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ABSTRACT 
 
 

CONTROLLING BEAM COMPLEXITY IN  
INTENSITY MODULATED RADIATION THERAPY 

 
by 

 
Martha Marie Matuszak 

 
 
 

Co-Chairs:  Edward W. Larsen and Benedick A. Fraass 
 
 
External beam intensity modulated radiation therapy (IMRT) is a technique in which the 

spatial intensity of radiation from each beam direction can be modulated to provide 

superior conformality of dose to a tumor volume while sparing important normal tissues.  

A fundamental and potentially limiting feature of IMRT is the highly complex fields that 

can be created through inverse plan optimization.  Highly modulated treatments are a 

large departure from conventional radiotherapy methods, are difficult to deliver 

accurately and efficiently, and can result in an undesirable increase in leakage dose 

being delivered to the patient.  Longer deliveries may also increase the chance for 

patient motion during treatment and could potentially reduce the probability of controlling 

some tumors.  The large intensity fluctuations observed in IMRT beams are often a 

result of the degeneracy of the optimization problem, and the types of optimization 

method and cost function used.  This work demonstrates that beam complexity is a 

result of these two issues, and is dependent on the placement of dose evaluation points 

in the target and normal tissues.  This research shows that (i) optimizing surfaces 
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instead of discrete beamlet intensities to represent the beam can reduce the degrees of 

freedom in IMRT and results in much smoother beams at the expense of a slight 

increase in normal tissues, (ii) maximum beamlet intensity restrictions are useful for 

improved delivery efficiency, but may restrict the optimizer at low limits, and (iii) 

modulation penalties can be incorporated into the cost function to promote plan 

smoothness without sacrificing plan quality.  Penalizing the overall plan modulation is an 

effective way to reduce modulation, but it falsely penalizes the desirable beam 

modulation as well as the undesirable modulation.  To address this problem, diffusion 

principles are used to develop a spatially adaptive smoothing method that only penalizes 

the unnecessary beam modulation and can be used without degrading plan quality.  This 

method is customizable to a variety of treatment scenarios.  The clinical impact of 

reducing beam complexity is significant, as it can result in an improvement in delivery 

accuracy and efficiency, quicker optimization times, and increased robustness to point 

sampling and geometric uncertainty. 
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CHAPTER I. 
 

INTRODUCTION 

 

 
Cancer continues to be one of the leading causes of death in the world, with as many as 

10 million new cases diagnosed annually.  The American Cancer Society predicts that in 

the United States in 2007, nearly 560,000 cancer deaths will occur and over 1.4 million 

new cases of cancer will be diagnosed1.  The many different types and presentations of 

cancer make it a difficult disease to combat and control.  Research in one area may or 

many not cross over to another, and treatments that are successful in one area may fail 

in another.  A common characteristic between different types of cancer cells is that they 

usually grow and divide more rapidly than healthy cells.  Growing and dividing cells are 

generally very sensitive to radiation damage, making radiation therapy a common 

treatment among many different types of cancer.  In fact, over half of all cancer patients 

receive some form of radiation treatment, and the majority of those patients will receive 

external beam radiation therapy.   

The idea that radiation could be used therapeutically came to light over a century 

ago2.  Since then, the knowledge and technology behind radiation therapy has grown 

exponentially.  The first radiation treatments were performed with little knowledge of the 

mechanism of tissue damage and repair and hence were full of uncertainty. Today’s 

treatments are backed by years of research, development, and understanding, but there 

is still much to learn and much that can be improved upon.    

External beam therapy delivers high energy electrons or photons (x-rays) from an 

external source—usually a linear accelerator—to cancerous tissue.  The ultimate goal of 

external beam radiation therapy is to control the malignant cells while sparing as much 

healthy tissue as possible.  Therefore, the planning of radiation therapy treatment is a 

process that must make tradeoffs between these two competing goals.  One 

radiobiological aspect that aids in the planning process is the fact that healthy tissues, 
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while still at risk from radiation damage, can usually repair themselves more effectively 

than cancer cells.  In addition, radiation treatments are generally divided into a series of 

treatments, called fractions, in order to allow the normal tissues ample time for damage 

repair and to take advantage of some of the radiobiological properties of cancer cells 

that may make them more sensitive to fractionated therapy.  New findings in 

radiobiology, imaging, and physics continue to improve and alter the techniques used to 

deliver external radiation to patients.   

  

I.A.  Progression of Radiation Therapy: The Path to Intensity-Modulated 
Radiation Therapy (IMRT) 
 
I.A.1. Conventional Radiation Therapy 
What is now termed conventional radiation therapy refers to a two-dimensional radiation 

therapy planning technique with only a small number of beam directions (usually 1-4).  

Conventional treatment originated before three-dimensional imaging techniques, such as 

computed tomography, were available for volumetric imaging of the patient and remains 

the most common treatment in most of the world.  This technique consists of simulating 

the treatment position of the patient and designing a plan that uses several usually well-

established beam directions that will focus on the treatment area.  This is performed on 

an conventional radiotherapy simulator, and the patient is usually placed in a supine 

position on the simulator platform.  Two-dimensional imaging may be used to help 

visualize the tumor and surrounding normal tissue.  In most situations, an x-ray is be 

used to determine the location of bony landmarks that are used to set the beam borders.  

To ensure coverage of the tumor, the beams have wide margins and intersect a large 

volume of normal tissue.  The use of cerrobend blocks may be used to shield critical 

organs, such as the spinal cord, from the radiation beams.  

 The limitation of conventional radiation therapy is that low radiation doses must 

be used to not cause toxicity to the large amounts of healthy tissue that are irradiated.  

For moderate-to-aggressive tumors, the probability of controlling the disease for a long 

period of time may be low.  In addition, if large areas of the beam are blocked to shield 

organs, the risk of underdosing the tumor volume can be high.  Over the past several 

decades, the combination of increasing knowledge about radiation therapy and 

technological advances in imaging and linear accelerator hardware has allowed for more 

targeted and conformal treatments.   
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I.A.2. Conformal Radiation Therapy 

Conformal radiation therapy, as its name implies, aims to conform the dose more closely 

around the tumor, in an effort to escalate dose to the target and spare more normal 

tissue.  Conformal therapy is possible, in part, due to (i) the advancement of imaging 

technologies that provide an accurate 3D representation of the patient’s internal 

anatomy and disease location, (ii) the development of three-dimensional radiation 

treatment planning software3-5, and (iii) advancements in the collimation capabilities of 

the treatment machine.  In 3D conformal radiation therapy (3D-CRT), the conventional 

treatment simulator is replaced by a CT treatment simulator.  The CT simulator differs 

from a diagnostic CT scanner in several respects; the simulator is designed with a larger 

bore that allows patients to be scanned in the treatment position and is equipped with 

localization devices to tie the position of the treatment planning CT to the coordinates at 

the treatment machine.  The radiation oncologist can then define the tumor and normal 

structures by outlining them on each slice of the CT scan.  This can be done at the CT 

simulator workstation or after the treatment planning CT is transferred to a 3D treatment 

Figure I-1. An illustration of the components inside a typical linear accelerator head.
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planning system.  This ability to target the actual delineated tumor and internal organs 

allows a much higher conformity of treatment to the tumor as opposed to using pre-

defined bony landmarks to set the treatment borders.  It also individualizes the treatment 

to the specific anatomy of each patient.  Treatment beams can then easily be defined by 

projecting the outline of the tumor and normal structure onto the same plane from the 

direction of the beam.  This beam’s eye view (BEV)6,7 is an essential tool for beam 

shaping in conformal radiation therapy. 

  The degree to which the beams can conform to the tumor depends on the 

collimation and beam shaping capabilities of the treatment machine.  An illustration of 

the most common means for delivering external beam therapy-the linear accelerator-is 

shown in Figure I-1.  Shown is the head of the accelerator which houses several 

components that are used to produce, shape, and filter the radiation beam.  For photon 

therapy, a megavoltage electron beam is directed at a high atomic number target 

(usually tungsten) to produce bremsstrahlung radiation.  This beam then is collimated by 

the primary collimator before passing through a flattening filter.  The purpose of this 

conical filter is to make the beam intensity uniform across the field.  The beam then 

passes through an ion chamber, which is used to monitor the output of the machine.  

Next, the beam is shaped by two additional collimation devices.  The secondary 

collimator can shape the radiation beam into a customized rectangle with “jaws” that 

close in around the radiation beam, and more conformal shapes can be made using a 

Figure I-2. Left: The Varian Trilogy™ linear accelerator shown with an on-board 
imager.  Right: A close-up of the treatment head and the multi-leaf collimator.  
Images courtesy of Varian Medical Systems, Inc. 
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device called a multi-leaf collimator (MLC).  A standard MLC consists of many pairs of 

“leaves” that can move in and out of the radiation field independently, to create an 

approximation to many different tumor shapes and sizes.  Figure I-2 shows a modern 

linear accelerator and the attached MLC device.  Linear accelerator designs vary among 

manufacturers, and in some cases, the MLC is placed above the secondary collimator 8.  

However, the general beam shaping capabilities are similar.   

 Three-dimensional conformal therapy (3D-CRT)3-5 arose as a leading technology 

in radiation therapy in the mid-1980’s and increased the number of patients that were 

eligible for and treated successfully with radiation therapy.  Improvements in local control 

and normal tissue sparing compared to conventional therapy have been documented in 

many treatment sites9-15.  The use of volumetric imaging and dose calculations to more 

accurately locate the tumor position and calculate dose led to a gradual reduction in the 

margins around the tumor volume, which spared more normal tissue from radiation 

damage.  This presented an opportunity to further escalate the dose to the tumor.  More 

beam directions were used so that large volumes of normal tissue were not treated to 

very high doses.  Instead, several beam directions were used to spread out the dose to 

the normal tissue, while focusing on the tumor.  As 3D-CRT techniques continued to 

evolve and improve, the fast pace of the technological advancement in the field also 

continued.  A notable advance was the idea that the beams weights could be chosen 

automatically by a computer optimization procedure called inverse planning.  As 

opposed to forward planning, where a dosimetrist would iterate through beam weights 

and analyze the plan, inverse planning gave the treatment goals to a computer program 

which was used to choose the optimal beam weights16,17.  In some instances, several 

Figure I-3.  An example of the progression from conventional to 3D conformal to 
intensity modulated radiation therapy. 
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beams from the same direction were used to modulate the radiation intensity and take 

advantage of the geometrical relations of the targets and normal tissues.  This led to the 

birth of modern intensity-modulated radiation therapy (IMRT)16,18-22.  IMRT is a form of 

conformal radiation therapy in which the spatial intensity of each beam can be varied to 

further conform to the tumor and spare normal tissues.  Figure I-3 illustrates the 

progression from conventional therapy to the most advanced form of inverse-planned 

IMRT from the beam’s eye point of view for an arbitrary geometry. 

 
I.A.3.  Intensity-Modulated Radiation Therapy 
There are many forms of IMRT in use today in radiation treatment centers23.  As 

mentioned in the previous section, forward-planned IMRT consists of placing many 

multiple shaped fields from different directions to ultimately conform to the tumor shape 

and spare any critical normal tissues.  This level of IMRT overlaps with the planning of 

3D-CRT and requires a very skilled planner.  The natural progression of radiotherapy 

planning has led to an increase in the number of target volumes and normal structures 

that are delineated on the treatment planning CT with the goal to deliver varying 

prescription doses to targets or to limit the dose to minimize potential toxicity.  As the 

treatment planning problem became more complex, the planning methods must be able 

to generate equally complex treatment plans.  Therefore, it seemed natural to apply 

inverse planning techniques to the planning of intensity modulated radiation 

therapy16,18,21,22.  In inverse-planned IMRT, treatment planning optimization software 

determines the optimal intensity profiles from each beam direction that best achieve the 

treatment planning goals.   

 

I.B.  Inverse-Planned IMRT 
In most treatment centers, IMRT is planned by dividing each radiation beam into a grid 

of beamlets (see Figure I-3) and then optimizing the desired weight or intensity of each 

beamlet based on various treatment goals specified by the radiation oncologist.  This 

problem is a much larger-scale optimization problem than optimizing single beam 

weights in conformal radiation therapy and usually requires the use of sophisticated 

optimization algorithms, which will be discussed later in this section.  However, there are 

many integral steps involved in reaching this optimization stage that can affect the 

quality of the final treatment plan.  The common IMRT planning steps include: 
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1. Acquisition of the treatment planning CT and other multi-modal images to 
aid in tissue delination. 
 
Once a patient is recommended for radiation therapy, the treatment planning 

process commences by the acquisition of the treatment planning CT.  In many 

treatment sites, the soft tissue contrast of the treatment planning CT is not 

sufficient to outline the tumor or normal structures.  Therefore, other imaging 

studies, such as positron emission tomography (PET) and magnetic resonance 

imaging (MRI) may also be performed to allow better visualization of the patient’s 

anatomy.  Treatment planning dose calculations are performed on the CT so it is 

essential to be able to geometrically connect data from other imaging modalities 

to the CT scan.  This is usually done through an image registration procedure, in 

which the data in one image is transformed to the coordinate system of the other 

image.  There are a variety of different registration techniques that range from 

simple affine matching to fully deformable techniques.  A review of the current 

issues and techniques in image registration for radiotherapy was recently 

published by Balter and Kessler24.  

 
2. Contouring target volumes, organs, and other clinical regions of interest on 

the treatment planning CT scan.  
 

Once the imaging data is acquired, all of the important aspects of the patient’s 

anatomy that can be distinguished are outlined or contoured by a radiation 

oncologist on the axial CT slices.  Alternatively, contours can also be drawn on 

other imaging data such as PET or MR and then transferred to the CT, using the 

coordinate transformation obtained during the image registration process.  This 

combination of the data from different modalities into one common set of data is 

generally referred to as data fusion.  Because of our reliance on the drawn 

contours to delineate the target and organ boundaries for therapy, care must be 

taken to properly and carefully outline the anatomy so that delineation errors do 

not adversely affect patient outcome.  In addition, errors in the registration of two 

imaging datasets can propagate errors through the contouring and treatment 

planning process.   

An example of contouring is shown on the CT of a solid water phantom in 

Figure I-4 (upper left).   
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3. Creating the 3D representation of the patient that will be used for treatment 
planning. 

 
Once the anatomy has been contoured in the multiple 2D planes of the CT scan, 

the collection of 2D information is converted in a 3D representation of the 

anatomy (i.e. a surface or voxel-based representation of the anatomy).  This 3D 

model of the patient aids in the remainder of the treatment planning process.  In 

inverse planning, each of regions of interest must be represented by a collection 

of voxels or data points.   

At the University of Michigan, this representation consists of a set of 

discrete points that are distributed in each of the volumes.  These points act as 

the representation of each structure in the optimization process.  Because the 

optimization process uses a large amount of memory, it is not practical to use an 

unlimited number of points in each structure.  Therefore, point placement must 

be appropriate so that important regions are not undersampled.  An example of 

Figure I-4.  An example of some of the steps involved in inverse-planned 
IMRT.  Upper-left: Contouring on CT, Upper-right: placing points in regions of 
interest, Lower-left: setting up beam directions, and Lower right:  defining the 
beamlet grid. 
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this point placement step is shown in the upper-right of Figure I-4. The regions of 

interest used in inverse planned IMRT must be comprehensive.  The optimization 

system will only be aware of the regions of interest that are present in the data 

and will not use “common sense” to place the dose outside of the important 

regions unless they are specified.  Because of this, accurate contouring and 3D 

representation is critical to achieve a high quality treatment plan. 

 

4. Choosing the number and orientation of the radiation beams and dividing 
them into theoretical beamlet grids. 

 
After defining the patient geometrical representation, the radiation beams must 

be placed around the patient.   While beam orientation optimization is a current 

field of research25-30, most centers rely on experienced dosimetrists to choose the 

number and orientation of beams to be used.  In many IMRT cases, 7 to 9 axial 

beams are placed around the patient.  These numbers of beams are often 

sufficient to provide the necessary degrees of freedom to make beam orientation 

optimization less essential, and therefore beams can be equally spaced around 

the patient.  Once the beam directions are chosen, each beam is divided into 

theoretical beamlet grids.  Usually, the beamlet grids coincide with the width of 

the MLC leaves.  The most common beamlet sizes are 1 cm x 1 cm and 0.5 cm x 

0.5 cm, although larger beam segments can also be defined.  The lower half of 

Figure I-4 shows the beam placement and definition of 0.5 cm x 0.5 cm beamlets 

for the solid water CT phantom example. 

 

5. Calculating the dose from each of the unit intensity beamlets to each of the 
points of interest. 

 
Once the beamlets are defined, a dose calculation is performed to determine the 

dose contribution from each unit intensity beamlet to each of the points defined in 

the regions of interest.  This creates a sizeable matrix, which is used during the 

optimization process to calculate the dose and help optimize the beamlet 

intensities.  The University of Michigan utilizes a convolution superposition 

algorithm derived from the work of Mackie et al.31 to perform beamlet dose 

calculations. 
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6. Creating an objective function, or mathematically stating the treatment 
goals in penalty form based on their importance to a successful treatment. 

 
The objective function, or cost function, is an integral part of any optimization 

process.  It puts the treatment goals from the radiation oncologist into 

mathematical form.  In most cases, a penalty or cost is assigned to violating 

specific dosimetric goals.  The more important the goal, such as minimum dose 

to the target, the higher the penalty.  Each penalty is a component of the cost 

function, or a costlet.  Adding the penalties and weighting them according to 

importance results in a weighted sum cost function.  This is the most common 

form of cost function in use in IMRT optimization.  However, recent research has 

also led to the emergence of multi-criteria optimization methods, such as 

lexicographic ordering (LO), which sorts the costlets according to priority levels 
32,33.  In LO, the most important goals are met first and constrained, and then the 

less important goals are attempted, and so on.  This way, the most important 

goals are not sacrificed for less important ones, and the optimization system 

does not waste time making tradeoffs between objectives that are not at the 

same priority level. 

 A summary of different cost function components available in the 

University of Michigan’s optimization software is given by Kessler et al.34  

Treatment goals can be specified by dose-based metrics such as minimum, 

maximum, and mean dose as well as volume based metrics that allow only 

certain volumes of tissue to receive greater than or less than a certain dose.  In 

addition, different radiobiological models, such as the tumor control probability 

(TCP)35 and normal tissue complication probability (NTCP)36 can also be used as 

treatment goals.   

 

7. Optimizing the beamlet intensities to best meet the goals stated in the 
objective function. 

 
After the treatment goals are laid out in the objective function, the beamlet 

intensities that best achieve the treatment goals must be chosen.  This is done 

through a process called optimization.  In the case of a weighted sum cost 

function, the beamlets are changed until the total cost function penalty, or simply 

cost, is minimized.  Many optimization algorithms are available to solve these 

types of problems, with the most common being a type of gradient descent 
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algorithm, such as the quasi-Newton method, which is used at the University of 

Michigan.  Care must be taken when using a gradient descent algorithm because 

it may not able to find the global solution of the cost function.  Depending on the 

definition of the cost function, multiple local minima may be present in the 

solution space.  A gradient descent algorithm will find the closest local minima to 

its starting point and therefore may not achieve the global minimum.  In these 

cases, a slower, but more reliable global search algorithm, such as simulated 

annealing, can be used.  This is a stochastic search algorithm that can escape 

local minima to find the global solution.  A more detailed explanation of the 

optimization algorithms at the University of Michigan is given in Chapter II. 

 Regardless of the optimization method chosen, the output of the 

optimization process should be the set of beamlet intensities that best meet the 

goals laid out by the cost function.  The 3D visualization of an optimized plan is 

shown in Figure I-5. 

8. Sequencing the leaves of the MLC in order to deliver the desired intensity-
modulated fields. 

 
Once the optimal beamlet intensity patterns are found, a technique for delivering 

them by the multi-leaf collimator must be devised.  This process is referred to as 

leaf sequencing.  The treatment machine can deliver intensity modulated beams 
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in dynamic or static mode (or both), depending on the manufacturer37-40.  In 

dynamic mode, the leaf sequencing process generates a series of trajectories for 

each of the MLC leaves to travel in order to deliver the desired intensity pattern 

while the radiation beam is on.  In static mode, the leaf sequencing process 

generates a series of shapes or segments that can be made and delivered.  In 

this mode, the beam is turned off while the leaves move to each new segment 

position. 

   

9. Performing a final 3D calculation of the dose delivered to the patient for 
final evaluation by the radiation oncologist. 

 
In most IMRT treatment planning systems, there are some differences between 

the way that dose calculations are performed for beamlet optimization to create 

the dose matrix versus 3D conformal planning.  Depending on the optimization 

software, these differences include: (i) approximations, such as ignoring scatter 

dose, are made in the beamlet dose calculations to improve speed, (ii) the dose 

evaluation points are not located in the same voxel positions that are used in the 

final 3D dose calculations due to sampling points randomly or sparsely, and (iii) 

the initial dose calculation cannot incorporate delivery effects based on the 

position of the machine MLC.  To assess the impact of these differences on the 

final treatment plan, some institutions perform a final 3D dose calculation on the 

patient CT scan and evaluate the dose using the full dose calculation and the full 

complement of voxel data at an adequate resolution of all structures.  It is also 

possible to include the leaf sequence that will be used in the delivery to calculate 

any perturbations of the dose that occur due to the treatment delivery 

parameters, such as MLC positions.   

This final dose calculation is another layer of quality assurance in the 

inverse planning process because it calculates dose to all of the voxels in the 

patient scan and therefore is not subject to the undersampling that can occur in 

the dose-to-points matrix.  It also allows the planner and physician to visualize 

the full 3D dose distribution on the patient data to determine whether or not any 

dose or point sampling approximations or an omission of an important region of 

interest resulted in undesirable dose deposition.  The dose distributions can be 

evaluated by using isodose lines and colorwash displays, which are overlayed on 

the patient’s CT scan along with the treatment planning contours.  These types of 
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displays are also available in many optimization systems and can be compared 

with the data from the final dose calculation.  In many centers, the final approval 

of the plan by the radiation oncologist is performed on this final dose calculation 

by analyzing the dose distributions, dose metrics to relevant anatomy, and the 

cumulative dose-volume histograms calculated from the 3D calculation data.   

An  isodose and colorwash display on the solid water phantom is shown 

in Figure I-6.  In this case, there is a “hotspot” of dose outside the target volume 

near the surface of the phantom.  Features such as this can appear in the final 

calculation if the normal tissue is not properly sampled or the minimization of 

dose to the normal tissue is not specified in the cost function. 

 

Figure I-6.  (a) Isodose contours and (b) a colorwash dose display 
for the final IMRT dose calculation with the colorscale given in Gy 
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10. Performing quality assurance on the radiation plan to make sure it 
conforms to certain dosimetric standards. 

 
Because IMRT is a recent technology, several quality assurance procedures are 

usually performed on each new IMRT plan.  While this varies for different 

treatment centers, patient-specific IMRT QA usually consists of an overall 

verification of the dose to be to be delivered by a composite ion chamber 

measurement as well as an individual verification of each of the treatment beams 

through film or other 2D measurement devices.  This level of patient-specific QA 

was originally performed because of the potential for errors to be introduced at 

different stages in the multi-stage IMRT planning process, and it continues to be 

necessary according to published reports of IMRT QA failures and delivery 

errors41,42.   

The goal of patient-specific IMRT QA is to verify that dose differences 

between the planned and delivered treatments agree within a certain tolerance.  

Some sources of discrepancy between calculated and measured plans are (i) 

errors in the delivery sequence by the linear accelerator or MLC, (ii) artifacts of 

the delivery due to the dosimetric characteristics of the MLC that are not modeled 

by the dose calculation, (iii) limitations of the dose calculation algorithm or leaf 

sequencing process, and (iv) experimental errors during measurements or 

imaging processing43.  It is generally difficult to identify a single source of error 

between measurements and calculations unless the error is large and obvious.  

IMRT QA aims to identify these large errors before they are propagated to the 

patient and attempts to disqualify plans in which the composite errors caused by 

the combination of the above factors is outside of the set tolerance level.  If the 

IMRT passes QA, it moves into the treatment delivery queue.  Otherwise, the 

discrepancies are analyzed and a decision is made to either alter the IMRT plan 

and re-perform QA or to deliver an alternate 3D-CRT plan. 

 

11. Delivering the radiation treatment in fractions to the patient. 

Once the patient begins IMRT treatment, care must to given to ensure that the 

very conformal treatment plan is delivered accurately.  This requires careful 

patient setup and immobilization, to minimize any random or systematic setup 

errors.  In some cases, the patient’s anatomical or physiological properties may 

change during treatment, making the IMRT plan less optimal and requiring an 
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adaptation of the plan to the new input data.  This process is becoming a popular 

research area, called adaptive radiation therapy44-48. 

 

The above steps demonstrate the complex IMRT treatment planning and delivery 

process.  This process can lead to very conformal radiation treatments that improve 

patient tolerance and outcome of radiation therapy.  The advantage of IMRT over 

conventional and conformal radiation therapy has been the subject of many publications, 

although limited data on any overall survival benefit of IMRT over conformal therapy is 

available at this time.  The patient groups that have been the most positively impacted 

by IMRT are head and neck and prostate cancer patients.  Many studies have shown 

improved conformality and salivary function with IMRT in the head/neck, which has 

resulted in improved quality of life for these patients49-52.  Similarly, IMRT has improved 

normal structure sparing and allowed for safe dose escalation to the prostate53-56.  Other 

studies have suggested that IMRT may also provide an advantage in the treatment of 

brain, lung, and other cancers57-59. This revolutionary technique is beginning to play a 

leading role in the targeting of biologically defined and possibly dynamic target 

volumes60-64.  The use of IMRT to “paint” dose according to the specific properties of the 

local tumor and normal tissue may enable better targeting of tumor biology and improve 

tumor control.   

   
I.C.  The Fundamental Problem in IMRT 
As described in the previous section, solving an inverse IMRT problem requires the use 

of hundreds to thousands of independent variables and a potentially large set of 

objectives or planning goals.  The discrete nature of the beamlet solution potentially 

allows for the intensity modulated beams to take on nearly any shape or distribution.  To 

the optimization engine, the shape of the optimized beam does not matter if the 

dosimetric objectives are achieved.  However, compared to conventional and conformal 

beams, the inverse planned IMRT beams can be very complex and unintuitive.  Figure I-

7 shows a comparison between a conformal prostate treatment and a prostate IMRT 

plan.  On the upper left is a common “4 field box” treatment for prostate cancer.  The 

fields are shaped around the prostate with the multi-leaf collimator, and the beams are 

uniform across each field.  The resulting dose distribution calculated in the UMPlan 

treatment planning system is shown below in the lower left.  On the upper right is a 7-

field IMRT plan for the same patient.  One of the intensity-modulated fields is shown in 
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the inset along with the corresponding dose distribution. While the IMRT plan is superior 

in terms of sparing the bladder and rectum from high doses of radiation, the beams are 

much more complex and the dose distribution is much more heterogeneous than that of 

the conformal plan.  Most of the current prescription doses and normal tissue dose limits 

used in radiation therapy planning are based on doses that were calculated and 

delivered with conformal radiation therapy beams.  Therefore, the significance of the 

difference between conformal beams and IMRT beams needs to be studied to determine 

the effect that the differences may have on the way patients are treated.   The 

considerable increase in the complexity of the beam intensity distribution being delivered 

to the patient is a by-product of the IMRT treatment planning problem.  IMRT cases 

commonly require the definition of 10-20 regions of interests and thousands of beamlets.  

Each of the regions of interest may then have multiple treatment goals associated with it.  

Figure I-7.  Clockwise from top left: a conformal “4 field box” prostate treatment; a 7 
beam inverse planned IMRT treatment with an inset showing the modulation in beam 
1; the dose colorwash for the IMRT plan; the dose colorwash for the 3D conformal 
prostate plan.  The prostate, bladder, rectum, and femora are represented by the 
surfaces and contours in the colors given, and the isodose color scale is also given. 
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This comprises a complicated cost function with many competing goals and a large 

number of independent variables to optimize.  Figure I-8 shows a 3D representation of 

the complicated geometries of the head and neck and pancreas as well as the equally 

complicated beamlet patterns produced by inverse IMRT planning.  These beam 

intensities are a drastic contrast to the uniform intensity beams that would be used in 

conformal therapy, making it difficult to judge their efficacy for treatment planning.   

 Treating a patient with very complex beams causes several concerns.  First, 

high degrees of complexity, or modulation, can make it difficult to sequence the multi-

leaf collimator without approximations, leading to degradation in plan quality.  If leaf 

Figure I-8.  An example of the complicated geometries defined for (a) head and 
neck cancer and (b) pancreatic cancer treatment, and the highly complex 
beamlet intensity patterns that are created by inverse IMRT planning. 
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sequencing is accurate, then the machine sequence can be very complicated, possibly 

leading to errors in the delivery itself.  Beyond these potential errors, a complicated 

sequence takes the machine much longer to deliver, due to the fact the majority of beam 

area is blocked by the MLC at any one time during the delivery65.  This delivery 

inefficiency reduces the efficiency of the clinic and causes undesirable wear-and-tear on 

the treatment machine.  More importantly, it delivers extra dose to the patient due to the 

increased transmission and leakage of radiation from the head of machine and through 

the MLC during the lengthy delivery time.  This extra dose can increase the risk of 

inducing secondary malignancies66-68 .  In addition, prolonging the time it takes to deliver 

a fraction of treatment may have a negative impact on tumor control by decreasing the 

effective dose rate69-71. 

 

I.D.  Review of IMRT Complexity Reduction Research 
The above issues have lead to a variety of possible improvements to the way IMRT is 

planned, sequenced and eventually delivered.  The IMRT complexity problem has been 

addressed at points both during and after the optimization process.  Most early research 

was aimed at developing leaf sequencing algorithms that improved the agreement with 

optimized plans and maximized delivery efficiency.  In many cases these have been 

competing goals, and much work in the area has been focused on a compromise 

between the two72-76.  Because of their use of discrete intensity levels and improved 

efficiency, newer leaf sequencing algorithms can produce accurate deliveries with many 

fewer MU than the original algorithms.  However, if there is unwanted modulation or 

noise present in the planned fields, leaf sequencing is not designed to remove or correct 

for these issues.  The presence of high intensity peaks and large beamlet to beamlet 

fluctuations in the field, while deliverable, still require long times and many MU to deliver.  

Filtering and smoothing of the optimized intensity maps has also been applied during the 

sequencing process to help improve delivery efficiency.  However, the utility of post-

optimization smoothing is limited because it can quickly degrade plan quality.  Iterative 

smoothing is usually necessary to minimize the loss of necessary modulation.65,77  Sun 

et al. have introduced a smoothing algorithm based on the location of the regions of 

interest so that only beamlets away from target and normal tissue interfaces and overlap 

regions are smoothed78.  Coupled with re-optimization of segment weights, this method 

has shown an ability to reduce MU significantly in brain and prostate cases, although its 

utility is limited in more complicated geometries.   
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Since post-optimization interventions have limitations due to their potential 

negative effects on plan quality, several other methods have been developed to 

decrease IMRT complexity during the optimization process.   There have been two 

distinct approaches to incorporating interventions inside the optimization loop.  The first 

is incorporation directly into the objective function, and the other is applying the 

interventions after each cycle or iteration.  Systems that smooth at each iteration without 

taking into account the effect of the smoothing procedure on the objective function value 

are generally incapable of distinguishing between desirable and undesirable gradients, 

thus likely degrade the plans in areas where gradients are necessary65,79.  Webb et al. 

have shown that median filtering (replacing the center beamlet value in the smoothing 

window with the median beamlet value in that window) during the optimization process 

could improve delivery efficiency without significant degradation to the plan cost value or 

DVHs in simple geometries, but the method resulted in unacceptable plan degradation in 

more complex geometries80.   

An alternate method that is now widely used is the direct optimization of the 

shapes and weights of the actual segments that will be delivered81,82.  This technique, 

called direct aperture or direct segment optimization, can be implemented in several 

different ways with varying segments per beam.  The advantages are fewer segments 

and improved delivery efficiency.  However, irregular segments are possible and can still 

be subject to delivery errors and artifacts.  In addition, there have not been any fair 

comparison studies published between the direct aperture methods and full intensity 

map modulation.  Some preliminary studies suggest that direct aperture methods may 

not be able to satisfy the tight planning constraints of complex cases to same dosimetric 

level as full intensity modulated plans. 

 Applications that can reduce modulation as a part of the cost function can be 

effective at improving delivery efficiency without adversely affecting the plan quality.  

Spirou et al. have presented a comparison of smoothing inside and outside of the cost 

function.  They found that smoothing as part of the cost function is superior in terms of 

producing sharper dose gradients, better dose homogeneity, and better critical organ 

sparing, especially for more complex cases79.  However, the filtering operation was only 

applied in the direction of MLC travel, which can cause undesirable fluctuations in the 

direction perpendicular to the MLC travel.  A disadvantage of incorporating smoothing 

into the cost function is a difficulty in assessing the tradeoffs between the smoothness 

criteria and the target and normal tissue objectives.  For example, despite inclusion into 
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the cost function so that “the filtering operation is a relatively small perturbation to the 

parameter estimation process,” Llacer et al. shows that filtering can deteriorate the PTV 

coverage83.   

The IMRT complexity problem lacks a solution that adequately and 

simultaneously addresses the problems of planning efficiency, delivery accuracy and 

efficiency, and geometric robustness, while maintaining the high dosimetric quality and 

benefits of full intensity modulation.  Since the optimization engine does not care about 

the features of the intensity distribution beyond meeting the objectives, it is unknown 

whether or not there are simpler fluence patterns that could achieve similar dosimetric 

results.  Optimization problems can be nearly degenerate, and in the case of IMRT, that 

means that there may be many beamlet patterns that can achieve almost the same 

minimum cost value.  This dissertation is focused on (i) investigating how much beam 

complexity is necessary, and aims to (ii) develop methods to control and minimize beam 

complexity, while still achieving the superior dosimetric performance possible with 

intensity modulation. 

 

I.E.  Dissertation Overview 
This chapter has introduced radiation therapy and more specifically, inverse-planned 

intensity modulated radiation therapy and some of its potential limitations.  Although 

IMRT is an important treatment modality in radiation oncology, the fundamental feature 

of IMRT—intensity modulation—can lead to several negative characteristics. Before 

trying to remedy these issues, we review some of the known sources of beam 

complexity and try to identify the extent to which factors such as point sampling, the 

optimization method, and other parameters affect beam complexity.  Chapter II 

discusses in more detail the consequences of beam complexity, including its effect on 

delivery efficiency and accuracy, geometric sensitivity, and radiation biology.  We also 

include a  survey of some of the known sources of excessive beam modulation and 

identify and study several suspected causes of modulation. 

Chapter III presents a new method to reduce the scale and complexity of the 

IMRT problem by optimizing mathematical surfaces instead of individual beamlet 

weights to represent the beam.  Our implementation of this surface or basis function-

based optimization for 3-D inverse IMRT planning is presented, and several examples 

are used to characterize basis function optimization and show its clinical potential—

especially in cases with simple-to-moderate levels of geometric complexity.  
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Chapter IV returns to the beamlet paradigm to study the effect of placing new 

maximum intensity restrictions on beamlets or using modulation penalties during 

optimization.  Placing maximum intensity restrictions on beamlet values during 

optimization prevents the optimization engine from allowing single beamlets to reach 

very high intensity levels (which decreases the delivery efficiency).  Since beamlet 

restrictions are not necessarily a comprehensive solution to the IMRT complexity 

problem, we have developed several other cost function components, or costlets, that 

can be used to penalize modulation during optimization.  Costlets that filter the IMRT 

beam and penalize the difference between the original and filtered beam and a costlet 

that penalizes an overall measure of modulation are studied.  Chapter IV includes our 

design, implementation, and use of each of these modulation penalty costlets.   

Chapters V and VI focus on the theory, implementation, and application of a new 

diffusion-based smoothing method called adaptive diffusion smoothing (ADS).  Using an 

analogy to the diffusion equation, this method is unique in radiation therapy because it 

allows for preferential smoothing of different areas of the beam based on diffusion 

coefficients that are automatically defined for each beamlet.  These coefficients can be 

customized based on the characteristics of different IMRT problems, and thus the 

applications of ADS are widespread.  Chapter V discusses our development of the 

adaptive diffusion smoothing method and our implementation of this method into the 

optimization system infrastructure.  We then present a characterization of the method 

and demonstrate its potential for improving IMRT delivery efficiency with minimal 

dosimetric impact.  Chapter VI goes a step further to demonstrate several applications of 

ADS, including its use in accelerated partial breast irradiation, its use in promoting 

smoothness over key radiobiological targets where dose heterogeneity can be 

detrimental under geometric uncertainty, and its ability to help facilitate controlled 

decisions between smoothness and dosimetric goals with help of lexicographic ordering.   

Chapter VII discusses the clinical impact of reducing IMRT beam complexity, 

focusing on the effect that smoothing procedures have on treatment planning, delivery, 

geometric sensitivity, and adaptive therapy.  We study the improvement in treatment 

planning efficiency when using modulation penalties in the cost function, and the 

robustness of smoother plans to point sampling effects and geometric setup errors.  

Finally, we consider the potential impact of plan smoothness on the ability to correct for 

treatment course errors caused by geometric uncertainty. Specifically, we determine if it 
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is easier to re-plan treatments based on various forms of patient feedback when 

modulation penalties are used during optimization.    

Finally, Chapter VIII summarizes our work in reducing and controlling IMRT 

beam complexity and discusses some of the work that can be done to make further 

research advances in this area.  
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CHAPTER II. 
 

A REVIEW OF THE SOURCES AND  
CONSEQUENCES OF IMRT BEAM COMPLEXITY 

 

 
Intensity modulated radiation therapy has been quoted as “one of the most important 

technological advances in radiation therapy since the advent of the medical linear 

accelerator”1.  This excitement is a by-product of the potential to create plans with 

inverse IMRT planning techniques that would not be realizable with conventional or 

conformal planning techniques.  The number of degrees of freedom available in IMRT 

optimization has made it possible to partially automate the creation of complex plans that 

previously were not possible or required a great deal of time, skill and effort to plan with 

conformal techniques.  Such treatments and improvements include (i) simultaneous 

boost treatments to increase dose to high-risk sub-volumes of the tumor without 

additional treatment fractions, (i) sparing of critical normal tissues that are in close 

proximity to the tumor, and (iii) safe dose escalation of target volumes while maintaining 

acceptable doses to surrounding normal tissues.  While IMRT shows dosimetric 

advantages in the planning of many of these treatments, there is a disproportionate 

increase in the complexity of the beams created with inverse planned IMRT versus those 

that may be forward or inverse-planned with conformal therapy.  This large departure 

from accepted and understood conformal techniques has raised concerns about the 

possible consequences of IMRT beam complexity and questions about the sources of 

this complexity and the non-intuitive distribution of intensity that is observed in many 

IMRT beams.   

 This chapter first introduces the relevant details of treatment planning 

optimization system (UMOpt) used at the University of Michigan and throughout this 

dissertation.  Then, we review the clinical implications and concerns encountered when 

treating patients with highly modulated IMRT plans and investigate several sources of 

beam complexity to help determine whether the high degrees of modulation are truly 

necessary or could be an unnecessary artifact of the involved IMRT treatment planning 
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process.  The contents of this chapter are largely a review of previously published work 

regarding the potential disadvantages of highly modulated IMRT beams, and the 

reasons that IMRT beams can become complex.  We include examples of many of these 

ideas from UMOpt and also investigate in greater detail several potential sources of 

IMRT beam complexity that have not been previously studied. 
 
II.A. Overview of Treatment Planning Details and Methods 
All of the IMRT treatment plan designed in this dissertation are planned for a 6 MV linear 

accelerator (Varian Medical Systems, 21EX) with 120 leaf multi-leaf collimator (MLC) 

equipped with 0.5 cm width central leaves and 1 cm width outer leaves.  Treatment 

planning setup and execution is performed in the in-house developed treatment planning 

and optimization systems at the University of Michigan.  These software packages, 

UMPlan and UMOpt2-8, give us a unique opportunity to study beam complexity in IMRT 

because they are not the usual commercially designed “black box” systems that are 

used for treatment planning and optimization in most treatment centers.   

All imaging datasets and registration coordinate transformations are managed by 

UMplan.  Contouring and surface generation of the important regions of interest are 

performed in UMPlan along with beam placement and the definition of the beamlet grids.  

The placement of points is done with another in-house program called Points.  This 

program is used to manage the discrete point placement in the regions of interest that 

has been contoured in UMPlan.  Boolean operations can also be used to combine the 

UMPlan structures to make regions of interest in Points.  Once the beamlet grids and 

points are defined, the large dose-to-points matrix is calculated.  Currently, a 

convolution/superposition dose calculation algorithm derived from the work of Mackie et 

al.9 and subsequently optimized in house for beamlet calculations is used to calculate 

the dose to each point from each unit intensity beamlet.  This dose data provides the 

input to the UMOpt optimization software.  Inside UMOpt, the cost or objective function is 

designed and the beamlet weight optimization is performed.  As mentioned in Chapter I, 

a summary of the different cost function components available in UMOpt is given by 

Kessler et al.7  UMOpt supports the specification of dose-based and volume-based 

metrics as well as different radiobiological models.  Several different optimization 

algorithms have been implemented in UMOpt to minimize the weighted sum cost 

functions designed in UMOpt, including simulated annealing (a stochastic algorithm) and 

the quasi-Newton method (a gradient descent algorithm).  These two methods are 
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discussed in more detail at the end of this chapter.  UMOpt also employs a sequential 

quadratic programming algorithm to plan cases according to set priority levels instead of 

using a weighted-sum cost function.  This capability is discussed in Chapter VI.   

Leaf sequencing of clinical IMRT plans is done for the static or segmental 

method of delivery.   Our static multi-leaf collimator (SMLC) leaf sequencer is an in-

house application based on the method reported by Bortfeld et al.10.  Delivery sequences 

allow up to 250 segments per beam, with the goal of achieving a correspondence 

between planned and delivered intensities of 1 %.  Our leaf sequencer does not aim to 

minimize the number of segments or delivery time in an effort to improve deliver 

efficiency.  This is partly due to the fact that Varian linear accelerators can efficiently 

deliver a large number of segments.  Treatment machines developed by other 

manufacturers can be much more limited by the number of segments they can deliver in 

a reasonable amount of time.  A final 3D dose calculation of the optimized plan can be 

performed in UMPlan using the optimized intensity maps or the data from the sequenced 

segments using the same convolution/superposition algorithm using from the point dose 

calculations. 

  
II.B.  Consequences of Highly Modulated Fields 

The full potential of combining inverse planning and intensity modulation was far from 

well understood when the technology started to be explored.  First, the careful 

placement of beams in 3D conformal therapy to spare important organs was no longer a 

necessity because the optimization program was expected to simply “turn off” the 

beamlets that would intersect the normal tissue.  Therefore, beams could be aimed at 

the target from a variety of new directions.  In order to take full advantage of this new 

capability and also to see what the true potential of intensity modulation could be, users 

planned IMRT cases with multiple beams equally spaced around the patient.  In most 

cases, planners started with 9 beams—even in geometries that were normally treated 

with 3 or 4 beams.  Right away, this increased the potential complexity of the plans 

compared to conformal therapy.  There was concern about spreading so much extra 

dose around the patient instead of from only a few directions.  Then, when planners 

analyzed the optimized beamlet patterns, they found complex patterns of intensity that 

were non-intuitive compared to conformal therapy.  Beam complexity was present in the 

form of both high intensity spikes and seemingly random fluctuations in the beam 

intensity patterns.  The complexity of some of these intensity patterns was called into 
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question by physicians and physicists alike.  There was and is concern that treating 

patients with highly modulated intensity patterns may have negative consequences, 

such as inefficient and inaccurate treatment deliveries, increased sensitivity to geometric 

uncertainties, and possible biological risks arising from increased leakage dose and 

prolonged fraction times.11-13  Much research effort has been spent analyzing the 

implications of highly complex IMRT fields, and it is unnecessary to reproduce that work 

here.  In fact, previous research in this area serves as motivation for controlling the 

complexity of IMRT fields, which is the overall aim of this dissertation.  Therefore, a brief 

survey of published work on the consequences of highly modulated fields will be 

summarized below, along with some practical examples generated with our radiotherapy 

IMRT optimization system, UMOpt. 

 
II.B.1. Delivery Accuracy 
One of the potential disadvantages of highly complex IMRT fields is the possibility for the 

delivered fields to vary significantly from the planned fields.  Possible scenarios that 

could lead to this kind of problem include (i) approximations made during the leaf 

sequencing process that converts the beamlet intensities into a series of segments that 

can be delivered by the treatment machine and multi-leaf collimator (see Chapter I), (ii) 

delivery errors which occur due to complex delivery sequences, and (iii) delivery artifacts 

that occur but are not modeled by the beamlet dose calculations.  

 As we discussed in Chapter I, leaf sequencers cannot always perfectly translate 

the planned intensity patterns into sequences that can be delivered by the machine.  In 

addition, some leaf sequencing algorithms incorporate filtering or smoothing procedures 

that can degrade the quality of the IMRT solutions.  There are leaf sequencing 

algorithms that can accurately sequence even very complex intensity patterns, and plan 

degradation can be lessened by using sequencers that do not allow excessive 

approximations or smoothing during the sequencing process14,15.  Unfortunately, these 

more accurate sequencing algorithms can further reduce the delivery efficiency of IMRT 

fields and lead to potential complications that will be discussed in Section II.B and II.C.  

Leaf sequencing algorithms that simultaneously minimize (i) the difference between the 

planned and sequenced dose distribution and (ii) the monitor units and time required for 

delivery are available15-17.  These algorithms may approach the current limit of what can 

be done solely inside the leaf sequencing process to improve delivery accuracy and 

efficiency without affecting the dosimetric quality of the plan. 
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 Errors that can occur during the delivery of an IMRT field vary depending on the 

delivery method chosen.  In step-and-shoot delivery, delivery errors include the 

“overshoot” effect18, missed segments, leaf position errors, redistribution of the monitor 

units over different segments than intended, and leaf motion during delivery19.  The 

overshoot effect, which results in an over- and under-dose in the first and last segments 

of the delivery, respectively, is not caused by excessive modulation, but by a delay in the 

MLC controller, and can be corrected to a certain degree20. However, the less 

predictable errors, such as leaf position inaccuracies during the segment sequence and 

missed segments are exacerbated by the use of the high dose rate (600 MU/min), high 

segment numbers, and low dose/segment values that are generally required to treat 

complex IMRT plans.  Stell et al. have evaluated the delivery log-files for 91 SMLC IMRT 

plans and found that (i) MU errors increased as a function of dose rate, and (ii) the size 

of MU errors increased with the number of segments and dose rate21.  In addition, for 

plans delivered at 600 MU/min, they reported that between 5 % and 23 % of the plan 

MUs were delivered during leaf motion that exceeded a 1 mm position tolerance.  These 

types of errors tend to be difficult, if not impossible, to account for before treatment. 

 In dynamic IMRT delivery, most errors stem from the finite capabilities of the 

MLC controller and motors.  There are complex interactions that deal with the leaf 

acceleration and velocity and corrections to leaf positions executed by the MLC 

controller.  These positional errors lead to fluence errors that tend to be larger for higher 

MU treatments and higher intensity gradients22.  In addition, dynamic sequences 

generally require approximately 20 % more monitor units but less time to deliver than 

static sequences23,24.  The dangers of low delivery efficiency in radiotherapy are 

discussed in sections II.A.2 and II.A.3.  
 An example of a delivery artifact that can occur, but is not modeled during the 

beamlet dose calculation is a partial underdosing under the “tongue” region of the MLC.  

This occurs due to the tongue and groove interlocking mechanism between parallel 

leaves on certain type of MLCs.  When the leaf with the “tongue” is extended into the 

field without the leaf with the “groove” region, the area of the field under the tongue is 

partially blocked.  Figure II-1 shows an example of this so-called “tongue and groove 

effect”.  Figure II-1(a) shows a film measurement of an IMRT beam used to deliver 

prostate radiation therapy, (b) shows one delivery segment used in the field delivery, and 

(c) shows the dose difference display between convolution calculations of the field and 

the film measurement (calculations – film).  In (c), several apparent areas of underdosing 
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can be seen in the same area where single leaves are extended across the field to make 

a complex segment.  This is a common occurrence in IMRT delivery due to the complex 

segments that must be used to deliver the highly modulated beams.  In IMRT, where 

strict localization of the patient is necessary, these regions of underdosing over the 

tumor volume could be a cause for concern if they are consistently in the same region of 

the tumor over a course of treatment.   

  The dosimetric effect of delivery artifacts, such as the tongue-and-groove effect, 

can be analyzed by recalculating the IMRT plan using data about the actual delivery 

sequence to be used in the plan.  However, correcting for the dose discrepancies 

caused by the delivery artifacts challenging.  For example, if reoptimization of the 

beamlet intensities is required, the delivery sequences can change and introduce new 

artifacts.  To some extent, these artifacts can be minimized by better leaf sequencing 

algorithms, but this may require an decrease in delivery efficiency25-27.  Luan et al. have 

presented an algorithm to reduce tongue-and-groove errors, but this algorithm can 

increase the number of segments and delivery time by up to 30 % and introduce other 

unwanted approximations27.  Kamath et al. and Que et al. have also shown that the 

removal of tongue and groove error through leaf sequencing can significantly increase 

the number of segments required to deliver each IMRT field25-27.    

 
 

 (a) (b) (c) 
Figure II-1. An illustration of the tongue and groove effect that occurs in IMRT 
beam delivery.  (a) A film measurement of an IMRT beam, (b) a segment of the 
delivery with leaves going across the width of the segment, and (c) a dose 
difference display of the calculations minus the film that shows underdose in the 
“tongue” region of the MLC. 
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II.B.2.  Treatment Delivery Efficiency 

As mentioned in the previous section, complex intensity patterns require complex leaf 

delivery sequences.  These complex sequences or trajectories are comprised of 

numerous segments ranging in size and shape or numerous leaf starts, stops, and 

accelerations.  Due to the high amount of radiation that is blocked by small and irregular 

segments, the linear accelerator must be in operation for a relatively long time to deliver 

the prescription dose compared to delivering the same dose with an open field.  This 

means that IMRT treatments require more monitor units to deliver the fields as well as 

longer delivery times.  As an example, Figure II-2 displays a variety of beamlet patterns 

for a 10 x 10 grid of 0.5 x 0.5 cm2 beamlets.  The beam on the left is a uniform beam of 

intensity 10, and the remaining beams have mean intensities of 10.  The required MU 

and time for static MLC delivery are shown below each beamlet pattern.  The times 

shown are in minutes and are conservative, but relatively accurate approximations of the 

delivery time from the leaf sequencing process.  There is nearly a 1000 MU increase 

from a uniform beam to a beam of random intensity.  These results agree with work 

done previously by Mohan et. al.,12 which suggests the need to filter IMRT fluence 

patterns to improve delivery efficiency, but demonstrates the possible degradation that 

can occur in the dosimetric quality of the plan due to filtering the intensity profile. 

 The consequences of inefficient treatment delivery go far beyond just the simple 

increase in time required to treat each patient and the extra wear on the treatment 

machine and multi-leaf collimator.  More importantly, the whole body dose delivered to 

the patient due to leakage and scattered radiation increases with MU, and the prolonged 

time required for each fraction delivery can both have radiobiological implications, which 

are discussed below. 

Figure II-2.  An illustration of the decreasing delivery efficiency of IMRT fields as they 
become more complex.  The MU required for step-and-shoot delivery and a 
conservative approximate time in seconds for each delivery are shown.   

MU 249 299 473 978 1221
Time 0.41 0.53 0.82 1.67 2.44

20

10

0
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II.B.3.  Radiobiological Implications 
Two distinct potential risks that are discussed when it comes to the complexity of IMRT 

beams.  The first is the possibility of an increased risk of inducing a secondary cancer 

due to the increased whole body dose delivered to IMRT patients compared to 

conventional therapy28,29.  As mentioned previously, this increased dose is a result of 

increased leakage and scattered radiation that arises from the additional monitor unit 

requirements of complex IMRT treatments.  Hall has reported that the incidence of 

secondary cancers in survivors could double with IMRT treatment compared to 

conventional treatment28. He also points out that such a doubling would be unacceptable 

in pediatric patients, due to the already high incidence of secondary cancers observed in 

that population.  Kry et al. have shown that the secondary cancer risk is highly 

dependent on the treatment energy used in IMRT as well as the treatment machine 

manufacturer and technique.  However, the relative risk was always higher with an IMRT 

technique in the prostate compared to a conventional treatment because of the large 

increase in MU requirements29.   

 Additional concerns arise from the uncertainty of the radiobiological effect of 

prolonging the delivery of single fraction.  For tumors that repair sub-lethal damage 

quickly, the tumor control probability (TCP) could decrease as the effective dose rate 

decreases.  Wang et al. have shown that the time required to deliver a single fraction of 

IMRT may significantly decrease cell killing in tumors with small α/β ratios or short tumor 

repair half-lives30.  They found that a 20 minute increase in delivery time for a prostate 

cancer case could decrease the TCP from 95 % to 73 %.  Paganetti reached similar 

conclusions based on in vitro irradiation of a variety of different cancer cell lines, 

demonstrating the need to either reduce IMRT delivery time or compensate for the loss 

in tumor control31.  Dose corrections to account for loss in biologically equivalent dose 

due to prolonged IMRT fractions were also suggested by Fowler et al. after in situ review 

of tumor repair half-lives in humans and animals32.   
 

II.B.4.  Geometric Uncertainty 

In addition to requiring more time and MU to deliver, highly complex IMRT patterns may 

also suffer drawbacks relating to geometric sensitivity.  Because of their conformal 

nature and high spatial modulation, IMRT plans tend to be much more sensitive to small 

geometric setup errors and internal patient motion than their 3D conformal counterparts. 
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Plans that include high gradient fluence areas may be even more sensitive to geometric 

uncertainties33. Another concern is that the motion of the MLC combined with internal 

motion could result in parts of the tumor being entirely missed in some fractions34.  Seco 

et al. have demonstrated that segments that deliver only a few MU, which are common 

in complex IMRT treatments, are at an increased risk of this so-called interplay effect35.  

Duan et al. have demonstrated that the dosimetric error observed in IMRT can approach 

50 %, and that the dosimetric error increases more rapidly in beams with high intensity 

gradients than those dominated by more low intensity gradients across the field.   

 Most studies conclude that dosimetric errors lessen as beam complexity 

decreases, and the number of beams and fractions increase.  However, significant 

concerns about underdosing aggressive tumor regions in individual fractions still remain.  

Tomé and Fowler have shown that underdosing of greater than 10 % of the prescribed 

dose in tumor volumes as small as 1 % can degrade the probability of tumor control36.  

In addition, as more research is done on hypofractionation protocols, the geometric 

sensitivity of complex IMRT fields becomes even more significant.  This leads to further 

concerns relating to radiobiology, including a possible loss in tumor control probability if 

parts of the tumor receive much less than their intended dose.  Alternately, nearby 

organs-at-risk could also receive more dose than planned.  While the impact of 

geometric sensitivity on normal tissues is complicated and depends on the treatment site 

and organ motion characteristics, the use of less complex fields should make it easier to 

predict, model, and account for these effects. 

 

II.C.  Sources of IMRT Beam Complexity 
While the consequences of complex intensity patterns have been addressed in many 

studies, the underlying sources of IMRT beam complexity have been largely overlooked.  

A potential source of IMRT beam complexity that has been assumed, but not studied is 

the point sampling density of the regions of interest.  Two other potential sources that 

have been suggested previously are the degeneracy of the optimization problem, and 

the optimization algorithm and objective function structure.  In this section, we will (i) 

investigate the effect of discrete point sampling on IMRT beam complexity, (ii) review the 

literature and demonstrate examples of the degeneracy of the optimization problem, and 

(iii) review the literature and further study the impact of the optimization algorithm, 

optimization parameters and optimization cost function on beam complexity.  
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II.C.1.  Point Sampling 
High intensity and high frequency fluctuations may be a result of the discrete IMRT 

problem definition.  In other words, the use of beamlets and point or voxel 

representations of anatomical structures (and the objectives) creates specific instances 

in which certain beamlet values can be exploited to cause improvements in the single 

objective function value for that instance of the problem.  However, when the problem is 

changed slightly due to geometric uncertainty (or even point resampling), the complex 

plan may not be very robust.  The following sections analyze the effects of both 

undersampling and random sampling on the complexity of IMRT fields.  

 

II.C.1.1. Point Sub-Sampling   
An investigation was performed on a test case (Figure II-3) to analyze the impact of point 

density on the complexity of the IMRT beam patterns.  The test case geometry closely 

resembles the IMRT benchmark phantom, although an additional organ-at-risk (OAR2) 

has been simulated.  The non site-specific IMRT benchmark has been accepted by all 

National Cancer Institute (NCI) funded cooperative groups and quality assurance offices 

as a minimum standard for an institution to be credentialed for use of IMRT in clinical 

trials.  For this study, points were distributed in the phantom regions of interest at an 

Figure II-3. The modified IMRT benchmark phantom designed for IMRT validation and 
testing. 
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average voxel size of .015 cm3 using a quasi-random point distribution algorithm  Then, 

for a series of optimization runs, the points were downsampled by factors of 2, 3, 4, and 

5.   

 The results of the optimized cases were analyzed according to dosimetric quality 

(dose-volume histograms or dose metrics), delivery efficiency (monitor units), and 

measures of beam modulation and beam similarity.  To give a measure of the beam 

modulation that is not dependent on the monitor units or leaf sequencing algorithm, we 

have developed a metric called the plan intensity map variation (PIMV), which is a 

measure of the overall modulation of the plan: 

 

        
, 1 1,1 1

1 1 1 1, 1 1, 1

...
PIMV 1 1

2 2

bN jk j k jk j kJ K

n j k jk j k jk j k

I I I I

I I I I

+ +− −

= = = + + + −

⎛ ⎞⎡ ⎤− + − +
⎜ ⎟⎢ ⎥= ⎜ ⎟⎢ ⎥− + −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∑ ∑∑ . (II.1) 

 

Here, Nb is the number of beams in the plan, J is the maximum number of beamlets in 

the direction parallel to the motion of the MLC, K is the maximum number of beamlets in 

the direction perpendicular to the motion of the MLC, and Ijk is the intensity of the 

beamlet at the (j,k) grid position.   

In addition to measuring the overall field modulation, it was also important to 

determine the extent to which the different point sampling parameters affect the 

optimized beamlet intensity pattern relative to the fully sampled beams.  For a measure 

of the similarity between two intensity maps, the correlation coefficient for each intensity 

grid with respect to another optimized intensity grid can be calculated.  Thus, for one 

beam, given an optimal intensity map A, and another optimal intensity map B, we can 

define the correlation coefficient as,  
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where j and k are the dimensions of the intensity map, IX,jk is the intensity of grid element 

(j,k) for plan X, and  XI  is the mean intensity of grid IX.  The correlation coefficient may 

vary from -1.0 to 1.0.  A value of 1.0 means that the two patterns are perfectly linearly 
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and positively correlated, while a value of -1.0 means that the two patterns are perfectly 

linearly and oppositely correlated.  A high absolute number means there is a high level 

of correlation, while a small absolute number represents a weak correlation. 

 The resulting beamlet patterns from the optimization of each of the sub-sampled 

cases are shown in Figure II-4.  Examination the beam intensity patterns reveals that the 

randomly appearing noise and modulation of the patterns increases as fewer points are 

used in the optimization.  There are also fewer isolated high intensity peaks as the point 

density is increased, although regions of very high intensity are still present.  Therefore, 

it is possible that some of the isolated high intensity peaks seen in optimized IMRT plans 

are the result of inadequate point sampling.   

Figure II-4. The optimal IMRT beams as fewer points are used in the 
optimization.  Results are shown with the full sampling and when the number of 
points is decrease by factors of 2-5. 

Beam 1 Beam 2 Beam 3 Beam 4 Beam 5
No downsampling of Points

Points downsampled by 2 x

Points downsampled by 3 x

Points downsampled by 4 x

Points downsampled by 5 x
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 In Figure II-5, the relative plan intensity map variation, monitor units, cost, and 

average correlation coefficient of the beamlet patterns relative to the fully sampled plan 

are shown.  Here, the correlation coefficient approaches one (almost linearly, R2 = 0.96) 

as the sub-sampling is reduced to 1.  The PIMV and MU both exhibit a trend of reduced 

complexity as the sub-sampling goes to 1. However, a decrease in both from 

subsampling 2 to 3 shows that a strict trend in the complexity reduction is not seen.  The 

optimal cost value, as computed with the points in each case decreases very quickly, 

showing that a “better” plan can be created with fewer points.  This is a result of the plan 

geometry being undersampled and the optimizer being able to exploit that and minimize 

the cost through large beamlet fluctuations.  This is also evidenced by the perceived 

improvements in the dose-volume histograms for each plan in Figure II-6(a).  The DVHs 

show a clear increase in dose to the normal tissues when all points are taken into 

account.  This data shows that care must be taken to properly sample the critical regions 

of interest so that overdosing does not occur in the normal tissues.  To demonstrate this, 

Figure II-6(b) shows what the “true” DVHs would be for each of the subsampled cases.  

The optimal beamlet intensities from SS5 through SS1 are applied to the case with no 

subsampling (SS1), and the DVHs are recomputed using the full point sampling.  This 

Figure II-5. The plan intensity map variation, monitor units, cost and average 
correlation coefficient for plans with decreasing point densities relative to the 
most dense point sampling (1).   
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shows the degradation in plan quality that would occur if an insufficient number of points 

was used in the optimization and treated.  The PTV and OAR1 degradation would be 

critical, causing underdosing and loss of homogeneity in the target and a violation of the 

maximum dose objective in OAR1.  However, the changes seen in the remainder of the 

normal tissues are much less significant and those DVHs \do not differ significantly from 

those shown in Figure II-6(a).   

 It is clear that undersampling the points give the optimizer a false and simplified 

representation of the geometry, which makes it easier to achieve the objectives.  The 

result is an increase in modulation as the optimizer exploits the reduced point density by 

allowing extreme fluctuations from beamlet to beamlet.  In systems where the point 

density cannot be controlled, serious dosimetric discrepancies are possible, and the 

plans may also be more sensitive to geometric changes due to the high intensity peaks 

and randomness that appear in the intensity patterns.  These features of the optimized 

beams stem from the fact that the system can exploit the sparse point placement in 

reduced point densities to decrease the objective function value.  Thus, if point sampling 

can be controlled, importance should be placed on sampling the PTV and other 

structures within the fields with the greatest point density and so on until the least 

important structure.  It is also very important to realize that the “best” plan from the 

 (a) (b) 
Figure II-6. (a) The optimal DVHs for plans using increasingly fewer points in the 
optimization, and (b) the true DVHs for each of the subsampled plans when the 
intensity patterns are evaluated using the full sample of points. 
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optimizer may not be the true optimal plan because of undersampling.  Unfortunately, 

undersampling is common in cases with large fields, such as head/neck patients.   

 In the remaining work in this dissertation, the density of point sampling was not 

sacrificed to improve the optimization results or speed.  The pointed density was kept as 

high as possible within the constraints of the system to ensure the integrity of the results.  

 

II.C.1.2.  Random Point Sampling   
An investigation was performed  on the phantom shown in Figure II-3 to determine how 

much the optimized intensity patterns and dosimetric results are affected by different 

random point samplings.  To do this, five identical cases were created that differed only 

in point selection.  All points were defined using a quasi-random point sampling 

algorithm and our clinical recommendation of average voxel size (0.027 cm3) in each 

region of interest.  After beamlet calculations were performed, each of the plans was 

optimized with an identical quadratic cost function using the quasi-Newton optimization 

algorithm.  No convergence criteria were used to ensure that the optimization process 

did not terminate prematurely (this is discussed more in Section II.B.3).  The optimal 

dose-volume histograms and beamlet patterns for each instance of point sampling are 

Figure II-7. Dose-volume histograms for the phantom when using 5 different 
random instances of point sampling in the structures (A-E). 
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shown in Figures II-7 and II-8, respectively.  The number of total monitor units required 

to deliver the treatment course, the plan intensity map variation, and the number of 

iterations required for full convergence are given in Figure II-9.  

 An inspection of the DVHs reveals that the results in each of the optimized cases 

are very similar.  Slight differences in the DVHs for the two OARs are observed for the 

difference instances of point sampling.  These differences are due in part to the small 

volume of OAR2, and the close proximity of OAR1 to the PTV.  Differences in point 

placement are not as likely to be masked by a large volume in DVHs, and point 

placement near the high dose region of the PTV could have an effect on the optimal 

doses.  It is also important to note that two plans could have the same cost while having 

very different DVHs.  For example, the OAR1 maximum dose and OAR2 mean dose are 

the highest priority objectives in those structures.  Therefore, slight changes in the 

“elbow region” of the OAR or in the general shape of the OAR2 DVH will not be 

important in the cost function.  The idea that plans can have a variety of different DVHs 

and intensity maps while maintaining the same cost level is an example of the 

degeneracy of the IMRT problem, which is discussed later in this chapter.   

Figure II-8. Optimized beamlet patterns for 5 different point samplings.  Beams 1-5 
are shown and each different point sampling is labeled A-E.   

Beam 1 Beam 2 Beam 3 Beam 4 Beam 5

Random Point Sampling A

Random Point Sampling B

Random Point Sampling C

Random Point Sampling D

Random Point Sampling E
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 Figure II-8 clearly demonstrates the effect that different instances of the point 

sampling can have on the beamlet intensity distribution.  While the overall contributions 

from each beam are similar for all five plans, the individual beamlet intensities are quite 

varied.  While all plans are highly modulated, the MU required for each plan can differ 

significantly.  This is shown in Figure II-9.  The MU required for these plans was 35480 

+/- 2570 MU.  The standard deviation is larger than the average fraction requirement of 

1010 MU, demonstrating the large effect that point sampling can have on the optimal 

beamlet distribution.  The PIMV was 16900 +/- 830, which is more consistent.  This 

demonstrates that even though plans can have a similar amount of modulation, the MU 

required can vary by a large amount.  The number of iterations required for convergence 

did not appear to have any effect on the modulation or MU. 

 In summary, the specific point sampling can be responsible for many of the small 

random fluctuations seen in the optimized beams, and can cause significantly different 

optimal beamlet patterns, as evidenced Figure II-8.  The average correlation coefficient 

between each of the different plans was 0.62 +/- 0.40, which is a relatively poor 

correlation based on previous experience.  The fluctuations shown are evidence that 

smoothing beamlet patterns in an intelligent way may reduce the complexity and 

possibly make IMRT solutions more robust to the placement of the points in the regions 

Figure II-9. Total monitor units, plan intensity map variation, and number of 
iterations to full convergence for plans that are identical except for different 
random point samplings of the regions of interest. 
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of interest.  In support of this, Figure II-10 shows the DVHs for all of the separately 

optimized IMBs evaluated using the random points defined in A.  The DVHs are almost 

identical, showing that the varieties of beamlet patterns shown in Figure II-8 produce 

almost identical results for the specific point sampling in A.  This demonstrates the 

extent to which the optimization system can exploit the specific point placement to make 

very small changes in the objective function value with no real clinical significance.   
 

II.C.2.  Degeneracy 
Several authors have contended that IMRT plans can be highly degenerate, leading to 

inefficiency in planning and a reduction in confidence that one has the “optimal” solution 
13,37.  Degeneracy in IMRT can present itself in several forms.  The first, which was 

discussed in the previous section, is when two different discretizations of the point 

samplings have different optimal beamlet intensities, but can achieve the same 

dosimetric result or cost function value.  The second, which is the more common 

definition of degeneracy occurs when there are several different solutions, or different 

intensity patterns for the same problem that can achieve the equivalent dosimetric 

results or cost function values.  An excellent discussion of this topic appears in Alber et 

al.13.  In summary, they conclude that most radiotherapy optimization problems are 
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Figure II-10. Dose-volume histograms for the phantom when the optimized 
beams from all point samplings are evaluated with the point sampling of A. 
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determined by the interaction of a small number of eigenvectors, meaning that in most 

areas of the beam, individual beamlet values do not have a large impact on the ability to 

minimize the objective function.  Thus, they conclude that IMRT problems with a large 

number of high resolution beamlets can be highly degenerate, resulting in very noisy 

IMRT profiles if nothing is done to prevent the degeneracy.  In addition, they note that 

the degeneracy problem may be more dependent on the objective function definition 

than the beamlets or optimization method. 

 Another common source of IMRT degeneracy is the use of parallel-opposed 

beams.  This simply means that the beam central axes overlap, but the beams come 

from opposite directions.  In this case, the beams can contain redundant capabilities and 

changes in the beamlet intensities in one beam correlate highly with necessary changes 

in the opposite beam.  Therefore, different combinations of the beamlet contributions 

from each of the beams could produce the same dosimetric results.   

 An example that illustrates both of the above forms of degeneracy is the 

tangential IMRT breast treatment shown in Figure II-11.  This beam arrangement is 

commonly used in breast therapy due to its ability to spare the heart and lung.  The 

beams are composed of 1 cm x 1 cm beamlets and optimized from a starting distribution 

of random beamlet intensities. 

 To show the degeneracy of the solution, the case was optimized from three 

Figure II-11. A tangential left breast IMRT treatment.  The left breast, heart, and 
left lung are shown in relation to the two beams. 
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different starting points.  Each was simply a different random distribution of beamlet 

intensities.  Figure II-12(a) shows the overlapping DVHs from each of the three 

optimized plans, demonstrating the dosimetric equivalence.  Figure II-12(b) shows the 

different intensity modulated beams from each case.  They have been lined up 

geometrically such that the circled regions roughly correspond to beamlets that would be 

affecting similar geometrical areas.  In some cases, the circled regions show differing 

contributions from each beam, but may add up to similar values.  On the other hand, 

some circled regions do not appear to follow any kind of trend, demonstrating that they 

are likely in areas that do not affect the objective function and can become noisy with no 

consequence (as Alber et al. suggest).  A quick comparison of the 3 sets of beams 

clearly demonstrates that many different beamlet patterns are dosimetrically equivalent, 

and that certain beamlets can vary by large amounts without affecting the dosimetric 

results. 

       (a)             (b) 
 
Figure II-12. (a) Dose-volume histograms for three different optimized breast plans 
starting at different random beamlet intensities, and (b) the corresponding beamlet 
distributions.  The violet circles and arrows represent points in the field that roughly 
cover the same geometry in both beams. 
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II.C.3.  Optimization Method and Objective Function 
It has been suggested that the three possible sources of unwanted “stochastic noise” in 

intensity modulated beams (IMBs) are the optimization technique, the cost function, and 

the definition of convergence of the cost function38.  In this section we review each of 

these issues and discuss them in the context of the optimization system, UMOpt, to 

determine the extent to which each may impact the complexity of IMRT beams.   

 

II.C.3.1.  Optimization Algorithm   

The choice of the optimization algorithm used to solve inverse radiotherapy problems 

depends significantly on the cost function characteristics.  The cost function is most 

commonly a collection of mathematically stated goals which are given importance 

weighting factors.  Each goal will then correspond to a penalty for not reaching the goal.  

The purpose of the optimization algorithm is to find the variables or beamlet intensities 

that minimize the total penalty or total cost of the cost function.  Depending on the shape 

of the cost function, this optimization problem can have multiple local minima, rather 

than one global minimum.    If substantially different local minima are present, a 

probability-based stochastic algorithm, such as simulated annealing, may be used to find 

the global solution.  Unfortunately, these algorithms can be extremely time-intensive, 

requiring an almost unmanageable number of iterations to reach the global solution.  If 

multiple local minima do not exist, or the local minima do not vary significantly from each 

other, a deterministic algorithm, such as a gradient-descent technique, is a much more 

efficient choice.  Deterministic algorithms are based on mathematics and rely on the 

problem and objective function to steer the search for a local solution.  These algorithms 

can quickly converge to a solution, which is a positive aspect for IMRT planning since it 

already consumes much more time and resources than conventional or 3D conformal 

radiotherapy planning.  In addition, deterministic algorithms have not been observed to 

introduce the additional “noise” into the intensity modulated beams that is seen when 

using a stochastic search method38.  

 The possible number of objectives that can be formulated into a cost function is 

fairly large, ranging from simple dose-based objectives to biological models of tumor 

control probabilities (TCP) and normal tissue complication probabilities (NTCP).  The 

use of dose-volume objectives given as “no more than x % of a structure can receive 

greater than y Gy” is also very common in the community.  While Deasy has proven the 

existence of multiple local minima when using dose-volume constraints39, several 
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authors have studied these local minima and concluded that they are not only rare, but 

also dosimetrically insignificant 40,41.  In addition, convex approximations to these dose-

volume objectives have been formulated and used successfully in gradient descent 

optimization algorithms.  These observations are very important because they suggest 

that the annealing properties of stochastic algorithms are not required to find the global 

minimum of radiotherapy problems—or at least a solution that is clinically equivalent to 

the global minimum.  This means that (i) more efficient gradient descent algorithms may 

be adequate for most IMRT planning, assuming that each new objective is proven to 

have either no or insignificant local minima, and (ii) the noise introduced into intensity 

modulated beamlet patterns by simulated annealing algorithms can likely be avoided.  

 In support of the degeneracy theory discussed by Alber et al., Llacer et al. have 

observed that even though the multiple local minima observed in radiotherapy plans 

show negligible differences in the dosimetric results of the plan, the optimal beamlet 

intensity patterns vary widely.  This evidence supports the assertion by Alber et al. that 

IMRT plans are degenerate, and some intervention should be taken to steer the 

optimization algorithm into a delivery-efficient plan.  This is also is evidenced by our 

breast optimization results in Figure II-12.   

 The role that the optimization algorithm plays in the complexity of the intensity 

modulated beams is studied briefly using an example case.  A simulated annealing 

algorithm versus a deterministic quasi-Newton method is used to optimize the IMRT 

benchmark-like geometry shown in Figure II-3.  In addition to the optimization method, 

the effect of the optimization convergence criteria and starting beamlet intensities on the 

optimal beam modulation are also studied.   

 In simulated annealing, several components dictate how the optimization process 

proceeds and when it stops.  These parameters include a step size and its bounds, the 

number of cycles and iterations performed, and the annealing criteria, which include a 

starting “temperature” and several other parameters.  The step-size is governed by a 

starting step-size, minimum step-size, maximum step-size, and step-size fraction.  The 

latter determines the step-size in the subsequent cycle.  Usually the step-size fraction is 

less than one so that the step-size slowly gets smaller in order to promote convergence.  

Each cycle is comprised of a certain number of iterations.  Each iteration randomly 

changes the weight of one beamlet and accepts or rejects the change depending on 

whether it improves the cost function or according to some probability set by the 

temperature.  At the University Michigan, a generally-accepted value for the number of 
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iterations per cycle is three times the number of beamlets.  The step-size and fraction 

can affect the time to convergence, but the major parameter that affects the point to 

which the plan is optimized is the number of cycles.  In this method, the number of 

cycles required to find the global minimum can be quite large, and it is difficult to 

determine when one is near the global minimum because cost may change very slowly 

in the final cycles due to the small-step size. 

 In the quasi-Newton method (one of the search algorithms employed inside 

UMOpt) there are two different convergence criteria.  The first, “factr” is a user-set 

tolerance in the termination test for the algorithm.  The iterations will stop when 
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where fk is the cost after the kth iteration and epsmch is the machine precision, which is 

automatically generated by the code. Typical values for factr on a computer with 15 

digits of accuracy in double precision range from 1e12 for low accuracy to 1 for 

extremely high accuracy.  The user can suppress this termination test by setting factr = 

0.  The second user-specified termination parameter, “toler”, is a double precision 

variable and will stop iterations when the following is met: 
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Here, pgi is the ith component of the projected cost function gradient with respect to the 

beamlet i.  Similarly, the user can suppress this termination test by setting toler = 0.  If 

both of these termination criteria are bypassed, then the optimization terminates when 

the line search cannot locate an adequate point after 20 function iterations.  This 

happens at a point where the roundoff error begins to dominate the computation. 

 The optimization trials that were run to show the effect of the optimization 

algorithm and its parameters on the complexity of the beams are listed in Table II-1.  The 

first comparison is one between plans optimized with quasi-Newton (QN) versus 

simulated annealing (SA).  Since the QN method has been shown to be adequate for 

radiotherapy problems by more exhaustive studies, we just show this comparison as an 

example.  The next plans analyze the effect of the QN convergence criteria (factr and 
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toler) on plan modulation starting from both uniform and random beamlet intensities.

 Optimization with the simulated annealing algorithm took several days, and in the 

interest of time, the optimization was terminated when the cost changed by less  than 

0.0001 over 100 cycles with reasonable step sizes.  A comparison of the SA and QN 

results is shown in Figures II-13 and II-14.  In Figure II-13, there is a slight increase in 

dose to the normal tissue with the SA algorithm, which could be due to premature 

stopping of the algorithm.  In the intensity modulated beams, it appears that the SA 

beams have more random noise and modulation, which is not a surprise due to the 

random search of SA and the previous results of Coolens et al.  Figure II-14 compares 

the values of the PIMV, MU, and cost for each of the methods.  These comparisons 

support the observation that the SA beams are noisier, with the PIMV and MU 

(especially) being higher in the SA plan.  The cost values are very similar, demonstrating 

Table II-1.  Optimization Trials for IMRT Benchmark Phantom
# Algorithm Start factr toler
1 Simulated Annealing Uniform 0 NA NA
2 quasi-Newton Uniform 0 0.0E+00 1.0E-01
3 quasi-Newton Uniform 0 0.0E+00 1.0E-02
4 quasi-Newton Uniform 0 0.0E+00 1.0E-03
5 quasi-Newton Uniform 0 0.0E+00 1.0E-04
6 quasi-Newton Uniform 0 0.0E+00 1.0E-05
7 quasi-Newton Uniform 0 0.0E+00 1.0E-05
8 quasi-Newton Uniform 0 1.0E+15 0.0E+00
9 quasi-Newton Uniform 0 1.0E+14 0.0E+00
10 quasi-Newton Uniform 0 1.0E+13 0.0E+00
11 quasi-Newton Uniform 0 1.0E+12 0.0E+00
12 quasi-Newton Uniform 0 1.0E+10 0.0E+00
13 quasi-Newton Uniform 0 1.0E+08 0.0E+00
14 quasi-Newton Uniform 0 0.0E+00 0.0E+00
15 quasi-Newton Random 0.0E+00 1.0E-01
16 quasi-Newton Random 0.0E+00 1.0E-02
17 quasi-Newton Random 0.0E+00 1.0E-03
18 quasi-Newton Random 0.0E+00 1.0E-04
19 quasi-Newton Random 0.0E+00 1.0E-05
20 quasi-Newton Random 0.0E+00 0.0E+00
21 quasi-Newton Random2 0.0E+00 0.0E+00
22 quasi-Newton Random3 0.0E+00 0.0E+00
23 quasi-Newton Random4 0.0E+00 0.0E+00
24 quasi-Newton Random5 0.0E+00 0.0E+00
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that there was not a problem with the QN method falling into a local minima.  The fact 

that the SA and QN plans are fairly similar, combined with the length of time required to 

optimize with SA, support the use of QN for routine IMRT planning to eliminate any noise 

that could be introduced due to the random SA search method.  

 d 

Figure II-13. Dose-volume histograms and intensity modulated beams for plans 
optimized with quasi-Newton and simulated annealing optimization algorithms. 
 

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Dose [Gy]

Vo
lu

m
e 

[%
]

 

PTV
OAR1

OAR2

Normal

Beam 1 Beam 2 Beam 3 Beam 4 Beam 5

Quasi-Newton
Simulated Annealing

Quasi-Newton

Simulated Annealing



54 

 The comparison between the two convergence parameters in the QN method 

revealed that they both perform similarly.  This is expected since the optimization 

method itself should proceed in the exact same way with only a different stopping point.  

We did not observe any inconsistent behavior with either stopping criteria.  Figure II-15  
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  (a)    (b) 
Figure II-15. Relative PIMV, MU and Cost for plans optimized with the given (a) Toler 
stopping criteria and starting at uniform beamlet intensities of 0 (dotted lines) or 
random beamlet intensities (solid lines), and (b) Factr stopping criteria starting at 
starting uniform beamlet intensities of zero.  All values are relative to the fully 
converged plans with starting intensities of zero. 
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Figure II-16. DVHs and beams for the series of plans optimized with increasing (a 
and b) Toler stopping criteria and starting at uniform beamlet intensities of 0 (dotted 
lines) or (c and d) random beamlet intensities, and (e and f) Factr stopping criteria 
starting at starting uniform beamlet intensities of zero.  
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summarizes the different optimization trials run to test the stopping criteria (# 2-20 in 

Table II-1).  Figure 15(a) shows the behavior of the PIMV, MU, and Cost at decreasing 

toler values when starting from uniform zero or random beamlet intensities, and Figure 

II-15(b) shows the same trends with decreasing factr value when starting from uniform 

zero beamlet intensities.  These figures demonstrate that (i) when starting from uniform 

intensities, the MU and PIMV both increase as the cost decreases toward the minimum 

value, and (ii) with a random starting point, the MU and PIMV decrease as the cost 

decreases to the final solution.   

Figure II-16 shows the DVHs and beams for the series of the plans in Figure II-

15.  Figure II-16(a) and (b) show that the DVHs improve as the uniform plan becomes 

more modulated, while (c) and (d) shows the opposite effect due to the random starting 

beamlet intensities.  Figure II-16(e) and (f) simply demonstrates the parallel behavior of 

toler and factr when the other is set to zero. 

 An analysis of the examples shown in Figures II-15 and II-16 shows that 

modulation can be reduced if the optimization is stopped before full convergence when 

starting from uniform beamlet intensities.  However, this premature stopping of the 

optimization algorithm can result is sub-optimal DVHs, and the degradation in the plan 

could be significant in terms of dose to the normal tissues.    
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Figure II-17. Dose-volume histograms for the phantom when the optimized 
beams from 5 different random starting points. 



57 

 Optimization trials 20-24 in Table II-1 compared the fully converged plans when 

starting for 5 different random starting intensities.  This comparison was meant to study 

the effect of the starting point on the optimal beamlet intensities, as well as to see 

whether there were multiple local minima or degeneracy observed in the beams.  Table 

II-2 shows the mean and standard deviation of the converged cost, MU, PIMV, and 

average correlation coefficient for the five optimization instances.  The cost value 

demonstrates that there are no significant local minima in terms of dosimetric quality, but 

the MU standard deviation shows that there is likely a large amount of degeneracy in the 

beamlet intensity patterns.  The PIMV varies by less than the MU, and correlation 

coefficient between the plans averages a fairly high correlation of 0.89.   

Cost MU PIMV CC
Mean 0.51 38791 18049 0.89

σ 0.01 2205 547 0.03

Table II-2.  Mean and σ of converged cost, MU, PIMV, 
and CC for 5 random starting beamlet intensities

Figure II-18. IMRT beams for cases optimized to full convergence from different 
starting points.  The uniform start is shown as a control for the 5 random starts. 

Beam 1 Beam 2 Beam 3 Beam 4 Beam 5
Uniform Start

Random Start 1

Random Start 2

Random Start 3

Random Start 4

Random Start 5
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 Figure II-17 supports the conclusion that no significant dosimetric local minima 

were observed in these five plans, and agrees with the much more exhaustive testing of 

local minima by other authors that was discussed earlier.  Here, the DVHs are very 

similar for all cases, while the beams in Figure II-18 actually vary by a large amount, 

especially near the edges of the field.  Therefore, in Figure II-19, we have plotted a 

beamlet difference map between each of optimal beams started from random intensities 

and the optimal beamlet patterns when started from uniform beamlet intensities.  This 

clearly demonstrates that the beamlets on the edge of the fields that do not overlap with 

the target are not a significant factor in determining the optimal cost.  To some extent, it 

also appears that the beamlets in the center of Beam 2 may not have a large effect of 

the cost function.  This supports the idea that IMRT problems are degenerate in the 

sense that there can be a variety of the beamlet patterns to reach the same cost 

because there are regions of the field that have a very minimal effect of the optimization 

process.  In this case, it appears that the randomness of the starting intensities is an 

Beam 1 Beam 2 Beam 3 Beam 4 Beam 5
Uniform Start - Random Start 1

Uniform Start - Random Start 2

Uniform Start - Random Start 3

Uniform Start - Random Start 4

Uniform Start - Random Start 5

Figure II-19. Beamlet different displays between the uniform start and each of 
the random starts.  The colors are cut off between -10 and 10 although the 
actual differences could be higher. 
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artifact in the optimized beams because the optimizer had no incentive to remove it.  

This is further evidence that beamlet patterns can be smoothed without affecting the 

dosimetric quality.  

 s 
II.C.3.2.  Objective Function   

The previous section highlighted the many objectives and goals that can be included in 

an IMRT cost function.  Inside UMOpt, the treatment planner can choose a variety of 

“evaluators” to help build the cost function.  Evaluators include minimum, maximum, or 

mean dose to a target or organ-at-risk.  UMOpt also supports the use of dose-volume 

and biological objectives such as generalized equivalent uniform dose (gEUD), normal 

tissue complication probability (NTCP), and tumor control probability (TCP).  Each 

evaluator can then be paired with a “modifier” in order to create a “costlet” that gives the 

penalty value for not meeting the intended objective.  Then, all of the costlets are 

combined to form the cost function or objective function.  A detailed study of the cost 

function components available in UMOpt is given by Kessler et al. 7    
 Due to the variety of possible costlets that can be created, the cost function in 

UMOpt can take on many different forms and levels of complexity.  The purpose of this 

section is not to analyze all possible cost functions, but to give several examples of the 

Table II-3.  Stepwise Brain Cost Function

Step Objective(s) Added at Each Step Weight
1 PTV1 Min Dose > 66.5 Gy 100

PTV1 Max Dose < 73.5 Gy 100
PTV2 Min Dose > 57 Gy 100
PTV2 % Vol > 63 Gy = 10 % 10
PTV2 Max Dose < 73.5 Gy 100

2 Optic Chiasm Max Dose < 55 Gy 100
Optic Nerves Max Dose < 55 Gy 100
Brainstem Max Dose < 60 Gy 100

3 Normal Tissue Max Dose < 63 Gy 10

4 Optic Chiasm Mean Dose < 0 Gy 0.001
Optic Nerves Mean Dose < 0 Gy 0.001
Brainstem Mean Dose < 0 Gy 0.001

5 Normal Tissue Mean Dose < 0 Gy 0.001

6 Replace Mean Dose < 0 Gy with Max Dose < 0 Gy 0.001
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effect that the cost function can have on beam complexity.  To demonstrate this, a brain 

IMRT case will be optimized in a stepwise fashion as outlined in Table II-3, recording the 

changes in complexity after set of costlets is added to the total cost function.  The final 

costlets that will be added have the purpose of reducing any unnecessary dose to the 

normal tissues.  A goal of mean or maximum dose < 0 Gy is unattainable in any 

structure near the target and is therefore given a low importance factor.  While the goal 

is to reduce the unnecessary dose to the normal tissues, both costlets perform differently 

and could affect the intensity patterns in different ways.  Next, the traditional dose-based 

cost function in Table II-3 will be a replaced by a generalized equivalent uniform dose 

cost function.  Equivalent uniform dose (EUD) is a metric that takes a heterogeneous 

dose distribution from a target or normal tissue structure and represents it by the uniform 

dose value that would have the same radiobiological effect42.  The generalized EUD is 

given by: 

 

 

1

1 a
a
i

i
EUD D

N
⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑  (II.6)    

 

where Di is the dose in the ith voxel of the structure, N is the total number of voxels, and 

a is a structure-specific parameter.  The parameter a is positive for normal tissues and 

negative for tumors.  Its value depends on the properties of the tissue, with a = -5 

representing a responsive tumor and a = -20 representing a resistant tumor.  For 

parallel-behaving normal tissues, a is near 1, and for serial-behaving normal structures, 

such as spinal cord, a is approximately 8.  To compare the use of our conventional cost 

function to one employing only EUD, we replaced all of the costlets for each structure by 

a single EUD costlet for each.  The values chosen are those values that are equivalent 

to the doses produced by the conventional cost function.   

 The results of the stepwise optimization in Table II-3 are shown in Figure II-20.  

On the left are the DVHs after each step of the optimization.  As each costlet is included 

in the cost function, the plan becomes more complex.  The addition of the fourth step, 

which asks for a minimization of the mean dose to the critical normal structures in the 

field creates competing interests between the target dose and normal tissue dose 

minimization.  This conflict increases the complexity of the solution, which can be 

observed by the intensity modulated beams on the right.   



61 

 Figure II-21 displays the effect that the different cost function components have 

on the plan intensity map variation (PIMV) and plan monitor units.  The beam complexity 

rises significantly, as expected, after step 4.  The shift from mean dose minimization to 

maximum dose minimization costlets (step 5 to 6) only slightly affects the plan DVHs and 

intensity modulated beams and PIMV.  However, the MU decrease slightly with the use 

of the maximum dose costlets.  This may be due to the fact that a decrease in the 

maximum dose decreases the maximum intensity of some of the beamlets, resulting in 

the need for slightly fewer MU.   

 Figure II-22 displays the difference in plan DVHs and intensity modulated beams 

when replacing the conventional cost function with an EUD-based cost function.  The 

result is a significantly smoother plan with less homogeneity in the targets and more low 

dose and less high dose going to the critical normal structures.  The MU required to 

deliver a 2 Gy fraction decrease from 991 to 299 MU.   In an effort to further improve the  

 

Figure II-20. The results from each step of the brain optimization outlined in Table 3. 
On the top left are DVHs for the first three steps of the optimization process and on 
the bottom left are DVHs from the final three steps.  Steps 5 and 6 compare the use 
of Mean vs. Threshold costlets to minimize normal tissue dose. 
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Figure II-21. The relative monitor units and plan intensity map variation after each 
step of the brain optimization outlined in Table II-3.  Steps 5 and 6 compare the use 
of Mean vs. Threshold costlets to minimize normal tissue dose. 
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EUD plan, each of the EUD costlets was increased by 5 Gy for targets and decreased by 

5 Gy by normal tissues.  The results, shown as EUD2, reveal the sensitivity of the EUD 

formulation and the danger in defining the cost function in an unconventional manner.  

The monitor units increase by an order of magnitude (2110 MU/Fx) and the DVHs are 

unreasonable due to the large PTV heterogeneity.  This also shows that it is very difficult 

to ascertain which types of cost function formulations may or may not promote smoother 

intensity patterns. 

 This chapter discusses how complex the IMRT planning process is, and 

demonstrates that many different parameters can affect the integrity of the planned 

IMRT fluence patterns.  The most important part of the IMRT planning is to ensure that 

the optimization process results in a high quality accurate IMRT plan.  Unfortunately, this 

high quality plan may be comprised of very complex IMRT beams that can have many 

negative implications.  Some of the negative implications of complex IMRT plans such 

as poor delivery accuracy can be improved by other methods, such as improving the leaf 

sequencing algorithm.  However, the actual complexity of the fields comes from a variety 

of sources including the discrete point sampling of regions of interest, the optimization 

method, and the objectives used to define the inverse planning cost function.  We have 

reviewed the consequences of IMRT beam complexity and shown several examples 

from our optimization system.  In addition, we have reviewed and investigated some of 

the known sources of IMRT beamlet complexity and also demonstrated that point 

sampling can also be a large source of IMRT beam complexity.  This chapter has shown 

that proper point sampling and use of a deterministic optimization algorithm can help to 

reduce beam complexity.  However, we have also shown that the majority of the 

modulation seen in IMRT fields is either simply from the plan trying to optimize tradeoffs 

between competing objectives, or from the degeneracy of the IMRT problem itself.  

Thus, reduction of IMRT beam complexity is a task that must be undertaken inside the 

IMRT planning system.  The remainder of this work will therefore focus on a variety of 

different methods that we have developed, implemented, and analyzed to control IMRT 

beam complexity inside the optimization process, while still maintaining the dosimetric 

advantages that IMRT was invented to produce.   
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CHAPTER III. 
 

REDUCING THE PROBLEM SCALE:   
OPTIMIZATION OF MATHEMATICAL SURFACES  

VERSUS INDIVIDUAL BEAMLET INTENSITIES 
 
 
III.A. Motivation 
In Chapter I, we described the large-scale optimization problem undertaken by planning 

intensity-modulated radiation therapy treatments, and in Chapter II we discussed some 

of the reasons why IMRT beams have a tendency, without intervention, to become 

discontinuous across a field and contain large intensity variations over small areas of the 

beam.  Due to the degeneracy of many IMRT problems, it is possible that the high 

degree of complexity observed in some beamlet patterns is excessive and not necessary 

for a high quality IMRT plan.  In fact, this complexity can result in lower quality IMRT 

plans in several areas, including treatment planning, delivery, and quality assurance.  

Thus, approaches to limit beam complexity have been pursued by many researchers, 

including beam smoothing1-6 and beamlet restrictions7. Some of our developments in 

these areas are discussed in Chapters IV and V.  Another possible method to reduce the 

unnecessary complexity of optimized intensity patterns is to explicitly reduce the degrees 

of freedom allowed in the optimization problem.  One strategy that can achieve this is 

the use of mathematical surfaces (instead of individual beamlets) to represent and 

optimize IMRT beams.  This technique allows for a potentially large reduction in the 

number of optimization variables and can prevent the optimized beamlet intensity 

patterns from becoming discontinuous, while still allowing for intensity gradients in 

regions where they are necessary to produce a quality IMRT plan.  Markman et al. has 

studied the use of basis function parameters to optimize and represent beamlet intensity 

profiles in 2D, and has demonstrated the potential for reducing beam complexity and 

planning time without adversely affecting plan quality.8 Their work was a proof-of-

principle using a simple 2D geometry with an approximate dose calculation algorithm.  
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This chapter discusses our independent investigation into the feasibility of basis function 

optimization for use in 3D inverse planning.  The first section highlights the theory of 

basis function optimization and the implementation of basis function optimization into our 

IMRT treatment planning optimization infrastructure.  The second section validates this 

implementation and studies several different basis function choices in a test phantom.  

Then, clinical examples in brain, prostate, and head/neck are presented. 

 
III.B. Methods 
III.B.1.  Theory of Basis Function Optimization 
As discussed in Chapter II, the most common form of IMRT optimization involves 

dividing each beam into a grid of smaller beams, or “beamlets”.  Then, the weights of the 

individual beamlets are found that minimize an objective function, f(b), where f can have 

many forms and b is the vector of beamlet weights.  A general form for f can be written 

as: 

 

  ∑
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 , (III.1) 

 

where M is the number of treatment planning goals, pm is the importance weight of goal 

m and fm is the objective function for goal m.  Most commonly, fm will be defined for a 

certain group of voxels that comprise a region of interest in the treatment plan, such as 

the planning target volume (PTV) or an organ-at-risk (OAR).  Most objective functions 

are dose-based; an example of a minimum dose target objective is: 
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where Nptv is the number of voxels in the PTV, dt is the minimum desired target dose, 

and di is the dose in the ith PTV voxel.  Similar dose-based objectives can be written for 

OARs. A variety of cost function forms in the UMOpt planning systems are given by 

Kessler et al.9.  The dose in each voxel is the sum of the dose contributions to that voxel 

from each beamlet defined in the optimization system, 
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where Dij is the dose to point i from beamlet j, bj is the weight of beamlet j, and J is the 

total number of beamlets in the plan.   

 The goal of the optimization algorithm is to find the vector of beamlet weights, b, that 

minimizes the total objective function value f = f(b).  Since beamlet dimensions usually 

coincide with the size of the leaves in the multi-leaf collimator on the treatment machine, 

they are generally defined to be on the order of 1 cm2 or less.  At the University of 

Michigan, linear accelerators with MLC leaves of either 1 cm or 0.5 cm width are used.  

Therefore, a typical 7 beam IMRT case with 5 cm by 5 cm beams and 0.5 cm2 beamlet 

will have a total of 700 optimization variables.  In larger treatment fields, such as those 

used in head-and-neck cancer, there can be well over 1000 beamlets.  As stated in 

Chapter II, this leads to a large number of degrees of freedom in an IMRT optimization 

problem and increases the probability of the plan being degenerate.  This can lead to 

increased “noise” in the beamlet profiles, resulting in inefficient treatment deliveries and 

many other potential complications (see Chapter II).  Therefore, to reduce the degrees of 

freedom and prevent “spikey” beamlet patterns, a smaller set of optimization variables 

can be used.  Increasing the size of the beamlets has been studied and found to be 

inadequate to meet the cost function goals at the field edges, as well as around 

interfaces between targets and normal tissues10.   

 Another way to reduce the number of optimization variables, while still preserving the 

possibility for slowly varying or steep gradients in essential areas, is to optimize the 

parameters, or coefficients for a mathematical surface instead of the individual beamlet 

intensities.  To represent this new optimization problem, the objective function can be 

written as a function of surface parameters, f(c) where c is a vector of function 

coefficients.  These coefficients are related to the individual beamlet values by the 

spatial location of each of the beamlets; the number of coefficients will depend on the 

surface or basis function set that is being used.  For instance, the intensity of the 

beamlet at the (x,y) spatial position of a beam can be given by: 
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Here, ci is the optimized coefficient for basis function gi(x,y).  An advantage to 

representing the beam as a linear combination of the basis functions is that the partial 

derivative, ∂ ∂b c , can be used to calculate the partial derivative of the cost function with 

respect to the basis function coefficients, f∂ ∂c .  This calculation is necessary to use 

the quasi-Newton optimization algorithm to optimize the coefficients.  Chapter II pointed 

out the advantages of this algorithm over stochastic algorithms such as simulated 

annealing in terms of speed and the fact that simulated annealing can introduce extra 

“noise” into the beamlet values.  The latter may not be problem with basis function 

optimization, but the increase in speed is very important for this technique to be feasible 

in the planning of clinical radiotherapy treatments. Thus, if b(x,y) is a linear function of c, 

then the cost function gradient with respect to the coefficients can be easily calculated 

by:  
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 There are variety of options for the number and structure of the basis functions, g.  

The number of basis functions chosen will depend on the complexity of patient geometry 

as well as the stringency of the cost function.  The number of basis functions to be 

optimized should be sufficiently smaller than the number of beamlets in order the realize 

the benefits of the reduced number of variables and degrees of freedom in the plan.  The 

main guideline for choosing a set of basis functions is, 
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or, in other words, the weighted coefficient sum of the basis functions must be equal to 

great than zero in the bounds of the beam coordinates, R.  This is a necessary 

requirement because the beamlet intensities must be equal to or greater than zero.  

Negative coefficients are acceptable so long as Equation II.6 is satisfied.  It is possible to 

reset the beamlet weights to zero if they are calculated to be negative, but this 

introduces errors into  the calculation of the cost function gradients in Equation III.5.  If 

the errors are small enough so that the gradient is still well approximated, then the 
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quasi-Newton algorithm may still perform well.  However, the gradients are poorly 

approximated, then it would  be necessary to use a non-gradient optimization algorithm 

(i.e. simulated annealing).   

 In general, we have identified two different approaches to choosing g: (i) Choose a 

surface function k(x,y) with pre-defined terms with leading coefficients that can serve as 

the optimization variables, or (ii) Choose a pre-defined set of local functions of finite 

support with fixed locations and optimize the amplitude of the functions so that a sum of 

the individual functions represents the optimal intensity map.  An example of (i) would be 

the optimization of a two-dimensional polynomial.  An example of (ii) would be a set of 

radial basis functions centered at different locations.  Both polynomials and radial basis 

functions are very commonly used in surface fitting.   In this work, we have used these 

two common basis sets to test the feasibility of basis function optimization for 3D IMRT 

planning.  (Note: implementation details on several additional basis function sets which 

were studied in a preliminary way are included in the Appendix at the end of this 

chapter).      

 
III.B.2.  Polynomial Basis Functions   
Polynomials are very common and widely-used fitting functions.  In this application, the 

polynomial term coefficients are optimized to result in a mathematical surface that can 

represent the spatial beamlet intensity.  Thus, the value of the beamlet at the (x,y) beam 

position can be defined as: 
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where c0 through c14 shown are the optimization variables for a 4th order polynomial 

basis function set.  Figure III-1 illustrates an example beam that could be made by using 

a 2nd order polynomial.  Polynomial functions are easily differentiable and are a simple 

choice to represent an IMRT beam.  However, Equation III.7 does not require that b(x,y) 

> 0 so this property must be applied separately during the optimization process.  This 

can adversely affect the accuracy of the gradient calculations used within the 

optimization process and therefore the method will also be tested with simulated 
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annealing to determine whether or not the gradient errors are large enough to adversely 

affect the performance of the quasi-Newton algorithm. 

 
III.B.3.  Radial Basis Functions   
A radial basis function (RBF) is defined as a real-valued function whose value depends 

only on the distance from the origin. They are commonly used in function fitting, time 

series prediction, and control.  Radial basis functions are also commonly used as basis 

libraries in artificial neural networks. For use in defining beamlet fluence patterns, simple 

Gaussian RBFs are defined on a grid across each beam, and the weights of each of the 

individual functions serve as the optimization variables.  An individual Gaussian RBF has 

the form: 
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Figure III-1.  An example of a 2D 2nd order polynomial that could be used to 
calculate the beamlet intensities.  Here c = [16.5 0.5 0 0.25 -0.15 0.05] in 
Equation III.7. 
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where a is the width, or dilation of the function, tx,i is the x translation and ty,i is the y 

translation of the basis function.  Figure III-2(a) displays a single Gaussian RBF centered 

at the origin, with a = 0.25 and an amplitude of 10.  In order to represent the IMRT beam, 

the amplitudes of individual Gaussian RBFs will be optimized and the spatial beamlet 

intensity can be represented by 
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where N is the number of basis functions and ci is the amplitude of the ith Gaussian RBF.  

In order to reduce the number of optimization variables, tx,I and ty,i are pre-determined 

before optimization so that positions of the RBFs are equally spaced across each beam.  

This means that that tx,i and ty,i lie on a uniform grid across the beam.  In order to 

maintain b(x,y) as a linear function of the optimization variables, the dilation of the basis 

functions, a, is also held constant for each beam.  Figure III-2(b) shows a 3 x 3 RBF grid 

with a = 0.25 and all ci = 10, and Figure III-3 shows the same grid with varying 

amplitudes to demonstrate what a possible beam could look like.  To determine a good 

choice for a, possible values were iterated through manually.  A logical hypothesis is that 

a will be related to the grid spacing between basis functions.  Therefore, an effort was 

made to determine the relationship between the number of basis functions and a so that 

it could be set automatically in the future.     

 (a)  (b) 

Figure III-2. (a) A single Gaussian radial basis function centered at (0,0) with a = 0.25 
and amplitude 10, and (b) A grid of radial basis functions identical to (a), but centered 
at various (x,y) positions in the field. 
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III.B.4.  Implementation of Basis Function Optimization 
 To most efficiently study the use of basis function optimization at the University of 

Michigan, it was necessary to incorporate the necessary tools into the existing 

optimization framework, UMOpt.  Many of the existing modules and data structures were 

used in the basis function implementation.  Details regarding the code additions and 

changes are given in Appendix A.  In general terms, the existing system was enhanced 

to perform optimization based on the basis function parameters or coefficients instead of 

beamlets.  Figure III-1 illustrates an overview of how the basis function optimization 

routine is incorporated into the conventional beamlet optimization infrastructure, and 

Figure III-2 shows the interface that has been developed for basis function optimization 

in UMOpt.  Starting at the top of Figure III-1, if basis function optimization is on, then 

UMOpt knows to create the parameters or optimization variables to be the basis function 

coefficient values, c.  In Figure III-2, this is specified by toggling the “Basis Fcn Opt On” 

button.  In addition, the type of basis function to be used and number of coefficients per  

Figure III-3.  An example of a beam that could be made optimizing the 
amplitudes of a 3 x 3 grid of Gaussian radial basis functions.   
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Table III-1.  Basis function optimization parameters to be used in UMOpt 

Basis Type Description # Coefficients per Beam Details 

1 Polynomial 6 2nd order 
  10 3rd order 
  15 4th order 
  21 5th order 
  28 6th order 
  36 7th order 
    45 8th order 

6 Gaussian Radial Basis Functions 4 2 x 2 grid 
  16 4 x 4 grid 
  25 5 x 5 grid 
  36 6 x 6 grid 
  49 7 x 7 grid 
    64 8 x 8 grid 

BEAMLET OPTIMIZATION

Define beamlet vector, b, as 
independent optimization parameters 

(variables)

Change parameter values 
(randomly for SA, based on gradients for Q-Newton)

Update beamlet weight vector, b

Compute point doses, d

Compute objective function value 
(total cost), f

BASIS FUNCTION OPTIMIZATION

Define coefficient vector, c, as 
independent optimization parameters 

(variables)

Is basis function 
optimization on? YesNo

Figure III-4.  Flow chart representing how basis function optimization fits into the 
conventional beamlet optimization infrastructure. 
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beam must be specified.  Each of the basis function types defined in UMOpt is shown in 

the Appendix, but the basis types and possible numbers of coefficients for the two main 

types that we are studying here (polynomials and Gaussian RBFs) are shown in Table 

III-1.    

 After specifying the basis type and number of coefficients, the optimization variables 

are created by using the “Create Parameters” button, which invokes a routine that 

initializes the optimization variables and specifies the indices and limits for each of the 

Figure III-5.  Basis function optimization user interface that has been 
implemented into UMOpt. 
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variables.  After initialization, the “Create Coeff_T” routine creates a transposed matrix of 

the basis function terms to be used in the optimization process to calculate the beamlet 

values and the gradients.  For example, for a one-beam plan with J beamlets, the matrix 

for a 2nd order polynomial function would be: 
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where xi and yi are the x and y coordinates of the ith beamlet.  Then, calculating the 

beamlet values is simple matrix multiplication, b=Mc: 
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Once the beamlet values are assigned according to the current coefficient values inside 

the optimization algorithm, the point doses are calculated according to Equation III.3, 

and the total objective function value cost is calculated as it is in beamlet-based 

optimization.  To calculate the quasi-Newton optimization algorithm search direction, the 

partial derivative, f∂ ∂c  must be calculated.  As mentioned previously, this is very 

simple to calculate for linear functions because M = ∂ ∂b c .  Inserting the 2nd order 

polynomial example into Equation III.5, we have: 
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Once the search direction and step size are calculated, the optimization process 

proceeds until the convergence criteria are met for the algorithm.  

 The “Add Parameter”, and “Edge Off” function buttons are covered in the discussion 

sections.  

 

III.B.5.  Treatment Planning and Analysis 
To validate and investigate our implementation of basis function optimization for 3D 

inverse planning of IMRT treatments, several cases were optimized with three different 

sets of optimization variables, including (i) conventional beamlets, (ii) Gaussian radial 

basis function coefficients using 42, 52, 62 and 72 grids, and (iii) polynomial term 

coefficients for 2nd, 4th, 6th, and 8th order polynomials.   

 The initial evaluation of basis function optimization was performed on a phantom, 

and then three clinical examples (brain, prostate, and head/neck) were optimized using 

Figure III-6.  Geometry and beam arrangement for the phantom case 
used in the basis function optimization characterization studies. 
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the same methods.  The planning objectives and corresponding costlets applied in 

UMOpt for all three cases are shown in Table III-2, and the geometry and beam 

arrangement for the phantom case is shown in Figure III-6.  The clinical plan objectives 

were chosen based on protocols in the Radiation Oncology Department at the University 

of Michigan, although the head/neck objective function did not include the swallowing 

structures, which are generally present for clinical cases.  Five non-axial beams were 

used in the brain case, and the prostate and head/neck cases were optimized using 7 

equally spaced axial beams.   All cases were planned for a 6 MV linear accelerator 

(Varian Medical Systems, 21EX) with 120 leaf MLC (0.5 and 1.0 cm leaf widths).  Dose 

calculations for the inverse planning system were performed by a 

convolution/superposition algorithm derived from the work of Mackie et al11.  All cases 

were optimized using a quasi-Newton-based search strategy, and care was taken to 

ensure that the optimized plans did not represent significant local minima of the cost 

function.  Leaf sequencing for static MLC (SMLC) delivery was performed with an in-

house-developed leaf sequencer based on the method reported by Bortfeld et al12.  

Delivery sequences allow up to 250 segments per beam, with the goal of achieving a 

correspondence between planned and delivered intensities of 1 %.   

 The standard beamlet IMRT results served as a baseline for all plan comparisons.  

Quantities used for evaluation included dose metrics, DVHs, field modulation and 

complexity, and monitor units required for SMLC delivery.   

 Detailed analyses were performed for the different basis function sets to determine 

their smoothing properties and to gain more information on the pre-defined parameter 

values (such as the radial basis function dilation) for use in further development of those 

methods.  These results are presented first, and then all methods are compared in the 

three clinical sites.  Effort was made to determine which method is most desirable and 

efficient in terms of the number of variables needed to produce a satisfactory plan, the 

tradeoffs in plan quality, and other important factors such as delivery efficiency in terms 

of the number of monitor units required for delivery of the IMRT plan.    Monitor units 

(MU), as described in Chapter II, are a measure of the linear accelerator output.  At most 

institutions, linear accelerators are calibrated so that they deliver around 1 cGy/MU.  

However, IMRT delivery requires that large areas of the field are blocked during the 

delivery so that many more MU are required to deliver a 2 Gy fraction to the tumor than 

in conventional radiation therapy.  This makes the delivery inefficient and can have 

potentially dangerous consequences to the patient, which are discussed in Chapter II. 
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Table III-2.  Cost functions used in the phantom and clinical cases 

Structure Objectives Costlet Weight
Phantom Case 

PTV Min Dose > 57 Gy DVH_GE(57,100) 100
  Max Dose < 63 Gy DVH_LE(63,0) 100
OAR1 Mean Dose < 15 Gy MEAN.LE.15 10
 Max Dose < 63 Gy DVH_LE(63,0) 1
  Max Dose < 0 Gy DVH_LE(0,0) 0.001
OAR2 Max Dose < 20 Gy DVH_LE(20,0) 10
  Max Dose < 0 Gy DVH_LE(0,0) 0.001
Normal Tissue Max Dose < 63 Gy DVH_LE(63,0) 1
  Max Dose < 0 Gy DVH_LE(0,0) 0.001

Brain Case 

PTV1 > 99% volume > 63 Gy  DVH_GE(63,99) 100
 Max Dose < 72 Gy DVH_LE(72,0) 100
  < 1 % volume >  69 Gy  DVH_LE(69,1) 10
PTV2 Min Dose > 57.5 Gy DVH_GE(57.5,100) 100
 Max Dose < 69 Gy DVH_LE(69,0) 100
Optic Nerves Max Dose < 60 Gy DVH_LE(60,0) 100
  Mean Dose < 0 Gy MEAN.LE.0 0.0005
Optic Chiasm Max Dose < 60 Gy DVH_LE(60,0) 100
  Mean Dose < 0 Gy MEAN.LE.0 0.0005
Brainstem Max Dose < 65 Gy DVH_LE(65,0) 100
  Mean Dose < 0 Gy MEAN.LE.0 0.0005
Normal Tissue Max Dose < 72 Gy DVH_LE(72,0) 1
  Mean Dose < 0 Gy MEAN.LE.0 0.0001

Prostate Case 

Prostate + 5 mm > 99% volume > 78.85 Gy  DVH_GE(78.85,99) 100
  < 1 % volume > 80 Gy DVH_LE(80,1) 100
Rectum Mean Dose < 25 Gy MEAN.LE.25 10
 Max Dose < 80 Gy DVH_LE(80,0) 1
  Max Dose < 0 Gy DVH_LE(0,0) 0.001
Bladder Max Dose < 80 Gy DVH_LE(80,0) 1
  Max Dose < 0 Gy DVH_LE(0,0) 0.001
Penile Bulb Max Dose < 80 Gy DVH_LE(80,0) 10
  Max Dose < 0 Gy DVH_GE(0,0) 0.005
Femora Max Dose < 50 Gy DVH_LE(50,0) 1
  Max Dose < 0 Gy DVH_LE(0,0) 0.001

Normal Tissue Max Dose < 77 Gy DVH_LE(77,0) 1
 Max Dose < 0 Gy DVH_LE(0,0) 0.0005
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Head/Neck Case 

PTV1 > 99% volume > 69.3 Gy  DVH_GE(69.3,99) 100
  < 1 % volume >  77 Gy DVH_LE(77,1) 100
PTV2 > 99% volume > 63.4 Gy  DVH_GE(63.4,99) 100
  < 1 % volume >  70.4 Gy DVH_LE(70.4,1) 100
Rt Nodal PTV > 99% volume > 63.4 Gy  DVH_GE(63.4,99) 100
  < 1 % volume >  70.4 Gy DVH_LE(70.4,1) 100
Lt Nodal PTV  > 99% volume > 59.4 Gy  DVH_GE(59.4,99) 100
  < 1 % volume >  66 Gy DVH_LE(66,1) 100
Spinal Cord Max Dose < 50 Gy DVH_LE(50,0) 1000
  Max Dose < 0 Gy DVH_LE(0,0) 0.0001
Brainstem Max Dose < 54 Gy DVH_LE(54,0) 1000
  Max Dose < 0 Gy DVH_LE(0,0) 0.0001
Mandible Max Dose < 73.5 Gy DVH_LE(73.5,0) 10
  Max Dose < 0 Gy DVH_LE(0,0) 0.0001
Ipsilateral Parotid Mean Dose < 26 Gy MEAN.LE.26 1
  Max Dose < 0 Gy DVH_LE(0,0) 0.0001
Oral Cavity Mean Dose < 49 Gy MEAN.LE.49 1
 Max Dose < 77 Gy DVH_LE(77,0) 1
  Max Dose < 0 Gy DVH_LE(0,0) 0.0001
Normal Tissue Max Dose < 73.5 Gy DVH_LE(73.5,0) 1

  Max Dose < 0 Gy DVH_LE(0,0) 0.00001
   

III.C. Results 
III.C.1. CT Phantom 
The following two sections summarize the characterization of basis function optimization 

in the CT phantom using polynomial functions and Gaussian radial basis functions.  Both 

methods were successful in producing adequate IMRT plans, with large reductions in the 

number of optimization variables, beam complexity, and monitor units.  However, there 

are many differences between the two techniques in terms of their behavior with 

increasing numbers of optimization variables.  There are several advantages and 

limitations that have been encountered as a result of reducing the degrees of freedom in 

the optimization problem.  Both techniques are discussed below and compared at the 

end of the section. 

 
III.C.1.1.  Polynomial Basis Functions 
Optimizing polynomials to represent the intensity modulated beams results in much 

differently-shaped beams than if one were to use beamlets or even a smoothing filter.  
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With optimized polynomial surfaces, the beams become very smooth and continuous, 

and the isolated high-intensity peaks that appear in beamlet plans are not present.  In 

this simple-to-moderate complexity example, these smooth beams appear to be 

adequate to reach the optimization goals, and further, to produce acceptable plans that 

require many fewer MU to deliver than beamlet plans.   

 Figure III-7 shows the dose-volume histograms and intensity modulated beams 

obtained when using a series of different order polynomial functions.  As polynomials of 

increasing order are used, the shape of the beam is only slightly more refined, and the 

general shape usually stays the same. This suggests that polynomials may not be 

capable of optimizing plans in which there are many local features that require 

specialized beamlet patterns.  There is also a very heavy weighting to Beam 1, which 

could create an undesirable distribution of normal tissue dose along beam 1.  Because 

of the close proximity of the OARs to the PTV and the relative similarity of the 

importance of target coverage and OAR objectives, it was difficult for the lower-order 

polynomials to achieve enough modulation to meet both objectives, and therefore, 

concessions were made.  This is clear in the slightly compromised target coverage in the 

Figure III-7.  Dose-volume histograms and the corresponding intensity modulated 
beams for plans optimized with various order polynomial functions.  Also shown are 
the baseline IMRT results. 
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lower-order polynomial plan DVHs.  There was an improvement in target coverage as 

well as a slight reduction in dose to the normal tissues at higher polynomial orders.   
 
III.C.1.2.  Radial Basis Functions 
Optimizing a composite set of radial basis functions to obtain an intensity modulated 

beamlet pattern was feasible and allowed for greater beam modulation and higher 

intensity gradients than optimization with a polynomial function.  However, the dosimetric 

improvement was not necessarily significantly different between the two functions.  

Figure III-8 displays the radial basis function optimization results as DVHs and intensity 

maps.  When going from a high dilation 3 x 3 RBF grid to a 7 x 7 narrower dilation RBF 

grid, there is a slight improvement in target coverage and a decrease to the overall dose 

to the normal tissues.  The beams become noticeably more modulated as the number of 

RBFs increases, but they are still much smoother than the baseline beamlet solution.  

There are also fewer areas of isolated high intensity in the field, although there are large 

areas of high intensity in beam 1. 

 As mentioned previously, the dilation of the RBFs or a in Equation III-8 was iterated 

through manually to determine a good value instead of making it an optimization 

parameter.  This iteration took a minimum amount of extra time, and the final dilations 

Figure III-8.  Dose-volume histograms and the corresponding intensity modulated 
beams for plans optimized with various sized grids of radial basis functions.  Also 
shown are the baseline IMRT results. 
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were analyzed to determine whether or not a trend could be found.  Figure III-7 shows 

the four data points and two possible fits to the data.  A 2nd order polynomial fit has an R2 

value of 1 and a simple power function fit has an R2 value of nearly 1.  These excellent 

fits demonstrate that the dilation certainly follows a trend, but more cases would have to 

be analyzed to determine which fit is best-suited for the problem.  It is likely that similar 

geometries would fall into similar fits for the dilation, making the iteration time even less.  

These results agree with our original hypothesis that the optimal a value will be a 

function of the number of RBFs which is tied to the grid spacing between each RBF 

center.  Figure III-9 shows that the number of basis functions increase and the space 

between each RBF is reduced, the width of the RBFs become narrower.   

 Both the polynomials and radial basis functions were successful at creating good 

quality IMRT plans in the phantom with many fewer optimization variables.  The RBFs 

have a greater ability to achieve modulation where necessary, and have an advantage in 

sparing dose to the OAR1.  They also appear to have slightly better target coverage with 

fewer variables.  On the other hand, Figure III-8 shows that the polynomial functions 

required fewer monitor units for similar numbers of variables and cost.  Figure III-8 

shows that the MU requirements with increasing orders of polynomials do not 

necessarily increase.  The MU requirements when using more populated RBF grids 

Figure III-9.  The fitted dilation (a) for each radial basis function set plotted as a 
function of the number of RBFs in the set.  The data were successfully fitted to 
a power function (shown in inset). 
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shows a noticeable increasing trend.  This is expected since the more RBFs that are 

used, the narrower the width of each function becomes, allowing for more localized 

changes in the modulation.  As shown in Figure III-8, this feature allows for steeper 

gradients between the targets and normal tissues as compared to the polynomial plans 

suggesting that the RBFs may be more able to spare the organs-at-risk.  However, large 

intensity gradients in the beam intensity also require additional monitor units. 

 For further comparison of the two methods, the minimum, mean, and maximum 

doses to the PTV, and the mean and maximum doses to OAR1, OAR2, and the 

remaining normal tissue is shown in Figure III-11.  The minimum and maximum doses 

are reported as the minimum and maximum doses to at least 0.5 % of the volume.  The 

results given here support the observations in the DVHs, which suggested that the 

biggest difference between the baseline and the basis function plans is in the normal 

tissue doses.  While the mean dose in OAR1 is less with the baseline plan, each of the 

basis function plans kept the mean dose at or below the 20 Gy objective.  However, only 

the higher-order polynomials and the two largest RBF grids were able to keep the OAR2 

maximum dose below 35 Gy.  The baseline beamlet plan was able to keep OAR2 well 

below this maximum dose.  In addition, the mean dose to all of the normal structures as 

well as the PTV was higher in the basis function plans.  It can also be noted that the 

Figure III-10.  The relative number of MU and optimization variables for each of the 
optimized cases as a function of the cost.  The absolute number of total MU and 
variables in the baseline plan were 309, and 19,399, respectively. 
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RBF 7x7 plan performed the best compared to the other basis function plans in terms of 

minimizing dose to normal tissues.  All plans performed well in terms of target coverage; 

this is likely due to the design of the cost function.    

 
III.C.2.  Clinical Examples 
III.C.2.1.  Brain 
The brain case was optimized with each of the optimization methods – Baseline 2nd, 4th, 

6th, and 8th order polynomials, and 3x3, 4x4, 5x5, and 7x7 RBF grids – and all plans 

were found to be clinically acceptable in the sense that all met the explicit inverse plan 

objectives.  However, significant changes were observed in the overall dose received by 

the normal tissues.  Figure III-12 shows the DVHs for the baseline, two polynomial, and 

two RBF optimizations.  The 4th order polynomial and the 4x4 RBF cases had 75 and 80 

variables, respectively, and the 8th order polynomial and 7x7 RBF plans had 225 and 

245 variables each.  The brainstem and normal tissue DVHs are shown on the right due 

to overlap with the right optic nerve and optic chiasm DVH on the left.  Target coverage 

appears to be nearly identical for all optimization methods, but the minimization of dose 

to the brainstem, and chiasm is consistently better with radial basis functions than 

Figure III-11.  Dose metrics for all optimization trials for the PTV, OAR1, OAR2, 
and normal tissue.   
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polynomials.  This is due to the increased resolution possible when optimizing with more 

localized functions such as the RBFs.   

The standard deviation in several relevant dose metrics between all of the 

optimized plans for each of the structures are shown in Figures III-13.  This shows that 

the biggest difference between the different optimization methods lies primarily in the 

normal tissue doses; this is partly a consequence of the design of the objective function.  

A closer look at the metrics with standard deviations equal to or greater than one can be  

Figure III-13.  The standard deviation in several relevant dose metrics between all 
optimization trials including baseline, 2nd, 4th, 6th, and 8th order polynomials, and 3x3, 
4x4, 5x5, and 7x7 gaussian radial basis function grids.  More details on the metrics 
with standard deviations equal to or greater than 1 Gy are shown in Figure III-14. 

Figure III-12.  Dose-volume histograms for the baseline beamlet plan in the brain in 
addition to plan optimized with 2nd and 4th order polynomial functions and 4 x 4 and 7 
x 7 radial basis function grids. 
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seen in Figure III-14.  The large standard deviations observed in the RON and brainstem 

mean doses come from the differences between the basis function plans and baseline 

Figure III-15.  Intensity modulated beams for the brain example.  Baseline, 4th

and 8th order polynomials, and 4x4 and 7x7 radial basis functions are shown.   

Beam 1         Beam 2           Beam 3         Beam 4         Beam 5  
Baseline (Relative MU)

4th order Polynomial (.50)

8th order Polynomial (.52)

4 x 4 RBF Grid (.54)

7 x 7 RBF Grid (.59)

Figure III-14.  Dose metrics for all optimization trials for the structures with large 
dose variations between methods.   
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plans, although the RBF 7x7 plans perform the best compared to the rest of the basis 

function plans.   

The optimized intensity modulated beams are shown in Figure III-15 for each of 

the methods.  It is clear that the beamlet plans exhibit the most modulation and “noise” in 

the optimized intensity patterns.  As a result, they also require more monitor units to 

deliver.  The relative number of MU to deliver the plan, and the number of optimization 

variables are shown relative to the baseline beamlet plan in Figure III-16.  While the RBF 

plans exhibit superior normal tissue sparing over polynomials, they also result in more 

modulated fields that require more MU to deliver.  The 7x7 RBF beams have a much 

higher degree of modulation than the rest of the basis function plans, but they are still 

much smoother than the baseline solution.  

III.C.2.2.  Prostate   

The prostate example was optimized successfully with both polynomials and radial basis 

functions. However, as in the brain, there were significant increases in mean dose to 

several of the normal tissues.  Figure III-17 shows the DVHs for the baseline beamlet 

plan along with Poly4, Poly8, RBF4x4, and RBF7x7 plans.  The target coverage is 

slightly degraded in the polynomial plans, although a 3% volume underdosing is allowed 

in the objectives.  Again, the 7x7 RBF plan outperformed the remaining basis function 

Figure III-16.  The relative number of MU and optimization variables for each of 
the optimized brain plans.  The absolute number of total MU and variables in the 
baseline plan were 354 and 26740, respectively. 
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plans, due to its ability to create more localized modulation areas where needed.  This 

helped reduce dose to the small volume penile bulb as well as sparing the femora (the 

left femur is not shown, but was similar to the right femur).   The intensity modulated 

beams from each technique are shown in Figure III-18, along with the MU relative to 

Figure III-17.  Dose-volume histograms for the baseline beamlet plan in the prostate 
example in addition to plan optimized with 4th and 8th order polynomial functions and 
4 x 4 and 7 x 7 radial basis function grids. 
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Figure III-18.  Intensity modulated beams for the prostate example.  Baseline, 4th

and 8th order polynomials, and 4x4 and 7x7 radial basis functions are shown along 
with the relative MU requirements. 
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baseline.  Again, we see little change with increasing polynomial order, but large 

differences as the number of variables in the RBF plan is increased.  The trend in 

relative MU as the number variables increase can be seen in Figure III-19.  Although the 

RBF7x7 has significantly more MU than the other cases, it represents a 24% reduction 

in MU compared to baseline, and the dosimetric results are superior to the other basis 

function plans.   

 
III.C.2.3.  Head/neck  

Due to the complexity of the head/neck case and the previous results in the phantom 

and prostate, only the highest order polynomial and largest grid of radial basis functions 

were tested in this example.  Both of the basis function plans had difficulties meeting the 

target objectives while sparing the numerous normal structures defined in the head/neck.  

Dose-volume histograms and intensity modulated beams for each of the optimization 

trials are shown in Figures III-20 and III-21.  The increase in normal tissue dose in the 

basis function plans relative to the baseline plan is noticeable.  The RBF plan is slightly 

better than the polynomial plan, although both are significantly worse than the baseline 

beamlet plan.   

Figure III-19.  The relative number of MU and optimization variables for each of 
the optimized prostate plans.  The absolute number of total MU and variables in 
the baseline plan were 837, and 41,714, respectively. 
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 One of the most striking differences when using basis functions instead of beamlets 

is the increase in dose to the spinal cord.  While the cord remains below its maximum 

dose limit of 50 Gy, the overall dose is increased by a large amount when using basis 

function optimization.  In fact, most of the higher priority objectives were met by the basis 

function plans, leaving the biggest tradeoffs to occur with the normal tissue dose 

minimization costlets.   

 Figure III-21 reveals that the beamlet plan is very modulated, with several high 

intensity spikes and a large number of smaller fluctuations between neighboring 

beamlets.  The polynomial function does a poor job approximating the general shape of 

the baseline plan, while the 7x7 RBF beams appear to be more intuitive, realizing that 

the areas of low intensity in the field correspond to the spinal cord location.  Higher 

resolution RBF grids may be successful in the head/neck geometry, although there may 

still be issues with the beam edges.  It is important to note that the basis function plans 

have more than an 80 % reduction in the number of variables compared to the baseline 

beamlet solution.  Due to software constraints, the size of the RBF grid was limited, but 

further work to remove this constraint would be warranted to further study basis function 

optimization, especially in the RBF case.   

 
 

Figure III-20.  Dose-volume histograms for the baseline beamlet plan in the 
head/neck example in addition to plan optimized with 8th order polynomial functions 
and a 7 x 7 radial basis function grid. 
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III.D.  Discussion 
We have implemented and tested the use of mathematical basis functions to represent 

and optimize intensity patterns in inverse planned intensity modulated radiation therapy.  

We have shown results from the implementation of two basis function sets: polynomials 

and Gaussian radial basis function grids.  In polynomial optimization, the leading 

coefficients in a polynomial function are optimized, and the beamlet values are assigned 

based on their spatial location according to the polynomial equation.  In the Gaussian 

RBF implementation, an evenly-spaced grid of RBFs of equal dilation is initialized and 

the weights, or amplitudes of the individual RBFs are optimized such that the composite 

RBF set represents the beam.  Basis function optimization with these two formulations 

was found to be feasible for 3D inverse IMRT planning, and is capable of producing 

acceptable IMRT plans in simple geometries with large reductions in beam modulation 

and MU.  In the cases studied here, 25 – 50 % increases in delivery efficiency were seen 

when using basis function optimization.  There is also a substantial decrease in the 

number of optimization variables as well as the time required per optimization (although 

this was not quantified).   

 Our implementation was characterized in a test phantom, and then studies were 

performed on several clinical examples.  In the test case, both polynomial and radial 

Figure III-21.  Intensity modulated beams for the head/neck example.  Baseline, 8th

order polynomials, and 7x7 radial basis functions are shown along with the relative 
MU requirements. 

Baseline (Relative MU = 1)

8th order Polynomial (Relative MU = .59)

7x7 RBF Grid (Relative MU = .46)
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basis function optimization plans were found to be clinically comparable to beamlet plans 

and could be delivered with 18 - 44 % fewer monitor units.  In the brain and prostate, a 

7x7 grid of Gaussian radial basis function was the most successful at sparing normal 

tissues.  The use of the basis function sets studied here was not adequate to plan a 

complicated head/neck IMRT case.  However, the 7x7 RBF was able to meet most of 

the planning objectives with 80% fewer optimization variables. We believe that the use of 

higher resolution RBF grids is warranted for future study in head/neck and other more 

complicated geometries.   

 During this study, we identified several practical limitations of basis function 

optimization.  First, the basis function sets described here usually sacrifice normal tissue 

sparing in one or more normal structures.  The smaller the organ-at-risk, the more 

localized the modulation must be to adequately spare the structure.  Because of this, 

only the 7x7 RBF plans were able to spare certain normal structures, such as the penile 

bulb in the prostate example.  Even in this case, the beamlet plan was still able to spare 

the penile bulb to a much higher degree than the radial basis function plan.  Another 

limitation of basis function optimization is the lack of resolution (high intensity gradients) 

at the edges of the IMRT fields.  Functions such as polynomials are somewhat global, 

making it difficult to approximate a sharp gradient at the edge of the beam.  This is 

responsible for some of the extra normal tissue dose observed in the basis function 

plans compared to the baseline beamlet plans.  We have experimented with different 

edge modification functions to remedy this situation, but these efforts have been largely 

unsuccessful due to the fact that the composite function must stay positive to achieve 

good convergence with gradient-based optimization methods.  The most practical way to 

ensure resolution at the edges of the field has been to simply exclude any beamlets that 

are more than 2-3 mm away from the edge of the target.  If larger margins are defined in 

the beam than necessary, we developed a method to essentially tighten the margin and 

turn off the beamlets near the edge of the field.  This is done by the “Edges Off” option in 

the basis function user interface shown in Figure III-5.  If the option is selected then all 

beamlets whose centers are greater than a distance given by “EdgeWt” away from the 

target are set to zero.  The use of this option can potentially affect the cost function 

gradient calculation with respect to the coefficient, but we have not observed a problem 

with convergence due to this.  

 Another practical limitation that was encountered during this work was a limit on the 

number of coefficients that could be used in the software.  However, programming 
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techniques could overcome this limitation and is a good starting point for future work on 

this method.  The more basis functions and coefficients that are used, the more 

important it becomes to be able to use a gradient descent optimization algorithm.  The 

use of the simulated annealing algorithm to fully optimize the polynomial basis functions 

was not too costly because of the small number of coefficients to optimize.  However, if 

more coefficients are used, simulated annealing will become too time-consuming to use 

this method clinically. 

 We have shown that basis function optimization is a promising method to reduce the 

degrees of freedom necessary for IMRT, resulting in reduced complexity in IMRT fields 

and reduced MU (and thus reduced leakage/transmission dose).  We have shown that 

this method is able to be implemented within an existing optimization framework and 

also able to produce acceptable IMRT plans.  Further research in this area, to locate 

improved basis function sets that add up to positive-valued beamlets and allow for more 

variables in the optimization software, is worthwhile.  This method could be useful in its 

current state for simple geometries such as partial breast irradiation.  Our experience 

with this method in optimization of very complex cases, such as head/neck, suggests 

that a significant increase in the number of basis functions would be necessary to equal 

the quality of beamlet optimization.  Therefore, the high degrees of freedom of beamlet 

optimization may actually be necessary for a high-quality plan in many complex 

geometries.   

 Since we know that these cases can be prone to degeneracy, a better way to find a 

more delivery-efficient solution in the search space must be identified.  In the next 

chapter, we return to the beamlet paradigm to study the use of both beamlet restrictions 

and modulation penalties during the optimization process. 
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A.III.  Appendix for Chapter III 
 
A.III.1.  Alternate Basis Function Types 
During the development of the basis function optimization for 3D inverse planning of 

IMRT, several basis function sets were implemented and evaluated preliminarily for use.  

The following is a summary of the basis function sets that are implemented in UMOpt, 

but were not discussed in the chapter contents.  
 
A.III.1.2.  Basis Type 2:  Radial/Theta based edge function 
Basis type 2 represents a radial based function that was implemented to deal with the 

problem of edge resolution.  The formulation is very complex and was difficult to 

implement due to the data about the beamlets that is available in the optimization 

system.  This basis type represents the beamlet intensity at (x,y) by 
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Each of the terms shown above were designed to represent a certain aspect of the 

beam shape.  These representations are given in Table A-III-1, and the description of 

the coefficient variables in A.III.1 are given in Table A-III-2.  The coefficient types are 

used to tell the optimizer what the limits of the coefficient values are. 

 

      Table A-III-1  The physical representation of each of the component of (A.III.1) 

Component Representation 
P General intensity with planar tilt 
R Edge fall off 
S Steepness of the fall off as a function of theta 
F Beginning fall off distance as a function of theta 

 

     Table A-III-2.  Description of the coefficient properties in for basis type 2. 
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Coeff Representation Type Min Max 
0 Mean Intensity Level 1 -Max Intensity + Max Intensity 
1 X Wedge 1 - Max Intensity + Max Intensity 
2 Y Wedge 1 - Max Intensity + Max Intensity 
3 sin height 2 0 + Max Intensity 
4 sin period 3 -10 + 10 
5 sin horizontal shift 4 -pi +pi 
6 sin height 2 0 + Max Intensity 
7 sin period 3 -10 + 10 
8 sin horizontal shift 4 -pi +pi 
9 sin vertical shift 2 0 + Max Intensity 

The above implementation is theoretically sound despite the difficult implementation.  

The parameters could benefit from further refinement and study although this basis type 

was not found to have an advantage over the more thoroughly studied radial basis 

functions or polynomials. 

  
A.III.1.3.  Basis Types 3 and 4: Mexican Hat Wavelets  
Basis type 3 is a weighted sum of three different Mexican hat wavelets where the 

coefficients are the weights, and x and y dilations and translations of the function.  An 

illustration of a Mexican Hat wavelet is shown in Figure A-III-2. 

 

Figure A-III-1.  An illustration of the notation and variables for r and theta 
calculated for the use of basis function type 2. 

BEAMLET a
(x,y)=(xa,ya)

r
θ

ISOCENTER
(x,y)=(0,0)
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The beamlet intensity at (x,y) is given by: 
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where N is the number of Mexican Hat Bases, wi is the weighting of the i-th base 

function, txi and tyi, are the x and y translations of the i-th base, and axi and ayi, are the x 

and y dilations of the i-th base.  In terms of the coefficients, we can write: 
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where the coeffs are explained in Table A-III-3.  This particular basis type did not 

perform as well as expected, but there may not have been enough coefficients to create 

the beams necessary.   

 

 

 

Figure A-III-2.  A plot of a 2D Mexican hat wavelet. 
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       Table A-III-3.  Coeff descriptions for basis type 3. 

Coeff (i=0..N) Representation Type Min Max 
5i Base Weight 1 -Max Intensity + Max Intensity 

5i+1 X translation 3 - 10 + 10 
5i+2 X dilation 2 0 + Max Intensity 
5i+3 Y translation 3 -10 + 10 
5i+4 Y dilation 2 0 + Max Intensity 

 

Basis type 4 is a weighted of 15 pre-defined wavelets where the coeffs are the weights 

of the wavelets in the library.  The format is the same as in A.III.3, but the coefficients 

are the weights and the other parameters are fixed for 15 pre-defined wavelets.  Figure 

A-III-3 shows an example library of wavelets for basis type 4.  This method could be 

useful if a large number of cases were tested to design a desirable library.  It may be 

possible to apply a neural network or learning algorithm to choose the libraries that could 

work for different geometries. 

 
 

Figure A-III-3.  A sample basis function library of Mexican hat wavelets for basis type 4. 

xt xd yt yd
0 8 0 8
0 1 0 1 
0 0.5 0 0.5
0 5 1 0.1
1 0.1 0 5
0 5 -1 0.1

-1 0.1 0 5
1 1 1 1
1 1 -1 1

-1 1 -1 1
-1 1 1 1
0 1 0.5 1
0.5 1 0 1
0 1 -0.5 1

-0.5 1 0 1
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A.III.1.4.  Basis Type 9: Combined Polynomials + Radial Basis Functions 
Basis type 9 is a combination of a 2nd order polynomial with a grid of small dilation radial 

basis functions.  It was designed to achieve a beam’s global shape though the 

polynomial terms, and also be able to represent local fluctuations with small dilation 

radial basis function.  Basis type 9 currently uses a 7 x 7 RBF grid on top of the 2nd order 

polynomial.  The beamlet intensity at (x,y) is calculated by 
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where the final term represents the 7 x 7 RBF grid, which is the same as the form in 

Eqn. (III.8) in the main chapter.   Results from this basis type have been largely similar to 

the result from the Gaussian RBF grid alone, but more careful placement of the RBFs 

over the polynomial surface may improve the performance and allow for similar 

dosimetric results with fewer variables. 

 

A.III.2.  Optimization Code Details 
The addition of the basis function capabilities into the existing UMOpt infrastructure 

required several code alterations, including the introduction of several new variables and 

Table A-III-4.  Description of basis function optimization-specific variables. 
 

Structure Variable Name(s) Description 

UMOPTIM_OPT BASIS_FCN_OPT_ON Allows user to choose basis function or beamlet optimization 

   NBF Number of basis functions (used with the library) 

      MAX_B_GRADIENT The largest beamlet gradient.  Used in add_parameter routine 

  PARAM_OPT COEFF_INDEX Used so each parameter knows was coefficient type it is representing 

  BEAMLET_OPT XC,YC,IXC,IYC,R,THETA The coordinates of the beamlets (ixc, iyc, r, and theta can be normalized) 

      GRADIENT The beamlet gradients (used in q-newton method) 

    COEFF_T CINDEX Index for the coefficient transpose matrix 

      CVALUE The value of the coeff transpose matrix element (q-newton method) 

 BEAM_OPT BASIS_TYPE The type of basis function in use 

   NCOEFF The number of coeffs being used per beam for the given basis function type 

      

MAX_XC,MIN_XC, 

MAX_YC,MIN_YC,R_MAX The max and min beamlet coordinates for each beam 

    BFLIB_OPT XT,XD,YT,YD The x and y translations and dilations of basis function library members 

  COEFF_OPT ENABLED Whether the coefficient is enabled or not  

   WEIGHT The weight of the coefficient 

   COEFF_TYPE The type of coefficient.  Used for optimization limits and step sizes. 
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the modification of a few existing subroutines.  Each new variable is briefly described in 

Table A-III-4.  Additions of the variables and structures had to be done in both 

[..include]umoptim_opt.h and […include]umoptim_opt_struct.txt.  AVS variables and 

options are defined in […qnewton]anneal.c and must be listed in […include]anneal.h.  

Subroutines inside anneal.c that have been altered include create_parameters, 

adjust_param, and update_parameters.  Slight modifications have also been made 

inside the main optimization method codes, qnewton_method, and anneal_method, and 

several other routines including sum_beams.  Each of these routines now incorporates 

the use of basis function coefficients as parameters and allows the beamlet values to be 

updated based on the values of the basis function coefficients.  There had to be slight 

changes in the anneal and quasi-newton routines as well as in the way the dose is 

summed.  
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CHAPTER IV. 
 

RESTRICTING OR PENALIZING BEAM MODULATION  
DURING INVERSE PLANNING FOR IMRT 

 
 

IV.A.  Motivation 

In Chapter III, we analyzed the merits of basis function optimization as a way to improve 

the continuity and smoothness of IMRT plans by representing beam intensities by 

surfaces instead of individual beamlets.  This reduces the degrees of freedom available 

in the optimization problem and is a very promising technique to optimize simple IMRT 

plans, such as those required to treat prostate cancer.  However, in more complicated 

treatment sites that require more sophisticated plans, such as the head and neck, it can 

be difficult to find a robust function or set of functions that can be optimized to represent 

the intensity pattern complexity that is necessary.  An alternative option is to return to the 

beamlet paradigm and search for other ways to reduce beam complexity. 

One possible strategy is to investigate whether some of the high intensity peaks 

that frequently occur in IMRT beams may result from limitations in the inverse planning 

optimization strategy and might not be essential for high quality plans.  If so, then 

constraining the maximum allowable intensity for an IMRT plan may inhibit the 

optimization engine from pursuing an undesirable path that may be an artifact of the 

point-based inverse planning approach.  Using a maximum intensity limit for the plan in 

the optimization process may result in beamlet patterns that lack potentially-unnecessary 

modulation and sharp spikes, while still allowing the optimization algorithm to make the 

proper tradeoffs between target and normal tissue doses.  This approach would ideally 

produce a plan that will be (i) sequenced more accurately, (ii) delivered with fewer MUs, 

and (iii) less sensitive to positioning errors than an IMRT plan derived without maximum 

intensity limits, while still achieving the defined clinical objectives.  Thus, maximum 

intensity limits can partly reduce the consequences of the beam complexity problem by 

removing large intensity spikes, but they do not prevent smaller fluctuations in 
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modulation between neighboring beamlets that can also increase MU.  In addition, if a 

plan is very complex, or the maximum intensity limits are too strict, the use of these 

types of beamlet restrictions could potentially prevent the optimizer from reaching a 

quality IMRT plan.  Therefore, it may be necessary to use “softer” restrictions such as 

smoothing the IMRT beams or penalizing modulation as a part of the cost function.   

 Smoothing procedures can either be applied inside or outside the optimization 

loop.  Smoothing IMRT beams outside the optimization process may produce limited 

results or require re-optimization due to the plan degradation that occurs during post-

optimization smoothing1-3.  Inside the optimization loop, smoothing can be done by (i) 

including smoothness criteria inside the objective function, or (ii) smoothing beams after 

each cycle or iteration4.  The latter method is easier to implement, but it suffers from the 

same difficulty as applying interventions post-optimization: when any procedure is 

applied outside the cost function, the impact of that procedure on the cost function 

cannot be weighed according to the dosimetric consequences.   

 Implemented carefully, methods that penalize modulation as a part of the cost 

function can effectively improve delivery efficiency, while taking into account the 

dosimetric tradeoffs to be made with IMRT plan objectives.  Spirou et al. have presented 

a comparison of smoothing, using a Savitzky-Golay filter along the direction of the MLC 

leaf travel, inside and outside the cost function4.  They found that smoothing inside the 

cost function was superior in terms of producing sharper dose gradients, better dose 

homogeneity, and better critical organ sparing, especially for more complex cases.  

However, again, care must be taken to design the objective function in such a way that 

the smoothing process or modulation penalty does not dominate the solution and 

interfere with normal tissue dose limits or target coverage5.    

 As the radiotherapy community gains better knowledge of IMRT, it has become 

clear that the value of an IMRT plan should not be judged solely on its DVHs and dose 

metrics, but also on the efficiency of delivery and other potential problems associated 

with the plan, such as increased time and effort needed for quality assurance.  This 

chapter examines two techniques to reduce IMRT beam complexity which can be 

applied during the optimization process.  The first technique is the application of beamlet 

intensity limits that are placed as hard restrictions during optimization.  The second 

technique is the use of beam modulation penalties as part of the inverse planning cost 

function.  We discuss our development and implementation of two such penalties.  All of 
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the methods are studied to characterize and compare their abilities to preserve or 

improve IMRT plan quality regarding (i) target and normal tissue DVHs and dose 

metrics, and (ii) reduced modulation and improved delivery efficiency.   

 

IV.B.  Methods 
As discussed in previous chapters, the in-house treatment planning and optimization 

systems (UMPlan/UMOpt)6-12 at the University of Michigan were developed with an 

infrastructure that allows for continual upgrades and improvements as radiotherapy 

technology advances.  UMOpt, especially, is a versatile software package designed for 

3-D beamlet-based inverse IMRT optimization, which allows for many different 

optimization parameters and limits and can also make use of specialized cost function 

components, or “costlets”.  Using UMOpt, we have studied the impact of placing 

maximum intensity limits on the beamlet intensities in IMRT.  In addition, three new 

costlets that aim to reduce IMRT beam complexity when included in an inverse plan 

objective function have been developed and implemented in UMOpt for further study.  

The three costlets do the following: (i) minimize deviation from a 1-D Savitzky-Golay 

filtered beam, where filtering is done only in the direction of the MLC travel, (ii) minimize 

deviation from a 2-D Savitzky-Golay filtered beam, or (iii) minimize a measure of the total 

plan modulation called the quadratic plan intensity map variation (PIMVq)13.  The theory 

and implementation of each of these methods is shown below. 

 
IV.B.1.  Maximum Beamlet Intensity Restrictions 
Restricting the maximum intensity of beamlet values in IMRT planning is a simple idea 

that could have great benefit in terms of delivery efficiency.  High intensity peaks that 

significantly increase the number of monitor units required to deliver a beam frequently 

occur in IMRT.  If some of these features are not truly necessary to meet the cost 

function objectives, then the application of intensity limits could greatly reduce MU with 

little dosimetric effect on the IMRT plan.  To test this idea, plans can be optimized using 

a series of assigned values of the maximum beamlet intensity.  Plans can also be 

optimized without using a maximum intensity limit to represent the unconstrained 

solution.  To better compare the intensity variations seen with different plans, since the 

required maximum intensity per beamlet is technique- and dose prescription-dependent, 

the maximum intensity ratio was chosen as a metric to permit direct comparison of plans 
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with different prescriptions or number of beams.  The ‘maximum intensity ratio’ or MIR, is 

defined as  

 

 
  
MIR =

ImaxNb

Dt

, (IV.1) 

 

where Imax is the maximum intensity allowed for each beamlet, Nb is the number of 

beams in the plan, and Dt is the prescribed dose to the target volume.  Imax is set for a 

plan so that no beamlet defined in the plan can exceed the maximum intensity.  Note 

that the utility of the maximum intensity ratio for comparing plans from treatment sites 

with large geometrical differences will be limited. 

At different maximum intensity ratios, it is necessary to evaluate the amount of 

modulation present in the field to determine whether the intensity restrictions are 

effective at reducing the overall amount of the modulation in the field.  To achieve this, 

we have defined a metric called the intensity map variation (introduced in Chapter II), 

which can be defined for each field and used to measure the modulation across a beam.  

The plan intensity map variation (PIMV) is calculated by summing the variation for each 

field and is defined for each plan as:  
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where Nb is again the number of beams in the plan, J is the maximum number of 

beamlets in the direction parallel to the motion of the MLC, K is the maximum number of 

beamlets in the direction perpendicular to the motion of the MLC, and bjk is the intensity 

of the beamlet at the (j,k) grid position.  The PIMV was chosen to be a measurement of 

the field modulation that is not biased by the sequencing algorithm chosen.  For this 

study, each set of beamlets was defined as a regular grid. However, if a beam is defined 

as segments or an irregular grid, it would be necessary to apply a grid based on the 

smallest beamlet dimension and then use Equation IV.2 to calculate the PIMV. 

In addition to measuring the overall field modulation, it is also important to 

determine to what extent the maximum intensity limits affect the beamlet intensity 
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pattern relative to the baseline beam.  For a measure of the similarity between two 

intensity maps for plans at different maximum intensity ratios, the correlation coefficient 

for each intensity grid with respect to the unconstrained optimized intensity grid can be 

calculated.  The correlation coefficient (use in Chapter II as well) between beams A and 

B, is given by 
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where j and k are the dimensions of the intensity map, IX,jk is the intensity of grid element 

(j,k) when the maximum intensity ratio is X, and Xb  is the mean intensity of grid bX.  The 

correlation coefficient may vary from -1.0 to 1.0.  A value of 1.0 means that the two 

patterns are perfectly linearly and positively correlated, while a value of -1.0 means that 

the two patterns are perfectly linearly and oppositely correlated.  A high absolute number 

means there is a high level of correlation, while a small absolute number represents a 

weak correlation. 

 
IV.B.2.  Modulation Penalties 
In Chapter II, we discussed the fact that IMRT treatment planning is, in essence, a large-

scale optimization problem with a large number of independent variables.  Alber et al. 

have shown that the majority of beamlets in the optimization problem are not in critical 

regions, and therefore they may not have a large effect on meeting the goals outlined in 

the objective function.  Thus, without intervention, these beamlet patterns may become 

very noisy.  Another source of complexity shown in Chapter II was that the random point 

sampling of the regions of interest can cause fluctuations in the beamlet intensities.  

Both of these issues cause modulation to occur in the IMRT field with potentially minimal 

dosimetric benefit.  Therefore, it makes sense to apply another objective function 

component that lightly penalizes modulation in an effort to reach a smoother solution that 

can be delivered more efficiently.  This section discusses our implementation of two 

different types of modulation penalties. 
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IV.B.2.1.  Savitzky-Golay Filter Penalty 
When computers became more instrumental in data analysis, Savitzky and Golay 

introduced the idea using a moving least squares fitting method to smooth noisy data 

without introducing large distortions14.  Least squares fitting is a common mathematical 

procedure for finding the curve of best-fit to a set of data by minimizing the sum of the 

squares of the offsets of the data from the curve (or surface).  By applying this method 

over small subset of data in a convolution procedure, the local variations can be well- 

modeled while smoothing the noise.  In modern filtering processes, a Savitzky-Golay 

filter usually refers to polynomial-based least squares fitting.  Two-dimensional Savitzky-

Golay filters have been applied to smooth image and other 2D data sets in a variety of 

math, physics, and engineering applications.  One dimensional Savitzky-Golay filtering 

has also been previously applied to smoothing IMRT beams by Spirou et al.4  Their work 

used moving least squares fitting with a 2nd degree polynomial to 5 element beamlet 

vectors in the direction of the MLC motion.  An advantage in dosimetric quality and the 

ability to obtain steeper intensity gradients was found when applying this procedure 

inside the cost function as opposed to smoothing after each iteration.   

 Our goal in studying Savitzky-Golay filtering for IMRT beams was to expand on 

the previous work by (i) using more complex and realistic clinical examples, and (ii) to 

bj

Smoothing Window, D

Smoothing Window for bj, D

Beamlet Matrix, B

-2 -1 0 1 2

-2 d1 d2 d3 d4 d5

-1 d6 d7 d8 d9 d10

0 d11 d12 d13 d14 d15

1 d16 d17 d18 d19 d20

2 d20 d21 d22 d23 d24

x

y

Figure IV-1.  An illustration of a smoothing window, D centered at beamlet, bi, 
from a beamlet intensity matrix, B.  The elements within the smoothing window 
are denoted by a vector of intensities, d. 
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evaluate the use of a 2D filter as opposed to a filter that smoothes only in the direction of 

the MLC.  To this end, both 1D and 2D Savitsky-Golay filtering has been implemented in 

UMOpt.  The only difference between the two filters is the dimension of the smoothing 

window.  The calculation of the filtered beam is quite simple using the moving least-

squares approach.  As a demonstration, the 2D filtering process starts with a vector of 

beamlet intensities b, and the goal is to fit a local sub-set of the beamlets, which is 

denoted as d.  In this work, a 5 x 5 beamlet smoothing window is used.  This is 

illustrated in Figure IV-1.  Here, bj  is the beamlet whose value will be updated based on 

the fitted value derived from the filtering process.  The beamlet matrix subset, D, has a 

coordinate system centered at bj.  As shown in Figure IV-1, the values in D are 

represented by the vector d.  The purpose of the filtering process is to fit the elements in 

D to a 2nd order polynomial of the form: 

 

    s(x,y ) = c1 + c2x + c3y + c4x2 + c5y
2 + c6xy ,   (IV.4) 

 

where c is the vector of coefficients to be obtained.  Determining c is straightforward 

using the matrix equation, 

 

 =Mc d , (IV.5) 

 

where M is the matrix of the polynomial terms, 
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In Equation IV.6, (xi,yi) are the coordinates of di as shown in Figure IV-1.  Equation IV.5, 

can be solved for d by multiplying by the matrix transpose: 

 

   M
TMc =MTd .  (IV.7) 
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Then, inversion results in 

 

 ( ) 1−
= T Tc M M M d , (IV.8) 

 

which can be solved to directly obtain the polynomial coefficients, c, for fitting the subset 

of beamlet data, D.  The result from Equation IV.8 can then be introduced back into 

Equation VI.6 to obtain the smoothed beamlet value for the original beamlet bj, which will 

be referred to as sj.  This process is carried out for all beamlets in a beam to obtain a 

vector of smoothed beamlets, s.   

 Replacing b by s would adversely affect the cost function, and thus degrade the 

IMRT plan unless the plan was very simple.  Therefore, either reoptimization must be 

performed after s is applied or the deviation between b and s can be penalized inside 

the cost function.  As mentioned previously, the best dosimetric results were obtained by 

Spirou et al. when using the penalty method.  Similarly, we have implemented a 

Savitzky-Golay costlet into UMOpt, which is referred to as the SG penalty:  
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Here, p is the weight assigned to the smoothing importance, J is the number of beamlets 

in the plan, bj is the value of the jth beamlet, and sj is the value of the jth beamlet after the 

smoothing operation.  Both 1D and 2D SG penalties have been implemented in UMOpt, 

the only difference being the size of the smoothing window, which is illustrated in Figure 

IV-2.  In the SG1D penalty, the filter is applied only in the direction of MLC leaf motion, 

and a 5 beamlet vector was chosen as the smoothing window so that our results could 

be compared to the Spirou work.  Different-sized smoothing windows were tested, but 

did not perform as well as the 5 element window (to be discussed later). 

 Operating under the hypothesis that a 2D smoothing operation would be more 

beneficial for a real patient geometry than a 1D smoothing operation, the SG2D penalty 

was used to was promote modulation reduction in all directions, not just in the direction 

parallel to MLC travel.  In the SG2D penalty, a 5 x 5 beamlet grid is used as the 

smoothing window, in a process described below. 
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 To use the SG penalties during optimization with the quasi-Newton optimization 

algorithm, the partial derivative of the SG penalty with respect to the beamlets must be 

calculated.  The dosimetric objective function gradients, f∂ ∂b , are calculated using 

automatic differentiation software (ADOL-C15) in UMOpt16.  The SG penalty gradients 

were calculated in Mathematica (Wolfram Research, Inc., Chicago, IL), and hand-coded 

into the UMOpt system to be added to the existing gradients. 

 
IV.B.2.2.  Plan Intensity Map Variation Penalty 

The plan intensity map variation (PIMV) in Equation IV.2 is a measure of overall beam 

modulation.  To reduce modulation and smooth the beam as part of the cost function, a 

costlet was constructed to minimize a quadratic form of the PIMV.  The quadratic PIMV 

costlet, or PIMVq penalty is, 

 

 
  
PIMVq Penalty = p ×PIMVq ,  (IV.10) 

 

which can be added into any weighted sum cost function, similar to the SG penalties.  

Again, p is the weight assigned to the smoothing importance, and PIMVq is defined as  

 

Figure IV-2.  An illustration of the SG1D and SG2D smoothing windows, D
centered at beamlet, bj, from a beamlet intensity pattern.  The elements within the 
smoothing window are inside the black rectangle.  Note the direction of MLC motion 
is shown to be parallel to the SG1D smoothing window. 

bj bj

Direction of MLC Motion

SG1D Smoothing Window
5 beamlet vector

SG2D Smoothing Window
5x5 beamlet matrix
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where Nb is the number of beams in a plan, J is the maximum number of beamlets in the 

direction parallel to the motion of the multi-leaf collimator (MLC), K is the maximum 

number of beamlets in the direction perpendicular to the motion of the MLC, and bjk is 

the intensity of the beamlet at the (j,k) grid position.  The four terms in Equation IV.11 

allow all differences between each neighboring beamlet, including the diagonal 

beamlets, to be taken into account, and the quadratic version was chosen to simplify the 

calculation of the gradient during the optimization procedure.  As in the SG penalties, the 

partial derivative of the PIMVq penalty with respect to b was derived using Mathematica 

(Wolfram Research, Inc., Chicago, IL) and added to the existing objective function 

gradients, which are calculated automatically. 

 The weights used in Equation VI.9 and VI.10 were varied to demonstrate the 

potential impact of the beam modulation penalties on the optimal intensity modulated 

beams as the importance of smoothness was increased.   

 
IV.B.3.  Technique Comparisons and Analysis 

Each of the beam modulation reduction techniques were either already present 

(maximum intensity limits) or implemented into UMPlan and UMOpt.  

 In order to compare maximum intensity limits and modulation penalization in the 

cost function, each technique was used in the optimization of several IMRT plans, 

including a simple CT phantom and clinical example cases in the brain, prostate and 

head/neck.  To judge the full effect of the different modulation reduction methods, plans 

were optimized at a variety of maximum intensity ratios and with a range of weights  (p 

values in Equation IV.9 and IV.10) applied to the modulation penalties. A 

characterization of each technique was performed in the phantom, and then 

comparisons were made between each of the techniques using the clinical examples.  In 

all comparisons, plans were judged with respect to the unconstrained baseline IMRT 

plan.  These standard plans were obtained with no beam modulation penalties, and no 

restrictions were placed on the allowed values of the beamlet intensities. The basis for 

comparisons included dose metrics, DVHs, field modulation and complexity, and 
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efficiency of SMLC delivery.  Also, the correlation coefficient was determined between 

intensity maps with varying maximum intensity ratios.   

 All cases were planned for a 6 MV linear accelerator (Varian Medical Systems, 

21EX) with 120 leaf MLC (0.5 and 1.0 cm leaf widths).  Dose calculations for the inverse 

planning system were performed by a convolution/superposition algorithm derived from 

the work of Mackie et al17.  All cases were optimized using a quasi-Newton-based 

search strategy.  Plans were initialized with several different starting intensity patterns to 

ensure that the optimized plans did not represent local minima of the cost function.   

 After optimization, leaf sequencing for static MLC (SMLC) delivery was 

performed with an in-house-developed leaf sequencer based on the method reported by 

Bortfeld et al.18  Delivery sequences allow up to 250 segments per beam, with the goal 

of achieving a correspondence between planned and delivered intensities of 1 %.   

 
IV.B.4.  Case Studies 
As mentioned previously, each of the modulation penalties was validated on a CT 

phantom and then tested on nine clinical cases—three each for brain, prostate and 

head/neck.  The geometry and beam arrangement for the simple CT phantom are shown 

in Figure IV-3, and the high priority planning objectives for the phantom and clinical 

cases are shown in Table IV-1.  In addition, each plan included a lower priority objective  

Figure IV-3. Illustration of the CT phantom geometry and beam placement.  The PTV 
is the violet center sphere, “Small” is the yellow off-center sphere, and “Cylinder” is 
the cylindrical gray structure.  The blue external contours were not used in the cost 
function to save calculation time.   
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Table IV-1.  Inverse planning objectives for the CT phantom and clinical cases.  

CT Phantom Inverse Plan Objectives 
Structure Objectives 
PTV ≥ 60 Gy; ≤ 66 Gy 
PTV + 1 cm ≥ 50 Gy; ≤ 66 Gy; ≤ 20 % ≥ 60 Gy 
Small ≤ 15 % ≥ 25 Gy 
Small + 1 cm ≤ 66 Gy; Mean ≤ 20 Gy 
Cylinder ≤ 70 Gy 

Brain Inverse Plan Objectives 
Structure Objective 
PTV1 66 Gy (min 95%, max 105%, and 1 % volume up to 110%) 
PTV2 60 Gy (min 95%, max 105% of PTV1 with PTV1 coverage priority) 
Optic Nerves ≤ 60 Gy 
Optic Chiasm ≤ 60 Gy 
Brainstem ≤ 65 Gy 

Prostate Inverse Plan Objectives 
Structure Objectives 
Prostate + 3 mm Mean = 75.85 Gy +/- 3 %; ≤ 0.5 cc down to 93 %; ≤ 0.5 cc up to 115 % 
Rectum ≤ 15 % ≥ 80 Gy; ≤ 25 % ≥ 75 Gy; ≤ 35 % ≥ 70 Gy; ≤ 50 % ≥ 65 Gy 
Bladder ≤ 15 % ≥ 80 Gy; ≤ 25 % ≥ 75 Gy; ≤ 35 % ≥ 70 Gy; ≤ 50 % ≥ 65 Gy 
Femora Mean ≤ 50 Gy; ≤ 10 % ≥ 52 Gy 
Penile Bulb Mean ≤ 52.5 Gy; ≤ 15 % ≥ 70 Gy 
Uninvolved Tissue Max ≤ 100% Rx Dose; Mean ≤ 52.5 Gy; ≤ 15 % ≥ 70 Gy 

Head/Neck Inverse Plan Objectives 
Structure Objectives 
PTV 70 Gy +/- 5 % 
Nodal Boost PTV 70 Gy +/- 5 % 
High Risk Nodal PTV 66 Gy +/- 5 % 
Low Risk Nodal PTV 60 Gy +/- 5 % 
Spinal Cord ≤ 45 Gy 
Spinal Cord + 5 mm ≤ 50 Gy 
Brainstem ≤ 54 Gy 
Contralateral Parotid Mean ≤ 26 Gy 
Ipsilateral Parotid Mean ≤ 26 Gy (if possible, otherwise minimize) 
Mandible ≤ 70 Gy 
Submandibulars Minimize dose 
Oral Cavity ≤ 70 Gy  
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of minimizing overall dose to all of the normal structures and uninvolved normal tissues.  

These objectives were given a low weight, so as to not interfere with meeting the highly-

weighted objectives in Table IV-1.  The clinical plan objectives were chosen based on in-

house IMRT protocols.   

 Brain cases were optimized with four or five beams originally placed by a 

dosimetrist, prostate plans were optimized with 9 equally-spaced axial beams, and 

head/neck cases were optimized using 7 equally-spaced axial beams.   

 Optimization results for each of the different techniques were compared using 

dose metrics, DVHs, field modulation and complexity, and efficiency of SMLC delivery.  

The results from the modulation penalty validation in the CT phantom are presented first, 

and then all methods are compared in the three clinical sites.  Our analysis of these 

results attempted to determine which method produced the highest quality IMRT plans, 

taking into account the target and normal tissue planning objectives and other important 

factors such as overall beam complexity and delivery efficiency. 

  

IV.C.  Results 
IV.C.1.  Characterization of Methods in the CT Phantom 
The CT phantom case (Figure IV-3) was optimized with the baseline objective function 

described in Table IV-1, and then optimization was performed including maximum 

intensity limits and the three different modulation penalties.  Each individual method is 

characterized below, and the methods are compared. 

 

IV.C.1.1.  Maximum Intensity Limits 
The application of beamlet intensity restrictions during the optimization of the phantom 

case successfully improved delivery efficiency as long as reasonable maximum intensity 

levels were applied.  At extreme intensity limits, the optimization was severely hindered 

and unable to reach the dosimetric objectives.  Figure IV-4 shows the trend in monitor 

units, mean correlation coefficient, and plan intensity map variation as the maximum 

intensity ratio (MIR, Equation IV.1) decreases.  The MIR value is shown below the data 

points and the x-axis is given in terms of total cost.  This is a measurement of plan 

quality according to the objective function.  As the MIR decreases, the total cost 

increases because the maximum intensity limit increasingly interferes with the plan 

reaching the optimal quality possible with unconstrained beamlet values.  At the same 
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time, MU and PIMV decrease as the fields become flatter and more uniform.  The 

correlation coefficient with respect to the baseline plan, averaged over each beam, also 

decreases with decreasing MIR.  This demonstrates that the intensity limit forces the 

beam intensity pattern further and further from the baseline pattern.  However, at high 

MIR values, the mean correlation coefficient remains fairly high.  It can also be noted 

that the plan becomes very sensitive to the MIR value as it approaches 1.  The cost, MU, 

CC, and PIMV change substantially from 1.5 to 1.285, suggesting that the MIR is 

reaching its lower limit to be able to achieve the necessary target coverage.  This is 

supported by Figure IV-5 which shows qualitative results in the form of dose-volume 

histograms and the beamlet intensity patterns for the Baseline (MIR = 4), and MIR = 2.5, 

2, 1.375, and 1.285.  At the lower MIR values, the beams become very uniform and at 

the lowest MIR tested, the target coverage begins to suffer.  Conversely, at the higher 

MIR values, the beams remain highly modulated with evident cut-off points in the 

beamlet intensities.   

Figure IV-4. The relative monitor units, mean correlation coefficient, and relative plan 
intensity map variation as a function of total cost for the CT phantom when optimized 
with different maximum intensity limits on the beamlets.  The maximum intensity ratio 
for each plan is shown below the lines.  All results are relative to baseline plan which 
had a maximum intensity ratio of 4.  The correlation coefficient value was averaged 
over all beams.   
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Judging by the DVHs, the dosimetric effect of the maximum intensity limit is small 

when there is little restriction.  As the MIR decreases, there is an increase in the amount 

of low dose delivered to the normal tissues and an increase in mean dose to the normal 

tissues and the PTV expansion.  Still, it appears clear that some of the unrestrained 

beamlet intensities are unnecessary and detrimental to the delivery efficiency.  The plan 

at a MIR of 2 is very similar to the baseline plan and can be delivered with a 31 % 

reduction in MU.  These results suggest that the application of a moderate maximum 

intensity limit could be a simple and practical way to improve delivery efficiency. 

 

IV.C.1.2.  Savitzky-Golay Penalties 
 Figure IV-6 illustrates the trend in MU, mean CC, and PIMV as the 1D and 2D Savitzky-

Golay (SG) modulation penalty weights increase and objective function value also 

increases.  Similar to the maximum intensity limited plans, the SG plans move away 

from the baseline solution with the MU, CC, and PIMV dropping as the SG penalty 

increases.  Unlike the maximum intensity limited plans however, the MU, CC, and PIMV 

decrease more quickly and result in lower values at similar cost values.   

Figure IV-5. DVHs and beams for plans at various maximum intensity ratios (MIR) in 
the CT phantom. 

Baseline
MIR 2.5
MIR 2.0
MIR 1.375
MIR 1.285

Beam 1              Beam 2              Beam 3
Baseline (MIR 4.0)

MIR 2.5

MIR 2.0

MIR 1.375 

MIR 1.285 
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Compared to each other, the SG1D PIMV is much higher than the SG2D plans, 

while the SG1D MU are only slightly higher.  This can be explained by the fact that the 

SG1D penalty promotes smoothness only in the direction parallel to the MLC motion.  

This aids in MU reduction, but it still allows for high intensity gradients between each row 

of beamlets.  The mean CC also falls off more slowly when the SG1D penalty is used, 

which could also be explained by the additional modulation being able to better mimic 

the intensity patterns in the baseline plan.  The CC falls off very quickly at higher weights 

accompanied by undesirable increases in the MU and PIMV.  This could be a result of 

the optimizer being dominated by fitting the beam to the SG smoothed beam at higher 

weights.  Therefore, this penalty may be less useful at high weights, where non-

conformance to the filtered beams is highly penalized. 

 Figure IV-7 and IV-8 display the DVHs and intensity modulated beams for the 

SG1D plans and SG2D plans, respectively.  There is a noticeable difference in the trend 

of the intensity patterns between the 1D and 2D penalties.  The SG1D beams display 

almost step-like behavior in the direction perpendicular to the MLC motion.  This is 

because there is no penalty for modulation in this direction.  As Spirou et al. suggest, a 5 

beamlet smoothing window was used.  The use of a larger smoothing window resulted in 

an exaggeration of this step function observation, with each row of beamlets having an 

almost identical weight.  Conversely, the use of a smaller window resulted in minimal 

smoothing and minimal reduction in MU as compared to the baseline plan.   

Figure IV-6. The relative MU, mean correlation coefficient, and relative PIMV as a 
function of total cost for the CT phantom when optimized with the SG1D or SG2D 
penalty in the objective function.  All results are relative to baseline plan. The 
correlation coefficient value was averaged over all beams.   
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Figure IV-7. DVHs and beams for plans at various SG1D penalty weights in the 
CT phantom.  Weights in increasing order are given by i-iv.   

Baseline
SG1D-i
SG1D-ii
SG1D-iii
SG1D-iv

Beam 1              Beam 2              Beam 3
Baseline

SG1D-i 

SG1D-ii 

SG1D-iii 

SG1D-iv 

Baseline
SG1D-i
SG1D-ii
SG1D-iii
SG1D-iv

Beam 1              Beam 2              Beam 3
Baseline

SG1D-i 

SG1D-ii 

SG1D-iii 

SG1D-iv 

Figure IV-8. DVHs and beams for plans at various SG1D penalty weights in the 
CT phantom.  Weights in increasing order are given by i-iv.   

Baseline
SG2D-i
SG2D-ii
SG2D-iii
SG2D-iv
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 In addition to the potentially detrimental step-like behavior in the intensity 

patterns, there is also a break-down in the modulation trend at higher SG1D penalty 

weights with the iii and iv beams being quite distinct.  Also, several rows of beamlets 

appear to be very uniform.   

 Although there are some negative features seen at higher SG1D penalty weights, 

the target coverage is still maintained due to the importance of target coverage in the 

cost function.  This is also true in Figure. IV-8.  The main difference between the SG1D 

and SG2D results is in the beams.  The use of the SG2D penalty produced more highly 

smoothed versions of the original plan with large reductions in (i) the amount of the 

modulation, (ii) the number of high intensity beamlets, and (iii) the size of beamlet-to-

beamlet variations.  The SG2D beams are much smoother overall, since smoothing is 

promoted in two directions instead of one.  The change in beam modulation as the 

SG2D penalty weight increases is more intuitive and predictable than in the SG1D 

penalty.  The DVHs for both sets of plans are similar.  In general, the SG2D plans are 

smoother and can be delivered with fewer MU at similar cost values and DVHs.  

 
IV.C.1.3.  Plan Intensity Map Variation Penalty 
The quadratic plan intensity map variation penalty (PIMVq) gave similar results to the 

SG2D penalty in terms of the reduction in MU, CC, and PIMV at increasing penalty 

weights (Figure IV-9).  As would be expected, the PIMV metric is the lowest at similar 

cost values when using the PIMVq penalty compared to the other methods.  In addition, 

the behavior of each of the curves in Figure IV-9 is very consistent at increasing weights, 

and the MU is the lowest of all methods at similar cost values.   The net cost increases 

because as the modulation penalty increases, the plan deviates further from the baseline 

optimized plan.  To minimize the modulation penalty, tradeoffs are usually made with the 

lower priority objective of minimizing total dose to the normal tissues.  This is indicated 

by the slowly increasing net cost at the lower penalty weights.  As the weight further 

increases, there is a steeper increase in the net cost as the modulation penalties begin 

to dominate the optimization and various high priority objectives are violated.  In a 

clinical case, one would likely not choose a smoothing penalty weight that interfered with 

the high priority objectives.  The extent to which the modulation penalty would be 

allowed to trade off with lower priority objectives would have to take into account the 

increase in normal tissue dose versus the reduction in MU and beam complexity.   
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 In addition to the desirable behavior of the MU and PIMV when using the PIMVq 

penalty, there is also an additional advantage of directly penalizing the modulation 

without having to compute a filtered beam and then assign a deviation-based penalty.  

Thus, when using the PIMVq penalty, it would be very unusual to observe the MU or 

PIMV increasing with increasing penalty weights, as in the SG1D plans. 

 Figure IV-10 shows the DVHs and beams for the PIMVq penalized plans.  While 

the DVHs are similar to the SG penalties, there are striking differences in the intensity 

modulated beams.  The PIMVq penalized fields are relatively uniform, with the second 

beam delivering the majority of the intensity.  In these beams, the modulation was high 

only in areas near the overlap of the PTV and the “Small” structure.  Looking at the large 

differences in the beam intensity patterns from each of the different modulation 

penalties, it appears that the phantom case has a large solution space, i.e., there are 

many different beam combinations that lead to very similar DVH results.   

 For this CT phantom example, the PIMVq penalty achieved the same total 

objective function values with lower degrees of beam complexity and MU than the SG 

penalties.  However, tradeoffs are still being made within the dose objectives, and each 

Figure IV-9. The relative MU, mean correlation coefficient, and relative PIMV 
as a function of total cost for the CT phantom when optimized with the PIMVq 
penalty in the objective function.  All results are relative to baseline plan and 
the correlation coefficient value was averaged over all beams.   
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of the modulation penalties causes slightly different tradeoffs to be made in the cost 

function.  Thus, each of the penalties may have merit in different geometries and in 

situations where planners may have different tradeoff preferences.  It is likely that the 

SG1D and SG2D penalties will be useful in cases that require high intensity gradients 

across a field, and that the PIMVq penalty will be most applicable because it generally 

provides the same objective value for the least amount of beam complexity.  These 

ideas will recur in the following discussion of our results from the brain, prostate, and 

head/neck trials.   

 
IV.C.2.  Clinical Studies 
Nine clinical cases were optimized using each of the three modulation penalties in the 

objective function at varying weights.  The results were compared to plans using the 

baseline objective functions without or with maximum beamlet intensity limits.  The 

inclusion of the modulation penalties at reasonable weights did not compromise the 

clinical planning objectives and generally resulted in smoother, less complex intensity 

patterns that could be delivered with significant reductions in monitor units compared to 

the baseline IMRT plans.  This gain in delivery efficiency was sometimes at the expense 

Figure IV-10. DVHs and beams for plans at various PIMVq penalty weights in the 
CT phantom.  Weights in increasing order are given by i-iv.   

Baseline
PIMVq-i
PIMVq-ii
PIMVq-iii
PIMVq-iv

Beam 1              Beam 2              Beam 3
Baseline

PIMVq-i 

PIMVq-ii 

PIMVq-iii 

PIMVq-iv 
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of increased dose to the normal tissues.  Therefore, in addition to the results presenting 

the maximum MU reductions while still meeting the clinical objectives, we have included 

the maximum MU reduction while maintaining all normal tissue mean doses achieved 

with the baseline cost function.  This was done by adding mean dose costlets along with 

the modulation penalties to the baseline cost function at the mean dose levels achieved 

by the baseline plan optimization.  These results will be discussed for each individual 

treatment site. 

 

IV.C.2.1.  Brain  
In the three brain cases tested, each beam complexity reduction technique produced 

plans that met the high priority dose objectives and could be delivered with a significant 

MU reduction compared to the baseline IMRT plan.  Figure IV-11 shows all of the 

optimization runs plotted as relative MU versus net cost.  In each plan shown, all of the 

high priority objectives in Table IV-1 are met.  The increase in delivery efficiency seen in 

the brain is usually gained as a result of a tradeoff between the modulation penalty (or 

maximum beamlet intensity) and the low-priority objective of minimizing overall dose to 

the normal tissues.  This can be seen in Figure IV-12 which shows, for all cases, the 

optimized DVHs with the baseline cost function, with maximum intensity limits, and with 

each of the modulation penalties applied.  The plans shown are at moderate modulation 

penalty weights and are very similar in net cost.  The intensity modulated beams from 

each of the techniques are shown in (b), (d), and (f).  A reduction in overall beam 

modulation from the baseline cost function to the other techniques can be seen,  and the  

Figure IV-11. Plots illustrating relative MU versus net cost tradeoffs in the brain cases 
when using each of the modulation penalties compared to a standard cost function 
and maximum intensity limits.  All values are relative to the standard plan. 
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Figure IV-12.  DVHs and corresponding beams shown optimized with each of 
the beam modulation reduction methods for (a,b) Brain 1, (c,d) Brain 2, and (e,f)
Brain 3.   SMLC MU reductions are in parentheses. 
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MU reductions are shown in parentheses.  The same general trend in relative MU was 

observed in all brain cases with the PIMVq modulation penalty, consistently producing 

the largest reduction in MU at similar objective function values, followed by maximum 

intensity limits, the SG2D penalty, and then the SG1D penalty (Figure IV-11).   

 The maximum possible MU reductions for each method compared to the 

baseline plan are shown in Table IV-2 for each of the brain cases.  The maximum 

possible MU reduction is defined as the maximum MU reduction possible while still 

meeting all of the high priority clinical planning objectives in Table IV-1.  In practice, 

these plans may not be acceptable to the physician because there can be significant 

mean dose increases in the normal tissues.  Therefore, also included is the more 

modest maximum MU reductions possible when maintaining the mean normal tissue 

doses from the baseline plans.  Realistic MU reductions for clinical practice may lie 

between these two values, and would be based on the individual plan and physician 

tradeoff preferences.  The smaller  decreases  in  MU  for brain2 may be explained by a 

lack of modulation in the fields for the original cost function, as the plan was relatively 

simple without involvement of  the  optic  nerves.   The  SG  penalties may not have 

resulted in a large MU reduction because the original beams already closely resembled 

the filtered beam.  Since the PIMVq plans were penalized based on the total modulation, 

they have the greatest MU decrease, along with the relatively flat maximum intensity 

limited plans.  

 
Table IV-2. Maximum MU reductions possible in the brain using each optimization 
technique while (i) meeting high priority plan objectives, and (ii) maintaining mean 
normal tissue doses from the baseline plan. 

 

IV.C.2.2.  Prostate   
In the three prostate cases tested, each technique produced plans that met the high 

priority dose volume objectives, and demonstrated significant reductions in MU.  Relative 

Brain1 Brain2 Brain3 

Optimization Technique  (i) only (i) and (ii) (i) only (i) and (ii) (i) only (i) and (ii)
Maximum Intensity Limits 49.0% 9.4% 27.3% 2.5% 31.1% 4.7% 

SG1D Filter Penalty 35.8% 3.9% 10.1% 0.0% 22.4% 13.5% 
SG2D Filter Penalty 49.2% 12.7% 18.1% 3.6% 27.5% 12.9% 
PIMVq Penalty 56.7% 16.4% 25.8% 12.8% 39.1% 13.1% 
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MU are plotted versus net cost in Figure IV-13 for all of the prostate cases tested.  In 

prostate1, the MU reductions were largest for plans using maximum intensity limits or 

the PIMVq penalty.  In prostate2 and prostate3, the PIMVq plans consistently required 

the fewest MU at a similar net cost and demonstrated the most predictable and 

consistent behavior at higher weights compared to the Savitzky-Golay filter-based 

modulation penalties. All techniques, however, produced acceptable plans with large MU 

reductions.  The main tradeoff for improved delivery efficiency was, again, a slight 

increase in overall dose to the normal tissues.  This can be seen in the DVH 

comparisons for all methods in Figure IV-14 (a), (c), and (e).   All plans shown met the 

objectives in Table IV-1, and the plans shown for each patient have similar values of net 

cost.  The DVHs for the plans with modulation penalties are all very similar, while the 

maximum intensity limited plan had the highest dose to the rectum along with reduced 

dose to the femora.  This demonstrates the availability of plan tradeoffs possible to 

achieve the same objective function value.   

 Four of the nine beams from each of the optimized plans are shown in Figure IV-

14 (b), (d), and (f).  Here the maximum intensity limited beams look very different from 

the rest of the beams, supporting the large shape differences that were observed in the 

plan DVHs.  The reduction in overall beam complexity for the non-baseline plans is 

apparent in the intensity maps, and the MU percent reductions compared to the baseline 

cost function are shown in parentheses.   

 To further illustrate the tradeoff between beam smoothing and normal tissue 

mean dose,  Figure IV-15  shows mean doses plotted as a function of relative SMLC MU  
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Figure IV-13. Plots illustrating relative MU versus net cost tradeoffs in the prostate 
cases when using each of the modulation penalties compared to a baseline cost 
function and maximum intensity limits.  All values are relative to the standard plan. 
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Figure IV-14.  DVHs and corresponding beams 1-4 out of 9 shown optimized with 
each of the beam modulation reduction methods for (a,b) Prostate 1, (c,d) Prostate 2, 
and (e,f) Prostate 3.   SMLC MU reductions are in parentheses. 
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for each of the normal structures in each prostate case.  The PTV mean and minimum 

doses are also shown.  This demonstrates that the minimum dose to the target stays 

constant as the modulation penalties increase.  However, the mean doses to the normal 

tissues increase as the MU decrease.  This is more prominent in structures that are 
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Figure IV-15. Doses in each prostate case plotted as a function of SMLC MU when 
using each of the optimization techniques.  Trends in the PTVminimum and mean 
dose are shown along with normal tissue mean doses.   

Table IV-3.  Maximum MU reductions possible in the prostate using each optimization 
technique while (i) meeting high priority plan objectives, and (ii) maintaining mean 
normal tissue doses from the baseline plan. 

Prostate1 Prostate2 Prostate3 

Optimization Technique  
(i) 

only 
(i) and 

(ii) 
(i) 

only 
(i) and 

(ii) 
(i) 

only 
(i) and 

(ii) 
Maximum Intensity 
Limits 62.6% 20.9% 62.4% 12.3% 67.6% 12.1% 
SG1D Filter Penalty 61.8% 12.3% 56.1% 2.2% 51.6% 8.8% 
SG2D Filter Penalty 69.6% 26.3% 57.2% 16.2% 59.4% 21.9% 
PIMVq Penalty 79.2% 26.6% 71.5% 18.9% 71.7% 26.4% 
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close to the target, such as the rectum and bladder.  The plots for prostate1 and 

prostate2 also show the inconsistent behavior of the SG penalties at higher weights.   

 Table IV-3 shows the maximum MU reductions possible when applying each of 

the modulation reduction methods.  The first column shows the maximum MU reduction 

possible  while  still  meeting  all  of  the  high  priority  plan  objectives,  but  allowing for 

tradeoffs with the lower priority objective of minimizing overall dose to the normal 

tissues.  The second column shows the MU reduction possible while meeting the high 

priority objectives and maintaining the mean normal tissue doses achieved in the 

baseline plan.  The DVHs for the prostate1 plans that correspond to the latter are shown  

in Figure IV-16.  There is a slight change in the shape of the rectum DVH, but the rest of 

the normal tissue and target DVHs are unchanged.  Thus, MU reductions occur (on the 

order of 18.9 % - 26.6 %) when applying the PIMVq penalty in the prostate with 

essentially no loss in in clinical quality compared to the baseline plans.  These MU 

reductions are actually similar to the reductions seen in what appear to be “worse” plans 

in Figure IV-14.   

Figure IV-16. Prostate1 DVHs shown optimized with each of the beam modulation 
reduction methods and maximum intensity limits when including mean dose costlets 
for the normal tissues equal to the mean doses achieved by the baseline plan. 
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 This demonstrates one of the disadvantages of using a weighted sum cost 

function and shows why one must be explicit in the definition of the objectives.  If dose to 

the normal tissues is weakly penalized, as it usually is in a weighed sum cost function so 

as to not interfere with the more important objectives, the plan will have little incentive to 

reduce that dose.  In Figure IV-16, where costlets that limit the normal tissue mean 

doses to those we know were already achievable in the baseline plan are included,  

those limits were able to be adhered to while still reducing the MU.  It should be noted 

that the considerable MU decreases observed in the prostate compared to the brain are 

likely a function of both baseline plan complexity and the reduced beamlet size (0.5 cm 

by 0.5 cm as compared to the 1 cm by 1 cm) used in the prostate plans.  

 
IV.C.2.3.  Head/Neck  
The head/neck body site included the highest number of targets and normal structures in 

the cost function.  The cases tested had large primary PTVs and nodal volumes, 

requiring large treatment fields that encompassed substantial (if not all) volumes of many 

important normal structures.  Consequently, there was little room to improve plans based 

upon the addition of a beam modulation penalty while not interfering with the high priority 

dose objectives.  Therefore, the MU reductions observed (Figure IV-17) for the three 

head/neck plans were smaller and plateaued more quickly than those in the prostate.  

Still, it was possible to reduce modulation and MU with little loss in plan quality according 

to the DVHs and dose metrics.  As in the other body sites, target coverage was not 
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Figure IV-17.  Plots illustrating relative MU versus net cost tradeoffs in the head/neck 
cases when using each of the modulation penalties compared to a standard cost 
function and maximum intensity limits.  All values are relative to the standard plan. 
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compromised, due to the design of the cost function.  Plans became unacceptable as 

the modulation penalty grew too large, and in these cases, the first thing to be violated 

was generally the sparing of one parotid or the spinal cord maximum dose.  The PIMVq 

method penalizes all modulation, no matter the location; therefore PIMVq penalized 

plans have the largest mean spinal cord doses.  While a small change may not be 

clinically important, larger increases in mean cord dose, such as those obtained with 

higher penalty weights, may warrant a change in the cost function, or use of a smoothing 

mechanism that would not penalize modulation near the spinal cord.  All other mean 

doses and DVHs are very consistent throughout the optimization runs, with mean doses 

varying, in most cases, by less than 1 Gy.   

 The PIMVq penalty produced the highest MU reductions, followed by the 

maximum intensity limits, SG2D, and SG1D penalties, with the SG1D penalty producing 

the most inconsistent MU reductions (see Figure IV-17).  The highest MU reductions 

possible while still meeting all of the high priority objectives are shown in Table IV-4.  As 

in the other sites, it was also possible to achieve substantial MU reductions while 

maintaining the mean normal tissue doses achieved in the baseline plan (Table IV-4). 

 HN2 had additional boost targets within each nodal volume, making it difficult to 

meet all of the objectives.  Many plans had difficulties in satisfying the target dose 

homogeneity requirements due to the number of overlapping targets.  Because of this, 

the limiting factor in the optimization was not the normal tissue dose.  This also explains 

why  the  MU  reductions  were  similar  when  adding  in  the  mean  normal  tissue dose  

Table IV-4.  Maximum MU reductions possible in the head/neck using each optimization 
technique while (i) meeting high priority plan objectives, and (ii) maintaining mean 
normal tissue doses from the baseline plan. 

HN1 HN2 HN3 

Optimization Technique  
(i) 

only 
(i) and 

(ii) 
(i) 

only 
(i) and 

(ii) 
(i) 

only 
(i) and 

(ii) 
Maximum Intensity 
Limits 41.8% 26.9% 40.0% 37.1% 22.6% 18.3% 

SG1D Filter Penalty 28.8% 28.8% 45.3% 36.2% 31.4% 25.7% 

SG2D Filter Penalty 36.5% 34.0% 50.8% 50.8% 37.5% 29.5% 

PIMVq Penalty 47.4% 35.6% 52.3% 52.3% 38.5% 33.1% 
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Figure IV-18.  DVHs and corresponding beams 1-4 out of 9 shown optimized with 
each of the beam modulation reduction methods for (a,b) HN 1, (c,d) HN 2, and (e,f)
HN 3.   SMLC MU reductions are in parentheses. 
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objectives in Table IV-1.  The performance of the maximum intensity limited plans was 

poor in this case, demonstrating the need for the higher intensities to reach the 

homogeneity goals in the targets.  The PIMVq penalty, at higher weights, successfully 

reduced MU with almost no change in plan DVHs or metrics.  In this case there was only 

a 1.7 Gy increase in mean dose to spinal cord at the highest PIMVq penalty.  This plan 

represented a 52 % reduction in MU as compared to the baseline cost function.   

 The DVHs and intensity modulated beams for all cases and techniques are 

shown in Figure IV-18.  Each case is shown at similar net cost values.  All of the cases 

have similar results, with the most noticeable effect of modulation reduction in the cord 

DVH. 

 Achieving a mean dose of less than 26 Gy in the left parotid (the only one that 

could be spared) appeared to be the limiting factor in the optimization in HN3.  This case 

shows that sometimes limiting the maximum intensity is not desirable.  Figure IV-18(f) 

shows that higher intensities were necessary in areas near the left parotid (the upper 

areas of the beams) to create gradients in the targets to compensate for reducing the 

parotid dose.  Therefore, maximum intensity limits could not be applied very strictly, or 

else the plans would become inferior.  The remaining techniques were able to reduce 

the modulation while still meeting the plan objectives.  The fact that the smoothing 

costlets were still utilizable in this complex geometry demonstrates one advantage of 

including modulation penalties as weighted costlets versus applying beamlet restrictions 

in an absolute sense.  The PIMVq penalized plan again had the highest MU reductions, 

followed by the SG2D and SG1D filter penalties.  The latter techniques had slightly 

reduced normal tissue mean doses compared to the PIMVq penalty, which can be seen 

in the DVHs in Figure IV-18. 

 
IV.D. Discussion 
A high degree of modulation in intensity modulated radiotherapy beams can lead to large 

increases in treatment time and monitor units (as compared to conventional 3DCRT 

plans), and planning and quality assurance time.  None of these increases in time and 

effort is desirable.  In this work, several techniques for reducing beam modulation were 

investigated, with the goal of not significantly altering IMRT plan quality or the ability of 

the optimizer to reach the prescribed inverse plan objectives.  These techniques 

included (i) maximum intensity restrictions on beamlets, (ii) Savitzky-Golay filter-based 
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modulation penalties in 1-D and 2-D, and (iii) a modulation penalty based on the overall 

quadratic plan intensity map variation.  Each of these techniques produced a fairly 

continuous range of plans and results at varying degrees of maximum intensity and 

modulation penalty weights.  At lower maximum intensities and higher modulation 

penalty weights, there was a greater tradeoff between the low priority objectives 

(typically overall normal tissue dose minimization) and a greater decrease in MU. 

Relative MU reductions on the order of 13-52 % are possible in clinical cases with these 

complexity-reduction methods, while maintaining the normal tissue mean doses 

achieved with a baseline cost function. This provides the user with a choice of the 

degree of normal tissue dose increase acceptable for a certain increase in plan 

efficiency.  Each of the modulation penalties could be a powerful tool for a dosimetrist, 

physicist, or physician to manipulate an IMRT plan on a case-by-case basis, depending 

on the specific goals of the plan. 

 While it is always preferred to decrease dose wherever possible, the clinical 

importance of changes in the low dose region is difficult to judge.  Considering the 

additional transmission and leakage dose delivered to the patient during more 

modulated and complex deliveries, the advantages of using unconstrained intensity 

limits could be diminished, or more importantly, outweighed, by the increased normal 

tissue dose due to leakage/transmission.  The average transmission is machine- 

dependent and is approximately 2 % of the total monitor units for our linear accelerator 

and MLC design (Varian, 2100 EX, Millennium MLC, Palo Alto, CA)19.  These 

transmission rates could result in an average increase in dose from the constrained to 

unconstrained plans of approximately 5.0 cGy per fraction for static delivery.  As Mohan 

et al. suggest, in complex deliveries it is not uncommon for some points to receive 100% 

of their dose through indirect means2.  Thus, the extra effort to reduce normal tissue 

doses by making minor intensity adjustments that increase the total monitor units are 

likely unproductive, and may even increase the total dose eventually received when 

more accurately accounting for transmission and leakage and geometric uncertainties.  

Hall et al. have suggested that this increased leakage radiation may contribute to an 

increased risk of second malignancies, and a joint publication by the American Society 

for Therapeutic Radiation Oncology (ASTRO) and the American Association of 

Physicists in Medicine (AAPM) has also pointed out the compromises that must be made 

when considering the increases in MU frequently seen in clinical IMRT20-22.   
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 Applying maximum intensity limits to beamlet plans is a simple solution to reduce 

MU in plans that do not require high degrees of freedom to meet the plan objectives.  

Thus, this method was successful in both the brain and prostate body sites.  However, in 

the more complicated head/neck cases, limitations were encountered when certain 

objectives were on the border of being violated.  In these cases, moderately restricting 

the maximum intensity interfered with the optimizer’s ability to meet the plan objectives, 

thus requiring a more sophisticated smoothing mechanism to achieve higher MU 

reductions.    

 The first modulation penalty was based on a 1D Savitzky-Golay filter (SG1D 

penalty) applied only in the direction of the MLC travel, while the second penalty was 

based on a 2D filter (SG2D penalty).  The third modulation costlet penalized the sum of 

squared differences between all neighboring beamlets (PIMVq penalty).  Each of these 

penalties, when applied with a reasonable weight in a weighted sum cost function, 

successfully reduced plan modulation, while still allowing the optimizer ample freedom to 

meet the plan objectives.  An advantage of using these penalties inside the cost function 

is that tradeoffs with normal structure doses are controlled by the weight of the 

modulation penalty.  This would be impossible if a smoothing procedure were applied 

iteratively or post-optimization.  The SG1D penalty has been used previously and shown 

to be effective compared to applying smoothing operations after each optimization 

iteration4.  While this method can effectively reduce modulation and MU in most cases, 

its behavior can be somewhat unpredictable at increased weights of the penalty.  Also, it 

(i) only decreases modulation in one direction, creating a step-like intensity pattern in the 

direction perpendicular to leaf travel, which is non-intuitive when compared to patient 

anatomy, (ii) could introduce unwanted errors in QA and delivery, and (iii) could 

potentially increase a plan’s sensitivity to geometric shifts in the direction perpendicular 

to MLC travel.  These potentially negative features can be useful in cases where smaller 

structures are present in the field (such as the penile bulb in the prostate and the spinal 

cord in the head/neck).  Still, in the majority of the cases, use of the SG2D penalty will 

be superior in terms of overall beam modulation reduction and MU reduction, while 

producing plans with similar DVHs and dose metrics.  In most cases, a 2D modulation 

penalty should be applied to reduce potential problems with QA and delivery.   

 Finally, the PIMVq penalty most consistently reduced MU as the weight was 

increased.  This method eliminates the need for a separate computation of the smoothed 
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filtered beam, as it simply penalizes a direct measure of the overall beam modulation.  

The behavior of this penalty is very predictable, although a potential problem in this 

method is that it penalizes all modulation, whereas the SG penalties only penalize 

deviation from a smoothed version of the plan.  In the head/neck plans, where the spinal 

cord frequently lies in the beam, the beam gradient is reduced as a result of the penalty, 

and the mean dose to the spinal cord is increased.  In cases such as this, the Savitzky-

Golay methods may be best-suited, or changes to the cost function may need to be 

made when using the PIMV-based penalty.  Also, it may be advantageous to examine 

the use of “smarter” smoothing mechanisms that can distinguish between areas that 

should or should not be smoothed.  Such a method has been investigated by Llacer et 

al., who showed that for a simple 2D test case, a space-variant filter can be more 

effective at smoothing without compromising PTV coverage than other conventional 

filtering techniques5.  Another method based on diffusion principles for 3D inverse 

planning that allows for spatially adaptive smoothing is discussed in Chapters V and VI. 

 A competing method for improving plan delivery accuracy and efficiency is the 

optimization of the size and shape of the segments to be used in IMRT delivery. A fair 

comparison of direct segment optimization (DSO)23,24 to fluence map optimization with 

smoothing and improved leaf sequencing is warranted to determine which produces the 

best dosimetric results in complicated cases, while aiming to improve overall planning 

and delivery efficiency. 

 Several authors have reported an increase in planning efficiency when 

incorporating smoothing into the cost function in contrast to smoothing at the end of 

each iteration4,25.  This trend has been observed in this work and is likely due to an 

increase in curvature of the cost function near the global minimum, reducing the time to 

fine-tune the plan after convergence. 

 Another potential advantage to reducing beam complexity is a decrease in 

delivery time.  In fact, delivery time reductions on the order of 25 % in the prostate cases 

studied here were observed, but a significant reduction in delivery time was not seen in 

the other body sites.  It may be that the effective leaf travel is not substantially reduced 

until the beam is almost flat.  More analysis of the delivery time implications of the 

PIMVq costlet is shown in Chapter VII. 

  One disadvantage of incorporating smoothing into the cost function is a difficulty 

in analyzing the tradeoffs between the smoothness criteria and the target and normal 
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tissue objectives.  However, this problem remains for assessing all weighted-sum cost 

function plans, and the proposed Pareto surface navigation could be applied to analyze 

the tradeoffs in question26.  It is also possible to use a modulation penalty as a priority 

stage in a Lexicographic ordering optimization27.  This idea is discussed further in 

Chapter VI.  Nevertheless, it currently remains a case-by-case situation to properly 

incorporate smoothing into a cost function, and this general approach would most likely 

include iterating through several importance factors for smoothness before reaching the 

desired solution.  The resulting trial-and-error process may offset the decreased time 

needed for optimization, but the ultimate increase in plan quality based upon improved 

QA and delivery efficiency should prove beneficial. 
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CHAPTER V. 
 

ADAPTIVE DIFFUSION SMOOTHING 
 

 
Chapter IV presented several different types of smoothing filters and modulation 

penalties that can be used during the optimization process to promoting smoothing of 

IMRT fields in an effort to reduce plan complexity.  While these methods were 

successful, there is still a concern that smoothing filters and modulation penalties cannot 

distinguish between desirable and undesirable modulation and therefore, all modulation 

gets penalized to the same degree in the cost function.  This can lead to penalization of 

important gradients and result in sub-optimal smoothing and possible degradation of the 

plan in areas where high intensity gradients are necessary.  This chapter will introduce 

another smoothing method that we have developed using an analogy to various 

processes described by the diffusion equation.  This new method, which we have termed 

adaptive diffusion smoothing, or ADS, uses beamlet-specific diffusion coefficients to 

automatically customize the amount of smoothing that occurs in different regions of the 

beam.  We will describe the theory and implementation of this method for use in IMRT 

treatment planning and present several clinical examples of its use.  Chapter VI will 

present several further applications of this method. 

 

V.A.  Motivation 
As we have shown in previous chapters, considerable effort has been spent trying to 

reduce the complexity of IMRT fluence patterns while preserving the advantages gained 

by employing IMRT.  Methods that have been considered include beamlet restrictions1, 

direct optimization of delivery segments2-4, and smoothing of intensity modulated beams 

either during or after optimization5-10.  As the parameters in each of these methods are 

relaxed, the unconstrained beamlet solution is approached.  The goal is to restrain the 

parameters enough so that the solution is an acceptable compromise between the ideal 

beamlet solution and a more efficient conventional 3D conformal solution.  Unfortunately, 
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these previously-described smoothing methods may not be optimal because they cannot 

distinguish between parts of the beam that should and should not be smoothed.   

 So far, the most promising smoothing methods are those that penalize or account for 

modulation inside the inverse planning cost function.  Examples of these include the 

smoothing costlets presented in Chapter IV.  There, we showed that significant 

increases in efficiency are possible while preserving the full dosimetric quality of the 

original (unsmoothed) IMRT plan.  However, the problem remains that the beam is either 

penalized for being modulated, which is the fundamental feature of IMRT in the first 

place, or the beam is penalized for not conforming to a certain filtered version of itself, 

which may not be ideal for the specific beam in question.  The latter was found to be true 

in several cases when using the Savitsky-Golay filter penalty during optimization.  The 

amount of smoothing possible is always limited by the eventual tradeoffs that are made 

with target or normal tissue coverage, leading us to believe that a more adaptive 

smoothing procedure that can distinguish between areas that should or should not be 

smoothed could produce superior results. 

 A spatially adaptive smoothing method was investigated by Llacer et al. for a simple 

2D test case, and was shown to compromise PTV coverage to a lesser degree than 

other conventional filtering techniques11. In their work, beamlets around the PTV were 

manually selected to receive less filtering in order to preserve the intensity near the 

target. In the following sections, we present a new adaptive diffusion smoothing (ADS) 

method for preferential smoothing in 3D inverse planning.  The ADS method, which 

makes simple use of the common diffusion equation, allows for preferential smoothing 

by using variable and automatically-defined diffusion coefficients.  This method has the 

potential to distinguish between important and non-important areas of modulation, 

facilitating smarter tradeoffs between the cost function and smoothing criteria.  In the 

following, we (i) describe the ADS theory, method and implementation for controlling 

IMRT beam complexity, (ii) characterize it using a test phantom optimization case, and 

(iii) demonstrate its utility and potential in clinical IMRT cases.  

 

V.B.  Methods 
V.B.1.  Adaptive diffusion smoothing formulation and implementation 
The time-dependent diffusion equation, given in Equation (V.1), is found in many areas 

of science and engineering.  This equation describes the propagation of a material from 

areas of high concentration to areas of low concentration according to a spatially variant 
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diffusion coefficient, D(x, y), which depends on the local properties of the medium (this 

equation is cast in 2-D for application to the beamlet intensity situation). 

 

 

φ φ

φ φ

∂
= ∇ ⋅ ∇

∂
∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂

( , , ) ( , ) ( , , )

( , ) ( , , ) ( , ) ( , , ) .

x y t D x y x y t
t

D x y x y t D x y x y t
x x y y

 (V.1) 

 

By replacing the density of diffusing material, φ(x,y,t), with beamlet intensity, I(x,y,t), we 

can make an analogy from the diffusion of a material to the smoothing of an IMRT beam.  

Using this idea, we have designed a procedure, named  “adaptive diffusion smoothing” 

or ADS, in which an intensity modulated beamlet grid is smoothed using Equation V.1 

with a diffusion coefficient ( , )D x y  that is automatically defined for each beamlet.  This 

allows the smoothing characteristics to adapt to each individual plan and allows for 

spatially variant smoothing. The diffusion process and some of the discrete notation 

used below is illustrated in Figure V-1.  This figure is simplified for illustration purposes, 

as it only shows one beamlet, and the diffusion coefficients at the beamlet borders are 

actually a function of the neighboring diffusion coefficients. 

 To describe the ADS method, we consider the following time-dependent diffusion 

problem: 

Figure V-1.  A simplified illustration of the diffusion smoothing procedure and some of 
the notation used in this work.  We start with an intensity modulation beam, Io, and a 
grid of corresponding diffusion coefficients, D, that dictate the degree of the 
smoothing allowed or applied over each beamlet and then solve our diffusion 
equation analogy to get the diffusion smoothed beam, Is. 
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 ( , , ) ( , ) ( , , ) 0 , 0 ,s
s

I x y t D x y I x y t for x X y Y
t

∂
= ∇ ⋅ ∇ < < < <

∂
  (V.2) 

 

with boundary conditions: 

 

 
(0, , ) ( , , ) 0 0 ,

( ,0, ) ( , , ) 0 0 ,

s s

s s

I Iy t X y t for y Y
x x
I Ix t x Y t for x X
y y

∂ ∂
= = < <

∂ ∂
∂ ∂

= = < <
∂ ∂

 (V.3a) 

 

and initial condition: 

 

 0( , ,0) ( , ) .sI x y I x y=  (V.3b) 

 

Here 0( , )I x y  is the unsmoothed intensity map, ( , , )sI x y t  is the smoothed intensity map 

at time t , and ( , ) 0D x y ≥  is the prescribed diffusion coefficient (discussed in detail 

below). For 0t = , 0( , ,0) ( , )sI x y I x y=  and no smoothing has taken place. For 

( , ) 0D x y > , as t  increases, ( , , )sI x y t  becomes increasingly smoothed.  The 

combination of the size of the diffusion coefficient and Δt control the amount of 

smoothing that occurs.  Also, integrating Equation V.2 over 0 x X≤ ≤  and 0 y Y≤ ≤  

and using the boundary conditions expressed in Equation V.3a, we easily obtain for all 

0t ≥  

 

 0
0 0 0 0

( , , ) ( , ) .
Y X Y X

sI x y t dxdy I x y dxdy=∫ ∫ ∫ ∫   (V.4) 

 

Thus, the total intensity of the unsmoothed beam 0I  is automatically preserved. 

 To estimate the smoothed beam at time 0tΔ > , we integrate Equation V.2 over 

0 t t≤ ≤ Δ  to obtain: 
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 ( ) ( ) ( )0
0

, , , , , .
t

s sI x y t I x y D I x y t dt
Δ

Δ = + ∇ ⋅ ∇∫    (V.5) 

 

To evaluate the integral term, we consider the implicit and explicit time-differencing 

approximations.  Using the implicit approximation, we obtain the following integral term: 

  

 

( ) ( )
0 0

, , , ,

     ( , , )
 ( , ) .

t t

s s

s

s

I x y t dt I x y t dt

t I x y t
t I x y

Δ Δ
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= Δ Δ
= Δ
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    (V.6)  

 

Using the explicit approximation, we obtain instead 

 

 
( ) ( )

0 0

0

, , , ,0

     ( , ) .

t t

s sI x y t dt I x y dt

t I x y

Δ Δ

≈

= Δ

∫ ∫     (V.7)  

 

Introducing the implicit approximation, Equation V.6, into Equation V.5, we get: 

 

 0( , ) ( , ) ( , ) ( , ) ,s sI x y I x y wD x y I x y= +∇ ⋅ ∇    (V.8)  

 

where w = Δt .  In Equation V.8, the smoothed beamlet intensity depends on the 

smoothed beam as well as the original beam, making an iteration scheme necessary to 

solve for Is.  On the other hand, using the explicit approximation, Equation V.7, in 

Equation V.5, we obtain: 

 

 ( ) ( ) ( )0 0, ,   ,
where 

sI x y I x y w D I x y
w t

= + ∇ ⋅ ∇

= Δ
.  (V.9) 

 

Here, Is depends only on the original beamlet intensities, which results in a quicker and 

simpler computation of the smoothed beam.  In order to apply Equation V.9 to the 

beamlet geometry, we must consider the discrete situation in which I(x,y), and D(x,y) are 

represented by a series of beamlet intensities Iij, and diffusion coefficients Dij, as shown 
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in Figure V-1.  The length of each square beamlet is given by xi+1/2 – xi-1/2 = h.  First, we 

apply the gradient operator and write Equation V.9 as 

 

 

 ( ) ( ) 0 0
0

( , ) ( , ), , ( , ) ( , )s
I x y I x yI x y I x y wD x y wD x y

x x y y
∂ ∂⎛ ⎞∂ ∂⎛ ⎞= + + ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

. (V.10) 

 

Next, to simplify the notations, we introduce, Jx(x,y) and Jy(x,y) as 
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0
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 (V.11) 

 

Then, we write Equation V.10 as the first order system 

 

 ( ) ( )0, , ( , ) ( , )s x yI x y I x y J x y J x y
x y
∂ ∂

= + +
∂ ∂

 (V.12) 

 

with boundary conditions 
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( ,0) ( , ) 0,  0

x x
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Next, we integrate over the cell at the (i,j) position: 
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 (V.14)  

 

Using the discrete notation, we can rewrite the first two terms as 
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and we can also represent the third term as 

 

 
1/ 2

1/ 2

1/ 2 , 1/ 2,( , )
i

i

y

x i x i j
y

J x y dt J
+

−

+ +≡∫ . (V.16) 

 

Similar notation applies to the remaining terms in Equation V.14.  If xi+1/2 lies on an outer 

boundary of R, then by the boundary conditions given in Equation V.13, Jx,i+1/2,j=0.  

Therefore, we can write: 

 

 ,1/ 2, , 1/ 2, 0,  x j x I jJ J i j J+= = ≤ ≤ . (V.17) 

 

However, if the integration in Equation V.16 is over an interior cell, we must perform the 

integration in Equation V.16.  First we insert Equation V.11 to obtain: 

 

 
1/ 2

1/ 2

, 1/ 2, 1/ 2 0 1/ 2( , ) ( , )
i

i

y

x i j i i
y

J wD x y I x y dy
x
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∂
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This introduces an unknown variable, 0 1/ 2( , )iI x y+ , which is the original beam intensity 

on an interior cell edge.  To solve Equation V.18, we express it in terms of two one-sided 

finite differences which are required to be equal to each other: 
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Now, we solve (c) for the unknown value 0 1/ 2( , )iI x y+ : 
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Next, we insert Equation V.20 into the left side of Equation V.19(b) to solve for , 1/ 2,x i jJ + : 
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Using the same methods, we also solve for the remaining J terms in Equation V.14.  To 

summarize the final four terms as they apply to interior cell edges, we have: 
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If we combine the boundary conditions given in Equation V.13 with the D values above, 

we can allow Equation V.22 to apply to both interior and boundary cells.  Thus, we have: 
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Therefore, we combine Equations V.15, 22 and 23 to obtain the discrete version of 

Equation V.9: 
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 (V.24) 

 

Finally, we solve for Is,ij: 
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 (V.25) 

 

Equation V.25 represents the classic cell-average spatial discretization12 of the diffusion 

problem, using the explicit time differencing approximation.  As Equation V.25 shows, 

the smoothed intensities are based explicitly on the original intensities, making the 

smoothed intensity pattern easy to calculate.  Also, this solution can be applied inside of 

the optimization procedure as a penalized cost function component to be used with a 

gradient-based optimization scheme.  While it would be possible to use a discretization 

of the implicit version inside the cost function, the cost function gradient with respect to 

the original intensities cannot be calculated, making it necessary to employ a non-

gradient based (and likely much slower) optimization algorithm, such as simulated 

annealing.  For these reasons, we employ the explicit discretization of Equation V.25 in 

the remainder of this work.  

 

V.B.2. Diffusion Smoothing Properties  
The explicit diffusion smoothing scheme has several interesting features (many of which 

are shared with the implicit solution), including:  

 

1.  If Io = uniform intensity, then Is= Io.  Thus, ADS does not alter a flat field.  This is 

easily shown by setting all values of Io in Equation V.25 to be equal values, Ic: 
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2.  ( )1 1 1 1
2 2 2 2

,min ,max, , , ,2If 1 for all ij, then ( , )o s oi j i j i j i j
w D D D D I I x y I
h + − + −+ + + ≤ ≤ ≤ .  

Thus, if the first inequality is true, the maximum and minimum intensities of the 

smoothed beam will lie between the maximum and minimum intensities of the 

unsmoothed beam.  (For the implicit solution, this property is always true.)  This 

property ensures that as long as the original beamlet intensity is positive, the 

smoothed beamlet intensity will also be positive.  This is an important property, 

since the preservation of a positive beamlet intensity is essential.  In addition, this 

property gives us a guideline for choosing the absolute values of the time-step w 

and diffusion coefficients.  As mentioned previously, the combination of D and w 

control the amount of smoothing that occurs in the diffusion smoothing process.  

To achieve maximum smoothing, the inequality above should be close to 1.  

Since many beamlet intensity values are in the range of 0 to 10 or above, we 

have chosen to limit D to the range between 0 and 10 as well for the sake of 

having some intuition in choosing D.  Therefore, in order to satisfy the above 

inequality, and to provide the possibility for a relatively high degree of smoothing, 

we chose w = 0.02h2, where h is the beamlet dimension (usually 0.5 cm or 1.0 

cm) for the remainder of this work.  Limiting D between 0 and 10 allows us to 

keep w fixed while still providing a wide range of smoothing capabilities.   

3.  
all beamlets all beamlets

o sI I=∑ ∑ , or the smoothed beam preserves the total intensity of 

the unsmoothed beam.  [The discretization scheme preserves Equation V.4.] 

This property ensures that the smoothed plan will not be drastically different from 

the original plan and that the contributing beams will be consistent.  In some 

cases, this feature could be considered restrictive, since the ability to shift dose 

contributions from one beam to another could be important to achieve the most 

optimal plan.  However, in the iterative ADS penalty smoothing scheme 

discussed below, a transition of intensity contributions from one beam to another 

is still possible and will occur if it is beneficial to the cost function.  If a large 

intensity shift is required, this feature could potentially slow the optimization time 

to convergence. 

4. Because of the properties of the diffusion operator, the ADS process 

preferentially suppresses high frequency components of Io when D is uniform.  
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This is an important feature, because, unlike other smoothing techniques such as 

polynomial fitting, ADS ensures that the smoothed beam is actually a less 

modulated version of the original beam.  No unwanted high frequency 

components can arise as artifacts of the ADS smoothing process.  This can be 

explicity proven for the original diffusion problem in Equation VII.1, but can be 

more easily inferred by examining Equation V.25.  If we examine our diffusion 

smoothing operator, L, which operates on a function f, we have: 

, 2

1 1 1 12

( , ) ( , ) 1 4 ...

                         ( , ) ( , ) ( , ) ( , )

s ij i i i i

i j i j i j i j

wDI Lf x y f x y
h

wD f x y f x y f x y f x y
h + − + −

⎡ ⎤= = − +⎢ ⎥⎣ ⎦

⎡ ⎤+ + +⎣ ⎦

. 

The least oscillatory motion possible on the grid would be when f(x,y) equals 

some constant c over the beam.  In that situation, we have 

( , ) ( , )i i i iLf x y f x y c= = . The other extreme on the grid would be when f(xi,yi) 

oscillates between -1 and 1 over each grid point, or f(xi,yj) = c(-1)i+j.  In this 

situation, we have 
2 2( , ) 1- 8 ( 1) 1- 8 ( , )i j

i i i j
wD wDLf x y c f x y
h h

+⎡ ⎤ ⎡ ⎤= − =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 where 4wD/h2 < 

1.  Thus, when we apply the diffusion smoothing operator to a beam, or function 

f, we will obtain a less extreme function.   

5. If Dij=0 in beamlet ij, then Is,ij=Io,ij;  if Dij is large, Is,ij is strongly smoothed.  This 

gives us a basis on which to define D according to the amount of smoothing 

desired in a certain beamlet.  Figure V-2 illustrates the smoothing that occurs 

Figure V-2.  An example of the increase in smoothing that occurs as the 
diffusion coefficient value increases from the bottom to the top of the field. 
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IMRT Beam

Diffusion 
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D = 2

D = 0
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when starting from a random intensity beamlet pattern and using a stepwise 

diffusion coefficient.  The increase in smoothing can be clearly seen as the 

diffusion coefficient increases from the bottom to the top of the field. 

6. The explicitly smoothed Is,ij is determined by the original plan Io only at the ij 

beamlet and its four nearest neighbors.  The implicit solution smoothes over the 

entire beam.  Thus, in addition to being simpler to calculate, the explicit solution 

also leads to more local smoothing, which is most likely more desirable for IMRT 

beams.  However, if a more globally smoothed beam is desired, exploration of 

the implicit method would certainly be warranted. (Alternatively, one could apply 

the explicit diffusion smoothing procedure multiple times.) 

V.B.3.  Diffusion Coefficients 
We believe that the full power of the diffusion smoothing procedure lies in the definition 

of D, the diffusion coefficient.  D can be defined in a multitude of ways, the only 

constraint being Dij ≥ 0 for all beamlets.  We know from the above properties that if Dij = 0 

for a certain beamlet then the smoothed intensity of that beamlet will equal the original 

intensity.  Conversely, if Dij is large for a beamlet, then there will be a large amount of 

smoothing between the original and smoothed beamlet intensities.  This gives the user a 

high degree of control in the amount of smoothing applied over the field and allows for 

spatially variable amounts of smoothing.   

 Smoothing procedures that are applied as a cost function penalty appear to have 

the fewest drawbacks in terms of plan degradation compared to those applied outside 

the cost function6,8,13.  Therefore, we chose to characterize adaptive diffusion smoothing 

for use inside the cost function. From the previous paragraph, we can specify D so that 

modulation is penalized strongly or weakly in given areas of the beam.  For example, if 

we would like to keep sharp edges at the target boundary, we can choose D to have low 

or zero components near the edges of the beamlet intensity map.  Similarly, if we do not 

wish to penalize a large intensity gradient over a target/normal tissue interface, we can 

choose D to be small over those beamlets.  Because there are practically no restrictions 

on the definition of the coefficient values, there are many possible ways to prescribe D.  

As a first characterization of the ADS method, we will consider two logical ways to define 

the diffusion coefficients: 
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V.B.3.1. Uniform   

In IMRT cases with simple geometries, there is generally a large solution space of 

acceptable plans, and the cost function is not sensitive to small changes in the beamlet 

intensity patterns. In these situations, the simplest way to define D is as a uniform value 

across the field.  Although this definition of D does not exploit the full potential of defining 

individual diffusion coefficients (and thus does not distinguish between desirable and 

undesirable modulations), it provides a good starting point to test the diffusion smoothing 

scheme and assess whether customized diffusion smoothing coefficients are necessary 

for simple plans. 

 

V.B.3.2. Gradient   
The ultimate goal of smoothing an IMRT intensity pattern should be to maximally smooth 

the field with the minimum change in cost function value, which translates to the 

minimum negative effect on the inverse plan dose prescription.  In a gradient-based 

optimization method, the partial derivatives of the cost function (CF) with respect each of 

the beamlet intensities (Iij), ∂CF/∂Iij, must be calculated at every iteration.  Each of these 

partial derivatives describes how important each beamlet value is to minimizing the cost 

function value.  Beamlets with large absolute values of the gradient have the property 

that altering those beamlets would have a large effect on the cost function, and vice 

versa.  We have observed that these gradients, at convergence, can vary by several 

orders of magnitude, with a small percentage of the gradients having very high values, 

many having very small values and a few having moderate values.  With this 

information, we can define D to be a function of these gradient values to achieve little to 

no smoothing in high gradient beamlets, moderate smoothing in moderate gradient 

beamlets, and a high degree of smoothing in low gradient beamlets.  We have studied a 

variety of possible formulations for D, including making Dij inversely proportional to 

|∂CF/∂Iij|n.  In order to achieve the desired distribution of D, we have concluded that the 

following function is a robust and tunable formulation for D that can be used in most, if 

not all, IMRT cases: 
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Here, s is a gradient scaling factor that is equal to the median value of  |∂CF/∂Iij|.  The 

median value was chosen over the mean because of the tendency for some gradients to 

have extremely high values and bias the mean towards the higher end.  The parameters 

c and n are tunable parameters that allow D to be further customized, depending on the 

individual case.  It is likely that similar plans will have similar optimal values of c and n.  

The parameter c serves to shift the transition from high to low D and n controls the 

steepness of the fall-off from high to low D.  Figure V-3 shows the behavior of Equation 

V.26 at several different c and n values for the converged gradients in a prostate cancer 

IMRT case.  For equal c values, all curves will intersect when the gradient is equal to the 

median value.  The large range of the gradient values over several orders of magnitude 

should also be noted. 

 In theory, Equation V.26 implies that the highest amount of smoothing will occur 

in beamlets that have a small effect on the dose prescription goals, and only minor 

Figure V-3.  The diffusion coefficient as a function of the cost function 
gradients with respect to the beamlets at different c and n values according to 
Equation V.26. 
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smoothing will occur in beamlets that have a large effect on the cost function. Thus, the 

use of a variable diffusion coefficient defined in this way yields a method that can 

distinguish between desirable and undesirable modulations. 

 As an illustration of each of the above diffusion coefficient definitions and the 

ADS method itself, Figure V-4(a) shows a standard optimized intensity modulated beam 

from a brain cancer treatment example with the PTV and several critical structures 

outlined.  Figure V-4(b) shows the diffusion smoothed version of that beam using 

uniform diffusion coefficients across the entire field.  The beam was “diffusion smoothed” 

over five iterations to accentuate the smoothing for illustration purposes.  Figures V-4(c)-

(e) demonstrate the gradient-based diffusion smoothing process.  Figure V-4(c) shows 

the |∂CF/∂Iij| values, which are highest in areas of the beam that project onto the critical 

normal tissues.  Figure V-4(d) shows the gradient-based diffusion coefficients that are 

Figure V-4.  (a) An optimized brain IMRT beam, (b) the diffusion smoothed beams 
when using uniform coefficients, (c) absolute value of the cost function gradients with 
respect to the beamlets, |∂OF/∂Iij|, (d) adaptive diffusion smoothing coefficients that 
are defined as a function of (c), and (e) diffusion smoothed beams when using the 
gradient-based diffusion coefficients in (d).  Beams are shown in the beam’s eye view 
in relation to the PTV, brainstem, optic nerves, and optic chiasm.  Blue represents low 
intensity beamlets (gradients, or diffusion coefficients) while red represents high 
intensity. 
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calculated using Equation V.26 with c = 1 and n = 2.  Finally Figure V-4(e) shows the 

diffusion smoothed beam calculated with the diffusion coefficients in shown in (d).  This 

beam is also shown after five diffusion smoothing calculations to highlight the differences 

between the two methods.  We see that when D is uniform, the degree of smoothing is 

the same over the entire field, smoothing out the modulation near the organs at risk.  

Conversely, when D is defined using the cost function gradients with respect to the 

beamlets, the least amount of smoothing occurs in areas where modulation is necessary 

to meet the plan objectives.  In this case, these areas occur around in the overlap 

regions of the PTV, brainstem and optic structures.  It should be noted that the 

smoothing that occurs with the gradient-based diffusion coefficients is not always 

intuitive, as in this beam, since the gradient values depend not only on the normal 

structure locations but also on the interplay between each of the beams.   

 

V.B.4.  ADS Penalty 
Due to the fact that even small changes in the beamlet weights can cause large changes 

in the cost function, smoothing is usually most successful when applied inside the cost 

function.  Thus, for the remainder of this work, the adaptive diffusion smoothing 

procedure is used inside the IMRT inverse cost function.  To do this, we first calculate 

the diffusion smoothed beamlet intensities and then calculate the deviation between the 

original beamlet intensities and the smoothed intensities.  This deviation is then 

penalized as a part of a weighted sum cost function with weight, p.  Specifically, the 

following adaptive diffusion smoothing penalty is added to the total cost:  

  

 ( )2
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p I I= × −∑∑     (V.27) 

 

Here Is,ij is calculated using Equation V.25, and D and w must abide by property 2.  As 

stated previously, D was chosen to fall between 0 and 10 and w = 0.02h2, where h is the 

beamlet dimension.  The individual D values are variables between 0 and 10, depending 

on the type of adaptive diffusion smoothing coefficients chosen.  We note that this 

penalty is similar to the modulation penalty used in Chapter IV for the Savitzky-Golay 

filtered beams.  In Chapter IV, the smoothed beam was equal to the SG filtered beam, 

and here, the smoothed beam is equal to the diffusion smoothed beam. 
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V.B.5.  Characterization in CT Phantom and Clinical Examples 
To characterize the method and coefficient choices, we applied adaptive diffusion 

smoothing to a test case with a central spherical target surrounded by two normal 

structures.  The plan consisted of three 6 MV beams with 0.5 cm by 0.5 cm beamlets 

covering the PTV.  The baseline inverse plan objectives are shown in Table V-1. The 

point density in the structures was adequate to properly sample the region and minimize 

any point-based artifacts in the beamlet intensities.  Beamlet intensity optimization was 

first performed using the baseline cost function with UMOpt.  

 After optimization with the baseline cost function, the ADS penalty was added to 

the cost function at a given weight and the plan was re-optimized.  This was repeated 

with increasing ADS penalty weights to study the consequences of increasing the 

importance of the ADS smoothness costlet.  In these studies, the weight of the ADS 

penalty was systematically varied to analyze the range of plans and tradeoffs possible 

for both the uniform and gradient-based diffusion coefficients.   

 In addition to the comparisons made between baseline IMRT and ADS plans, we 

also optimized plans using the PIMVq modulation penalty14, which was introduced in 

Chapter IV.  To summarize, this method penalizes the quadratic plan intensity map 

variation defined by 

Table V-1. Test case plan objectives and plan degradation unit (PDU) scale for 
comparisons to baseline plan

Structure Goal

Approximate loss in plan quality (relative to 
baseline plan) equal to a plan degradation unit 
(PDU) of 1.0

PTV % vol > 57 Gy = 100 0.1 Gy increase to 100 % (same as 1 Gy to 1 %)

% vol > 63 Gy = 0 0.1 Gy increase to 100 %

OAR1 % vol > 35 Gy = 15 0.1 Gy increase to 85 %

% vol > 63 Gy = 0 0.5 Gy increase to 100 %

Minimize Mean Dose 1 Gy increase

OAR2 % vol > 20 Gy = 0 0.1 Gy to 100 % 

% vol > 63 Gy = 0 0.5 Gy to 100 % 

Minimize Mean Dose 1 Gy increase

Normal % vol > 63 Gy = 1 1 Gy increase to 99 % 

Tissue Minimize Mean Dose 2 Gy increase

Table V-1. Test case plan objectives and plan degradation unit (PDU) scale for 
comparisons to baseline plan

Structure Goal

Approximate loss in plan quality (relative to 
baseline plan) equal to a plan degradation unit 
(PDU) of 1.0

PTV % vol > 57 Gy = 100 0.1 Gy increase to 100 % (same as 1 Gy to 1 %)

% vol > 63 Gy = 0 0.1 Gy increase to 100 %

OAR1 % vol > 35 Gy = 15 0.1 Gy increase to 85 %

% vol > 63 Gy = 0 0.5 Gy increase to 100 %

Minimize Mean Dose 1 Gy increase

OAR2 % vol > 20 Gy = 0 0.1 Gy to 100 % 

% vol > 63 Gy = 0 0.5 Gy to 100 % 

Minimize Mean Dose 1 Gy increase

Normal % vol > 63 Gy = 1 1 Gy increase to 99 % 

Tissue Minimize Mean Dose 2 Gy increase
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Here Nb is the number of beams in a plan, J is the maximum number of beamlets in the 

direction parallel to the motion of the multileaf collimator (MLC), K is the maximum 

number of beamlets in the direction perpendicular to the motion of the MLC, and bjk is 

the intensity of the beamlet at the (j,k) grid position.  The PIMVq penalty has been shown 

to be a simple, yet viable smoothing costlet, and we apply it here to determine whether 

Table V-2. Prostate plan objectives and plan degradation unit (PDU) scale for 
comparisons to baseline plan

Structure Goal

Approximate loss in plan quality (relative to 
baseline plan) equal to a plan degradation unit 
(PDU) of 1.0

Prostate   
+ 5 mm % vol > 78 Gy = 100 0.1 Gy decrease to 100 % (same as 1 Gy to 1 %)

% vol > 88 Gy = 0 0.1 Gy increase to 100 %

Rectum % vol > 45 Gy = 20 0.1 Gy increase to 80 %

% vol > 85 Gy = 0 0.1 Gy increase to 100 %

Minimize Mean Dose 1 Gy increase

Bladder < 30 % gets > 45 Gy 0.1 Gy increase to 70 %

% vol > 85 Gy = 0 0.1 Gy increase to 100 %

Minimize Mean Dose 1 Gy increase

Penile 
Bulb Mean < 35 1 Gy increase

% vol > 85 Gy = 0 0.1 Gy increase to 100 %

Minimize Mean Dose 1 Gy increase

Femurs Mean < 30 1 Gy increase

< 10 % gets > 40 1 Gy increase to 90 %

% vol > 45 Gy = 0 1 Gy increase to 100 %

Minimize Mean Dose 1 Gy increase

Normal Max < 88 Gy 2 Gy

Tissue Minimize Mean Dose 2 Gy increase

Table V-2. Prostate plan objectives and plan degradation unit (PDU) scale for 
comparisons to baseline plan

Structure Goal

Approximate loss in plan quality (relative to 
baseline plan) equal to a plan degradation unit 
(PDU) of 1.0

Prostate   
+ 5 mm % vol > 78 Gy = 100 0.1 Gy decrease to 100 % (same as 1 Gy to 1 %)

% vol > 88 Gy = 0 0.1 Gy increase to 100 %

Rectum % vol > 45 Gy = 20 0.1 Gy increase to 80 %

% vol > 85 Gy = 0 0.1 Gy increase to 100 %

Minimize Mean Dose 1 Gy increase

Bladder < 30 % gets > 45 Gy 0.1 Gy increase to 70 %

% vol > 85 Gy = 0 0.1 Gy increase to 100 %

Minimize Mean Dose 1 Gy increase

Penile 
Bulb Mean < 35 1 Gy increase

% vol > 85 Gy = 0 0.1 Gy increase to 100 %

Minimize Mean Dose 1 Gy increase

Femurs Mean < 30 1 Gy increase

< 10 % gets > 40 1 Gy increase to 90 %

% vol > 45 Gy = 0 1 Gy increase to 100 %

Minimize Mean Dose 1 Gy increase

Normal Max < 88 Gy 2 Gy

Tissue Minimize Mean Dose 2 Gy increase
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there is an advantage to using the more sophisticated ADS scheme.  The ADS penalty 

was evaluated by comparing the results of the ADS penalized plans to the baseline 

IMRT plan and the PIMVq plan for each case.   

 After characterizing the ADS procedure and penalty in the simple test case, we 

employed the same scheme to clinical examples in the prostate and head/neck.  Both 

cases had seven equi-spaced 6 MV beams; the baseline planning objectives are shown 

Table V-3. Head/neck plan objectives and plan degradation unit (PDU) scale for 
comparisons to baseline plan

Structure Goal

Approximate loss in plan quality (relative to 
baseline plan) equal to a plan degradation unit 
(PDU) of 1.0

PTV70 % vol > 69.3 Gy = 100 0.15 Gy decrease to 100 % (same as 1 Gy to 1 %)

% vol > 77 Gy = 0 0.2 Gy increase to 100 %

PTV64 % vol > 63.4 Gy = 100 0.15 Gy decrease to 100 % 

% vol > 70.4 Gy = 0 0.2 Gy increase to 100 %

PTV60 % vol > 59.4 Gy = 100 0.15 Gy decrease to 100 % 

% vol > 66 Gy = 0 0.2 Gy increase to 100 %

Cord Max < 50 Gy 0.1Gy increase

Minimize Mean Dose 1 Gy increase

Brainstem Max < 54 Gy 0.1 Gy increase

Minimize Mean Dose 1 Gy increase

Mandible Max < 73.5 Gy 0.2 Gy increase

Minimize Mean Dose 1 Gy increase

Parotids Max < 77 Gy 0.2 Gy increase                             

Mean < 26 Gy 0.25 Gy increase

Minimize Mean Dose 1 Gy increase 

Esophagus Max < 50 Gy 1 Gy increase

Larynx Minimize Mean Dose 0.5 Gy increase

Max < 77 Gy 1 Gy increase

Oral Cavity Mean < 49 Gy 0.5 Gy increase

Minimize Mean Dose 1 Gy increase

Normal Max < 73.5 Gy 1 Gy increase

Tissue Minimize Mean Dose 2 Gy increase

Table V-3. Head/neck plan objectives and plan degradation unit (PDU) scale for 
comparisons to baseline plan

Structure Goal

Approximate loss in plan quality (relative to 
baseline plan) equal to a plan degradation unit 
(PDU) of 1.0

PTV70 % vol > 69.3 Gy = 100 0.15 Gy decrease to 100 % (same as 1 Gy to 1 %)

% vol > 77 Gy = 0 0.2 Gy increase to 100 %

PTV64 % vol > 63.4 Gy = 100 0.15 Gy decrease to 100 % 

% vol > 70.4 Gy = 0 0.2 Gy increase to 100 %

PTV60 % vol > 59.4 Gy = 100 0.15 Gy decrease to 100 % 

% vol > 66 Gy = 0 0.2 Gy increase to 100 %

Cord Max < 50 Gy 0.1Gy increase

Minimize Mean Dose 1 Gy increase

Brainstem Max < 54 Gy 0.1 Gy increase

Minimize Mean Dose 1 Gy increase

Mandible Max < 73.5 Gy 0.2 Gy increase

Minimize Mean Dose 1 Gy increase

Parotids Max < 77 Gy 0.2 Gy increase                             

Mean < 26 Gy 0.25 Gy increase

Minimize Mean Dose 1 Gy increase 

Esophagus Max < 50 Gy 1 Gy increase

Larynx Minimize Mean Dose 0.5 Gy increase

Max < 77 Gy 1 Gy increase

Oral Cavity Mean < 49 Gy 0.5 Gy increase

Minimize Mean Dose 1 Gy increase

Normal Max < 73.5 Gy 1 Gy increase

Tissue Minimize Mean Dose 2 Gy increase
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in Tables V-2 and V-3 and reflect in-house IMRT protocols.  The normal tissue goals for 

the prostate are conservatively based on several published toxicity recommendations 

from RTOG 940615,16.  As in the rest of the studies, all cases were planned for a 6 MV 

linear accelerator (Varian Medical Systems, 21EX) with 120 leaf MLC (0.5 and 1.0 cm 

leaf widths).  Dose calculations for the inverse planning system were performed by a 

convolution/superposition algorithm originally based on the work of Mackie et al. 17, but 

optimized for beamlet calculations.  Treatment planning was performed with our in-

house 3-D treatment planning and IMRT optimization software packages, UMPlan and 

UMOpt18-20.  Leaf sequencing for static MLC (SMLC) delivery was performed with an in-

house-developed leaf sequencer based on a method published by Bortfeld et al.21.   

   Plan comparisons (without and with varying amounts of ADS smoothing) are 

described by examining dose-volume histograms, relevant dose metrics, IMRT beam 

complexity, and delivery efficiency (MUs required).  However, comparisons of different 

plans, especially when somewhat different optimization schemes are used, can be 

difficult, especially since values of the total cost function or individual costlets do not 

have any specific clinical relevance that can be used to compare the importance of the 

tradeoffs that are used to achieve the final “optimal” plans.  Therefore, we describe here 

a method for judging the quality of inverse plan compromises (or tradeoffs) which we call 

“plan degradation units,” or PDU.  The goal of the PDU construct is to describe a 

consistent unit of “tradeoff”, since different kinds of compromises are typically made 

among the many goals involved in a clinical inverse treatment plan.   

 To facilitate these comparisons, we develop a PDU scale for each case along with 

the baseline objectives in Tables V-1, 2, and 3.  This scale is developed along with the 

design of the baseline cost function: we assign a concession or sacrifice value for each 

cost function goal which corresponds to 1 PDU, and then we calculate the costlet weight 

that would correspond to this value.  Each concession is meant to correspond to a 

consistent level of plan degradation.  For example, we could assign a PDU of 1.0 to be a 

minimum PTV dose of 59.9 Gy instead of 60 Gy, while also defining 1 PDU as 99 % of 

the PTV receiving 60 Gy and 1 % of the PTV receiving 59 Gy.  For a less important 

objective, a PDU of 1.0 may correspond to larger dose concession, such as allowing the 

unspecified mean normal tissue dose to increase by 2 Gy.  Inspection of the PDU scales 

shown in Tables V-1 through 3 shows that we have chosen PDU scales that are 

conservative.  In other words, the PDU value is meant to be very sensitive to small 

changes in the dosimetric goals.  This was done purposefully, to show that a significant 
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amount of smoothing is possible in IMRT plans without sacrificing clinical plan quality.  In 

Tables V-1, 2 and 3, the plan quality metric sacrifices (relative to the achieved baseline 

plan objectives in Gy that correspond to a PDU of 1.0) are given.   

 
V.C. Results 
V.C.1. Phantom Study 
The adaptive diffusion smoothing procedure was implemented into our 3D treatment 

optimization system infrastructure as a penalty or costlet to be used inside the cost 

function of an inverse IMRT plan.  A test case was used to test the ADS implementation 

and characterize the two different methods for setting diffusion coefficients. A baseline 

plan was established for this case by optimizing beamlet weights according to the 

minimization of the cost functions in Table V-1.  Then, to study the impact of including 

the ADS penalty at varying weights in the cost function, we re-optimized the baseline 

plan while systematically increasing the ADS penalty weights.   

 Results of the phantom comparisons are shown in Figure V-5.  Figure V-5(a) 

shows the simple 3-field beam arrangement and anatomy.  Figure V-5(b) illustrates the 

tradeoff between MU and dosimetric plan quality as the modulation penalty weights are 

increased for the PIMVq, ADS-Uniform and ADS-Gradient smoothing penalties.  This 

figure plots the relative MU required to deliver the plan as a function of plan degradation 

(PDUs) with respect to the baseline plan.  Table V-1 contains the PDU scale for the 

phantom case.  A PDU of 1 corresponds to a loss in plan quality relative to the baseline 

plan and could be equivalent to, for example, a 0.1 Gy decrease in the minimum dose to 

the target, or a 2 Gy increase in the mean dose to the normal tissue, or a lesser 

combination of the two.  As stated previously, we have purposefully made the PDU scale 

sensitive to changes in plan quality, to show that a large reduction in MU is possible with 

small losses in plan quality.   

In Figures V-5(b) and (c), the plans optimized with each different method to 

similar relative MU values are compared (denoted by the circled plans in Figure V-4(b)).  

Figure V-5(c) shows the DVHs for each of these plans compared to the baseline plan, 

and Figure V-5(d) illustrates the effect of the various smoothing penalties on the beamlet 

intensity maps.  For plans requiring approximately the same MU, the ADS-Gradient 

penalty yielded the highest dosimetric quality plan.  With a PDU of 2.0, the difference 

between the baseline plan and ADS-Gradient plan is very small, demonstrating the 

conservative PDU scale.  From the beam’s eye view in Figure V-5(d), we see a large 
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reduction in overall modulation when using each of the smoothing methods, although the 

complexity reduction is slightly different for each technique.   
 The large amounts of smoothing possible in this case may be indicative of the simple 

geometry and cost function.  In fact, the optimal c and n values in Equation V.26 for this 

case were 0.1 and 2, respectively.  While n = 2 results in a reasonable fall-off from high 

D to low D, the low c value of a shifts this fall-off so that it occurs at a fairly high value of 

D, meaning that the majority of the beamlets were maximally smoothed.   

Figure V-5(a) The geometry and beam arrangement, (b) relative MU (to the baseline 
plan) as a function of plan degradation units, (c) dose-volume histograms for the 
circled plans in (b), and (d) the corresponding intensity modulated beams in the 
beam’s eye view for the phantom case 1 for standard IMRT and the three different 
modulation penalties.  The outline of the two OARs is shown by the dotted lines.  Red 
corresponds to high intensity beamlets and blue to low intensity beamlets. 
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 As expected, the steep fluence gradients and modulation near normal tissue 

interfaces and overlap regions appear to be preserved to a greater extent in the ADS-

Gradient beams than in the ADS-Uniform beams.  On the other hand, the PIMVq penalty 

promotes an overall reduction of the intensity variation and high intensities in the fields 

and leads to the distribution of intensity more evenly across the fields.  When applying 

the truly adaptive gradient-based diffusion coefficients in ADS, there appears to be a 

higher degree of smoothing in areas that are not in tissue overlap regions.  This is 

expected because the cost function gradients with respect to the vector of beamlet 

intensities ( CF∂ ∂I ) are likely to be more sensitive in these interface regions.  Because 

of this additional smoothing, the ADS-Gradient beams may result in lower MU than the 

ADS-Uniform and PIMVq penalties. While the latter two penalties do penalize the 

modulation more across the entire field, they are still able to preserve gradients in 

important areas where smoothing has a large negative effect on the cost function.   This 

is a consequence of using the penalty inside the cost function.  We would expect to see 

greater differences, such as those in Figure V-4, if we smoothed outside the cost 

function.  This would be even more pronounced if the PIMVq penalty were applied post-

optimization.   

 These initial results demonstrate that diffusion smoothing is a promising method for 

controlling modulation in IMRT fields, with an advantage in using the adaptive gradient-

based coefficients.  

 

V.C.2. Clinical Examples  

To gain more insight into the merits of each of the two different coefficient definition 

methods, we tested each method for the more complicated clinical geometries of the 

prostate and head/neck.  These cases were optimized with the cost functions shown in 

Tables V-2 and V-3, and the ADS penalties (using both diffusion coefficient definition 

methods).  As in the phantom case, the baseline cost function was first optimized and 

then smoothing penalties were added at increasing weights inside the cost function.  The 

weights were systematically increased to observe the tradeoffs made with the baseline 

goals.   

 
V.C.2.1. Prostate 
Figure V-5(a) shows results of the prostate baseline optimization along with the potential 

for reducing MU through use of the ADS and PIMVq penalties, as a function of plan 
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degradation units.  The addition of any of the smoothing penalties reduced the MU 

substantially, although a greater benefit is observed with the ADS-Gradient penalty.  The 

maximum reductions in MU were around 26 - 36 %, although this would be much higher 

if more degradation were allowed in the plan objectives.  It can be seen that the ADS-

Gradient method achieves its maximum result with smaller tradeoffs (PDUs) than the 

other penalties.  This is because the ADS-Gradient penalty does not highly penalize the 

important areas of modulation.  Therefore, this penalty will be small for high quality 

plans, while the other methods can still create large penalties because they are 

penalizing overall modulation.   

 In Figure V-5, we showed that in plans with similar MU requirements, the ADS-

Gradient plan had the best dosimetric quality.  Conversely, in Figure V-6, we compare 

plans with similar dosimetric quality.   Figure V-6(b) shows the DVHs for the baseline 

Figure V-6(a) MU (relative to the baseline plan) as a function of plan degradation 
units, (b) dose-volume histograms for the circled plans in (a), and (c) the 
corresponding intensity modulated beams in the beam’s eye view for the prostate 
case for baseline IMRT and the three different modulation penalties. From left to right 
is Baseline, PIMVq, ADS-Uniform, and ADS-Gradient.  The bladder, rectum, and 
penile bulb are shown in the beam’s eye view. 
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plan and the other plans at a PDU level of approximately 6.  Because of the number of 

structures in the cost function, this level of plan degradation is very slight, as seen by 

inspection of the (nearly identical) DVHs.  In Figure V-6(c), we present an example 

typical beam intensity distribution for each optimization method, along with the rectum, 

bladder, and penile bulb in the beam’s eye view.  Small differences are observed 

between the ADS-Uniform and ADS-Gradient beams: the ADS-Gradient beams are 

more uniform in areas where there are no normal tissue overlap regions and allow for 

quicker fall-off between high and low intensity regions.  These features combine 

throughout all of the beams to produce more smoothing and MU reduction at the same 

level of plan quality.  The smoothing that occurs is a function of the interplay between 

the cost function and many beamlets from seven directions.  Therefore, we must be 

careful not to draw significant conclusions from the display of a single beam.  An 

inspection of all seven beams, however, demonstrates that the PIMVq beams display an 

overall flattening of intensity across the beams with the intensity contributions from each 

beam becoming more uniform.  On the other hand, the ADS-Gradient plans show a shift 

in intensity contributions to the beams that intersect the fewest organs at risk.  From this 

point-of-view, the ADS-Gradient beams are much more intuitive than the PIMVq beams. 

 In comparison to the optimal c and n values in Equation V.26 for the phantom 

compared to this prostate example, the n value remained at 2 while the c value 

increased to an optimum of 0.5.  Again, the relative small c value means that the 

majority of the beamlets are being maximally smoothed, but not quite to the same 

degree as the phantom case.  A preliminary observation is that the c value is an 

indication of the difficulty of the geometry and/or cost function. 

 

V.C.2.2. Head/Neck 
The inverse plan objectives used in the head/neck example were very strict and closely 

reflect our current clinical standard.  Despite the strict cost function and seemingly small 

amount of solution space to work with, the application of both the ADS and PIMVq 

penalties resulted in a substantial reduction of modulation and MU (Figure V-7).  This 

demonstrates that, even in complicated cases, there may still be a large range of plans 

that can achieve similar results, and that some of those plans may be more desirable in 

terms of plan efficiency.  The use of the ADS (and PIMVq) smoothing costlets enabled us 

to find a more efficient plan without sacrificing the quality achieved with the baseline 

plan.   
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 In contrast to the phantom and prostate cases, there was no substantial difference in 

MU reduction between the different smoothing costlets (Figure V-7(a)).  The ADS-

Gradient and PIMVq penalties showed nearly identical results in terms of MU reduction 

and the ADS-Uniform penalty was slightly worse.  Figure V-7(c) demonstrates typical 

qualitative differences between beams smoothed with each of the different methods.  

These differences are very small, which may point to the fact the head/neck plan 

solution space with the additional objectives of modulation reduction is fairly small.  The 

ADS beams both appear to do a slightly better job at sparing the larynx in the beam 

shown, although the DVHs are nearly identical for all methods.  The optimal c and n 

values in Equation V.26 may also indicate the complexity of the case itself.  The 

resulting c and n values were c = 5 and n = 0.25, which is quite different from the 

previous two cases.  Here, the optimal diffusion coefficients fall off very slowly from high 
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Figure V-7(a) Relative SMLC monitor units are shown as a function of the plan 
degradation baseline cost for the head/neck plan. (b) DVHs and (c) a typical intensity 
modulated beam are shown for the circled plan in (A) for each of the optimization 
methods.  From left to right is Baseline, ADS-Gradient, ADS-Uniform, and PIMVq. 
Several normal structures are outlined in the beam’s eye view. 
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to low intensity and are focused on a smaller and lower range of values, due to the 

combination of the low n and high c values. 

 To demonstrate the ability of the ADS-Gradient penalty to preserve intensity 

gradients as well as to smooth at high penalty weights, the final (most penalized) ADS-

Gradient plan is shown in Figure V-8.  7.  Figure V-8(a) illustrates the difference between 

the baseline and ADS-smoothed plans via a 3D visualization of the two plans, with 

several of the important regions of interest displayed.  This ADS-Gradient plan is 

noticeably smoother and can be delivered with 57 % fewer MU than for the baseline 

Figure V-8 (a) Head/neck geometry and intensity modulated beams for the baseline 
plan and the last (most smoothed) ADS-Gradient plan shown in Figure 5.  The ADS-
gradient plan can be delivered with 57 % fewer SMLC monitor units with minimal 
effect on the baseline plan quality, as shown in the DVHs in (b).  
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plan.  The loss in dosimetric quality is minimal, which can be seen in the DVH 

comparison of the two plans in Figure V-8(b).     

 

V.D. Discussion 
In summary, in the phantom and prostate, we are able to reduce MU by approximately 

30 - 40 % with no loss in the plan quality when using ADS, and MU reductions greater 

than 40 % are attainable with only very small concessions in the baseline plan.  While all 

smoothing penalties performed well, use of the adaptive gradient-based diffusion 

coefficients in the ADS-Gradient penalty was able to reduce MU by around 10 % more at 

higher penalty weights in the phantom and prostate cases.  This advantage may be due 

to the fact that the ADS-Gradient penalty more appropriately penalizes the less 

important modulation more than the more important modulation.  Therefore, it can 

preserve – with minimum penalty – the essential modulation in the plan while smoothing 

large regions of the beam.   

 In the prostate, this results in more uniform areas in the beam that require fewer MU 

to deliver.  Although a large amount of smoothing was achieved in the head/neck case 

with the ADS-Gradient method, significant differences in MU reduction were not seen in 

this example compared to the PIMVq penalty.  Superior improvement in delivery 

efficiency with the more sophisticated ADS-Gradient method may not have been 

observed in this case because the cost function gradients were much higher and 

fluctuated more than in the other sites, due to the large number of clinical goals, and the 

comparative difficulty of the cost function.  In addition, we expect that some uncertainties 

in the gradients (due to the point sampling, for example) will exist and may lead to 

undesirable variation in the diffusion coefficients. 

 This preliminary evaluation of adaptive diffusion smoothing with spatially variant 

diffusion coefficients (the ADS-Gradient penalty) revealed that it has great potential as a 

tool to reduce IMRT beam complexity in regions where the complexity is not necessary 

to produce a quality plan.  The ADS penalty behaves in such a way that increasing 

penalty weights results in a smoother beam.  This is a very important property of ADS 

that is not held by many other smoothing filters, such as the Savitzky-Golay filter that we 

used in Chapter IV.  At higher weights, the SG penalty introduced modulation into the 

field, which made it undesirable and unpredictable for use in a clinical setting.   

 We have shown that the use of the ADS penalty does not have to lead to a reduction 

in dosimetric plan quality and can significantly reduce modulation and MU.  In the 
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phantom and prostate examples tested in this work, the use of uniform smoothing 

methods such as the ADS-Uniform penalty or PIMVq penalty was adequate to reduce 

beam complexity.  However, the gradient-based diffusion coefficients in the ADS-

Gradient penalty more successfully smoothed in areas where modulation is not essential 

to meeting the plan objectives.   

 The case studies provided some guidance on the optimal c and n values that can be 

used in Equation V.26 to define the gradient diffusion coefficients in different geometries.  

Having these parameters is an advantage because it allows us to further customize the 

method to individual treatment sites, but it can also be a disadvantage if this 

customization is required for each individual patient.  The geometries shown in this 

chapter demonstrated a large range of optimal c and n values, and tuning these 

parameters could be time-consuming if it had to be done for each case.  Further testing 

in each of these sites suggests that c and n can be fixed for similar geometries. 

 In this chapter (and in this dissertation as a whole), we have not studied smoothing 

outside of the plan optimization (e.g., within a leaf sequencer), other than in the initial 

example (Figure V-3), which was used to demonstrate how the smoothing (by itself) 

works.  However, it would be possible to study the application of an ADS algorithm for 

post-optimization smoothing within the leaf sequencing step.  In this kind of study, we 

would expect the diffusion coefficient definition to have a much greater impact on the 

final solution. Thus, for centers employing post-optimization smoothing or filtering inside 

the leaf sequencing process, gradient-based diffusion smoothing could be an attractive 

option. 

 One concern with smoothing IMRT plans is the effect it will have on the geometric 

sensitivity of the plan.  This complicated question can only be fully answered through the 

simulation of a large number of treatment courses for a variety of sites.  While such an 

involved study is beyond the scope of this dissertation, we present some preliminary 

testing of the impact of smoothing costlets on geometric sensitivity in a phantom case in 

Chapter VII.  In addition, we have observed from preliminary testing on the prostate case 

that there may be an advantage to using the ADS-Gradient method to improve target 

coverage in the face of setup uncertainty.   

 One of the most exciting results of this study is the large amount of smoothing 

possible without affecting the quality of the plan.  In Chapter VI, we retrospectively 

analyze a series of clinical breast cancer IMRT plans to learn how much smoothing 

would have been possible with the use of the ADS-Gradient penalty.  Chapter VI also 
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combines ADS with the Lexicographic Ordering22 method to quantify the tradeoffs 

between the modulation penalties and the plan objectives.  This will allow physicians to 

make educated choices between smoothing and the plan objectives.   

 On the other hand, for weighted-sum cost functions, the development of a more 

quantitative way to show comparisons between plans using the new idea of plan 

degradation units (PDU) has been successful.  Many current optimization algorithms rely 

on the use of conventional weighted-sum cost functions and require a large number of 

trial-and-error iterations to choose the proper weights for the individual objectives.  The 

addition of a modulation penalty can affect the other objectives in different ways, and 

evaluating the overall cost after the addition of the modulation penalty can be difficult.  

The plan degradation unit scale puts a value on different degrees of plan degradation 

and makes it more intuitive to evaluate the tradeoffs made when including a modulation 

penalty.  Instead of simply providing a “cost” with no obvious clinical relevance, the PDU 

value gives a more reliable gauge of the change in plan quality and makes it easier to 

choose an acceptable weight for the modulation penalty.  The adoption of this 

methodology has been useful for judging and designing cost functions as well as 

applying modulation penalties. 

 Chapter I introduced several alternate methods that are used to reduce MU and 

modulation in IMRT, such as direct aperture, or direct segment optimization2,3.  Adaptive 

diffusion smoothing is unique because of the ability to customize the diffusion 

coefficients.  For example, specialized diffusion coefficients could be used to manipulate 

beamlet intensities to reduce plan sensitivity to setup errors23, organ motion, and even 

undesirable delivery artifacts such as tongue and groove under-dosage.  Custom 

diffusion coefficients may also have a place in adaptive radiation therapy to ensure that 

large intensity gradients do not occur in areas that may require corrections in an 

adaptive scheme.  This should make it easier to apply feedback during the treatment 

course, to make fractional changes in the intensity patterns required to correct or change 

the dose prescription.  Some of these ideas are discussed in Chapter VII.  Thus, the 

increase of delivery efficiency may be just one of the possible applications of the ADS 

method. 

 

V.E. Conclusion 
The diffusion equation has been used in a procedure that preferentially smoothes IMRT 

plans, using a diffusion coefficient matrix that allows the degree of smoothing to adapt to 
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each individual plan.  This procedure was used to define an “adaptive diffusion 

smoothing” (ADS) penalty, applied inside an inverse planning cost function to promote 

overall smoothing and monitor unit reduction.  Two methods for definition of the diffusion 

coefficients — to promote uniform smoothing and smoothing based on the beamlet 

gradients (partial derivatives of the cost function with respect to the beamlet intensity) — 

were applied and tested on a CT phantom and two clinical examples.  Without 

compromising the baseline cost function, MU reductions on the order of 30 % and 40 % 

were obtained with the ADS penalties.  Compared to the ADS-Uniform penalty, the ADS-

Gradient penalty was better able to preserve intensity gradients and modulation in 

important areas of the IMRT fields, leading to an advantage in reducing MU in the 

phantom and prostate cases.  This was possible because the gradient-based diffusion 

coefficients preferentially induce smoothing in the beam where it does not interfere with 

meeting the dose prescription objectives.   All smoothing penalties were equally 

successful in the head/neck example.  Overall, the ADS procedure and penalty is a 

promising tool for smoothing the unnecessary modulation in IMRT plans, and it may well 

have additional important uses due to the possibility to customize the diffusion 

coefficients for other specific purposes.   
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CHAPTER VI. 
 

APPLICATIONS OF ADAPTIVE DIFFUSION SMOOTHING 

 
 
Chapter V introduced a diffusion-based procedure that can be used to intelligently 

smooth IMRT beams.  This adaptive diffusion smoothing (ADS) procedure is able to 

perform spatially-varying smoothing based on diffusion coefficients that are defined for 

each individual beamlet.  The application of ADS to improve the delivery efficiency of 

IMRT plans was studied in the previous chapter.  However, the versatility of the diffusion 

coefficient paradigm suggests that ADS may have other uses in IMRT.  To illustrate 

these uses, this chapter will discuss three applications of ADS, including (i) the 

combination of ADS smoothing with Lexicographic Ordering, a multi-criteria optimization 

method, (ii) a retrospective clinical study to determine the effect that ADS smoothing 

could have on patients being treated with an accelerated partial breast IMRT technique, 

and (iii) the use of ADS in promoting smoothness over critical tumor regions that may be 

more susceptible to risks associated with heterogeneous fluence distributions. 

 
VI.A.  ADS applied within Lexicographic Ordering 
VI.A.1. Introduction 
Chapter V showed the ADS penalty to be a useful tool in obtaining optimally smoothed 

IMRT plans that are of high dosimetric quality and can be delivered more efficiently than 

standard, unsmoothed IMRT solutions.  However, choosing the proper weight at which 

to apply the ADS penalty inside a weighted-sum cost function may require many 

iterations and may impact the plan in such a way that the original target and normal 

tissue objective weights are altered.  This trial and error process is time-consuming and 

does not ensure that one will reach the optimal tradeoff between beam complexity and 

the other plan objectives.  This sub-optimal planning strategy makes it difficult to include 

a smoothness objective into clinical IMRT protocols. 
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The use of an intuitive method for multicriteria IMRT optimization called 

lexicographic ordering (LO) was introduced at our institution1 (and others1,2) as a way to 

articulate planning goals through the definition of priority levels.  In many clinical 

protocols, including those at the University of Michigan, planning goals are grouped by 

their importance into distinct levels.  The LO method allows for optimization of a plan 

according to these priority levels, with each prior level dominating the subsequent level.  

Thus, it is not necessary to design a weighted-sum cost function to facilitate tradeoffs 

between the different objectives, and more importantly, sacrifices are not allowed in 

more important goals to improve the less important goals. 

The combination of multicriteria optimization and smoothing objectives has been 

discussed by Wilkens et al., who suggested that fluence smoothness could be promoted 

as a final priority in a prioritized optimization method2.  Their work used a Laplacian filter 

to generate a measure of the “roughness” of the fields and then minimized this value as 

a final priority in the optimization.  This method captures and tries to minimize the high 

frequency components of the field, and their results showed a reduction in the field 

Laplacian after application of the smoothness step.  However, this method does not 

distinguish between undesirable and desirable modulation, and the effect on plan 

delivery efficiency was not reported.  Another study by Craft et al. explored the direct 

tradeoff between monitor units and individual plan objectives using a Pareto optimality 

scheme3.  Their work supports the notion that IMRT plan delivery efficiency can be 

significantly improved with relatively small concessions in the plan objectives. 

This section studies the combination of adaptive diffusion smoothing modulation 

penalties with the intuitive multicriteria lexicographic ordering method to (i) determine the 

amount of delivery efficiency improvement possible in several clinical examples by 

minimizing the ADS penalty as the final priority in LO, and (ii) demonstrate how to 

facilitate controlled tradeoffs between the ADS penalty and the dosimetric objectives 

though the retrospective relaxation of previously achieved objectives during LO 

optimization.   

 
VI.A.2. Methods 
VI.A.2.1. Adaptive Diffusion Smoothing  
The adaptive diffusion smoothing theory and implementation is discussed in detail in 

Chapter V.  To summarize, this method is based on the diffusion equation and 

preferentially smoothes IMRT fields according to diffusion coefficients that are defined 
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for each beamlet.  These coefficients dictate the amount of smoothing that is applied in 

each beamlet and they can be defined in many different ways.  A smoothed IMRT 

beamlet, Is,ij,  is calculated from an original IMRT beam, I0, and a matrix of diffusion 

coefficients, D, according to: 
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In Equation VI.1, w is the time-step of the diffusion process, and h is the dimension of 

one side of a square beamlet.  These equations reveal that the amount of smoothing is 

proportional to the size of the diffusion coefficient.  Another property of diffusion 

smoothing is that: 
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If this inequality is satisfied, the maximum and minimum intensities of the smoothed 

beam will lie between the maximum and minimum intensities of the unsmoothed beam.  

This property also ensures that as long as the original beam is positive, the smoothed 

beam will also be positive.  As in our previous work, we have chosen to limit D to the 

range between 0 and 10 for all beamlets, and thus to satisfy the above inequality, we 

chose w = 0.02h2.   

 The adaptive diffusion method has an advantage over conventional smoothing 

filters because of the ability of the user to customize the diffusion coefficients in such a 

way that the desirable modulation is not penalized to the same degree as the 
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undesirable, or unnecessary modulation.  As discussed in Chapter II, the existence of 

areas in the beam that are less important to meeting the cost function goals has been 

proven by Alber et al. in their study of the degeneracy of IMRT problems4.  They found 

that the number of beamlets that have significant effects on the cost function can be 

quite small compared to the number of beamlets in an IMRT plan, and this can lead to 

unnecessarily noisy IMRT beams.  This degeneracy has also been observed in work by 

other authors5-7.  Therefore, the beamlet intensity distribution can become noisy because 

the cost function is not strongly affected by the intensity of these beamlets, and 

smoothing these “unimportant” beamlets can reduce the modulation and MU required to 

treat the plan with equivalent dosimetric quality. 

 The ADS method addresses this issue by defining each diffusion coefficient to be 

a function of the cost function gradient with respect to that individual beamlet,  
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 where f is the cost function and Iij is the beamlet at the position (i,j) in the beamlet grid.  

After a study of a variety of different formulations for the diffusion coefficients, we have 

chosen the following formulation from Chapter V to be a robust and tunable formulation 

for the diffusion coefficients as a function of the cost function gradients: 
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Here, s is a gradient scaling factor that is equal to the median value of |∂f/I0|.  The 

median value was chosen instead of the mean value so that that the scaling factor was 

not biased by extremely high values of the gradient.  The parameters c and n are 

tunable parameters that allow D to be further customized depending on the individual 

case.  Our studies have shown that plans in the same general class will have similar 

optimal values of c and n.  The parameter c serves to shift the transition from high to low 

D and n controls the steepness of the fall-off from high to low D.   
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 Equation VI.5 promotes the highest amount of smoothing in beamlets that have a 

small effect on the cost function, and only minor smoothing will occur in beamlets that 

have a large effect on the cost function. Our use of this variable diffusion coefficient 

definition has yielded a way to distinguish between desirable and undesirable 

modulation in the smoothing procedure.  Even though this method results in much less 

plan degradation after smoothing than a uniform smoothing procedure, there can still be 

some loss in plan quality after the smoothing procedure.  Therefore, an ADS penalty is 

used inside the cost function as a costlet which penalizes the difference between the 

beam chosen by the optimizer and the corresponding diffusion smoothed beam at each 

iteration of the optimization: 

 

 ( )2

, ,
all 

ADS Penalty o ij s ij
ij

I I= −∑∑ .    (VI.6) 

 

Here Is,ij is calculated using Equation VI.2, and a weighting factor could be used to scale 

the ADS penalty for use in a weighted-sum cost function or inside a sub-problem in 

lexicographic ordering. 
 

VI.A.2.2. Lexicographic Ordering 
The Lexicographic Ordering (LO) method divides a large optimization problem with many 

objectives into a series of smaller optimization problems that can solved sequentially 

based on their priority in the problem.  Our implementation of this method for use in 

planning intensity-modulated radiotherapy treatments is discussed in detail by Jee et 

al.1, and a summary of the method is presented here.   

 The initial step in the LO method is to rank the objectives according to their 

significance in the optimization problem, and then group objectives of similar importance 

into priority levels from 1 (highest priority) to N (lowest priority).  After prioritization, an 

optimization search algorithm is applied to solve each level of the of optimization 

problem.  After the first level priority objective function, ( )1 1f I , is minimized, and the 

achieved objectives are converted into inequality constraints with boundary values, 

( )*
1 1f I , that are set by the priori attained solutions,  ( )*

1 1argmin f=I I . As the LO method 

proceeds from priority level 1 to N, it solves each optimization problem according to:  
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( )
( ) ( )*

min

subject to 

where 1, 2, ... ,  and 1, 2, ..., -1 if 1

i

j j j

f

f f

i N j i i

≤

= = >

I

I I  (VI.7) 

 

As the method progresses, the number of constraints increases, thereby gradually 

reducing the feasible space until the final priority level is reached.  

 The search algorithm employed in this work is a large-scale nonlinear 

constrained optimization algorithm called Sequential Quadratic Programming (SQP)8,9. 

This method models non-linear-constrained optimization problems by quadratic 

programming sub-problems and searches with directions obtained from the minimization 

of sub-problems.  The SQP implementation used in this study, which employs a BFGS 

reduced-Hessian algorithm10,11 and an automatic differentiation (AD) algorithm called 

ADOL-C12,13, has been discussed in detail by Jee et al. 12  

 

VI.A.2.3. Treatment Planning and Case Studies 
All treatment planning and optimization in this work was performed using the in-house 

software packages, UMPlan and UMOpt14,15.  UMOpt supports the use of a variety of 

objectives in the inverse planning cost function including dose, dose-volume, biological, 

and probability-based goals16.  The ADS method is applied in UMOpt as an objective in 

which the square of the difference between the original and ADS beams is minimized.  

Lexicographic ordering has been implemented as an optimization method in UMOpt that 

utilizes the SQP search algorithm.  All plans are optimized for delivery by a linear 

accelerator with 120 multi-leaf collimator and sequenced for step and shoot delivery by a 

method based on work by Bortfeld et al.17  

 To evaluate the application of an adaptive diffusion smoothing (ADS) costlet as 

the final priority in an IMRT optimization problem solved using the Lexicographic 

Ordering (LO) method, several cases have been optimized and evaluated by these 

methods.  First, a modified version of the National Cancer Institute’s (NCI) IMRT 

benchmark geometry18 (also used in Chapter II) shown in Figure VI.1 was used to 

characterize this combined method to evaluate (i) the potential to reduce modulation as 

a final optimization priority without compromising the preceding objectives and (ii) the 

possibility to make controlled tradeoffs by exploiting the advantages of the LO planning 

method.  In the latter, we designed tradeoff scenarios that will be used to evaluate the 
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amount of smoothing possible when allowing for difference concessions in the optimized 

plan.   

Table VI-1 lists the prioritized objective function and tradeoff scenarios used in 

the phantom.  Shown are the original plan objectives and the relaxations that were 

allowed in those goals to promote smoothing with ADS.  For example, tradeoff scenario 

(TS) “0” corresponded to simply making the minimization of the ADS penalty the final LO 

priority.  The remaining tradeoff scenarios A-G include relaxing objectives by the given 

amounts before applying the ADS penalty and re-optimizing.  The relaxations denoted 

as N-N were considered non-negotiable objectives; they were not to be relaxed to 

promote smoothing.  After each of the tradeoff scenarios were optimized with the ADS 

penalty, the reduction in plan MU was analyzed to determine which scenario appeared 

to have the best cost-to-benefit ratio.   

 The motivation for applying ADS in the LO method is to not interfere with any 

high priority objectives and to not worsen any objectives that are already past their 

intended limits.  Therefore, in clinical practice, we would apply several tradeoff rules to 

maintain plan integrity: (1) If a structure is also past its limits, no relaxation will occur 

unless explicitly called for, and (2) If a structure has a mean dose objective, but ends up 

below that objective due to the overall dose minimization step, then relaxation of the 

Figure VI-1.  The modified IMRT benchmark geometry and beam arrangement 
used to study the initial characterization of adaptive diffusion smoothing and 
lexicographic ordering. 
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mean dose can occur as given in the tradeoff scenario, but only up to the original limit.  

These rules are intuitive but are written here because future automation of the tradeoff 

scenario planning will require explicit instructions on each of the allowed tradeoffs.   

 In order to evaluate the potential clinical application of using ADS with LO to 

promote controlled smoothing tradeoffs, we applied this method to prostate and 

head/neck clinical examples.  These sites were chosen because of their prevalence as 

IMRT sites and different levels of geometric and cost function complexity.  Both clinical 

examples were optimized according to the University of Michigan’s current IMRT 

standard for that treatment site.  The prioritized objective functions and clinical tradeoff 

scenarios used for each site are given in Tables VI-2 and 3.  As in the phantom, the ADS 

penalty was applied as the final priority in the lexicographic method to determine the 

delivery efficiency improvement possible with no sacrifice in the baseline IMRT plan.  

The clinical tradeoff scenarios in Tables VI-2 and 3 were then optimized to determine the 

amount of smoothing possible with the given concessions in the objectives.  The clinical 

tradeoff scenarios for each site were designed by a radiation oncologist, based on her 

clinical knowledge of which cost function objectives could be relaxed in an effort to 

improve delivery efficiency.  The least important objectives are relaxed first, followed by 

more important objectives.  Certain objectives, such as the maximum dose to the spinal 

cord, were considered non-negotiable, and were not to be relaxed.  Therefore, the 

tradeoff scenarios only included realistic tradeoffs that would be allowed to promote 

delivery efficiency and improved delivery accuracy.  After each of the tradeoff scenarios 

were optimized and the treatment delivery efficiency gains were obtained, the results 

were presented to the radiation oncologist to choose which tradeoff scenario would be 

applied in clinical practice.   

 

VI.A.3. Results 
VI.A.3.1 Phantom 
The presentation of the phantom results uses the tradeoff scenario identifier given in 

Table VI-1.  Tradeoff scenario “0” corresponds to the smoothing possible with no 

concession in plan quality.  The percent monitor unit reductions relative to the baseline 

plan are shown in Figure VI-2.  Here, the MU reduction possible with equivalent baseline 

plan quality was 18.4 %.  Allowing the OAR2 mean dose to return to its 25 Gy limit was 

able to reduce the MU by 28.7 % while holding all of the other baseline objectives 

constrained.  Allowing further relaxations in TSH increase the MU reduction to 41.7 %.   
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 To illustrate the differences between plans at various tradeoff scenarios, Figure 

VI-3 shows the dose-volume histograms and intensity modulated beamlet patterns for 

the baseline plan and the tradeoff scenarios shaded in black in Figure VI-2.  The 

smoothing of the beams is apparent when going from the Baseline plan to TS0, and is 

even more pronounced in the remaining tradeoff scenarios with a noticeable change in 

the beamlets covering the overlap between OAR2 and the PTV.  The large MU reduction 

possible by relaxing the OAR2 mean dose is achieved by this slight change in the 

beamlet patterns; this was most noticeable in beams 3 and 4. 

Figure VI-3. The optimized dose-volume histograms and beams for the baseline plan 
and tradeoff scenarios 0, B, F and H for the phantom case shown in Figure VI-1.   

Figure VI-2.  The percent reduction in monitor units possible in each of the 
tradeoff scenarios (corresponding to Table VI-1) relative to the baseline geometry 
for the phantom case.  The DVHs and beams for the tradeoff scenarios denoted 
in black are shown in Figure VI-3. 
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VI.A.3.2 Prostate 
The percent monitor unit reductions relative to the baseline plan that were possible in 

each of the tradeoff scenarios are shown in Figure VI-4.  The tradeoff scenarios 

correspond to the relaxations given in Table VI-2 for the prostate cost function.  Tradeoff 

scenario 0 demonstrated that a 23 % reduction in MU was possible for this patient with 

no loss in clinical quality.  The tradeoff scenarios that allowed an increase in mean dose 
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Figure VI-5.  The optimized dose-volume histograms for the baseline plan and 
tradeoff scenarios 0, D, and J.  The DVHs are shown in two panels for viewing 
purposes. 

Figure VI-4.  The percent reduction in monitor units possible in each of the tradeoff 
scenarios (corresponding to Table VI-1) relative to the baseline geometry for the 
prostate case.  Tradeoff scenario G was not applicable because the rectum dose-
volume constraint was considerably below the objective.  The DVHs and beams for 
the tradeoff scenarios denoted in black are shown in Figures VI-5 and VI-6. 
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to the bladder of 4 Gy required 33 - 36 % fewer MU to deliver than the baseline.  To 

illustrate the changes in the plan DVHs and beams as the various objectives are relaxed, 

we have plotted the baseline plan, and tradeoff scenarios “0”, “D”, and “J” in Figures 5 

and 6.  In TS0, where the baseline objectives are constrained before the use of ADS, the 

DVHs look very similar with only slight shape changes in the normal tissues. 

 This shows that slightly different solutions are being found that maintain the same 

normal tissue mean or maximum doses achieved in the baseline plan.  The ADS beams 

are noticeably smoother with a reduction in the random appearing “noise” in each of the 

fields compared to the baseline fields.  As the objectives are relaxed in TSD and TSJ, 

the beams become progressively smoother, and the DVHs clearly show that only the 

chosen relaxed objectives are affected in each tradeoff scenario.   

 
VI.A.3.3 Head/Neck 
The percent monitor unit reductions relative to the baseline plan that were possible in 

each of the tradeoff scenarios are shown in Figure VI-7.  The tradeoff scenarios 

correspond to the relaxations given in Table V-3 for the head/neck cost function.  Similar 

to the prostate results, a 21.6 % reduction in MU was possible for this patient with no 

concessions in the baseline plan quality, with the addition of the ADS penalty and  

Baseline

TS 0 
( No Relaxations)

TS D 
(Relax Bladder 

Mean 4 Gy)

TS J (Relax Means: 
NT& Bladder 4 Gy, 

Femora 2 Gy, 
Penile Bulb 1 Gy)

Figure VI-6.  The optimized beams for the baseline plan and tradeoff scenarios 0, D, 
and J.  The corresponding DVHs are shown in Figure VI-5. 
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Relaxations in the lower priority objectives in the tradeoff scenarios did not result in 

further large reductions of MU until the PTV maximum dose was relaxed from + 7 % to 

+10 % of the prescription dose.  This resulted in an MU reduction of 27.6 %, and the final 

composite tradeoffs that included the PTV maximum dose relaxations had MU 

reductions of up to 33.5 %.  The apparent lack of freedom to reduce MU demonstrates 

the complicated nature of IMRT planning for the head/neck and shows that the solution 

space can be greatly reduced when adding constraints into the plan using LO.   

 A comparison of the DVHs for the baseline plan with TS0, TSF, and TSJ is shown 

in Figure VI-8.  An interesting feature of the baseline vs. ADS plans is a difference in 

shape of the normal tissue DVHs.  In the ADS plans, the normal tissue DVHs show that 

higher volumes of normal tissue are treated to low doses, but smaller volumes received 

high doses.  The beam comparisons are given in Figure VI-9 and demonstrate the 

improvement that can be made in the plan smoothness by simply using the ADS penalty.  

The ADS beams are not only smoother, but have fewer isolated high intensity beamlets 

as well as less “noise”.  These features improve further as the PTV maximum doses are 

relaxed. 

 
 

Figure VI-7.  The percent reduction in monitor units possible in each of the tradeoff 
scenarios (corresponding to Table VI-3) relative to the baseline geometry for the 
head/neck case.  Tradeoff scenario D was not applicable because the oral cavity 
mean dose was already past its intended limit.  The DVHs and beams for the 
tradeoff scenarios denoted in black are shown in Figures VI-8 and VI-9. 
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Figure VI-8.  The optimized head/neck dose-volume histograms for the 
baseline plan and tradeoff scenarios 0, F, and J.  Not all structures are shown 
for easier viewing although those not pictured showed similar trends. 
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Baseline
TS0
TSF
TSJ

PTV60,64,70

Oral Cavity

Cord
Mandible

Contralateral 
Parotid Normal

Brainstem + 5 mm

Constrictors

Figure VI-9.  The optimized head/neck beams for the baseline plan and tradeoff 
scenarios 0, F, and J.  The corresponding DVHs are shown in Figure VI-8. 

Beam 1 Beam 2 Beam 3 Beam 4 Beam 5 Beam 6 Beam 7
Baseline

TS0 – No Relaxation in Objectives

TSF – Relax Target Maximum Homogeneity from +7 % to +10 % of the Rx

TSJ – TSF and Relax  Means: NT 4 Gy, Cord, Brainstem, Larynx 2 Gy
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VI.A.4. Discussion 
This section work demonstrates that a significant amount of complexity reduction is 

possible without compromising the dosimetric results of the original IMRT plan.  

However, if one wishes to smooth further, a debate can be made about which planning 

objectives should be relaxed to allow for smoother beams that can delivered more 

efficiently and accurately.  The answer is that the site and size of tradeoffs allowed are a 

function of the specific case geometry, patient characteristics, and physician 

preferences.  Therefore, efficient tools are necessary to be able to calculate and present 

the tradeoffs in question.  Generation of tradeoff choices is similar to the generation and 

navigation of Pareto solutions done with weighted sum cost functions.  Recent work by 

Craft et al. has shown that Pareto-optimal plan libraries that make tradeoffs between 

monitor units and plan objectives can be constructed3.  However, with LO, the 

quantitative changes allowed in each structure can be specified before optimization 

instead of calculated afterwards based on the optimization results.  Therefore, LO may 

potentially save time and resources because the number of tradeoff instances can be 

minimized based on the preferences of the physician.  A similar reduction in solution 

space could be achieved by using multiple constraints in the generation of the Pareto 

solutions.  Still, one of the main positive aspects of LO is the use of priority levels to 

obtain the baseline line without iterating through different importance factors or creating 

multi-dimensional Pareto surfaces that must be navigated.  If an IMRT protocol is not 

defined well by priority levels and the initial plan is optimized using a weighted sum cost 

function, the LO method can still be used after obtaining the weighted sum solution to 

generate tradeoff scenarios with smoothing or other objectives.                                

 The process we have laid out in this work is a starting point for including 

smoothness criteria into clinical IMRT protocols in an intelligent and robust way.  The 

design of lexicographic cost functions and tradeoff scenarios with the aid of a physician 

takes a minimal amount of time and should be able to be used for all cases in a protocol.  

If the tradeoff scenarios are agreed on by several physicians, then they could cover all 

physician preferences and allow a large, but manageable library of solutions to choose 

from.  Without the use of LO, individual importance factors for both the plan objectives 

and smoothing criteria would have to be iteratively searched to find the optimal 

combination of weights for each individual case and geometry, making it difficult to say 

which tradeoffs would or would not be allowed to promote smoothing in the context of a 

weighted sum cost function.  Another advantage of this method is that the important 
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question ‘How much can the plan be smoothed without sacrificing plan quality?’ can be 

posed and answered.  Using LO to answer this question means that even if none of the 

baseline objectives are negotiable, we can achieve a certain amount of smoothing.  The 

examples shown in this work and previous experience with this method suggest that this 

amount of “free” smoothing can result in approximately 15 - 25 % reduction in MU for the 

vast majority of IMRT cases. 

 
 
VI.B.  Minimizing Beam Modulation with ADS: A Retrospective Study in 
Partial Breast IMRT 
The clinical significance of improving IMRT delivery efficiency can come from a variety of 

sources, including improved delivery accuracy, shorter delivery times, less accelerator 

wear-and-tear, and decreased leakage dose to the patient.  The latter can become an 

even more important factor when risks of developing a secondary cancer are higher for a 

certain patient population.  For example, many lower-risk breast cancer patients are 

young women with long life expectancies after treatment, so keeping any extraneous 

dose to a minimum is an important goal.  The young age of many breast cancer patients 

also makes accelerated breast conserving therapy a choice that is rising in popularity, 

due to both the breast conservation and quicker treatment course.  In part due to this 

increase in convenience for patients, accelerated partial breast irradiation (APBI) is 

under investigation at many institutions for early-stage breast cancer treatment. A 

previous study at our institution has shown that a strict IMRT protocol can improve target 

coverage and reduce normal tissue dose compared to 3D conformal therapy19.  Despite 

these advantages, treatment providers must also be aware of the increased delivery 

time and monitor units required for IMRT.  Unfortunately, the increased number of 

monitor units delivered by APBI IMRT treatments can increase the leakage dose to the 

patient and could possibly increase the risk of induced secondary cancers20,21.  The 

purpose of the following study was to evaluate the use of the adaptive diffusion 

smoothing (ADS) method during optimization to improve delivery efficiency while 

preserving target coverage and normal tissue sparing.  By reducing the MU (and thus 

leakage dose) for accelerated partial breast IMRT, the secondary cancer risk may be 

lessened while also improving the efficiency and accuracy of IMRT QA and delivery. 
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VI.B.1.  Materials/Methods 
To evaluate the impact of applying ADS during optimization of APBI cases, IMRT plans 

were generated retrospectively for 10 patients treated on an IRB-approved protocol at 

the University of Michigan.  Under this protocol, 38.5 Gy is delivered in 10 fractions with 

strict homogeneity requirements and conservative normal tissue dose objectives.  The 

protocol objectives are given in Table VI-4.  After optimization with the protocol 

objectives to establish a baseline plan, three plans were optimized with ADS.  First, the 

baseline objectives were constrained and ADS was applied to determine the delivery 

efficiency improvement possible with no loss in plan quality.  Next, the minimum dose 

objectives to the CTV and PTV were relaxed by 3 % to 37.4 Gy and 5 % to 36.6 Gy to 

determine the further smoothing possible with small concessions in strict homogeneity 

requirements.  No relaxation was made in the maximum dose because of the already 

high doses being given in the hypo-fractionation protocol.  The controlled target 

relaxation was done using a gradient search algorithm that allows constraints, sequential 

quadratic programming8.  This method is discussed in more detail in the previous section 

with respect to its use in lexicographic ordering.  The plan metrics, beam complexity, and 

delivery efficiency for all plans were analyzed.   

 
 
 

Table VI-4. Accelerated Partial Breast IMRT Plan Objectives 

Structure Objective 

Left Anterior Descending Coronary Artery < 1 % Vol > 3 Gy 

Heart < 1 % Vol > 3 Gy 
CTV Min Dose > 38.5 Gy 
 < 1 % Vol > 40.4 Gy 
PTV > 95 % Vol > 38.5 Gy 
 < 1 % Vol > 40.4 Gy 

Ipsilateral Lung < 10 % Vol > 5 Gy 

Contralateral Breast < 1 % Vol > 5 Gy 

All Normal Tissue Minimize Overall Dose 
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VI.B.2. Results 
The static delivery MU/fraction required for all patients and plan techniques are shown in 

Figure VI-10, and the means and standard deviations for the MU are shown in Table VI-

5 relative to the baseline plan.  The ADS plans required substantially fewer MU in all 

cases, and relaxing the target minimum dose further reduced MU by varying degrees 

depending on the patient.  The MU reduction possible when applying ADS was 24.6 +/- 

7.1 % with no loss in plan quality, 34.2 +/- 8.3 % with a 3 % relaxation in the minimum 

target dose, and 39.4 +/- 7.7 % with a 5 % relaxation in the minimum target dose.  All 

differences observed in the other plan metrics were negligible, with the exception of the 

Table VI-5. Relative mean monitor unit requirements and target dose objectives for
accelerated partial breast IMRT with and without an adaptive diffusion smoothing
penalty used during optimization. 

Plan Description 

Minimum 
Target  

Dose Objective

Maximum 
Target  

Dose Objective

Relative Number of MU 

Mean σ 

Baseline 38.5 Gy 40.4 Gy 1.000 0.000

ADS Equivalent 38.5 Gy 40.4 Gy 0.754 0.071 

ADS Relax 3 % 37.4 Gy 40.4 Gy 0.658 0.083 

ADS Relax 5 % 36.6 Gy 40.4 Gy 0.606 0.077
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Figure VI-10.  Required MU/Fraction for static delivery for each of optimization 
methods for each of the 10 breast patients. 
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minimum target dose in the final two ADS plans.   

Figure VI-11 shows, for a typical case, the change in DVHs and one of the 

intensity modulated beams in each of the four scenarios tested.  The improvement in 

smoothness with ADS is apparent and comes with no significant changes to any of the 

other structures, except for a slight change in the shape of the normal breast DVH.  In 

Figure VI-11(A), the Baseline plan required 1503 MU/Fx due to the large target size and 

small beamlet dimensions.  The ADS plans required 1109, 914, and 773 MU/Fx for the 

Figure VI-11.  (a) A typical intensity modulated beam in the beam’s eye view for 
the Baseline, ADS-Equivalent, ADS-Relax 3% and ADS-Relax 5% cases with the 
breasts (brown and green), lung (white), heart (red), and LAD (blue) shown.  The 
beam is covering the CTV and the PTV (wireframe). (b) the corresponding DVHs 
or each of the plans. 
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Equivalent, Relax 3%, and Relax 5% plans, respectively.   The reduction in MU after the 

initial addition of the ADS penalty may be due in part to the reduction of isolated high 

intensity beamlets scattered in the field.  It is important to note that the intensity 

gradients around the edge of the field where the beam intersects the ipsilateral lung are 

preserved in all ADS plans.  It is also interesting to observe the high gradient area near 

the top right of the field, which may be due to a lack of build-up dose near the patient 

surface.   

 

VI.B.3.  Summary 
Concerns over the potentially significant leakage dose associated with the high number 

of MU in accelerated partial breast IMRT treatment has led to an investigation of the use 

of the adaptive diffusion smoothing penalty during APBI IMRT optimization.  In each of 

the ten patients studied, the use of the ADS penalty was able to significantly reduce MU 

without affect the dosimetric quality of the tightly constrained plans.  The mean reduction 

in MU when using ADS was 24.6 +/- 7.1 % with no sacrifice in plan quality.  Larger MU 

reductions were possible with slight concessions in target homogeneity.   

The use of adaptive diffusion smoothing during optimization of accelerated partial 

breast IMRT cases allows the full dosimetric benefit of intensity modulation to be 

realized without the substantial loss in delivery efficiency that may be observed with 

conventional IMRT, and clinical use of adaptive diffusion smoothing during optimization 

should result in reduced leakage dose to patients and shorter, more accurate treatment 

deliveries.   

 

VI.C.  Use of ADS in Radiobiological Targeting 
Radiotherapy is entering an era of image-guidance and adaptation.  Two integral 

components in this new treatment paradigm are functional and biological imaging.  As 

these two entities become more prevalent and more reliable, radiobiologic targets and 

avoidance structures will become increasingly common.  With this likely increase in 

geometric complexity, intensity-modulated radiation therapy (IMRT) will be one of the 

preferred treatment modalities.  Because of its ability to produce very heterogeneous 

dose distributions, inverse-planned IMRT presents a unique opportunity in the targeting 

and avoidance of radiobiologically-defined regions.  Critical target regions may represent 

aggressive, rapidly proliferating, or radioresistant disease, and IMRT can allow for dose 

escalation to these volumes while still sparing normal tissue.  Several recent studies 
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have shown that inverse-planned IMRT has the ability to achieve the heterogeneous 

dose and fluence patterns necessary to treat targets defined by various radiobiological 

imaging studies22-25.  However, these studies also point out that using functional imaging 

data is not a trivial matter, and that systematic and random errors in defining the 

radiobiological regions can result in worse tumor control probabilities (TCPs) when using 

heterogeneous rather than uniform dose distributions22.  If this potential underdosing is 

combined with geometric uncertainty from setup errors, the risk of creating cold spots in 

critical target regions becomes even greater26.  Also, the more complex IMRT beams 

become, the longer and more difficult the quality assurance and eventual treatment 

delivery become.  Increases in treatment time can potentially increase dosimetric errors 

due to increased intrafraction motion, which may impact tumor control due to 

intrafraction tumor repair27,28.  Both of these issues were discussed in Chapter II.  

  In the following section, we report our study of the hypothesis that more 

homogeneous fluence patterns over critical radiobiologic targets will reduce sensitivity to 

geometric uncertainties and thus decrease the amount of underdosing that occurs in the 

presence of daily setup errors.  This section demonstrates the feasibility of using 

adaptive diffusion smoothing during optimization to promote smoothness over the 

beamlets that cover key radiobiologic target regions.  This could provide the modulation 

control necessary to ensure that radiobiologic target volumes receive the intended dose 

when imaging and geometric uncertainties are present. 

 

VI.C.1. Methods 

The adaptive diffusion smoothing process used in this section is outlined in Chapter V.  

The major difference in the application of ADS smoothing to this problem is that instead 

of being defined based on the cost function gradients, the ADS diffusion coefficients are 

defined based upon the radiobiological parameters of the geometry in each beamlet 

projection.  Specifically, the diffusion coefficients are defined to be large in beamlets that 

cover radiobiological targets, thus promoting smoothness and increasing the probability 

of having homogeneous fluence patterns over key areas. 

 As in the previous chapter, the ADS smoothed beam is not automatically applied 

during the optimization process, but the difference between the ADS beam and the 

original beam is calculated to construct a penalty which behaves as another optimization 

goal.  
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VI.C.1.1 Radiobiologically Defined Diffusion Coefficients   

In order to automatically define the diffusion coefficients to promote smoothing over 

high-risk tumor subvolumes, we must use a metric that can relate the beamlet position to 

the underlying tumor geometry.  One way to delineate the risk-level of the tumor 

geometry is through a dose evaluation metric called generalized equivalent uniform dose 

(gEUD) 29. This metric takes a heterogeneous dose distribution from a target or normal 

tissue structure and represents it by the uniform dose value that would have the same 

radiobiological effect.  The generalized EUD is given by: 
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∑  (II.6)    

 

where Di is the dose in the ith voxel of the structure, N is the total number of voxels, and 

a is a structure-specific parameter.  The parameter a is positive for normal tissues and 

negative for tumors.  Its value depends on the properties of the tissue, with a = -5 

Figure VI-12.  Example of how the |a| values are distributed in the beamlets to be 
used in the diffusion coefficient calculations.  The higher |a| structures take 
priority. 
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representing a responsive tumor and a = -20 representing a resistant tumor.  For 

parallel-behaving normal tissues, a is near 1, and for serial-behaving normal structures, 

such as spinal cord, a is approximately 8.  For this study, we assigned a values to each 

of the tumor sub-volumes based upon their risk-level and the normal tissues were given 

a values of 2.5.  After assigning a values, the beamlets that projected onto the tumor 

sub-volumes from each beam’s eye view were identified.  Then, “beamlet |a| values” 

were assigned based upon the highest structure |a| values encountered in the projection.   

 Figure VI-12 shows an example of these effective beamlet |a| values  for a beam that 

covers a tumor with a high-risk sub-volume that will be “boosted” to a higher dose.  After 

effective |a| values are assigned to each beamlet, the diffusion coefficients are 

calculated using the effective |a| values.  In the previous work on ADS presented in 

Chapter V, the diffusion coefficients were required to be between 0 and 10.  To conform 

to that standard and to promote (i) a high amount of smoothing in the biological target, 

(ii) moderate smoothing over the main PTV, and (iii) only little smoothing over the rest of 

the field so as to not require heavy tradeoffs with the other plan objectives, the diffusion 

coefficients have been defined as 

 

  

1.5

9ij

a
D =  (VI.8) 

 

This definition of D, chosen based on prior experience and after several trials, means 

that the beamlets with higher projected |a| values are subject to a higher degree of 

smoothing than those with smaller |a| values.  Thus, ADS will promote smoother, more 

homogeneous fluence patterns over the areas that are more sensitive to cold spots and 

underdosing.  Minor changes could easily be made to the definition of D to promote 

relatively more or less smoothing in the different regions.  In addition, the formulation 

provided here could easily be adapted to other functional imaging applications by using 

different definitions of D.   
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VI.C.1.2.  Test Case   

To test the implementation of radiobiologically defined diffusion coefficients in the 

context of ADS, the scheme was applied in a test case with a main PTV (a = -5) and two 

smaller boost volumes (a = -15 and -20).  The case geometry and beam arrangement 

are shown in Figure VI-13.  The normal tissue (a = 2.5) used in the optimization was a 2 

cm expansion around the PTV.  After assigning the diffusion coefficients as discussed 

above, optimization was performed without ADS, and then with the ADS penalty applied 

at increasing weights in a weighted sum cost function.  The baseline cost function used 

is described in Table VI-6.  Random setup errors were simulated by shifting the plan 

isocenter 3 mm in each direction, and plans were recalculated at the new positions and 

then analyzed.  Comparisons were made between baseline and ADS plans looking at 

target gEUD before and after the shifts, plan DVHs, fluence patterns, and SMLC monitor 

units.  In this work, all plans used 6 MV beams with 5 mm x 5 mm beamlets, and 

optimization was performed with UMOpt using the quasi-Newton search algorithm. 

 

Figure VI-13.  The test case geometry and beams.  The PTV is gray (a=-5), and 
the boost targets are red (a=-15) and yellow (a=-20).   
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VI.C.1.3.  Clinical Pancreas Example 

To demonstrate the clinical potential of this method, ADS was applied in a pancreas 

example.  The preferred treatment for pancreatic cancer is resection, but tumor invasion 

into the vasculature can inhibit a full resection.  One technique that is under investigation 

to sterilize the tumor-vasculature volume and make the patient eligible for surgical 

treatment is to boost the dose to the volume with IMRT. In a gEUD-based prescription, 

this surgical boost volume is prescribed to a higher dose than the rest of the PTV and 

given an a value of -15 to -20.  Sterilization of this target is critical for surgical treatment, 

and thus, maintaining a high EUD in the face of geometric uncertainties is very important 

to reaching a desired clinical outcome.  To test the hypothesis that ADS will be able to 

achieve better results than standard IMRT in this situation, we have optimized a 

pancreas example with both standard and ADS IMRT.  The baseline objective function 

used in the example is described in Table VI-7.  The normal tissue objectives are the 

highest priority in the objective function.  Also, the overall dose to all normal tissue is 

minimized.    

Table VI-6. Test Case Objectives 
Structure Objective 
PTV 50 Min Dose > 35 Gy 
 < 10 % Vol > 65 Gy 
  gEUD (a=-5) > 50 Gy 
Boost 70 Min Dose > 55 Gy 
 Max Dose < 85 Gy 
 gEUD (a=-15) > 70 Gy 
Boost 90 Min Dose > 75 Gy 
 Max Dose < 105 Gy 
  gEUD (a=-20) > 90 Gy 
Normal  Max Dose < 65 Gy 
Tissue Mean Dose < 20 Gy 
  Min Dose 
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 Diffusion coefficients were defined according to Equation VI-8 after taking the 

beamlet |a| projections.  The a values given to the PTV, surgical boost, and normal 

tissue were -5, -20, and 2.5, respectively.  Baseline optimization was performed and 

then the ADS penalty was applied at increasing weights. Plans were sequenced for 

static delivery, and the required MU were compared.  The sensitivity of the surgical 

boost gEUD to simulated setup errors was analyzed for both techniques using the same 

procedure as the test case. 

 

 

 

 

Table VI-7. Pancreas Case Objectives 
Structure Objective 
Duodenum Max Dose < 60 Gy 
  < 33 % Vol > 45 Gy 
Stomach Max Dose < 54 Gy 
 < 2 % Vol > 50 Gy 
  < 25 % Vol > 45 Gy 
Small Max Dose < 54 Gy 
Intestine < 2 % Vol > 50 Gy 
  < 25 % Vol > 45 Gy 
Liver Minimize NTCP 
Kidneys Max Dose < 20 Gy 
 < 10 % Vol > 18 Gy 
Cord Max Dose < 45 Gy 
PTV Min Dose > 45 Gy 
 gEUD (a=-5) > 60 Gy 
  < 15 % Vol > 75 Gy 
Surgical Min Dose > 65 Gy 
Boost gEUD (a=-20) > 80 Gy 
  Max Dose < 95 Gy 
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VI.C.2.  Results 

VI.C.2.1. Test Case   
The test case was first optimized with the baseline cost function and then with the ADS 

penalty applied at three increasing weights.  The DVHs for these plans are shown in 

Figure VI-14.  Their similarity demonstrates that ADS did not interfere with the baseline 

objectives.  Large changes were observed in the optimized fluence patterns, and Figure 

VI-15 shows, for a typical beam, the change in intensity modulation when using ADS.  

The baseline fluence pattern is very heterogeneous, while the ADS beams are smoother 
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Figure VI-14.  Dose-volume histograms for the targets and normal 
tissues for the baseline and ADS IMRT plans.  ADS 1, 2, and 3 
denote the relative ADS penalty weight. 
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Figure VI-15.  A typical beam in the test case as the ADS penalty is increased.  The 
two boost targets are shown. Blue denotes cold beamlets and red denotes hot 
beamlets. 
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and more structured.  The beamlets intersecting the boost volumes become more 

uniform as the ADS penalty increases.  Also, the ADS plans required 37 - 61 % fewer 

MU for static delivery.  The effect of these more homogeneous beam regions was 

increased robustness in preserving gEUD in the boost targets after small geometric 

shifts.   

 Figure VI-16 shows the gEUD for each target before and after the 3.0 mm isocenter 

shifts in each direction. The gEUD is relatively unchanged after the y (posterior) shift.  

However, after shifts in the x (lateral) and z (superior) directions, the gEUD for all targets 

was degraded considerably. This degradation was smaller in the ADS plans, and the 

post-shift gEUD increased as a function of increasing ADS penalty.  The most drastic 

gEUD losses were observed in Boost90 after x and z shifts, and the use of ADS 

decreased these losses by 16.4 and 12.5 Gy in the x and z directions, respectively.  The 

use of ADS did not significantly improve the gEUD in PTV50 after the z shift.  This was 

likely due to several high intensity beamlets at the superior regions of the fields moving 

away from the target.  These intense beamlets were also present in the ADS beams 

because the smoothing in that area was not very strong.  The shifts did not affect the 

mean normal tissue dose, but the maximum post-shift normal tissue dose decreased 

with increasing ADS penalty. 
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Figure VI-16.  The gEUD for PTV50, and the two boost targets (70 and 90) before 
and after 3 mm isocenter shifts in the x (lateral), y (posterior), and z (superior) 
directions. 
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VI.C.2.2. Clinical Pancreas Example   

The pancreas example was optimized with the baseline cost function, and then the ADS 

penalty was added at increasing weights.  Similar to the test case, the ADS penalty did 

not interfere with the baseline objectives and only slightly changed the optimized DVHs.  

Figure VI-17 compares DVHs for a moderately weighted ADS plan and baseline IMRT.  

A positive side effect of ADS smoothing was a reduction in dose the spinal cord.  This 

was likely due to a decrease in scatter reaching the cord from high intensity beamlets in 

the standard IMRT cases, which are removed with the ADS smoothing.  We note that if 

the overall dose minimization to the cord was more highly weighted in the cost function, 

this effect may not have been observed.  Both plans are shown in Figure VI-18, and an 

increase in beam homogeneity is observed in the regions covering the surgical boost in 

the ADS plan compared to the baseline plan.  After 3 mm shifts in each direction, the 

surgical boost gEUD was degraded, and Table VI-8 gives the pre- and post-shift gEUD 

in the boost volume for the baseline and ADS plans.  In the lateral and superior 

directions, where setup errors are most common, the improvement in gEUD when using 

ADS is equal to or larger than one fraction (1.8 Gy).  The ADS plan also requires 34 % 

fewer MU for delivery.  The normal tissue objectives were less affected by the shifts than 
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the targets, and in most cases, were better preserved when using ADS.  However, these 

differences may not be clinically significant. 

 The effect of ADS in the test case was likely higher than in the pancreas case due to 

the simpler geometry and axial beams.  Still, the gains in delivery efficiency and gEUD in 

the complex pancreas example were clinically significant and did not risk normal tissue.   

Baseline IMRT

Adaptive Diffusion Smoothing

Liver
Kidneys

Cord

Small Intestine

Stomach
Duodenum

PTV: Blue Contours
Surgical Boost: White

Baseline IMRT

Adaptive Diffusion Smoothing

Liver
Kidneys

Cord

Small Intestine

Stomach
Duodenum

PTV: Blue Contours
Surgical Boost: White

Figure VI-18. 3-D view of baseline vs. ADS IMRT plans in the pancreas.

Table VI-8. Pancreas surgical boost gEUD [Gy] before and after 3 mm isocenter shifts 

Technique 
Optimal gEUD 

before shift 
gEUD after 3 mm 

x (lateral) shift 
gEUD after 3 mm  
y (posterior) shift 

gEUD after 3 mm
z (superior) shift

Standard IMRT 80.00 75.97 69.95 75.68 
ADS IMRT 80.00 79.44 71.37 77.47 

Difference 3.5 Gy 1.4 Gy 1.8 Gy 
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VI.C.3. Summary 

The use of IMRT for plans with multiple radiobiologic targets requiring different dose 

prescriptions is a seemingly good strategy.  However, the inherent complexity in IMRT 

fields can lead to decreased treatment efficiency and potential instability in the face of 

geometric uncertainties.  The concept that modulation can be manipulated to increase 

delivery efficiency and robustness of plan metrics to geometric uncertainties, while still 

preserving the merits of IMRT, is worth pursuing.  An optimization scheme has been 

introduced in which smoothness of fluence patterns is promoted in regions over high-risk 

targets that are susceptible to large losses in gEUD in the presence of small setup 

errors.  The use of adaptive diffusion smoothing with radiobiological-defined diffusion 

coefficients allowed the preferential smoothing of beamlets that covered critical target 

regions.  The a value of targets in a gEUD formulation was used to define the diffusion 

coefficients for use in ADS.  A test case demonstrated that ADS could alter the fluence 

patterns—without significantly affecting the plan objectives or DVHs—in such a way that 

the target gEUD values were more robust to small geometric shifts in the plan.  In 

addition, the use of ADS improved delivery efficiency.  ADS was also applied to 

optimization of a pancreatic case involving a high-risk boost volume.  The gEUD in this 

volume was higher (better) for the ADS plan when compared to standard plans when 

both were subject to 3 mm simulated setup errors.  The improvements in gEUD were 

3.5, 1.4, and 1.8 Gy after lateral, posterior, and superior shifts, respectively.  We 

conclude that ADS is a promising method for manipulating IMRT beams to potentially 

improve outcome in radiobiologic targets.  

 
VI.D.  Future Applications of ADS 
The potential utility of the adaptive diffusion smoothing method goes far beyond the 

limited applications shown in this chapter.  The power to customize the diffusion 

coefficients to different situations makes ADS an attractive option for dealing with a 

variety of issues in intensity-modulated radiation therapy.  The use of ADS for smoothing 

IMRT fields during optimization is a practical and inexpensive—in terms of time and 

dosimetric quality—way to improve delivery efficiency and reduce the many 

consequences that accompany beam complexity.  The application of ADS to 

radiobiological-based optimization is an example of how ADS can improve IMRT 

treatment planning.  Future projects in this area could include the extension of the 
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method to account for smoothing over normal tissues as well as targets.  The 

generalized EUD formulation is designed to predict the EUD for both types of tissues.  

Therefore, a change in the diffusion coefficient definition to incorporate the use of both 

positive and negative a values could be a starting point for studying the effect of 

smoothing over different types of normal tissues (i.e. serial or parallel organs). 

  One area of concern in IMRT is the possible degradation in plan quality that 

results from internal patient motion, such as breathing or cardiac motion.  If the probable 

direction and amplitude of motion can be predicted, then diffusion coefficients could be 

designed to promote smoothing in the direction of motion.  This may degrade plans in 

the short-term, but could make them more robust to the predicted breathing motion.  In 

addition, the dosimetric errors arising from the motion should be smaller than in the un-

smoothed case because the intensity gradients will be also be smaller.  A similar 

approach could be taken to incorporate random setup errors into the optimization 

process. 

  Radiotherapy often relies on many different forms of imaging to delineate tumor 

and normal tissue structures.  To accommodate the use of imaging data from different 

modalities, each set of data must be registered with a reference dataset (usually the 

treatment planning CT scan).  The registration process is not error-free and can 

introduce uncertainty into the contours that are transferred between different data sets.  

If the location and approximate magnitude of this uncertainty can be predicted, then it 

may be possible to set the diffusion coefficients to be a function of that uncertainty in an 

effort to blur the beamlet intensity over those areas.  For example, if the tumor boundary 

is not clear, then it may be advantageous to smooth or blur the beam intensity over the 

interface of the target instead of having a sharp fall-off at the edge of the delineated 

tumor.  These ideas could be extended to general registration errors as well so that large 

intensity gradients do not fall over areas that have been poorly registered.   

  The direct optimization of the segments shapes and weights that are delivered in 

IMRT is an alternate method that can be used to promote delivery efficiency in IMRT.  

However, the optimized segments in direct aperture optimization (DAO)30 can still be 

quite irregular.  A possible reason for this is the fact that the fluence map optimization is 

usually run for several iterations and then sequenced to generate the initial segments.  If 

ADS was applied in this initial step of DAO, it might be possible to start with equivalent, 

but more regular segments.  We show in Chapter VII that segments created from ADS 

plans are generally much more regular, with larger gaps between the leaves than 
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conventional IMRT segments.  Therefore, the use of ADS in creating initial DAO 

segments could result in more accurate plans with less tongue-and-groove effect. 

  Adaptive diffusion smoothing is a unique method that allows for a high level of 

adaptation and customization.  The method can be adapted to a variety of different 

problems, and inside each of those applications, it can be further individualized for 

different patient characteristics such as tumor biology and breathing motion.  Thus, 

adaptive diffusion smoothing is a truly adaptive method that may have many future 

applications in IMRT and even possibly in other areas of radiotherapy. 
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CHAPTER VII.  
POTENTIAL CLINICAL IMPACT OF  

CONTROLLING IMRT BEAM MODULATION 
 
 

Chapters I and II demonstrated that intensity modulated radiotherapy fluence 

distributions can be  highly complex and that from this complexity arises a variety of 

concerns associated with the efficiency and reliability of IMRT treatment delivery.  

Chapters III-VI presented a several approaches to control the complexity of IMRT fields 

during the optimization process.  These techniques can produce IMRT plans that are 

much more efficient to deliver than their unsmoothed standard IMRT counterparts.  

However, the true clinical impact of controlling beam complexity has not yet been 

verified.  The purpose of this chapter is to examine some of the areas of potential clinical 

impact and determine whether there are real advantages to smoothing that can be 

observed and verified in practice, not just in theory.  The areas of clinical significance 

that this chapter covers are treatment planning consistency and efficiency, delivery 

accuracy, sensitivity to geometric uncertainty, and the potential impact of smoothing on 

adaptive radiotherapy. 

 

VII.A. Treatment Planning Robustness and Efficiency  

Applying a modulation penalty in the cost function has the potential to affect the 

treatment planning process in ways that have not yet been discussed.  Two issues that 

need examination are (i) the robustness of the smoothed plans to point sampling effects 

and (ii) the efficiency of the optimization itself.   

 

VII.A.1.  Robustness to Point Sampling 
Chapter II discussed how the discrete sampling of points in the optimization regions of 

interest could be a source of unwanted fluctuations and isolated high intensity peaks in 

the beamlet intensity patterns.  While these features had minimal effect on the 
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dosimetric quality of the plan when evaluated at different point samplings, they reduce 

the confidence that the specific beamlet intensity pattern which is used for treatment is 

the best pattern to treat the patient.  The addition of modulation penalties inside the cost 

function has been shown to reduce small and high frequency fluctuation in the intensity 

patterns.  Therefore, it may be hypothesized that the beams optimized with modulation 

penalties are less dependent on the specific point sampling in the field, so long as the 

area is properly sampled.  To go a step further, plans with smoother beams may be less 

susceptible to undersampling artifacts.  To test these hypotheses, a phantom case was 

optimized with and without modulation penalties when using (i) several different random 

point sampling instances, and (ii) progressively fewer optimization points in the regions 

of interest.  

 

VII.A.1.1.  Random Point Sampling 
The modified IMRT benchmark phantom introduced in Chapter II was used to study the 

robustness of three different modulation penalties to different random point samplings of 

the regions of interest.  The phantom is shown in Figure VII-1.  Five different instances 

of the point sampling were generated with an average voxel size of 0.027 cm3 in each 

structure, which is our typical clinical recommendation.  Each instance was optimized 

four times: 

Figure VII-1. The modified IMRT benchmark phantom designed for IMRT 
validation and testing (reproduced from Chapter II). 
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1. Baseline optimization with no smoothing using the cost function shown in Table 

VII-1. 

2. The achieved baseline objectives were constrained and the plan was reoptimized 

using the plan intensity map variation (PIMV) penalty introduced in Chapter IV. 

3. The achieved baseline objectives were constrained and the plan was reoptimized 

using the ADS penalty with uniform diffusion coefficients as introduced in 

Chapter V. 

4. The achieved baseline objectives were constrained and the plan was reoptimized 

using the ADS penalty with cost function gradient-based diffusion coefficients as 

also introduced in Chapter V. 

 

Corresponding optimization trials from each point sampling instance (named A, B, C, D, 

and E) were compared to determine the similarity between each of the optimized beams 

for each different point sampling instance.  The correlation coefficient (also discussed in 

Chapter II, Equation II.2) was used as the measure of beam similarity.  In addition, 

optimization results from point samplings B-E were analyzed using the point sampling in 

A to verify that plan quality was not compromised by the smoothing process in the 

different point samplings.  Chapter II showed that no significant changes in the DVHs 

were observed when analyzing the baseline optimization results over different point 

sampling instances; it is important to show that the same is true for plans that use 

smoothing penalties. 

 The smoothing costlet weights were chosen to make a minimal impact on the 

cost function and also to give nearly identical cost values (not including the smoothing 

Table VII-1.  The cost function applied to modified IMRT benchmark phantom

Structure Objective Costlet Weight

PTV Min > 60 Gy DVH_GE(60,100) 100
Max < 66 Gy DVH_LE(66,0) 100

OAR1 Max < 52 Gy DVH_LE(52,0) 100
Mean < 0 Gy MEAN.LE.0 0.0001

OAR2 Mean < 30 Gy MEAN.LE.30 10
Max < 66 Gy DVH_LE(66,0) 1
Mean < 0 Gy MEAN.LE.0 0.0001

Normal Max < 66 Gy DVH_LE(66,0) 1
Mean < 0 Gy MEAN.LE.0 0.0001
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costlet value) between the different methods so they could be fairly compared.  The 

same weights were then used in each different point instance so that the cost function 

used would be identical.  To demonstrate the clinical equivalence of all plans at the 5 

different point samplings, we show the DVHs for all point sampling instances for each 

technique in Figure VII-2.  Even subtle changes, such as the OAR1 DVH shift observed 

in point sampling E, are constant across the different methods.  The MU reduction 

averaged 46.0 +/- 3.4 % for all of the smoothing costlets in each of the point sampling 

versus the baseline plan.  No clear advantage in MU reduction at this low weighting 

factor was observed for any of the smoothing costlets.   

Although the DVHs are very similar, the optimized beamlet intensity patterns can 

vary by a large amount due to the difference in the locations of the sampled dose 

evaluation points.  In Figure VII-3, we show one optimized beam from each point 

Figure VII-2. The group of (a) Baseline, (b) PIMV, (c) ADS-U, and (d) ADS-G 
DVHs optimized for each different point sampling A-E. 
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sampling instance for each of the 4 different techniques.  The intensity changes in the 

baseline plan are much more noticeable and of higher intensity than the differences in 

the smoothed beams.  This is shown more quantitatively in Figure VII-4 by the mean 
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Figure VII-4. The mean correlation coefficient (and σ) between plans 
optimized on 5 different point sampling instances using 4 different 
techniques. 

Figure VII-3. Beam 3 as optimized with each different 
technique in each of the different random point sampling A-E 
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correlation coefficient between all beams in each of the smoothed cases relative to the 

beam in point sampling A.  The smoothed beams correlate to a much higher degree than 

the baseline beam, making these plans more robust with respect to the specific random 

point sampling of the cases.  The fact that the ADS-Gradient plans are more dependent 

on the points due to their use of the cost function gradient may have increased the 

standard deviation in that case, but it did not significantly alter the results compared to 

the other smoothing costlets. 

 Clinically speaking, each of the intensity patterns is still of high quality when 

evaluated on a different sampling of points.  For example, Figure VII-5 shows the DVHs 

for the PIMV plans from all point samplings evaluated on point sampling A.  There is no 

noticeable plan degradation.  However, when we compare the actual cost function value 

in Figure VII-6, we see that there is an improvement in the cost function value of the 

smoothed plans relative to the baseline plan when evaluated on point sampling A.  This 

suggests that there is a dosimetric robustness observed to point sampling when using 

the smoothing costlets. 

Figure VII-5. DVHs for the PIMV plans from all point samplings evaluated on 
point sampling A. 
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VII.A.1.2.  Point Subsampling 
A possible limitation of accuracy in IMRT planning is the potential undersampling of 

regions of interest.  The number of discrete points that can be used in the optimization 

process is constrained by memory limits and the number of beamlets in a plan.  A larger 

number of points can also significantly slow the optimization process.  Both of these 

issues can lead to the undersampling of the points in regions of interest.  We 

demonstrated in Chapter II that this undersampling can result in higher plan modulation 

and degrade the dosimetric plan quality.  This section will analyze whether plans 

optimized with the PIMV and ADS penalties are more robust to undersampling than 

unsmoothed IMRT plans in terms of both beam modulation and dosimetric quality.  To 

test this, the point sampling in the phantom in Figure VII-1 was successively reduced by 

factors of 2, 3, 4 and 5 and optimized using the same four methods given in Section 

VII.A.1.1.  To determine the degradation in plan quality as a result of undersampling, the 

“optimal” beams from each subsampled plan are analyzed using the full sample of 

points.  The changes in the DVHs and total cost value are compared between plans with 

and without smoothing.  The similarity of the optimized beams at each point sampling 

using the same modulation penalty are compared using the correlation coefficient 

relative to the fully sampled plan.  

 To ensure that the smoothing costlets weights chosen do not significantly affect 

the plan quality and bias the robustness results, the DVHs for the fully sampled plan and 
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Figure VII-6. The mean cost (and σ) between plans optimized using 4 different 
techniques on random point sampling instances B-E and then evaluated on the 
point sampling of A.  This would represent the cost of B-E if A were the true 
geometry. 



217 

each of the smoothed plans are shown in Figure VII-7.  These DVHs are very similar, 

showing that a conservative weight was chosen for the smoothing costlets inside the 

cost function.  This weight was held constant throughout each of the subsamplings, and 

similar DVH comparisons were observed in all cases. 

 The results of this study show that the use of the smoothing costlets makes the 

IMRT plan more robust to undersampling, both in terms of beam modulation and 

dosimetric quality.  Figure VII-8 shows the average correlation coefficient between the 

optimal beams from each of the subsampled plans relative to fully sampled plan for each 

of the 4 techniques.  The baseline plan with no smoothing shows a more significant 

decrease in beam correlation as the subsampling increases, while the correlation 

between the smoothed beams is higher and decreases much more slowly as the 

subsampling increases.  There is no distinct advantage in any one of the smoothing 

costlets.   

The fact that the beams are more stable as a function of the subsampling also 

results in less plan quality degradation when the optimization is performed on a reduced 

set of points.  To demonstrate this, we evaluated the subsampled beamlet intensities 

using the fully sample of points to determine what the true cost function value would be 

Figure VII-7. The DVHs for the phantom case when optimized with the full point 
sampling for all smoothing techniques compared to the baseline plan.  This is shown 
to verify that the choice of the smoothing costlet weights for this comparison was 
conservative and resulted in equivalent smoothing for each of the cases. 
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versus the perceived optimal value obtained with the reduced number of optimization 

points.  Figure VII-9 shows the difference between the true and perceived optimal cost 

function values as a function of subsampling for each of the techniques.  The cost 

difference is plotted on a log scale, and an exponential curve was fit to each of the 

datasets.  The fits were all excellent, with R2 values of 0.99.  The baseline cost 

degradation is not only higher, but it also increases at a higher pace.  This can be seen 

by the exponential coefficient b, which is displayed in the lower right of the figure.  The 

behavior of the degradation in plan cost as a function of subsampling was very similar 

for each of the smoothing costlets, with a slight advantage when using the ADS costlets.  

This is likely due to the fact that the PIMV costlet results in more uniform beams, which 

smooth out the intensity gradients in the field, resulting in the possibility of additional 

dose going to the normal structures. 

 

  

 

 

 

Figure VII-8. The average correlation coefficient between the optimal beams 
from each of the subsampled plans relative to fully sampled plan for each of the
4 techniques.  The standard deviation of the correlation coefficient for each of 
the 5 beams is also shown. 
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VII.A.2.  Optimization Efficiency 
It has been observed by several authors that the use of a smoothing filter during 

optimization can reduce the number of iterations required for optimization1,2.  Alber et al. 

suggests that this may be a by-product of the solution space becoming steeper near 

convergence with the addition of a modulation penalty in the objective function1.  We 

have made similar observations. The purpose of this section is to compare the 

optimization efficiency of standard IMRT with IMRT including several of the modulation 

penalties that we have developed. 

 

VII.A.2.1  Methods 
To determine the improvement in optimization efficiency that results from the use of a 

modulation penalty in the cost function, three clinical examples were optimized with and 

without modulation penalties, and the number of iterations required for convergence of 

the cost function were recorded.  Both the quadratic plan intensity map variation (PIMVq) 

penalty and adaptive diffusion smoothing (ADS) penalty with the cost function gradient 

Figure VII-9. The difference in the true and perceived optimal cost function 
values as a function of subsampling for each of the techniques.  Exponential 
fits to the data are shown in the lower right. 
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diffusion coefficients were employed.  Since the convergence time may also be a factor 

of the modulation penalty weight, the optimizations were run with increasing weights of 

the two penalties.   

 Data from three patients previously treated for brain, prostate, and head/neck 

cancer were used for this study.  Point sampling density was as high as possible within 

the memory constraints of the software.  The cost functions used closely approximate 

the current clinical treatment planning directives at the University of Michigan for each 

treatment site.  The brain case consisted of 5 non-axial beams (originally placed by a 

dosimetrist) with 1 x 1 cm2 beamlets.  The prostate and head/neck cases consisted of 7 

axial beams each.  The prostate case was planned with 0.5 x 0.5 cm2 beamlets and the 

head/neck case was planned with 1 x 1 cm2 beamlets, due to the size of the target 

volumes.   

 The optimization search algorithm employed was the quasi-Newton method and 

the convergence parameters were set to zero to prevent the risk of premature 

termination of the optimization (see Chapter II, Section II.B.3.1).   

 

VII.A.2.2. Results and Discussion 
 The use of the smoothing costlets during optimization resulted in quicker 

optimization time, with fewer iterations of the quasi-Newton algorithm in all but one 

instance.  In the brain, when applying the ADS-Gradient penalty at a low weighting 

factor, the time was slightly increased from the baseline optimization.  This was likely 

due to the increased time required to calculate the diffusion-smoothed beam and 

gradients.  However, we note that the code was not optimized for speed, and therefore 

this disparity could be lessened or removed.  Also, traffic on the network as well as 

individual computer differences could play a factor in the time calculations. 

 Figure VII-10 shows the number of iterations to full convergence, as well as total 

optimization time results for each of the patients.  The savings in both time and iterations 

increases with increasing plan complexity, and the PIMV penalty showed a clear 

advantage in both categories in all cases.  In fact, the PIMV penalty resulted in an 80 % 

reduction in the number of iterations required to optimize all patients when using the 

higher weighting factor.  The ADS penalty performed almost equally well in the prostate 

although the PIMV penalty still had an advantage in the time factor.  However, as we 

mentioned, the ADS code is not currently optimized for speed.  Because of the fact that 

the PIMV plans are more uniform, we would expect them to converge in fewer iterations 
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than the ADS plans.  However, the disproportionate increase in time per iteration in the 

ADS plans may be reduced with code improvements. 

 To demonstrate the conservative and clinically acceptable weighting factors that 

were applied, each of the optimized prostate case DVHs are shown in Figure VII-11.  

Each structure is nearly identical.  However, the ADS-Gradient penalty has a slight 

advantage in providing an MU reduction of 47 % compared to 39 % for the PIMV case.  

The MU reductions in the brain and head/neck are similar for both smoothing costlets.  

There is a general trend for the ADS plans to be smoother overall with higher (but very 

smooth) intensity gradients across the field.  The PIMV beams are generally more 

uniform, but with more “noise” in the modulation patterns.  These features and more 

delivery efficiency comparisons are demonstrated in Chapters V and VI.   

Figure VII-10. The time and number of iterations required for full convergence in 
both optimization techniques as a function of the total cost function value (not 
including the smoothing costlet penalties) for the (a) brain, (b) prostate, and (c) 
head/neck studies.  The leftmost datapoint in all cases represents the baseline 
plan, or a smoothing penalty weight of zero.  Note the two scales. 
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 The main point and conclusion of this section is that the addition of a smoothing 

penalty does not make the optimization problem more difficult or costly to solve.  

Instead, this drives the optimization problem to the cost function minima with fewer 

iterations and less time.  Our results agree with the work of other authors, suggesting 

that the addition of modulation penalties can increase the steepness of the cost function 

near the minimum and result in more efficient optimization1,2.  The time savings in the 

prostate and head/neck was significant and could likely be improved further with 

optimization of the smoothing costlet code implementation. 

 

VII.B. Delivery Accuracy and Efficiency  
 
VII.B.1.  Motivation 
Chapter II reviewed many of the consequences of highly complex IMRT fields.  One of 

these concerns was the fact that complexity often leads to lengthy and inefficient 

treatment deliveries that are susceptible to delivery errors and artifacts, which are 

Figure VII-11. DVHs (for all of the techniques in the prostate cases) demonstrate 
the clinical acceptability of the weighting factors chosen.  The different trials 
(PIMV1 and 2, ADS-G1 and 2) are relative indicators of the weighting factors. 
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exacerbated when using the high dose rates that are usually necessary for acceptable 

treatment times for complex cases3.  These issues complicate quality assurance 

procedures and can create significant discrepancies between the planned and delivered 

dose distributions.  Investigation of these issues (and others) motivated the work in the 

dissertation, which aims to control beam complexity while preserving the advancements 

seen with IMRT.  We have alluded to the fact that smoother beams will make delivery 

sequences more accurate and more efficient, and the purpose of this section is to 

experimentally verify the impact of one of our modulation penalties, the ADS penalty, on 

the delivery aspects of IMRT.  Study of this issue includes performing and analyzing ion 

chamber and film measurements for several cases that have been planned with 

standard beamlet optimization and then comparing the results with those for plans 

optimized with an ADS penalty included in the cost function. 

 

VII.B.2.  Methods 
The adaptive diffusion smoothing penalty is described in Chapter V.  Each of the ADS 

plans discussed in this section uses the cost function gradient-based diffusion 

coefficients, which are also discussed in Chapter V.   

 To experimentally verify the delivery aspects of the ADS beams, several 

phantom and clinical examples (brain, prostate and head/neck) were optimized with and 

without the ADS penalty.  All plans included a baseline cost function, which was applied 

for standard beamlet optimization.  Each plan was then reoptimized twice, using the 

ADS penalty.  In the first ADS plan, called “ADS-Equivalent”, the achieved objectives 

from the standard IMRT were converted to constraints for the plan reoptimization.  This 

method ensured that the ADS penalty was not allowed to make tradeoffs with any of the 

baseline plan objectives.  These plans represent the amount of the smoothing that can 

be done without any sacrifice to the plan objectives.  In the second ADS plan, called 

“ADS-Relaxed”, the plan objectives were relaxed, based on their importance in the plan.  

In most cases, the relaxation included a 2 Gy relaxation in the mean normal tissue doses 

(as long as a mean dose objective was not violated) and a 2 Gy relaxation in the target 

maximum dose.  These concessions were chosen to be clinically realistic (and even 

conservative) sacrifices for decreases in plan MU and overall beam smoothing. 

 All plans in this study were optimized using UMOpt, and beamlet dose 

calculations were performed using a convolution/superposition algorithm based on work 

by  Mackie  et al.4.   Optimized  plans  were  then  sequenced for step and shoot delivery  
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Relaxed
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Figure VII-12.  (a) Geometry, (b) DVHs, and (c) intensity distributions for Standard 
vs. ADS-Equivalent and ADS-Relaxed IMRT plans in the 3-field phantom case. 

Table VII-2.  Beam area outside +/- 5 cGy agreement between calculations and 
film measurements 

Site Technique Percentage 
Phantom 1 Standard IMRT 17.0% 

 ADS-Equivalent 13.2% 
  ADS-Relaxed 12.3% 

Phantom 2 Standard IMRT 16.9% 
 ADS-Equivalent 10.0% 
 ADS-Relaxed 11.2% 

Prostate Standard IMRT 10.8% 
 ADS-Equivalent 6.7% 
  ADS-Relaxed 6.8% 

Head/Neck Standard IMRT 3.7% 
  ADS-Equivalent 1.8% 
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using a leaf sequencer based on the method published by Bortfeld et al.5  It should be 

noted that the sequencing algorithm is designed to agree with the intended intensity 

pattern to a 1 % threshold and does not aim to reduce delivery segments or delivery time 

by sacrificing this agreement.  

 To remove any effects due to inhomogeneities, each of the plans was transferred 

to a 30 x 30 x 30 cm3 solid water geometry and recalculated for both ion chamber and 

film measurements.  The high resolution convolution/superposition calculations were 

based on a 1 mm x 1 mm grid and then interpolated to a 2 mm x 2 mm grid for output 

and analysis.  A 0.6 cc ion chamber was used to measure the composite plan dose and 

verify the absolute dose delivered to the ion chamber volume. To verify the individual 

IMRT fields, film measurements were performed with either Kodak XV or Kodak EDR 

film (depending on the maximum dose observed in each plan) in the solid water 

phantom.  Film measurements were performed at 5 cm depth and 95 cm SSD with the 

gantry fixed perpendicular to the phantom for all fields.  All plans used 6 MV photons 

with a dose rate of 600 MU/min (our clinical standard).  Dose calibration curve films were 

exposed at the time of measurements.  All films were processed and then digitized using 

a laser film digitizer.  Film analysis was performed in IGOR Pro software with automatic 

registration capabilities.  Differences between calculations and measurements were 

analyzed by dose difference displays, isodose contours, and the beam area falling 

outside a +/- 5 cGy agreement criteria.  This was chosen to be consistent throughout all 

plans, since the maximum doses varied between techniques for the same case.  

Because of the known unreliability of film measurements in low-dose regions (due to the 

over-response of film to low energy photons), and the considerable low-dose noise 

present in EDR film, data points below 10 cGy and 5 cGy were excluded from the 

analysis for EDR and XV film, respectively.   

  In addition to the measurements, we also saved dynamic MLC log (Dynalog) files 

 from the treatment deliveries for future examination.  A Dynalog file is a record of the 

actual MLC delivery details recorded at every 0.05 s by the MLC controller of the 

treatment machine. The files contain information on the intended and actual leaf 

positions and whether the beam is on or off. 
 

VII.B.3.  Results 
Five cases (two phantoms and brain, prostate and head/neck clinical examples) were 

optimized to generate standard IMRT, ADS-Equivalent, and ADS-Relaxed plans (ADS-
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Relaxed plans are not presented for head/neck since many limits were already reached 

by the standard plan).  The geometry and plan objectives and dose-volume histograms 

for the 3-field phantom case are shown in Figure VII-12(a) and (b).  The DVHs 

demonstrate that the Standard and ADS-Equivalent plans are of similar quality, while the 

ADS-Relaxed plan made only slight sacrifices in the overall normal tissue dose.  Figure 

VII-12(c) shows each of the optimized beams and illustrates the reduction in plan 

complexity that occurs with the use of the ADS penalty.  There is an overall reduction in 

modulation while preserving the important gradients at the field edges and in the regions 

that overlap with normal structures.   

 Film measurements were compared with high resolution convolution calculations 

in each of the cases.  Dose difference displays consistently demonstrated that the ADS 

plans agreed better to calculations than the standard IMRT plans.  The percentage of 

beam area falling outside the +/- 5 cGy criteria for all cases is shown in Table VII-2.  The 

Figure VII-13. Dose difference displays (calculations – film) for the 3 field phantom 
case for standard IMRT (top row), ADS-Equivalent (middle row), and ADS-Relaxed 
(bottom row) plans.  Absolute dose difference examples are given by the arrows. 
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brain case was exccluded because of substantial noise in the EDR film.   

 Figure 13 shows the dose difference display for the 3-fld phantom as calculation 

– film.  The noise in the lower dose regions of the display is attributed to the noise 

present in the EDR film measurements.  The reduction in tongue-and-groove effect as 

well as an overall improvement in the agreement is noted as we go from the standard 

IMRT plan in the top row to the ADS-Relaxed plan in the bottom row.   
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Figure VII-14.  Prostate example:  Top: DVHs (Standard IMRT solid, ADS-Equivalent 
dashed, ADS-Relaxed dotted) and Bottom: IMRT intensity maps and dose difference 
displays for Standard IMRT (left), ADS-Equivalent (middle), and ADS-Relaxed (right). 
Differences are calculations – film and isodose contours for both are shown as 
overlays in cGy along with example absolute dose differences (arrows). 
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Figure VII-15. Head/neck example: Top: DVHs (Standard IMRT solid, ADS-
Equivalent dashed) and Bottom: Planned IMRT intensity maps and dose difference 
displays (calculations – film) for Standard IMRT (left) and ADS-Equivalent (right).
Examples of absolute dose differences are shown by the arrows. 



229 

 Figures VII-14 and 15 show the DVHs, a typical IMRT beam intensity distribution, 

and   dose   difference   displays   for   the   clinical  prostate  and  head/neck  examples,  

respectively.  The cost function employed in these cases and the brain case was based 

on in-house IMRT protocols.  These dose difference displays demonstrate the improved 

qualitative agreement between calculations and film in the clinical body sites.  It is 

apparent that there is a noticeable decrease in the amount of tongue-and-groove 

underdosage that occurred in the ADS plans compared to the standard IMRT plans.  

This may make it unnecessary to recalculate and evaluate the beams before delivery, 

since the ADS plans agree well with the convolution calculations used inside the 

optimization process.  

 Ion chamber measurements taken of the composite plans verified that the 

absolute dose of each plan was in an acceptable range of +/- 2 cGy.  Dose differences 

observed from ion chamber measurements between standard and ADS IMRT plans 

were thus all less than 2 cGy and not considered clinically significant.  In addition, the 

composite dose calculations are not expected to be perfectly accurate because the 

positioning of the sensitive volume of the ion chamber in exactly the same position in the 

solid water phantom that was chosen in the calculation is very difficult.  Therefore, these 

measurements were used as a verification tool instead of a comparison tool. 

 The relative time and MU required for delivery of all ADS cases is shown in 

Figure VII-16.  We note that the leaf sequencer used in this work was not optimized to 

reduce delivery time.   
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ADS-Relaxed plans relative to standard IMRT. 
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VII.B.4.  Conclusions 
The ADS penalty can be used inside the IMRT optimization cost function to promote 

smoothing that does not affect the dosimetric quality of the plan.  The resulting IMRT 

beams are smoother and can be delivered with fewer MU and in less time than standard 

IMRT plans.  Dose differences between convolution calculations and film demonstrate 

that the smoother ADS plans are less susceptible to tongue-and-groove underdosage as 

well as to small areas of disagreement in the planned and delivered fields caused by 

large gradients in neighboring beamlets.  This improved agreement with ADS plans may 

make it unnecessary to recalculate IMRT plans after optimization to evaluate the dose 

degradation that occurs during delivery.  Future projects in this area could include 

analysis of the Dynalog files saved from delivery and comparisons with Monte Carlo 

simulations that accurately account for the transport through the MLC and patient 

geometry. 

 

VII.C.  Sensitivity to Geometric Uncertainty  
We suggested in Chapter II that smoother IMRT fields may be less sensitive to 

geometric setup errors than highly complex fields.  Schwarz et al. have shown that plans 

including high gradient fluence areas are more sensitive to geometric uncertainties than 

those with fairly uniform intensities6, and Duan et al. have published that the dosimetric 

error observed in IMRT increases in beams with high intensity gradients versus those 

dominated by more low intensity gradients across the field.  In addition, Tomé and 

Fowler have shown that underdosing even small volumes of aggressive tumors can 

significantly degrade the probability of tumor control7.  The purpose of this section is to 

test the PIMV and ADS penalties to determine whether they improve the geometric 

robustness of the IMRT plans.  We examine both tumor and normal tissue dose-base 

metrics as well as the radiobiologic metric, equivalent uniform dose (EUD). 

 
VII.C.1. Methods 
Intensity modulated radiation therapy is a very conformal treatment modality that 

benefits greatly from precise daily localization of the patient in the correct treatment 

position.  This localization is performed daily at our institution for IMRT patients through 

portal imaging and matching with the reference geometry.  Because of this daily setup 

correction method, the main component of setup error that must be evaluated in our 

IMRT patients is the residual error remaining after daily imaging and correction.  To 
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Figure VII-17.  The sampled residual setup errors (σ) in each direction for 10 
fractions to be simulated with the phantom case. 

1 2 3 4 5 6 7 8 9 10
-3

-2

-1

0

1

2

3

Fraction

S
et

up
 E

rr
or

 [m
m

]

 

 

LR
PA
IS

analyze the effect of setup errors of this magnitude, we begin with the modified IMRT 

benchmark phantom in Figure VII-1.  This case was optimized using the cost function 

shown in Table VII-1, and then 10 residual setup errors were simulated.  We have 

chosen to model residual prostate motion in this study since prostate is a common IMRT 

treatment site, and the residual setup error for prostate treatments has been studied at 

the University of Michigan.  Litzenberg et al. have quoted that the average residual setup 

error (σ) over all fractions for four patients treated in the supine position (with daily 

imaging and correction) was 1.5 mm in the left-right direction, 1.6 mm in the anterior-

posterior direction, and 1.2 mm in the inferior-superior direction8.  To simulate errors of 

this magnitude for the phantom, we took 10 random samples of the (LR, AP, IS) residual 

setup error from normal distributions with mean = 0 mm and the given σ for each 

direction.  The resulting errors for the 10 samples are shown in Figure VII-17.  Next, the 

IMRT plan isocenter was shifted according to the simulated setup error for each of the 

10 fractions and re-calculated so that the dosimetric effect of any changes in distance to 

the patient or patient heterogeneities could be taken into account by the dose 

calculation.   

 The unshifted geometry was used to plan the IMRT treatment using the baseline 

cost function in Table VII-1.  The dosimetric results achieved in the baseline optimization 
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were then constrained, and the PIMV and ADS (both Uniform and Gradient) penalities 

were minimized.  In addition to these dosimetrically equivalent plans, the ADS-Gradient 

penalty was applied during the initial optimization stage at two different weights to 

determine the effect of the increased amount of smoothing on plan robustness.  The 

weights were conservative, so as to not negatively affect the objectives.   

 Finally, to determine the geometric sensitivity of each of the plans, the optimized 

beamlet patterns were evaluated on each of the 10 individual fraction geometries.  The 

interfraction changes in the plan quality as well as the cumulative changes (taking into 

account all 10 fractions) in plan quality in the baseline versus smoothed plans were 

recorded and analyzed to determine whether the smoothed plans showed any 

advantage in robustness to the residual setup errors.   

 
VII.C.2. Results and Discussion 
The dose-volume histograms and beams for each of the plans that were used in this 

analysis of geometric sensitivity are shown in Figure VII-18.  As we showed before, the 

DVHs are very similar, with slight changes in the OAR1 shape, and the beams are 

considerably noisier when using the baseline cost function only versus including a 

modulation penalty.   

 The effect of the simulated setup errors on the dosimetric quality of the plans in 

Figure VII-18 was evaluated in terms of dose differences resulting from individual 

fractions as well as the cumulative dose differences resulting from all of the fractions.  As 

one would expect, the size and number of interfraction differences was larger than the 

cumulative dose differences.  The percentage of points with greater than 2 Gy dose 

differences in the individual fractions and the percentage of points with 2 Gy or more 

cumulative dose differences are shown in Table VII-3.  The percentage of cumulative 

errors greater than 2 Gy was extremely small.  The percentages in the OAR1 and OAR2 

represent under 20 total points ( < 1 % of the points) in each structure.  The interfraction 

differences were more numerous, with a trend toward a decreasing number of 

differences greater than 2 Gy when the smoothing costlets were used.   
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Figure VII-18.  The DVHs and beams for each of the techniques used to study the 
impact of smoothing costlets on the robustness of the plan to geometric residual 
setup errors. 
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 Another observation is that the actual dose differences were of greater 

magnitude in the baseline plan for both interfraction and cumulative errors.  As an 

example, the PTV point dose differences are all plotted in Figure VII-19 for the Baseline 

plan (blue stars) and the ADS-Gradient plans (red circles).  The ADS-Equivalent plan is 

shown in (a), the ADS-Gradient Weighted1 plan in shown in (b) and the ADS-gradient 

Weighted2 plan is shown in (c) for fraction 4.  The distribution of the dose errors in the 

ADS-Gradient plans becomes narrow as the plans are more smoothed.  This can seen 

as the red markers become more focused around zero from a to c.  There are also fewer 

outliers with high point dose differences in for the ADS plans as the smoothing increases 

from (a) to (c).  This was typical behavior in all structures and fractions.  Fraction 4, 

shown in Figure VII-19 was average in terms of the magnitude of errors.  In another 

example, the histograms of cumulative errors for the PTV, OAR1, and OAR2 are shown 

in Figure VII-20  for baseline plan (blue) and the ADS-Gradient(Weighted2) plan (red).  

The errors shown here represent the best case scenario if the residual setup error was 

the only source of error in the plan.  However, delivery errors and breathing motion will 

likely increase the dose differences, and both of these have been shown to be larger for 

more complex fields.   

 It is worth noting that the main source of error in this study was the actual shift in 

the dose distribution due to the residual error.  The use of smoothing costlets does not 

remove this error, but it does reduce the magnitude of some of the point dose errors that 

result.  To show this overall effect, we have plotted the equivalent uniform dose (EUD) 

for all of the cases in Figure VII-21.  The trend in EUD shows that the small residual 

errors do not have a large effect on the PTV, which was modeled to be a fairly resistant 

tumor at a = -15.  However, the change in EUD in the most out of field structure, OAR2, 

was significant in several of the fractions.  The use of smoothing did not have a large 

Table VII-3. Percentage of points with > 2 Gy dose differences

PTV OAR1 OAR2 PTV OAR1 OAR2
Baseline 6.4% 14.1% 21.0% 0.67% 1.4% 4.8%
PIMV (Equivalent) 5.6% 13.2% 21.9% 0.41% 0.34% 3.0%
ADS-U (Equivalent) 5.3% 11.9% 22.0% 0.23% 0.34% 1.8%
ADS_G (Equivalent) 5.3% 12.2% 21.5% 0.23% 0.34% 2.1%
ADS_G (Weighted1) 4.5% 6.4% 20.1% 0.10% 0.00% 2.1%
ADS_G (Weighted2) 4.0% 5.6% 19.3% 0.00% 0.00% 1.1%

Interfraction Cumulative
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impact on EUD compared to the baseline plan in this example, although we have noted 

much larger impact on EUD with more targeted smoothing of radioresistant tumor sub-

volumes (discussed in Chapter VI). 

 Several preliminary conclusions can be drawn from this study on the potential 

impact of smoothing on geometric sensitivity.  First, the biggest source of dosimetric 

error seen here was due to the shift in isocenter.  From there, we observed subtle 

differences in the dose discrepancies resulting from setup error between the baseline 

Figure VII-19.  PTV point dose differences in the Baseline plan 
(blue) and the ADS-Gradient (red) (a) Equivalent plan (b) 
Weighted1 plan and (c) Weighted2 plan. 

(a)

(b)

(c)
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IMRT plan and plans that included smoothing costlets.  All plans had similar dosimetric 

quality, although the final two ADS-Gradient plans had less modulation.  These fields 

exhibited smaller percentages of fractional and cumulative point dose errors that were 

greater than 2 Gy.  The errors were also of smaller magnitude as the smoothing 

increased.  There did not appear to be an increase in dose to the central cord-like organ 

at risk as a result of the smoothing.   

 The results shown here relate only to residual setup errors.  A good IMRT protocol 

should apply daily positioning to correct for errors, and therefore it would be an 

exaggeration of the effect of setup error to include simulation of errors greater than the 

residual setup error after correction.  However, the results here are also a best-case 

scenario of the dose differences that occur.  Intrafraction organ motion, breathing 

Figure VII-20.  Histograms of cumulative point dose differences for the (a) PTV, 
(b) OAR1, and (c) OAR2 are shown in for baseline plan (blue) and the ADS-
Gradient, Weighted2 plan (red). 
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motion, and dose delivery errors will also affect the dose errors.  Both of these issues 

have been shown to result in larger dose differences in complex fields.  These 

reductions in individual and cumulative point dose differences could have a positive 

impact on the planning of adaptive radiation therapy.  The cumulative improvements in 

the dose agreement between planned and delivered fields due to the impact of 

smoothing should make it easier to calculate the dose-to-date with confidence, so that 

appropriate and accurate adaptations can be made to the plan. 

 

VII.D.  Potential Impact on Adaptive Radiotherapy  
Adaptive radiation therapy is a broad term that can apply to any radiotherapy technique 

that aims to adapt the original treatment plan or setup to changing information about the 

patient or even the patient population.  Some common areas of adaptive radiotherapy 

research and clinical implementation include (i) protocols to adapt the patient positioning 

according to daily imaging (ii) adapting the clinical target volume margins to account for 

change setup errors, (iii) adapting the patient’s treatment plan to account for dose errors 

Figure VII-21.  Generalized equivalent uniform dose for all structures and 
techniques as evaluated in each simulated fraction.  The horizontal lines 
approximate the gEUD values in the original plan. 
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or prescription changes resulting from new information obtained during the treatment 

course.  The previous section demonstrated that standard and smoothed IMRT beams 

are both fairly robust to small-magnitude residual geometric setup errors, but that fewer 

and smaller dose discrepancies occurred in the smoother plans.  Section VII.B. also 

showed that smoother plans are more accurate from a delivery standpoint, making it less 

necessary to account for delivery errors though re-planning.  Both of these advantages 

of smoothed fields should make the dose-to-date calculation for adaptive therapy more 

accurate due to less uncertainty between the planned, sequenced, and delivered dose 

distributions.  The focus of this section is to evaluate the potential impact that modulation 

penalties may have on the re-planning of IMRT treatments to account an adaptive dose 

escalation protocol in a head and neck example. 

 
VII.D.1.  Methods 
We simulated a three stage adaptive treatment course in a simple head and neck patient 

for this preliminary study.  The three stages are highlighted in Figure VII-22, showing the 

dose prescription and simulated geometry changes in each stage.  The scenario 

preserves the volume of the patient so weight loss and other possible deformations are 

not modeled.  In the first stage, we plan a case to the PTV, and all objectives are met 

except for the oral cavity mean dose objective.  Halfway through treatment, the PTV 

volume has shrunk so it is decided to escalate dose to the new volume.  We allow a 5 % 

volume underdosing in the PTV1-PTV2 volume to try to bring down the mean dose to 

the oral cavity and allow dose escalation.  The preservation of the cord and parotid dose 

and the dose escalation are higher priorities than the oral cavity.  Finally, with 25 % of 

the treatment remaining, the PTV has shrunk again.  We continue dose escalation to 

PTV2 and PTV3, but allow a 20 % volume underdosing in PTV1-PTV2 in hopes of 

higher dose escalation without degrading the achieved objectives.  To simulate the effect 

of the actual treatment, each stage was recalculated using a small systematic setup 

error and the actual MLC delivery files were used to simulate delivery artifacts, such as 

tongue-and-groove effect, that are not modeled in the beamlet dose calculations.  

Therefore, at the subsequent planning stage, any errors that would degrade the 

objectives would have to be corrected before dose escalation.  The simulated error 

magnitudes in the left-right, anterior-posterior, and inferior-superior directions are shown 

in the parenthesis in Figure VII-22.  To see if there is any advantage to using the ADS-

Gradient penalty during each optimization stage, we planned a baseline treatment 
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course and an ADS treatment course.  Both cases had the same simulated errors in 

each stage.    

 
VII.D.2. Results 
The use of ADS during the optimization of the simulated adaptive dose escalation case 

did not appear to have a significant effect on the ability to safely escalate dose to the 

tumor, although the dose homogeneity in the escalated volume was better.  Figure VII-

23 shows the final simulated dose volume histogram after the simulation of each of the 3 

stages of treatment for both the baseline and ADS treatment courses.  There was a 

slight increase in mean dose to the spinal cord, although this could have been prevented 

by constraining the cord dose in the stage 1 optimization.  The remaining structures all 

have very similar DVHs, showing that ADS did not interfere with meeting any of the plan 

objectives.  Similar results were seen in Stage 1 and Stage 2.  The biggest advantage of 

including the ADS penalty during the optimization of an adaptive protocol is the 

Figure VII-22.  The simulated three stage dose escalation adaptive plan for a 
head/neck case. 
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• PTV1 Dose 60 Gy (-1% / +7%)

• PTV has shrunk

• Cord and Parotid objectives 
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• Allow 5 % volume underdose 
in PTV1-PTV2 to try to achieve 
oral cavity mean dose
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as possible without exceeding 
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• Cord and Parotid objectives 
must be preserved

• Allow 20 % volume underdose 
in PTV1-PTV2 to try to achieve 
oral cavity mean dose

• Escalate dose to PTV2 and 
PTV3 as much as possible 
without exceeding previously 
obtained objectives
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smoothing that occurs in the later stages of planning.  In each stage, we observed an 

increase in the overall modulation and MU of the plan.   

 Figure VII-24 shows the MU required per fraction for each stage of the 

optimization for both treatment courses, and Figure VII-25 shows the optimized beams 

for each stage with and without ADS.  The large increase in modulation at the later 

stages is likely a result of the plans having to compensate for the simulated setup and 
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Figure VII-24.  The MU required per fraction for each stage of the adaptive 
dose escalation simulation for the Baseline and ADS treatment courses. 

Figure VII-23.  Final composite dose-volume histograms for the 
Baseline and ADS dose escalation treatment courses. 
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delivery errors to preserve plan quality.  These large fluctuations that occur in the later 

stages of the optimization process could be very detrimental to a real adaptive protocol.  

We have shown earlier in this chapter that highly complex fields have a higher chance of 

failing quality assurance which could interrupt treatment and cause significant problems 

in the clinic if the patient had to be switch to a non-IMRT plan during the middle of 

therapy.   

 This adaptive therapy simulation has shown that IMRT beams may become 

highly complex during the later stages of an adaptive protocol due to the combination of 

the dose prescription changes and the compensation for dosimetric errors due to setup 

Stage 1 
Baseline

Stage 1 
ADS

Stage 2 
Baseline

Stage 2 
ADS

Stage 3 
Baseline

Stage 3 
ADS

Figure VII-25.  Optimal IMRT beams as each stage in the adaptive dose 
escalation example for the Baseline and ADS treatment courses. 
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error and delivery.  Many of the positive aspects of smoothing that have been shown in 

the chapter may potentially improve the efficacy of adaptive therapy protocols.  In this 

example, we showed that ADS could be used during each optimization stage to promote 

smoothness without significantly affecting the dosimetric quality of the adaptive plan.  

The beamlet patterns in each treatment stage were smoother and required fewer MU 

than the baseline beamlet patterns.  We note that the baseline treatment course at later 

stages became highly modulated, which could have negative affect on treatment delivery 

and quality assurance.    

 
VII.D.3. Discussion 
This section has demonstrated that modulation penalties could have a positive impact on 

the treatment planning of adaptive radiation therapy.  In the multi-stage dose escalation 

study that was investigated, the use of ADS during each stage results in significant 

decreases in modulation and MU.  In later stages, this smoothing may result in a higher 

probability that the plan will pass IMRT QA.  This is due to the considerable modulation 

observed in the final IMRT planning stages, due to the need to preserve treatment 

planning objectives under setup errors and delivery artifacts.  The use of ADS did not 

impact the ability to meet the normal tissue objectives or the dose escalation goals.  

Future studies on the impact of modulation penalties in different types of adaptive 

therapy scenarios would be very useful to determine whether there are situations in 

which smoothing has a larger or smaller impact on the final result.   

 
VII.E.  Conclusions 

This chapter has investigated the potential clinical impact of using modulation 

penalties inside the IMRT planning objective function.  Previous chapters have 

demonstrated that modulation penalties can significantly smooth IMRT beams with 

negligible loss in plan quality.  This smoothing has resulted in a decrease in the number 

of monitor units required to a deliver IMRT plans that have been optimized with 

modulation penalties versus those optimized without modulation penalties.  In addition to 

this increase in delivery efficiency, we have also demonstrated that modulation penalties 

can have a positive impact on the treatment planning stage in terms of optimization time 

and robustness to point sampling effects.  Plans optimized with smoothing penalties 

required significantly fewer iterations and less time to optimize than standard IMRT 

plans.  This effect was most noticeable in the PIMV costlet, with a nearly 80 % reduction 
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in optimization time and iterations.  Both PIMV and ADS plans were also shown to be 

more robust to different random samplings of the regions of interest and to 

undersampling of the regions of interest.  The latter is an especially promising 

observation since many optimization plans are limited in the number of points that can 

be defined.   

Measurements of standard versus ADS IMRT plans demonstrated that smoother 

plans are more accurately delivered by the treatment machine.  Specifically, film 

measurements of ADS-optimized plans agreed better to dose calculations than the more 

modulated standard IMRT plans at the same levels of the dosimetric quality.  The ADS 

plans also exhibited fewer regions of tongue-and-groove underdosing. 

Plans optimized with modulation penalties were also shown to be slightly more 

robust to residual setup errors than standard IMRT plans, although the clinical 

significance of these differences would have to verified by more in-depth studies of 

geometric sensitivity for different treatment sites.  Still, our preliminary investigation has 

shown that smoother plans exhibit smaller and fewer point dose differences in the face 

of small residual setup errors.   

 Finally, an adaptive dose escalation example in head-and-neck cancer revealed 

that ADS smoothing may have a positive impact of the planning and delivery of adaptive 

radiation therapy.  Standard and ADS IMRT plans were able to produce similar 

dosimetric results in the multi-stage dose escalation example, but the ADS plans 

required much less modulation in each stage.  In the final stages, when the standard 

IMRT plans become exceedingly modulated, the use of the ADS may be very important 

to promote smoothing and ensure that plans can be delivery accurately and efficiently.  

Additional studies on different adaptive therapy scenarios and protocols may be useful to 

determine whether ADS could have a significant dosimetric impact on adaptive planning.   
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CHAPTER VIII. 
 

SUMMARY 
 

 
Cancer is a potentially deadly disease that affects millions of lives across the world.  

Radiation therapy is an integral part of treatment for many of those suffering from cancer 

because of its ability to precisely target tumor volumes while sparing as much normal 

tissue as possible.  Radiation therapy technology has grown considerably over the past 

several decades.  Precise targeting and delivery of radiation to the patient is possible 

with advanced volumetric imaging and radiation delivery techniques.  Inverse planned 

intensity modulated radiation therapy is a technique that allows an optimization algorithm 

to choose the radiation intensity profile that should be delivered from a variety of 

different beam directions to best meet the dose prescription goals of the treatment.  

These goals include the prescription dose for the tumor and dose limits for organs and 

normal tissue.  Inverse planned IMRT has the potential to create treatment plans that 

likely would not be possible with conventional planning techniques.  IMRT is expected to 

provide a benefit in many areas of cancer treatment—most notably in the treatment of 

prostate and head and neck cancer—although the advantages of this relatively new 

technology are still being investigated.   

 An aspect of IMRT that causes concern, however, is the high level of complexity 

observed in the beam intensity distributions.  Composed of small sub-beams, or 

beamlets, from each beam direction, the distribution of intensities can be highly non-

intuitive, with large fluctuations and apparently random noise.  This is a large departure 

from the uniform intensity beams used in conventional radiation therapy.  Because the 

increase in beam complexity in IMRT is so great compared to conformal radiation 

therapy, many investigators wonder whether the beamlet patterns created by inverse 

planning are truly necessary.   

 In order to investigate the overall value of these remarkably complex treatments 

in creating high quality radiation therapy plans versus the potentially negative impact of 
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treating patients with highly complex intensity patterns, this study of IMRT beam 

complexity and methods for its control was undertaken.  

 Chapter I contains a brief history of radiation therapy and an overview of the 

inverse planning process.  IMRT planning consists of (i) acquiring 3D imaging of the 

patient and outlining the important regions of interest (i.e. the tumor and organs) on the 

2D slices of imaging data (ii) creating a 3D representation of the regions of interest for 

the optimization system by placing discrete dose evaluation points throughout each of 

the regions, (iii) arranging beams around the patient and splitting each beam into a 

theoretical grid of beamlets, (iv) calculating the dose to the points from each of the unit 

intensity beamlets, (v) designing a cost function that consists of the treatment planning 

goals and assigns a penalty for not reaching the goals based on their importance, (vi) 

using an optimization algorithm to find the intensities of the beamlets that best minimize 

the total penalty or cost of the cost function, (vii) translating the intensity patterns into a 

set of instructions to the treatment machine so that it can deliver the intensities using the 

shaping capabilities of a multi-leaf collimator, and (viii) performing quality assurance and 

delivering the plan to the patient.  The end of Chapter I introduced the problem with 

IMRT beam complexity and discussed some of the previous work which has addressed 

this problem.    

 In order to appreciate the potentially negative consequences of IMRT beam 

complexity, Chapter II discusses in more detail the reasons why it is undesirable to treat 

patients with highly complex fields.  First of all, complex fields are very difficult to deliver 

accurately and efficiently by the treatment machine.  This delivery inefficiency requires 

the machine to be on for longer periods of time and results in extra radiation delivered to 

the patient from leakage.  It also prolongs the treatment time, which may reduce the 

probability of controlling some tumors.  The extra time and beam complexity combined 

can make IMRT treatments sensitive to patient setup error and organ motion.  These 

issues, along with the potential for delivery errors, can not only increase the discrepancy 

between the planned and delivered dose, but can also increase the uncertainty in 

predicting or calculating the delivered dose.  These potential disadvantages have led to 

efforts to try to identify some of the sources of IMRT beam complexity.   

 Several causes of beam complexity are reviewed in the second part of Chapter 

II.  Previous research has shown that IMRT problems can be highly degenerate, which 

can lead to a great deal of noise in the IMRT intensity patterns.  Other sources of 

additional beam complexity are the optimization algorithm and cost function definition.  



247 

Examples of these sources of beam complexity from published literature and the 

University of Michigan were given.  For example, it was shown that the use of a 

stochastic optimization algorithm can results in an addition of noise into the optimized 

beamlet patterns. It was also demonstrated that IMRT beamlet patterns are highly 

dependent on the goals of the treatment plan and the discrete point sampling of the 

regions of interest.  Undersampling the regions of interest can increase the field 

complexity as well as give a false representation of the difficulty of the plan.  In addition, 

the beamlet patterns are very sensitive to the particular point placement in regions of 

interest, even when they are properly sampled.  The main conclusions of Chapter II were 

that (i) there are a number of things that can be done to reduce beam complexity, such 

as using a deterministic optimization algorithm, starting the algorithm from zero beamlet 

intensities, and properly sampling the regions of interest, and (ii) much of the complexity 

observed in IMRT comes from the sensitivity of the cost function to the beamlet 

intensities and the fact that IMRT problems are degenerate.  This means that the cost 

function can be minimized by a variety of different beamlet patterns, and that some 

intervention should be taken to steer the optimization algorithm to the smoothest 

possible solution that does not affect the plan quality.   

 Approaches to minimize and control IMRT beam complexity were presented in 

Chapters III through V.  Chapter III introduced the use of the mathematical surfaces, as 

opposed to individual beamlets, to represent the IMRT beam.  This method was 

implemented as a way to reduce the degrees of freedom in the optimization problem 

while also promoting smooth and continuous beamlet patterns.  Details regarding the 

implementation of the infrastructure for basis function optimization into the University of 

Michigan’s optimization system were given.  Polynomial surface and composite 

Gaussian radial basis function sets were studied to represent the IMRT beams.  These 

studies were performed by optimizing the function coefficients or parameters instead of 

individual beamlet intensities.  The use of basis function optimization results in a 

considerable decrease in the number of optimization variables and was also shown to 

produce an increase in delivery efficiency.  This method was very promising for simple 

geometries that did not require the full degrees of freedom of high resolution beamlet 

optimization.  However, the method did cause an increase in the normal tissue dose and 

was not able to meet all of the planning objectives in complicated geometries.  These 

limitations may be overcome by the use of more numerous and more customized basis 

functions, and there is a great deal of future work that could be done in this area.  
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However, the limitations in complex cases suggested that a larger number of degrees of 

freedom were necessary to plan complicated IMRT cases.   

 Chapter IV described the investigation of two different procedures that could be 

applied during optimization to reduce beam complexity.  The first, which is simple and 

practical, is to not allow unconstrained intensity values in the optimization.  To do this, 

restrictions were placed on the maximum beamlet intensities allowed in each plan in an 

effort to remove the high intensity peaks that are often found in IMRT beams.  The 

second method was the use of a modulation penalty inside the cost function to promote 

smoothness.  The use of a modulation penalty inside the cost function, as opposed to 

smoothing after optimization, allows the effect of the smoothing to be taken into account 

according the dosimetric objectives.  Chapter IV demonstrated that maximum intensity 

limits in IMRT are very useful for improving delivery efficiency and removing the high 

intensity peaks from the IMRT fields.  In fact, this is a method that is now routinely used 

in clinical practice at the University of Michigan.  However, restricting the intensity too 

much can overly constrain the optimization system and prevent it from meeting the 

objectives.  In addition, maximum intensity limits usually resulted in an overall flattening 

of the IMRT fields, which was found to raise dose to the normal tissues.  Therefore, the 

use of two different types of modulation penalties in the cost function was also 

investigated.  The first penalty, a Savitzky-Golay filtering method, penalized the 

difference between the original IMRT beam and the beam after least squares filtering 

with either a 1D or 2D polynomial window.  When smoothing was performed in the 

direction of the MLC motion only, delivery efficiency was improved, but the beam was 

step-like and non-intuitive in the opposite direction.  Smoothing in 2D was superior in 

terms of overall smoothing and delivery efficiency.  However, both methods exhibited 

poor behavior as their importance was increased in the objective function.  This 

instability occurred because the filtered version of the beam was not always a smoother 

version of the beam, since the filtering process could introduce unwanted modulation 

into the field.  The second modulation penalty that was developed and tested penalized 

a measure of the overall field modulation called the plan intensity map variation (PIMV).  

Use of this penalty was superior to the other methods in terms of delivery efficiency and 

dosimetric metric quality.  Using high penalty weights resulted in an increase of dose to 

normal tissue but moderate weights resulted in an improvement in delivery efficiency 

while preserving plan quality. 
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 One of the reasons that high penalty weights could not be used in the modulation 

penalties in Chapter IV was the fact that these methods penalized all modulation in the 

field.  This meant that even the important intensity gradients, such as those between 

targets and normal tissues, were penalized.  This problem appeared to be the main 

limitation in smoothing IMRT fields.  Therefore, in Chapter V, a novel smoothing 

procedure that was developed from diffusion principles, called adaptive diffusion 

smoothing, was introduced.  This method uses spatially variant diffusion coefficients that 

are automatically defined for each beamlet to preferentially smooth the undesirable and 

unnecessary modulation in the field while preserving important and desirable areas of 

modulation.  By using the sensitivity of the cost function with respect to the beamlets to 

define the coefficients, IMRT fields could be optimally smoothed using a modulation 

penalty that penalized the difference between the original beam and diffusion smoothed 

beam.  This penalty differs from the Savitzky-Golay filter penalty because the diffusion 

smoothed beam is always a smoother version of the original beam and the important 

modulation is not penalized.  The ADS penalty was shown to be superior or equivalent to 

the PIMV penalty in all cases tested.   

 The potential of ADS is considerable, due to the ability to customize the diffusion 

coefficients for different purposes.  Chapter VI presented several applications of ADS, 

including the use of ADS to make controlled tradeoffs between the plan objectives and 

smoothing with the aid of a multi-criteria optimization method called lexicographic 

ordering (LO).  This method was also used to show the clinical impact that ADS 

smoothing could have on the treatment of breast cancer.  Reduction of leakage radiation 

involved in these IMRT treatments through ADS smoothing may reduce the potential for 

inducing secondary cancers in this young patient population. 

 Chapter VI also demonstrated that ADS could be used to promote smoothing 

over very critical tumor regions that could be susceptible to high risks from underdosing 

even small sub-volumes.  The use of specialized diffusion coefficients to penalize 

modulation over these critical areas allows for a clinically significant increase in tumor 

coverage in face of geometric uncertainties.   

 Finally, Chapter VII covered the potential clinical impact that smoothing could 

have on the IMRT planning and treatment process.  The use of the modulation penalties 

in the cost function was shown to make plans more robust to the point sampling effects 

that were discussed in Chapter II, as well as make the optimization process itself more 

efficient.  It was experimentally verified that IMRT cases that were planned with ADS 
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could be delivered more accurately than standard IMRT plans and showed better 

agreement with the dose calculations.  Fewer delivery artifacts were observed, and ADS 

plans showed fewer dose discrepancies that could cause failures in the IMRT plan 

quality assurance procedure.  Chapter VII also showed that plans optimized with 

modulation penalties show slightly fewer and smaller dose discrepancies after simulated 

residual setup errors.  All of these features will aid in the planning of adaptive therapy, 

which requires accurate calculation of the actual dose that has been delivered.  Chapter 

VII simulated a simple adaptive dose escalation protocol that demonstrated that beams 

can become highly complex without the use a smoothing penalty during adaptation.  

This new complexity occurs because the adapted plan must overcome the dose errors 

caused in earlier treatments as well as meet the goals for the updated dose prescription.  

Smoothing may have a very important place in adaptive therapy planning to ensure that 

plans are not so complex that they may fail IMRT quality assurance or cause significant 

delivery errors. 

 This dissertation has focused on the investigation and control of beamlet 

complexity in intensity modulated radiation therapy.  Previous research in this area has 

focused on leaf sequencing algorithms and non-optimal smoothing procedures inside 

and outside of the optimization loop.  In most cases, earlier smoothing methods have not 

been able to distinguish between desirable and undesirable modulation and the plan 

quality ultimately suffered as a result.  In this work several new methods that are able to 

reduce IMRT beam complexity without sacrificing plan quality were introduced.  The 

most advanced method, adaptive diffusion smoothing, can distinguish between desirable 

and undesirable modulation in the field by using the cost function sensitivity to each of 

the beamlets in the plan.  This method is unique and adaptable to variety of situations in 

radiation therapy planning.   

 Future work identified by this dissertation includes the development of more 

intelligent point sampling schemes in IMRT to reduce the effect that point sampling has 

on beam complexity.  The use of basis function optimization to investigate the use of 

larger, and more customized basis function sets that will be robust to a variety of 

different geometries is also a worthwhile area of research to reduce the number of 

optimization variables in IMRT.  Fewer variables result in much quicker optimization 

times with stochastic optimization methods, and therefore, in plans where significant 

local minima may be observed in the cost function, basis function optimization may have 
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an advantage over beamlet optimization with smoothing due to the reduction in the 

number of variables.   

 The further development of adaptive diffusion smoothing method for 

radiobiological targeting of both tumor and normal tissues may be very useful as more 

and more biological and functional imaging data are being used for input into IMRT dose 

prescriptions.  It may also be reasonable to use adaptive diffusion smoothing to make 

plans more robust to internal organ motion if the diffusion coefficients can be customized 

to predictable motion data, such as a breathing trace.  Adaptive diffusion smoothing itself 

could be applied to variety of different problems in IMRT that have not yet been studied 

due to the unique ability to customize the diffusion coefficients to achieve different 

clinical goals.  

 Intensity modulated radiation therapy is an important treatment modality in 

radiation oncology.  Its importance and usefulness will only increase as more high 

resolution imaging data is used to (i) prescribe heterogeneous dose distributions based 

on the local properties of the tumor and surrounding tissue and (ii) dynamically change 

the dose prescription to take into account feedback about radiation damage and 

response in tumors and normal tissues.  The use of the methods proposed in this 

dissertation can have a positive impact on the efficacy of treating patients with IMRT by 

reducing the unnecessary complexity in IMRT beams while ensuring that the dosimetric 

benefit of intensity modulation can be fully achieved.   
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