labeled E,B,C,etc.) are associated with "islands" of

T structures as in Figure III-5; their association is however more am-
biguous because of the relatively smaller width of the forbidden gaps.
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Figure III-T.

o1

2, 2
w /wL

(b)

o

Ng = I

N;/Ny=2.
AM =08
BM =0.6

o=+0.18

G

1.0

Squared frequency distribution for simple Markovian

chains. The fold angle is wj = 2ﬂ/5. N, is the number of T con-
figurations, Ny of G configurations.

I S
1 + Np/No

which equals 0.666 in this case.

in Chapter II.
a concentration of T and G's respectively:

)

The relation with p is:

The short range order op is defined
Case (a) is more ordered than (b) and corresponds to
this can be interpreted on

the frequency distribution by the superposition of the two inverse
square root laws centered about the same point but extending over 4if-

ferent intervals:
to T concentrations.

the smaller corresponds to G clusters and the other
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tified with ®. The number of G necessary to establish a definite cor-
respondence depends on the problem. In the case | = ﬂ/2, the first of

2n/3 only the third

these sequences is found meaningful, whereas for ﬁ
is identified. Such sequences are called T "islands." If a sequence is
an island, &ll those obtained by bordering this sequence with G con-
figurations are equivalent. The problem of identification is to find
the smallest typical sequence for a given island. The out-of-band mode

5 associated with a single T defect is calculated from (III-10)

2

F - (; (1 + cos ¥ (1 + p/2)(1 + u)'l/Q) (I11-13)

This mode 1s a function of the configuration angle ¥ of the regular con-

formation and of the defect angles V.

(cosij/ cosgw ) - 1 >0

=
H

a% L oy/M.

For E = 120° and ¢ = 0, we identify ® with the mode of a T island bordered
with an infinite number of G configurations. The other T islands (i.e.,
bordered with a number of G configurations greater than the characteristic
minimum) yield modes in & vicinity of .

Equation (III-13) allows the identification of the E peak, for
given Eo (Figure III-L4, III-5, III-6.) Conversely from a known E peak,
the value of ﬁ can be determined by (III-13). In the case ﬁ = 120° we

~2_ 2 N_ ° ~2_
have w* = 0.812 wp. For y = 90°, we have w = 0.75 af.

o
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The second step is the relation of the area under a frequency struc-
ture and the rate of occurrence of the associated island. The one is
proportional to the other. Characteristics of the configuration distri-
bution are then derived from the rates of occurrence of all islands iden-
tified in the F.D.

We first consider the problem where the concentration p of G con-
figurations is greater than 0.5. In this case the T configurations pro-
duce structures in the forbidden gap and these are better identified than
structures in the allowed interval. A reason for this situation is the
interaction effect of 2 defects. It is well known that 2 defects far
apart yield out-of-band modes that coalesce. Ag the distance between
the T configurations decreases, these modes split., Hence clustered out-
of-band modes indicate isolated T's whereas spread out modes indicate
clustered T's. The identification proceeds on this basis. An important
feature in the counting of T configurations is the following relation:
for low T concentrations P = 1 - p, every T configuration transfers 2
modes from the continuum into the forbidden gaps. This result was
derived in the last paragraph for single defect and is readily visualized

in the example ($ = ﬁ/E) corresponding to a fold of a regular degenerate

chain:
2 0
0 2 -1
-1 2 0

The Hadamard circles of lines 2 and 3 have finite radil and yield each
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a mode outside the continuum. This proposition is not wvalid for large
P since at the limit P = 1 there would be twice as many modes as degrees
of freedom. Hence some T in closed sequences as GGTTIT...TGG yield modes
in the pure G continuum; at this stage 1t becomes more relevant to count
the number of changes of species T,G in the conformation.

We now identify the peaks labeled E, B, C, ete., on Figures III-5,
and III-6. In order to proceed the concentration of G configurations
and their ordering must be given. Here the order is random (Bernoulli).
We try successively the sequences:

GIG , GGIGG , etc
for the T island, and the sequences
GITG , GGITGG , etc
for the TT island. The rate R of occurrence is determined by the con-

centration p of T. For GIG we have:

_ 2 _
Rip = (p-1) p

(The first index indicates the number of T's, the second the number of

G enclosing the "island".) In general

R = (p-1)"7
1,2
en (III-1L)

il
Py
Lel!

i

I_J
S~
lo]

(0]

o

(@]

Boo

Let Sg/Sp be the ratio of the area of one of the E peaks to the total
area—the other E peak is left out to avoid double counting. Other

ratios such as SB/ST are defined similarly. Tracing the curves SE/ST,
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etc, measured on the F.D., as a function a 5, we compare them to the Rij(E)
curves. If a peak X corresponds to one single island the SX/ST ratio
should match a predicted P dependence. The labeling of a peak is made
by best fit of SE/ST SB/ST, etc., with model behavior. Figure III-8
gives evidence that the observed ratios reproduce a predicted p dependence
in a certain interval. Coincidence is imperfect: first, the modes lab-
eled under one peak may belong to 2 islands because of a particular par-
tition of the frequency interval; also the modes attached to a certain
island may spread over a frequency interval overlapping frequencies of
different assignments. Next, there are contributions of "imperfect is-
lands" where the defects are not symmetrically bordered. For instance
the sequences GITGGG and GGGTG occur at the same rate as GGTIGG in the
random model, and would produce modes similar to those of GGIGG; the
latter configurations are seen to be equivalent in the case E = ﬂ/2
Figure III-8. They are not equivalent in the case Vo= 2ﬂ/§, as indicated
by the B behavior. In general, a frequency peak is a superposition of
contributions of several islands, with however one dominant island.
It is remarkable that one actually emerges, as shown in Figure III-8.
Using these assignments (see Figure III-8), we may derive the
ordering associated with a F.D. Hence from Figure II1I-5a we measure
SB/ST and we read the concentration 5 on the 322 curve in Figure III-8a.
To test whether the order is random (Bernoulli), we calculate the per-

sistence ratio (see Chapter II):
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Figure III-8. Ratio Sg/ST and Sp/ST,etc., as a function of the con-

centration p of T configurations.
peaks labeled E; Sp is the surface under
St is the total surface.
ured on Figures III-5 and III-6.

the surface under one of the
one of the peaks labeled B;
The broken curves are the quotients as meas-
The plane lines are the quotients

Sg 1is

predicted by models Rij, Eq. (ITI-1k4).

(2)

@ = ﬁ/2 (see Figure III-5). The E peak is identified with
the island described by Rijp, i.e., GIG. The measured
SE/ST is lower than the assigned ratio for P < 0.675: hence
some GTG islands produce modes elsewhere. The B peak is
identified with the island described by Rpp, i.e., GITG.
The measured SB/ST is higher than the predicted ratio, for
P < 0.4%; hence some other island than GITG contributes to
this particular squared frequency interval.

V = 2n/3 (see Figure IIT-6). The E peak is identified with
the island described by R16, i.e., GGGIGGG. The D peak is
identified with the island described by Rp), i.e., GGITGG.
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uw(@) p

ke
Il

u(G) ——
p - pp(TT)

where

and pe(TT) equals the rate of occurrence of TT. The latter is obtained

from SB/ST:
2
p(TT) = R22/p = 0.043/0.51 = 0.085
hence 0.711 x 0.289 _ 1.005
0.289 - 0.085

which indicates a random order with an one per thousand error. From
Figure III-6f, we measure SD/ST = 0.021. This value yields p £ 0.% on

the Rp), curve. Further, one has

po(TT) = Rgu/pu = 0.021/0.24 = 0.88
and o = 0.3x0.7 _ 0.99
0.3 - 0.88

which indicates a random order within an error of l%.

However in Figures III-T7a,b, we find respectively SD/ST = 0,029 and
0.0165. The first of these values is not reached by the Ro)y curve on
Figure III-8b. The second yields p = 0.2, hence p,(IT) = 0.115/0.41 =
0.0k and p = 0.82, which also indicates that we cannot use the assump-
tions of curve (Figure III-8b). In both cases the "statistical after

effect" is recognized.
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Can we assert from the F.D. of Figure III-T7a,b that the order is
simple Markovian? We write the rate of occurrence of "islands” in terms
of the matrix elements of the transfer matrix t. These are also the con-
ditional probabilities that a configuration be followed by another. Us-

ing the notation of Chapter II we have:

Islend Rate of Occurrence for Assigned Struc-
§-8nas a Simple Markovian ture Surface
o b
GGITGGG P Doy Ppy P12 Sg
2
GGTTGG P Pp5 P2l P11 P12 Sp
2
GQTTTGE D P22 Pp1 P11 P12 Sa
2 2
GGTGTGG P DPos Po1 P12 X

From the quotients of these rates we get:

P11 7 SG/SD
, p1o Poy = (Sy/Splpyy

It is seen that because of the symmetry of islands, p;, and pp; appear
always paired and that there is no way of determining anything else
but their product raised to some power. Hence in order to proceed
further, the "islend" technique must be complemented by some informa-
tion concerning the off diagonal matrix elements. ZFor example the
rate of occurrence of GI or TG would yield: p Poy + (1 - p) pyo, from

which the desired result could be obtained.
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For the evaluation of the labeling accuracy we compare some measured

versus calculated quotients:

Measured CalculategM Measured Calcu%ated 5
Figure g s./s 2 _ _ ( BM
: D Py = —— S = (==
w/So  mea/Pry =T Sm/So mep/enn” = ()
III-7a -0.358 1.06 1.07 1.45 1.78
III-70 0.18 3.4 1.8 7.5 9

We see that E and D in Figure IIT-Ta are correctly assigned. The other
results do not match particularly well; they could be improved by de~
compoging the surface of a peak into contributions of the several islands,
These are determined by numerical experimentations as described in Ref.
L9,

In view of the above difficulty, we consider the information yielded
by the area Sy of the total structure in one of the forbidden gaps. We

had seen that S, is less than or equal to the number of folds:

T
S¢/Sp < B

A lower bound of this quentity is the number of unlike pairs. There
are at least 2 out-of-band modes per unlike pair TG. In the Bernoulli

process we have:
p (1-p) < Sf/ST < D (I11-15)

For a gimple Markov chain
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PP S Sp/Sp < op

Inequality (III-15) corresponds to the shaded area on Figure III-9. The
measured Sf/sI curve for E = n/2 conforms to the inequality; but the curve
? = 2&/5 is systematically below the unlike pair line, which indicates
that the width of the forbidden gap, a function of E, was chosen foo
narrov in the measurement of Sg. The ratio Sf/ST follows a pattern that
can be empirically reproduced by a polynominal in p (or p) (for example
Figure III-10).

Sp - 2 S¢ 8ip ~ _
Tsp = 5. = pol¥) + (1 - [eosy[)p/2(1 +p) (III-16)

where Sin is the frequency area in the interval
(1/2 (1-cosy) , 1/2(1l+cosV))

which is the support of the continuum for p = 1 (i.e., the allowed gap
at that value); p,(V¥) is the ratio sin/sT at p = 0.

The use of these curves requires knowledge of the ordering (which
is random for the curves in Figure III-9 and of the angle $. They could
be uéed ih the range p < 0.5, where the "island" technique fails for
lack of out=-of-band modes. This is also an attempt to decompose a
given speetrum into components associated with basic orders such as
pure T and pure G. Generally it looks as if the F.D. for random order

has three main components: +the two quoted above and the alternation GT

(or TG).
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o—o Unlike Pairs o5
09 o—oV¥=m/2
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} o=-02 25 (1-p)
041 ¢=+0.28 «0="086

o=-0358

I | | | I | 1 | ]
Ol 02 03 04 05 06 o7 08
P

Figure III-9. Ratio of out-of-band modes to total frequency surface
as a function of p (concentration of T configurations). Sf measures
the surface of the structure in one of the forbidden gaps; 2 S¢ is
then the total contribution. The shaded area is an allowed region for
S¢/Sp; it is bounded from below by the "unlike pair" concentration and
from above by twice the T concentration (to account for the fact that
each T produces 2 out-of-band modes for P << 1). The curve associated
with ¥V = 2n/5 is below the allowed area because the out-of-band gaps
were chosen too small.
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X x Empirical Curve
06 o——o0 Observed X

| [ | I l I l |
ol 0.2 0.3 0.4 0.5 0.6 ov 0.8

p=1-p

Figure II1-10. Empirical curves for the measurement of concentration
of G configurations in a random chain, for two values of ¥ (p < 0.5).
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In the previous sections, the range Rj of ¥ values had two elements
only. By extending Rj to the entire (O,2n) interval, the frequency dis-
tribution for random order shows a typical behavior, as seen in Figure
ITT-11. The cut-offs are smoothed and the frequency peaks are displaced
towards the center of the interval. In these calculations $ is taken
as the random variable. The dependence of the configuration angle on
¢ is given by Egs. (III-11, III-12). Two types of dependencies are con-
sidered: one for the in plane motion, the other for the "out of plane”
motion. The 2 problems show distinct characteristics; in the first case,

the matrix elements
. 2
81 141 = -7b(l - sin“a (1 - cos ¢ )) (III-17)

vary 1n e interva Ny 7 - sSin ¢)); 1n e secona case € matrix
in the int 1 (s (1 in® in th a , the matri

elements

a -7, COS $ (I11-18)

4,1+

vary over the wider relative range (7t,0).

We recognize in Figure III-1lla the central peak as the contribution
of $ = n/2 and the E peaks as the contribution of ¢ = 0, n, in analogy
with Figure II-5 where ; = n/2. This central peak does not appear in
the planar motion F.D., for the matrix elements do not reach the value
0. One notices also the difference in curvature between the 2 peaks.

We have seen that the frequency distribution is sensitive to the‘

parameters considered, in two ways: appearance of typical mode accumula-
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Figure III-11. Frequency distribution for a range R = (O, 21) of the
random variable ¢. The dependencies of the "in plane" and "out of

plane" matrix elements on ¢ are not the same; they are given in Egs.
(I1I-17, III-18).
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tions in the forbidden gap (p > 0.5) and redistribution of modes in the
continuum. Quantitative interpretation of the spectrum usually involves
the analysis of out-of-band modes. Progress in this interpretation is
however made difficult by superposition of the effects to be singled out.
It is felt that more empirical techniques in relation to the shape of

the continuum could be developed.



CHAPIER IV

INTERACTION OF LONGITUDINAL AND TRANSVERSE MODES

We have considered a chain composed of mass points with one degree
of freedom, longitudinal or transverse. In this case the only effect
of a fold is the attenuation or enhancement of the transmitted motion.
We will call this the self-effect. When two degrees of freedom are com-
bined, this effect applies independently to each one. In addition how-
ever a local coupling of the 2 modes occurs. We will now determine the
Joint effects on the F.D. (We shall however not be able to treat the
complicated conformations as in Chapter III.)

In order to provide a model fora polyethylene backbone, two simple
chains will be . incorporated in a ribbon like structure, with two rows
of respectively even and odd numbered mass points, distributed as in
Figure IV-1. FEach point is also connected to 1its two nearest neighbors
on the opposite row. The "in plane" motion of the structure is the
superposition of three independent motions—two longitudinal along
even and odd rows respectively and one zlgzag along the diagonals.

The out of plane motion is the superposition of the two independent
transverse motions of even and odd rows.

The equations of motion for the planar conformation are, in internal

displacement coordinates:

mly = =y Lyt Om Ly - i (C-C-C bending)
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mss = =78y cos2q; + 273 sj - Vg 8541 cos2a  (C-C stretching)
. = - + - ! o
mt; 7e tj-2 27, tj 7 tj+2 (out of plane motion)
(Iv-1)
Yoo Vg2 Ty 8TE the force constants for the bending, stretching, and out

of plane motions; 20 is the valence angle.
We allow the ribbon to fold along any diagonal bond. The angle of
"rotation" $j is the angle between the normals to the (j-2, j-1, j) and

(j-l, j, 3+1) planes. Any nonzero angle ¢j produces the following effects:

- attenuation of the longitudinal motion (angle B)

- attenustion of the transverse motion (angle $j)

- interaction between longitudinal and transverse motions (angle &)

- interaction between transverse and zigzag motions (angle &).

The following geometrical relations will be needed for the equations
of motion in any conformation. At every vertex j, we constuct a right
handed Cartesian coordinate system whose x axis is aligned with (Jj-2,3);
whose y axis is perpendicular to the plane (j+2, j+1, j) and directed
through the plane of the figure, when unfolded at ¢ = 0. Consldering
the vertex j-1, we first express B,9,f as functions of ¢ and Q.

Isolating the configuration j-1, j+1, j+5*, J from Figure IV-1, we

find:

2
24% sin 2g (l-cos¢j) = 24 (1l-cosB)
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cos & \

O N
O 90 180

Figure IV-1. Trans and gauche configurations of the carbon skeleton
for 2 = 60°. The diagram at the bottom is the variation of force
orientations as a function of internal rotation angle ¢ ; the dotted

lines are drawn symmetrically to cos B and |cos &I, respectively, and
intersect on the cos ® curve (see Eq. (IV-6)).



[P

where {, d are the distances (j-1,J) and (j-1,3+l) respectively. The

relation between B and ¢j is
.2
cosB = 1 - sin o (l—c0s$j)

The attenuation coefficient for the longitudinal motion 1s cos B. For
the transverse motion it is cos ¢j' Notice the latter goes to zero for
¢j = ﬂ/2 and that the former reaches a minimum at ij = 1 (see Figure
Iv-1).

Isolating the plane P(j—l,j,j+5*) from Figure IV-1 (see Figure IV-2),
we consider the normal y, to P through j-1 and the axis y associated with

vertex j-1l. By definition y is orthogonal to (j-1,j). Constructing

A such that (j-1,B) is of unit length, we have:

2 2
cos ® = q +1-7p
a sind  gng p2 = cos“q + q2 cosg$.
sino. J
J
cos & = sin Q sin ¢j (Iv-2)

The bending-torsion interaction coefficient is cos O,
Isolating the plane P(j-1,j,j+L) in Figure IV-1, we consider the
normel y to (j-2, J-1, j) and the perpendicular M in P to (j-1,J); then

(see Figure IV-2b)
2 2 . .
cos £ = (1 +x -p)/ex = sinlo 81n¢j (IV-3)

The stretch-torsion interaction coefficient is cos €.
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Figure IV-2. Three-dimensional geometrical relations taken from
Figure IV-1 (top):

(a) between cos ® and (,a),
(b) between cos & and (¢,a),
(c) between cos ® and (8,X).
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It will be useful to establish the following relation between 2
reference systems at vertex Jj-1: the first is the Cartesian system
associated to vertex j-1; the other has the same x axis, but its y'
is orthogonal to the (j-3, j-1, j+1) plane P. In this frame, the
direction Qf y is given by (0,X) which we want to express as a function
of <$j’a) (see Figure IV-2c¢). Let (j-1,u) have unit length; consider
the projection yp of y on P and construct the projection Q of U on

Vpe From Q, the normal to P intersects y in A. We then have:

2
cosd = (1 +q - Pg)/gq
q = 898X o 2 oin®y 4 cosy 258 (TV-1)
sin © . 2
gin™®
hence cos & = cos X sin = sin ¢j sin o, which 1s the wanted relation.
Further we have that:
X +B = n/2
since y is orthogonal to j-1, j+1; hence
cos X = sin B (1Iv-5)

sin © is derived from (IV-4) and (IV-5).
A geometrical property of the cos B, cos d, cos é functions is (see
Figure IV-1, bottom): for any O < < ﬂ/2 there is a triple crossing

*
point, i.e., a value ¢j such that

1 - 10084731 = 1 - cos [B($5)] = cos [5(%)] (VI-6)
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Namely, letting z = ]cos ¢§! and supposing that n/E < $* < m, we have:

1 -3z = Singa(l + Z) = gin _(l_Z)(l‘*‘Z)
1l -z 41+ g .2
= sin of ) = sin“g
1 +z 1 -3z
let q = ']i H if q = Sil’l2ocf then q = M
1+z q

which proves the assertion.’

It is remarkable that for a = 34°, é*'= 120° which is the angle of
the gauche conformation. One notices that at this particular value the
self coefficients for bending and transverse motions are greater than
the interaction coefficient.

The equations of motion will be derived from the simpler case where
3 rows Ly, Lo, 13’ of longitudinally oscillating masses branch at vertex
j. The connection with our problem will be recognized immediately (see
Figure IV-3).

The reference system at vertex J is the x axis aligned with Ly and
the z axis orthogonal to the (Ll, L,) plane. The orientation of Ly in
this frame is (©,X). With this notation, we can write the bond length

variation at the branching point as:

R + v, si
Iy Xi41 (xJ cosB v sinp)

JsJd+l

= X - (x

My a1 t+1

. + v, si N0 - z.
j COSX * ¥y siny) sin® z3 cos®
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Figure IV-3. Geometry of 3 branched lines Iy, Lp, and 15
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For nearest neighbor interaction, the dynamical matrices A€ and at (in
Cartesian and internal displacement coordinates respectively) are given
in Figure IV-4, The B matrix has two zero energy independent eigenvectors

(free boundary conditions) where p, Z are parameters.

p cos B 0]

p cos B 0
o) 0

p sin B 0]
0 ’ z
0 z cos @
0 zZ cos ©
P 0]

There is only one "zero mode" degree of freedom in this Ly, Lo plane.

We have used the relation
cos (B+%x) = O

which 15 as transverse to Llu Adding a fourth branch Ly, orthogonal to
Ly, we complete the model for bending and transverse motions in a folded
chain. Figure IV-5 gives the dynamical matrices A and At in Cartesian
and internal coordinates respectively. There are three noteworthy dif-
ferences between A and Ai:
- Al is not symmetric; the dissymmetry is introduced by the difference
in transverse and longitudinal force constants.
- Ai is of order one less than AC per fold
- there are 4 nonzero matrix elements aij such that li-jl > 1, per
fold in the internal coordinate reference, compared to 20 in the

Cartesian.
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One would consider A' for calculation of the eigenvalue spectrum rather

than AC; however because of the dissymmetry, A* does not qualify for the

Sturm theorem. More precisely, if D, is the principal minor of order n

of the matrix A - vI, the recurrence relation56 DD =C D .-
? n'n-2 n-lyn-1 “n-1

C is generally velid. However {Dn] is a Sturm sequence only

n,n-1 Cn-l,n

if Cn,n-l has the same sign as C 4 This is the case for symmetric

,n’

)

matrices. It also is true for tridiagonal matrices such that sign (aij
sign (aji)’ i+ j. Little can be said in the general case, but there
is no reason for Cn-l,n and Cn,n-l to have same signs, for all n. Cal-
culafions will therefore be made in Cartesian coordinates.

Useful information can be derived from Ai, both in the special case
of equal force constants Tt = yb and in the general case: we may for

instance use the Green's function method for the singly folded chain

at vertex j. The defect matrix is

d5.0,5 - O a5.1, 34N
0 8,9-vm O
dj-l+N,j oo 0] dj-l+N,j+N

where dy_; 5 = -7 (cosB-1) ; dj.7, 34N = 74 €08 D

sd

Uj1*m, 5 = -y, €05 %5 dyiqaw ge T e (leos ¢,1-1)
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The longitudinal motions are labeled by j =1, ..., N; the transverse,
by J+N = N+1,..., 2N. Next we can write:

I + Kil Kﬁ2

Kop I+Ky

where the Kﬁj are 2 x 2 matrices. In particular

g(1) a3 51 g(0) A541, W4g

12
80) a4y, g1 B 85 e

Krq, KiE correspond to the interaction effect; Kil’ KéE correspond to the
attenuation effect, derived in the last paragraph. The calculation in
ciosed form of AG, the correction to the frequency distribution, cannot
be done from ]Kl = 0 with the technique used previously. This is a

limitation of the Green's function method. We consider therefore the

approximate problem
I K o

=
1

Ko1 I

where the attenuation effect is neglected. Using the transformation (III~
9) and specializing for the case Yo = 74 We have:

2

2 £ 2 2
AM(E) = 1 - cos ® ZEEtzSE (£°(2-cos™®) + 2)

There is an out-of-band mode corresponding to the root:

£ _ cos o -1
© 1 - c0826
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2
wg . i& (2 (cosa_1)2 + (1,-c0525)2> (IV-7)
out 2 (1-cos28)(cosa-l)

(see Figure IV-6)

It is present in the entire $ interval. For the more realistic case

"o % 7t it is calculated from the root
-1< QO <o of
éh(l + € cos2 (cosd-2)) + §5 cosd (e - 1)
-2 52 (cos28(l + (1-¢€) 088 (595-2-5i)) +1)+1 = 0

where ¢ = 7t/7b

The appearance of the out-of-band mode is characteristic of the bending-
torsion interaction and can be contrasted to the attenuation or self-
effect. These two effects work somewhat in opposition. When both are
present, the separation from the continuum is less pronounced, and in
part of the ¢ interval the out-of-band mode rejoins the continuum. This
behavior is shown in Figure IV-6. (For the symmetric case Yo = s the
calculation is made from the negative eigenvalue theorem; Ai is partitloned
in submatrices of equal order.) We need to invert X only for 2 of its
element, in the case of a single fold (see Chapter II).

Prediction of out-of-band modes can also be made from the norm of
57,58

the dynamical matrix. More precisely, the eigenvalues are known

to belong to the intersection of two families of circles Dy and Do (also
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a=mw/2

Self Deleted

T
O 30 60 90 120 150 180

¢

Figure IV-6. Out-of-band mode for bending and transverse motions des-

cribed in Figure IV-5, as a function of ¢, for y¢ = 7 The two top
curves are derived from the Green's function method on a model delet-
ing the self effect (see Eq. (IV-T7)).

The bottom curve takes self and
interaction effects into account.
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called Hadamerd circles) where

D- = union of all circles of center ais and radius

union of all circles of center a;4 and radius

)
no
I

We congsider the matrix elements of Al (Figure IV-5 as a function of ¢o
The circles are centered around 27b and 27tw These centers are inde-
pendent of ¢, but some radii (lines 3,4,9,10) depend on ¢; there are
actually ﬁwo radii for each diagonal element, one calculated from the
row, the other from the column. If the smallest circle of such a pair
overlaps the position of the highest uperturbed (¢ = 0) mode, an out-
of -band mode can appear. Whether it actually does 1s not decided so
eagily. Calculations tend however to show that separation occurs when
allowed.

When 7t/7b << 1, clearly only the circles centered around 2y, need
to be considered; coaversely for yi 7, »> 1, only the circles centered
around 27, are relevant. In the vicinity of Vt/Vb,: 1 the circles of
ilines 3, L4 and 9, 10 compete for a possible out-of-band mode. We con-
sider %these cases successively.

For Vt/yb << 1, the condition for separation from the continuum is:
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column: 7b(l + cos B) + 7, cos B > 2x
(1V-8)
row: 7b(l + cos B) + 7, cos 8 > 2y

We use a two-parameter (¢, 7t/yb) representation of these inequalities
(Figure IV-7). The first inequality requires é to be on the left side of
line L; the second further requires (7t/7b) to be gbove the S line. We
notice here the role of the dissymmetry in matrix elements: it provides
two separate conditions where one is a refinement of the other. In the
case of a symmetric matrix (such as AC, which is equivalent to Ai) TOWS
and columns yield identical information; the latter is however expressed
in a more cdmplex form than the elementary dependence on the parameters
in either row or column of the dissymmetric matrix: +the dissymmetry per-
forms a decomposition.

Similarly for 7t/7b >> 1, one has to consider:

column: 74(1 + |cosd|) + 7y o8 B > 2y,

(Iv-9)
line: 7e(1 + |cosd|) + 7, cos © > 2y,
Here ¢ is to be on the right side of L and (7t/7b) below the S line.
As (7t/yb) approaches 1 from sbove, circles centered gbout 2y, as
well as circles centered about 27t may overlap the highest unperturbed

(¢ = 0) mode:

27 +,7b(l + cosB) + 7, cosd > 2y, + 7:(1 +|cosd|) + 7, cosd

(IV-10)
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"/

0.5

0.3

Figure IV-T7. Allowed regions for out-of-band modes in the bending-
transverse motion model, derived from matrix Al in Figure IV-5. See
Egs. (IV-8) and (IV-12).
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3 * cosB

(line R)
5 + |cosd]

or 7t/7b

The forbidden region is now shifted above line R, left of L, provided

that the norm of the matrix is greater than its value at $ =0

yb(l + cosB) + %, cosd + Eyb > hyt (Iv-11)

3 + cosB *+ cosd

N

or 7t/7b < (1ine T)

The provision does not hold in region z which must be subtracted from

below R.

Approaching (7t/yb) = 1 from below, the two requirements are:

2y, * 7t(l + |cosd| + 7y cosd 2 Myb

(1Iv-12)

27, + 7t(l + |cosd| + 7, €osd > (1+cosp) + 7, cosd + 27

"
They correspond to lines T and R on the right hand side of L.

We notice that there is only one angular value é* for which no out-
of-band mode can appear, irrespective of the 7t/7b ratio, and that it
is the point of triple crossing (Figure IV-1).

At 7b/7t = 0.3, which is an acceptable value for polyethylene, a
separation from the continuum occurs only in the interval O < ¢ < n/Bv
This is far from the actual value $ = 120° and leads to conjecture that
the interaction is then small compared to the self-effect. We shall

evaluate this assertion with numerical results.
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The behavior of the out-of-band mode in Figure II-6 does not reflect
the prediction of Figure IV-7 near point A. (Although the curve is slightly
depressed in the right branch.) The smallest value for the out-of-band
mode is registered at ¢ = ﬁ/2, corresponding to the total attenuation

of transverse motion.

STRETCH AND TRANSVERSE MODE INTERACTION

The actual ratio of stretch to torsion force constants is of order
10; the circles centered about 27t and 27s are disjoint, because of the
cos 20 attenuation in the stretch motion. This corresponds to a forbidden
gap at $ = 0. We consider only the case 78/7t >> 1. From Figure IV-8,

a mode may separate from the transverse continuum if
7t(l +|cos ¢| + sin ¢ sin 2a) > 27,

For 2a = 60° this inequality yields a small "forbidden" interval around
b = 90°; $ = 120° is an allowed value.
Two modes may separate from the lower and upper bounds of the stretch

continuum, respectively, if
278 cos 20 + 27t sin ¢ sin 2a > 275 cos 20

This condition is always satisfied because the stretch mode does not suffer
attenuation under internal rotation (¢ + 0). Hence a single fold may
yield 3 out-of-band modes. The interaction effect is best observed in

the vicinity of the stretch continuum and the transverse-stretch forbidden
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)’s X )’t X
2 -cos2a
-cos2a 2-cos2a
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-cos2a 2-cos2a -cos¢
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-cosé -lcos $|2 -1
4 2 -
-1 2
y Allowed out of band regions: | =% (I+lcos$l+sin sin 20)
n'=% (1+lcosgl)+y, singsin2a
rp = 2), cos2a+2y sing sin2a
(Y %, ré:Zy(cosZa-i—sin 2asin¢)
0O % : X
: 2(y +cos2ay.)
i Indepe/n):ontof ¢ % 75

Allowed region for $<¢°, ¢>¢""

Figure IV-8. Interaction of stretch and transverse motions; dynamical
matrix in internal coordinates for = singly folded chain. The shaded
rings are differences between Hadamard circles at d) = 120° and d) =0,
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gap. (If bending is superposed, the isolated mode separated from the
transverse continuum joins the bending continuum. )
As a further consequence of the fold, even and odd rows are coupled

through the transverse-stretch interaction.

CAICULATIONS FOR A 3-FOLDED CHAIN (Figure IV-9)

The frequency distribution of longitudinal and out-of-plane motions
is calculated for a chain of 20 mass points and fixed boundary conditions.
The Cartesian matrix 1s of order 2 x 20 + 3. The eigenvalue distribution
is determined from the negative eigenvalue theorem, with the 1, n-1 par-
tition. To evaluate the relative importance of interaction and attenua-
tion (or self) effects, the same problem is also treated with the self-
effect only (case S). The corresponding matrix is written in internal
coordinates, is tridiagonal and of order 2 x 21. The object of the cal-
culstion is to determine the effect of the 3 fold separated successively
by 5, 4, 3 and 2 coplanar units; the latter could map the folding of the
chain at the crystallites surface.

In case S, the greatest change with respect to the planar configura-
tion is the attenuation of the torsion and bending cut-off peaks: this
is however related only to the concentration of the defects, not to their
separation. The clustering of the folds seems to spread the excess modes
from the bending peak uniformly into the continuum. This 1s not the case
when motions are locally coupled. The excess modes concentrate then to-

wards the end of the bending continuum. In this model clustering has a
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Figure IV-9. Squared frequency distribution for a chain of 20 mass

The dynamical matrix
are zero energy modes.

Three folds are introduced with various separations:

(a) planar conformation,
(b) to (e) interaction and self-effect,
(f) to (i) self-effect only.
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major effect, to wash out the torsion "cut off," where the excess modes
£ill the continuum on both sides. This does not agree with the observed
results of Danner et g;.,Y for which the bending cut off is washed out.
However, this experiment is very inaccurate at the energy of the bending
continuum. Our result is that for a well separated fold distibution,

the frequency pattern is dominated by the self-effect, whereas a clustered
distribution yields a more typical interaction effect.

The gauche conformation (¢ = 120° for o = 34°) is certainly a re-
markable angle*: at this value the self-effect essentially determines
the F.D. for any ratio of the force constants. The coupling itself has
two effects, it separates modes from the continuum and it redistributes
the continuum. When competing with attenuation in the gauche conforma-
tion, only the second is discernible and this requires clustered folds.
Attenvation does not occur in the stretch motion, hence all interaction

effects will best be observed in that part of the spectrum.

*Though for 7+/7b = 1, é = n/2_(total attenuation) seems more remarkable,



CHAFTER V
KIRKWOOD-PITZER MODEL

The dimension of the lattice and the range of forces are known to
have considerable influence on the harmonic frequency distribution. We
have considered simple chains of a one-dimensional type and with nearest
neighbor interactions. The model of Chapter IV is "locally" three di-
mensional and has "locally" next to nearest neighbor forces, depending
on the density of folds. In the Kirkwood model, the in plane motion is
uhiformly two—diménsional and has a next to neérest neighbor force range.
A folding couplesbthis motion with the out of plane mode, giving a local
three-dimensional effect. The out of plane motion as described by Pitzerl8
has a force range of order 3. We will evaluate fold effects on the fre-
quency distribution with this more realistic carbon zigzag backbone,

We let the reference system of vertex j have the x axis aligned with
(3-2,3), the y axis in the (j-2,j-1,3j) plane upward for odd j, downward
for even Jj; the z axis is perpendicular to (j-zgj-l,j)o The Kirkwood
equa.tionsl5 at vertex j are (where we delete components of the same
gpecies with indices smaller than j, i.e., terms below the diagonaﬁ in

matrix representation):

Xs = 2( sinza + cosga)x - cosga X
mX5 = e\ 7s 3 7s J+1

. J
-yb sin O Xj+2 + (-l) silnd cosd {:ylyj_g - (27b_ys)yj-l
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+ - - - -
(27 = 7) Y541 = % yj+2} (v-1)
my. = ...2(y sin‘q + 3. cosga)y. - (y sina + Ly

p o S Y ; < b

2 + 2
cos Q) Yiq * % COS O yj+2

The dimensionality and range are reflected in the dynamical matrix which
as a 2 x 2 block matrix is simply bordered (dimensionality effect) and
where each block is doubly bordered (range effect).

The basic unit of the Pitzer model is a sequence of 4 neighboring

. lmn | .
vertices k,1l,m,n, If z, 1s the distance of vertex k to the (1,m,n)
plane, the potential energy of torsional deformation is composed of all

lmn.\2 . . . ‘

(7t/2> (Zk )~ terms, for all possible conformations. The equation at

vertex J is:

. i i . )
m 2, cee hyt 25 = V4 Zj+l 27t Zivp ¥ 7y 2343 (v-2)

the matrix is triply bordered.

We denote the matrix elements for the Jjoint equations by 83
i,y = 1,...,NC, NC+1,...2NC, 2NC+1,.BQ,5NC

where NC is the number of carbon atoms.
We impose cyclic conditions on each of the 9 block matrices separately;

the corresponding dispersicn relations are:

wz = wi + V@% + m'u (V-3)
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7 2
where ai = E? (1 - cos2a cos®) + —EE (1 + cos®)(L + cos2a cosb)
8y 7
ol - bs (1 + cos®) sin°®

e

for the torsional motion:

8
2 7/ 2
® = _ﬁ; sin © (1 + cos ©) (V-k)

We compare these relations with the model used in Chapter IV (Eq. (IV-l)).
The points of comparison are the location of extreme values on the dis-
persion relations in Figures V-1, and V-2 and the curvature of these func-
tions at these values. The latter indicates the degree of accumulation

of modes at the singular points. By inspection of Figure V-1, we find

a decrease of the stretch band and a corresponding increase of the stretch-
bend forbidden gap (in Figure V-1 the valence angle o of the model (IV-1)
has been adjusted to minimize the difference). The radius of curvature

of the lowest singularity in each band is considerably greater. The

lower singularity of the stretch band 1s split in two singularities, which
a dimensional effect comparable to the one described in Ref. 21 (compare
Figures V-1 and V-8).

The purpose of our calculation is to determine the effects of folds
on the frequency distribution; more specifically the influence of these
more complex dispersion relations on the disorder phenomena considered
in the last chapter.

The matrix elements for a folded chain are the derivatives of the

deformation potential energy with respect to Carteslan displacement com-
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Dispersion relation along the C axis

Kirkwood Model
——__Simple Chain

!
o) 30 60 90 120 150

Figure V-1. Dispersion curve for the stretch bend motion of the Kirk-
wood model Eq. (V-1) and Eq. (IV-1b). The valence angle for the Kirk-
wood model is 2a = 60°.
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Figure V-2. Dispersion curves for the torsion modes of the Pitzer model
Eq. (V-2) and Eq. (IV-lc). The corresponding frequency distributions
are obtained graphically.
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ponents. It is convenient to separate the contributions of stretching,
bending, and torsion energies; the dynamical matrix for the folded chain

is accordingly decomposed into:

_ 1
Ap = AL+ hpg + Ay * Apy (v-5)

where Afs is the matrix of &ll elements derived from stretch energy and
modified by the fold; Afb) Aft are similarily defined, and A& includes
all elements not affected by the fold. We consider a chain folded along

the (Jj-1,j) exis.

CONTRIBUTION OF THE C-C STRETCH ENERGY
The potential energy is proportional to the sum of the squared bond
length variation A/ between nearest neighbor vertices. Among all such

variations,the expression of Alj-l . only is affected by the fold

’d
AL, ., = (x, _-x_,) cosp siny + (yi41 - ¥3) cos n
J-1,3 JtL J J
+ (zj+l - Zj) sinp sinp (V-6)

(u,p) are the polar coordinates of (Jj,j*+l). From Figure V-3 one has:

sin 20 sin &

il

sin p sin p

gin o cos 20 - cos & sin 20 cos $

cos |

One does not expect the stretch frequency distribution to depend on $ other
than by coupling between bending and torsion modes through the folding.

From (V-6) we have the modified matrix elements:
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A is the projection of j+1 on the z,x plane

Figure V-3. Three-dimensional representation of vertices j, j+l1, j-1
as a function of ¢. A is the projection of j+1 on the x,y plane; u,p
are its polar coordinates.
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s 2 .2 2
ajj = 7 (cos p sin p + cos"a)
s .
ajj+l = -7, cosq cosp siny
s , :
85 s —78(51n O cos Q - sin p cos W cos p)
J
S 3 .
85 NG+ -7 €08 p sin p sin
s
8j §421C = 7 cos P sin p sin p
J
s
aj+l JHC = -7, COS O cOS
as cos ¢ sin
341, J+2NC "7, €98 0o cos i
s 2 , 2
& e " 7S(cos b+ sin“a)
b

s
aj+Ncpj+NC%l =-7S sin @ cos p

S

254, §+2NC -7, cos i sin p sin p
S 2 L] .
aj+NC+l jeone = s 51D a sin p sin p
J
s 22
Bjionggeene - Ts SR P SInM

in order to conform with Eq. (V-1), j is assumed even.

CONTRIBUTION OF THE BENDING ENERGY
For the planar chain the bending energy at vertex j is determined
from the displacements of j-1, j+1 and j. We proceed here in the same

manner (see Figure V-L4). The problem is to express the relevant distance



104

in the appropriate coordinate system.

In the example of Figure V-4 only the displacements of vertices j-1
and j need to be feWritten. For j-1, we calculate the angular variation
A of the projection P; of PX on the plane (j-1, j, j*1); a displacement

xj-l of j-1 along x yields

Ao = =x sin o cos V-
3 i1 b (V-7)
Similarily for yj 1’ Zj—l the contribution is:
LA = =
o, Y1 ©08 @ cos b
) Aaz = —Zj_l sin &

For J we calculate the projection of the displacement (xj,yj,zj) along
(A,3), where A is the projection of j on (j-1, j+1); the corresponding

angular variations are

co80L §in°c (1-cosd)

I Ao = X,
X J L
sing 2 2
{ Aay = Y3 g (sin"a + cos a cosd)
! ba, = 'Zj Slia cosQ sin$
where
2k > 2 2 > 2
L = |cos asina (l-cosd)” + sin o (sin a + cos o cosd)

2 2 _,2]1-/2'
+ sin @ cos O 51ny$ .

The modified matrix elements for bending energy are then:
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x

ol |

Figure V-4, The first two figures are used to determine the bending
energy in the Kirkwood model for a planar chain. The next figure shows
the situation for $ + 0. (J,Px) 1s a displacement along x; Py' is the

projection of Py on the (j—l,j,j+D plane. Ax is determined from Cy
(see Eq. (V-5)).
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b B 2005@ 2 . 2 2

a5.1,5 = % 1 (L-cos“$) sin“a cos“w

b (lcos2

aj-l,j+NC-l = =% -——Er—ég-sina cosa

b 2¢cos

aj-l;j+NC = % L : sinQ cosq (singa + cos2a cosé)
b

aj-l,j+NC+l 7y, cosQ sinQ cos$

ag-l,j+2NC—l % sind cosd sina

b _ sind b si 2
85_1,5428¢ T "% L cosg sina cos o
b (1-cosh)” 2 . 2 2
-COS . .
a5 = N {jhx ———EE———— sin"@ cos @ + sin“a (1 + cos $)
. 2
b B 2sin“¢ 2
aj,j+l = =% L cos“q (1-cosd)
b . 2
8y 2 = % sin a cosd
b . . 2(1-cosd) . 2
85 pmc-1 = 2sina cosa - = sino cos o cosé
b 2 heosda 2
a, . = 7 sina cosa (1-cos ¢ - ——= (1l-cos¢)siny(sin"a +
cosa cosd)
o . 2 .3 ,
8 samctl = T 2sina cosa cos$ + T cos”Q (1-cos¢)sina
b .
a5 gamcee = % sina coso cosé
2
éb = 4y, EE%EQ sing cos (1-cosé)
J,Jj+eNC-1 b 1

2
b _ 2cos . . 2 . .
8y geane = {}—ET——-(l-cosé) sina sind cos a + sina cos$ sind
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b _ .
aej+l§j+NC-l = 7.b sinQ cosQ coscf)
' , 2 2
a?ﬂ e < % % sing cosa (sin“a + cos“a cos¢)
S
b . .
aj+l,j+2NC-l = —jyb s1nc Slmb
2
b _ cos O . .
B, geone = To T Sind sind
b = sinc Sil’ld)
Bisp g4omc T o
b

2 2
814mC-1, §4NC-1 7b(5cos a + cos“a cosé)
2

b 2 cosé . 2 2
= + —— (sin @ + cos O coOs
854NC-1, 4C % 2cos o (1 : (sin $))
b = 20 osd
Byamc-1,34Nc+L T Tp G99 G EC
o) .
8 NC-1, J42NC-1 7, cose cosd sind
-1, -
aJ+NC-l§J+2NC "7-b L cOs sin
2 2
b 2 2 beos o, . 2 2 b }
= os af 1+cos + (sin“g + cos”a cos9)
8yanc, 3e T o {c ( b 2
o = 2cosa cosh + 2050 (sin‘a + cos’a COS@}
&i4mc, N0+l T 7o T
b = 20 cosd
g54nC, JHNC+2 T Ty €0
b 12 .2 2
= = o sing — (sin O + cos O cOS
854NC, j+oNC -1 %, cosa sing 7 ®)
b 2cosQ 2 2 2 .
= y —_— i + si :
aimc, yvanc = Yo 2 (sin“a + cos“o cosp)cos @ sind

+ coso, cos&> sind)
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b .
aj+NC+l,j+2NC-l = 7, coso sing
b cos5a
a, . = =Y. sin¢ +°2 cosq sin¢
JHNCAL, j+2NC b L
ab = cosQ sin¢
sanc+2, j4eN o ‘
b ) _ 2¢
&j4oNC-1, j+eNC-1 - Tp 5B
, 2
j+2NC-1, j+2NC b L
2 2
P -, Jf(cos a sing)” sin2#}>
j+2NC, 5+2NC b L 2

CONTRIBUTION OF THE TORSION POTENTTIAL

For a planar chain, this energy is the sum:
Imn
K Z Yy
{kyfym,n}
. - Imn i
overall sets of 4 contiguous indices; Vk is the deformation energy of

the displacement of vertex k with respect to plane {,m,n. When the chain

is folded along (Jj-1,Jj), the terms Vﬁmn for the indices

lower upper
J-2 J=1, 3, 3+l
j'l 3'2: j) j+l
J 3‘29j'l;j+l
J+1 3-2,3-1,3

are meaningless, since the rigidity of the ribbon-like structure extends
only over planar portions; hence we neglect these terms for $ + 0. We

add these terms only for ¢ = 0,
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For all i = Jj, j-1, the out of plane displacements are parallel to
the z axis of the corresponding reference system. At the vertices j-1,
j, the motions transverse to the (j-1,Jj,J+l) plane have nonzero x and y
components, when expressed in the previously defined Cartesian system.

From Chapter IV and Figure 1IV-1 we have:
Z = cos$ ZJZ + sino sin& X + cos¢ sin$
] J-1 J-1

The indices r, [ indicate the half plane (right or left) to which that
displacement is orthogonal. A similar expression holds for Zga

The components of the potential energy having coefficilents dependent

on c{) are labeled in the following table.

Indices

Lower Upper

j'l j: j+l; :j+2

J J-1, J+1, j+2
J J+ly j+2, j+3
J*l J-1, 3, J+2
J*l J, d*1, §+2
J+e J-1, 3, J+1
J+2 gy 3*L, j+2
Jt5 J, 31, j+2

The modified matrix elements for torsion energy are then:

T

ajml j+2NC —7t/2 sina sin¢

t

ajmlﬁj+2NC+l = -7 sing sin$
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t

®j-1,geemce T sino sind

t 3 L2 2¢
a, , = D27, ./, 811 O sSin

Jsd tj2

. , . 2$

' - sind si cosq,
aj;J+NC 57t/2 ina sin

t

85,3 = 27 sino sind cosd
J,J+enc t/2

% ) . .
aj,j+2N+l = _7t/2 sing 51n$

t

= 2y, sino sin

25 j+2NCH2 7t b
o) = . sing sind

J s J+eNC+3 t

t
85 ; = =7 cosQ sin¢
t

aJ+NCm1,j+2NC+l = -Vt cosQl Sln¢

t

aj+NCwljj+2Nc+2 cosa sind

Ty

t o 2
8ymg, jHNC © OVy/2 €05 @ sin

t
aJ+N053+2NC

”57t/2 cosa sind cosd
; =y, /5 cosa sind
®yanc, geancel | 6/2 508

t

8340, jHONC+2 27y cosa sing

t ©
834NC, JH2NC+3 = -7y €osa sind

t Y .
8 iioNe-2, jioNc-2  0/%/2
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t t
GJ4ONC-2, J42NC-1 | T+2NC-2, J+ONC+L

t
Bi+oNc-2, j¥2NC T Ty

t
qseonca1, jremc-1 Ot/

L

jeonca1, pranc T TelE ¥ 05 cosd)

t

gy4oNC-1, jHeNC+L T Tt cosp

; b
®34eM0-1, jrencee  Tp OF

: (1 + cos ¢
830G, j+oNC 1.5 7y 1 + cos ¢)
; b
, = -0.
& y42NC, j+eNC+L 27, cos

% . ;
B342NC, jHeNC+2 T 97y 98

t

a. . = v cos}

J+2NC, j+2NC+3 t

There are 47 matrix elements modified by a fold; the proportion of per-
turbed to unperturbed elements is greater in this model because of the

third dimension and the extended range of forces.

DISCUSSION OF RESULTS

Frequency distributions are calculated for chains of 20 and 30 carbon
atoms. Three and five folds are introduced at various separations. We
have used the Givens-Sturm method to solve the numerical problem (see

Chapter II). The effects of folds are the separation of modes from the
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continuum into the forbidden gap and redistribution of modes inside the
allowed intervals (Figures V-5, V-6, V-7 and V-8). In Chapter IV it was
argued that the local interaction between torsion and bending motions is
not strong enough to yileld out-of-band modes, but that interference of the
stretch motion would however ensble them to separate. Indeed numerical
results indicate three out-of-band modes per fold. One separates from
the torsion bending continuum (which is inferred by counting the modes

in that interval). The two others are detached on both sides of the
stretch band. The separation for the first is very strong as can be

seen in Table IV.

TABLE IV

MCDES PRODUCED BY FOLDS IN THE LOWER STRETCH-BEND FORBIDDEN GAP

Location Squared

No. i

© e of Folds ¢ Frequencies¥* Frequencies¥

1 20 5,10,15 0.784 2.63,2.75,2.87 1.62,1.66,1.69

2 20 5,10,15 2.05 3 at 2.87 3 at 1.69

3 20 5,10,15 2.7 3 at 3 3 at 1.73

4 30 10,15,20 2.05

5 30 12,15,18 2.05 2.65,2.75,2.8 1.63,1.66,1.67

6 %0  5,10,15,20,25  2.05 2.75,2.8,2.8,2.85,2.85  1.16,1.67,1.67,1.69,1.69
7 30 7,11,15,19,23 2.05 2.75,2.8,2.8,2.85,2.9 1.66,1.67,1.67,1.69,1.7

*These numbers are unitless; the actual frequency at 1.73 is 670 cmfl. Two other modes
at 4.54(1.95) are to be mentioned in case 5.
Note: The cutoffs are at 1.45(1.2), 7.2(2.68).

The position of this out-of-band mode is given for different fold
numbers $ angles, separation between folds and chain length. It is seen
that as $ increases towards m, the out-of-band mode drifts upward; this

is somewhat a surprise since the mixing of torsion with stretch-bend motions
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j+

Figure V-5. In this figure P, 1s projected along the (A,j) axis, where
A is the center of the (j-l,j+l) interval. The change in the angle
(j-l,Px,j+l) due to the displacement Py 1s calculated from the projec-
tion of (J,Px) on (4,J3).
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L (T

5 5-spaced folds
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W /wL

Figure V-7. Same frequency distribution as in Figure V-6a,b with a
wider scale.
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f s

Stretch mode; Planer chain

| | 1 ' 1

Stretch mode;, Kirkwood model
5 4-spaced folds

LML TG,
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w /wL

Figure V-8. Frequency distribution for the stretch mode in planar and
folded conformation. The folds are indicated in Table IV. The accumula-
tions A,B,C correspond to the horizontal tangents in Figure V-1.
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is weak in this ¢ range.

As expected, a clustering of the folds splits these modes; a further
study would allow identification of islands. It is interesting to note
that fixed B.C. yield 2 modes at about the same location.

The redistribution in the torsion bending continuum indicates the
same trend as in Chapter IV: the clustering of the folds "washes" out
the torsion cut off. In addition, the three stretch mode accumulations
follow the same pattern. These are however '"negative" effects. An in-
teresting question is whether folds contribute to an identifiable peak
in any of the continuum. The frequency distributions suffer in the above

examples of a "lack" of population, forbidding any further conclusion,



CHAFTER VI
THERMODYNAMICAL FUNCTIONS

We derive the thermodynamical functions from the hamiltonian (II-3)

where v,p indicate respectively vibrational and potential energy and where
¢ 1s a conformstion. We consider these terms separately.

The partition function Z, of the vibrational component is a quantity
averaged cver ensembles E; ard Ep. E{ is the ensemble of conformations
specified by a given distribution of configuration angles. Epo is the
ensemble of sets {nj(c)} of occupation numbers nj(g) associated with the
normal mode with energy hwj(c). There is one set for each label j{j=1....
3N .

For N sufficiently large, the normal frequencies of a partizular chaila
are the frequencies w;(c) averaged over E, (see Chapter II). The partition

J

function is then obtained by the average over the ensemble of sets {nj}

- L (n +1/2)he;/x8 ~hes,/ 2k

_ J ¢
ZV = }: e = g —
{n'} J l_e—'hibjj k@

where ® is the absclute temperature. ZV depends on the characteristics
of the configuration distribution as described in Chapter III. Further

we have

118
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Fy = -k © log Zv
= k@ X log<2 Slnh———
2k0
>°F
s - (X ;c, = -8 (=)
v 8 v Vv 5@2 v

where V is the volume.

Figures VI-2, VI-3, VI-4 give the behavior of these functions for
several configuration distributions. We first review important results
given in the literature.

Thermodynamical effects of a single defect in & harmonic lattice are
summarized in Figure 1 and 2 of Ref. 59. These effects are changes in
free energy AF and in specific heat ACy. The latter result is reproduced
in Figure VI-1. It shows that the sign of AC depends on whether the iso-
tope is heavier or lighter. A typical feature is the maximum (miminum)
of ACV in the vicinity of 1°K. It will be of interest to inquire whether
this temperature 1s sensitive to the configuration distribution.

Effects of pairs of defects have also been determined. The defects
considered in Ref. 59 are the isotope and the spring impurities. Each
one has two possible outcomes, namely, light and heavy, weak and strong.
There are 12 distinet pairings of such defects. Six of them yield an
attractive force, the others repulsion between defects. We add a third
species of defect, the fold of the chain. It also has two outcomes, a

folding at a smaller or a larger angle &d than the regular configuration
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Figure VI-1. Change in specific heat due to a single defect. (From

K. Yamahuzi and T. Tanaka, "Effects of Defects on Lattice Vibrations."59)
The upper curve corresponds to the isotope defect M' = h/B v; the lower
curve to M' = 2/3 Mor y' =3/2 vy.



121

angle $ (see Chapter III). Combining the three types of defects, there
are 36 additional distinct pairings. We consider here 2 of them

~ o < ¢l’ $2, $ < n/2
where $l, $2 are the defect angles. Other cases are of interest, especially

the interference of force constant and angular defects at a same site.

We reproduce Table 3 of Ref. 59, with these 2 added cases.

TABIE V

SIGN OF THE FREE ENERGY CHANGE DUE TO VARIOUS PAIRS OF DEFECTS

Sign of AF * Defect 1 Defect 2

- My < M My < M

- 7 > 75 >
- b < d by < $
+ M > M M, > M
+ n > Yo <7
+ b >0 by > 8
+ M <M M, > M
+ N> 7o <7
- Mi < M 7é <y
+ Mi <M 1

The interpretation of a negative AF, is attrac-
tion of defects; a positive sign corresponds to
repulsion. The above free energy is however only
a component of our system. Hence we must post-
pone this interpretation until we calculate the
potential energy contribution.
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Clustering or repulsion of defects is also derived from comparison
of vibrational self-—energies55 (this is the normalization factor of the
frequency distribution). For the light isotope defect, a positive dif-
ference between defect and reference self-energies implies clustering.

The sign of AFV is related to the appearance of out-of-band modes.
For instance two light isotopes, two stronger force constants or two smal-
ler angular folds, yield negative AFV and out-of-band modes. The case
of defects of different types is less clear since the appearance of out-
of-band modes depends on their relative importance, whereas the sign of
AF, does not (see Table V).

We consider distribution of defects in simple chains. Figures VI-2a,b
give the entropy and specific heat functions for different concentrations
and orderings of T,G configurations. We see that for temperatures lower
than 100°K .

- lower concentrations of G's randomly distributed (Bernoulli) have

higher entropies.

- at a given concentration, the clustered distributions (UB < 0)

have higher entropies than the alternating distributions (GB > 0).

At temperatures above 100°K there is a complete reversal of the "pre-
ference." The relative entropy differences are however of smaller order
than in the previous temperature range. It is noteworthy that the re-
versal in entropy differences takes place in a small temperature interval

(about 15°), as if the entropy curves had a common intersection.



123

The heat capacities have a similar behavior: a lower concentration
in G configurations and a more clustered order at a given concentration
yield higher heat capacities, from absolute zero onwards. Here also a
reversal occurs, at however a lower temperature than the entropy.

Information on the structure of macromolecules has been derived from
the snalysis of the slope of thermodynamical functions. This analysis
amounts to a determination of the next higher derivative of the partition
function. The point is however that there are temperature intervals in
which the specific heat is found to behave typically as a power of ©.
These intervals and the corresponding exponents are determined from ob-
servation or calculated from models as a function of several parameters.
Using the Stockmayer-Hecht model of polyethylene, Genensky and Newell21
have partitioned the temperature interval (0,8, = th/k) in five such
intervals. The specific heat component for the phonon propagation along

the ¢ axis varies as the cubic law up to*%ﬁ@m, where ¢ is the normalized

force constant for nearest neighbor interaction (Nﬁ] 0.2). Thereafter
it varies linearly. For the propagation along the other axes, the specific
heat components vary from the cubic to the square root law. The cubic
law holds only up to (7/~JE*;5 @m, where y ig the diagonal force constant,
k the bending force constant (= 0.003 @m)u For the remaining part of the
description we refer to Ref. 21.

We analyze the thermodynamical functions of simple chains in a similar

ménner, relating the characteristic temperature intervals to the ordering

of configurations instead of the force constants. We find 3 such intervals
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(Figures VI-3a,b). The pure T chain has a heat capacity that follows the
cubic law in the (O, 80°) interval. The behavior is linear in (80°, 180°)
interval and of square root type beyond 180°. For the pure G chain however
this function increases faster than the cubic law at lower temperatures.
It does follow the square root law beyond 180°. Hence the transition in-
terval between low and high temperature behavior is shorter. This transi-
tion is less smooth than in the pure T case.

Ag for the effect of order at equal concentrations of T and G con-
figurations, it is seen that the transition from the cubic law to the
square root law is smoother for the alternating (o > O) than for the clus-
tered (o < 0) order.

In general, ordering yields a characteristic temperature dependence
of the thermodynamical functions similar in importance to the effects of
dimension of the lattice and force range. At this stage it is difficult
to say to which effect these functions are more sensitive. We can however
assign a temperature interval in which the effects of order are most
noticeable. From Figures VI-1, VI-2 and VI-3 this is the (0,10°K) in-
terval.

We now consider more specifically polyethylene. Figure VI-4 shows
the heat capacity for a chain of 30 CH2 grouped units. The frequency
distribution is calculated from the Kirkwood-Pitzer model (Figure V-6).

In one cage the chain is extended, in the other it has three folds specified

by the bond axes of units (11,12), (14,15), and (17,18). The heat capacity
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of the extended chain has a characteristic behavior, given by the succes-
sion of cubic, square, and linear laws in the respective intervals (0, 20°),
(20°, 120°), and (120°, 200°). When folds are introduced the coefficients
of the power laws are modified and there seems to be a departure from line-
arity in the (120°, 200°) interval. The question is whether the modes in
the forbidden gap or the attenuation of the cut off pesks are responsible
for this change in pattern. According to Ref. 60, the linear law is at-
tributed to the flatness of the bending continuum. In this respect we may
interpret Figure VI-4 as a result from the redistribution of the cut off

in the bending continuum. However, in view of the argument in Ref. 5k

(see Chapter III), we give a greater importance to the modes in the stretch-

bend gap.

We compare this result with the data gathered by Wunderlich6o for
100% crystalline polyethylene chains. These are calculated from three
dimensional lattice modes and fit the observed heat capacities at all
temperatures below 250° except for the (0, 10°) and (50°, 80°) intervals.
There is a major difference and some mimilitude with the results of the
Kirkwood-Pitzer model. The heat capacities follow the same power laws
in the same temperature intervals. However the coefficients of the power
laws are different.

A lOO% crystalline sample in the folded chain structure may have 3%
of folds. These could explain60 the bad fit in the above mentioned tem-

perature intervals. We find however that folds modify the heat capacity

more uniformly in the entire temperature range (Figure VI-k4),
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o Extended conformation
- x 3 -spaced folds

- o Extended conformation in a 3 dimensional crystal
(Ref. 60)

Kirkwood Pitzer

Cv (Erg.7°K)
o
I

| N S N (NN SN N A S S N
O 20 40 60 80 100 120 140 160 180 200 220
® °K

Figure VI-4. Specific heat at constant volume of a CH2 zigzag chain

of 30 units.(Kirkwood-Pitzer model). "The force constants are in milli-
dynes/A°: L.1; 0.2676; 0.035, for stretching, bending, and torsion,
respectively. The valence angle is 67.5°. The frequency distribution
corresponding to the 2 cases is given in Figure‘V—Y. The three 3-spaced
folds is the conformation—TTTGTTGTTGTTT. The dashed curve is the "best
fit" function of Ref. 60.
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We note in Ref. 60 that for lOO% and 50% crystallinity, the observed
heat capacities are identical below the glass transition, whereas the
Kirkwood-Pitzer model of the isolated chain yields small but noticeable

differences for a 10% crystallinity difference.

THERMODYNAMICAL FUNCTIONS DERIVED FROM THE POTENTIAL ENERGY
61

The next considerations apply to the temperature range — of "rubbery

" where substitution of T and G configurations are allowed. In

behavior,'
an ideal rubber T and G have the same energy. In polyethylene there is
a difference of 540 cal/mole between the two configurations. Such a value

is experimentally determined6l

from the stress-temperature curve for a
sample maintained at constant extension. The partition function for the
one-dimensional model with the above energy assignments is found in
several references.6l It is derived from a random (Bernoulli) process
that corresponds formaelly to the one-dimensional Ising model with magnetic
field and no interaction between neighboring spins. It does not account
for volume exclusion. We shall continue to neglect this effect, but we
apply the results of the general one-dimensional Ising model by introduc-
ing a correlation energy a between neighboring configurations. Recently,

MOntroll62

has considered such a correlation energy in a system of sub-
stitution of "complexes," rather than configurations.
We recall that the configuration is given by the succession of L4 con-

secutive carbon atoms. The "in plane" configuration is labeled T as before

and has energy ~ - J. The other configurations are labeled G as before
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and have energy ~ J (by others we mean the two gauche, unless otherwise
specified). The index o of a configuration indicates in which state it
is: o = 1 corresponds to T, o = -1 to G.

For the random chain, the probability of occurrence of T is
e-J/2 cosh J,

; the occurrence of G has the complementary probability (com-

pare with (II-18)). The partition function is then

where {0} is the set of all conformations and where N is the number of
units of 4 consecutive carbon atoms (which is two less than the number

of carbon atoms). The free energy is:

N
F, = - kO log (2 cosh® J) (VI-1)
. €
assuming J = —
1)
we nave: S = 9| = 2 k{log (cosh J) -~ J tanh J}
P 8/,
c. = B - owk J2/cosh2J
Vp %6/,

The similar Ising model would have a magnetic field H = J and no nearest
neighbor interaction. The comparison is purely formal: in fact T and

G are equivalence relations between neighbor atoms and the energy J does
correspond to a nearest neighbor interaction. If some confusion arises,

it is due to the way of assigning J to elements of a sequence. TFor example
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in the sequence of spin states:

Uu D U DDU D U U
d sd 4 4 s
Jd J J-JJ J J 4
where U, D are the up, down spin states respectively; d, s indicate pairs

of disimilar, similar states respectively. The energy is assigned to pair

of spins; whereas in the sequence of configurations

J -J J - -J J I J Jd

the energy is assigned to each element.
We introduce now the interaction U between nearest neighbors. The

partition function is calculated from the "transfer" matrix
T o= (VI-2)

For comparison, the "transfer" matrix in the Ising model with magnetic

field H and nearest neighbor interaction J is

J-u H )

T = (VI-3)
I
e~J eJ+p i

These "transfer' matrices are not the transfer matrices of Chapter II,
their matrix elements are thermodynamical weights rather conditional

probebilities. However, they define a Markovian process.
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The eigenvalues of T are:

u . o-hu o 1/2
Mo = e cosh J # Sinh J(1 + )

Sinh2J

Then we write Z as: lim 2 = x? , In > [xgl
N0

We now derive the free energy as:

-hy 1/2
F = -2k N®OqU + log (cosh J + Sinh J (1 + < = )
Sinh=J

If we assume U independent of temperature then the entropy is

S = -F/@ + 2 Nk J Sinh J
s e-ku (1/2
cosh J + Sinh J (1 + ____§_)
Sinh“J
“hu 1/2 -y -1/2 -hu
teosh J (1 +——)" - 8inh J (1 + ——5) =
Sinh®J Sinh=J Tanh J Sinh®J

If U depends on ® the last term in the parenthesis is:

- -1/2 1 I dU/d®)e-uu

e
Sinh J (1 + -
toh J SinhEJ) (Tanh J Sinh2J  Sinh2J

and the term 2 Nk © (dU/d@) is to be added to S. In order to compare these
functions with the thermodynamical functions of the vibrational energy,

we need to determine the overall characteristics of the chain as a function
of U and ©®. These are the concentrations of T and G elements and the con-

ditional probabilities or transfer matrix elements described in Chapter

II. As in Ref. 62 we have:

dlogZ 1 E:

= - . = < g, t+ o, >

37 2 SERCAS
J=1
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this gives the concentration in T configurations; in our notation:

N _ 1+ (14 e MWsinn? g)1/2

N Lo (1 + e Mgl )l/2

(VI-L)

The conditional probability that a configuration at vertex yields a con-
figuration at vertex I is related to the pair correlation function:

<o, 0, >, i.e., the average configuration of [ for a T configuration

l

at k (k = £ + r). From Ref. 14 we have:

_ :
_ -1 -1 T N-f-r+l
< 0,0 47 > = 1 24 st %% Ttu %4 Tus

stu

where the indices s,t,u take the values 1,2. Tot is the st matrix element

of T and oy 1s 1 for ¢t = 1, -1 for t=2. Tgt is the s,t matrix element

of the 1r'th power of T.

L I+r t tu u ut
tu
= 2“2 9,00 9,(0) x
tu

7l ) T ad) o (w)

We have decomposed Tiu into a function of the eigenvectors of T. @l(l),
wl(-l) are the 2 components of the eigenvector associated with kl. We
can write this expression as

-1 T N-r 2
<o O > = 17 A A ., O
Z 5N (9,, 0 @)
Jk
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where (@j,a @k) = 1x wj(l)wk(l) -1x @j(-l)wk(-l>

2w 2 Mr N 2
<o o, > =1 *{:xl (9,0 9)) +(2) », (9,00,

1 ltr KE
Ny 2 2
2y N 2 N 1>
+ (xl) 7\-1 (CPE:O (Pl) + >\2 (CPQ;G CPQ) _J (VI-5) .

It Kl > KQ, at the limit N > o we have:

2 >"2r 2
<o, 0> =(0,00) + (;Z) (9,0 @l) (VI-5a)
Z N + N
where = xl ke

We consider the expression (VI_5a) for different values of J and U.

2

Sinth
(prs0 9) =

Sinh°J + e-4u

(VI-6)

(9,50 9,)% = 302(1) 95(1) + ¢5(-1) o5(-1)

- /2 g
= <{}5(cosh J + (e by Sinth) T e )(cosh J_(e—hu +

d - 2 /2 -
- e )-(costh + e oy Sinh  J) / - e J)

2 )1/2

Sinh J

- / - -
x (cosh J-(e hu, SinhEJ)l/2 - e J):}’/Meu(e hu Sinth) (VI-7)

1 -hu, . -2,1/2 \r
5 ) (:1-Tanh J(1 +e (8inh J) ) ;) (vI-8)

(=) ‘
M 1+Tanh J(1 + e~*(Sinh J)'E)l/e

In Table VI we indicate the variation of these three components.
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TABIE VI

COMPONENTS OF THE PAIR CORRELATION AS A FUNCTION OF U AND J

Component
J U (VI-6) (VI-7) (VI-8)
0 0 0 f 0
0] £* 0 f f
f 0 f i 0
f f f T f
0 0 1 0 0
0 f 1 0 f

* ..
f means finite

The limit U-w must be considered with care since (VI-6) does not con-
verge uniformly in U as J >~ O. In fact (wl,a @l) tends to 1 as U » o,
for J = 0. Also in that case, kg tends towards kl and one of the terms
neglected in (VI-5) tends towards a finite number. But (VI-7) tends to
O as U + o, independently of J. ILeaving three special cases aside, we
consider the pair correlation as given by (VI-5a).

For J = 0, the pair correlation varies from zero to one as U increases.
When J = 0, there are two contributions to the pair correlation. One
is independent of r (VI-6); the other depends on r (VI-8). They could
be respectively labeled as "long range" and "short range" orders. This
"long range" order is however not the one defined in Chapter II. It only
affects the average number of G,T configurations. The process can still
be random (Bernoulli) or Markovian if " long range" order does not van-
ish. As7\2 tends towards Kl we have a long range order in the sense of

Chapter II.
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If we determine the pair correlation (VI-5a) from the transfer matrix
of Chapter II (instead of (VI-2)) we obtain a relation between the respec-
tive matrix elements. Bethe's short range order (II-15) can then also
be related to < 020£+l >.

In this chapter we attempt to derive ordering of configurations from
the thermodynamical functions. Such derivations are found in the litera-
ture from which we consider two examples.

A model62 of the DNA molecule 1s a ladder where the rungs are com-
plexes of type 1 or 2. Each complex is in either broken or intact state.
From the experimental data of thermal uncoiling of pure and mixed type

62

molecules, Montroll™ derived the temperature dependence of Jj
I, = a(T - T;) (VI-9)

(where i is the index of the type and T.q the temperature at which half
of the complexes are broken) and the values of Q- He showed further
that the state of a complex could not be independent of the neighboring
states. However the short range order as defined in Chapter II was not
calculated.

Another au’chor&L established the effect of ordering in stereosequences,
from the calculation of the freezing temperature. The result was that

for a random tacticity (Bernoulli)

-1
Ty < i . gpim
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where H, is the heat of fusion of a mole and T, the melting point for a

concentration @ = 1 of isotactic groups. In the case of a simple Markov

T < 1,_Rznozi -1
f T AH,

where ¢ is the conditional probability that an isotactic group be followed

chain however:

by another isotactic group. From these examples it 1s seen that ordering
can be inferred, but that the results are yet only qualitative.

We now return to the amorphous structure of chains where an energy ~
AJ is assigned to each configuration and where an energy ~ U is assigned
to neighboring pairs of configurations. The dependence of J on temperature
is given by (VI-1). We could infer the U temperature dependence in a
manner similar to the J dependence in (VI-9). We assume however U con-
stant, which leaves ordering of configurations as a single unknown para-
meter. Ordering can be inferred from maximum entropy. The fact the
entropy rather than energy differences is responsible for conformation
of simple chains is discussed in Ref. 51 (where a "cooperative phenomena'
similar to the DNA uncoiling is also described). In Figures VI-5a,b the
potential entropy functions Sp are given for several U, AJ values.
Typical patterns for U< O, U =0, U > 0 are recognized. The curves
tend toward an asymptotic value as temperature increases. A finite cor-
relation U yields however a greater asymptotic value, which seems inde-
pendent of the sign and absolute value of U, as long as it is finite.

The difference between positive and negative sign 1s seen In the transi-
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tion to the asymptote. For U > O this transition is sharper than for
U < 0.

To infer ordering, we add the vibrational and potential entropies.
We see that SV depends noticeably on the short range order op for tem-
peratures below 60°K, whereas Sp is independent of U beyond 15°K. Hence
there is an interval (15°, 60°) where the maximum total entropy is dic-
tated by the harmonic activity of the chain. In this case, we find that
clustered conformations (i.e., where T configurations tend to concentrate)
are favored, as interpreted from the vibrational component of the hamil-
tonian.

The parameters U, AJ, ©, oy, No/Nl are not all indebendent. If U,
AJ, © are given, No/Nj follows from (VI-L) (Figure VI-6) and op is derived
from (VI-5). From a measurement of entropy, one could determine whether
there is such a finite correlation U ahd whether it is temperature depen-
dent. The heat capacity function is given in Figure VI-7. It is interest-
ing to compare this result with the heat capacities of the one-dimensional

63

Ising model for various values ~ of J and p H (see Figure 29 in Ref. 63).
There J depends on temperature, whereas in our case U does not.,

We notice that the heat capacity of potential energy is more sensitive
to U and AJ than the heat capacity of vibrational energy is sensitive to og-
A phase transition could be formalized in the following terms. The
gauche configuration represents a continuum of configuration angles $ + 0.

To each ¢ is assigned the energy AJ ($). At low temperature, only the

values ¢ = 0, 120°, 290° are probsble. As the temperature increases, other
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NI,
100
- AJ=400cal/mol
\ U= |
\\
10 . N
~N
\\
U=O \\\
Sa AJ =1080 cal/mol
S~ UuU=0
u=-1 - 1/mol
~— AJ=400 cal/mo
[
3 ! ! . -
50 100 150 200 ®° K

Figure VI-6. Fraction of T to G configurations as a function of tem-
perature. For U = O, the number of G's tends to the number of T's as

the temperature increases. A negative correlation forces all curves
down to the asymptote No/Nl = 1.
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Figure VI-7. Specific heat derived from potential energy as a function
of temperature for two values of AJ. The effect of correlation can be
seen from Figure VI-5, since Cy is the derivative of 5 with respect to
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values become probable. The range (0,27) could be partitioned in q inter-
vals. The index o consequently has a range of ¢ values and the transfer
matrix is of order q. A degeneracy of the greatest eigenvalue could be
assoclated with temperatures below the glass transition, at the limit

q > o.



CHAPTER VII

CONCLUSION

In a system of coupled atoms such as a chain, the harmonic forces on
a particular atom are generated by its displacements with respect to
neighbor atoms. The number of such neighbors depends on the range of in-
teraction. The orientation of forces can be given by the line connecting
each interacting pair. A fold in the extended chain reorients the forces
on those atoms which are in the vicinity of the fold. The resultant of
these forces is accordingly modified in magnitude and in orientation.

When there is only one degree of freedom per oscillating atom or
group of atoms, a fold tends to uncouple motions on each side of the fold.
When there are two or more degrees of freedom, the fold also couples mo-
tions among different motion species.

Discernible effects of folds are the splitting and the shifting of
normal modes and modification of polarization vectors. These effects
were first observed in Raman scattering. For paraffins, the different
intensities of the (325, 43%2) and (789, 83%5) c¢m~l Raman lines were at-
tributed to trans and gauche configurations. The number of isomers in a
sample is counted on this basis.

In this work, we are concerned not only with the number of isomers,
but also with their distributions along the chain. The analysis of the
normal frequency distribution in terms of configuration distribution is

possible to a good extent when either trans or gauche configurations pro-
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duce out-of-band modes. This is the case of the one degree of freedom or
simple chain problem for conformations in which the G configurations are
in greater number than the T's. The analysis is then based on the order-
ing of out-of-band modes in terms of "islands" of T configurations bor-
dered by an equal number of G's. The out-of-band mode associated with T
islands is easily determined by the Green's function method. The con-
tribution of other islands such as TT, TGT can be calculated in the same
way, where however the numerical difficulty increases with number of non-
zero elements of the defect matrix. An important parameter of the analy-
gis is the number of squared frequency intervals N partitioning the for-
bidden gap. The width of the gap is itself a function of the gauche con-
figuration angle ¥ and is (Ly/M) (1 - cos ). We found that N must be at
least equal to 20 for meaningful interpretation of the frequency distribu-
tion in the gap. If hy/M =¢% is taken as a basic interval, the require-
ment is that the number of modes be counted in each w% (1 - cos ﬁ)/N sub-
interval., Hence the difficulty for a meaningful measurement increases

as ¥ departs from x/2.

A limitation of the island technique is its inability to yileld any-
thing but the diagonal elements of the transfer matrix defining a Markov
process. Whether there is statistical aftereffect can however be inferred
from the rates of occurrence of the T and the TT islands.

For the case of a greater number of T than G configurations we found
an empirical relation sllowing the determination of the rate of occurrence

of G in a random (Bernoulli) distribution.
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In the case of two degrees of freedom the appearance of out-of-band
modes 1s not necessarily related to T configurations. Whether T or G,
or both T and G, or neither T and G produce out-of-band modes is de-
cided by the force constants ratio, the value ¥ of the gauche config-
uration angle, and the type of motions. We saw in Chapter IV that no
out-of-band mode separates from the bending-torsion continuum for any
7b/7t ratio if § = 120° (this value however ultimately depends on the
valence angle O as seen in Eq. (IV-6)). For other values of ¥ there are
intervals of the force constant ratio characterized by appearance or non-
appearance of out-of-band modes due to G configurations. The situation
is different if one considers the torsion-stretch interaction. Here a
fold produces two out-of-band modes for any value of ¥ and a third for
some ¥ values.

In the Kirkwocod-Pitzer model each G configuration produces exactly
one mode in the lower half of the stretch-bend gap, for low concentration
of folds.,

In general for a given configuration distribution, i.e., a given
conformation, the frequency distribution reflects the force constant ra-
tios. Conversely for given force constant ratio, the frequency distribu-
tion reflects the ordering of configurations along the chain. A similar
relation was found between force constant ratios and dimension of the-
lattice for crystalline polyethylene in the Stockmayer-Hecht model. There
the coalescence of two slope singularities (three-dimensional effect) into

a logarithmic singularity (two-dimensional effect) is due to the small
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ratio of diagonal to aligned force constants. Here the ratio 7t/7b deter-
mines whether thevfrequency distribution is of the forbidden or "allowed"
gap type.

It 1s convenient to assign a frequency interval in which effects of
conformation are most typical in the Kirkwood-Pitzer model. We find that
for low G concentrations, the characteristics of the conformation are
best reflected in the mode distribution of the stretch-bend gap. As the
concentration of folds increases, this gap is still a good interval.
However other intervals are then Jjust as good.

We show now in which manner the frequency distribution of polyethyl-
ene chains reflects the fringed micelle. and the folded chain structures.
A fold in an extended conformation yields a single mode in the stretch-
bend gap and this mode occurs at 670 cm~l (Table IV). It is conjectured
that for small concentrations of folds (P < 0.33) there still is a one-
to-one correspondence between the number of G configurations and the num-
ber of modes in the forbidden gap. Such a correspondence was found in
the problem of simple chains between T configurations and pairs of out-
of-band modes. Beyond a certain concentration of T's the number of these
localized modes per T decreases however and follows a simple power law
whose exponent is determined empirically. The same pattern is expected
in the Kirkwood-Pitzer model, where G is substituted for T. As a conse-
quence the area of frequency distribution in the stretch-bend gap meas-
ures the number of folds. It also yields information on their distribu-

tion along the chain. Table IV indicates namely that there 1s an interac-
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tion effect between G defects, which produces a splitting of their re-
spective frequency contributions. In this way the localized mode dis=-
tribution reflects the conformation of the chain. Identification of
the peaks in the forbidden gap is feasible by numerical calculations
or by the Green's function method as in the problem of simple chains.

Hence in a folded chain structure we would observe three dominant
peaks 1f the GGG island maps correctly the folding of the chain or two
dominant peaks if the GTGTG island is a better model. The contribution
of amorphous regions would appear as a background. In the case of fringed
miscelles, the above mentioned peaks would not emerge from the background.
The structure around 670 em~1 could also indicate the relative amounts of
regularly spaced folds and fringed miscelles, if both coexist.

We have not found any indication of a 670 cm™1 mode in observed fre-
quencies. The nearest datum is the very weak infrared mode at 600 em~L,
Raman modes above 700 cm~1 pertain to CHZ rocking motions.

Another geometrical characteristic reflected by the fredquency dis-
tribution is the range of values taken by the configuration angle. We
have seen in Chapter III how the transverse modes are sensitive to this
range, especially in the neighborhood of V¥ = n/2 which corresponds to
total uncoupling. The question is first whether such a value ever occurs
at lower temperatures, where there are only three stable configurations
¢ = 0, 120°, and 240°. These correspond to a minima of potential energy.
Outside of these values the configuration is unstable. In amorphous re-

gions there may however be deviations from these values. Consider namely
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the last vertex of a growing chain. A bond can be added in three stable
ways provided that there is no self-intersection. If however one of the
outcomes violates the volume exclusion, the configuration angle may either
take another stable and allowed value or an unstable and allowed value.

In the first case the potential energy is lower, in the second the atoms
are packed in a smaller volume. The two tendencies would be reflected

in the lower part of the acoustical frequency distribution, if the inter-
action effect brought about by the fold does not perturb this result too
strongly. We saw that the coupling with the bending mode is weak at

¥ = ﬂ/E, that however the coupling with the stretch motion is very strong.
We could not test the overall effect on the Kirkwood-Pitzer model because
of time and storage problems in the numerical calculation.

The thermodynamical functions derived from the Kirkwood-Pitzer model
show the effects of folds introduced in a planar structure. The devia-
tions are small compared to the correction introduced by the three-dimen-
sional environment effect. We note however that the heat capacity curves
reported by Wunderlich6o for lOO% and 50% crystallinity do not differ be-
low the glass transition temperature. The differences are probably too
small to be observed. If however our result of Figure VI-4 for the iso-
lated chain holds for chains with intermolecular forces, we conclude that
the frequency distribution 1s sensitive to conformations through local (or
direct, as in Chapter I) rather than environment effects.

The ordering of configurations along the chain raises the question

of correlation energy U between neighbor configurations. Each four con-
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secutive carbon atom sequence is either in T or in G configuration. An
energy J(o) is assigned to each type ¢ = T, G. Accordingly in the Pit-
zer equation for our of plane motion, the range of forces is of order
three.

The introduction of a correlation U between successive configurations

amounts to considering sequences of five consecutive carbon atoms with

the four possible outcomes:
GG, GT, TIT, TG

and the assignment
27(G) + U(aa), J(G) + J(T) + U(GT), 2J(T) + U(TT), J(T) + J(G) + U(TG)

The corresponding equation for the out of plane motion would then have a
force range of four. Figure V-2 shows that the extension of the force
range transfers the "inside" normal modes o < w < wy, to the singular
points o and w[. Hence a discernible effect of the correlation U would

be a more dominant torsion cut-off peak.

The measurement of J has been performed from several experiments

18

such as Raman scattering,65 thermodynamical functions,”~ and stress-tem-
perature functionso66 In the interpretation of the data it is assumed that
there is no correlation U. However the same data could be interpreted
with a model where J and U are both different from zero.

We have seen how the frequency distribution reflects structural and

dynamical properties of the chains considered and how it is related to
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observables such as thermodynamical functions. The frequency distribution
is however not the only information yielded by the dynamical matrix. The
elgenvectors are a natural complement to the normal frequencies. They are
components of several observables such as the incoherent inelastic neutron
scattering cross sectional2 A calculation of this quantity requires the
determination of scalar products of these eigenvectors. An intermediate
gtep is the calculation of the pair correlation.function. There are
methods67’68 to perform this calculation, which could be applied to sim-

ple chains.
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