TABLE OF CONTENTS

A PROBLEM IN ESTIMATING A SAMPLE PARAMETER

Richar‘d LO Patterson 00 000000000 O0O0CO0O0O0CO0CO0O0O000¢ 0 00O0O0O0CO00 O O0O0O0 O 2

SOME FURTHER RESULTS TO PALM'S OVER FLOW PROBLEM

Kenneth R. Eaton Jr.

Gary SD BeCkerman 8 0 00 9 P OO0 Q¢ O 06 00 0@ OO0 00 00 06 0 0 6 0 ¢ 0 €0 0 0090 00 0 0 6
THE IMPACT OF COMPUTING SYSTEMS AND SIMULATION
ON TOP-LEVEL MANAGEMENT DECISION PROCESSES

Jo BO Neuhardt 0 0000000000600 @a@ 0000000000000 00O 606000O0CO0 00 0 ¢ 19

BIBLIOGRAPHY ON INTEGER LINEAR PROGRAMMING

Arnoldo Hax QGOBGOCGQQ.OO600DQ0.00ﬁOOQOO906000000000@509000 29

Published by the Industrial Engineering Department of The University
of Michigan

Mailing Address: The University of Michigan
Department of Industrial Engineering
231 West Engineering Building
% Professor Richard C. Wilson
Ann Arbor, Michigan



"PERIODIC REPORT OF INDUSTRIAL ENGINEERING RESEARCH"
at The University of Michigan

This Periodic Report of Industrial Engineering Research is
offered as a medium for the rapid publication of articles of industrial
engineering research-in-progress and of bibliographies with potential
use in such research, The justification for this new publication is
based on a number of apparent needs. Faculty and students have
frequently expressed concern for their difficulty in keeping informed
about the current activities of their colleagues., It is hoped that
they will find the report helpful in reducing this difficulty. The
active researcher, it is hoped, will use the report freely as a means
for inviting suggestions on work which may be still in progress., A
means of easy communication should stimulate others to undertake re-
search in areas of their own interest. The availability of a medium
for publication of unfinished work should encourage preparation of
progress reports and thus furnish the writer with early experience
in recording his results for publication.

Initially, annual publication is planned. More frequent pub-
lication is anticipated if reader demand and contributed articles
are sufficient. Comments and suggestions about the report are in-
vited from readers and should be sent to the attention of:

The University of Michigan

Industrial Engineering Department

"Periodic Report of Industrial Engineering Research"
Ann Arbor, Michigan

Contributors are invited to submit papers for publication, The editors
will serve as referees in acceptlng papers for final publication. We
will endeavor to return manuscripts if requested, but cannot assume re=-
sponsibility if they are lost.



A PROBLEM IN ESTIMATING A SAMPLE PARAMETER
By R. L., Patterson

Consider a denumerable population N, composed of two subpopula-
tions W and B,N = WuB, A set of observations are made on a sample of
size N from N, which consist of "decisions" as to whether or not each
element came from W or B. The observations are subject to the follow=-
ing two types of errors,

l. An element drawn from N is believed to have come from B when it
came from W,

2. An element is drawn from N and is believed to have come from W
~  when it actually came from B.

The problem is to make accurate statements about the fraction of
the sample of size N which came from W so that further inferences may
be made concerning N,W,8. The purpose of this paper is to suggest
a method of describing what is known about this fraction in a way
which is useful for making further inferences about the ratio of the
sizes of W and B.

Sampling problems of this nature abound in the social sciences.
For example, an estimate is made of the number of voters who will vote
for L.B.J., in the next presidential election. A poll is conducted.
Some of the individuals who are included in the sample state that
they are going to vote for L.B.J. and then they either will not vote
at all or else will vote for the opponent., Some of the individuals
say that they will not vote for L.B.J. and when election day rolls
around, they will vote for L,B.J. Before the prediction of the
percentage of the vote expected to go to L.B.J. is made, this sample
must be adjusted to compensate for these two types of errors, There
are various methods available for adjusting the fraction of the
sample in the above example who say they will vote for L.B.J., to bring
it closer to the fraction in the sample who actually do vote for L.B.J.
on election day. Some of these techniques involve selecting sets of
population characteristics (Bi,..,Bk) for which

(a) no mistake will be made in deciding whether or not an
individual possesses characteristic Bi, and

(b) each Bi is correlated to the way in which the individual
will actually vote on election day,

Other examples of extracting samples which are subject to the
errors (1) and (2) can easily be drawn from the fields of product
merchandising, industrial quality=-control, and reliability analysis.
To cite one more example, consider the problem of sampling batches of
items to determine the fraction of the lot defective., On the basis of
this sample, a series of decisions may be made which involves large
sums of money., Suppose that the inspector mistakenly calls some of the
good items "defective" and calls some of the defective items "good".



-3-

The result is that the sample fraction defective is in error, What

are the likely consequences? In this example, unlike the previous one,
it may be undesirable or even impossible to attempt to perform a
correlation analysis between some set of "indicators"™ which are
related to whether or not an item is defective, and which can
positively be observed to be either "yes" or "no".

In fact, it can be argued that almost no observation is compeletely
free of error. In practice, the accepted methodology is to

(a) ignore the slight probability of "calling a spade a heart
or a heart a spade" if it is low enough, or

(b) estimate the fraction of the pupulation which contains
property "a" by statistical techniques such as observing
additional variables Bi.,. Bk for which the probability of
misidentification may be ignored, and correlating the Bi
with a.

There are, however, a set of probability distributions which,
if knownand tabulated, could aid in estimating the fraction of a
population which possesses a particular set of characteristics. They
might be more useful in certain situations than other statistical
techniques of parameter estimation.

These distributions will be identified by first hypothesizing a
sampling situation and then asking a series of questions related to
the sampling problem.

Consider two denumerable populations W and B, WuB = N,
Extract samples of size W and B from W and B, respectively., Let

O0f the sample of size W, T are believed to come from W and W=T
are believed to come from B. Of the sample of size B, F are believed

to come from W and B-F are believed to come from B. Suppose there
exist probability distributions

/ W t W=t
O,l’ooo,w éogo P(T = t) = t)Pl (l"Pl)

051500038 Gogo Q(F=f) @pg (1-p,) ° - f‘>

which describe these errors of identification.®

P(T =1¢t) , t

and Q(F = f), £

Let D be the number of elements which are "detected" to have come
from W, The D =T + F and D has a probability distribution

R(D=4d) =3 P(T=1t)Q(F=4d-t]|T=1t),
d

t+F=

* Py is the probability that an element of W is believed to come from W,

P2 is the probability that an element of B is believed to come from B,



T

A series of questions may now be asked.

1. How many items from (W and how many from B must be drawn to
make D = d? i.e., what is the joint distribution of W and B
implied by D = d?

2, How many items in all must be drawn to make D = d? i.e., if
N = W+ B, how large must N be to make D = d?

3, What is the difference in the conclusions if
(a) a probability distribution of the proportion of B's to
W's is assumed.
(b) a certain proportion of B's to W's is assumed. Is it
necessary to postulate (a) or (b) to answer questions
1 and 27

4, Given a fixed sample size N= n and D = d, what is the dis-
tribution of W?

5, What fraction of N is W? (Limit of a Bernoulli sequence)

For example, the answer to question (2) is that N follows the
negative binominal distribution providing

(a) P(T W) 1

(b) P(F 0) 1

(c) A certain proportion of the elements of are assumed to
consist of elements from .,

i n

" n

The writer has recently been working on an Arms Control
Verifications Requirements project in which it was necessary to
estimate the number of nuclear tests which had been conducted in a
time interval (0,Td) which extended up to the instant that the
dth "detection" occurred. A "detection" could occur in two ways:

(a) a hypothetical inspection system could detect a test, if it
occured, with a constant probability p. (b) a stream of "false

alarms" occur according to some "known" distribution, e.g., a Poisson
distribution with parameter B. The answer to this question is that,
under the above assumptlons, the number, k, of tests conducted up

to the dth detection is distributed accordlng to the negative binomial
distribution when B=0. If B8>0, the problem becomes somewhat more
difficult. Dr. Wyman Richardson and the writer showed that when

B>0, the number of tests conducted in the interval (0, T ) was dis-
tributed according to the distribution Q(k/d) =

d
2 2 p :
D = d i=90 *t ¢ YD-l,k Y.Da_is k -1
d
“2:0 Ps
where . 1= .
kY L2 i-1
Tik “(i‘) p- (1 -p) and
P. = e‘B BJ
] L]
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To recapitulate, assume that a population N is composed of two
subpopulations W and B. A sample of size N is drawn from N, and
D elements are "detected" to come from W and N - D from B, Instead
of knowing the value of W, the number of elements in N which were
drawn from W exactly, the number is known only to within a probability
distribution. There are two approaches to the problem of making in=-
ferences about N and W.

1., Make observations on the sample drawn from N for which the
error of observation if “"virtually" zero, and from these
observations, use correlation and regression analysis to
make point estimates of the fraction of the sample, which
came from W, With this point estimate in hand and its
associated "confidence" level, inferences are then drawn
regarding the composition of N.

2., Assuming the error distributions describing the likelihood
of misidentifying elements from W and B, derive the
distribution of the number of elements in the sample which
came from W. Proceed to make inferences about the composi=-
tion of N based upon this distribution. If there is no
possibility of misidentifying elements from W and B, then
the distribution degenerates to a "point" distribution as in
the case of an inspector drawing k "defectives" out of a
sample of size N and assumes that he can always state the
fraction K/N perfectly. In this example the subpopulation
B is "defectives" and W is "nondefectives".

It is suggested that the distributions mentioned earlier in
the paper be derived where possible and tables be tabulated for a
variety of cases. Such information, if available, would serve to
generate a complete probability distribution that a sample fraction
assumes a given value in situations where it is suspected that the
sample fraction may be in error,

The populations W and B need not necessarily be denumerable,
For instance, a machine may be searching a length of wire, a sheet
of metal, or a volume of space in order to discover the occurrence
of a given phenomenon., After it has searched a space until the
dth "detection" has been made, the question is asked, "how many
occurrences of the phenomenon has the machine really observed?"
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SOME FURTHER RESULTS TO PALM'S OVERFLOW PROBELM#*

By Kenneth R, Eaton Jr.
Gary S. Beckerman

A telephone switching network whereby an incoming call tests
to determine if a line is free and, if not, switches into another
line is an example of the behavior characteristic of what Palm refers
to as an overflow problem., The distribution of the calls which over-=
flow one line constitutes the distribution of the input to the next
line. Because, in a large system, the overflow behavior may be re-
peated for many lines, this paper will discuss the distribution in
further detail.

More abstractly the overflow problem consists of an input to n
ordered (numbered) serving stations. The input tests each station
sequentially until it finds the lowest numbered free station where it
may be serviced. Therefore, the input may be considered in two parts;
the traffic serviced by the first m stations and the "overflow" which
is the input serviced by the remaining n-m stations. Obviously then the
input distribution to the ith station is the same as the overflow dis-
tribution from the i=1st station., It is this distribution that is of
interest because knowing it, the mathematically difficult problem of
a n-stage system may be reduced to the n single stage systems which
are comparatively simple to solve,

Interest developed in the overflow problem when the authors began
a study of power & free conveyor systems. Here a part arrives at the
first of n ordered stations and overflows if it is busy. This process
continues until the part is serviced or overflows the system., The
authors were interested in describing the input distribution to each
station after the first and the distribution of parts which were lost
to the system (i.e., those parts which overflowed the last station).
Although the conveyor system-under study-included storage space in
front of each station, Palm'’s.results provided an insight to a
method of approach for solving the new problem.

Let us assume that calls arrive to the first of m stations at the
instants T19Tgso00sT so00 and denote the interarrival times for the

arrival distribution of this station as:

n 0 Thel (IOE:O; n=1ly2,00.)

* This paper 1is an extensive revision by Mr., Eaton of work originally
performed by Mr. Beckerman and Mr. Eaton., Listings of the computer
programs used may be obtained by writing Mr. Eaton, Department of
Industrial Engineering, University of Michigan, Ann Arbor, Michigan.
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f
Also, let us assume, as Takacs® does, that the Gnlare identically

distributed, independent, positive random variables whose distribution
function is:

F(x) = P {en;x}

Denoting the Laplace=Stieltjes transform of F(x) as B(s) we have:

g(s) = JO e™S% dr(x)

If we now define t.; as the epoch of arrival of the ith demand

serviced in the overflow group, the time intervals t for

r,i+l
i=l1,2,... are independent, identically distributed random variables

whose distribution function Takacs denotes as Gr(t)o In 1959 Takécs2

showed that this Gr(t) can be represented by the integral recurrence
relation: t

Jofe -1

Furthermore, he noted that the Laplace-Stieltjes transform:

o0

-st
Yp(s)= foe *fae (1)

~bu

6, (t)= +(1-8"% J6 (t-w) a6 _, (w)

may be represented by a recurrence relation of the form:

Y @l(s+b)

Yr(S) - r=1ly424000

$
Continuing Takacs proved that Yr(S) could also be expressed as:

L <?)j:l(l=ﬂ(s+iu))
Y (g) = =0 J i=0 B(s+ip)
d rtl 1 j=1  1-B(s+iy)
z ( . ) ke ( ﬂ(s“‘i) )
j=0  J i=0 ¥

Thus, the Laplace-Stieltjes transform of the interarrival distribution
for any station can be expressed in terms involving only the Laplace-
Stieltjes transform of the arrival distribution to the first station,
In order then to find Gr(t)9 one must solve for the inverse Laplace-

Stieltjes transform of Yr(s)o In most cases this is a difficult, if
not impossible, problem«



Palm 3 has also studied the overflow problem and found an integral
recurrence relation for Gr(t) where now Gr(t) z P(overflow time =t) =

l-P(overflow time <t) and

- t -bu
G (t) = G, _;(t)- j (1-e ")[1-6_(t-u)] dG6_, (u)

r-1
0

However, Takécs' form for Gr(t) can be shown to be a reformulation of

the above formula and is easier to derive, Khintchine # shows, as does

Palm, that if a simple5 stream of calls enters line Ly, then there

enters into any line L., (r> 1) a stream of the type P (stationary, orderly,

and with limited afteﬂeffects)

Defining Gr“(s) = I e” Gr(t)dt Palm obtains a recurrence relation
0
for the Laplace transform of Gp(t) as:
G;ml(s)

% =
G, (s)

1+sG, ,(s) - (s+1)G, ,(s+1)

9
It can be shown that Takacs' recurrence relation follows from this,
Therefore, knowing GO*(S) [the Laplace transform of the arrival dis-

tribution to the first station] we can solve successively for the
Laplace transforms of higher orders of r,

?
In contrast to Takacs' general solution, Palm solves a special case
of the overflow problem wherein the input has a negative exponential
distribution. His results follow.

Defining Br(S) for r= =1,0,1,... as the polynomial of power r+l:

r
B (s) = ¥ 1 (Tkhs(srD)(s+2).. . (str-kn®
1 k=0
where £ 1is defined as zero and, consequently, B_l(s)= AO=1, Palm
k=0

proves that these polynomials are related by the formula:

Br(S) = SBPml(S+l)+ ABrml(S) r=0,15000



He then proves that these polynomials describe the Laplace transform
of G_(t):
r

Br-l(S+l)

G_*(s) =
r
Br(s)

It follows from the definition then, that the polynomial Br(t)

of order r+l has positive coefficients and the coefficient of

+ . .
g 1 ., of this polynomial are

is 1., Therefore, all real roots, Spi

negative and can be written:

Br(s) z (S+ar0)(8+arl)°°°(8+arr)

re a . = =s_. and a_. >0,
whe ri - ri ri

Consequently, the denominator of Gr*(s) can be factored into the
form: B (s+1) c
-1\ C ‘ C
G E ( S) = v l : Lo ‘l" rl + .o ot re
" .

s+a +a s+a

Now knowing that:

stp
and c
r rk .
G_*(s) = g
T k=0 s+a
rk
Palm shows that:
r -(a_, )t
_ rk
Gr(t) = I Crke

k=0

Essentially then Palm has solved the overflow problem under the
assumption that the input is negative exponentially distributed., He then
derives a polynomial which simplifies the computation for inverting the
Laplace transforms of the interarrival distributions.,

The remainder of this paper is devoted to two different approaches
to solving a simple two station overflow problem. First, Palm's results
are solved with the successful application of the University of Michigan
Computing Center's programs for finding the roots of polynomial equations
and the coefficients of partial fraction expansions., And secondly, a
simulation is developed and tested against the known results,
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Solution of two station case using Palm's results.,

It was assumed for this case that the input stream or arrival
process was governed by the negative exponential distribution. There-
fore,

=-At
Go(t)

e t

v

0

A+s

and Bo(s)

Now, the polynomial of degree 1l can be determined to be:

Bl(s) = s2+(2k +l)s+A2

which yields the Laplace transform of Gl(t)o

BOCS'}']—) = A+(S+l) - S+()\+l)

B, (s) s24(20+1) 8422 sl+(2A+1)s+r?

Gl*(s) =

In order to obtain the partial fraction expansion, the denominator
of G;*(s) is factored to give:

- 1 +\| 1
S= —()\"'?) = )\+E

Letting @,; equal the root with positive coefficient we find:

1 1
a;;=h t 3 -WAt g

.1 \re 1
Therefore, by partial fraction expansion:

C C

G, *(s) = st(a+1) = 11 + 712
(S+all)(s+al2) staq staq,
Where Cll and C12 can be found by equating coefficients. Solving we
find:
- 1 1
Cip = 37¢
A L
B
_ 1
Cip =g~ L
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Finally then:

, 1
' -
1 ,4\I;;;—
s+A +l--\l?\+I o+ A+ +\Jx+l
7 T 7 iy

Because both of these expressions contain only first order powers
of s, the inverse Laplace transform is of the form:

=a. .t =a. AT
_ 11 12
Gl(t) = Clle +C12e
or
1 —1 1 ; 1
1,1 =y N =tz + N
Gl(t) -(7 + e +(7 - e
1 1
u%*+¢ HJA+F

This then is the overflow distribution from the first station.

Although the mathematical manipulations performed in obtaining the
final values were not difficult, they were lengthy. For this reason the
authors decided to use the computer facilities at the University to
find the roots of the denominator and the partial fracticn expansion
of G,*(s).

2

For the second station we have as before:

s3+(3A+3)s2+(3A2+3A+2)s+A3

Bz(s)
and

Bl(s+l) 52+(2x+3)s+(xz+2x+2)

GZ*(S)

B, (s) s +(31+3) 5%+ (31430 +2) s+2”

At this time various subroutines from the Computing Center Library were
used to compute the roots of the denominator and the partial fraction
expansion of Gz*(s)o

To find the cube roots of the denominator of GZ*(S) the
subroutine:
M = ZER2. (N,A,R)
was used where:
N
A

the degree of the polynomial in integer mode

a vector containing the real and imaginary coefficients
Of Xl (i = n,n“lgooogl)
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R = a vector containing the real and imaginary roots
of the equation
M = an error indicator such that m=1 means execution OK

and m = 2,3,4 means an error has occured,

For the particular example in this paper:

1 A(2) = 3A+3 A (&) = 3A%+3x+2 A(8) = A

A(3) = A(5) = A(7) =0

AC0) 3

A(1)

Next, a subroutine which solves simultaneous equations was used to
find the partial fraction expansion. For this particular problem we
wish to determine roots r,,r,,r; which are negative. Letting

al = —I’l a2 = -I’2 '8.3 = -’I"?)

we desire that:

2, L
A + B + C - _S tps + ¢
sta, st*a, s+a, (s+a;)(s+a2)(s+a3)
where p = 2A+3 and q = A2+2A+20

Now finding a common denominator and equating coefficients we obtain:
A+B+C = 1
(a2+a3)A + (a +a3)B + (a

11

+a2)C o)

1 1
a2a3A + ala3B + alaZC

q

which can be expressed in matrix notation as:

1 1 1 A 1
agtag ajtas ajra i By = |ip
a, daq a; ag a) a, C q

To solve the simultaneous equations, the subroutine,
X = GJRDT. (N,M,A,D)

was used, where:

N the number of rows »

M = the number of columns including the right had side

A = the first element of the matrix of coefficients (A(l,1))
X

= an erros return where X=1 means execution OK and X=2,3,...
indicates an error.

()
1t

the value of the determinent
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The input format required is of the form:

1

N =3 aij p
q

M=4=N+1

and the output is of the form:

A
-1
C
M=N+1

Thus, a simple program incorporating the two subroutines solved for
both the roots of the denominator and the partial fraction expansion
of Gz*(s). Inverting the final form of'Gz*(s) we obtain:
-alt —azt ‘ -ast
Gz(t) = Ae + Be + Ce

The following pages contain listings of the coefficients of
Gl(t) and Gz(t) for different values of-A with u = 1,

Values of'Gi(t) for Various A's

-1,312t -,021t
A= 1/6 Gl(t) = .123e + .887e

-1,37t -.029t
A= 1/5 Gl(t) = .127e + .827e

—10‘46't -e043t
A=z 1/4 Gl(t) = .lUbe + .8b3e

-1.60t -,070t
A= 1/3 Gl(t) + .173e + ,827e

-1.71t : -, 094t
A= 2/5 Gy(t) =  .190e + .810e

‘lo86t "‘ol3’+t
A= 1/2 Gl(t) = o21lle ' + ,78U4e

-2.,02t -,178t
A= 3/5 Gl(t) = .229e + ,771e

-2,12t -,209t
A= 2/3 Gl(t) =

.23% 4 .76le
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~-2,25%t =-,250t
A= 3/4 Gl(t) z .250e + ,750e

-2,32t -,295t
A= 4/5 Gl(t) = .256e + ,7uWlbe

-2,37t -,292t
A=5/6 Gl(t) = . 260e + ,7u40e

Values of Gz(t) for Various A's

-2, 44t -1,05t -,002t
A= 1/6 Gz(t) = ,055e + ,028e + ,916e

-2.,52t -1,07t -,003t
x= 1/5 GQ(t) = .0b6k4e + .037e + ,900e

-2,064t -1.,11t -, 005t
A= 1/4 Gz(t) = .072e + .050e + .,878e

-2,82t -1,16t -,001t
A= 1/3 Gz(t) = .08ke + .071e + .,8hle

-2,97t -1.22t -,018t
A= 2/5 Gz(t) = .085e + .086e + ,819e

-3,17t -1,30t -,030t
A= 1/2 Gz(t) = .106be + .,107e + ,786e

-3.,37t -1,38t -, 046t
A= 3/5 GZ(t) = .1ll6e + ,126e + ,758e

-3,50t -1, 44t -,059t
A= 2/3 Gz(t) = . 122e + ,137e + .74le

-3,66t -]1,51t -,076%t
A= 3/4 Gz(t) = .128e + ,149e + ,722e

-3,75t =-1,56t -,087t
A= U4/5 GZ(t) = . 132e + .156e + ,712e

-3,81t -1,59t -,095%
A= 5/6 G2<t) = .13be + ,160e + ,706e

After the successful compilation of the constants for Gl(t) and
Gz(t), the authors could accurately evaluate a conveyor simulator

which was to be used for further research, The simulator was designed
to include storage before each service station. However, it had to be
validated before any results could be accepted. Setting the storage at
zero level, the simulator provided a model of the two station no-
storage case. Consequently its results for the overflow distribution
could be validated against the known distribution through suitable
statistical tests., The simulation was used to study the particular
case where the values of » = 1/2 and My = U, = 1 were used,

In order to obtain what the authors considered to be statistical
equilibrium, a run of 16,000 time units was simulated. Actually four
different runs of 4000 time units were made. However, because the
starting point for each run was chosen "at random" by the IBM 7090,
the results could be combined and considered as one run, Approximately
18 minutes were required to simulate 16,000 time units,
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The 16,000 simulationed time units gave rise to 5393 trials for
station 1 and 1280 trials for station 2, These number of trials were
considered to be sufficiently large to meaningfully apply any statisti=-
cal test,

The results from the computer simulation were used to determine
the cumulative frequency of the interarrival distribution..In other
words, the number of trials for which a success occurred in =t, time,
was divided by the total number of trials. These values and those
obtained from the solution of the analytic equations for stations
1 and 2 are given in tables 1 and 2, (Pagesl6 and 17). Also, the
difference between the two values is given.

The Kolomogorov-Smirnov goodness of fit statistical test was
made. This statistic compares the maximum deviation between the actual
and theoretical curves with a tabulated maximum, Acceptance of the
hypothesis that both curves come from the same distribution occurs
if and only if the calculated maximum deviation is less than the
tabulated maximum.

According to the Kolomogorov-Smirnov statistic we then

1) reject the hypothesis that the sample came from the
theoretical population if:

D | F_(x) F(x) | 103
5393 n o
X \]—ll‘

at the .01 level for station 1.
2) reject the hypothesis that the sample came from the
theoretical population if: 1.63

D = ,Qu4557

1280 = max |[F G = FGO|> =

at the .01 level for station 2.

The maximum deviations which occurred can be read from tables
1 and 2. They are .0045 and ,0227 for station 1 and station 2
respectively. Therefore, the hypothesis that the values from the
simulation results came from the same distribution as the theoretical
results 1is not rejected at the .01 level,

This paper has presented the results of an analytic solution to
Palm's overflow problem using an electronic computer to calculate the
necessary coefficients of the overflow distribution and of a simula-
tion of the same problem. Because a statistical test showed that the
simulations results accurately portrayed the system under study,
further research could now be performed on systems which do not yield
to analytic solutions attempts,



-16-

]

TABLE I
TIME BETWEEN OVERFLOWS - STATION 1
G (t) |
| €| Palm Simulation
.0016 .72290 7245
. 0024 .60863 .6062
.0025 .52862 .5311
.0011 46176 L4637
. 0002 . 40376 . 4040
.0013 ,35311 . 3544
. 0027 ,30882 .3115
,0003 . 27009 .2698
.0003 . 23622 .2359
%, 0045 . 20650 ,2021
.0022 .18069 .1785
.0019 ,15803 .1561
.0025 ,13821 ,1357
.0020 .12088 .1189
%, 0045 ,10572 .1012
,0032 . 09246 .0892
. 0015 .08086 .07k
.0002 .07072 ,0709
. 0004 .06185 .0623
.0028 . 05410 .0569
. 0015 . 04731 . 0488
. 0016 ., 04138 . 0430
,0013 | .03619 .0375
. 0006 .03165 ,0323"
.0001 | .02768 .0278
.0007 02421 .0235
. 0006 ,02117 . 0206
.0009 .01852 0176
. 0016 . 01620 L0146
. 0005 .01416 0137
0004 .01239 . 0119
. 0000 .01083 .0108
,0001 00948 .0096

Gl(t)
[€] Palm Simulation
,0002 .00829 .0081
. 0001 .00725 0074
. 0002 00634 .0065
,0002 00554 ,0057
. 0001 - 00485 . 0050
0004 00424 0046
.,0003 00371 ., 0040
., 0005 . 00324 . 0037
,0002 ., 00284 .0026
. 0003 00248 0022
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TABLE II

TIME BETWEEN OVERFLOWS - STATION 2
g, (1) | G, (1)

| €| Palm Simulation lel Palm Simulation
.0082 | ,79638 ,7891 0142 27505 2609
,0061 | .74836 7422 ,0130 26692 2539
,0022 | .72052 7227 0129 25903 2461
,0031 | .69771 .7008 0139 25138 2375
.0009 | .67668 .6758 0182 24395 2258
.0004 | .65657 6562 .0172 23674 ,2195
,0035 | .63713 6406 *,0227 222974 2070
.0019 | .61829 6164 .0207 22295 2023

0 ,60002 .6000 0204 21636 .1960
,0034 | ,58228 . 5789 »0212 20997 .1898
.0057 | .56507 5594 .0171 .20376 .1867
.0031 | .5u4837 5453 .0172 .19774 .1805
,0002 | .53217 .5320 0200 ,10180 ,1719
,0016 | 51644 .5148 .0206 .18623 ,1656
,0059 | .50118 4953 <0205 .18072 1602
.0036 | .48636 4828 .0176 .17538 .1578
0040 | 47199 4680 .0155 .17020 .1547
.0057 | .u580L L4523 .0183 .16517 . 1469
,0114 | .u4uu50 4359 .0181 .16029 21422
20111 | 43137 .4203 .0188 ,15555 21367
.0061 | 41862 4125 -0918 .15095 ,1312
.0085 | ,40625 3977 .0176 .14643 ,1289
.0122 | .39u24 .3820 *,0227 . 14216 ,1195
.0146 | .38259 3680 .0216 .13796 .1164
,0158 | ,37128 3555 0214 .13388 ,1125
,0173 | .36031 . 3430 ,0190 .12992 ,1109
,0161 | .34966 .3336 .0183 .12609 .1078
.0151 | .33932 03242 .0177 .12236 .1047
.0191 | .32930 3102 .0203 .11874 .098Y
.0173 | .31956 .3023 0184 .11523 ,0969
.0156 | .31012 . 2945 .0181 .11183 .0937
,0143 | .30095 .2867 .0163 .10852 .0922
.0147 | .29206 22773 0147 .10532 .0906
,01u7 | .,28343 ., 2687 0139 .10220 ,0883
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TABLE II (con't)

el

Gz(t)
Palm Simulation

. 0140 09918 .0852
0158 .09625 . 0805
.0161 09341 .0773
. 0148 .09065 .0758

20
3.
l*@
50
60

FOOT NOTE REFERENCE

L
Takacs, pp., 174-188
Riordan, pp. 37-38
Khintchine, pp. 82-89
Khintchine, pp. 89-95
Khintchine, pp. 11-12
Khintchine, pp. 44-48
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THE IMPACT OF COMPUTING SYSTEMS AND
SIMULATION ON TOP-LEVEL MANAGEMENT DECISION PROCESSES
By J. B, Neuhardt

(I Introduction

Originally, this paper was to have been a study of the impact of
the 1975 computer system on administration control systems, with
special emphasis on multivariate sequential sampling. As it became
apparent that the latter could never be practical without computers,

a simple control system was modelled., One approach to optimization

of the system would have been to set partial derivatives equal to zero,
and search for minimization of expected costs. This analytical approach
was not taken, but instead the expected cost model was explored on a
digital computer, The relative ease with which the pseudo-optimum
conditions became apparent was rather startling (as opposed to the
straight analytical approach), The idea of replacing analytical studies
with simulation is certainly not new. Many authors, including

G. Morgenthaler (Ref., 2), note that simulation is one possible alter-
native when analytical models become unwieldy,

The basis direction of this paper then changed toward answering:
What types of simulation languages and computer systems would increase
the use of such tools by top management directly? Would this direct use
partially solve the problems of insufficient support of top management
in O,R, studies?

(II) Past Problems in Achieving Results from Operations Research Studies-
One Partial Answer,

It has been written that some of the reasons that operations research
studies fail to materialize into significant results include:

(1) Inability of the 0.R, team members to obtain clear statements
of the problems to be solved, leading eventually to the study
of the wrong variables,

(2) Less than full indorsement of top management due to poor comm-
unications, or simply to management change.

In addition, future Operations Research efforts may falter in many organi-
zations simply because there are not enough specialists in this area to
go around,

One suggestion seems obvious: give top management a tool which it
can use directlyj; a tool which gives the ability to deal with complex
situations, arrives at answers relatively quickly, and requires no
extensive background in refined Operations Research techniques to use,
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(III) Future Computing Systems-Present Simulation Language

No attempt will be made to extrapolate speeds, memory sizes,
etc.,, of future generation computers, It is merely noted that the
future management simulation language would probably require the
following type of computing system: .

(a) Parallel proce551ng, to insure access of perhaps several
management inquiries in-addition to fulfilling lower
priority daily data processing requirements,

(b) input devices located near the inquirer to facilitate
processing,

(c) high processing speeds relative to in-out speeds (charac-
teristicly scientific rather than commercial which stresses
mass in-out data processing) for large scale simulation.

These elements represent a minimum consideration, and are unfortunately
geared to present state-of-the-art computing techniques.,

The only system simulation language known to the writer is the
"General Purpose Systems Simulation Program", written by G. Gordon,
Time did not permlt becoming operationally acqualnted with this
language, but it is interesting that Mr: Gordon, in dlscu581ng the
program's application, states "the program involves compromises and
it seldom meets exactly the requirements of the users." This would
undoubtedly be true of any general purpose program, but would not
deter an avid operations "researcher" in its use. However, difficulty
in the use might discourage top management in direct utilization of the
program, (if the reader has ever-tried to operate a program by simply
following directions in a general program write-up, imagine a company
president being given such an item for immediate use),

The answer lies partially in specific rather than general programs,
written possibly by company personnel for use by that company's top
management, rather than a general program written by a computer organi-
zation for all its users. The use of such specific programs might
only require a basic knowledge in probability theory, descriptive
statistics and possibly inferential statistics.

A specific problem is now considered.
(IV) Example of Problem, Suggested Extensions
(A) Problem Statement (Figure 1)

Suppose "n" units of a given ‘product are sold each period, and this
product is under continual use after it is sold., Let P. i be the pro-

:thy

bability that any product sold in the "i period will fail in the

"Jthn period of use, For simplicity, it is assumed that Pij is not depen-

dent on i, the period of sales., It is assumed that the failures are indep-
endent in the statistical sense, Upon failing, this fact is reported to
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FLOW DIAGRAM OF WARRANTY PROBLEM
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data processing andanaly31s, with a 17 period lag. It is assumed that
all failures occuring in a perlod have the same lag time in data
processing. The data processing and analysis section tests the
following hypothesis, HO’ with the associated alternate, H,y, upon

receipt of failure data: ~
Hys P: = P

p +8 (8>0)

where p is a tolerable failure probability, and p + ¢ is considered
excessive, Let o, B8 be the associated type I, II errers, respectively,
of the test.

It is assumed that sales, n, is constant from period to period,

If H, is accepted, data processing continues to monitor failures,

performing independent tests from period to period. If H0 is rejected,

it is assumed that an engineering redesign is necessary. It is further
assumed that the probability that engineering redesign will result in
success (with the new failure probability, p) in one period is PR

and this probability is constant from period to period while redesign
efforts are in progress (a most unrealistic assumption). It is assumed
that pp is fixed whether HO is true or not. Let:

cost of data processing per period,
cost of engineering redesign per period,

D
C . .
1 = cost of one product failing,

Figure 1 is a flow diagram of the possible states under Hy and Hl’ and
transition probabilities are noted., For instance, under Hy, the pro-
bability of remaining in state "A" , data processing, upon receipt of
failure data is B , the probability of accepting a false hypothesis,

(B) Analytical Model of Expected Costs

Let: AB = expected number of periods in making the transition from
A Bo'I.‘= - - Z " - ™
state A to ABK = A8 + BA& = KEg e(k+D)(1-0) ks m20(m+l)(l pR) Pr
= 1/0 + l/pR
For H, true: EO = Expected Cost per period = D + 1/T (C/pR
T
For H, true: E, = 1/T[DT + C/p, + nd:z 3] = D+C + né (T+1)
1 1 R
j=1 PRT

Further assumptions on cost relations:

B = e s0= e s1-Pp = e s (AB,AQ,AP Constants)
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This is the assumed relationship of data processing costs, D, and the
errors o, B, while larger expenditures in redesign per period, C, in-
creases the chances of successful redesign.,

The above cost assumptions result in the following expected cost
functions:

+ 1 ' Cc

Bg = D XD XY=l |
e (l-e P ; l1-e P
c - -»f\BD)-»l =2 Cc\-1
E. = D + + né8(T+l) Where: T=Tl+(;-e -r( -e P

1 o -Ax_C
1 é__ge P » 2
It is desired to minimize the expected cost, E, where:

E = E, (probability that Hj is true) + Eq (probability that Hy is true),

Actually, it was found that Eq and Eq differed considerably, and for
practical purposes El was the variable to concentrate on,

(C) Computer Solution

After spending some time studying the analytical expression for
expected cost, and contemplating that model for more complicated models,
it was decided to analyze the model ona digital computer, A "one
variable at-a=-time" method to seek an optimum was used. In a matter of
two man hours and $20 computer costs, relationships of the variables
seemed evident with respect to cost, and a "flat" region of expected
cost was apparent (Figure 2), The computer program, written in basic
machine language, was simple, yet the relative ease with which the
expected cost region was studied seemed remarkable to the writer,
Several items were of immediate interest in the computer runs (Figure 2),
A relatively constant expected cost region existed over rather consid-
erable ranges in expenditures, C and D, (Figure 2), It is far better
to overspend rather than underspend, due to the slope of El above and

below the apparent optimum. It is noted that data processing and
analysis costs are about 6 to 1 relative to redesign costs D, in the
area of optimum Eqo One other run was made, increasing the time lag to

data processing., This quantity seemed rather insignificant relative to
C and D expenditures,

(D) Rema;ks

Many of the assumptions made, point to the impracticality of this
specific model, The practical aspect is the inexpensive study via
computer runs, which might have implications in more complex models,
An extremely valuable piece of information would be obtained if the
expected cost curves were relatively flat in even complex models,
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Practical extensions of this model might include the probability of
failure changing with time, several products tested simultaneously
with a restriction on redesign expenditure (above and below), sequen-
tial and multivariate sequential testing of failure rates, and inclusion
of more than one possibility of product improvement (production, material
etc.),

(V) Problem Extension Through Simulation Language

When a special purpose simulation language is considered to enable
the study of the warranty problem with most of the elements included,
and the simulation is mere parameter study, top management has not
played a part in model construction, For instance, with reference to
the warrancy problem as stated above, a simulation program could be
written which would select failures randomly, and with given alpha,
beta and PR values, simulate the problem and log costs per period,

The executive could study costs as the expenditures and even the
functional relationships of errors with expenditures were changed,
However, in this role, the executive is not utilizing his experience

in fundamental relationships of certain variables or, as previously
stated, he is not playing an active role in the construction of the
model, How, then, can this role be made easier, so that it does not
consume a prohibitive amount of the executive's time? A general purpose
simulator is probably too complicated and unwieldy to use, while a
specific simulator relegates the executive to studying parameter
effects in a given model,

It is suggested that a compromise might exist in a language
written specifically for company executives which would be flexible
enough to allow the executive the study of many problems by construct-
ing his own simulation models, yet operationally simple, This task
is obviously a formidable one, and the following represents a first
attempt:

Given the four types of activities:

(A) Random function generatorj; For random variables ¥y9Xp900000X

n’
and assxci;&ed dis;ribution functions FisFps0000,F » generate

sample Fl,Fzgooao,Fn, possibly in independent periods in time,

with associated costs C(Fl),ooo,CCFn)o

(B) Storage Activityj; Ability to store quantities for time t,at
cost C(t),

(C) Decision Activity;

(D) Action activityj Function, which hopefully affects the Fi’
with associated costs per period,
Transition probabilities from activity are needed, which may

be fixed, or functions of costs, or expenditures in specific
activities,
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With these building blocks, an extension of the warranty problem
is indicated in figure 3. The random variable is the failure probability
at time t, possibly multlvarlate, with associated cost to the company.,
This is followed by a time lag and then to a decision activity which
tests the typothesis that the failure level is below some preassigned
amount. With probabilities Pgp ©F Pgyo the problem is considered not

significant or it warrants further analysis, respectively, Under
further analy81s, the decision is made to refer the problem to one
or more action activities, which in turn have costs associated with
them, and certain probabilities of achieving results.,

It is conceivable that this model could be read automatically
in its flow diagram form, by a computer, The problems facing an
executive might involve questioned elimination of the decision process
for instance, and submit the problem to all action groups, or it might
be desired to investigate the effects of spending more money in de-
creasing the time lag of failure reporting, Perhaps raw data could be
fed to the action groups, and allow them to perform their own
analyses, These are all questions that involve more than parameter
study, and questions of this type could lead to basic model changes
quickly and efficiently by the executive,

It is hoped that a similar language could be applied to, say, a
production control problem or similar inventory and distribution systems,
The above suggestions concerning a simulation language certainly in no
way exhaust possibilities, but the complex flow diagram resultlng from
just four elements might indicate that further language complication
would render the approach useless as an active tool for top management,

Nothing has been said about data displayo Experience has shown
that graphic outputs are invaluable as aids in rapid digestion of gross
effects, Provision should be made for such displays to the executive,

(VI) Summary

As a result of this investigation, it appears more evident to the
writer that computer simulation should play a bigger role in future
management decision processes. It is suggested that the effectiveness
of this approach to top level management will depend on how active a role
the executive plays in the model constructlon, which in turn will depend
greatly on how much effort is demanded in such a task. It would appear
that a general simulation program would demand too much time for direct
use in many situations, while a specific program might not be flexible
enough to handle the variety of problems facing the executive,

Ar attempt to consider elements of a compromise language resulted
in only four building blocks, but the flow diagram model was still
quite unwieldy. It is evident that the task of writing a flexible yet
easily manipulated language is not a small one, but it would seem nec-
essary if the benefits in allowing top management to play active roles
in simulation model construction are to be realized.,
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FIGURE 3
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Bibliography on

Integer Linear Programming

Arnoldo Hax

1.

Balinsky, H. L., "Notes on Integer Linear Programming”. Foundations
and Tools for Operations Research and the Management Sciences,
The University of Michigan., Summer 1962,

This paper represents, as far as our knowledge is
concerned, the only attempt macde up *to now te provide a
general discussion of all the methods available in the
field of integer linear programming, Gomory's work is
analyzed in detailj a list of uses of integer programming
is given, and the necessary background and notation con-
cerning linear programming and the simplex method is pres-
ented,
We strongly recommend this paper for anybody interested
in gaining a rapid and general insight in the field,
2, :
Balinsky, H. L., "Fixed Cost Transportation Problem", Naval
Research Logistic Quarteriy. Vol. 8 (1961), pp. 41-54

This paper formulates a. fixed=cost transportation
problem as an integer program, describes some of its
special properties and suggests an approximate method
of solution, Examples are given to demonstrate the
approximation technique,

30
Berge, C., "The Theory of Graphs". John Wiley and Sons, 1962,

This book gives a general survey of the theory of
graphs and its applications. It provides an analysis
of p=coloring map problem in terms of integer linear
programming. (pp. 27=34)

4,

Charnes, A, and W, W, Cooper, '"Management Models and Industrial
Applications of Linear Programming" (2 volumes).
John Wiley and sons. 1061

These volumes illustrate all aspects of under-
lying theory of linear programming with concrete numerical
examples accompanied by explanations,

In volume2, pp, 695=712, a discussion of Gomory's
algorithms fur Integer and Mixed Integer programming
problems is given, The methods are illustrated by
examples, nevertheless the presentation is far from
complete,

5,

Charnes, A, and C, E, Lenke, "Optimization of Non=Linear Separables
Convex Functionals". Naval Research Quarterly, Vol. 1, NCh&,
(195047, pp. 301-312,

Programming problems may arise in which the variables
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are subjected to linear equations and inequalities, but
the obijective function may not be a lirear furction of
the variable, This paper shows how the methods of linear
programming may be extended to cover any objective function
which is the sum of convex functions of each of the
variables. The technique consists of constructing a large
linear program whose solution yields the solution to a
polygonal approximation of the convex nrogramming problem.
An efficient computational algorithm for solving the
auxiliary linear program is also presented.
60
Dantzig, G
Ja

s "Discrete-Variable Extremum Problems",
S,A, VoI, 5 (19577, pp. 266=277.

« Bo
OORO
This paper presents an outline of the use of linear
programming methods for the solution of discrete variable
extremum problems. Three types of these problems are dis-
cussed, a) the assignment problem, b) the problem of the
shortest raute in a network, c¢) the knapsack problem,
Certain techniques on solving these problems are

provided by the author, although no foolproof technique
is offered, and no guarantee is given that they will work
in all cases., Nevertheless, the paper is interesting
primarily because it brings a good discussion of several
applications of integer linear programming to certain
classes of problems that are combinatorial in nature and
easy to formulate,

7

Dantzig, G, B, "Note on Solving Linear Programs in Integers",
Naval Research Logistic Quarterly. Vol. 6 (1959), pp.75=76,

The paper considers the method presented by Gomory
(ref, 13) for solving linear program in integers. Gomory
showed how to add linear inequality constraints to a
linear programming problem automatically in such a way
that the extreme points of the resulting convex contain
only integral solutions in the neighborhood of the
minimum, In this paper an alternative method is given
for generating these additional contraints.,

Dantzig’s idea is based on the following theorem:

If a linear programming problem in variables Xy 9Xp90000 9Xy

has a basic feasible solution for basic variables
Xy 9Xg500009X  SAY, which is inadmissible for any reason, then

the partial sum condition X4t XpantecooooXy 2 1 is satisfied

for all admissible solutions with integral values and not the
basic solution,

In general suppose the convex of solutions in the
n-dimensional space of Xq9Xpso00000Xy is defined by K linear
inequalities,

J=n

. nij xﬁ > n; 1=1,250000K

8 &4 0

wi(x) =
]
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where nij and n. are positive and negative integers. An

extreme point of the convex would be defined by the inter=
section of some n of the hyperplanes ni(x) :nj for ifil,izgoooino
If the extreme point is inadmissible for any reason,then at least
one of the conditions ni(x)zni must be violated for an admissible
integral solution, henc& for 3t least one i=i 9li’.wooogi

ni(x)zpi+ 1 because ny 3 and n; are integers and therefore

Zini(x) > 1+ ?ni 1= d741g50051)
is a linear inequaiity not satisfied by the extreme point
but satisfied by all admissible integral solutions,

Gomory and Hoffman (ref. 19) and Balinsky (ref. 1)
have shown that this 1is a deficient algorithm which cannot
obtain the optimal integer solution undet certain cir-
cumstances, The reason for us to present Dantzig’s idea
is due to the fact that it represents a new approach to
the problem, and it is considered in almost all the lit-
erature in the field,

8,

Dantzig, G, B., "On the Si%nifiance of Solving Linear Programmin%
Problems with some Integer Variables", bLconometrica Vol, 28

TT%O)g ppo 30‘-—*’“’40 '

Keeping in mind Gomory’s methods for solving linear
programs involving integer=valued variables, Dantzig reviews
and classifies problems that can be reduced to this class
and thereby sulved, After considering the general principles
of the cutting plane method, the author analyzes problems
involving multiple dichotomies and k=fold alternatives which
include problems with discrete variables, nonlinear seperable
minimizing functions, conditional constraints, global minimum
of general concave functions and combinatorial problems such
as the fixed charge problem, traveling salesman problem, ortho-
gonal latin square problem, and map coloring problem,

The paper gives one of the most complete discussions
on uses of integer programming.

9, . . .

Dantzig, G, B., "Solution of a Large=Scale Traveling=Salesman Problem",
(et al., Fulkerson R, and S, Johnson) J.0.R.S.A, Vol, 2 CLl95%)
PP, 393=410,

The paper gives a complete analysis of the traveling
salesman problem, a classic one in the field. The authors
present some examples and the way in which it is possible
to make a mathematical statement of the problem, putting
it into a linear programming form, An estimation procedure
for solving the problem is considered. It is shown that
a certain tour of 49 cities, one in each of the 48 states
and Washington, D, C,, has the shortest road distance., In
connection with integer programming, the paper is important
because the cutting plane approach was proposed in this paper
for the first time,
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10,
Dorn, W. S., "Non=Linear Programming., A Survey" RC 707,

IBM Research Center, June 12, 1962,

Some of the more recent theoretical and computational
developments in non=linear programming are surveyed, The
notion of Lagrange multipliers and duality are discussed
together with applications of these ideas to scientific and
business problems., Moreover, several algorithms for
solving quadrate programming problems are reviewed, Explicit
rules are.given for two of these algorithms, and a simple
example is solved by both metheds., A large step gradient
method for the solution of convex programs is given and
the all-integer integer programming Gomory'’s algorithm is
described. Simple examples are solved using both of these
techniques., Linear fractional programming is also dis-
cussed briefly,

11,
Eisemann, K., Management Sciences., Vol, 3 (1957), pp. 279=284
"The Trim Problem"

A problem of primary significance to a variety of
industries is the suppression of trim losses in cutting
rolls of paper, textiles, cellophane, metallic foil, or
other material, for the execution of business orders,

The trim problem then consists in fitting orders to rolls
and machines in such a way as to reduce trim losses to
an absolute minimum,
| The authors illustrate the general treatment of such
a problem by a numerical example, The problem,of course,
falls into the category of integer linear programming,

12,

Gilmore, P, C, and R, E, CGcmory, "A Linear Programming Approach to
the Cutting=-Stock Problem".” J,0,R.5:A. VOl, 9, DeC, 1961,

ppo gq’g‘“ [

The cutting-stock problem is the problem of filling

an order at minimum cost for specified quanitity of
material to be cut from given stock lengths of given cost,
When expressed as an integer programming problem the large
number of variables involved generally makes computation
infeasible, This same difficulty persists when only an
approximate solution is being sought by linear programming.
In this paper, a technique is described for overcoming the
difficulty in the linear programming formulation of the
problem, The technique enables one to compute with a matrix
which has no more columns than it has rows,

13,

Gomory, R, E., "An Algorithm for Integer Solutions to Linear Programs",
Pginceton«IBMq~Mathematlcs Research Project., Technical Report
N°1l, Nov. 17, 1958,

This report describes a method, based on G, B, Dantzig's
simplex algorithm, for solving linear programming problems in
integer, The paper is, perhaps, the most important one
written in the field of integer programming.
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Gomory,

17,
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The paper is divided into ten sections: A general des-
cription of the method is given in section 1. In section
2 the main class of inequalities used in the method 1is
derived and shown to form a group. Section 3 gives a
geometrical interpretation of the inequalities. In section
4 some properties of the inequality group are derived.
Section 5 discusses briefly, ways of choosing particularly
effective inequalities, In section 6 a variant of the
basic inequalities is discussed, Section 7 contains a des-
cription of the lexicographical dual simplex method used in
the finiteness proofs. Section 8 gives two versions of the
method and shows that they obtain the integer answer in a
finite number of steps. Section 9 contains miscellaneous
comments 1nclud1ng remarks on p0331ble extensions, program-
ming experience, etc., Section 10 contains a summary of

the procedure and small worked out problems illustrating

some of the results of the preceding sections.,

R. Eocy "Outline of an Algorithm for Integer Solutions to
Linear Programs"., Bulletin of the American Mathematical
Society., ol 64, (1958), pp. 275=278,

This article is a short presentation of ref. 13, Here
Gomory only describes the algorithm, without going into
deep theoretical considerations.

R, E., "Solving Linear Programming Problems in Integers",
Proceedings of Symposia in Applied Mathematics., Vol., X,
American Mathematical Society., (1960), pp., 211=216,

Same as in ref, 14, this article gives a short presentation
of ref, 13. An example is also presented. The paper offers
a good analysis of Gomory's algorithm for those who do not like
to go into all the mathematical background of the method,

R, E., "An Algorithm for the Mixed Integer Problenm”,
RM=-2597 Rand Corporation. July 7, 1960,

An algorithm is given for the numerical solution of the
"mixed integer" linear programming problem, the problem of
maximizing a linear form in finitely many variables constrained
both by linear equalities and the requirement that a proper
subset of variables assume only integral values. The
algorithm is an extension of the cutting plane technique for
the solution of the "pure integer” problem, given in ref, 13,

R, E. "All-=Integer Integer Programming Algorithm", RC 198
IMB Research Center. dJan., 29, 1960,

The purpose of this paper is to describe a new method of
integer programming which differs from its predecessors in
two main points: .

It is an all- 1nteger method, that is, if the coefficients
in the original matrix are 1ntegers all coefficients remain
integer during the whole calculation,
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It is a uniform procedure closely resembling the
ordinary dual simplex method with the difference that the
pivot element is always a=l., The cycle of maximizing by
adding an inequality, etc. characteristic of ref. 12 has
been eliminated,

18,
Gomory, R, E. and J. W, Banmol, "Integer Programming and Pricing".
Econometrica, Vol. 28 (1960), pp. 521=550,

In this article Gomory's method of solution of integer

linear programming problems (based on ref, 13 and ref., 14)
is described briefly, with an example of the method of
solution, The bulk of the paper is devoted to a discussion
of the dual prices and their relationship to the marginal
yields of scarce indivisible resources and their efficient
allocation, The article also glves a geometrical inter-
pretation of the integer programming algorithm, and explains
the dual simplex calculations necessary for the applications
of Gomory’s method,

19,

Gomory, R, E. and A, J. Hoffman, "On the Convergence of an Inte
Programming Process™, RC-650 IBM Research Center, Mar. éﬁ“ 1962,

The purpose of this paper is to analyze the finiteness
of a procedure for integer programming described by
G, B, Dantzig in ref., 7 which left the finitness question
open. The result given here shows that the process will
not be finite or even converge to the optimal integer
answer x° unless certain necessary conditions are satisfied,
In particular, the procedure will not be finite unless x©
already lies on at least n-=1 of the faces of the polynedron
cut out by the inequalities of the linear programming problem,
20,
Land, A. H, and A, G, Doig, "An Automatic Method of Solv1n;mpisgpqte
Programming Pr”oblemsW “Fconometrica VOL (1960) pp.L437/=520,

This paper presents a simple numerical algorithm for
the solution of programming problems in which some or all
of the variables can take only discrete values. The
algorithm requires no special technique beyond those
used in ordinary linear programming, and lends itself to
automatic computing. Its use is illustrated on two numerical
examples,

The algorithm was completed by the authors at the same
time that Gomory published his first paper (ref, 14)., It had
the advantage that the method could work in the mixed case
(i.e. in which not all the variables are required to be
discrete), Further work made by Gomory (ref, 16), also solved
this problem in a more efficient way,

21,
Manne, Alan S., "On the Job-Shop Scheduling Problem". J,0,R.S;A,
Vol, 8 (1960), pp. 219=223,

The article is a proposal for the application of
discrete linear programming to the typical job=shop
scheduling problem, one that involves both sequencing
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restriction and also noninterference constraints for
individual pieces of equipment. Thus far, no attempt has
been made to establlsh the computational feasibility of

the approach in the case of large=-scale realistic problems,
This formulation seems, however, to involve considerably
fewer variables than two other proposals: a) E, H. Bowman
"The Schedule=Sequencing Problem”, J.,0.R.S,A, Vol., 17 (1960)
pPp. 621=624, b) H, Wagner, "An Integer Linear-Programming
Model for Machine Scheduling”", Naval Research Logistic
Quarterly, June, 1959,

Markowitz, H, M,, and A, S, Manne, "On the Solution of Discrete

23,
Miller,

24,
Thrall,

Programming Problems". Econometrica. Vol. 25, (1957),
PpP. 84 = 110,

This paper considers optimization problems in which
some or all variables must take on integral values, The
authors do not present an automatic algorithm for solving
such problems, Rather they present a general approach
susceptible to individual variations, depending upon the
problem and the judgment of the user. Two moderate size
and interesting examples are presented to illustrate the
method,

The paper is often cited as having suggested the general
line of attack employed by Gomory.

C. Eoy A; W. Tucker and R, A, Zemlin, "Integer Programming
Formulation of Traveling Salesman Problems”., Journal of the
Association for Computing Machinery, Vol. 7 (1960), pp.326=329,

The paper prov1des yet another example of the versatility
of integer programmlng as a mathematical modeling device
by representing a generallzatlon of the well=known "Traveling
Salesman Problem" in integer programming terms., After
formulating the problem in analytical form, the authors
give the results of five machine experiments. The solution
procedure used was the All-=Integer Algorithm of R, E. Gomory.
The answers obtained were sufficiently irregular in their
behaviour to cast doubt on the heuristic value of machine
experiments with the model. It seems hopeful that more
efficient programming procedures now under development
will yield a satisfactory algorithmic solution to the traveling
salesman problem, In any case, the models served to illus=
trate how problems of this sort may be succinctly formulated
in integer programming terms.

R. M., "Linear Al% bra with Appllcatlons to Linear
Pro rammln% Game eory and other Models™ Foundations
and Tools for Operations Research and The Management Sciences,

The University of Michigan, Summer, 1962,

This set of notes provides a general analysis of linear
programming and its appllcatlons0 The theory underlying the
several linear programmlng techniques is very well covered, and
many examples are given,
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25,

Vadja, S., "Mathematical Programmin Addison=Wesley Publishing
Company, Inc. Chapter 10, "5 screte Linear Programming".
pPp. 191-205,

The chapter starts with a discussion of certain classical
applications of integer linear programmlng, such as the
traveling salesman problem, the allocation problem, the
introduction of logical relations, and the fixed charge
problem, The problems are formulated in analytical form
and some examples are given,

As far as the formulation of algorithms to solve the
integer linear programming problem, the author presents
two approaches., First, the method proposed by R, E. Gomory
(ref. 14), and, second, the method presented by A.H. Land
and A. Doig (ref, 20) for the mixed case. Examples are
given to illustrate the use of algorithms.,

Although the general discussion is far from being
complete, and no attempt is made to provide the theoretical
background of the methods proposed, we consider that the
chapter gives a nice introduction to the topic, for those
who want to get a general view of the subject,



