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CHAPTER I

INTRODUCTION

1.1 Genomic biomarkers for cancer diagnostics and

prognostics

The increasing availability of DNA microarray technology has spawn a large num-

ber of genome-scale gene expression profiling studies in cancer. These cancer microar-

ray studies have shown potential of identifying genomic biomarkers that outperform

standard clinical parameters as diagnosis and prognosis targets. For instance, in

prostate cancer, screening for elevated serum prostate-specific antigen (PSA) level

has become a standard clinical test for early detection, but is known to result in high

percentage of false positives. Only about 30% of men with a “positive” PSA have a

positive biopsy. New biomarkers are needed to improve early detection of prostate

cancer. In this respect, studies have explored the utility of microarrays in identifying

gene expression “signatures” with activated or repressed expression profiles in the

disease status as potential diagnostic targets (Dhanasekaran et al., 2001, Luo et al.,

2001, Welsh et al., 2001). Another example pertains to genomic studies in breast

cancer. Estrogen Receptor (ER) positive status is a well-known predictor of patient

response to hormonal therapy. In contrast, ER negative breast carcinomas generally

lack effective treatment options and are correlated with higher risk of developing

1



disease recurrences. Much effort has been dedicated to finding gene expression sig-

natures that can provide treatment guidance and predict patient recurrence outcome

above and beyond standard clinical parameters such as ER status, lymph node sta-

tus, stage of the disease (Huang et al., 2003, Sorlie et al., 2001, Sotiriou et al., 2003,

van’t Veer et al., 2002, Wang et al., 2005). For a review, see Van de Vijver (2005).

Overall, genome-scale expression profiling has been a prolific approach in identifying

novel molecular targets that delineate cancer subtypes and survival outcome.

1.2 Integrative analysis of DNA microarrays

A caveat in cancer genomic studies is that predictive genes identified in one study

often can not be validated in another. When findings from independent studies are

cross-examined, the individual gene signature sets tend to have little overlap in terms

of gene identities. Such lack of concordance may be attributed to the differences in the

study cohorts and analysis strategies. But a prominent source of variation comes from

the use of different array platforms. Some of the commonly used microarray platforms

include two-color spotted cDNA arrays, Affymetrix GeneChip arrays, and two-color

long oligonucleotide arrays. Differences among these technologies include one- or

two-channel formats, cDNA or oligonucleotide, in-house spotted or commercially

developed. Expression profiling data generated from distinct array platforms can

vary significantly in measurement scale and variance structure. In addition, the

large p small n nature of microarray data also contributes to the problem. A search

in a space of thousands of genes with a handful of samples does not lead to the gene

selection stability one desires (Ein-Dor et al., 2005, 2006).

Integrative analysis of multiple studies, however, has shown great promise in com-

piling common gene expression patterns across data sets and even over distinct cancer
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types (Rhodes et al., 2004). Various methods have been proposed for combining re-

sults across studies. Among these, Rhodes et al. (2002) proposed methods to summa-

rize across studies the P-values from a two-sample test of gene expression differences

between cancer and normal tissues. Choi et al. (2003) suggested combining effect

size using a hierarchical model, where the estimated effect size in individual studies

follows a normal distribution with mean zero and between study variance τ 2. From

a Bayesian perspective, Wang et al. (2004) used data from one study to generate a

prior distribution and subsequent microarray studies to update the parameter values

of the prior.

A recent application of Bayesian mixture modeling to Microarray classification

problems by Parmigiani et al. (2002) has given new insights into integrating different

studies. The basic idea is to estimate the probability of over-, under- or normal ex-

pression for gene sample combinations given the observed expression measurements.

As a result, poe (i.e., probability of expression) was introduced as a new scale and

used in the context of molecular classification. The platform-free property of this

scale, however, has motivated its potential use as a data transformation technique

to facilitate data integration. In Chapter II, I propose an approach to meta-analyses

of microarrays that is based on poe.

1.3 Analyzing protein expression data from Tis-

sue Microarrays

DNA microarray studies often yield a few hundred candidate cancer genes display-

ing differential expression that is associated with a phenotype. Only a small portion

of which will be eventually validated for the corresponding expression changes at

the protein level. Translating these discovery-type findings into clinical relevance is
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an important task. The advent of Tissue Microarray (TMA) technology (Kononen

et al., 1998) has provided a proteomic platform for validation studies of those target

discoveries. It has quickly become an integral part of cancer biomarker development

(Figure 1.1). The main statistical issue in TMA data anlaysis is repeated measure-

ments in each tumor. Immunohistochemical (IHC) staining assays are performed on

multiple biopsy tissue elements of 0.6 mm in diameter and 4-8 µm in thickness to

assess protein expression. The resulting staining pattern is traditionally evaluated

by a pathologist and given an integer score on the scale of 0-3 to indicate no, weak,

moderate, and strong staining. A primary goal of interest is to summarize such score

across the multiple tissue samples and then associate with clinical outcomes of that

tumor.

In Liu et al. (2004), the authors are concerned with various pooling methods

(such as using the mean, median, minimum and maximum of the repeated mea-

surements), and subsequent dichotomization of the scores. They propose to use

a deviance-based survival tree (LeBlanc and Crowley, 1992) and a bump hunting

(Friedman and Fisher, 1999) method for choosing the best predictor score for pa-

tient survival outcome analysis. However, TMA core-level repeated expression data

harbor substantial biological and experimental variability. Those summary scores

can yield large variability without explicitly adjusting for the intra-tumor expression

variation.

To deal with repeated measurements, I propose a measurement error approach for

analyzing quantitative protein expression data from TMA experiments. Our main

interest is parameter estimation in proportional hazards models to associate the

repeated core-level expression measures with patient survival outcome. In a two-stage

method, I introduce a Latent Expression Index (LEI) to adjust for 1) the intra-tumor

4



variation, 2) the number of repeated measures, and 2) clinical covariates. A joint

model is further established for simultaneous inference on the expression data and

survival. When the quantitative intensity measure from the Chromavision system

(Chromavision, San Juan Capistrano, CA) is concerned, a normality assumption is

used on the logarithm transformed intensity measure.

The work in the final Chapter of this dissertation involves a generalization of the

error model in Chapter III. One extension is to incorporate both the proportion and

intensity measure of staining to summarize the protein expression profile of a tumor.

For data based on a pathologist’s evaluation, several empirical methods have been

used. For example, a product score takes the product of the staining intensity level

(0,1,2,3) and a crude proportion measure (0-100%). Another scoring system divides

the staining proportion into six categories and then adds up with the intensity level

(Allred et al., 1998).

Etzioni et al. (2005) pointed out that constructing such summary scores led to

loss of information. The authors considered a compositional data analysis. For each

tumor i, the authors define the observation vector as (Xi1, Xi2, ...XiK); i = 1, · · · , n.

Here Xij denotes the proportion of staining at intensity level j = 1, · · · , K, and

subjects to the constraint that
∑K

j=1 Xij = 1. An additive log-ratio transformation

is taken on Xij and the transformed vector is then modeled as a multivariate normal

distribution. In addition, a cumulative logit model is proposed to incorporate the

order of the intensity levels. A major limitation of this method is that the stain-

ing proportion and intensity levels are considered error-free measures while in fact

they represent a coarse evaluation at best from a pathologist’s manual reading. In

addition, this method is designed for traditional immunohistochemical experiments,

which differ from quantitative TMA expeiments in two aspects: subjective (cate-
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gorical) versus automated (continuous) data; one large section of the tumor versus

multiple small sections. The proposed methods by Etzioni et al. (2005) is not directly

applicable to quantitative TMA data.

In Chapter IV, I introduce a Cell Mixture Model (CMM) to incorporate both

staining proportion and intensity measures from quantitative TMA data adjusting

for measurement variability. Specifically, the protein expression profile measured

from an individual core is modeled as a mixture distribution of a point-mass at zero

to account for the proportion of non-staining and a continuous distribution for the

intensity measure of positive staining. The whole-tumor expression profile is then

reconstructed by aggregating over the individual mixture distributions. Here we deal

with Chromavision data with quantitative measures that are considered substantially

more accurate than those from a pathologist’s scoring. However, measurement error

still exists due to various reasons. A major source is the scarcity of the measure-

ments taken per tumor. In TMA studies, the challenge is to estimate the whole-tumor

expression characteristics with an average of three tissue cores each of 0.6 mm in di-

ameters from a tumor that can be 100 times larger. An analogy is to estimate the

characteristics of the population in the United States with data collected in three rep-

resentative cities. In survey sampling problems, small area estimation often involves

parameter estimation for small sub-population of interest. Hierarchical Bayes (HB)

and Empirical Bayes (EB) approaches have been effective with continuous data. For

a thorough review of various methods, see Ghosh (1994), Pfreffermann (2002), Rao

(1999). For a unified analysis of discrete and continuous data, Ghosh et al. (1998)

present hierarchical Bayes generalized linear models. The idea of Bayesian predictive

inference and Markov Chain Monte Carlo integration technique is particularly useful

for our problem at hand. In this study we extend the implementation to a zero-point

6



mass mixture distribution under the CMM model.

1.4 An outline of the dissertation

This dissertation is organized as follows. In Chapter II, a Bayesian mixture model

based data transformation is introduced for the meta-analysis of DNA microarrays.

An application of the meta-analysis approach to assimilate and analyze four inde-

pendent breast cancer microarray studies is discussed. Chapter III presents the use

of measurement error models for the analysis of tissue microarrays. I focus on the

parameter estimation and associated inferences in censored failure time regression

in the presence of measurement errors. Both a two-stage plug-in approach and a

joint model of the TMA core-level repeated measures and survival are introduced.

Chapter IV presents a Cell Mixture model as a generalized modeling framework for

the reconstruction of complex staining patterns from TMA experiments.
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CHAPTER II

A TWO-STAGE MIXTURE MODEL FOR

META-ANALYSIS OF MICROARRAY DATA

2.1 introduction

DNA microarray analysis has been shown to be a powerful tool in various aspects

of cancer research. With the increasing availability of published microarray data

sets, there is a tremendous need to develop approaches for validating and integrating

results across multiple studies. A major concern in the meta-analysis of DNA mi-

croarrays is the lack of a single standard experimental platform for data generation.

Expression profiling data based on different technologies can vary significantly in

measurement scale and variation structure. It poses a great challenge to compare

and integrate results across independent microarray studies. In a recent study of

diffuse large B cell lymphoma (DLBCL), Wright et al. (2003) sought to bridge two

different microarray platforms by validating findings from a cDNA lymphochip mi-

croarray using an independent dataset generated using Affymetrix oligonucleotide

arrays. Although the idea of training and testing classifiers is frequently used for

discriminant analysis, this application to distinct expression array platforms is less

common.

More systematic approaches have been proposed for integration of findings from
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multiple studies using different array technologies. Rhodes et al. (2002) have pro-

posed methods to summarize significance levels of a gene in discriminating cancer

versus normal samples across multiple gene profiling studies. By ranking the q-values

(Storey, 2002) from sets of combinations, a cohort of genes from the four studies was

identified to be abnormally expressed in prostate cancer. Choi et al. (2003) sug-

gested combining effect size using a hierarchical model, where the estimated effect

size in individual studies follows a normal distribution with mean zero and between

study variance τ 2. The effect size was defined to be the difference between the tumor

and normal sample means divided by pooled standard deviation. From a Bayesian

perspective, Wang et al. (2004) used data from one study to generate a prior dis-

tribution of the differences in logarithm of gene expression between diseased and

normal groups, and subsequent microarray studies updated the parameter values of

the prior. Assuming a normal error distribution, the differences were then combined

to form a posterior mean. Although phrased using different model frameworks, these

methods are similar in the spirit of combining the standardized differences between

two sample means across multiple studies. It has been shown, however, that the

overlap between significant gene detection on different array platforms is only mod-

erate due to low comparability of independent data sets (Mah et al., 2004). The large

variability brought in by microarray datasets using different platforms is expected

to affect the sensitivity and specificity of summary statistics constructed in various

ways across studies. Given the inherent differences of the microarray techniques, het-

erogeneity of the sample populations, and low comparability of the independently

generated data sets, meta-analysis of microarrays remains a difficult task.

A recent study proposed a Bayesian mixture model based transformation of DNA

microarray data with potential features applicable to meta-analysis of microarray
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studies (Parmigiani et al., 2002). The basic idea is to estimate the probability of

over-, under- or baseline expression for gene sample combinations given the observed

expression measurements. With data-driven estimation of these quantities, one can

translate the raw expression measurement into a probability of differential expres-

sion. As a result, poe (i.e., probability of expression) was introduced as a new scale

and used in the context of molecular classification (Parmigiani et al., 2002). The

platform-free property of this scale, however, motivated us to incorporate poe in a

framework to meta-analyze microarray data. Several desirable features of using poe

as a new expression scale include the following: 1. poe provides a scaleless mea-

sure and thereby facilitates data integration across microarray platforms; 2. poe is

a model-based transformation with direct biological implications in the context of

gene expression data, as it is estimated based on a method that adopts an underly-

ing mixture distribution that accommodates over-, under-, and unchanged expression

categories; 3. poe unmasks differential expression patterns in microarray data by off-

setting the influence of extreme expression values (Scharpf et al., 2003); 4. Data

integration based on poe allows merging of samples on the unified scale rather than

using gene-specific summaries.

In recent publications of breast cancer microarray studies, several groups have

explored the hypothesis that the capacity to metastasize is intrinsic to the tumor

and therefore can be revealed by gene expression pattern. Four independent studies

have correlated gene expression profiles generated from distinct DNA microarray

platforms to breast cancer prognosis (Huang et al., 2003, Sorlie et al., 2001, Sotiriou

et al., 2003, van’t Veer et al., 2002). Among the four, Sorlie et al. (2001) and Sotiriou

et al. (2003), both cDNA microarray studies, applied unsupervised clustering and

identified several breast cancer subtypes characterized by differential expression of
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a cohort of genes. Further, they correlated the tumor subtypes derived from the

expression profile with survival outcome and in both cases found that, as expected,

the ERBB2+ subtype correlated with shorter survival times. On the other hand,

van’t Veer et al. (2002), an inkjet oligonucleotide array study, and Huang et al.

(2003), an Affymetrix GeneChip study, have built classification models based on

gene expression profiles to predict 5-year or 3-year recurrence status. In all four

studies, however, the authors explored a common hypothesis that molecular profiles

were able to provide a more accurate prediction of patient survival compared with

clinical/pathological parameters. These studies therefore provided an excellent basis

for developing a meta-analysis of microarrays with regard to disease prognosis.

This Chapter is organized as follows. In section 2.2 and 2.3, we propose a two-

stage meta-analysis of microarrays with a focus on cancer prognosis prediction. In

section 2.4, we apply our method to the aforementioned breast cancer DNA mi-

croarray data sets. We demonstrated the advantage of a mixture model based

transformation for data integration and the gains of integrated data analysis over

single analysis. Such two-stage meta-analysis approach allows an inter-study vali-

dated meta-signature based on gene expression to be developed for more robust and

reliable cancer prognosis prediction across heterogeneous tumor samples.

2.2 Model based data transformation

Let xijk denote the preprocessed gene expression measurement for gene i from the

jth sample in the kth study, transformed using the base two logarithm, i = 1, . . . , N ,

j = 1, . . . , Mk, k = 1, . . . , K. We assume that data have been preprocessed, either

by a lowess normalization for two-channel microarray data (Yang et al., 2002) or a

robust analysis for Affymetrix data (Irizarry et al., 2003b). Then the available data
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can be summarized by {Xk}K
k=1, where Xk is a Mk by G matrix whose (i, j)th entry is

xijk. Note that the value and interpretation of xijk is inherently different across array

platforms and is not necessarily comparable if they are measured from independent

studies. Corresponding to xijk, let eijk be a variable that takes one of three values

{1, 0,−1}, indicating over-, baseline- or under- expression respectively for gene j in

sample i for the kth study. If eijk were known, then this is a variable that would

provide a platform-free scale which could be combined across multiple studies. We

approach this problem by treating eijk as a latent variable that is inferred from the

data using a mixture model.

2.2.1 A Normal-Uniform mixture distribution

We assume that xijk are realizations of the following mixture model:

xijk
iid∼ π+

jkU(αik + µjk, αik + µjk + κ+
jk) +(1− π+

jk − π−jk)N(αik + µjk, σ
2
jk)

+ π−jkU(αik + µjk − κ−jk, αik + µjk) ,(2.1)

where αik + µjkis both the mean of the normal distribution and the boundary to the

two uniform distributions; αik is the sample effect with the constraint that
∑Mk

i=1 αik =

0; κ+
jk and κ−jk provide limits to the uniform distribution in the mixture, and are set

to be at least 3σj. The parameters π+
jk ≡ P (eijk = 1) and π−jk ≡ P (eijk = −1)

are the multinomial probabilities for the latent variable eijk. Conceptually, we can

think of gene expression arising from three populations of genes in model (2.1). The

first component in the model is the population of expression levels for genes that

are overexpressed in the cancer samples relative to the normal samples, the second

corresponds to genes that do not change between cancer and normal samples, and

the third is for genes that are underexpressed in cancer samples relative to normal.
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2.2.2 Posterior probability of differential expression

Let p+
ijk ≡ P (eijk = 1|xijk) and p−ijk ≡ P (eijk = −1|xijk) be the conditional

probabilities of over and underexpression for gene j in sample i (over- and under-

expression respectively) given the microarray measurements. Then by Bayes’ rule,

(2.2) p+
ijk =

π+
jkf1jk(xijk)

π+
jkf1jk(xijk) + π−jkf−1jk(xijk) + (1− π+

jk − π−jk)f0jk(xijk)

and

(2.3) p−ijk =
π−jkf−1jk(xijk)

π+
jkf1jk(xijk) + π−jkf−1jk(xijk) + (1− π+

jk − π−jk)f0jk(xijk)
,

where f0jk is the normal density function, and f1jk, f−1jk are the corresponding uni-

form densities for the differential expression categories for the jth gene in the kth

study. In the numerator of (2.2), f1jk = 1/κ+
jk if xijk ∈ [αik + µjk, αik + µjk + κ+

jk]

and 0 otherwise; whereas in the numerator of (2.3), f−1jk = 1/κ−jk if xijk ∈ [−κ−jk +

αik + µjk, αik + µjk] and 0 otherwise.

Note that the supports of the two uniform distributions are disjoint. As a result,

the probabilities of differential expression are mutually exclusive with the following

forms:

(p+, p−) =

(
π+/κ+

π+/κ+ + (1− π+ − π−)f0

, 0

)

or

(p+, p−) =

(
0,

π−/κ−

π−/κ− + (1− π+ − π−)f0

)
.

We then construct the following measure: pd
ijk = p+

ijk − p−ijk, ranging from -1 to 1. It

can be interpreted as the signed conditional probability of differential expression of

gene j in sample i in study k. The interpretation and scale of the measure is portable

across array platforms and independent study data sets.
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2.2.3 Estimation using MCMC algorithms

In this situation, we assume that there is only k = 1 study. Let {Θj}N
j=1 generi-

cally denote the parameter in model (2.1) for gene j = 1, ...N . In the microarray data

setting, the total number of genes N can be a few thousands, leading to large amount

of gene-specific parameters. It is sensible to adopt a hierarchical Bayesian mixture

model setting for parameter estimation, where the variation of the gene-specific pa-

rameter estimates can be described by assuming prior distributions f(Θj|ψ) with

hyperparameter space ψ. In particular, let

µj ∼ N(ξ, τ 2), κ+
j ∼ Exp(λ+

κ ), logit(π+
j ) ∼ N(ν+, ω+),

σ−2
j ∼ Gamma(γ, λ) , κ−j ∼ Exp(λ−κ ), logit(π−j ) ∼ N(ν−, ω−).

In terms of prior choice, we follow the recommendations of Parmigiani et al. (2002).

To sample from the posterior distributions of the parameters, a Metropolis-Hastings

MCMC algorithm was then implemented where the gene-specific parameters were

repeatedly sampled from the corresponding full conditional distributions. These are

given in Appendix A. We thus fit the Bayesian algorithm to each microarray dataset

separately.

2.2.4 Linear rescaling

An alternative approach to integrating data across multiple datasets is to perform

a study-specific global normalization. For the kth study, let xk
ij ≡ (xij − x̄)/s.d.(xij)

be the globally scaled expression value for genej in sample i. Each study dataset is

then standardized to have zero mean and unit standard deviation. This yields a data

matrix, say X l
k for the kth study. The linearly rescaled values can also be used for

data integration purposes in that expression values generated from different array

platforms are standardized to a common scale.
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Such an approach is much less computationally challenging compared to the mix-

ture model-based rescaling described in the previous section. However, there are

several advantages to the mixture model-based transformation. First, the method

incorporates biological information into estimating the posterior probabilities of ex-

pression. The transformed values carry meaningful interpretations as signed prob-

abilities of differential expression of a gene in a particular sample. Second, the

underlying normal and uniform mixture distributions give equal density in the tails

and is effective in reducing the influence of extreme expression values. And third,

the Bayesian hierarchical modeling approach borrows strength across genes resulting

in shrinkage-type estimators for a large correlated gene-specific parameter vector.

This is a method in which the high dimensional gene expression data are denoised.

We compare the performances of the two methods (mixture model-based and global

standardization) in Section 2.4.

2.3 Data integration and meta-analysis

2.3.1 Integration of transformed data

Let X∗
k be the study-wise transformed expression data for the kth study. For the

mixture model-based transformation, X∗
k = P d

k , where P d
k is a probability matrix with

entries p∗ij ≡ p+
ij−p−ij as described earlier; and for the global standardization method,

X∗
k = X l

k, where X l
k is the globally standardized logarithm expression matrix for the

kth study whose (i, j)th entry is xk
ij. For a common set of N genes that are profiled

in each of the study of interest, data integration is subsequently based on the rescaled

values X∗
k , and results in a combined data matrix of dimension N ×∑K

i=1 Mk.
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2.3.2 Classification methods for assessing meta-analysis pro-
cedures

We will assess the performance of the genes found using the meta-analysis methods

based on classification accuracy. A complication is that while most methods of

classification deal with data from two populations, the response with which we wish

to build classifiers to predict is time to breast cancer recurrence. While the ideal

data would be have information on time to recurrence on all subjects (potentially

censored), not all studies have the time to recurrence information available and

instead provide data on recurrence within a certain time interval (e.g., recurrence

within three years versus no recurrence within three years).

To deal with this issue, we will utilize a dichotomization. Let Ti be the event time

for subject i, Ci be the censoring time for subject i, and δi = 1{Ti < Ci} be the

censoring indicator. Define a new variable,

yi =





1 δi = 1

0 δi = 0 and Ci ≥ t∗,

where t∗ can be specified with clinical knowledge. The low risk group yi = 0 has

to satisfy the additional constraint Ci ≥ t∗ to reduce potential bias introduced by

insufficient length of follow-up in certain cohort. This is particularly relevant in cross-

study analysis, given the potential heterogeneity in patient recruit criteria and study

designs. In this paper, we have chosen t∗ = 3 years. We then consider constructing

classifiers using y; note that y = 1 corresponds to the poor outcome group and y = 0

to the good outcome group. Across the 305 samples from the four studies, 51.1%

had y = 1.

Logistic regression was used to build a classifier for prognosis. For each gene j,
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we fit the following univariate logistic regression model using data from all studies:

logit{Pr(yi = 1|x∗ij)} = ηj + βjx
∗
ij,

where x∗ is the rescaled value that allows data integration across multiple studies.

The estimated values of βj, β̂j, are then used to form a risk score using a variation of

the compound covariate predictor method (Radmacher et al., 2002, Tukey, 1993); for

a given set of covariate values x1, . . . , xN , the risk index is given by RS =
∑N

j=1 β̂jxj.

If we want to assess the performance of the classifier, we must deal with the issue

of training and testing the model using the same data. An “honest” estimate of the

prediction error rate is obtained using leave-one-out cross-validation. Define a risk

index RIi =
∑p

j=1 β̂j,−ix
∗
j , where i = 1, . . . ,

∑K
i=1 Mk, and β̂j,−i is the effect estimate

for gene j in the combined meta-cohort without the ith sample. The risk index for

sample i is a weighted linear combination of the expression profiles of the top p

genes, where the ranking of the genes is based on their corresponding significance

in the univariate logistic model fit. As a result, large positive values of RI indicate

high risk of failure, whereas large negative values of RI indicate low risk of failure.

Classification of sample i to the risk groups is then based on the ith leave-one-out

risk index. The classifier is C(X∗) = I{RIi > c}, with c being the empirical quantiles

of the RI ′s. The number of genes p in a classifier is also treated as a parameter and

optimized to minimize the prediction error rates.

2.4 Application to breast cancer data sets

Figure 2.1 depicts the workflow of applying the mixture model based meta-

analysis. In the following sections, details involved in each step of the data ap-

plication will be discussed.
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2.4.1 Data collection and preprocessing

The four breast cancer microarray datasets mentioned in the Introduction were

obtained at the author’s websites from four recently published studies. Numerical

descriptions of the studies are provided in Table 2.1. To perform the meta-analysis,

we focused on a common set of N = 2555 genes compiled across array platforms

by Unigene Cluster IDs that were present in all four studies. There are issues in

attempting to match genes from multiple studies with different platforms (Ghosh

et al., 2003), but we will ignore them in this paper. Because we are using genes

only if they are present in all four studies, we exclude many genes from the analysis.

While this leads to a loss of potential predictive features, it is not unreasonable to

assume that the common set across studies represents the most relevant genes of

interest for breast cancer prognosis.

Each data matrix of genes was then base-two log-transformed and normalized

by median centering and dividing by the standard deviation for each gene. The

mixture-model based approach requires complete data, missing expression values

were imputed by the k-nearest neighbors imputation algorithm (Troyanskaya et al.,

2001), with k = 10. As stated earlier, the goal of the analysis was to find a meta-

signature which represents genes that discriminate samples that are recurrence-free

for at least three years after surgery versus those that have recurrence within three

years.

The first stage of the analysis involves data-driven estimation of the signed prob-

ability of differential expression, namely pd = p+ − p−. The resulting values of pd

represent signed probability of differential expression for gene j in sample i, and thus

provide a unified measure across studies. In the second stage, the expression profiles

of tumor samples from multiple studies were combined on the pd scale to generate
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what we term a meta-cohort of genes. Class prediction for disease recurrence was

then assessed based on the combined data. We define the meta-signature to be the

optimal gene expression based classifier constructed in the combined data.

2.4.2 Identification of a 90-gene meta-signature

By minimizing the misclassification error in the meta-cohort via a leave-one-out

cross-validation, we obtained a 90 gene meta-signature that reliably predicts out-

come. This meta-signature classified 122 patients into a high risk group, where 84

(69%) of them had a recurrence. On the other hand, the signature classified 183

patients into a low risk group, where 118 (64%) of them did not recur by the end of

the followup. By cross-tabulating the risk groups predicted by the meta-signature

and the actual recurrence status, we obtained an estimated odds ratio of 4.0 (95%

CI: 2.5-6.5, P < 0.0001).

A heat map representation of the poe profile for the 90 gene meta-signature re-

vealed two distinct patterns of differential expression (Figure 2.2 top panel). Genes

display consistent differential expression probabilities (yellow indicate over-expression

and blue indicate under-expression) in the recurrent samples (R). By contrast, an ex-

ample of the individual signature (bottom panel) shows a cohort-specific expression

pattern that clearly can not be reproduced in independent data sets. In Figure 2.3,

functional annotation revealed genes involved in many important biological processes

such as cell cycle regulation (e.g., CDC28 protein kinase regulator subunit 2), cell

adhesion (e.g., chemokine C-X3-C motif receptor 1), and apoptosis (e.g., secreted

frizzled-related protein 4).
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2.4.3 Comparison of the meta-signature with study-specific
signatures.

To comprehend the potential gains of a two-stage meta-analysis over analysis of

a single dataset, we compared the performance of the meta-signature to that of the

individual signatures.

By minimizing the prediction errors, we obtained a set of individual signatures

consisting of 10, 60, 100, and 130 genes for the Sorlie, van’t Veer, Sotiriou, and Huang

studies, respectively. The results of the classifiers are summarized in Table 2.2. Not

only did the sizes of the study-specific signatures vary significantly, but the elements

of the signatures had very little overlap. At most two genes appeared in more than

one signature among the four. In addition, signatures identified in one study tended

to have poor prediction in other studies. These results are presented in Table 2.3.

Except for two cases (the Sorlie study signature in Huang study cohort and the

Sotiriou study signature in the van’t Veer study cohort), there was an increase in

classification error of approximately 20− 60% in the testing sets relative to training

sets.

The gene signature found by meta-analysis improves on the individual study-

specific signatures in two ways. First, its overlap with the study-specific signatures

ranged from 3− 40% (Table 2.2). The excluded genes are likely to be cohort-specific

findings that can not be replicated. By contrast, the meta-analysis is able to detect

genes that have slight signals in the individual analyses based on combining the data.

Second, the meta-signature recruited 41 genes not previously picked by any of the

single cohort signature, likely representing predictive features with small but consis-

tent effects previously masked in single studies. When comparing the performances

of the gene signatures, the meta-signature performed, on average, similarly to the

21



individually optimized signatures in differentiating patients at low risk of recurrence

from those at high risk of recurrence in each single study cohort (Table 2.3, compar-

ing bottom row with the diagonals). This shows that the meta-signature can serve as

a common breast cancer recurrence index that is able to predict patient survival in

heterogeneous sample populations. When a gene signature built in one study cohort

performs differently in another, such meta analysis provides a solution to identify

a cross-study validated expression signature that holds across independent sample

cohorts.

2.4.4 Comparison with simple linear rescaling.

To study the potential benefit of data integration based on pd compared to that

based on xl, described in Section 2.2.4. We applied the same classifier to data com-

bined on global standardization and compared the model performances based on

data integrated by these two transformation strategies. Figure 2.4A shows that with

the pd transformation, misclassification rates steadily decreases as more genes are

used in the classifier. Performance based on the linearly rescaled data (Figure 2.4B),

however, is unpredictable. Figure 2.4C and 2.4D use a 90-gene meta-signature based

on the mixture model transformation and global standardization, respectively, for

predicting recurrence. The signature based on the signed probability of differential

expression (pd) is noticeably better than the signature based on the global stan-

dardization (xl), in differentiating patients at low risk of recurrence from those at

high risk of recurrence. Taken together, the mixture model based transformation

outperforms the linear rescaling method in combining multiple microarray data sets.

The meta-signature identified based on pd measures therefore offers more reliable

prediction of recurrence-free survival in the meta-cohort of breast cancer patients.
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2.4.5 Independent validation of the meta-signature

Independent validation of a gene signature is essential in assessing the true pre-

dictive value of the finding. Two data sets are considered for the validation of the

meta-signature. One includes 295 consecutive patients with primary breast carcino-

mas from the Netherlands Cancer Institute published in van de Vijver et al. (2002).

The second one published by Wang et al. (2005) consists of frozen tumor samples

from 286 patients with lymph-node-negative breast cancer who were treated at the

Erasmus Medical Center (Rotterdam, Netherlands) during 1980 to 1995. Figure 2.5

shows the validation Kaplan-Meier curves generated for the meta-signature and each

of the individual study signatures. It is clear that the meta-signature stands as the

most consistent performer of all. One of the individual signatures — the van’t Veer

70-gene — performs better than the other individual signatures in this validation

analysis, especially in Figure 2.5 (b). It should be pointed out that the van de Vijver

validation cohort is not strictly independent for the van’t Veer 70-gene signature as

part of the 295 samples were used to generate that particular signature (this also

affects the meta-signature, but to a less extent as other data sets are mixed in the

meta-cohort).

2.5 Discussion

Several important issues to consider when integrating microarray studies include

use of different gene expression measurement scales, varying analytical power and

reliability of the results for individual studies. To address these issues in a meta-

analysis framework, we proposed a two-stage mixture modeling strategy. The goal

of the mixture model-based transformation is to transform the preprocessed data to

the probability scale (pd = p+ − p−), which is then integrated across datasets. In
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particular, the signed probability of differential expression pd is easily interpretable

and is platform-independent. The Normal-Uniform mixture distribution under a

Bayesian hierarchical model setting has several desirable properties such as reducing

the influence of extreme tail elements; borrowing strength across genes for parameter

estimation; and shrinkage for the estimation of the correlated vector of the gene-

specific parameters.

At the second stage of the analysis, combining samples on the probability scale

mitigates the influence of potential artifacts from a single study. The effect is re-

flected on two counts. One, integrated sample cohorts improve the reliability of the

findings by guarding against false positive results from a single study. Two, it in-

creases the statistical power to detect small consistent effects that can be otherwise

masked by inadequacy of the sample size of an individual data set. By implementing

this modeling approach, we were able to combine information from four microarray

studies to build an inter-study validated meta-signature for predicting recurrence in

breast cancer patients.

As described earlier, a common set of 2555 genes was used in this meta-analysis,

as it is important to provide the same context for data-driven estimation of the

posterior probabilities. Although we assume the common set comprises the most

biologically relevant genes, the loss of potential predictive genes, however, may offset

the statistical power of the analysis. Alternative approaches to allow genes profiled

in some studies but not others is a topic for future research.

A distinction of the analysis presented here relative to those by other authors

(Rhodes et al., 2002; Wang et al., 2004) is that we sought to find genes that were

predictive of recurrence rather than predictive of diseased versus nondiseased sta-

tus. Given the heterogeneity of the tumors with respect to treatment response and
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survival outcome, a prognostic prediction analysis is generally more difficult because

it is a more complicated phenotype. Further, a prognostic signature (classifier) of

failure risk trained in one cohort is often times difficult to validate in independent

cohorts. The meta-analysis method presented here may potentially provide more

powerful gene signatures that are predictive of prognosis because they are validated

across multiple studies.
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Table 2.1: Description of the breast cancer gene expression datasets used in the meta-analysis.
Authors Array Platform No. of array

elements
sample
size

good out-
come

poor out-
come

Sorlie et al. Spotted cDNA 8102 58 23 35
van’t Veer et al. Inkjet oligonu-

cleotide
25000 78 44 34

Sotiriou et al. Spotted cDNA 7650 99 54 45
Huang et al. Affymetrix chip 12625 89 54 35
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Table 2.2: Comparisons of the signatures. Table lists the number of genes (Size), the number of
genes overlap with the meta-signature (overlap), and the prediction error rate for the
classifiers identified in individual study cohort and in the meta-cohort.

Signature
Sorlie van’t Veer Sotiriou Huang Meta

Size 10 60 90 140 90
Overlap 4 14 19 6 -
Prediction error rate 0.28 0.29 0.35 0.18 0.33
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Table 2.3: Comparison of the performances of the individual signatures and the meta-signature.
Table lists odds ratios (95% confidence interval) comparing the odds of actual recurrence
for those being classified as high risk to the odds of recurrence for those being classified
as low risk of recurrence by each signature.

Cohort
Signature(D) Sorlie (n=58) van’t Veer (n=78) Sotiriou (n=98) Huang (n=71)
Sorlie (10) 18.6 (5.0, 69.5) 2.1(0.8, 5.4) 2.3 (1.0, 5.3) 10.87 (3.5, 33.8)
van’t Veer (60) 3.1 (1.1, 9.2) 10.6(3.3,33.9) 4.1(1.7,9.7) 1.3(0.5,3.4)
Sotiriou (100) 1.7(0.6,5.0) 3.5 (1.4,8.9) 7.8(3.0,20.1) 1.5(0.6,3.7)
Huang (130) 5.1(1.6,15.7) 2.3(0.9,5.6) 0.9(0.4,2.0) 184.9(30.1,1137.2)
Meta (90) 25.0(4.2,149.0) 4.1(1.6,10.6) 6.0(2.5,14.5) 5.8(2.1,16.5)
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Figure 2.1: Diagram of the meta-analysis.
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Figure 2.2: Heatmap representation of the 90 gene meta-signature expression pattern (top panel)
and the Huang signature expression pattern (bottom panel).
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Figure 2.5: Validation of the signatures in two independent data sets.
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CHAPTER III

MODELING INTRA-TUMOR PROTEIN

EXPRESSION HETEROGENEITY IN TISSUE

MICROARRAY EXPERIMENTS

3.1 Introduction

DNA microarray technology has enabled expression measurement of thousands of

genes simultaneously, providing a platform for rapid screening of genomic biomarkers

in cancer. Translating these discovery-type findings into clinical relevance is a more

challenging task. Gene expression profiling studies using spotted cDNA arrays or

Affymetrix GeneChip arrays often yield a few hundred candidate cancer genes that

are associated with a phenotype. Only a small portion of these will be eventually

validated for the corresponding expression changes at the protein level. The advent

of Tissue Microarray (TMA) technology has provided a proteomic platform for such

validation studies to find clinically useful biomarkers. TMA experiments measure

tumor-specific protein expression via high-density immunohistochemical staining as-

says, allowing simultaneous evaluation of hundreds of patient samples in a single

experiment (Kononen et al., 1998). Since their initial development, TMA-based

expression studies have quickly become an integral part of cancer biomarker devel-

opment (Divito et al., 2004, Rubin et al., 2005, Seligson et al., 2005).
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A typical tissue array slide comprises up to 1000 tiny biopsy tissue elements, which

we will refer to as cores, with multiple cores corresponding to repeated sampling from

the same tumor. Expression measures on these replicate cores constitute the TMA

core-level data. These can display substantial within-subject variability for both

biological and experimental reasons. Biologically, for tumors that are highly infiltra-

tive and heterogeneous in nature (e.g., prostate tumors), protein expression pattern

can be quite variable. For example, cell proliferation genes often exhibit localized

high expression within a tumor, indicating elevated aggressiveness and metastatic

potential in the corresponding areas. Replicate sampling from various regions of

the tumor is therefore important in capturing the underlying heterogeneity within

a tumor. Experimental sources of the variability can come from a combination of

probe affinity, measurement imprecision, and further missing data due to insufficient

sampling. Without appropriately accounting for these variabilities, the noise-prone

measurements tend to attenuate the prognostic value of a potential biomarker in

predicting disease outcome. The lack of a model-based approach for TMA core-level

expression data to effectively model the intra-tumor variation has motivated us to

carry out a full investigation.

A good analogy for understanding TMA data structure is from probe-level data

generated by the Affymetrix GeneChip arrays. GeneChip arrays measure gene ex-

pression at the mRNA transcripts level. The probe-level data refer to the replicate

expression measures on a set of 16-20 small oligonucleotide probe sets derived for

a target gene. The biological variation comes primarily from these oligonucleotide

probe sequence variants, while experimental variations arise during the process of

slide printing, hybridization and optical reading. Li and Wang (2001) reported that

the variation of a specific probe across multiple arrays could be considerably smaller
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than the variance across probes within a probe set. Modeling Affymetrix probe-level

data has generated much attention (Irizarry et al., 2003a, Li and Wang, 2001) as the

technology has become more mature and widely used.

Similarly in TMA experiments, modeling within-tumor protein expression hetero-

geneity is an important problem. In these tissue-based experiments, the variation

across core samples within a tumor can be substantially larger than the variation ob-

served across subjects. Etzioni et al. (2005) used a compositional analysis to model

such heterogeneity, and compared the proportion of cells stained at different intensity

levels between normal and tumorous tissues. In this study, we focus on the effect of

modeling intra-tumor variation in the context of predicting patient survival outcome.

In a latent variable modeling framework, we assume that an underlying ‘true’ expres-

sion value predicts survival. In real experiments, this ‘true’ expression can not be

precisely measured due to sampling variabilities and measurement imprecision. In-

stead, one observes the core-level expression measurements that are subject to these

measurement errors. In a two-stage method, we adapt ideas from measurement error

modeling and propose a latent expression index (LEI) to approximate the underlying

true value, and focus on its behavior in proportional hazards models. Specifically, we

adapt an empirical Bayes estimator (Tsiatis et al., 1995) to 1) incorporate important

clinical parameters such as Gleason score and pathological stage of the tumor and 2)

adjust for the varying number of cores. We further establish a joint model for TMA

core-level data and survival outcome via a shared random effect. There is a large

literature on joint modeling of longitudinal data and survival (Brown and Ibrahim,

2003, Faucett and Thomas, 1996, Guo and Carlin, 2004, Henderson et al., 2000,

Tadesse et al., 2005, Wang and Taylor, 2001, Wulfsohn and Tsiatis, 1997, Xu and

Zeger, 2001). These methods have been developed predominantly for modeling sur-
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vival and CD4 counts in AIDS patients; here their application to Tissue Microarray

data in cancer biomarker studies is novel. Using both simulations and two published

TMA data sets, the performances of the naive, two-stage LEI, and the joint model

approach are compared in terms of the parameter estimates and associated inference.

The chapter is organized as follows. Section 3.2 specifies notation and models

for the TMA core-level expression data and for the patient survival data. Section

3.3 introduces LEI and its use in a two-stage method. Section 3.4 presents the

joint modeling approach and the Bayesian estimation framework. Simulation results

to compare the performances of these methods are then discussed in Section 3.5.

Case studies using two prostate cancer TMA data sets are presented in Section 3.6.

Further discussion can be found in Section 3.7.

3.2 Model specification

Measurement model for the TMA core-level data.

Let X∗
i be the latent expression value for a biomarker in tumor i, i = 1, · · · , n.

Assuming the observed TMA core-level measurement for the jth core in the ith

tumor is

Xij = X∗
i + Uij, j = 1, ..., ri; i = 1, ..., n,(3.1)

where we assume X∗
i ∼ N(µx∗ , σ

2
x∗). The mean µx∗ is a linear function of clinical

covariates: µx∗ = θ0 + θZ′i, where Zi = (Z1i, Z2i, ..., Zpi) constitutes a row vector of

p clinical parameters characterizing histologic and pathologic features of the tumor;

and θ = (θ1, . . . , θp) is the associated p-dimensional row vector of effect sizes. In this

model, Uij represents the variation of the ri core-level expression measurements. We

assume Uij is i.i.d. N(0, σ2
u) and independent of X∗

i .
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Survival model

Let the observed survival time for patient i (i = 1, ..., n) be Ti = min(Yi, Ci),

where Yi is the time from diagnosis to disease recurrence; Ci is the time to censoring

which is independent of Yi, and δi = 1{Yi < Ci} is the censoring indicator. Under

the Cox proportional hazards model, the hazard rate for patient i is

(3.2) λ(t) = λ0(t)e
β∗X∗

i ,

where λ0(t) is the baseline hazard function and β∗ is the true regression coefficient.

We also consider a parametric Weibull regression model with the following form for

the hazard function:

(3.3) λ(t) = γtγ−1eβ0+β∗X∗
i .

3.3 Two-stage plug-in method

Given the basic assumption that the measurement error Uij has no predictive

value, i.e., λ(t|Xi, X
∗
i ) = λ(t|X∗

i ), Prentice (1982) introduced the induced hazard

rate

λ(t|Xi) = λ0(t)e
β∗E[X∗

i |Xi],(3.4)

and proposed to estimate β∗ by maximizing the corresponding partial likelihood.

Note that (3.4) is an approximation to (3.2). Define the Latent Expression Index

(LEI) to be an estimate of the conditional mean, LEIi = Ê[X∗
i |Xi], for each subject i.

A two-stage plug-in method can be described by the following algorithm: 1) Compute

LEIi (i = 1, ..., n) as a surrogate expression estimate that adjusts for measurement

error; and 2) Apply the Cox or Weibull regression model using LEIi to obtain an

estimate of β∗ and the associated standard error.
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In the next section, we will describe methods for computing LEI for tissue mi-

croarray data. These include an empirical Bayes estimator conditional on clinical

covariates, a full Bayes approach and a Varying Replicate Number (VRN) method

as an extension to adjust for the number of cores per tumor.

3.3.1 Methods for computing LEI

The Empirical Bayes and full Bayes estimator.

Express (3.1) as a mixed effects model

(3.5) Xij = θ0 + θZ′i + νi + Uij,

where νi ∼ N(0, σ2
x∗). The empirical Bayes estimator can then be derived as

(3.6) LEIeb
i = γ̂iX̄i + (1− γ̂i)(θ̂0 + θ̂Z′i),

where γ̂i ≡ σ̂2
x∗(σ̂

2
x∗+ σ̂2

ur
−1
i )−1 is the attenuation factor (Carroll et al., 1995). Param-

eter estimates {θ̂0, θ̂, σ̂
2
u, σ̂2

x∗} can be obtained by fitting a mixed effects model as de-

scribed in (3.5), using a restricted maximum likelihood (REML) approach (Harville,

1977, Laird and Ware, 1982).

The empirical Bayes estimator conditions on the set of parameter estimates de-

rived from the data. The uncertainty of these estimates are not accounted for in

LEIeb. For this reason, a full Bayesian estimator, LEIfb
i , is also considered. Hy-

perprior distributions are adopted as follows: σ−2
u , σ−2

x∗ ∼ Γ(r0, γ0). The full Bayes

estimator

LEIfb
i = θ̃0 + θ̃Z′i + ν̃i,

is then based on the posterior inference from model (3.5) where {θ̃0, θ̃, ν̃i} are the

posterior means given the data.
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The Varying Replicate Number (VRN) method.

In a typical TMA construction, Ki cores are placed on the array for each tumor i.

However, not all of the measurements {Xi1, · · · , XiKi
} are available. Several reasons

contribute to a varying number of replicate measure. These include heterogeneous

tissue composition and technical defects such as image corruption. The expression

measurement from non-tumorous tissue types or a corrupted image is typically con-

sidered unsuitable for an outcome analysis and excluded. Let Mij = 0, j = 1, · · · , Ki

indicate that the jth core from the ith tumor is lost due to the aforementioned reasons

and Mij = 1 if it is available. Expression measures are retained for ri ≡
∑Ki

j=1 Mij

cores, where ri varies across tumor samples and possibly depends on covariate Zi. We

assume ri to follow a Binomial distribution given Ki and P (Mij = 1) with possible

over-dispersion. The following logistic mixed effects model is adopted:

(3.7) logitP (Mij = 1) = ψ0i + ψZ′i,

where ψ0i ∼ N(ψ0, σ
2
ψ), Zi = (Z1i, Z2i, ..., Zgi) is the vector of g clinical covariates

that can be the same or different from those in (3.5), and ψ = (ψ1, ψ2, ..., ψg) is the

associated vector of coefficients. Therefore

(3.8) ri ∼ Binomial

(
Ki, pi =

eψ0i+ψZ′i

1 + eψ0i+ψZ′i

)
.

The expression index under the VRN model is then derived by averaging over all the

possible values of (ri, Ki). In particular,

LEIvrn
i = E(ri,Ki)E[X∗

i |Xi,Zi, ri, Ki]

=
R∑

s=1

s∑
m=0

{
σ̂2

x∗m

σ̂2
x∗m + σ̂2

u

X̄i +
σ̂2

u

σ̂2
x∗m + σ̂2

u

(θ̂0 + θ̂Z′i)
}

×




s

m




(
eψ̂0i+ψ̂Z′i

1 + eψ̂0i+ψ̂Z′i

)m (
1

1 + eψ̂0i+ψ̂Z′i

)s−m

P̂ (Ki = s)

(3.9)
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An additional assumption for the above is that the expression measures do not cor-

relate with ri or Ki. Parameter estimates {θ̂0, θ̂, σ̂
2
u, σ̂2

x∗} can be obtained by fitting

a mixed effects model as described in (3.5). A logistic mixed effects model in the

form of (3.7) was fitted to obtain {ψ̂0i, ψ̂}. Estimation is via methods described in

Lindstrom and Bates (1990) and McCulloch (1994). The empirical proportions were

used for P̂ (Ki = s).

In a relatively balanced TMA array where the number of replicate measures ri

does not vary much across subjects, γi ≡ σ2
x∗(σ

2
x∗ + σ2

ur
−1
i )−1 is an approximately

constant adjustment factor. The amount of shrinkage in LEIeb toward the overall

mean depends primarily on the ratio of the within- to between-subject variation in

that particular data set. In our example, however, ri is a highly variable quantity.

It exerts a larger role in determining how much weight LEIeb
i gives to a particular

subject’s data relative to the estimated population mean. The motivation for LEIvrn

is to provide a replicate number-averaged expression estimate that alleviates the

variability induced by ri in the empirical Bayes estimator.

3.4 Joint Modeling of survival and TMA core-

level data

The two-stage approaches described above are attractive for their simplicity and

straightforward interpretation. They require minimal computation and can be easily

implemented using existing statistical packages. However, there are major limitations

for the two-stage method (Tsiatis and Davidian, 2004). First, the two-stage method

involves a first order approximation and ignores the second-order term β∗
2
σ2(X∗

i |X)

in the induced hazard rate function (3.4). As will be illustrated in the simulation

study, such approximation works well when β∗ is close to zero, but otherwise lead to
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sizeable bias in β̂∗. Second, parameter estimates in the second stage do not account

for the uncertainty in estimating LEI in the first stage. The associated standard

error for β̂∗ will be over-optimistic. Given these considerations, it is desirable to

make inference based on the joint likelihood of the failure time and TMA expression

data. In this study, a shared random effect model is adopted to induce correlation

between the TMA data and the survival outcome.

Given the measurement model specified in (3.5) for the TMA data, we write the

proportional hazards model for the survival outcome as

(3.10) λ(t) = λ0(t) exp(bZ′i + β∗νi).

The parameter νi constitutes a shared random effect that connects the measurement

model (3.5) and the survival outcome model (3.10). The expression data and sur-

vival times are then assumed to be independent given νi. The joint likelihood for

{Ti, δi,Xi, νi} is therefore

LJoint =
n∏

i=1

f(ti, δi|νi, zi)×
n∏

i=1

f(xi|νi, zi)f(νi) = LSURV × LME,(3.11)

where

LME =
n∏

i=1

(
ri∏

j=1

1√
2πσ2

u

exp
{
− (xij − θ0 − θZ′i − νi)

2

2σ2
u

})
1√

2πσ2
x∗

exp
{
− ν2

i

2σ2
x∗

}
;

LSURV =
n∏

i=1

L∏

l=1

λdl
l exp(

∑
i∈Dl

bZ′i + β∗νi) exp(−λl

∑
i∈Rl

∆ile
bZ′i+β∗νi).

(3.12)

We used a piecewise constant hazards model in which the time axis is partitioned

into L disjoint intervals, I1, ..., IL, where Il = [al−1, al) with a0 < ti and aL > ti for

all i = 1, ..., n. Assume a constant baseline hazard in the lth interval, λ0(t) = λl for

t ∈ Il. Rl is the set at risk at the beginning of interval l; dl is the number of failures

in interval l; and ∆il = min(ti, al)− al−1.
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Alternatively, a parametric Weibull model can be assumed for the survival out-

come using the following hazard function:

(3.13) λ(t) = γtγ−1 exp(b0 + bZ′i + β∗νi).

When γ = 1, the above reduces to exponential distribution with constant failure rate

exp(b0 + bZ′i + β∗νi). The survival time component of the joint likelihood in (3.12)

is then replaced by

(3.14) LSURV =
n∏

i=1

{
γtγ−1

i eγ(b0+bZ′i+β∗νi)
}δi

exp(−eγ(b0+bZ′i+β∗νi)tγi ).

In a Bayesian estimation framework, the following prior distributions are specified

for the model parameters:

(β∗, θ0, θ, b0, b) ∼ N(µ0, σ
2
0);

(σ−2
u , σ−2

x∗ ) ∼ Γ(r0, γ0);

(γ, λl, l = 1, ..., L) ∼ Γ(r0, γ0).

(3.15)

Relatively noninformative hyperparameters are chosen, in particular, µ0 = 0, σ2
0 =

10000, r0 = 0.001, γ0 = 0.001. Samples from the posterior distribution are obtained

using Markov Chain Monte Carlo (MCMC) methods.

3.5 Simulation

3.5.1 Simulation Setup

The additive measurement error model in (3.5) with one covariate Z1i is used to

simulate the expression measure Xij, i = 1, ..., n, and j = 1, ..., ri. In this model,

θ0 = 0 and θ1 = 1. Furthermore, νi ∼ N(0, 1), Uij ∼ N(0, 0.5). The covariate Z1i is

simulated from a N(0, 1) distribution. The total number of cores sampled, Ki, takes

values in {1, 2, ..., 12} with P (Ki = 6) = 0.4, P (Ki = 1) = ... = P (Ki = 5) = 0.1,
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and P (Ki = 7) = ... = P (Ki = 12) = 0.017, mimicking the proportions from the

actual tissue array data set used in this study. The number of repeated measures

ri ≡
∑Ki

j=1 Mij is simulated from a Binomial(Ki, pi), where pi = 1− π1/Ki such that

the missing proportion equals π. The survival time Ti is simulated from a propor-

tional hazards model in the form of (3.2) with λ0(t) ≡ 1 and β∗ = 1 or 2. An

additional covariate Z1i is further assumed to associate with Ti with the coefficient

being one. The censoring time is simulated from an independent exponential distri-

bution that results in a 30% censoring proportion. Results are summarized over 100

such simulated data sets each of a sample size n = 200. In general, parameter values

are assigned in the simulation to mimic those for the real data sets.

Computation of LEIeb, LEIvrn were carried out using the PROC MIXED and

the IML procedure in SAS (SAS Institute, Cary, NC). LEIfb and the joint models

were implemented using OpenBUGS via the R interface BRugs (Spiegelhalter et al.,

2003, Thomas, 2004). We ran two chains with 1000 burn-in and 1000 updates per

chain for the MCMC convergence.

3.5.2 Simulation Results

The simulation results are summarized in Table 3.1. For β∗ = 1 in the survival

models, the naive approach (using X̄i as a surrogate expression) attenuates the true

effect size by around 25%. The coverage probability of a nominal 95% confidence

interval of β̂∗ is 0.10 at best. The two stage methods (LEI) achieved a considerable

bias correction by adjusting for the measurement error in the LEI imputation. The

joint modeling approach gives the best estimate β̂∗ = 1.03 and a coverage probability

of 95% compared to the truth.

Next a larger effect size is simulated (β∗ = 2). The bias in the two-stage ap-
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proaches due to the first-order approximation is evident. Overall the two-stage

methods generate less biased β̂∗’s compared to the naive estimate. Nevertheless,

these are 15-25% smaller than the true β∗. The coverages are poor for the two-stage

approaches. The joint modeling approach should be advocated in this scenario for

inference. Notice that the joint model estimates of β∗ are slightly bigger than 2,

especially under the Weibull distribution. This may be driven by the prior distribu-

tions adopted for the parameters under the Bayesian estimation scheme. We have

observed that such a difference disappears when the sample size gets larger.

3.6 Case study in prostate cancer

3.6.1 Data description

In this study, we consider two prostate tumor tissue microarray data sets. The

α-Methylacyl CoA racemase (AMACR) is a peroxisomal and mitochondrial enzyme

that plays an important role in fatty acid metabolism. AMACR has been shown

to consistently overexpress in prostate tumors (Rhodes et al., 2002). Rubin et al.

(2005) profiled AMACR protein expression using a TMA constructed on 203 prostate

tumors from a surgical cohort who underwent radical prostatectomy at the University

of Michigan as a primary therapy for clinically localized prostate cancer diagnosed

between 1994 and 1998. They found AMACR is a significant predictor of the Prostate

Specific Antigen (PSA) failure in these 203 patients.

The second biomarker evaluated in this study is BM28. BM28 encodes a highly

conserved mini-chromosome maintenance protein (MCM) that is involved in the

initiation of genome replication. Bismar et al. (2006) profiled a total of 41 genes (in-

cluding BM28) in a TMA-based proteomic study. They identified a 12-gene model

showing the expression combination of the twelve genes significantly associates with
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tumor progression and PSA failure in a set of 79 men following surgery for clinically

localized prostate cancer. The expression level of BM28 however did not show signif-

icant prognostic value in their analysis. We chose BM28 to evaluate the possibility

of its being a false negative biomarker due to measurement error.

For the AMACR data, an average of Ki = 5.5 (range: 2 to 12) tissue core speci-

mens were taken from each tumor sample and put on a tissue array for immunohisto-

chemical staining. After initial diagnostic evaluation of each core, an average of 29%

(range: 0-86%) of the cores were excluded due to reasons discussed earlier, leading

to 5.5% missing subjects. The BM28 data has a similar tissue array design. A quan-

titative imaging analysis of the staining intensity was obtained using the ACIS II

(Chromavision, San Juan Capistrano, CA) system. The intensity level ranges from

0 to 255 chromogen intensity units, and is transformed using the natural logarithm

(one unit added to avoid taking logarithm of 0) and normalized to have mean zero

and standard deviation one. Disease recurrence is defined as a serum PSA increase

>0.2ng/mL after radical prostatectomy. Censored observations are those free of the

recurrence at the time of last follow-up.

3.6.2 Measurement error and regression attenuation

Figure 3.1 illustrates a considerable amount of measurement error in the core-level

expression data from the two TMA experiments. In the AMACR data, methods-of-

moments estimates of the variance components are σ̂2
u = 0.46 and σ̂2

x∗ = 0.54. In

the BM28 data, the methods-of-moments estimates of the variance components are

σ̂2
u = 0.62 and σ̂2

x∗ = 0.21. The within-subject variation is almost three times the

between-subject variation.

In a Cox proportional hazards model context, we did a simple simulation where
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X∗
i ∼ N(0, 1), β∗ = 1. A naive estimator X̄i = r−1

i

∑ri

j=1 Xij —the average core-level

expression for tumor i— is used as the surrogate expression to replace X∗
i in (3.2). We

simulate situations where measurement error is small (σ2
u=0.1), moderate (σ2

u=0.5),

and large (σ2
x∗ = 1). Figure 3.2 shows various degrees of regression attenuation in the

estimate of β∗ as a function of replicate number ri and the amount of error σ2
u. When

the parameter values are set to resemble the AMACR data, the naive estimate of β∗ is

approximately 30% smaller than the true value. With the current TMA construction

protocol specifying three cores per subject due to economic and tissue-preservation

reasons, and a great amount of within-subject variability routinely observed in the

core-level expression data, Figure 3.2 effectively conveys the importance of modeling

measurement error in TMA data. In the following two sections, we implement the

measurement error models to demonstrate how statistical inference differs from the

previous results.

3.6.3 AMACR expression and biochemical recurrence in prostate
cancer

In prostate cancer, Gleason score, pathologic stage and tumor size are among the

most important clinical parameters. We include these as clinical covariates Zi to

adjust in the measurement model (3.5), the replicate number model (3.7), and the

survival outcome model (3.10). In the measurement model, θ̂TumorSize = 0.32 with

an associated standard error of 0.13, indicating a marginal association of tumor size

with AMACR expression level. In the replicate number model, ψ̂TumorSize = 0.72

with an associated standard error of 0.16, which is consistent with our expectation

that a larger tumor sample provides more abundant number of cores.

Table 3.2 lists the estimates and associated standard errors (posterior standard

deviation) of β∗ in the outcome model. The measurement error adjustment has
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significantly improved upon the naive estimate. The error-adjusted β̂∗ is around 0.75

(ŝe(β̂∗) = 0.26), approximately 31% larger in absolute value than the naive estimate

which is 0.57 (ŝe(β̂∗) = 0.20). The amount of attenuation in β∗ is quite consistent

with what we conclude from the simulated datasets in the previous section. In this

dataset, the two-stage methods (LEIeb, LEIfb, LEIvrn) perform equally well as the

joint modeling approach. The simplicity and computational efficiency of LEI serves

as a satisfactory core-level expression index for AMACR. However as mentioned

earlier, the two-stage methods are based on a first-order approximation, the accuracy

of which is largely driven by the size of β∗ and the ratio of within- and between-

subject variation. As will be shown in the other data example, the two-stage methods

will not be always a suitable approach.

Kaplan-Meier curves are useful as a graphical representation of the prognostic

value of a biomarker. We examined these plots by dividing the subjects into different

risk groups based on the values of AMACR expression estimates derived under each

method. In Figure 3.3(a), subjects with AMACR high, median, and low expression

groups based on LEIvrn and the joint model estimates (C and D respectively) are

significantly better separated in terms of probability of recurrence-free survival, when

compared to that using the naive mean estimates (A).

3.6.4 BM28 expression and biochemical recurrence in prostate
cancer

The measurement model indicates a marginal association of pathologic stage of the

tumor with BM28 expression: θ̂PathStage = 0.59 (ŝe(θ̂) = 0.22). The replicate number

model again suggests a strong dependence on the size of the tumor: ψ̂Tumorsize =

1.12 (ŝe(ψ̂) = 0.43).

In Table 3.2, the differences under various models are more discernable in this
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datasets. First, the Weibull and piecewise exponential model overall generate slightly

different results given a small sample size (n=52). Second, the empirical Bayes

estimate differs substantially from the full Bayes LEI estimate. It is likely due to the

large uncertainties in the parameter estimates that determine LEIeb. Finally, the bias

introduced by the first-order approximation is prominent here. Both the coefficient

β∗ and the noise ratio in this dataset are much larger in magnitude compared to

the AMACR data example. In this case, the two-stage methods alleviate regression

attenuation, only to a limited extent. The joint model should be used for parameter

estimation and associated inference.

Figure 3.3(b) plots the Kaplan-Meier curves using different expression estimates.

The 5-year PSA recurrence-free survival probability is 0.95 (ŝe = 0.05) versus 0.58

(ŝe = 0.10) for low and high BM28 expression estimated by the joint model. Ad-

justing for measurement error in this dataset has made a dramatic change in the

conclusion about the prognostic value of BM28, compared to the naive method.

3.6.5 Improved expression estimates

Figure 3.4 compares the naive and the joint model expression estimates, plotted

against the survival time on the x-axis. The mean expression ± two standard de-

viations is plotted for each individual. Two improvements under the joint model

are clear: 1) the noise, represented by the error bars, is greatly reduced via the joint

modeling, and 2) the mean expression levels are distributed more tightly around a re-

gression line, accentuating the relationship of the TMA expression data and survival

time.
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3.7 Discussion

In TMA data analysis, statistical methods often focus on downstream models in

predicting disease outcome assuming X̄i is a sufficient expression summary measure.

Relatively little attention has been given to the modeling of within-tumor variation

in these TMA experiments. As we have shown in this paper with real data examples,

analysis ignoring intra-tumor variation can lead to false negative results which are

tremendous wastes of valuable tissue resource and experimental costs. In this study,

we proposed both two-stage and joint analysis methods to analyze tissue microarray

data for bias correction. Adjusting for covariates Zi and the number of repeated

measures (Ki, ri) can further improve the efficiency of the expression estimates. Both

simulation and the case studies show that our methods outperform the common

approach in estimating the prognostic value of a biomarker.

The proposed error model assumes constant variance across all subjects. To test

the validity of this assumption, we performed the Levene’s test for homogeneity

of variance. The resulting test P-value is 0.003 and 0.04 for AMACR and BM28

respectively. There is some evidence suggesting a violation of the constant variance

assumption especially for the AMACR data set. It may be of interest to consider a

heteroscedastic model.

Since the initial development of TMAs, there have been many technical improve-

ments over the years. Recent advances in quantitative assessment of the immunohis-

tochemical staining provide precise, objective, and reproducible protein expression

measurements. Compared to the conventional pathologist scoring on an ordinal

scale, the Chromavision system used in our data examples enables quantification

of the antigen level on a continuous scale, free of the subjectivity associated with
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pathologist-based visual scoring system. AQUA (Camp et al., 2002), which stands

for Automated Quantitative Analysis, is an academic system that measures fluores-

cence signals, leading to higher sensitivity to very low antibody concentrations. In

addition, it allows the separation of tumor from stromal elements and the sub-cellular

localization of signals for a co-localization of the antigens in different cell compart-

ments. As the technology is becoming widely applied for cancer biomarker studies,

robust statistical analysis methods underpinning both biological and experimental

issues need to be established.
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Table 3.1: Simulation study. Results are summarized over 100 simulated datasets each of n = 200.
β̂∗ ŝe(β∗) sd(β̂∗) coverage β̂∗ ŝe(β∗) sd(β̂∗) coverage

Weibull Proportional Hazards
β∗ = 1 X∗ 1.01 0.08 0.08 0.96 1.01 0.08 0.08 0.97

Naive 0.75 0.07 0.08 0.10 0.75 0.07 0.08 0.09
LEIeb 0.93 0.08 0.09 0.85 0.93 0.08 0.09 0.87
LEIfb 0.93 0.08 0.09 0.85 0.93 0.08 0.09 0.88
LEIvrn 0.97 0.09 0.10 0.89 0.96 0.09 0.10 0.87
Joint Model 1.03 0.11 0.11 0.95 1.03 0.11 0.11 0.95

β∗ = 2 X∗ 2.05 0.12 0.12 0.95 2.03 0.11 0.10 0.94
Naive 1.13 0.08 0.10 0 1.18 0.08 0.11 0
LEIeb 1.51 0.11 0.13 0.03 1.58 0.11 0.13 0.06
LEIfb 1.48 0.11 0.12 0 1.55 0.10 0.12 0.04
LEIvrn 1.62 0.11 0.14 0.19 1.70 0.11 0.15 0.30
Joint Model 2.16 0.27 0.30 0.89 2.07 0.19 0.20 0.93
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Table 3.2: A case study using prostate cancer TMA datasets.
β̂∗ ŝe(β∗) β̂∗ ŝe(β∗)

Weibull Proportional hazards
Naive -0.573 0.201 -0.571 0.198

AMACR LEIeb -0.761 0.266 -0.751 0.266
(n=203) LEIfb† -0.753 0.262 -0.752 0.263

LEIvrn -0.735 0.260 -0.737 0.258
Joint modeling† -0.742 0.268 -0.745[ 0.268

β̂∗ ŝe(β∗) β̂∗ ŝe(β∗)
Weibull Proportional Hazards

Naive 0.828 0.414 0.900 0.399
BM28 LEIeb 1.051 0.519 1.146 0.494
(n=52) LEIfb† 1.457 0.564 1.493 0.504

LEIvrn 1.034 0.552 1.151 0.537
Joint Modeling† 1.753 0.766 1.592[ 0.600

† - Estimation is based on MCMC methods, where we sampled 2 chains each with 10000 burn-in and 10000 updates.
[We used J = 5 and J = 3 intervals for the piecewise exponential distribution in the AMACR and BM28 dataset
respectively. The estimate of the Weibull shape parameter is γ̂ = 0.71, and γ̂ = 0.97 from the joint modeling for
the AMACR and BM28 dataset respectively.
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Figure 3.1: Variance plots to represent the within-subject variation in the TMA core-level expres-
sion data. A) The AMACR data. Estimates of the variance components are: σ̂2

u = 0.46
and σ̂2

x∗ = 0.54. B) The BM28 data. Estimates of the variance components are:
σ̂2

u = 0.62 and σ̂2
x∗ = 0.21.
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Figure 3.2: A simulation demonstration of the bias in Cox regression coefficient estimate as a func-
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simulated datasets of sample size n=200 is plotted.
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Figure 3.3: Kaplan-Meier plots of prostate cancer recurrence. Patients are categorized into risk
groups based on the protein expression level of (a) AMACR and (b) BM28 profiled
using TMAs. The expression estimates are based on the A. Naive B. LEIeb C. LEIvrn

and D. Joint model.
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Figure 3.4: Comparison of the naive expression estimates (A, C) and the joint model expression
estimates (B, D). The top panel depicts the comparison in the AMACR data, the
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CHAPTER IV

RECONSTRUCTING TUMOR-WISE PROTEIN

EXPRESSION IN TISSUE MICROARRAY

STUDIES USING A CELL MIXTURE MODEL

4.1 Introduction

In Chapter III, I have presented methods for analyzing protein expression data

generated from Tissue Microarrays (TMAs). I focus on estimating the tumor means

of a biomarker adjusting for intra-tumor variability. In particular, a measurement

error model assuming normality is used to model the TMA core-level data with

repeated measurements. The number of repeated measures per tumor and clini-

cal/pathological covariates are incorporated to improve the precision of the expres-

sion estimates. A joint model relating the error model with patient survival infor-

mation is used to estimate recurrence risks. Through the study, the intensity of

the staining has been considered the relevant expression measure and specifically

modeled using measurement error approaches. A normal distribution assumption

on the log-transformed intensity measures is found to be sufficient for analysis pur-

poses. Nevertheless when a more heterogeneous staining pattern is encountered — a

mixture pattern composed of areas of non-staining (intensity equals zero) and areas

of positive staining, it is hard to model the protein expression using any standard
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distributional assumptions.

The motivation of this chapter is therefore to generalize the expression model for

reconstructing complex staining patterns. For this purpose, I introduce the concept

of a Cell Mixture Model (CMM). As illustrated in Figure 4.1, the basic idea can be

decomposed into the following aspects. 1) A tumor is represented by a population

of Ri cores (the total sampling capacity of a tumor); 2) The expression values in

each individual core is a mixture distribution with a point mass at zero (the non-

staining area); 3) The whole-tumor expression can be recapitulated by adding up

(e.g., weighted summation) the distributions of the expression values in all the cores.

The mathematical description will be put forward in Section 4.2.

There are difficulties of implementing the CMM model in TMA expression data.

First, the experimental data are only collected on a small number (ri out of Ri)

of random samples of cores. Generally speaking, the number of measured cores ri

often averages from 3-5 whereas Ri can be in the hundreds, though both may vary

proportionate to the size of the tumor. Second, each core is a very small sub-area

measured in millimeters compare to the whole tumor averaging around 1-2 centime-

ters (prostate tumors). When our interest is to obtain accurate estimates for tumor-

and core-level expression characteristics, sample-based methods will not be satisfac-

tory. An analogy is estimating the characteristics of the population in the United

States with data collected in three representative cities. In survey sampling problems,

small area estimation often involves parameter estimation for small sub-population

of interest. Hierarchical Bayes (HB) and Empirical Bayes (EB) approaches have

been effective with continuous data. For a thorough review of various methods, see

Ghosh (1994), Pfreffermann (2002), Rao (1999). For a unified analysis of discrete

and continuous data, Ghosh et al. (1998) present hierarchical Bayes generalized lin-
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ear models. The idea of Bayesian predictive inference and Markov Chain Monte

Carlo integration technique is particularly useful for our problem at hand. In this

study we extend the implementation to a zero-point mass mixture distribution un-

der the CMM model. Details of constructing the CMM expression estimators will

be discussed in Section 4.5.

Associating tumor-wise expression features with patient survival information is of

scientific interest in TMA studies. The prognostic value of a potential biomarker is

tested. Therefore accurate estimation of the disease risk associated with a biomarker

is essential. To achieve this, a joint modeling approach would be most effective where

the expression data and the survival data are simultaneously modeled. Markov

Chain Monte Carlo methods offer a convenient framework for complex problems

where analytic solutions are often unavailable or cumbersome. As will be discussed

in detail in Section 4.6, linking the CMM model on the expression data with survival

requires an imputation step within each MCMC iteration where draws are obtained

from posterior predictive distributions.

This chapter is organized as follows. Section 4.2 and 4.3 introduce the concept

along with the basic notation of the CMM model. In Section 4.4, a hierarchical

Zero-Augmented Gamma model is imposed for the quantitative expression measures

from tissue microarray experiments. Section 4.5 describes the construction of CMM

estimators based on a Bayesian imputation strategy and Monte Carlo integrations.

Section 4.6 extends the CMM model to jointly analyze TMA expression data and

patient survival outcome. Simulation studies are carried out in Section 4.7, and case

studies using two prostate cancer TMA data sets follow in Section 4.8. Conclusions

and further discussion can be found in Section 4.9.
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4.2 Notation and the Model

Figure 4.1 describes the concept of the cell mixture model. The cartoon illustrates

a tumor being dissected into a population of Ri tissue core samples. Each core

j (j = 1, · · · , Ri) captures a sample of cells stained at different intensities. Let aij(x)

denote the number of cells measured at staining intensity x, x ∈ [0,M ] in core j of

tumor i. Thus the density function can be expressed as gij(x) = aij(x)/nij, where nij

is the total number of cells in core j of tumor i. The total number of cells measured is

Ni ≡
∑Ri

l=1 nij. In Figure 4.1, each histogram is informative of gij, which is assumed

to be a mixture density with a point mass at zero for the non-staining area and some

density function f(·) for the positively stained area. In particular,

(4.1) gij(x) = (1− πij)I(x = 0) + πijf(x|µij, σ
2
ij)I(x > 0),

where πij denotes the proportion of staining; µij, σij are mean and variance param-

eters associated with the density f . Subsequently, the tumor-wise density function

gi(x) is aggregated over all the gij(x)′s:

gi(x) =

Ri∑
j=1

ωijgij(x),(4.2)

where ωij = nij/Ni and
∑Ri

l=1 ωij = 1.

4.3 Description of the data

The tumor sampling scheme in TMA experiments has a ‘geographical’ clustered

sampling structure. Consider each tumor is a population of cells. Small areas of

0.6mm (cores) are taken from the tumor where cells within each area are measured

for protein expression. Let Xijk be the resulting intensity measure in tumor i (i =

1, · · · ,m), core j (j = 1, · · · , ri), and cell k (k = 1, · · · , nij). It needs to be pointed
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out that Xijk is an idealized measure where measurements can be taken per cell.

The current technology instead provides a crude mean intensity measure for cells

that have non-zero intensity

Yij =

nij∑

k=1

XijkI(Xijk > 0)/n1ij

per core. As illustrated in Figure 4.2, Yij is the actual observed data whereas the

cell-level data are latent. The empirical estimate of µij is yij. For the zero-mass part,

we observe the number of positively staining cells and the number of non-staining

cells which are

n1ij =
∑

k

I(Xijk > 0), n0ij =
∑

k

I(Xijk = 0)

respectively. And nij = n1ij + n0ij will be the total number of cells measured in

tumor i core j. The empirical estimate of πij is n1ij/nij.

4.4 A hierarchical Zero-Augmented Gamma model

In this section, we introduce a Zero-Augmented Gamma (hZAG) model for the

observed data.

4.4.1 Modeling the positive staining intensity

We start by assuming Xijk|Xijk > 0 follow a Gamma distribution G
(
1/δ, δµij

)

with mean µij, variance δµ2
ij, and the coefficient of variation being 1/

√
δ. In our

application, we set δ = 0.2. The observed Yij subsequently adopts a Gamma distri-

bution with standardized shape and scale parameters. A Gamma-Inverse Gamma-

Normal hierarchical model is set up as follows:
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Yij
ind∼ Gamma

(n1ij

δ
,

δ

n1ij

µij

)
, i = 1, ..., n; j = 1, ..., ri,

µij
iid∼ Inverse Gamma

(1

ν
+ 2,

ν + 1

ν
ea0i+az′i

)
,(4.3)

a0i
iid∼ Normal(0, τ 2

a ).

In this model, {µi1, · · · , µiri
} denotes the vector of core-level random effects for

subject i and {a01, · · · , a0n} denotes the vector of subject-level random effects. Given

the Gamma-Inverse Gamma conjugacy, the marginal densities integrated over µij has

the following analytic form:

(4.4) f(yij|a0i, a, zi) =
Γ(

n1ij

δ
+ 1

ν
+ 2)

Γ(
n1ij

δ
)Γ( 1

ν
+ 2)

× (ν+1
ν

ea0i+az′i)
1
ν
+2y

n1ij
δ
−1

ij

( δ
n1ij

)
n1ij

δ (
n1ij

δ
yij + ν+1

ν
ea0i+az′i)

n1ij
δ

+ 1
ν
+2

,

where zi is a vector of tumor-level covariates and a is the associated coefficients.

4.4.2 Modeling the point mass at Zero

To model the point mass at zero in the mixture density of (4.1), we assume the

following hierarchical structure:

n1ij ∼ Bin(nij, πij),

logit(πij) = b0i + bz′i + εij,

(4.5)

where b0i ∼ N(0, τ 2
b ), εij ∼ N(0, σ2

b ), and zi can be the same or different than those

included in (4.3). Let b0ij = logit(πij) such that πij = exp(b0ij)/(1 + exp(b0ij)).

The core- and subject-level parameter spaces are

Θij = {µij, b0ij}, Θi = {a0i, a, τ 2
a , ν, b0i,b, σ2

b , τ
2
b }

respectively (as illustrated in Figure 4.2). The likelihood function treating the latent
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quantities as parameters can be written as:

Lcmm ∝
{

n∏
i=1

ri∏
j=1

(
1

1 + eb0ij

)n0ij
(

eb0ij

1 + eb0ij

)n1ij
}

× exp

{
−1

2

n∑
i=1

ri∑
j=1

(
b0ij − b0i − bz′i

σb

)2
}

exp

{
−1

2

n∑
i=1

(
b0i

τb

)2
}

×
{

n∏
i=1

ri∏
j=1

IGµij

(n1ij

δ
+

1

ν
+ 2,

n1ij

δ
yij + (

1

ν
+ 1)ea0i+az′i

)}
e−

1
2

∑n
i=1(

a0i
τa

)
2

.

(4.6)

To complete the hierarchy for the Bayesian model, the following prior distributions

are specified as:

ak ∼ N(µak
, σ2

ak
), τ−2

a ∼ Gamma(rτ2
a
, γτ2

a
), ν ∼ Gamma(rν , γν);

bk ∼ N(µbk
, σ2

bk
), σ−2

b ∼ Gamma(rσ2
b
, γσ2

b
), τ−2

b ∼ Gamma(rτ2
b
, γτ2

b
).

(4.7)

Posterior inference will then be based on the joint posterior distribution f(Θij,Θi|D).

Gibbs sampling is used to iteratively sample from the full conditionals of each pa-

rameter given the rest of the parameters and the data.

4.5 Estimation of tumor-wise expression charac-

teristics

In this section, I focus on estimating the tumor-wise protein expression character-

istics. Three quantities are of interest: the tumor-wise proportion of staining (πi),

mean intensity of staining (µ+
i ), and a composite intensity (µi). Under the proposed

cell mixture model assumptions, these quantities are defined as

(4.8) πi =

Ri∑
j=1

ωijπij, µ+
i =

Ri∑
j=1

ωijµij, µi =

Ri∑
j=1

ωijπijµij,

respectively. Here πij = exp(b0ij)/(1 + exp(b0ij)). For the rest of the Chapter, I use

ηi as a general notation for the above expression characteristics.

Assume independence among the cores and, without loss of generality, assume

the first ri cores from the ith tumor are observed and the rest of the cores are not
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observed, we decompose ηi as

πi =

ri∑
j=1

ωijπij +

Ri∑
j=ri+1

ωijπ
m
ij ,

µ+
i =

ri∑
j=1

ωijµij +

Ri∑
j=ri+1

ωijµ
m
ij ,

µi =

ri∑
j=1

ωijπijµij +

Ri∑
j=ri+1

ωijπ
m
ij µ

m
ij ,

(4.9)

where the first components of the expansion are estimable given the data D =

(
yij, n1ij, nij : i = 1, · · · , n; j = 1, · · · , ri

)
, and the second components involve latent

quantities Θm
ij where data are not observed for core j (j = ri + 1, · · · , Ri).

4.5.1 The CMM model-based estimator

To obtain a CMM model-based estimate of ηi, I propose the following in a

Bayesian framework. (1) The first component of (4.9) is computed based on a set of

draws Θ
(g)
ij = {b(g)

0ij, µ
(g)
ij : g = 1, · · · , G} from the posterior density f(Θij|Θi,D)

for j = 1, · · · , ri. The posterior means π̃ij = G−1
∑

g exp(b
(g)
0ij)/(1 + exp(b

(g)
0ij));

µ̃+
ij = G−1

∑
g µ

(g)
ij , and µ̃ij = G−1

∑
g exp(b

(g)
0ij)/(1 + exp(b

(g)
0ij))µ

(g)
ij are then read-

ily obtained from the posterior samples. (2) Let Θm
ij ≡ (bm

0ij, µ
m
ij )— the parameter

vector involved in the second component of (4.9). In the absence of knowledge about

Θm
ij , we replace the latent quantities with their expectation E[Θm

ij |D]. To calculate

this, we need the posterior predictive density function

p(Θm
ij |D) =

∫
p(Θm

ij |Θi,D)f(Θi|D)dΘi.

Using Monte Carlo integration technique, we first draw Θi from their joint posterior

distribution f(Θi|D) and then simulate Θm
ij according to (4.3) and (4.5). Let {Θ(p)

ij :

p = 1, · · · , P} be the set of predictive draws at each of the G MCMC iterations. The
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following quantities can then be computed:

(4.10) Ẽ[πm
ij |D] =

1

G

G∑
g=1

1

P

P∑
p=1

[
exp(b

(p)
0ij)

1 + exp(b
(p)
0ij)

∣∣∣Θ(g)
i

]
.

Similarly, we simulate a set of {µ(p)
ij ,m = 1, · · · , P}, given Θ̃

(g)
i , for g = 1, · · · , G,

using (4.3) and obtain

(4.11) Ẽ[µm
ij |D] =

1

G

G∑
g=1

1

P

P∑
p=1

[
µ

(p)
ij

∣∣∣Θ(g)
i

]
.

Finally, the composite mean is computed as

(4.12) Ẽ[πm
ij µ

m
ij |D] =

1

G

G∑
g=1

1

P

P∑
p=1

[
exp(b

(p)
0ij)

1 + exp(b
(p)
0ij)

µ
(p)
ij

∣∣∣Θ(g)
i

]
.

These are essentially imputation steps within each MCMC iteration. Assuming equal

weights ωij ≡ 1/Ri, the CMM estimates of are

π̃cmm
i =

1

Ri

{
ri∑

j=1

π̃ij +

Ri∑
j=ri+1

Ẽ[πm
ij |D]

}
,

µ̃+cmm
i =

1

Ri

{
ri∑

j=1

µ̃ij +

Ri∑
j=ri+1

Ẽ[µm
ij |D]

}
,

µ̃cmm
i =

1

Ri

{
ri∑

j=1

π̃ijµ̃ij +

Ri∑
j=ri+1

Ẽ[πm
ij µ

m
ij |D]

}
.

(4.13)

Since Ri À ri, (4.13) is dominated by the second component.

4.5.2 Sample-based estimators

The sample-based estimates are derived as:

π̂s
i =

∑ri

j=1 n1ij∑ri

j=1 nij

, µ̂+s
i =

∑ri

j=1 nijyij∑ri

j=1 nij

, µ̂s
i =

∑ri

j=1 n1ijyij∑ri

j=1 nij

.(4.14)

These sample-based estimates are implied by the proposed model by setting σ2
b = 0

in (4.5) and ν = 0 in (4.3) such that homogeneity is assumed across cores within a

tumor. These estimates are unbiased when the sample cores have the same charac-

teristics as the tumor.
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4.6 Joint analysis with patient survival outcome

Associating the expression characteristics to patient survival data is of major

interest in many TMA studies. A joint modeling approach would be the most effective

way to obtain accurate estimates of disease risks associated with a biomarker. To

extend the CMM model into a joint model with censored failure time data, we use a

piecewise constant hazards model in which the time axis is partitioned into L disjoint

intervals, I1, ..., IL, where Il = [al−1, al) with a0 < ti and aL > ti for all i = 1, ..., n.

Assume a constant baseline hazard in the lth interval, λ0(t) = λl for t ∈ Il. Rl is

the set at risk at the beginning of interval l; dl is the number of failures in interval

l; and ∆il = min(ti, al)− al−1. Further by treating the latent variables b0ij, µij as a

set of parameters in a Bayesian framework, the joint likelihood function is given as

LJoint ∝
{

n∏
i=1

ri∏
j=1

(
1

1 + eb0ij

)n0ij
(

eb0ij

1 + eb0ij

)n1ij
}

× exp

{
−1

2

n∑
i=1

ri∑
j=1

(
b0ij − b0i − bz′i

σb

)2
}

exp

{
−1

2

n∑
i=1

(
b0i

τb

)2
}

×
{

n∏
i=1

ri∏
j=1

IGµij

(n1ij

δ
+

1

ν
+ 2,

n1ij

δ
yij + (

1

ν
+ 1) exp{a0i + az′i}

)}

× exp

{
−1

2

n∑
i=1

(
a0i

τa

)2
}

×
L∏

l=1

λdl
l exp

( ∑
i∈Dl

βηi + κz′i
)

exp
(
− λl

∑
i∈Rl

∆ile
βηi+κz′i

)
,

(4.15)

where Θij = (b0ij, µij). The following priors in addition to those specified in (4.7)

are chosen:

λl ∼ Gamma(rλl
, γλl

), β ∼ N(µβ, σ2
β), κj ∼ N(µκj

.σ2
κj

).(4.16)

The parameter spaces are expanded to:

Θij = {µij, b0ij}, Θi = {a0i, a, τ 2
a , ν, b0i, b, σ

2
b , τ

2
b }, Ωi = {λl : l = 1, ..., L, β, κ},
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The full conditional of β is given by

(4.17)

β|· ∝ exp

{
β

∑
i∈Dl

ηi + κz′i −
L∑

l=1

λl

∑
i∈Rl

∆il exp(βηi + κz′i)

}
exp

{
1

2

(
β − µβ

σβ

)2
}

,

where at the gth MCMC iteration, computation of ηi involves predictive draws and

Monte Carlo integration as discussed in the previous section. The details of the

MCMC implementation can be found in Appendix B.

4.7 Simulation study

4.7.1 Simulation setup

In the simulation study, we assign parameter values in the simulation to mimic

those for the real data sets. In particular, the parameter values under the hZAG

model are specified as follows: τ 2
a = 0.01, σ2

b = 1, τ 2
b = 1. The model has one covariate

Z1i simulated from N(0, 1) with associated model coefficient a1 = 0.5, b1 = 0.5.

For each tumor, ri is simulated from Binomial(10, 0.5). Simulation of Ri, the total

sampling capacity of a tumor, is relatively subjective as no information is available.

We simulate Ri from a Binomial(200, pi) where pi is allowed to vary with covariates

such as tumor size. The survival time Ti is simulated from a proportional hazards

model in the following form

(4.18) λ(t) = λ0(t)e
βηi+κ1z1i ,

with λ0(t) ≡ 1. The censoring time is simulated from an independent exponential

distribution that results in a 30% censoring proportion.

Parameter initialization is set up as follows. For Θ0
i , crude estimates from fit-

ting a generalized linear mixed model using a Penalized Quasi-Likelihood approach

(Breslow and Clayton, 1993) are used. For the glmm fit, we use log- and logit- link
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respectively for the intensity and zero-mass model with Gamma and Binomial family

distribution. Next, to initialize the core-level parameters Θij, we use the empirical

estimates. Specifically, we set µ0
ij = yij, b

0
0ij = exp(n1ij/nij)/(1 + exp(n1ij/nij)).

For the piecewise exponential model, a total of L = 4 intervals were chosen such

that each interval contains approximately equal number of events. We set λ0
l to be

the empirical estimates of the event rate within each interval. Samples from the

joint posterior distribution is obtained by Gibbs sampling (Gelfand and Smith, 1990,

Geman and Geman, 1984). The full conditional density functions are specified in

Appendix B. Noninformative proper priors are chosen. All programming is done us-

ing the R programming language. For simulations, we discard the first 1000 samples

as the burn-in period. Every 10th sample is then retained to achieve a total of 1000

samples. Convergence is monitored using traceplots. Each simulation consisted of

100 replicate data, each of n = 100 subjects. Results are summarized over replicated

data sets.

Finally, we point out that in the intensity model, the marginal mean and variance

of Yij has analytic forms. A combination of penalized quasi-likelihood estimation

and BLUP estimation (termed PQL-BLUP) is therefore applicable. The details of

this estimation procedure can be found in Appendix C. We found the PQL-BLUP

estimates were similar to those obtained from the Bayesian estimation.

4.7.2 Simulation results

Model misspecification

Figure 4.3 illustrates the sensitivity to misspecified δ. We fit the CMM model with

δ = 0.2 whereas the true simulated value is 0.5. A, B, and C draws the fitted (dotted

line) and true (solid line) density of Xijk over the simulated latent data. Although
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the shape of distribution is somewhat sensitive to the value of δ, the density of

the observed measure f(yij|Θi) is not (D). Next, we simulate Yij from a log-normal

density function. Figure 4.4 reveals no serious model misspecification problems.

Accuracy of the expression estimates

To evaluate the accuracy of the sample-based estimates and the proposed CMM

model-based estimates in approximating the true expression quantity, the Mean

Squared Error (MSE), Absolute Relative Error (ARE), and Relative Difference (RD)

are computed as follows

MSE =
1

n

n∑
i=1

(
η̂i − ηi

)2

,

ARE =
1

n

n∑
i=1

∣∣∣ η̂i − ηi

ηi

∣∣∣,

RD =
1

n

n∑
i=1

( η̂i − ηi

ηi

)
.

(4.19)

Table 4.1 lists the mean of these statistics (taking median results in similar compar-

ison) over 100 simulated data sets. We chose different values for ν and σ2
b to control

the amount of within-subject variation observed in Yij and n1ij respectively. When

the within-subject variance is relatively small, the difference between the sample-

based and the CMM estimates is not apparent. However, the amount of decrease in

MSE and ARE by the CMM estimator is incremental as the within-subject variation

gets larger. No significant bias is observed by examining the RDs in Table 4.1.

Joint modeling with survival

The interest in this section is to estimate the Cox regression coefficient β in (4.18).

Three approaches are compared. A naive method where the sample-based expression

estimates are plugged in a Cox model; a two-stage CMM method where the CMM
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estimates are plugged in the Cox model; and the joint modeling approach based on

the joint likelihood (4.15). The first two methods are considered two-stage methods

as compared to the joint model. The two-stage methods have several major limita-

tions. First, the survival information is not used in the CMM model to reconstruct

tumor expression, which can cause bias and efficiency loss in estimating β in the

second stage. Second, the uncertainty of estimating the expression quantity is not

assimilated in the second stage, leading to over-optimistic standard error estimates

of β̂. The joint modeling approach concurrently updates the CMM model and the

survival model by iteratively sampling through the joint posterior distribution of the

combined parameter space. We therefore expect more accurate inference from the

joint model. In Table 4.2, the top panel simulates βπi
= 2, βµ+

i
= 0, βµi

= 0, the

middle panel assumes βπi
= 0, βµ+

i
= 2.5, βµi

= 0, and the bottom panel assumes

βπi
= 0, βµ+

i
= 0, βµi

= 1.8. It is evident that the joint model performs best in terms

of the estimates and coverage probabilities for β̂. Furthermore, we examined the

effect of misspecified value for δ on the joint model estimates of β (results are shown

under Joint model* in Table 4.2). Specifically, δ is fixed to be 0.2 in the estimation

procedure while the true value in the simulated data set is 0.5. Such misspecification

has led to only small differences in estimating β in the joint model compared to the

correctly specified model. A possible explanation lies in the fact that the influence

of δ diminishes because of the standardization by nij (which is a large number) in

(4.3).
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4.8 Case study using prostate Cancer Tissue Mi-

croarray Experiments

4.8.1 Data description

The same prostate cancer TMA data sets used in Chapter III apply here. Details

of the data description can be found in the previous Chapter. Gleason score and

pathologic stage are included as the clinical covariates Zi. A batch effect is added

to the AMACR data set, as evident in Figure 4.5, the staining intensity distribution

is bimodal. In Rubin et al. (2005), an array-wise normalization was performed to

eliminate the batch effect resulting from experiment-to-experiment variation of im-

munohistochemical staining. For the MCMC convergence of the joint model, we use

the first 10,000 draws as burn-in, and retain every 20th draw till 1000 samples are

collected for inference. The approximate computing time to fit the AMACR data

set is 10 hours.

4.8.2 BM28 expression characteristics and patient survival

Figure 4.5 suggests that BM28 is a homogeneously stained marker. All of the 52

tumors showed over 94% staining. We therefore focus on analyzing the intensity of

the staining of this gene biomarker.

The top panel of Table 4.3 describes the performance of Cox regression models re-

lating the estimated mean intensity of BM28 to PSA-recurrence adjusting for Gleason

score and Pathological stage of the tumor. Among the two stage estimation proce-

dures of β, the CMM estimator of µ+
i does not perform better than the sample-based

estimator. It is likely that the CMM estimates in the data set does not approximate

the true expression quantity significantly better than would the sample-based esti-

mates when ν is small (ν̂ = 0.006). As we have shown in the simulation study, the
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MSE and ARE differences are not discernable when the within-subject variation is

not too large. The joint model estimate is however more than two times larger than

those under the two-stage estimation. The estimated hazard ratio under the joint

model is 4.4 (95% CI:1.6-11.7 ) compared to 1.9 (95% CI: 1.2-3.0) estimated under

two-stage methods. However, a hypothesis test of H0 : β = 0 would give similar con-

clusions as the estimated standard error from the joint model is also substantially

larger than those from the two-stage estimation. After controlling for Gleason and

Pathological stage of the disease, the mean intensity of BM28 staining in the tumor

is a significant predictor of prostate cancer PSA-recurrence. A further notion is that

these results are consistent with those observed under the measurement error model

in Chapter III. The underlying Gamma-Inverse-Gamma assumption on the intensity

measure versus the log-normal assumption adopted previously does not seem to have

large influence on estimating the Cox regression coefficient β in the joint model.

4.8.3 AMACR expression characteristics and patient sur-
vival

Table 4.3 summarizes the results from analyzing the AMACR data set. A distinct

feature is the relationship between the expression characteristics. The composite

mean, µi, resembles (though not strictly equivalent to) an interaction term of the

proportion (πi) and the mean intensity (µi) of the staining fitted in the same model

adjusting for the Gleason score of the tumor and the stage of the disease. The

associated coefficient β̂µi
is significant in both the two-stage CMM model and the

joint model. Another evidence of interaction is that when fitted individually, β̂πi
and

β̂µi
are close to zero (data not presented).

A second observation is that when comparing the naive model and the joint model

fitted in the AMACR data set, the regression coefficients are biased in different
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directions. Results in Table 4.3 suggest that βπi
and βµi

are underestimated while

βµ+
i

is overestimate. It should be pointed out that in this data set, we observe a

positive correlation between the proportion of staining and the intensity of staining.

The correlation coefficient between the sample-based estimates, π̂s
i and µ̂s

i , is 0.80

and 0.53 for batch 1 and 2 respectively. When multiple error-prone covariates are

concerned in a regression model, the direction and magnitude of the bias can also

depend on the correlation between the predictor variables (Carroll et al., 1995).

Figure 4.9 reveals the complexity of AMACR protein expression as a predictor of

PSA recurrence outcome. Each of the three expression estimates are dichotomized

into two risk groups using the lower quartile as cutoff, resulting in a total of eight

combinations (though one group has 0 observations). Overall, the joint model (plot

B) demonstrates better differentiation of recurrence risks than the naive model (plot

A). In both figures, tumors demonstrating low staining proportion, low intensity,

and low composite intensity (curve 1) has the highest recurrence risk of all. One

significant difference between A and B lies in curves 3 and 4. The joint model has

generated substantially different estimates of the recurrence risks for these two groups

compared to sample-based methods.

4.9 Discussion

A cell mixture model is proposed to reconstruct tumor expression characteristics

from tissue microarray data. The concept is to assemble the whole-tumor expression

pattern from the subpopulation of tissue cores. We let each individual core density

adopt a zero-augmented Gamma density function to describe the proportion of non-

staining and the intensity of the positive staining respectively. A main difficulty

is model estimation. One wishes to obtain accurate estimates of both core- and
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subject-level parameters with an average of three cores per tumor. A hierarchical

Bayes model is therefore imposed to borrow strength across cores and across tumors.

We find that the reconstructed expression features are relatively robust under model

misspecification. Expression estimates under the CMM model have better accuracy

than the sample-based estimates. A joint model is presented to link the CMM

expression model with a survival model for censored failure time observations. The

implementation involves imputation steps within each MCMC iteration and Monte

Carlo integration technique. With the advent of modern computing power, complex

models are feasible. Simulation studies show that the joint model can effectively

reduce the attenuation of the disease risk estimates evident in two-stage methods.

In addition, when interactions among the expression features exist, relating noise-

inflated expression estimates to survival can lead to misleading results. Applying the

joint model effectively avoids erroneous interpretations of the risk estimates.

In this study, we estimated the percentage of staining, the mean intensity of stain-

ing, and a composite mean staining of a tumor from its reconstructed expression

distribution. These expression characteristics are further associated with censored

survival time to estimate recurrence risks in prostate tumors. In fact, exploring other

expression characteristics is possible given the reconstructed distribution under the

CMM model. For example, in addition to the mean, lower (e.g. 10th) or upper (e.g.

90th) percentile of expression may be a relevant quantity to summarize the tumor ex-

pression for biological reasons. In many TMA studies, with an average of three cores

observed for a tumor, the sample minimum (Yi(ri) = min1≤j≤ri
yij) and the sample

maximum (Yi(1) = min1≤j≤ri
yij) of staining are often used in place of a specific quan-

tile of expression. These sample-based statistics apparently target at a tail quantity

of the distribution of Yij, but their behavior is not clear. The sample maximum of
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one tumor may map to the 90th percentile of f(Yij), while the sample maximum of

another tumor may map to an entirely different percentile. In this respect, the CMM

model will allow more comparable and precise estimates of the expression quantiles,

while the Bayesian framework will provide a straightforward implementation where

any percentiles of the posterior samples can be readily obtained.

In our current model, we assume the proportion of staining and the intensity of the

staining are independently distributed given covariates Zi. To relax such conditional

independence assumption made for the CMM model, a random effect can be added

to induce correlation between the zero-mass and the intensity model. Such extension

is useful when a biomarker has inherently correlated expression pattern whereas the

nature of such correlation may be unknown and therefore difficult to adjust for with

the known covariates.
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Table 4.2: Cox regression. Results are summarized over 100 simulated data sets each of n = 100.
The CMM model parameter values are simulated to be the same as in Table 4.1.

true β β̂ sd(β̂) ŝe(β) coverage
πi 2 2.06 0.24 0.23 0.97
π̂s

i 1.48 0.23 0.18 0.27
π̃cmm

i (2stg) 1.60 0.22 0.22 0.53
Joint model 2.06 0.32 0.40 0.97
Joint model* 2.07 0.30 0.36 0.97

µ+
i 2.5 2.50 0.30 0.26 0.93

µ̂+s
i 1.43 0.25 0.23 0.39

µ̃+cmm
i (2stg) 2.07 0.27 0.23 0.44

Joint model 2.48 0.55 0.49 0.94
Joint model* 2.55 0.51 0.52 0.94

µi 1.8 1.82 0.21 0.20 0.95
µ̂s

i 1.40 0.18 0.16 0.48
µ̃cmm

i (2stg) 1.68 0.16 0.19 0.79
Joint model 1.75 0.41 0.47 0.95
Joint model* 1.73 0.40 0.44 0.95
*Joint model under misspecified δ.
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Table 4.3: Case study using prostate cancer TMA data sets. Prediction of patient PSA-recurrence
using tumor-wise protein expression estimates.

BM28 (n=52)
Sample-based CMM (2stg) Joint model

β̂ ŝe(β) β̂ ŝe(β) β̂ ŝe(β)
µ+

i 0.668 0.232 0.630 0.236 1.481 0.501
Gleason 0.666 0.601 0.683 0.561 0.592 0.558
Stage 0.938 0.507 0.837 0.535 0.822 0.501

AMACR (n=203)
Sample-based CMM (2stg) Joint model

β̂ ŝe(β) β̂ ŝe(β) β̂ ŝe(β)
πi 0.827 0.358 1.284 0.539 1.778 0.586
µ+

i -1.132 0.464 -0.554 0.402 -0.488 0.389
µi -0.736 0.457 -1.008 0.458 -2.372 0.728
Gleason 1.237 0.418 1.177 0.42 1.025 0.513
Stage 1.345 0.298 1.254 0.298 1.276 0.293
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Figure 4.6: Reconstructed tumor expression under the CMM model.
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CHAPTER V

CONCLUSION

The use of genomic and proteomic approaches has revolutionized cancer research

in the past decade. Cutting-edge technologies such as DNA microarrays and Tis-

sue Microarrays (TMAs) have provided high-throughput platforms for identifying

and validating genome biomarkers for cancer diagnosis and prognosis. Developing

meaningful and robust statistical methods is a key element for reliable and repro-

ducible findings. In this dissertation, I address some of the statistical issues related

to biomarker studies using microarray data.

In Chapter II, I presented a Bayesian mixture model approach to the meta-analysis

of DNA microarrays. The estimated probability of differential expression, poe, is

used as a unified scale to eliminate array platform differences. Data integration

based on poe has several advantages in a meta-analysis context. One, integrated

sample cohorts improve the reliability of the findings by guarding against false pos-

itive results from a single study. A meta-signature is therefore more likely to be

validated in independent data sets. Two, data integration increases the statistical

power to detect small consistent effects that can be otherwise masked by inadequacy

of the sample size of an individual data set. The utility of such meta-analysis frame-

work is broad with the increasing amount of publicly accessible microarray data.
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Choi et al. (2007) (submitted manuscript) extended the application in prostate can-

cer to compare metastatic and localized disease across multiple microarray stud-

ies. Two softwares, POE (Parmigiani et al., 2002) and MetaArray (Choi et al.,

2007), that implement MCMC methods are available to generate poe values from

raw expression data. They can be downloaded from the R Bioconductor project

(http://www.bioconductor.org).

Although the poe transformation eliminates the measurement scale differences

across array platforms, additional steps can be taken to improve the reproducibility

of the gene expression profile from experiment to experiment. For example, in the

proposed meta-analysis strategy, compiling common genes across array platforms is

an important step. Matching probes across cDNA arrays and Affymetrix arrays to

ascertain they target at the same full-length mRNA transcript is hardly a straightfor-

ward task. Unigene ID is a common choice for cross-platform mapping, but several

studies have found that Unigene ID alone is insufficient for matching and often lead

to poor correlation between gene expression across platforms. Sequence matching

based on RefSeq database can significantly improves the quality of matches and sub-

sequently increase the cross-platform consistency and reproducibility (Ji et al., 2006,

Mecham et al., 2005).

In Chapter III, I have addressed statistical issues in analyzing protein expression

data from tissue microarray experiments. A Latent Expression Index (LEI) is intro-

duced to adjust for 1) the intra-tumor variability, 2) the number of repeated measure

per tumor, and 3) clinical covariates. As a validation tool, accurate estimation of

the disease risk associated with a biomarker from TMA data is essential. A joint

model is proposed for simultaneous inference on the expression data and patient

survival information. Both simulation studies and data application have shown that
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the joint model is an effective approach to eliminate the attenuation in the coeffi-

cient estimates caused by measurement error. In this study, our primary interest is

parameter estimation in proportional hazards models with variables measured with

error. The proposed joint model is useful in eliminating bias in estimating the Cox

regression coefficient. However, it should be pointed out that such error model is not

necessary when prediction of the outcome is concerned which is beyond the scope of

this dissertation.

In Chapter IV, a Cell Mixture Model (CMM) is proposed to reconstruct complex

tissue staining patterns in TMA experiments. The concept is to assemble the whole-

tumor expression pattern by aggregating over the subpopulation of tissue cores. Each

individual core is assumed to be a zero-augmented distribution to assimilate the

non-staining areas and the staining areas. A hierarchical Bayes model is imposed to

borrow strength across cores and across tumors. A joint model is presented to link the

CMM expression model with a survival model for censored failure time observations.

The implementation involves imputation steps within each MCMC iteration and

Monte Carlo integration technique. Possible future work includes correlating the

proportion of staining and the intensity of the staining in the CMM model.

In summary, the existing methods in TMA studies have two major limitations:

1) they generally treat the expression measures as error-free quantities and 2) there

is a lack of a unified modeling approach to incorporate both staining proportion and

intensity measure. The main contribution of Chapter III and IV is to provide meth-

ods for quantitative TMA data analysis that effectively deal with these statistical

issues.
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APPENDIX A

FULL CONDITIONAL DISTRIBUTIONS FOR CHAPTER
II

In the meta-analysis, the following gene-specific parameters were repeatedly drawn

from the full conditional distributions as shown below

κ+(t+1)

j |xij ∼ Gamma(

Mk∑
i=1

p+(t)

ij + 1, θ+
κ ),

κ−
(t+1)

j |xij ∼ Gamma(

Mk∑
i=1

p−
(t)

ij + 1, θ−κ ),

σ−2(t+1)

j |xij ∼ Gamma

(
γ +

r
(t)
j

2
,
1

2
[s2(t)

j +
Mkr

(t)
j

Mk + r
(t)
j

(ξ − x̄
(t)
j )2 + 2λ]

)
,

µ
(t+1)
j |xij, σ

−2(t+1)

j ∼ N

(
r
(t)
j x̄

(t)
j + Mkξ

Mk + r
(t)
j

,
σ2(t+1)

j

Mk + r
(t)
j

)
,

(π+(t+1)

j ,π−
(t+1)

j , 1− π+(t+1)

j − π−
(t+1)

j )

∼ Dirichlet

(
Mk∑
i=1

p+(t)

ij + 1,

Mk∑
i=1

p−
(t)

ij + 1,

Mk∑
i=1

(1− p+(t)

ij − p−
(t)

ij ) + 1

)
,

p+(t)

ij =
π+(t)

j f1(xij; µ
(t)
j , κ+(t)

j )

f(xij; Θ
(t)
j )

p−
(t)

ij =
π−

(t)

j f−1(xij; µ
(t)
j , κ−

(t)

j )

f(xij; Θ
(t)
j )

,

where r
(t)
j =

∑Mk

i=1(1 − p+(t)

ij − p−
(t)

ij ), x̄
(t)
j =

∑Mk

i=1(1 − p+(t)

ij − p−
(t)

ij )xij/r
(t)
j , s2(t)

j =

∑Mk

i=1(1− p+(t)

ij − p−
(t)

ij )(xij − x̄
(t)
j )2, and Mk is the sample size for study k; .

The derivation of these conditionals is fairly standard; see Diebolt and Robert (1994).
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APPENDIX B

FULL CONDITIONAL DISTRIBUTIONS FOR CHAPTER
IV

At each MCMC iteration, samples are successively drawn from the following full

conditionals:

(i) ak

∣∣· ∝
{

n∏
i=1

ri∏
j=1

IGµij

(n1ij

δ
+

1

ν
+ 2,

n1ij

δ
yij + (

1

ν
+ 1)ea0i+az′i

)}

× exp

{
−1

2

(ak − µak

σak

)2
}

;

bk

∣∣· ∼ N

(
V −1

(
σ−2µbk

+
n∑

i=1

ri∑
j=1

(b0ij − b0i − b−kz
′
−k,i)zki

)
, V −1

)

where V = σ−2
bk

+ σ−2
b

n∑
i=1

riz
2
ki;

(ii) a0i

∣∣· ∝
{

n∏
i=1

ri∏
j=1

IGµij

(n1ij

δ
+

1

ν
+ 2,

n1ij

δ
yij + (

1

ν
+ 1)ea0i+az′i

)}

× exp
{
− 1

2

n∑
i=1

(
a0i − a0

τa

)2 }
;

b0i

∣∣· ∝ N

(
(τ−2

b + σ−2ri)
−1

(
τ−2
b + σ−2

ri∑
j=1

(b0ij − bz′i)
)
, (τ−2

b + σ−2ri)
−1

)
;

(iii) τ−2
a

∣∣· ∝ G

(
1

2
(rτ2

a
+ n),

1

2

( n∑
i=1

(a0i − a0)
2 + γτ2

a

))
;

τ−2
b

∣∣· ∝ G

(
1

2
(rτ2

b
+ n),

1

2

( n∑
i=1

(b0i − b0)
2 + γτ2

b

))
;

σ−2
b

∣∣· ∝ G

(
1

2
(rσ2

b
+ n),

1

2

( n∑
i=1

ri∑
j=1

(b0ij − b0i − bz′i)
2 + γσ2

b

))
;
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(iv) µij

∣∣· ∝
n∏

i=1

ri∏
j=1

IGµij

(n1ij

δ
+

1

ν
+ 2,

n1ij

δ
yij + (

1

ν
+ 1)ea0i+az′i

)
;

b0ij

∣∣· ∝
{

n∏
i=1

ri∏
j=1

(
1

1 + eb0ij

)n0ij
(

eb0ij

1 + eb0ij

)n1ij
}

× exp

{
n∑

i=1

ri∑
j=1

(
b0ij − b0i − bz′i

τb1

)2
}

;

(vi) µp
ij

∣∣· ∼ IG

(
1

ν
+ 2,

ν + 1

ν
exp(a0i + az′i)

)
;

bp
0ij

∣∣· ∼ N
(
b0i + bz′i, τ

2
b

)
;

(vii) ηi =





1
P

∑P
p=1

exp(bp
0ij)

1+exp(bp
0ij)

Proportion of staining;

1
P

∑P
p=1 µp

ij Mean intensity;

1
P

∑P
p=1

exp(bp
0ij)

1+exp(bp
0ij)

µp
ij Composite mean;

(viii) β
∣∣· ∝ exp

{
β

∑
i∈Dl

ηi + κz′i −
L∑

l=1

λl

∑
i∈Rl

∆il exp(βηi + κz′i)

}

× exp

{
1

2
(
β − µβ

σ2
β

)2

}
;

λl

∣∣· ∝ G

(
rλ + dl, γλ +

∑
i∈Rl

∆il exp {βηi + κz′i}
)

.

In the above G denotes a Gamma distribution; IG denotes an Inverse-Gamma dis-

tribution; b is a 1×K row vector of coefficients.

92



APPENDIX C

PQL-BLUP ESTIMATION FOR THE INTENSITY
MODEL IN CHAPTER IV

Given the conditional mean and variance

E[yij|a0i, a, z] = ea0i+az′i

Var(yij|a0i, a, z) =

(
δ

n1ij

ν + ν + 1

)
e2(a0i+az′i),

we estimate (α0i, a) by a PQL approach Breslow and Clayton (1993) via maximizing

the Laplace approximation of the penalized quasi-likelihood

pql =
n∑

i=1

ri∑

l=1

(yij − ea0i+azi)

( δ
n1ij

ν + ν + 1)e2a0i+2azi
−

n∑
i=1

1

τ 2
a2

0i = 0.

Next, given (α̂0i, â), we obtain the BLUP estimates of µij in the form

µ̂ij =
n1ij

δ
yij + ( 1

ν
+ 1)eâ0i+âzi

n1ij

δ
+ 1

ν
+ 1

.

In the final step, we propose to estimate ν as

ν̂ =
1

n

n∑
i=1

∑ri

l=1(µ̂ij − eâ0i+âzi)2

rie2â0i+2âzi
,

conditional on (â0i, â, µ̂ij). In this estimation procedure, δ is fixed to be 0.2 as part

of the model assumption.
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