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ABSTRACT 

 

Mammalian protein farnesyltransferase (FTase) catalyzes the transfer of a 15-

carbon prenyl group from farnesyl diphosphate (FPP) to a cysteine residue near the 

carboxyl terminus of many proteins, including several key molecules involved in signal 

transduction.  Common substrates include oncogenic Ras proteins, and several FTase 

inhibitors are under development for the treatment of various cancers.  FTase is a 

member of the newest class of zinc metalloenzymes that catalyze sulfur alkylation, and 

the work described here provides further insight into the mechanism of catalysis for this 

enzyme, which may lead to an increased understanding of the substrate specificity and 

inhibition of FTase.     

The reaction catalyzed by FTase results in two products:  diphosphate and 

farnesylated protein or peptide.  To measure the rate constant for diphosphate 

dissociation, a coupled fluorescent assay was developed.  This assay can also be used to 

measure FTase activity for mechanistic studies and for high throughput screening to 

identify FTase substrates and inhibitors.  The dissociation of the farnesylated product 

bound to FTase is accelerated by binding FPP.  This step is crucial for substrate 

selectivity, as measured by substrate analog studies, and inhibition studies demonstrate 

that some FPP-competitive inhibitors function by slowing product dissociation.  

Together, these studies suggest that the binding of a second substrate molecule to 

facilitate product release is an important determinant of the substrate specificity, and 

potentially of the physiological regulation of FTase. 

To investigate the structure of the chemical transition state of FTase, the primary 
14C and α-secondary 3H kinetic isotope effects (KIEs) were measured using transient 

kinetics.  These data suggest that the FTase reaction proceeds via a concerted mechanism 

with dissociative character, facilitated by the zinc ion which coordinates the thiolate of 

the peptide substrate.  The effects of the Mg2+ concentration and mutations of positively 

charged residues that interact with the diphosphate leaving group on the α-secondary KIE 



 xv 

suggest that Mg2+
 and these side chains both stabilize the transition state for farnesylation 

and facilitate a conformational rearrangement of bound FPP that occurs prior to 

farnesylation.  Finally, the dependence of the α-secondary KIE on peptide structure 

indicates that this FPP conformational change is important for substrate specificity.   
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CHAPTER 1                                                                                   
MECHANISM, SPECIFICITY AND INHIBITION OF PROTEIN 

FARNESYLTRANSFERASE 
 

Posttranslational protein lipidation 

Following synthesis, many proteins undergo covalent modification of one or more 

amino acid residues.  Posttranslational modification typically regulates the activity, 

stability, and/or cellular localization of proteins (1).  Examples of common 

posttranslational modifications include phosphorylation, methylation, sulfation, 

biotinylation, ubiquitination, acetylation and lipidation.  The covalent attachment of a 

lipid group increases the hydrophobicity of proteins, enhancing interactions with the 

hydrophobic tails of lipid molecules in the interior of the membrane bilayer.  Lipidation 

enhances protein-protein interactions and localizes proteins to the plasma membrane, 

where they play crucial roles in the transduction of extracellular signals across the plasma 

membrane and into the nucleus (2-4) .   

There are several types of protein lipidation, including myristoylation, 

palmitoylation and prenylation.  Myristoylation occurs at the N-terminal glycine residues 

of proteins, while palmitoyl groups are linked to internal cysteine residues of proteins to 

form thioesters.  In prenylation, an isoprenyl group (farnesyl or geranylgeranyl) is 

covalently attached to the cysteine residue near the C-terminus of a protein to form a 

thioether linkage (Table 1.1).  Isoprenoid chains are unsaturated hydrocarbon chains 

consisting of repeating 5-carbon isoprene units, and are intermediates in cholesterol 

biosynthesis.   The two isoprenoid chains used in protein prenylation are the 15-carbon 

farnesyl group and the 20-carbon geranylgeranyl group, which are derived from 

farnesyldiphosphate (FPP) and geranylgeranyldiphosphate (GGPP), respectively (Table 

1.1).  Farnesylation, catalyzed by protein farnesyltransferase (FTase), is the covalent 

transfer of a farnesyl group from FPP to the sulfur of an invariant cysteine residue located  



 

 

2 

Table 1.1  Types of posttranslational protein lipidation 

Type of lipidation Structure Position 

Myristoylation 
O

NH-Gly 

NH2-terminus 

Palmitoylation 
O

S-Cys 

Internal; no 
defined sequence 

Farnesylation 
S-Cys 

Prenylation 

Geranylgeranylation 
S-Cys 

Near the 
COOH-terminus 
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four amino acids from the C-terminus, resulting in the formation of a thioether bond in 

the farnesylated protein (Scheme 1.1).  Geranylgeranylation is catalyzed by 

geranylgeranyltransferase type I (GGTase I) or geranylgeranyltransferase type II 

(GGTase II).  Prenylation is thought to be required for the proper function of more than 

300 proteins involved in cell growth, differentiation and morphology, and occurs in most, 

if not all, eukaryotic cells including mammalian cells, plant cells, yeast and pathogenic 

parasites (5-7).   

 

Protein prenylation in the cell 

Posttranslational protein prenylation is required for the localization and proper 

function of numerous proteins involved in key signaling pathways, e.g. Ras, Rho, and 

nuclear lamins.  The processing of Ras is illustrated in Scheme 1.2, where “CaaX” 

represents the four terminal amino acids of the protein where prenylation occurs.  

Following prenylation at the cysteine residue, proteins are further processed in the 

endoplasmic reticulum (ER), where the three terminal amino acids are proteolytically 

cleaved by the membrane-bound CaaX protease Rce1 (Scheme 1.2) (8).  The free 

carboxyl end of proteins is then methylated by isoprenylcysteine carboxyl 

methyltransferase (ICMT), which uses S-adenosylmethionine as its methyl donor (2).   

After processing in the ER, proteins containing a C-terminal prenylated cysteine 

methyl ester are usually transported to the Golgi apparatus, where another lipid 

modification (termed a “second signal,” often one or two palmitoyl groups) is added 

upstream of the C-terminal prenyl group that enhances plasma membrane association 

(e.g., H-Ras, N-Ras) (Scheme 1.2) (9).  Other proteins contain an upstream “second 

signal” in their amino acid sequence, typically a stretch of positively charged polybasic 

residues that can interact directly with the acidic phospholipids on the inner leaflet of the 

plasma membrane (e.g., K-Ras) (Scheme 1.2) (9).  These proteins do not require 

additional lipid modifications to localize to the membrane and may therefore transport 

directly to the cell membrane without transporting through the Golgi apparatus (10). 

The most well-characterized prenylated proteins are guanosine triphosphate 

(GTP)-binding proteins (G proteins), which are involved in a variety of signaling 
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Scheme 1.1 Farnesyltransferase reaction 
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Scheme 1.2  Processing of prenylated proteins in the cell 
Proteins, such as Ras, are posttranslationally farnesylated at the cysteine residue four amino acids from the C-terminus.  They are 
further processed in the ER by Rce1 and ICMT to produce a prenylated cysteine methyl ester at the C-terminus.  Proteins such as H-
Ras are then palmitoylated in the Golgi apparatus, while proteins such as K-Ras contain an upstream polybasic region and may not be 
transported to the Golgi apparatus.  These “second signals” enable association of the protein with the plasma membrane.  
Abbreviations:  ER, endoplasmic reticulum; Rce1, CaaX protease; ICMT, isoprenylcysteine carboxyl methyltransferase; AdoHcy, 
adenosylhomocysteine; AdoMet, adenosylmethionine.  Figure is adapted from ref. (11).



 

 6 

pathways in the cell (Scheme 1.3).  These proteins require membrane association via a 

prenyl group to interact with downstream targets in their respective pathways.  For 

example, the cytosolic protein Ras (H-, K-, and N-Ras) is farnesylated and localized to 

the plasma membrane, where it can be activated by a receptor tyrosine kinase through the 

adaptor proteins Grb2 and SOS, which act together as a guanine nucleotide exchange 

factor to exchange bound GDP for GTP (Scheme 1.3).  Ras, in an activated GTP-bound 

form, initiates many signaling cascades, including the mitogen-activated protein (MAP) 

kinase, or Raf/MEK/Erk, pathway. The phosphorylation of downstream transcription 

factors of this pathway, such as Jun, Fos and Myc, leads to cellular growth and 

differentiation (Scheme 1.3).  The γ subunits of heterotrimeric GTP-binding proteins also 

require prenylation for their normal physiological roles, which include cellular growth, 

differentiation, proliferation and apoptosis (2).   

 

Three classes of prenyltransferases 

There are three known classes of enzymes that catalyze the posttranslational 

prenylation of proteins in the cell: the CaaX prenyltransferases FTase and GGTase I, and 

GGTase II (also known as Rab GGTase).  All three classes of prenyltransferases are 

heterodimers and contain a catalytic zinc ion that is essential for catalysis.  FTase and 

GGTase II require Mg2+ for optimal activity, while the GGTase I-catalyzed reaction is 

Mg2+-independent (12-14).  The activity of all three prenyltransferases is highest in the 

brain, which was the original source of these enzymes (2).  However, each of these 

enzymes have now been cloned and recombinantly expressed (15).  FTase and GGTase I 

share many requirements in substrate specificity and are thought to proceed via similar 

kinetic and catalytic mechanisms, whereas the substrate specificity of GGTase II is quite 

distinct (2). 

FTase and GGTase I are composed of identical α subunits and homologous but 

distinct β subunits (28% identity and 51% similarity for the rat enzymes) (16-19).  A 

comparison of structures of substrate complexes captured along the reaction pathway for 

FTase and GGTase I reveal similar modes of catalysis (20, 21).  Protein substrates for 

both FTase and GGTase typically contain a C-terminal Ca1a2X motif, where C is the  
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Scheme 1.3  GTP-binding proteins  
Many signal transduction pathways involve GTP-binding proteins, which are activated by 
ligand (effector) binding to G-protein coupled receptors.  The activation of Ras initiates 
the MAP kinase pathway, among others, leading to the upregulation of transcription 
factors involved in cellular growth and differentiation.  Ras requires farnesylation and 
membrane localization for its proper biological function, as do other GTP-binding 
proteins which are similarly involved in a number of different signal transduction 
pathways regulating cellular growth, differentiation, proliferation and apoptosis.  
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reactive cysteine four amino acids from the C-terminus, a1 and a2 are proposed to contain 

small aliphatic residues, and X is typically serine, methionine, glutamine, threonine or 

alanine for FTase, and leucine or phenylalanine for GGTase I (22).  It has been proposed 

that the identity of the X residue ultimately determines whether a protein is farnesylated 

or geranylgeranylated in the cell; however, there are many exceptions to this rule for 

prenyltransferase substrate specificity (23, 24).  Similarly, exceptions to aliphatic 

residues at a1 and a2 have been observed (25). 

While FTase and GGTase add one prenyl chain to protein substrates, GGTase II 

can catalyze the addition of one or two geranylgeranyl groups (26, 27).  Known 

substrates of GGTase II are in the Rab protein family and are geranylgeranylated at one 

or both cysteine residues in the following motifs near their C-terminus:  CC, CXC, CCX, 

or CCXX.   The Rab substrate forms a complex with the Rab effector protein (REP) in 

order for GGTase II to catalyze geranylgeranylation (28).  Despite these key differences 

in substrate recognition, the structure and proposed mechanism of GGTase II is quite 

similar to that of FTase and GGTase I (29).  

GGTase I catalyzes the prenylation of most monomeric GTP-binding proteins in 

the Rho, Rac and Rap subfamilies, as well as most heterotrimeric G protein γ-subunits.  

However, most of the mechanistic and inhibition studies on prenyltransferases have 

focused on FTase, largely due to the farnesylation of members of the Ras superfamily of 

GTP-binding proteins.  These proteins are not only essential for cellular growth and 

differentiation, but are also implicated in the progression of a variety of cancers.  There 

has been great interest, therefore, in furthering our understanding of the mechanism, 

substrate specificity, and ultimately the inhibition of FTase.   

 

Therapeutic inhibition of prenylation 

Prenylation is essential for a number of important biological processes, and has 

been targeted in parasitic diseases, genetic disorders and, most notably, cancer.  

Pharmaceutical research has focused almost exclusively on the development of FTase 

inhibitors (FTIs), since many proteins essential in mediating the cell cycle are 

farnesylated.  FTIs are cytotoxic to Plasmodium falciparum and Trypanosoma brucei, the 
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causative agents of malaria and African sleeping sickness, respectively, selectively killing 

these parasites over mammalian cells (30, 31).  More recently, FTIs have shown promise 

in the treatment of genetic diseases such as Hutchinson-Gilford progeria syndrome, a 

disorder involving nuclear lamins (32).  These drug discovery efforts are greatly aided by 

the considerable research over the last two decades toward the development of potent 

FTIs in the clinical treatment of cancer, and suggest that many other diseases may also be 

targeted by compounds that block prenylation of various proteins.   

Oncogenic Ras proteins require farnesylation for their transforming activity and 

these proteins are mutated in approximately 30% of human cancers, most commonly 

pancreatic cancer, colon cancer and adenocarcinoma of the lung (33, 34). There are 

currently several FTIs in clinical trials for the treatment of various types of malignancies, 

including acute myeloid leukemia, myelodysplastic syndrome, glioma, metastatic breast 

cancer, and non-small cell lung cancer (35).  These compounds also exhibit an additive or 

even synergistic growth suppression of cancer cells when used in combination with 

standard cytotoxic chemotherapeutic agents or radiation therapy (36-39). While most 

efforts have focused on FTase inhibition, GGTase I inhibitors are showing promise in 

pre-clinical models of tumor progression, as well as in the treatment of smooth muscle 

hyperplasia, multiple sclerosis, and malaria (40-43).  It has also been recently shown that 

GGTase II is inhibited by some FTIs which leads to the induction of apoptosis, 

identifying this third prenyltransferase as another target for cancer chemotherapy (7, 44).  

FTIs have been clearly shown to block the farnesylation of Ras, lamins and other 

farnesylated mammalian proteins and prevent the post-translational processing of Ras 

proteins (45-47).  The physiological mechanisms responsible for the growth suppression 

by FTIs has been an area of intense investigation (48).  In most cases, both ras-

transformed rodent fibroblasts and human tumor cell lines undergo a cell cycle arrest 

during mitosis upon exposure to low micromolar concentrations of FTIs (49-52).  FTIs 

have also been shown to induce apoptosis in transformed cell lines (49, 53-55). In 

transgenic mouse models, FTI treatment not only suppressed new tumor growth, but also 

inhibited the growth of existing tumors, in some cases even causing regression (39, 56, 

57).  These results point to the potential use of FTIs as chemopreventive agents, 

particularly after surgical removal of tumors of lung and breast cancer patients, where the 
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incidence of recurrence is high (7).  Importantly, although a multitude of proteins may be 

farnesylated in the cell, many FTIs can shrink tumors in animals to an undetectable size 

without showing any toxicity to animals after weeks or even months of exposure, and 

have so far been well tolerated in patients at doses where clinical activity is observed (58, 

59). 

While these and other inhibitors were initially designed to block the farnesylation 

of Ras, it was subsequently discovered that FTI sensitivity does not correlate with 

oncogenic ras gene mutational status (60).  It has been proposed that the farnesylation of 

RhoB is blocked instead, due to changes in cell morphology upon FTI treatment (45, 61, 

62).  RhoB can be either farnesylated or geranylgeranylated in the cell, and the 

prenylation status of RhoB may contribute to different subcellular localizations and 

therefore different cellular functions (63, 64). Additionally, when FTase activity is 

blocked, normally farnesylated proteins such as K-Ras can be geranylgeranylated, which 

is sufficient for the proper function of these proteins in many cases (65).  This cross-

prenylation may explain the low toxicity of FTIs; however, the mechanism of action has 

not yet been completely validated.  Other targets of FTIs include RheB,  a neural protein 

of unknown function in the brain, and the centromere proteins CENP-E and CENP-F, but 

direct proof that inhibition of farnesylation of these proteins is involved in the mechanism 

of antitumor activity of FTIs is lacking (66, 67).  

Therefore, while FTIs clearly inhibit FTase and work well to treat cell 

hyperproliferation, the downstream targets of these inhibitors that inhibit cancer 

progression remain unclear.  The full biological effects of inhibiting FTase may result 

from a cumulative effect of blocking the farnesylation of many proteins.  Clinical studies 

of the therapeutic effects of FTIs have  been hindered by a poor understanding of the 

substrate specificity of FTase.  Since there are many potential prenylated proteins that 

may be responsible for the efficacy of FTIs, identification of the important targets is 

essential to further advances in specific drug treatments by FTIs.   
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Substrate specificity of prenyltransferases 

The lack of knowledge regarding the substrate specificity of FTase presents a 

challenge both in the application of current FTase inhibitors as well as in the 

development of inhibitors that could potentially selectively block the farnesylation of 

specific proteins.  There are approximately 30 known substrates of FTase, including 

proteins involved in cellular growth and differentiation, cytoskeletal function, vesicular 

trafficking, vision, and glycogen metabolism (Table 1.2) (48, 68).  There are additionally 

many (>100) putative FTase substrates containing CaaX sequences, although the 

farnesylation of these substrates has not been fully characterized in vivo (25, 69).    

While the “CaaX” paradigm is generally accepted, there are several key 

exceptions to this rule.  As mentioned above, K-RasB, which has a classical FTase CaaX 

box (CVIM), can be geranylgeranylated by GGTase I when FTase is inhibited.  

Additionally RhoB, which contains a GGTase I CaaX box (CKVL), is farnesylated or 

geranylgeranylated by GGTase I (70).  Recent studies using short peptides, which can 

substitute for full-length protein substrates in in vitro assays, suggest an even broader 

substrate specificity and cross-reactivity between FTase and GGTase I.  Crystallographic 

and kinetic studies suggest that peptides terminating in C, F, L, N or H can also serve as 

FTase substrates, while peptides terminating in I or V are effective GGTase I substrates 

as well (23, 24).  While a variety of amino acids are tolerated at the a1 residue (termed 

“x” or “Z”), the identity of the a2 residue appears to be more constrained than originally 

thought, with the majority (~85%) of the substrates tested containing V, I, L or T at the a2 

position (25). 

Cross-specificity between FTase and GGTase I has been observed in vivo and in 

vitro for a variety of CaaX peptides (71).  Alteration of the active site residues in the 

peptide-binding pocket of FTase to the corresponding residues in GGTase I changed the 

peptide specificity to more closely resemble that of GGTase I (72, 73).  The van der 

Waals volume of the active site residues appear to be more important than the identity of 

the side chain, suggesting that the size and shape of the peptide binding pocket is more 

selective than the chemical properties of the active site side chains (72, 73).  As 

mentioned above, some proteins contain a polybasic region upstream of the CaaX box 

which increases the affinity of the protein for FTase and aids in plasma membrane 
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Table 1.2  Known human substrates of FTase (48, 68) 

Protein GTPase Protein Function CaaX Sequence 
H-Ras Yes Cell growth, differentiation CVLS 
K-RasA Yes Cell growth, differentiation CIIM 
K-RasB Yes Cell growth, differentiation CVIM 
N-Ras Yes Cell growth, differentiation CVVM 
RhoE No Regulation of actin cytoskeleton CTVM 
Rap2a Yes Unknown; localized in platelets and brain CNIQ 
RheB Yes Unknown; localized in brain CSVM 
Lamin A No Regulation of nuclear structure CSIM 
Lamin B No Regulation of nuclear structure CYVM 
Ptp4a1 No Protein tyrosine phosphatase associated with cell proliferation CCIQ 
Transducin γ subunit No Retinal visual signal transduction CVIS 
cGMP phosphodiesterase α-
subunit No Retinal visual signal transduction CCIQ 

Rhodopsin kinase No Retinal visual signal transduction CVLS 
Phosphorylase kinases No Muscle and liver glycogen metabolism CAMQ, CQMQ, CLIS 
PxF No Peroxisome assembly CLIM 
HDJ2 No Protein import into mitochondria; cochaperone of Hsc70 CQTS 
Interferon-induced guanylate 
binding protein-1 Yes Binds GMP, GDP and GTP in macrophages CTIS 

CENP-F No Centromere (kinetochore) protein for G2/M transition CKVQ 
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localization (74-76).  Bioinformatics data suggest that this region exhibits a tendency 

toward small, flexible hydrophilic amino acids (69).  Polybasic residues in peptides can 

contribute to the substrate specificity of FTase and GGTase I, and are thought to be 

responsible for the altered substrate specificity for proteins such as K-RasB and RhoB 

(77).   

 

Structure of FTase 

FTase is a 93 kDa α/β heterodimer; the β subunit contains the binding site for the 

catalytically essential zinc ion and most of the active site residues (Figure 1.1) (2, 78-80).  

FTase contains double the number of normal hydrogen bonds and buried surface in the 

dimer interface, making the dimer extremely stable to dissociation in the absence of 

denaturant (81).  The 48 kDa α subunit is a crescent-shaped seven-helical hairpin domain 

that envelops part of the β subunit (80).  The 46 kDa β subunit is also predominantly α-

helical, folded into an α-α barrel with six helices forming the inner barrel and six 

additional helices forming the outside of the barrel (80).  One end of the barrel  is closed 

by a loop, and the opposite end is solvent accessible.  The catalytic zinc ion is bound at 

the top of the barrel of the β subunit, marking the active site.  FPP binds in an extended 

conformation in a deep funnel-shaped hydrophobic cleft at the center of the α-α barrel 

lined with highly conserved aromatic residues.  Bound FPP forms a substantial part of the 

binding surface for the peptide substrate, which also binds in an extended conformation 

and forms van der Waals interactions with the second and third isoprene units of FPP.  

The direct contact between FPP and peptide substrates can explain the observed synergy 

in binding affinity and apparent binding order for these substrates (82, 83).   

X-ray crystal structures for the rat and human isoforms of FTase have been solved 

in a number of complexes, including the free enzyme (with and without zinc bound), 

binary substrate complexes, ternary complexes, and product complexes (21, 80, 84-87).  

The structure of the unliganded protein confirmed the identity of the active site zinc 

ligands as well as the overall protein structure (80).  Binary complexes of FTase bound 

with FPP, as well as ternary complexes with an FPP analog and a peptide substrate, 

reveal that both substrates lie side by side in extended conformations (86, 87).  The  
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Figure 1.1  Crystal structure of FTase 
X-ray crystal structure of FTase in a ternary complex, bound with the FPP analog FPT 
inhibitor II and the peptide KKKKKKSKTKCVIM, reflecting the C-terminus of K-Ras.  
Protein Data Bank code: 1D8D (84).  
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ternary complex structures, however, place the two reactive atoms, the sulfur of the 

peptide cysteine and the C1 of FPP, greater than 7 Å apart (Figure 1.2) (84, 85, 87).  This 

is too far apart to be a reactive complex.  In the structure of the farnesylated product 

bound to FTase, the prenylated peptide remains bound in an extended conformation with 

the sulfur near the zinc ion, but the first two groups of the farnesyl chain rotate such that 

the C1 of the farnesyl group forms a covalent bond with the sulfur of the peptide 

substrate (21). Therefore, in order for catalysis to occur, there must be a conformational 

rearrangement of FPP, since little change in the structures of either the peptide substrate 

or the active site of FTase itself is observed between the ternary and the product 

complexes (21).  On the basis of structural and mutagenesis studies, a model has been 

proposed in which the first two isoprene units of FPP rotate to bring the C1 of FPP within 

reacting distance (2.4 Å) of the peptide thiolate (Figure 1.3) (88).  However, a ternary 

complex in a reactive conformation has not yet been observed crystallographically.   

 A second major conformational rearrangement occurs upon binding of a second 

molecule of FPP to the FTase•product complex, a process which greatly accelerates the 

rate of dissociation of product from the enzyme (21, 89).  In this structure, the CaaX 

peptide moves from its initial extended conformation to adopt a type I β-turn, and the 

prenyl chain swings out of the active site into the “exit groove,” a shallow solvent-

accessible groove that extends from the active site to the rim of the β subunit (Figure 1.4) 

(21). The incoming FPP molecule takes the place of the prenyl chain of the product, 

binding in the catalytic binding pocket (Figure 1.4) (21).  This complex is quite stable 

under crystallographic conditions and may require additional peptide to release the 

farnesylated product from the enzyme.  This mechanism of product dissociation suggests 

the possibility that additional cellular factors may be required for delivery and release of 

the farnesylated protein product in vivo (21).   

 Crystal structures of FTase bound with various different substrates provides 

structural information about substrate specificity.  In the crystal structure of FTase with 

bound GGPP, the C1 of GGPP is in the same position as the C1 of FPP, due to a kink in 

the prenyl chain that allows the longer molecule to fit in the active site of FTase (91).  It 

is this kink that slows turnover substantially for FTase with GGPP, potentially because 

either the rotation of the first two prenyl chains to form the active substrate conformation  
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Figure 1.2  Ternary complex of FTase 
X-ray crystal structure of the inactive ternary complex with a slow peptide substrate, 
FTase•FPP•CVFM.  The conserved residues K164α, H248β, R291β, K294β and Y300β 
are shown interacting with the diphosphate moiety of FPP, and the zinc ion is coordinated 
to the peptide thiolate.  Protein Data Bank code: 1JCR (85). 

 7.3 Å 

CVFM 

   His248β  

     Zn 

Lys294β  

Arg291β  

FPP 

Tyr300β  

Lys 164α 



 

17 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 1.3  Model of active substrate conformation 

Computational model of the proposed active substrate conformation for FTase (88).  (A) Model of the inactive ternary complex, 
FTase•FPP•TKCVIM, where the C1 of FPP and the peptide thiolate are 7.32 Å apart (made from PDB ID 1JCQ (85) and PDB ID 
1D8D (84)).  (B) Proposed active substrate conformation, where the C1 of FPP is within reactive distance (2.42 Å) from the peptide 
thiolate (88).  (C)  Crystal structure of the FTase•product complex (Protein Data Bank code: 1KZP (21)).  The coordinates of the 
threonine residue and the entire side chain of the lysine of farnesyl-TKCVIM were absent from the PDB and are therefore not shown.  
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Figure 1.4  FPP-catalyzed product dissociation 
X-ray crystal structure of the FTase active site for (A) the FTase•product complex, formed with FPP and KKKSKTKCVIM (Protein 
Data Bank code: 1KZP (21)); and (B) the FTase•product•FPP complex, where additional FPP has been added to the product complex 
formed in (A) (Protein Data Bank code: 1KZO (21)).   For clarity, the FTase residue K164α is omitted, and only the four terminal 
amino acids of the peptide substrate are shown.   
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and/or the rotation to move the prenyl group into the exit groove is sterically hindered 

(91).  The crystal structure of GGTase I with bound GGPP, on the other hand, reveals 

that the first three isoprene units are arranged along a straight line, while the fourth 

isoprene unit is turned ~ 900  relative to this axis (20).  Interacting with this fourth 

isoprene unit is the amino acid residue T49β in GGTase I, which is replaced by a 

tryptophan residue in FTase and was shown by mutagenesis to account for the 

discrimination in isoprenoid length between the two enzymes (20). 

 A comparison of the ternary complex structures of FTase with bound peptides 

containing different CaaX sequences provides insight into the peptide specificities of 

FTase and GGTase I (85).  A substrate binding mode, where the C and a1 residues of the 

Ca1a2X box are positioned on the opposite side of the zinc ion, is sterically favored when 

the a2 residue is isoleucine or valine, as was observed for TKCVIM.  A non-substrate 

binding mode, in which the C and a1 residues are rotated to a position between the zinc 

ion and FPP, is sterically favored when a hydrogen bond is formed between the N-

terminus of the tetrapeptide and the α phosphate of FPP and the a2 residue is 

phenylalanine, as was observed for CVFM (85).  In this conformation, the rotation of 

FPP to form the active substrate conformation is proposed to be obstructed.  

Crystallographic data with a series of peptides varying in the X residue have led to the 

proposal that while GGTase I has one binding site for the X residue, FTase has two 

separate binding sites for the X residue:  one which binds M, Q, S, A, T, and C and the 

other which binds F and possibly L, N, and H (23).   

 

Kinetic mechanism of FTase 

The kinetic mechanism of FTase is functionally ordered, meaning that either FPP 

or peptide can bind to the free enzyme, but the reaction only proceeds efficiently if FPP 

binds first  (Scheme 1.4) (83, 92).  The binding of substrates is synergistic, because the 

molecules are in direct contact in the active site of FTase; FPP binds FTase with a tight 

affinity (KD = 6 nM), and the affinity of the peptide GCVLS is over 70-fold tighter for 

FTase in the presence of an FPP analog than for FTase alone (82).  Both substrates bind 

to the enzyme with second order rate constants of 106 M-1s-1 at high pH (7.5-7.8) (Scheme  
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Scheme 1.4  Kinetic mechanism of mammalian FTase for farnesylation of the GCVLS peptide substrate at 25 0C (83, 89, 92, 

93). 
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1.4).   The active site zinc ion directly coordinates the cysteine thiolate upon peptide 

binding, followed by a rotational movement of the FPP molecule to form the active 

substrate conformation, denoted as [E•FPP•Spep]* (88, 94).  The chemical or 

farnesylation step is the transfer of the farnesyl group to the cysteine sulfur of the peptide,  

and results in two products, diphosphate and the farnesylated peptide containing a 

thioether bond.   

The binding affinity of the product for the enzyme is weaker than either of the 

substrates for FTase (KD ~ 1 µM) (89).  However, the farnesylated product dissociates 

from the enzyme extremely slowly unless additional substrate is available to bind to the 

product complex (89, 92).  It is therefore thought that FTase does not exist as a free 

species during the course of the reaction pathway (Scheme 1.4).  Excess peptide or 

isoprenoid triggers product release, but FPP is more efficient with a maximum koff value 

of 0.13 min-1 compared to 0.08 min-1 for the peptide CVIM at 10 0C (89).  FPP-

stimulated product dissociation is observed for a farnesylated full-length Ras protein as 

well, and there is evidence suggesting that this phenomenon may be physiologically 

relevant (89).  Studies of FTase reactivity with a peptide library have identified ~60 

peptides for which single turnover, but not multiple turnover, is observed.  For these 

peptides, no FPP-stimulated product dissociation is observed (25).  Three of these 

peptides correspond to full-length proteins that are known to be farnesylated in vivo, and 

may represent a class of proteins for which additional cellular factor(s) are required for 

product dissociation.  Some potential factors include intracellular membrane 

compartments, Mg2+ concentrations, other proteins, or contacts with upstream regions of 

the proteins.    

The dissociation of farnesylated product is the slowest step in the overall reaction  

at 0.01 s-1, so the steady-state rate constant (kcat) reflects this step of catalysis (92).  

Therefore, transient kinetics are used to isolate the farnesylation step from the product 

release step, under conditions of limiting FPP with respect to FTase and a vast excess of 

peptide.  The observed first order rate constant of 5 s-1 is ~100-fold faster than the rate 

constant of peptide dissociation from the ternary complex, indicating that the reaction is 

essentially irreversible once the ternary complex is formed.  However, no kinetic 

information about the conformational rearrangement of FPP prior to farnesylation was 
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available prior to this work, and the observed rate constant measured under single 

turnover conditions includes both this conformational rearrangement and the 

farnesylation step (Scheme 1.4) (95, 96).  The measurement of kinetic isotope effects, as 

described in Chapter 5, allows differentiation of the rate constants for these two steps for 

the first time.   

 

Catalytic mechanism of FTase 

FTase catalyzes a nucleophilic substitution reaction, which can proceed via an 

associative (also known as a nucleophilic, or SN2-like) mechanism or a dissociative (also 

known as an electrophilic, or SN1-like) mechanism (Scheme 1.5).  In an associative 

mechanism, the thiolate nucleophile of the cysteine residue attacks the C1 of FPP at the 

same time as the cleavage of the diphosphate group occurs (Scheme 1.5A).  The C1 atom 

in the transition state for an associative mechanism, therefore, is partially bonded to both 

the incoming nucleophile and the departing diphosphate group.  In a dissociative 

mechanism, the diphosphate group leaves first, creating a carbocation at the C1 in the 

transition state which is then activated to react with the thiolate nucleophile (Scheme 

1.5B).   

A concerted, associative mechanism has been supported by direct zinc ion 

coordination which lowers the pKa of the thiolate nucleophile, as well as inversion of 

configuration at C1 during the reaction for both human and yeast FTase (82, 97, 98).  

However, inversion of  stereochemistry does not rule out a dissociative mechanism, due 

to potential steric constraints for an enzyme active site as well as possible rotational 

restriction around an allylic cation (97).  Indeed, substitution of electron-withdrawing 

fluorine atoms at the C4 methyl position of FPP leads to a decrease in the rate constant  

for farnesylation proportional to the number of fluorines added, consistent with the 

formation of substantial positive charge in the transition state of FTase (95, 99).  This 

effect is not as dramatic as was observed for FPP synthase which proceeds via a 

carbocation intermediate, and no carbocation intermediate in the FTase reaction has been 

successfully trapped by addition of other nucleophiles (95, 100).  On the basis of these 

studies, an “exploded” transition state has been proposed, in which the bond between the  
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Scheme 1.5  Possible reaction mechansims for FTase 
Two possible types of nucleophilic substitution mechanisms for FTase: (A) Associative 
(nucleophilic, or SN2) mechanism, in which the thiolate nucleophile attacks C1 as the 
bond with the diphosphate leaving group is being cleaved in the transition state; and (B) 
Dissociative (electrophilic, or SN1) mechanism, in which a carbocation is formed at the 
C1 of FPP in the transition state prior to nucleophilic attack. 
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C1 of FPP and the PPi group is nearly broken, and the bond with the incoming thiolate 

sulfur is barely formed (95).  According to this model, the proposed transition state would 

comprise electrostatic and bonding character of both associative and dissociative 

transition states (Scheme 1.5).  Importantly, the buildup of partial positive charge on C1 

and partial negative charge on both the incoming thiolate nucleophile and departing 

diphosphate leaving group in the transition state is an important catalytic feature of this 

proposed mechanism.   

Interestingly, the proposed mechanism for FTase represents an intermediate 

between two classes of enzymes closely related to FTase.  The three prenyltransferases 

are members of the newest class of enzymes that catalyze zinc-mediated sulfur alkylation 

(101).  Other members of this family of enzymes, including the DNA repair protein Ada, 

cobalamin-dependent (MetH) and cobalamin-independent (MetE) methionine synthase, 

betaine-homocysteine methyltransferase (BHMT), methylcobamide:coenzyme M 

methyltransferase (MT2-A and MT2-M), and epoxyalkane:CoM transferase, are 

proposed to proceed via associative mechanisms (101).  The prenyltransferases are the 

only enzymes in this class for which dissociative character has been proposed, perhaps 

reflecting stabilization of the carbocation at C1 by resonance (102).  Other enzymes 

involved in prenyl transfer, such as FPP synthase, proceed via purely dissociative, 

electrophilic mechanisms (100).  However, these enzymes catalyze reactions with weaker 

nucleophiles.  The catalytic roles of the zinc and magnesium ions, as well as the 

diphosphate leaving group, in the FTase mechanism shed further light on the similarities 

and differences between FTase and these two classes of enzymes. 

 

Role of zinc in catalysis 

A catalytic role for Zn2+ in the mechanism of FTase is supported by a great 

number of kinetic and structural studies.  The protein structure of FTase crystallized in 

the absence of an active site zinc ion remains the same, indicating that Zn2+ does not play 

an essential structural role (84, 95).  However, the peptide affinity of apo-FTase is 

significantly reduced, indicating that Zn2+ is important for binding the cysteine residue in 

the right position (84, 95).  Direct interaction of the CaaX cysteine sulfur with the metal 
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ion was first observed from optical absorbance spectra of Co2+-substituted FTase.  An 

increase in absorbance at 340 nm, indicative of a Co2+-sulfur charge transfer band, occurs 

upon addition of a CaaX peptide substrate to an FTase•isoprenoid complex (82).  pH 

studies have subsequently shown that Zn2+ lowers the pKa of the cysteine sulfur from 8.1 

to 6.4, creating a reactive thiolate nucleophile at physiological pH (82).  

A catalytic role for Zn2+ has been confirmed by X-ray crystallographic studies, in 

which Zn2+ is coordinated by D297β, C299β and H362β, with a water molecule or the 

second oxygen atom of D297β to potentially serve as a fourth and/or fifth ligand (80).  

This fourth ligand is replaced by the sulfur of the peptide substrate in the ternary and 

product complexes (21, 87).  X-ray absorption spectroscopy has also been used to 

determine the structure of the zinc site in FTase, and while these data are consistent with 

the identity of the zinc ligands, they suggest a bidentate ligation with the D297β residue, 

which is also modeled to be a more stable interaction than a monodentate ligation with a 

water molecule (103, 104).  Additionally, extended X-ray absorption fine structure data 

show zinc coordination to the peptide sulfur before, but not after, product formation 

(103).  This is in contrast to the spectroscopic studies of Co2+-substituted FTase, as well 

as crystallographic studies, which indicate that the zinc ion is coordinated with the sulfur 

cysteine in the product complex (21, 94).  

As mentioned above, FTase belongs to a family of enzymes that catalyze zinc-

dependent sulfur alkylation.  While these enzymes all use a catalytic Zn2+ ion to 

coordinate directly to the substrate thiolate at the site of alkylation, the zinc ligand 

environments are quite different.  In addition to the substrate cysteine ligand, the zinc is 

coordinated to two cysteine residues in MetE and MT2-A, and three cysteines in Ada, 

BHMT and MetH (101).  The prenyltransferases are the only members of this class which 

only have one cysteine ligand (in addition to the substrate cysteine) (103).  This likely 

results in the formation of a weaker zinc-thiolate nucleophile for the FTase-catalyzed 

reaction than other members of this class of enzymes.  Given that the mechanism of 

FTase is proposed to proceed with some dissociative character, the enzyme may sacrifice 

the formation of a strong nucleophile in order to maintain zinc-sulfur coordination in the 

transition state to properly position the thiolate relative to the C1 of FPP.   
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Role of magnesium in catalysis  

The free intracellular concentration of Mg2+ is approximately 1-2 mM (105).  

While Mg2+ is not strictly required for catalysis, millimolar concentrations greatly 

accelerate the rate of catalysis, enhancing a step at or before the chemical transition state 

with little effect on substrate binding (95).   Like other diphosphate-utilizing enzymes, 

FTase has been proposed to use Mg2+ to stabilize the developing negative charge on the 

diphosphate leaving group (95, 106).  The magnesium affinity of FTase increases with 

pH (pKa = 7.4), reflecting the deprotonation of the FPP diphosphate to enhance Mg2+ 

coordination (106).  The FTase-catalyzed reaction with farnesylmonophosphate is 

independent of Mg2+ ion concentration, indicating that both phosphates are needed to 

coordinate Mg2+ to accelerate the reaction (106).  The magnesium ion dependence of the 

single turnover reaction has a K1/2 of 2 mM, which is a weaker affinity than one would 

predict for a Mg2+-diphosphate interaction (the KD for FPP alone is 0.1 mM), indicating 

that the magnesium ion binding site in FTase consists of more than just the FPP 

diphosphate (106).  Additionally, while both FTase and GGTase II require Mg2+ to 

achieve optimal catalytic activity, the reaction of GGTase I is not accelerated by Mg2+ 

(12-14).   This suggests that catalysis by Mg2+ is more complex than just coordinating to 

the PPi group of FPP.   

A ternary crystal structure of FTase with bound manganese identifies the two 

oxygens of the diphosphate as ligands, but crystallography does not reveal residues 

located near the PPi group that could coordinate Mg2+ (84, 86, 87).  However, crystal 

structures represent inactive complexes, and may not observe the conformational 

rearrangement of FPP.  Mutagenesis studies of D352β indicate that the carboxylate side 

chain coordinates to the Mg2+ ion.  An octahedral Mg2+ binding site has been proposed in 

the active FPP conformation which includes two carboxylate oxygens of D352β, two 

oxygens from the diphosphate of FPP, one carbonyl oxygen of the the side chain of 

D297β (which also coordinates zinc), and a water molecule  (Figure 1.5) (107).  The 

D352β residue is conserved in FTase and GGTase II but is substituted with a lysine 

(K311β) in GGTase I, which is proposed to partially replace the catalytic function of 

Mg2+  (20, 108).  Mutagenesis studies confirm that substitution of lysine for aspartate  
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Figure 1.5  Proposed Mg2+ binding site in active substrate conformation  
Model for the proposed Mg2+ binding site formed in the active ternary complex (107), 
based on mutagenesis and crystallographic data (PDB ID 1JCQ (85) and 1D8D (84)).  
The octahedral binding site consists of two nonbridging oxygens of the FPP diphosphate, 
two carboxylate oxygens of D352β, a water molecule, and one carboxylate oxygen of 
D297β.  
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at this position alters the Mg2+ dependence of both FTase and GGTase I (107, 108).  The 

formation of this Mg2+ site requires rotation of the prenyl chain and is therefore proposed 

to be coupled to the formation of the active substrate conformation of FPP.  Therefore, it 

was proposed that Mg2+ accelerates catalysis in FTase both by stabilizing developing 

negative charge in the transition state and by stabilizing the formation of the active site 

conformation prior to catalysis (107).   

  

Role of conserved diphosphate binding pocket in catalysis  

 Typically, enzymes which utilize diphosphate contain a catalytic Mg2+ ion which 

is coordinated to the diphosphate group of the substrate as well as a group of negatively 

charged acidic side chains, usually a DDXXD motif, which bind the Mg2+ ion (109-112).  

The active site of FTase, on the other hand, contains a group of highly conserved 

positively charged residues, termed the “PPi binding pocket”, with extensive hydrogen 

bonding interactions with the diphosphate oxygen atoms of FPP, illuminated in crystal 

structures of the inactive complex (Figure 1.2) (85, 90).  The PPi binding pocket consists 

of the residues K164α, H248β, R291β, K294β and Y300β, and this binding pocket 

actually decreases the affinity of the FTase•FPP•peptide ternary complex for Mg2+ 10-

fold when compared with the affinity of free FPP for Mg2+, while enhancing the affinity 

of FTase for FPP (90, 107).  Mutagenesis studies using steady-state and transient kinetics 

have also demonstrated that these residues, particularly Y300β, are important for 

catalysis (88, 90, 113-116).  These data are consistent with stabilization of the developing 

negative charge on the PPi leaving group in the catalytic transition state.  However, 

mutagenesis studies have also indicated that these residues are shifted in the active 

substrate conformation, and thereby may facilitate the conformational change of the FPP 

molecule (Figures 1.3 and 1.5) (88, 90).  The position of the diphosphate in the active 

substrate conformation cannot be determined from crystal structures, but its position must 

accommodate the rotational movement of the FPP isoprene chains.  It is thought that the 

PPi binding pocket residues may lower the affinity of the PPi moiety for Mg2+ prior to 

peptide binding, and is important for stabilizing the active substrate conformation (88, 

90).   
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Inhibitors and substrate analogs of FTase 

 Small molecule inhibitors of FTase can be separated into three categories, based 

on different drug discovery strategies:  (1) natural products; (2) peptidomimetics and 

other peptide-competitive inhibitors; and (3) FPP analogs and FPP-competitive inhibitors 

(48, 117).  Additionally, bisubstrate FTIs have been developed (117).  Natural products  

that inhibit FTase were discovered by random screening, and the molecules identified are 

for the most part structurally homologous to FPP (48).  However, the evolution of non-

substrate based FTIs identified from library hits presents the most promising area of 

inhibitor development currently, and has led to the development of potent peptide- and 

FPP-competitive compounds.  

The most clinically successful FTIs to date are non-CaaX peptidomimetic 

inhibitors derived from library screening, but the development of CaaX peptidomimetic 

inhibitors has been an extremely active and successful area of research as well (117).  

These include mimics of the tetrapeptide CaaX sequence as well as compounds based on 

the conformation of the peptide substrate in the active site of FTase.  It has been 

understood for quite some time that an aromatic substituent in a2 of the Ca1a2X motif will 

lead to inhibition of farnesylation (e.g. CVFM).  The a2 region of the peptide has 

therefore been modified to allow for cell permeability, bioavailability and stability, in 

addition to potency and selectivity (117).   

Many crystal structures of FTase bound with various peptide-competitive 

inhibitors have been determined (85, 118-122).  These compounds, visualized in a ternary 

complex with bound FPP, make extensive van der Waals contacts with the lipid moiety 

of FPP, analogous to peptides.  Interestingly, FTIs can mimic the extended conformation 

of the bound peptide in the ternary complex, as well as the displaced, type I β-turn 

conformation adopted by the farnesylated peptide product when an additional FPP 

molecule is bound in the active site (21, 120).  Inhibitors that bind in an extended 

conformation frequently display rapid inhibition of FTase, while inhibitors that adopt a β-

turn conformation often exhibit time-dependent inhibition, further suggesting that these 

compounds partially occupy the exit groove and overlap with the displaced product 

farnesyl moiety (68, 119, 123).  
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Less progress has been made toward the development of inhibitors that are FPP 

analogs, largely due to concerns about cell permeability and potential inhibition of other 

crucial FPP-utilizing enzymes (117).  However, a series of farnesyl-derived FTIs has now 

been derived and shows considerable promise in potency (117).  This includes FPP-

mimetic compounds, in which the diphosphate group is altered, and FPP analogs, which 

maintain the diphosphate moiety and have alterations in one or more isoprenoid chains.  

Again, the most clinically successful FPP-competitive FTIs are non-isoprenoid and are 

derived from library-screening efforts (117).  A hit identified during compound library 

screening discovered a potent and selective non-thiol peptidomimetic FTI, which turned 

out to be competitive with FPP (124).  Inhibitors derived from this series of compounds 

are not structural analogs of FPP, so they do not inhibit other FPP-utilizing enzymes such 

as squalene synthase (125).   

 Many FPP-competitive inhibitors and FPP analogs have proven very useful in the 

study of the mechanism of FTI action.  They have also been used to study the structure of 

the active site and the catalytic mechanism of FTase.  Nonhydrolyzable FPP analogs have 

been used to determine several crystal structures of FTase in ternary complexes (84, 85, 

87).  Fluorinated FPP analogs and 3-desmethyl FPP have been studied as mechanistic 

probes with yeast and mammalian FTase to examine the dissociative character of the 

transition state of FTase (95, 99).  Synthetic FPP derivatives have also been used to 

determine the stereochemical course of the FTase reaction (97, 98).   

 More recent work has led to the discovery of many classes of FPP analogs which 

are capable of modifying proteins in the cell (126-129).  Excitingly, many groups have 

found that these compounds may alter the substrate specificity of FTase, thus providing 

additional tools to study the prenylation of specific proteins and potential substrate-

specific inhibitors (129-132).  Modulating the farnesylation of selected proteins would 

allow for a more precise determination of the functions of these individual proteins, as 

well as the roles of their lipid modifications.  Combined with mechanistic studies, this 

approach may be used to determine the underlying mechanisms behind the substrate 

selectivity of FTase, which could be employed for the rational design of selective and 

potent inhibitors of prenylation.   
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Objectives of this work 

There has been a great interest in studying prenylation over the last two decades, 

and the wealth of structural and kinetic data provides an emerging picture of the 

complexity of the FTase mechanism.  Many of the pressing questions that remain 

unanswered center around the identification of the physiological substrates for FTase, as 

well as its in vivo regulation.  An increased understanding of the cell biology of FTase 

will further advance work in developing FTase inhibitors than could more specifically 

target proteins in pathways that are implicated in particular diseases.  To complement 

these studies, a biochemical approach to answering these questions provides detailed 

information that cannot be determined in vivo, and a better description of the catalytic 

mechanism of FTase should shed light on both the substrate specificity and the inhibition 

of prenylation.   

This work addresses many key questions that remain regarding the mechanism of 

FTase.  Following farnesylation, little was known about the dissociation of products from 

the enzyme.  In particular, it was not clear whether the diphosphate product is released 

concomitantly with the formation of product, or remains bound in the active site until a 

second molecule of FPP binds to the enzyme to displace it.  In Chapter 2, we report that 

the PPi product is released as fast as, or faster than, the farnesylation step.  To answer this 

question, we developed a continuous, coupled fluorescent assay to measure the release of 

PPi, cleavage by inorganic pyrophosphatase, and subsequent binding of phosphate by a 

fluorescently labeled phosphate binding protein.  Because PPi is released rapidly, this 

assay was further developed as a convenient assay to measure prenyltransferase activity 

under both multiple and single turnover conditions.  This assay, which can also be used 

more generally for any reaction where diphosphate is a product, should aid greatly in the 

study of prenyltransferases by facilitating substrate specificity studies as well as high-

throughput screens for inhibition studies.   

The dissociation of the other product, the farnesylated protein or peptide, is 

accelerated by binding of a second molecule of substrate, either FPP or peptide (89).  

This step in the reaction pathway is quite unique, and may be important in the 

physiological regulation of farnesylation.  In Chapter 3, we present a direct fluorescent 

assay to measure the dissociation of farnesylated product, and show that this process is 
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dependent on both the concentration of FPP and Mg2+.  We also report unexpected 

observations for a series of FPP analogs designed to alter the FPP conformational change 

and/or the chemical farnesylation step in the FTase reaction.  While these compounds 

introduce major changes in the steric and electrostatic properties of the isoprene groups 

of FPP, no change in either of these catalytic steps is observed.  Instead, the FPP-

catalyzed product dissociation is affected, leading to a reduction in steady-state turnover.  

These studies implicate the binding of a second molecule of substrate to the E•product 

complex as an important determinant of the substrate specificity, and potentially the 

cellular regulation of FTase.   

We further investigate the mechanism of farnesylated product dissociation in 

Chapter 4, where we have determined a novel inhibitory mechanism for a select group of 

FPP-competitive inhibitors.  Deletion of positively charged residues in the diphosphate 

binding pocket (K294β and R291β) of FTase enhances the potency of these inhibitors by 

as much as 400-fold, based upon changes in both IC50 and Ki values.  For wild-type (WT) 

FTase, the potency of these inhibitors is enhanced by as much as 170-fold by the addition 

of exogenous phosphate ions.  This phosphate synergy is almost completely lost in the 

K294β and R291β mutants, suggesting that phosphate ions enhance inhibitor potency in 

WT FTase by shielding the positive charge of these residues.  The direct binding 

affinities of both FPP and the inhibitor to the free enzyme are not consistent with the Ki 

values measured under steady-state conditions.  An inhibition constant for product 

dissociation is therefore measured for WT FTase, showing that a key and novel aspect of 

the inhibitory mechanism is to slow the dissociation of farnesylated product.  

A clearer understanding of the chemical transition state of FTase would aid in the 

design of more potent, specific inhibitors, as well as provide a better mechanistic 

description of the class of enzymes that catalyze zinc-dependent sulfur alkylation.  The 

best method for investigating the structure of the chemical transition state of FTase is 

heavy atom kinetic isotope effects (KIEs) (133).  In Chapter 5, we measure the primary 
14C and α-secondary 3H KIEs at the sensitive C1 position of FPP under single turnover 

conditions of limiting FPP and excess enzyme.  These KIE studies are consistent with a 

concerted mechanism with dissociative character for mammalian FTase, and offer the 

first direct evidence of dissociative character for any member in the class of zinc-
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dependent sulfur alkylating enzymes. We explore the contribution of the leaving group to 

catalysis by reporting the α-secondary KIEs at varying Mg2+ concentrations and for 

FTase mutants in the PPi binding pocket.  The role of the nucleophile is addressed by 

determining the contribution of the Zn2+ metal ion, as measured by the α-secondary KIE 

for FTase substituted with cadmium.    

Unexpectedly, the α-secondary KIE is masked for some peptides and indicates 

that the FPP conformational rearrangement, rather than the farnesylation step, is at least 

partially rate-limiting for these peptides. KIE measurements therefore allow the 

calculation of the individual rate constants for the conformational rearrangement and 

farnesylation, and provide the first kinetic information regarding these two steps in 

catalysis.  The results presented in Chapter 5 implicate both Mg2+ as well as the PPi 

binding pocket residues in stabilizing both the conformational rearrangement of FPP and 

the transition state for farnesylation.  In addition, we show that the structure of the 

peptide substrate has an effect on the equilibrium of the conformational rearrangement of 

the FPP substrate, as well as the chemical farnesylation step. These data provide 

intriguing information about the determinants for peptide substrate specificity in the 

FTase reaction pathway.   
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CHAPTER 2                                                                                                                       
A CONTINUOUS FLUORESCENT ASSAY FOR PROTEIN 

PRENYLTRANSFERASES MEASURING DIPHOSPHATE RELEASE 1,2  
 

 

A convenient assay to measure FTase and GGTase I activity is needed to study 

inhibitors, determine the substrate specificities for these enzymes, and study their 

catalytic and kinetic mechanisms.  Currently, methods to assay prenyltransferase activity 

are labor-intensive and depend on either radiolabeled isoprenyl substrate or modified 

peptides.  Single turnover assays to measure the rate constant of prenylation are 

conducted using 3H-labeled FPP or GGPP (134).  Several multiple turnover assays have 

been developed, including a radioactive assay using 3H-labeled FPP or GGPP (93, 135-

137), a continuous fluorescent assay using a dansylated peptide (138, 139), and an assay 

using a biotinylated peptide and streptavidin-coated scintillation beads (92).  A limitation 

to high-throughput fluorescence assays measuring prenyltransferase activity is that they 

use dansylated peptides which must be synthesized (140).  In addition, the dansyl group 

may affect the binding of peptides to the enzyme, limiting the usefulness of this assay for 

determining the true values for kcat and kcat/KM for peptides.  Finally, farnesylation of 

native full-length proteins cannot be assayed using this method.   

Webb and coworkers have developed a fluorescent assay to measure the kinetics 

of phosphate release from ATPases (141).  They engineered the E. coli phosphate binding 

protein (PBP) by introducing a single cysteine residue, located at the edge of the 

phosphate-binding cleft, which was then covalently labeled with the fluorophore, N-[2-

(1-maleimidyl)ethyl]-7-(diethylamino)coumarin-3-carboxamide (MDCC) (Figure 2.1). 

The fluorescence intensity of the labeled protein, MDCC-PBP, increases upon binding of 

                                                
1 Reproduced in part from Pais, J.E., Bowers, K.E., Stoddard, A.S., and Fierke, C. A. 2005. A continuous 
fluorescent assay for protein prenyltransferases measuring diphosphate release.  Analytical Biochemistry.  
345: 302-311.  Copyright 2005 Elsevier. 
2 June Pais wrote this chapter, performed all of the described experiments, and analyzed the data, with the 
exception of the cloning of the pstS gene, which was performed by Andrea Stoddard. 
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Figure 2.1  Crystal structure of MDCC-PBP 
X-ray crystal structure of the A197C phosphate binding protein from E. coli covalently 
labeled with the coumarin fluorophore, MDCC.  When Pi is bound, the protein undergoes 
a conformational change, leading to an increase in fluorescence (141-143).  Protein Data 
Bank code: 1A54 (143). 
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inorganic phosphate (Pi), due to a significant change in the environment around the 

fluorophore (Figure 2.1) (142, 143).  MDCC-PBP binds Pi tightly (Kd ~ 0.1 µM) and 

rapidly, with a second-order rate constant of 1.4 x 108 M-1s-1 (141).  Measurement of the 

formation of a phosphate product using MDCC-PBP has been used to determine the 

single turnover kinetic rate constants of ATP hydrolysis catalyzed by actomyosin 

subfragment 1 from rabbit skeletal muscle (141), nucleoside triphosphate hydrolysis by 

actomyosin (144), and DNA-stimulated dTTP hydrolysis activity by T7 helicase (145).  

Here we present a continuous, fluorescence-based assay which uses MDCC-PBP 

coupled to inorganic pyrophosphatase (PPiase) to measure the rate of diphosphate (PPi) 

formation and release during the FTase-catalyzed reaction.  Studies of the single turnover 

kinetics of PPiase from Saccharomyces cerevisiae reveal that PPi is rapidly cleaved (800 

s-1) in the presence of Mg2+ (146).  The release of the PPi product from the FTase•product 

complex is coupled to PPi cleavage catalyzed by PPiase, and the subsequent binding of Pi 

by MDCC-PBP is detected as an increase in fluorescent intensity (Scheme 2.1).  

Diphosphate release for both FTase and GGTase I equals the rate constant of the 

prenylation step, as measured by radiometric assays, indicating that diphosphate release 

occurs faster than, or concomitantly with, the formation of the prenylated peptide for both 

prenyltransferases.  This assay can therefore be applied as a general method to measure 

prenyltransferase activity in vitro, as well as any reaction where diphosphate is a product.  

The reactivity of a variety of peptide substrates with a broad range of rate constants under 

both single turnover and multiple turnover conditions has been measured using this assay.  

Furthermore, this assay is useful for studying substrate analogs and inhibitors of 

prenyltransferases.  This assay is the first non-radioactive assay developed which can be 

used to assay the reactivity of FTase with unmodified peptides as well as full-length 

proteins.  A high throughput assay to measure steady state turnover for both FTase and 

GGTase I will greatly facilitate studies of prenyltransferases, including inhibitor studies. 

 

 



 

 

37 

 

 
 
 

 

 

 

 
 
 

 
 

Scheme 2.1  Mechanism for MDCC-PBP/PPiase assay measuring FTase activity
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Experimental Procedures 

Materials 

Tritium-labeled farnesyl diphosphate ([1-3H]-FPP) was purchased from GE 

Healthcare (formerly Amersham Biosciences).  Peptides were synthesized and purified 

by high-pressure liquid chromatography to > 90% purity, as follows:  GCVLS and 

dansylated TKCVLA by Sigma-Genosys (The Woodlands, TX); TKCVIM and TKCVIS 

by Bethyl Laboratories (Montgomery, TX); and TKCVIF and TKCVIL by American 

Peptide Company (Sunnyvale, CA).  The molecular masses of all peptides were 

confirmed by electrospray mass spectrometry.  7-Diethylamino-3-(((2-maleimidyl)ethyl)-

amino)carbonyl) coumarin (MDCC) was purchased from Molecular Probes (Eugene, 

OR).  All DNA primers were purchased from Invitrogen.  Farnesyl diphosphate (FPP), 

purine nucleoside phosphorylase (PNPase), 7-methylguanosine (MEG), and inorganic 

pyrophosphatase from bakers’ yeast (PPiase) were purchased from Sigma-Aldrich. 

Disodium hydrogen phosphate (NaPi) and sodium diphosphate (NaPPi) of the highest 

chemical purity available (Biochemika Ultra) were purchased from Fluka (Sigma-

Aldrich).  The concentrations of NaPi and NaPPi were determined by inductively coupled 

plasma-mass spectrometry (Keck Elemental Geochemistry Laboratory, University of 

Michigan, Ann Arbor, MI).  All other chemicals used were reagent grade.   

 

Cloning of E. coli pstS gene 

 DNA encoding the wild-type PBP gene, minus the periplasmic localization 

sequence, was generated by PCR amplification of the pstS gene from the E. coli strain 

DH5α genomic DNA with two sets of primers, 5’-CAGTAACGACATATGGAAGCAA 

GCCTGACAGGTGCAGG-3’ and 5’-GAAGAGGTGGTGCTCGAGGTACAGC-3’.  

Each PCR amplification reaction was catalyzed by pfu-turbo DNA polymerase 

(Stratagene). The resulting fragments were purified using a 1% agarose gel and then 

cloned into a pCR-Blunt II-TOPO vector and transformed into OneShot TOP10 

chemically competent E. coli cells (Invitrogen).  The purified TOPO plasmid containing 
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the insert was then digested with NdeI and XhoI, and the fragments were gel purified and 

then ligated into the pET31b(+) vector (Novagen) digested with the same enzymes.  The 

final gene contains a C-terminal 6X histidine tag and lacks the N-terminal periplasmic 

signal sequence.  The plasmid pET31b-PBP was transformed into E. coli BL21(DE3) 

cells, and the cells were grown in LB medium containing 100 mg L-1 ampicillin.  The 

plasmid was purified using a Plasmid Midi Kit (Qiagen, Valencia, CA).  The sequence of 

the entire gene was confirmed by DNA sequencing (University of Michigan DNA 

Sequencing Core, Ann Arbor, MI).   

 

Preparation of A197C PBP and MDCC-PBP 

 The A197C PBP mutant was prepared from the pET31b-PBP plasmid using the 

QuikChange site-directed mutagenesis kit (Stratagene, La Jolla, CA) with the codon 

change of GCT to TGT. The plasmid was transformed into SMART cells (Gene Therapy 

Systems, San Diego, CA), and the cells were grown in LB medium containing 100 mg L-1 

ampicillin.  The plasmid was purified and sequenced as described above. 

 The A197C PBP mutant is overexpressed in E. coli BL21(DE3) pET31b-PBP 

cells, grown at 37 0C to an OD600 of 0.6 in LB medium containing 100 mg L-1 ampicillin. 

Protein expression is induced by the addition of 1 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG) and incubated at 25 0C for 14-16 hours.  The harvested 

cells are resuspended in 50 mM Hepes, pH 8.5, and 100 mM KCl, and lysed by a single 

pass through a microfluidizer (Microfluidics, Newton, MA).  The supernatant is clarified 

by centrifugation and nucleic acids precipitated with 1% (w/v) streptomycin sulfate at 4 
0C.  The supernatant is loaded, 32 mg of total protein per run,  onto a 7.8 mL Ni2+-

charged POROS Metal Chromatography Affinity column (Applied Biosystems, Foster 

City, CA), washed in 50 mM Hepes, pH 8.5, 100 mM KCl buffer, and eluted with a 0-

150 mM imidazole gradient.  The protein elutes at ~ 50 mM imidazole.  Fractions 

containing pure A197C PBP are pooled and concentrated using Amicon Ultra centrifugal 

filter devices with a 10,000 molecular weight cutoff (MWCO) filter (Millipore, Billerica, 

MA), and then dialyzed at 4 0C against 20 mM Tris pH 8, 1 mM tris(2-

carboxyethyl)phosphine hydrochloride (TCEP).  Protein concentration and yield are 
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determined by absorbance at 280 nm using a molecular weight of 35276 g mol-1 and a 

calculated extinction coefficient of 64204 M-1cm-1 (147). 

 The reaction of A197C PBP with MDCC is performed as described previously 

(142).  Because MDCC-PBP binds nanomolar concentrations of Pi, a “Pi mop” consisting 

of purine nucleoside phosphorylase (PNPase) and its substrate, 7-methylguanosine 

(MEG), is used to irreversibly sequester Pi as ribose-1-phosphate (141).  A197C PBP (85 

µM) and MDCC (780 µM) are incubated in 20 mM Tris•HCl, pH 8, 1 mM TCEP, 200 

µM MEG, and 0.2 units mL-1 PNPase at room temperature for 30 minutes, protected from 

light.  Low molecular weight species are removed and the buffer exchanged to 50 mM 

Hepes, pH 8.5, 100 mM KCl using Amicon Ultra centrifugal filter devices (10,000 

MWCO), followed by further purification on a POROS MC column exactly as described 

above.  Pure, labeled fractions are pooled, concentrated, and dialysed against 50 mM 

Hepes, pH 7.8, 2 mM TCEP at 4 0C, followed by dialysis against 50 mM Hepes, pH 7.8, 

2 mM TCEP, 0.5 units mL-1 PNPase, and 15 µM MEG to remove residual phosphate.  

The small molecules in the “Pi mop” are removed by exchanging the buffer to 50 mM 

Hepes, pH 7.8, and 2 mM TCEP using Amicon Ultra centrifugal filter devices (10,000 

MWCO).   The purity of the labeled protein was confirmed by SDS-PAGE.  Protein 

concentration was determined as described above, and stocks were stored at –80 0C.   

 

Preparation of FTase 

 Protein FTase expression and purification were carried out in E. coli BL21(DE3) 

FPT/pET23a cells as described previously (90, 148).  The purified FTase was determined 

by SDS-PAGE to be >90% pure.  The protein was dialyzed at 4 0C against 50 mM Hepes, 

pH 7.8, and 2 mM TCEP, and stored at –80 °C.  Protein concentration was determined by 

active site titration as previously described (90). 

 

Fluorescence Measurement of Pi binding to MDCC-PBP 

The fluorescence spectrum of MDCC-PBP was measured in the absence and 

presence of 15 µM NaPi, using an SLM-Aminco Bowman series 2 luminescence 
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spectrometer with a 1 cm path length, an excitation wavelength of 430 nm, and an 

emission wavelength varying from 430 nm to 550 nm (bandpass = 8 nm).  The kinetics of 

Pi binding to MDCC-PBP were measured at 25 0C on a KinTek model SF-2001 stopped-

flow apparatus (KinTek Corporation, Austin, TX) (Scheme 2.2).  The sample was excited 

at 430 nm and fluorescence emission was measured at > 450 nm using a cutoff filter 

(Corion LL-450-F).  Prior to each experiment, the stopped-flow syringes and mixing 

chamber were preincubated in buffer containing “Pi mop” (50 mM Heppso, pH 7.8, 5 

mM MgCl2, 2 mM TCEP, 0.5 units mL-1 PNPase, and 15 µM MEG).  A solution 

containing MDCC-PBP in buffer (50 mM Heppso, pH 7.8, 5 mM MgCl2, and 2 mM 

TCEP) was rapidly mixed (at a flow rate of 10 mL s-1) with an equal volume of solution 

containing NaPi in the same buffer (Scheme 2.2).  Final concentrations were 5 µM 

MDCC-PBP and 0.4-1 µM NaPi.  Fluorescence emission was measured as a function of 

time, and at least five kinetic traces were averaged and Eq. 1 was fit to these data to 

determine the observed rate constant, kobs, where Fl is the observed fluorescence at <450 

nm at time t, ∆Fl is the amplitude, and Flmax is the fluorescence endpoint. 

! 

Fl = "Fl* e
#kobs t + Fl

max    Eq. (1) 

 

PPi cleavage by PPiase 

The rate of PPi cleavage catalyzed by PPiase was determined by coupling the 

reaction to the binding of Pi by MDCC-PBP.  Assays were conducted at 25 0C on the 

stopped-flow spectrometer as described above, where a solution containing MDCC-PBP 

and PPiase in buffer (50 mM Heppso, pH 7.8, 5 mM MgCl2, and 2 mM TCEP) was 

rapidly mixed with an equal volume of solution containing NaPPi in the same buffer 

(Scheme 2.2).  Final concentrations were 5 µM MDCC-PBP, 34 units mL-1 PPiase, and 

200 nM NaPPi.  At least five kinetic traces were averaged and Eq. 1 was fit to these data 

to determine kobs.  In FTase assays, the PPiase concentration was adjusted so that both the 

cleavage of PPi by PPiase and the binding of Pi by MDCC-PBP were rapid (kobs > 70 s-1). 
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Scheme 2.2  Stopped-flow setup for measuring Pi binding by MDCC-PBP 
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Measurement of diphosphate release/single turnover assay on stopped-flow 

spectrophotometer 

The rate of diphosphate release during a single turnover of FTase was determined 

using the following assay.  The stopped-flow syringes and cell were washed and pre-

incubated in buffer with “Pi mop” (50 mM Heppso, pH 7.8, 2 mM TCEP, 5 mM MgCl2, 

0.5 units mL-1 PNPase, and 15 µM MEG) prior to the experiment.  FTase and FPP in 

buffer (50 mM Heppso, pH 7.8, 2 mM TCEP and 5 mM MgCl2) were preincubated in 

one syringe at 25 0C, and then rapidly mixed with an equal volume of a solution 

containing peptide, MDCC-PBP, and PPiase in the same buffer (Scheme 2.2).  The final 

concentrations were 800 nM FTase, 200 nM FPP, saturating (100 µM) peptide, 5 µM 

MDCC-PBP, and 34 units mL-1 PPiase.  At least five kinetic traces were averaged and 

Eq. 1 was fit to these data to determine kobs. 

 

Steady-state assay for prenyltransferases 

This assay was further adapted to measure steady-state turnover in a high 

throughput 96-well plate format. To measure kcat/KM, reactions were initiated by adding 

50 nM FTase, 5 µM MDCC-PBP, and 34 units mL-1 PPiase in buffer (50 mM Heppso, 

pH 7.8, 2 mM TCEP, 5 mM MgCl2) to solutions containing 10 µM FPP and varying 

concentrations (0-10 µM) of peptide in the same buffer.  The change in fluorescence 

emission was monitored over time with an excitation wavelength of 430 nm and an 

emission filter of 450 nm, using a Polarstar Galaxy fluorescence platereader (BMG Lab 

Technologies, Durham, NC).  Nonbinding, polystyrene plates (Corning Incorporated, 

Corning, NY) were used for these experiments.  The fluorescence signal was converted to 

concentration of product using a standard curve measuring the change in fluorescence 

emission as a function of NaPPi concentration, in the presence of PPiase.  This standard 

curve was comparable to a NaPi standard curve, as well as an FPP standard curve 

generated by repeating the experiment at a fixed peptide concentration (20 µM) and 

varying FPP concentrations (0-10 µM).  Michaelis-Menten plots of product formed/time 

versus [peptide] were generated to calculate the kcat/KM value.  Alternatively, the steady-
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state turnover was measured from the change in fluorescence in a KinTek stopped-flow 

spectrometer under these conditions. 

 

Measurement of single and multiple turnover rate constants for FTase using 

radiometric assay 

As controls, the observed single turnover rate constant (kobs) and the apparent 

second order rate constant for farnesylated peptide formation (kcat/KM) were measured 

using a radiometric assay with [1-3H]-FPP in the presence of MDCC-PBP and PPiase to 

confirm that these components do not affect the catalytic rate constants of FTase. The 

single turnover rate constant for farnesylation of the peptide GCVLS was measured in a 

KinTek rapid quench apparatus (KinTek Corporation, Austin, TX) as previously 

described (90, 95).  FTase and [1-3H]-FPP in buffer (50 mM Heppso, pH 7.8, 5 mM 

MgCl2, and 2 mM TCEP) were rapidly mixed with GCVLS in the same buffer to give 

final concentrations of 1 µM FTase, 500 nM [1-3H]-FPP, 100 µM GCVLS, 5 µM 

MDCC-PBP, and 34 units mL-1 PPiase.  The reaction was quenched at varying times 

using 80% 2-propanol and 20% acetic acid.  Farnesylated product was separated from 

unreacted [1-3H]-FPP on Whatman PE SIL G thin layer chromatography (TLC) plates in 

an 8:1:1 2-propanol/NH4OH/H2O mobile phase (90).  Corresponding bands were cut 

from TLC plates and radioactivity was quantified by liquid scintillation counting using a 

Beckman LS 6500 liquid scintillation counter.  The first order rate constant was 

calculated from a single exponential fit of the fraction product versus time (90). 

The steady state kinetic rate constant kcat/KM was measured for the peptide 

TKCVIM on the benchtop, using final concentrations of 50 nM FTase, 1 µM [1-3H]-FPP, 

and varying (0-10 µM) TKCVIM.  At various times, the reaction was quenched by 

addition of 20% acetic acid, 80% 2-propanol and placed on ice.  Samples were loaded 

directly onto TLC plates which were run as described above.  The initial rate was 

calculated from a linear fit of product formation taken from the first 10% of the reaction. 
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Results 

Preparation of MDCC-PBP 

 The preparation of MDCC-PBP has been described previously (141, 142).  Here 

we overexpressed wild-type and A197C PBP as soluble, intracellular proteins in E. coli 

by removing the periplasmic localization sequence.  The addition of a C-terminal 

histidine tag greatly facilitated the isolation and purification of PBP; a single Ni2+ column 

results in > 95% pure protein as determined by SDS-PAGE analysis.  A typical yield of 

pure A197C PBP from a 1 L growth of cells was ~375 mg.  After purification, the single 

cysteine residue was reacted with the coumarin fluorophore MDCC to yield the labeled 

protein, and the free fluorophore was then removed by ultrafiltration.  Removal of any 

bound Pi by dialyzing the purified MDCC-PBP against the “Pi mop” circumvented the 

need to include the “Pi mop” in subsequent assays, which can remove Pi bound to 

MDCC-PBP at longer time intervals.  Overall, this procedure allows the rapid preparation 

of MDCC-PBP in high yield.  The purified, fluorescently labeled MDCC-PBP shows an 

increase in fluorescence upon binding of Pi, with an emission peak at ~465 nm (Figure 

2.2). 

 

Development of assay for PPi using PPiase and MDCC-PBP 

 The binding of Pi to MDCC-PBP was measured as an increase in fluorescence 

emission with an observed rate constant of 76 ± 1 s-1 at 400 nM Pi (Figure 2.3A), similar 

to previous measurements (141, 142).  The cleavage of PPi by PPiase was also measured 

using a coupled assay with MDCC-PBP (Figure 2.3B).  To investigate whether this assay 

could be adapted to measure the formation of PPi, PPi was mixed with MDCC-PBP in 

the presence of PPiase.  The observed rate constant for the fluorescence increase is 77 ± 2 

s-1 upon mixing MDCC-PBP and PPiase with 200 nM PPi, identical to the rate constant 

for binding 400 nM Pi.  These data demonstrate that PPi cleavage by PPiase is rapid 

relative to Pi binding under these conditions.  Indeed, kinetic studies of yeast PPiase have 

indicated that the cleavage of PPi in the presence of Mg2+ is 800 s-1 at pH 7.2 and 25 0C,  
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Figure 2.2  Fluorescence of MDCC-PBP 
Fluorescence emission spectrum for 7 µM MDCC-PBP in 50 mM Heppso, pH 7.8, in the 
absence and presence of 15 µM NaPi.   Samples were excited at 430 nm, using an SLM-
Aminco Bowman series 2 luminescence spectrometer with a 1 cm path length and a 
bandpass width of 8 nm. 
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Figure 2.3  MDCC-PBP/PPiase assay 

Stopped-flow fluorescence measurement of Pi binding by MDCC-PBP alone (A) and 
coupled to cleavage of PPi by PPiase (B).  Samples were excited at 430 nm, and 
fluorescence emission was measured at wavelengths greater than 450 nm.  Final solutions 
contained 5 µM MDCC-PBP and 400 nM NaPi (A) or 200 nM NaPPi and 34 units ml-1 
PPiase (B) in 50 mM Heppso, pH 7.8, 5 mM MgCl2, and 2 mM TCEP.  Each trace 
represents an average of five measurements.  A single exponential is fit to the data. 
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and is too fast to measure over a broad pH and temperature range (146, 149, 150).  In the 

absence of PPiase, a slow increase in fluorescence is observed when PPi is mixed with 

MDCC-PBP, most likely due to either the binding of PPi by MDCC-PBP or the slow 

hydrolysis of PPi (data not shown).   

 

Measurement of FTase-catalyzed diphosphate release  

 GCVLS corresponds to the C-terminal sequence of the FTase substrate H-Ras, 

which has been well characterized mechanistically and kinetically.  The single turnover 

rate constant for the formation of farnesylated GCVLS in 50 mM Heppso, pH 7.8, 2 mM 

TCEP, and 5 mM MgCl2 has previously been measured as 4.6 ± 0.5 s-1 by a radioactive 

assay using [1-3H]-FPP (114).  The steady-state turnover rate constant is much slower 

than this at 0.01 s-1, due to slow product dissociation (89, 92).  To measure diphosphate 

dissociation from the FTase•product complex, the formation of “free” diphosphate was 

measured by a fluorescence change resulting from the formation of Pi catalyzed by 

PPiase and binding to MDCC-PBP, under conditions in which both PPi cleavage and Pi 

binding to PBP are rapid relative to the rate of PPi dissociation from the ternary complex 

(Scheme 2.1).  Using this assay, the observed rate constant for formation of free PPi after 

reacting the peptide GCVLS with FTase•FPP under single turnover conditions is 4.7 ± 

0.1 s-1 in the presence of 5 mM Mg2+ at 25 0C, pH 7.8 (Figure 2.4).  This value is 

identical within experimental error to the rate constant measured by the radioactive assay 

(114).  In addition, the farnesylation rate constant for GCVLS measured by the 

radioactive assay in the presence of MDCC-PBP, PPiase, PNPase, and MEG is 

unchanged, demonstrating that these components do not affect the rate constant for 

farnesylation or product release (data not shown).  Using the MDCC-PBP assay, we 

demonstrated that varying the concentration of peptide (50-800 µM), MDCC-PBP (2-10 

µM), or PPiase (17-102 units mL-1) has no effect on the observed rate constant for PPi 

formation.  Furthermore, the amplitude of the fluorescence change is dependent on the 

concentration of FPP.  Finally, no fluorescence change is observed in the absence of 

FTase, FPP or peptide (data not shown).  In the absence of PPiase, a slow increase in  
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Figure 2.4  Formation of dissociated PPi during FTase reaction 

Stopped-flow measurement of diphosphate dissociation from the transiently formed 
FTase•PPi•farnesylated peptide complex using the peptide GCVLS.  The reaction was 
initiated by mixing the FTase•FPP complex with GCVLS, PPiase, and MDCC-PBP.  
Samples were excited at 430 nm, and fluorescence emission was measured at more than 
450 nm.  Final solutions contained 800 nM FTase, 200 nM FPP, 100 µM GCVLS, 34 
units ml-1 PPiase , and 5 µM MDCC-PBP in 50 mM Heppso, pH 7.8, 5 mM MgCl2, and 2 
mM TCEP.  The trace represents an average of five measurements.  A single exponential 
is fit to the data. 
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fluorescence is observed that can be attributed to the slow binding of PPi by MDCC-PBP 

(data not shown).  When the “Pi mop” is included in assays, a slow decrease in 

fluorescence is observed over longer time intervals (with an observed rate constant of 

0.007 s-1).  The “Pi mop” was therefore omitted for slower reactions.  As described in the 

Experimental Procedures, MDCC-PBP with no bound phosphate can be obtained by 

dialyzing MDCC-PBP against the “Pi mop,” and subsequent removal of the “Pi mop” by 

ultrafiltration. 

The rate constant for PPi release from the FTase•product complex has previously 

not been measured.  Here we demonstrate that PPi dissociation is faster than the rate 

constant for the farnesylation of peptide.  This assay can therefore be used to measure the 

single turnover rate constant for FTase in real time, a significant advantage compared to 

the radiometric assay which is currently used to measure the single turnover rate constant 

for prenyltransferases. 

To further investigate the peptide specificity of FTase, this assay was used to 

measure the single turnover rate constant of farnesylation for a variety of peptides 

corresponding to the C-terminal sequence of the K-Ras4b template with varying X 

groups, including TKCVIS (6.3 ± 0.1 s-1) and TKCVIL (0.11 ± 0.01 s-1) (Table 2.1).  The 

values for kobs are similar (within a factor of 2) to those determined using the radiometric 

assay (Table 2.1), and demonstrate that the identity of the X group significantly 

influences the reactivity of peptides with FTase. This assay has also been applied to 

measure geranylgeranylation catalyzed by GGTase I, as well as prenylation using 

isoprenyl diphosphate substrate analogs which lack a radiolabel (24, 77, 151).  Although 

Mg2+ is a required cofactor for PPiase, the Mg2+ concentration in this assay can be 

decreased to 0.01 mM without significantly compromising the activity of PPiase.  

Therefore, this assay can also be used to investigate the Mg2+ dependence of the FTase 

single turnover rate constant (77). 

 

Continuous assay to measure kcat/KM for prenyltransferases 

 The MDCC-PBP/PPiase assay was further extended for use as a high throughput 

assay to measure steady-state turnover catalyzed by FTase.  Under multiple turnover  
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Table 2.1  Single turnover rate constants catalyzed by FTase for varying peptide 
sequences a 

kobs (s-1) 
Peptide 

MDCC-PBP/PPiase assay Radiometric assay 

GCVLS 4.7 ± 0.1 4.5 ± 0.5 

TKCVIS 6.3 ± 0.1 6 ± 1b 

TKCVIL 0.11 ± 0.01 0.07 ± 0.01b 

a Final solutions contained 800 nM FTase, 200 nM FPP, 100 µM peptide, 34 units mL-1 PPiase, and 5 µM 
MDCC-PBP in 50 mM Heppso, pH 7.8, 5 mM MgCl2, and 2 mM TCEP.  All assays were conducted at 25 
0C. 
b Data taken from ref. (24). 
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conditions, a linear increase in fluorescence was observed with an initial velocity that is 

dependent on the concentration of the peptide TKCVIM (Figure 2.5).  The change in 

fluorescence is converted to the concentration of diphosphate formed by using a standard 

curve measuring fluorescence change as a function of [NaPPi] (Figure 2.6).  The slope of 

the standard curve was used to convert the change in fluorescence to the change in 

concentration of product.  The initial rate in [product]/time was plotted as a function of 

peptide concentration to determine the kcat/KM
peptide value of 100 ± 30 mM-1s-1, using the 

Michaelis-Menten equation (Figure 2.7).  As a control, FPP was varied (0-20 µM) at a 

fixed, saturating concentration of peptide to confirm that 10 µM FPP was saturating (data 

not shown).  To verify the ability of the MDCC-PBP/PPiase assay to accurately measure 

kcat/KM
peptide for FTase, steady-state turnover was also measured on the stopped-flow 

spectrometer to compare with results from the platereader assay.  Conditions were 

identical to those used on the platereader, and the results confirm a linear increase in 

fluorescence, with a kcat/KM
peptide value (120 ± 50 mM-1s-1 for TKCVIM) comparable to 

that obtained on the platereader (Table 2.2).    

The steady-state assay described here may be used in a high throughput format to 

screen a large number of substrates.  Peptides with a broad range of specificity constants 

(TKCVIM, TKCVLA, and TKCVIF) were tested using this assay and were compared 

with the values measured using the radiometric assay or with dansylated peptides (Table 

2.2).  Values for kcat were also determined by fitting the Michaelis-Menten equation to the 

data for each peptide (0.10 ± 0.01 s-1 for TKCVIM, 0.08 ± 0.02 s-1 for TKCVLA, and 

0.0025 ± 0.0003 s-1 for TKCVIF).  This assay is comparable to the radioactive assay, 

with a kcat/KM value for TKCVIM that is slightly higher (100 ± 30 mM-1s1 versus 70 ± 20 

mM-1s-1) but within error.  In general, the values for kcat/KM
peptide

 measured by the MDCC-

PBP/PPiase assay are slightly higher (≤ 2-fold) than the values measured using the 

dansylated peptide assay.  These differences could be due to the dansyl group on the 

peptides which may decrease the reactivity of these peptides with FTase. This 

discrepancy may also be explained by slight inhibition by PPi for the radioactive and 

dansylated peptide assay, which would not occur for the MDCC-PBP/PPiase assay where 

PPi is removed.  Overall, these data demonstrate that the MDCC-PBP/PPiase assay can 

accurately measure steady-state turnover for peptides with a wide range of rate constants.   
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Figure 2.5  Initial velocity for TKCVIM 
Initial rates of farnesylation of the peptide TKCVIM measured using the MDCC-
PBP/PPiase assay at varying concentrations of peptide:   0 µM;  0.5 µM;  0.8 µM; 
 1 µM;  2 µM; and  7µM. Fluorescence was measured in 96-well plates, using an 
excitation wavelength of 430 nm and an emission filter of 450 nm.  Final solutions 
contained 50 nM FTase, 10 µM FPP, 34 units mL-1 PPiase, and 5 µM MDCC-PBP in 50 
mM Heppso, pH 7.8, 5 mM MgCl2, and 2 mM TCEP. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6  PPi standard curve 
Standard curve measuring fluorescence change of MDCC-PBP as a function of PPi 
concentration.  Fluorescence was measured in 96-well plates, using an excitation 
wavelength of 430 nm and an emission filter of 450 nm.  Final solutions contained 5 µM 
MDCC-PBP, 34 units mL-1 PPiase, 50 mM Heppso, pH 7.8, 5 mM MgCl2, and 2 mM 
TCEP.   
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Figure 2.7  Michaelis-Menten plot for TKCVIM 

Measurement of farnesylation of TKCVIM catalyzed by FTase under multiple turnover 
concentrations, under the same conditions as described in Figure 2.5.  Initial velocities 
were determined from a linear fit to the first 10% of the FTase reaction, and converted 
from fluorescence to product concentration by the Pi and PPi standard curves.  The 
Michaelis-Menten equation was fit to the data to calculate kcat and kcat/KM. 

 

 

 

Table 2.2  Multiple turnover rate constants for peptides catalyzed by FTase a 

kcat/KM (mM-1s-1) 
Peptide 

MDCC-PBP/PPiase assay Dansylated peptide assay c Radiometric assay 

TKCVIM 
100 ± 30 d 

120 ± 50 e 
41 ± 3 b 70 ± 20 

TKCVLA 40 ± 20 d 24 ± 2 ND 

TKCVIF 2 ± 1 d 1.4 ± 0.1 ND 
a Final solutions contained 50 nM FTase, 10 µM FPP, varying peptide (0-10 µM), 34 units mL-1 PPiase, 
and 5 µM MDCC-PBP in 50 mM Heppso, pH 7.8, 5 mM MgCl2, and 2 mM TCEP.  All assays were 
conducted at 25 0C. 
b Data taken from ref. (77). 
c Measurements were taken for the dansylated peptide form. 
d Measured in fluorescence platereader. 
e Measured in stopped-flow fluorimeter. 
ND = not determined. 
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Discussion 

 

The dissociation of the farnesylated product has previously been determined to be 

rate-limiting for steady state turnover catalyzed by FTase, and the binding of additional 

FPP is required for release of farnesylated product (89, 92).  However, the timing and rate 

constant of PPi dissociation in the kinetic pathway has been unclear.  The crystal 

structure of FTase complexed with farnesylated peptide and an additional FPP molecule 

does not contain bound PPi (21).  Release of PPi may therefore be required to allow the 

farnesylated peptide to move into the exit groove and an additional FPP molecule to bind.  

The fluorescent assay to measure Pi binding by MDCC-PBP, developed by Brune et al. 

(141), has been applied here to measure the rate constant of PPi release by 

prenyltransferases.  These data clearly indicate that PPi dissociation is rapid relative to 

the formation and dissociation of farnesylated product, contributing little to the steady-

state turnover rate constant.  Therefore, PPi is released rapidly after the formation of 

farnesylated peptide and does not bind tightly to the product complex, consistent with the 

crystal structure (21).   

Previous methods used to measure prenyltransferase activity have several 

limitations.  The radiometric assay is non-continuous, time-consuming, not amenable to a 

high throughput assay, and limited by the radiochemical purity of [1-3H]-FPP.  High 

throughput assays have been developed using dansylated peptides; however, these 

experiments require the synthesis of dansylated peptide libraries which are both 

expensive and time-consuming, and cannot be used to measure farnesylation of proteins.  

Both dansyl and biotinyl modifications may also affect binding as well as catalysis for 

these peptides.  The MDCC-PBP/PPiase assay can be used to measure both single and 

multiple turnover assays rapidly and easily for both peptide and protein substrates.  

However, the high concentrations of phosphate and diphosphate compounds in cell 

homogenates complicates the use of this assay for measuring activity in these complex 

mixtures.   

The MDCC-PBP/PPiase assay has been used to measure the single turnover 

kinetics of GGTase I (24, 77).  GGTase I is a slower enzyme (kchem = 0.l8 s-1), and the 

assay has been used to measure kinetics using GGPP analogs as substrates in addition to 
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GGPP (Hartman, H.L., and Fierke, C.A., unpublished data).  The assay presented here is 

currently the most comprehensive and general method to assay prenyltransferase activity.  

It can be applied to a wide range of peptides and even potentially full length proteins as 

well as substrate analogs, without requiring a radiolabel or any other type of 

modification.  The steady-state assay developed here may greatly facilitate high 

throughput screening of peptide libraries to identify novel prenyltransferase substrates, as 

well as inhibitor screens and studies to identify inhibitor targets.  In addition, this assay 

should be readily amenable to the assay of other diphosphate releasing enzymes such as 

polymerases, ligases, and aminoacyl tRNA synthetases.  For example, a general assay to 

measure diphosphate release using MDCC-PBP coupled with PPiase could potentially be 

applied to in vitro drug screening for replication enzymes of viral pathogens that utilize 

nucleotide substrates and release diphosphate.    
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CHAPTER 3                                                                                            
DISSOCIATION OF FARNESYLATED PRODUCT FROM PROTEIN 

FARNESYLTRANSFERASE 1 
  

 

An unusual feature of the reaction mechanism of FTase is that the enzyme rarely 

exists in its free, unbound form during the catalytic cycle.  The kinetic mechanism of 

FTase is functionally ordered, meaning that either FPP or peptide can bind to the free 

enzyme, but the reaction only proceeds efficiently if FPP binds first (83, 92).  The active 

site zinc ion directly coordinates the cysteine thiolate upon peptide binding to form an 

unreactive ternary complex.  On the basis of structural and mutagenesis studies, a model 

has been proposed in which the first two isoprene units of FPP rotate to bring the C1 of 

FPP within reacting distance (2.4 Å) of the peptide thiolate to form a reactive substrate 

conformation (88, 94).  After the farnesylated product is formed in the active site, it 

dissociates very slowly unless a second molecule of substrate binds to stimulate product 

release.  Both FPP and peptide can enhance product dissociation, but FPP is more 

efficient (89).  The crystal structure of the FTase•product complex in the absence of Mg2+ 

has been determined, in which the farnesylated product KKKSKTKCVIM lies in an 

extended conformation in the FTase active site (Figure 3.1A) (21).  The structure of the 

FTase•product•FPP complex has also been solved, showing that the product adopts a type 

I β-turn and the farnesyl group swings out of the active site into the “exit groove,” a 

shallow solvent-accessible hydrophobic groove that extends from the active site to the 

rim of the β subunit (Figure 3.1B) (21).  While these crystal structures provide valuable 

information about the structure of the intermediates in FTase-catalyzed product 

dissociation, very few kinetic studies have been done to delineate the mechanism of this

                                                
1 June Pais wrote this chapter, performed the described experiments, and analyzed the data, with the 
exception of the kinetic studies of Analogs 5-13, which were performed and analyzed by Yuta Suzuki.  All 
FPP analogs were provided by Thangaiah Subramanian and H. Peter Spielmann at the University of 
Kentucky.   
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Figure 3.1  FPP-catalyzed product dissociation 
X-ray crystal structure of the FTase active site for (A) the FTase•product complex, formed with FPP and KKKSKTKCVIM (Protein 
Data Bank code: 1KZP (21)); and (B) the FTase•product•FPP complex, where additional FPP has been added to the product complex 
formed in (A) (Protein Data Bank code: 1KZO (21)).   For clarity, the FTase residue K164α is omitted, and only the four terminal 
amino acids of the peptide substrate are shown.   
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step which is so crucial for multiple turnovers.  

Since FPP is capable of binding to the free enzyme, the FTase•peptide complex 

and the FTase•product complex, a better understanding of the binding interactions of the 

active site with FPP is needed and is of particular interest for designing FPP-competitive 

inhibitors.  To further understand the molecular recognition of FPP and the role of the 

structure of the isoprenoid substrate in facilitating catalysis, a series of FPP analogs was 

developed by Professor H. Peter Spielmann and coworkers at the University of Kentucky.  

These compounds are listed in Table 3.1, and vary in the size and electrostatic properties 

of one, two, or all three isoprene groups.  Analogs 1-8 contain aryl substitutions in the 

second and third isoprene units.  The first two isoprene units are thought to undergo a  

rotational change to form the active substrate conformation during the FTase reaction 

(88).  These molecules were therefore designed to probe the conformational 

rearrangement of FPP and test the steric constraints of the FTase mechanism by varying 

such things as the addition of fluorine or alkyl substituents, as well as the position of 

these substituents.  In analogs 9 and 10, the first isoprene is replaced by a phenyl moiety, 

testing the importance of this first isoprene unit in facilitating the FPP conformational 

change as predicted by crystal structures (21, 88).  Analog 11 is an analog of 

anilinogeranyl diphosphate, an efficient FTase substrate, where the terminal isoprene is 

replaced with a substituted aromatic moiety.  Similarly, analog 12 is substituted with a 

fluorinated phenyl group at the third isoprene while the first two isoprene chains of the 

FPP structure are retained.  The bulkiest compound is analog 13, in which all three 

isoprenes have been replaced by aryl units.  Analog 14 is longer than the other FPP 

analogs, and was designed as a potential analog of the 20-carbon geranylgeranyl 

diphosphate (GGPP). 

We have characterized the kinetic properties of these analogs and describe 

unexpected results regarding their effect on catalysis.  The steady-state data show that 

while some analogs are fairly good substrates of FTase, others have reduced kcat/KM 

values up to 475–fold.  However, the interpretation of steady-state kinetic studies is 

complicated by the fact that product release is the rate-limiting step at saturating substrate 

concentrations (92).  In addition, FPP binds to three species:  free FTase, FTase•peptide 

and FTase•product, the latter of which may be the species that builds up under  
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Table 3.1  Structures of FPP analogs a 

Analog Structure 

FPP OPP

First (!) 
Isoprene

Second (") 
Isoprene

Third (#)
 Isoprene  

1 
O O

OPP

 

2 
O

O
OPP

 

3 O

OPPO

 

4 O
OPPO

F

 

5 O

OPPO

F

 

6 F O

O
OPP

 

7 O

OPPO

OEt  
  a All compounds were synthesized by Thangaiah Subramanian in the laboratory of H. Peter Spielmann at 
the University of Kentucky.   



 

 61 

 
Table 3.1 (continued)   Structures of FPP analogs a 

Analog Structure 

FPP OPP

First (!) 
Isoprene

Second (") 
Isoprene

Third (#)
 Isoprene  

8 O
OPPO

OEt

F

 

9 
O

OPP

 

10 
O

OPP

 

11 
OCF3

N
H

OPP

 

12 

F

F

F

F

O
OPP

 

13 O O OPP

 

14 
O

O

O

OPP

 
a All compounds were synthesized by Thangaiah Subramanian in the laboratory of H. Peter Spielmann at 
the University of Kentucky.   
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physiological conditions (89).  To delineate the different steps of the FTase reaction, we 

use single turnover kinetics to measure the FPP conformational rearrangement and the 

chemical step.  Unexpectedly, the single turnover rate constant is the same as FPP for all 

analogs tested.  This suggests that the decreased steady-state turnover rate for the analogs 

most likely reflects the product dissociation step.  To directly test this hypothesis, we 

developed a fluorescent assay to measure FPP-catalyzed product dissociation, which 

shows that this step is dependent on FPP and Mg2+ concentrations.  All analogs tested 

catalyze product dissociation extremely slowly; in contrast, the products formed with 

these analogs dissociate rapidly when FPP is bound to the E•product complex.  These 

results suggest that the binding of a second molecule of FPP to the FTase•product 

complex is an essential step in catalysis that may regulate substrate selectivity.  

 

Experimental Procedures 

Materials  

The peptides TKCVIM, GCVLS and dansylated GCVLS were synthesized and 

purified by high-pressure liquid chromatography to more than 90% purity by Sigma-

Genosys (The Woodlands, TX), and the molecular masses of peptides were confirmed by 

electrospray mass spectrometry.  7-Diethylamino-3-(((2-maleimidyl)ethyl)amino) 

carbonyl)coumarin (MDCC) was purchased from Molecular Probes (Eugene, OR).  FPP 

analogs were synthesized in the laboratory of H. Peter Spielmann at the University of 

Kentucky as previously described (152, 153).  Farnesyl diphosphate (FPP), purine 

nucleoside phosphorylase (PNPase), 7-methylguanosine (MEG), and inorganic 

pyrophosphatase from bakers’ yeast (PPiase) were purchased from Sigma-Aldrich (St. 

Louis, MO).  All other chemicals used were reagent grade. 

 

Preparation of MDCC-PBP 

The purification and labeling of the A197C phosphate binding protein (PBP) with 

the coumarin fluorophore MDCC is performed as described in Chapter 2.  The final 
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MDCC-labeled PBP is dialyzed against 50 mM Hepes, pH 7.8, 2 mM TCEP, 0.5 units 

mL-1 purine nucleoside phosphorylase, and 15 µM 7-methylguanosine to form ribose-1-

phosphate from any residual phosphate.  The low molecular weight species of the “Pi 

mop” are removed by exchanging the buffer to 50 mM Hepes, pH 7.8, and 2 mM TCEP 

using Amicon Ultra centrifugal filter devices (10,000 MWCO).   The purity of the labeled 

protein is confirmed by SDS-PAGE.  Protein concentration and yield are determined by 

absorbance at 280 nm using a molecular weight of 35276 g mol-1 and a calculated 

extinction coefficient of 64200 M-1cm-1 (147), and protein stocks are stored at –80 0C. 

 

Preparation of WT FTase 

 Recombinant rat protein FTase expression and purification are carried out in E. 

coli BL21(DE3) FPT/pET23a cells as described previously (90, 148).  The purified FTase 

was determined by SDS-PAGE to be >90% pure.  The protein is dialyzed at 4 0C against 

50 mM Hepes, pH 7.8, and 2 mM TCEP, and stored at –80 °C.  The concentration of 

FTase is determined by active site titration as previously described (90). 

 

Single turnover kinetics 

The single turnover rate constant is determined by measuring the release of 

diphosphate (PPi) using a fluorescently labeled phosphate binding protein (MDCC-PBP) 

coupled with PPi cleavage by inorganic pyrophosphatase (PPiase), as described in 

Chapter 2.  FTase is preincubated with FPP or analog for >15 minutes at room 

temperature, and then rapidly mixed with  a peptide solution containing MDCC-PBP and 

PPiase.  The final concentrations used are 800 nM FTase, 200 nM FPP/analog, 25 µM 

peptide, 5 µM MDCC-PBP, 34 units mL-1 PPiase, 50 mM Heppso, pH 7.8, 5 mM MgCl2 

and 2 mM TCEP.  Experiments are conducted at 25 0C using a KinTek model SF-2001 

stopped-flow apparatus (KinTek Corporation, Austin, TX) to detect an increase in 

fluorescence upon binding of inorganic phosphate to MDCC-PBP (λex = 430 nm, λem = 

450 nm Corion LL-450-F cutoff filter).  The stopped-flow syringes and mixing chamber 

are preincubated prior to experiments in buffer containing a “Pi mop” (50 mM Heppso, 
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pH 7.8, 5 mM MgCl2, 2 mM TCEP, 0.5 units mL-1 PNPase and 15 µM MEG).  At least 

five kinetic traces are averaged and the single turnover rate constant (kobs) is determined 

by fitting Eq. 1 to the data, where Fl is the observed fluorescence at <450 nm at time t, 

∆Fl is the amplitude, and Flmax is the fluorescence endpoint. 

! 

Fl = "Fl* e
#kobs t + Fl

max    Eq. (1)  

 

Steady-state kinetics 

The steady-state kinetic parameters kcat, KM and kcat/KM are determined from the 

dependence of the initial velocity on the concentration of FPP or analog at saturating 

dansylated peptide (dns-GCVLS) concentration.  The initial velocity is measured from 

the time-dependent increase in fluorescence intensity (λex = 340 nm, λem = 520 nm) upon 

farnesylation of dansylated GCVLS, as described previously (139, 140, 152).  Reactions 

are initiated by the addition of FTase (25 nM final concentration) to solutions containing 

5 µM  dns-GCVLS, varying (1-20 µM) FPP/analog, 50 mM Heppso, pH 7.8, 5 mM 

MgCl2, and 2 mM TCEP at 25 oC.  The fluorescence intensity over time is measured for 

the first 10% of the reaction, using a Polarstar Galaxy fluorescence plate reader (BMG 

Laboratory Technologies, Durham, NC).  The initial velocity of the reaction in 

fluorescence units s-1 (R) is converted to the velocity of the product formed in µM s-1 (v) 

using Eq. 2, where P is the concentration of the limiting substrate and Fmax is the 

amplitude in fluorescence measured from the endpoint of each experiment (152).   

  

! 

v =
R * P

Fmax

     Eq. (2)  

The values of the steady-state kinetic parameters kcat, KM, and kcat/KM are calculated from 

a fit of the Michaelis-Menten equation to the initial v versus [S] data.   

 

Product dissociation kinetics 

A product complex (FTase•farnesyl/analog-dns-GCVLS) is formed by 

preincubation of equimolar concentrations of FTase (5 µM) and FPP/analog (5 µM) for 

15 minutes at 25 oC followed by addition of an equal concentration of dns-GCVLS (5 
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µM) and incubation for 1 hour at 25 oC in 50 mM Heppso, pH 7.8, 2 mM TCEP, and 5 

mM MgCl2.  Measurement of the rate constant for product dissociation is initiated by 

simultaneous 250-fold dilution and addition of excess FPP/analog (0-200 µM) to 

stimulate dissociation of product, and unlabeled GCVLS (10 µM) to ensure that FTase 

does not reassociate with the released dansylated product.  The increase in fluorescence 

intensity (λex = 340 nm, λem = 475 nm) due to dissociation of the dansylated product is 

monitored as a function of time, using an SLM-Aminco Bowman series 2 luminescence 

spectrometer with a 1 cm path length.  The observed rate constant for product 

dissociation, kpr, is determined by fitting Eq. 3 to the data where Pt is the fluorescence at 

time t, and P∞ is the fluorescence endpoint, which varied from 3-10 (PMT = 700V).  

! 

Pt

P"
= 1# e

#kpr $t      Eq. (3) 

Unlabeled GCVLS at this concentration does not stimulate product dissociation, so that 

kpr is dependent on the concentration of FPP and a weighted fit of these data to Eq. 4 is 

used to determine 

! 

K
1/2

FPP  and kpr
max, the product dissociation rate constant at saturating 

concentrations of FPP.   

! 

kpr =
kpr
max

" FPP[ ]
K1/2
FPP + FPP[ ]

       Eq. (4) 

The magnesium dependence of the product dissociation step was determined by 

measuring the kpr as a function of Mg2+ concentration, maintaining the ionic strength at 

0.2 M with NaCl.  A weighted fit of Eq. 5 to these data was used to determine the 

apparent dissociation constant (KMg), the rate constant for product dissociation at 

saturating Mg2+ concentrations (kmax
Mg) and the rate constant for product dissociation in 

the absence of magnesium (k0). 

 

! 

kpr =
kmax

Mg

1+ KMg / Mg
2+[ ]

+ k0     Eq. (5)  
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Results 

Reactivity of FPP substrate analogs 

The FPP analogs depicted in Table 3.1 introduce a number of different alterations 

in the structure and functionality of the FPP molecule.  To determine the effect of these 

substitutions on the chemistry of the FTase reaction, we measured the single turnover rate 

constant using the MDCC-PBP/PPiase fluorescent assay described in Chapter 2.  

Surprisingly, the observed rate constant under single turnover conditions (kobs) for all of 

the FPP analogs is very similar to that measured with FPP (Table 3.2).  Kinetic isotope 

effects experiments (described in Chapter 5) have demonstrated that both the chemical 

farnesylation step and the FPP rotational rearrangement to form the active substrate 

conformation can contribute to the observed single turnover rate constant.  To delineate 

the rate constants for these two steps, reactivity was measured for two peptides, GCVLS 

and TKCVIM, where the rate-limiting step changes from the conformational 

rearrangement  (GCVLS) to farnesylation (TKCVIM), as described in Chapter 5.  The 

observed single turnover rate constants are the same as FPP for both peptides, indicating 

that these analogs affect neither the conformational change nor the chemical steps (Table 

3.2).  Additional experiments measuring reactivity for several of these analogs with 

TKCVIF, a peptide that is farnesylated slowly (kobs = 0.27 s-1), confirm that the single 

turnover rate constant is unchanged for a variety of peptide substrates (Table 3.2).   

To determine the effect of the FPP analog substitutions on multiple turnover 

kinetics catalyzed by FTase, the steady-state kinetic parameters for reaction of all of the 

analogs with dansylated GCVLS (dns-GCVLS) were measured using a fluorescent assay 

(139, 140, 152).  Representative Michaelis-Menten plots for FPP, a moderate substrate 

(analog 6), and a poor substrate (analog 8) are shown in Figure 3.2.  The kcat/KM value for 

each of these compounds is 1.9 x 105 M-1s-1, 3 x 104 M-1s-1, and 4 x 102 M-1s-1, 

respectively.  Unlike the single turnover kinetics, these studies reveal a wide range of 

reactivity for the group of analogs studied (Table 3.2). The steady-state rate constant 

kcat/KM is termed the “specificity constant” and can be used to determine how efficiently 

the FPP analog is transferred to the peptide.  For this group of analogs, the value of 

kcat/KM decreases up to 475-fold, much more than the changes observed in the single  
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Table 3.2  Kinetic constants of FPP analogs a 

kobs (s-1) c 
Analog kcat (s-1) b KM (µM) b kcat/KM

 

(M-1s-1) b GCVLS TKCVIM TKCVIF 

FPP 0.287 ± 0.008 1.5 ± 0.2 (1.9 ± 0.3) x 105 3.4 ± 0.01 6.5 ± 0.01 0.26 ± 0.01 

1 0.030 ± 0.002 d 0.8 ± 0.08 d (4.3 ± 0.5) x 104 

d 3.3 ± 0.01 5.6 ± 0.01 0.21 ± 0.01 

2 0.200 ± 0.008 d 2.3 ± 0.1 d (4.3 ± 0.3) x 104 

d 2.7 ± 0.01 4.7 ± 0.01 0.22 ± 0.01 

3 0.0167 ± 0.0003 0.55 ± 0.09 (3.0 ± 0.5) x 104 3.7 ± 0.01 6.0 ± 0.01 0.28 ± 0.01 

4 0.05 ± 0.01 d 9.2 ± 0.3 d (5 ± 1) x 103 d 2.6 ± 0.01 4.3 ± 0.01 0.24 ± 0.01 

5 0.22 ± 0.04 5 ± 2 (4 ± 2) x 104 3.4 ± 0.01 5.3 ± 0.01 ND 

6 0.12 ± 0.01 5 ± 2 (3 ± 1) x 104 3.5 ± 0.01 5.2 ± 0.01 ND 

7 > 0.05 e > 15 e (1.4 ± 0.2) x 103 3.9 ± 0.01 6.2 ± 0.01 ND 
a Data for analogs 5-13 were collected and analyzed by Yuta Suzuki.   
b Unless otherwise noted, steady-state experiments were done by Yuta Suzuki using the dansylated peptide assay.  Final solutions contained 25 nM FTase, 5 µM 
dns-GCVLS, varying (1-20 µM) FPP/analog, 50 mM Heppso, pH 7.8, 5 mM MgCl2, and 2 mM TCEP.  Assays were conducted at 25  0C.   
c Single turnover rate constant, measured using MDCC-PBP/PPiase assay on stopped-flow fluorimeter.  Final solutions contained 400 nM FTase, 100 nM 
FPP/analog, 25 µM peptide, 5 µM MDCC-PBP, 34 units mL-1 PPiase, 50 mM Heppso, pH 7.8, 5 mM MgCl2, and 2 mM TCEP.  Assays were conducted at 25 0C. 
d Measured by H.P. Spielmann and coworkers. 
e Michaelis-Menten plot was linear up to 20 µM analog, so kcat/KM was calculated from the slope of the line. 
ND = not determined.   
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Table 3.2 (continued)  Kinetic constants of FPP analogs a 

kobs (s-1) c 
Analog kcat (s-1) b KM (µM) b kcat/KM

 

(M-1s-1) b GCVLS TKCVIM TKCVIF 

FPP 0.287 ± 0.008 1.5 ± 0.2 (1.9 ± 0.3) x 105 3.39 ± 0.01 6.48 ± 0.02 0.26 ± 0.01 

8 0.00130 ± 0.00009 3.1 ± 0.8 (4 ± 1) x 102 3.88 ± 0.01 6.13 ± 0.02 ND 

9 0.053 ± 0.002 0.5 ± 0.1 (1.1 ± 0.2) x 105 3.85 ± 0.01 5.75 ± 0.02 ND 

10 0.0031 ± 0.0001 0.2 ± 0.1 (1.5 ± 0.8) x 104 3.73 ± 0.01 6.21 ± 0.02 ND 

11 0.00215 ± 0.00005 0.49 ± 0.08 (4.3 ± 0.7) x 103 3.84 ± 0.01 5.98 ± 0.02 ND 

12 0.43 ± 0.01 6.0 ± 0.7 (7.2 ± 0.9) x 104 3.70 ± 0.01 5.21 ± 0.02 ND 

13 0.049 ± 0.001 0.2 ± 0.1 (3 ± 1) x 105 3.92 ± 0.02 6.21 ± 0.02 ND 

14 ND d,e ND d,e ND d,e 3.72 ± 0.01 6.16 ± 0.02 0.29 ± 0.01 
a Data for analogs 5-13 were collected and analyzed by Yuta Suzuki.   
b Unless otherwise noted, steady-state experiments were done by Yuta Suzuki using the dansylated peptide assay.  Final solutions contained 25 nM FTase, 5 µM 
dns-GCVLS, varying (1-20 µM) FPP/analog, 50 mM Heppso, pH 7.8, 5 mM MgCl2, and 2 mM TCEP.  Assays were conducted at 25  0C.   
c Single turnover rate constant, measured using MDCC-PBP/PPiase assay on stopped-flow fluorimeter.  Final solutions contained 400 nM FTase, 100 nM 
FPP/analog, 25 µM peptide, 5 µM MDCC-PBP, 34 units mL-1 PPiase, 50 mM Heppso, pH 7.8, 5 mM MgCl2, and 2 mM TCEP.  Assays were conducted at 25 0C. 
d Measured by H.P. Spielmann and coworkers. 
e Reaction was too slow to measure by steady-state assay. 
ND = not determined;  
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Figure 3.2  Steady-state turnover for FPP analogs 

The initial velocity for the reaction of dns-GCVLS with FPP (), analog 6 () and 
analog 8 () was measured from the time dependent change in fluorescence (λex = 340 
nm; λem = 520 nm).  Final reactions contained 25 nM FTase, 5 µM dns-GCVLS, varying 
(1-20 µM) FPP/analog, 50 mM Heppso, pH 7.8, 5 mM MgCl2 and 2 mM TCEP.  The 
Michaelis-Menten equation was fit to the data to determine kcat, KM and kcat/KM, listed in 
Table 3.2.  Data were collected and analyzed by Yuta Suzuki.   
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turnover rate constant.  An analysis of the steady-state parameters kcat and KM reveals that 

kcat decreases for all analogs, 1.3- to 220-fold, while the value of KM varies from 0.2-9.2 

µM, which are within a 7.5-fold difference from FPP (KM = 1.5 µM).  The decreases in 

kcat roughly follow the same trends observed for kcat/KM.  

Analogs 9, 12 and 13 are surprisingly very good substrates, with values of kcat/KM 

(1.1 x 105 M-1s-1, 7.2 x 104 M-1s-1, and 3 x 105 M-1s-1, respectively) that are within a factor 

of 3 of the value for FPP (1.9 x 105 M-1s-1).  Most analogs show a moderate (~ 4-13 fold) 

decrease in kcat/KM values, ranging from 1.5 x 104 M-1s-1 to 5 x 104 M-1s-1.  These include 

analogs 1-3, 5, 6 and 10.  The compounds that show the most dramatic decreases in 

kcat/KM are analogs 4, 11, 7 and 8, with respective values of 5.0 x 103 M-1s-1, 4.3 x 103   

M-1s-1, 1.4 x 103 M-1s-1, and 4 x 102 M-1s-1, corresponding to 38-, 44-, 135- and 475-fold 

reductions when compared with FPP.  Analog 14 reacts very slowly and its steady-state 

parameters could not be determined (data from Spielmann lab, not shown). 

 

Product dissociation assay 

Under multiple turnover conditions for FTase, kcat is proposed to reflect product 

release (92).  To verify that the FPP analogs alter the rate constant for product 

dissociation, we developed a fluorescent assay to directly measure FPP-catalyzed product 

dissociation from the FTase•product complex.  The E•product complex is formed by 

reacting equimolar concentrations of FTase, FPP, and dansylated GCVLS, and then 

diluted into an assay containing excess FPP to stimulate product dissociation, and 

unlabeled peptide to ensure that FTase does not reassociate with the released dansylated 

product.  The increase in fluorescent intensity due to dissociation of the dansylated, 

farnesylated peptide is monitored as a function of time (Figure 3.3A).  In the absence of 

added FPP, the dissociation rate constant is not measurable using this assay (Figure 

3.3A).  However, addition of FPP increases the apparent dissociation rate constant to a 

maximum value (kpr
max) of 0.004 ± 0.001 s-1, with a 

! 

K
1/2

FPP  of 22.3 ± 0.2 µM for WT FTase 

at 25 0C (Figure 3.3B).  These data are consistent with previous work showing that FPP 

can enhance product release with a koff value of 0.002 s-1 at 10 µM FPP and 10 0C (89).  

However, this value for the product dissociation rate constant is much lower than the  
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Figure 3.3  FPP-catalyzed product dissociation 
(A)The product dissociation rate constant was measured for the E•product complex 
(FTase•F-dns-GCVLS) after mixing with additional FPP from an increase in fluorescence 
as described in the Experimental Procedures.  The E•product complex was formed by 
incubating  20 nM FTase, 20 nM FPP, and 20 nM dns-GCVLS in 50 mM Heppso, pH 
7.8, 2 mM TCEP, and 5 mM MgCl2 at 25 0C for 1 hour.  Product dissociation was 
initiated by subsequent dilution (250-fold) into buffer containing FPP (0-200 µM) and 10 
µM unlabeled GCVLS.  Eq. 3 was fit to the data to determine kpr, the rate constant for 
product dissociation.  (B)  The dependence of  kpr on [FPP] was measured and Eq. 4 was 
fit to the data to determine a

! 

K
1/2

FPP  of 22.3 ± 0.2 µM and a kpr
max of 0.004 ± 0.001 s-1.   
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value for kcat measured by the steady-state assay with dansylated peptide (Table 3.2), 

suggesting significant differences between these two assays that affect the observed rate 

constant for product release.   

The dependence of the product dissociation rate constant on Mg2+ has also been 

measured (Figure 3.4).  Eq. 5 was fit to these data and a KMg value of 0.5 ± 0.01 mM was 

calculated.  The rate constant for product dissociation in the absence of Mg2+ (k0) is (9.0 

± 0.3) x 10-4 s-1, and the rate constant at saturating Mg2+ (kmax
Mg) is 0.0142 ± 0.0001 s-1. 

Thus product dissociation is enhanced 15-fold by saturating Mg2+ concentrations.  Mg2+ 

ions could either facilitate the binding of FPP to the E•product complex or enhance the 

rate constant for the farnesyl moiety of the product moving from the catalytic groove to 

the exit groove.  Similar to the KM for FPP, which probably reflects the binding of FPP to 

the E•product complex, the apparent KMg of 2 mM measured under steady-state turnover 

reflects Mg2+ binding to both the E•product and the E•FPP complexes (106). 

 

Product dissociation of FPP analogs 

We next analyzed the dissociation rate constant for the farnesylated product in the 

presence of the FPP analogs, and observed no change in fluorescence consistent with 

product dissociation during a two hour incubation (Table 3.3).  The only fluorescence 

increase was observed for the addition of analog 2 at a concentration of 100 µM, and the 

observed rate constant was still 10-fold lower than what was observed for FPP at only 50 

µM (Table 3.3).  Therefore, the E•product complexes formed are very stable and the 

product is released extremely slowly.  This result indicates that alteration of the FPP 

structure could increase the affinity of FTase for the product, hinder the movement of the 

product into the exit groove and its subsequent release, or affect the binding of the second 

substrate molecule to the E•product complex to catalyze product dissociation.  To 

distinguish between these possibilities, the E•product complex was formed with the 

analog, and FPP was added to see if product dissociation could be observed.  The 

dissociation of product from the E•product complexes formed with analogs can be 

stimulated by the addition of 50 µM FPP with a rate constant similar to that measured for 

the E•product complex formed with FPP.  These data imply that the slow observed  
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Figure 3.4  Effect of Mg2+ on the product dissociation rate constant 
The product dissociation rate constant was measured as described in the legend of Figure 
3.3 at varying (0-10 mM) MgCl2 concentrations.  Final solutions contained 20 nM 
FTase•F-dns-GCVLS, 150 µM FPP, and 10 µM unlabeled GCVLS in 50 mM Heppso, 
pH 7.8 and 2 mM TCEP.  The ionic strength was maintained at 0.2 M with NaCl.  A 
weighted fit of Eq. 5 to the data was used to determine a KMg value of 0.55 ± 0.01 mM, a 
k0 value of (9.0 ± 0.3) x 10-4 s-1, and a kmax

Mg value of 0.0142 ± 0.0001 s-1. 
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product dissociation for the analogs is due to the inability of the FPP analogs to bind to 

the E•product complex and facilitate product dissociation (Table 3.3).  Figure 3.5 

compares the ability of analog 2 and FPP to catalyze product dissociation.  When 50 µM 

analog 2 is added to the E•product complex formed with analog 2, no fluorescence 

increase is observed.  However, the addition of 50 µM FPP to the same product complex 

results in product dissociation with an observed rate constant (0.0026 s -1) identical to that 

observed for the E•product complex formed with FPP (Figure 3.5).   Similar results were 

observed for all analogs tested (analogs 1-4 and 14), where the product dissociation was 

“rescued” by the addition of FPP to the E•product complex (Table 3.3).  

 

Discussion 

FPP-catalyzed product dissociation 

The farnesylated product dissociates from FTase extremely slowly unless 

additional substrate is available to bind to the product complex (89, 92).  However, the 

binding affinity of the farnesylated product for FTase (KD
product = 0.78 µM) is weaker 

than either of the substrates for FTase (KD
peptide = 4 µM; KD

FPP = 10 nM) (89).  These data 

suggest that product dissociations require two steps:  a slow conformational change and a 

diffusion-controlled release of product from FTase (Scheme 3.1). The conformational 

rearrangement of the product in the active site has been confirmed by the crystal 

structures of the FTase•product and the FTase•product•FPP complexes, in which the 

product rotates into a hydrophobic “exit groove” when additional FPP is bound in the 

catalytic site (Figure 4.1) (21).   We propose that the favored conformation of the 

farnesylated product in the absence of additional FPP is in the catalytic site.  The binding 

of FPP in the catalytic site “captures” the product in the exit groove, thereby facilitating 

subsequent product dissociation (Scheme 3.1).  

The analogs in this study introduce many alterations into the FPP structure, but 

are still efficient single turnover substrates for FTase.  Because farnesylation is not 

altered for these analogs, it is likely that they bind to the catalytic site of FTase in a 

similar manner to FPP for the first turnover.  Therefore, the different reactivities  
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Table 3.3  Product dissociation kinetics for FPP analogs 

Analog 
kpr (min-1) a 

50 µM analog 
kpr (s-1) b 

50 µM FPP 

FPP 0.0026 ± 0.0001 0.0026 ± 0.0001 

1 c 0.0037 ± 0.0001 

2 ~0.00012 c,d 0.0026 ± 0.0001 

3 c 0.0054 ± 0.0001 

4 c 0.0044 ± 0.0001 

14 c 0.0034 ± 0.0001 
a Measured using dansylated product dissociation assay at 25 0C.  A 1 mL solution containing the pre-
formed product complex, FTase•analog•dns-GCVLS (5 µM, in a 1:1:1 ratio), in 50 mM Heppso, pH 7.8, 5 
mM MgCl2, and 2 mM TCEP was incubated for 1 hr at 25 0C and then 4 µL of a solution containing FPP 
analog (50 µM final concentration) and GCVLS (10 µM final concentration) in the same buffer was added.  
b Measured using dansylated product dissociation assay as described above, except that 50 µM FPP was 
added rather than FPP analog to catalyze dissociation of pre-formed product. Eq. 3 was fit to the data to 
determine kpr. 
c No fluorescence increase was observed after 2 hours. 
d The kpr value measured at 100 µM analog 2 was 0.00023 ± 0.00001 s-1.
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Figure 3.5  Product dissociation of analog 2 
Dissociation of dansylated product, as measured by a fluorescent increase as described in 
the legend of Figure 3.2, from an FTase•F-dns-GCVLS product complex catalyzed by 50 
µM FPP (), and an FTase•analog 2-dns-GCVLS product complex catalyzed by 50 µM 
analog 2 () or 50 µM FPP ().  Final solutions contained 5 µM FTase•FPP/analog-dns-
GCVLS (1:1:1), 50 µM FPP/analog, 10 µM unlabeled GCVLS, 50 mM Heppso, pH 7.8, 
5 mM MgCl2, and 2 mM TCEP.  Eq. 3 is fit to the curves to obtain kpr, the observed rate 
constant for product dissociation.   
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Scheme 3.1  Product dissociation mechanism for FTase 
In the E•product complex, the farnesyl group (F) of the product (P-F) can bind in either 
the catalytic site or the exit groove, but the product is only released when it is bound in 
the exit groove.  FPP competes with the product for the catalytic site and captures the 
product in the exit groove, thereby facilitating the dissociation of product.  
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measured under multiple turnovers is most likely due to the ability of the second substrate 

molecule to bind FTase and release product.  The product dissociation data presented 

here suggest that the analogs bind to the E•product complex in a site other than the 

catalytic FPP-binding site.  The simplest model is that they bind preferentally to the exit 

groove, thereby trapping the product in the catalytic site (Scheme 3.2). This model 

suggests that FPP has a higher affinity for the catalytic site of the E•product complex, 

while the FPP analogs have a higher affinity for the exit groove.    

It is also possible that FPP binds first in a separate site and then the product 

rearranges to its observed position in the exit groove, followed by movement of the FPP 

to the binding site observed in the crystal structure. In this scenario, FTase catalyzes 

transfer of each of these analogs to peptide substrates efficiently during the first turnover, 

and the product is released from the enzyme when FPP binds to this alternate site.  The 

binding of the analogs to this alternate site is adversely affected by alterations in the 

isoprenoid structure, explaining the differences in reactivity for the FPP analogs observed 

in multiple turnover and product dissociation studies.  However, this model requires a 

third binding site and suggests additional conformational rearrangements.  

 

FPP analogs 

Many of the compounds synthesized in this study were designed to see how 

sensitive the FPP binding site and the FTase reaction are to alterations in structure, 

particularly at the second isoprene.  Unexpectedly, the enzyme does not appear to be very 

selective and catalyzes the reaction for all substrates tested, regardless of steric 

constraints.  The conformational rearrangement of FPP prior to farnesylation is proposed 

to involve rotation of the first two isoprene units of FPP (88), and it was therefore 

surprising that the substitutions introduced into the molecule do not appear to hinder this 

movement.  The catalytic step that does exhibit selectivity, rather, is the binding of the 

isoprenoid to the E•product complex to facilitate product dissociation.   

Some features of the FPP molecule that are important to this step of catalysis are 

illuminated by comparing the values for kcat/KM, the “specificity constant,” for these 

analogs.  The most striking results are the kcat/KM values for analogs 7 and 8, which are  
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Scheme 3.2  Inhibition of product dissociation by FPP analogs 
As described in Scheme 3.1, FPP preferentially binds to the catalytic site of the E•product 
complex, where the farnesyl group is in the exit groove and product dissociation is 
favored.  The FPP analogs (APP), on the other hand, preferentially bind to the exit 
groove, trapping the product in the catalytic site and inhibiting product dissociation.   
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decreased 135 and 475-fold, respectively, compared to FPP.  Both analogs contain an 

ethoxy substituent on the aryl ring at the second isoprene of the molecule, identifying this 

region as the site of a potentially important interaction between the FPP molecule and the 

active site of FTase.  The addition of an electron-withdrawing fluorine atom on the 

phenyl ring at the third isoprene in analog 8 further reduces the reactivity relative to 

analog 7, indicating that this site of the molecule may also be important.  The 

development of additional analogs which introduce different functional groups at these 

particular positions will shed light on whether this is primarily a steric, hydrophobic or 

electrostatic effect.   

A comparison of analogs 9 and 10 indicate the importance of the correct 

positioning of the diphosphate group.  Analog 9, in which the PPi is para to the isoprenyl 

ether substituent, is a very good substrate, with kcat/KM values almost the same as FPP.  

The PPi is in the meta position in analog 10, resulting in a 13-fold decrease in kcat/KM.  In 

Chapter 5, we describe how the PPi moiety is important in facilitating the conformational 

rearrangement of FPP (88, 90).  Here we show that the diphosphate must also be involved 

in FPP-catalyzed product dissociation by making important interactions with the 

E•product complex.  Studies of FPP analogs with modified diphosphate moieties have 

demonstrated that the diphosphate bridging oxygen of FPP, and the oxygen bound to the 

C1 of the FPP substrate are both important for enhancing the dissociation rate constant 

for the farnesylated peptide (151).  The single turnover rate constant and the binding 

affinity of these analogs were unchanged, while the rate constants for product release 

were significantly slower than FPP.  Together, these results suggest that interactions of 

the diphosphate moiety of the second FPP molecule are important for FPP-catalyzed 

product dissociation.   

Analogs 13 and 14 are the two largest molecules tested, but yield very different 

results.  Analog 13 is surprisingly a very good substrate, despite containing phenyl 

substitutions instead of three isoprene units.  Analog 14, on the other hand, is such a slow 

substrate that its reactivity cannot be measured under multiple turnover conditions.  This 

analog, designed as a GGPP analog, is longer than the other substrates and it is probably 

the added length which prevents product dissociation.  Interestingly, analog 14 is still a 

good single turnover substrate, indicating that the position of the C1 of the analog must 
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be in a similar position to the C1 of FPP.  FTase binds GGPP and GPP almost as tightly 

as FPP, but transfers the prenyl group much more slowly to peptides under multiple 

turnover conditions (71, 83).  It will be interesting to determine the effect of isoprenoid 

length on the single turnover rate constant and on product dissociation by comparing 

reactivity for GGPP (a 20-carbon isoprenyl diphosphate), geranyl diphosphate (10 

carbons), and isopentenyl diphosphate (5 carbons).  A comparison of the steady-state 

kinetics for these substrates with the single turnover kinetics and direct product 

dissociation measurements described here may provide interesting information regarding 

the mechanism of isoprenoid substrate selectivity for FTase.   

 While the product dissociation step does discriminate between these different 

compounds, many analogs were surprisingly good substrates, even under multiple 

turnover conditions.  FTase, then, is fairly tolerant in the structure of the substrates that it 

will transfer to peptides.  For example, analog 13 contains three phenyl moieties in place 

of the isoprene units, and is still transferred efficiently to peptide substrates.  While this 

may seem surprising at first, many compounds designed as inhibitors of FTase have 

unexpectedly turned out to be substrates for FTase (117).  Many of these studies suggest 

that the crystal structures of FPP illustrating interactions in the inactive ternary 

complexes cannot be used to predict reactivity of FPP analogs.  For example, a series of 

analogs containing substitutions in the 7-position of FPP were predicted to interact with 

the a2 position of the Ca1a2X peptide and modulate substrate specificity (129).  While 

these compounds do exhibit differences in sequence specificity, the results do not 

correlate with the a2 position  (129).  The crystal structure of the E•product complex may 

be more helpful than ternary complexes in making predictions about the substrate 

specificity of FTase (21).  The determination of the crystal structure with an inhibitor 

bound to the E•product complex would be most valuable, and would confirm the binding 

site of the second substrate molecule for compounds that may bind in the exit groove.   

 

Implications for substrate specificity and cellular regulation 

The role of product dissociation in modulating specificity for the isoprenoid 

substrate may have implications for specificity in a cellular context.  While the enzyme 
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does not seem to discriminate when binding and transferring alkyl groups to peptide 

substrates, the tight binding of product may regulate the farnesylation and transport of 

FTase substrates.  FPP-stimulated product dissociation has been observed for a 

farnesylated full-length Ras protein, and there is substantial evidence to suggest that this 

phenomenon is physiologically relevant (89).  Crystallographers have reported that the 

FTase•product•FPP complex is quite stable under crystallizing conditions and requires 

additional peptide to release the farnesylated product from the enzyme, suggesting that 

additional cellular factors may be required for delivery and release of the farnesylated 

protein product in vivo (21).  Recent studies of FTase reactivity with a peptide library 

have identified ~60 peptides for which single turnover, but not multiple turnover, is 

observed (25).  No FPP-stimulated product dissociation was observed for these peptides, 

indicating that they bind tightly in the E•product complex (25).  Three of these peptides 

correspond to full-length proteins that are known to be farnesylated in vivo, and may 

represent a class of proteins for which additional cellular factor(s) are required to 

facilitate product dissociation.  

A possible regulatory mechanism is that the release of farnesylated product from 

FTase is stimulated by other proteins.  Possible candidates include the subsequent 

enzyme that processes prenylated proteins, the CaaX protease Rce1, but there may also 

be unidentified protein(s) responsible for escorting farnesylated proteins to the ER 

membrane and which may bind to FTase to facilitate the release of product from the 

enzyme.  While peptide-catalyzed product dissociation has been previously observed, its 

mechanism is poorly understood (89).  In the FTase•product•FPP complex, the three C-

terminal amino acids of the CaaX peptide make extensive van der Waals contacts with 

the new FPP molecule, and the sequence of the peptide product has therefore been 

proposed to modulate product release (21).  Previous data have suggested that peptides of 

one sequence can catalyze dissociation of tightly bound products of a different sequence 

from FTase, although this mechanism has not been well characterized (24). Further 

studies of the factors that facilitate product dissociation may provide information about 

structural and chemical features of the peptide substrate that influence the release of 

prenylated product from the active site of FTase.   
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Product dissociation may also be stimulated by other factors in vivo.  We show 

here that product dissociation is enhanced by Mg2+, and it is possible that intracellular 

concentrations of Mg2+ may regulate the transfer and delivery of farnesylated proteins.  

Substrate-mediated product release may be coupled to the delivery of the farnesylated 

product to a specific site, such as a compartment of the ER membrane rich in FPP or FPP 

synthase.  In addition to regulating the proper transport of farnesylated proteins, this 

mechanism may provide a means of protecting FTase in the cellular environment, by 

preventing aggregation or mislocalization of the protein in the cytoplasm.  

 

Implications for inhibitor design 

In vivo, FTase probably never exists as a free unliganded species, so that many 

FTase inhibitors actually target an enzyme complex rather than the free enzyme.  

Crystallographic studies suggest that several binding modes can be considered in the 

design of Ca1a2X-competitive FTIs (120).  Many inhibitors mimic the displaced, type I β-

turn conformation adopted by the farnesylated peptide product when an additional FPP 

molecule is bound in the active site.  Not surprisingly, bisubstrate inhibitors also adopt 

this β-turn conformation and mimic the binding of the farnesylated product in the exit 

groove of the FTase active site.  While these crystallographic studies have aided the 

design of inhibitors, they may not capture the binding mode essential to the inhibition of 

product dissociation, a phenomenon which is discussed further in Chapter 4.  Potential 

inhibitors blocking this mechanism could either slow the rearrangement of the product 

complex prior to product dissociation, or trap the enzyme in this product complex.   

An inhibitory mechanism that functions by slowing the product release step is 

demonstrated in Chapter 4.   A somewhat similar type of inhibition has been observed for 

the enzyme serine acetyltransferase, which uses a product inhibition mechanism wherein 

the product binds to the enzyme, inducing a conformational change that prevents 

substrate binding (154).  Moreover, product dissociation is rate-limiting for many 

enzymes, including dihydrofolate reductase, serine acetyltransferase, and the majority of 

DNA methyltransferases (154-156); interestingly, product dissociation is also activated 

by substrate binding for dihydrofolate reductase (155, 157).  The findings presented here 
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are consistent with a similar type of inhibitory mechanism, which is a novel discovery for 

FTase.  Further defining the features of the enzyme and substrates that contribute to 

product release will enhance our understanding and utilization of this type of inhibitory 

mechanism.   
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CHAPTER 4 
INHIBITION OF PRODUCT DISSOCIATION REVEALS DISTINCT 

MECHANISM FOR FARNESYLDIPHOSPHATE-COMPETITIVE INHIBITORS 
OF PROTEIN FARNESYLTRANSFERASE 1 

 

 

The last decade has witnessed a large effort to design potent inhibitors of FTase 

that could attenuate aberrant signaling pathways leading to human cancers.  In vitro and 

in vivo research has demonstrated the effectiveness of FTase inhibitors to block cell 

proliferation and tumor formation in both cultured human cell lines and transgenic animal 

models (158).  Although the direct correlation between FTase inhibition and the cellular 

events leading to tumor regression and stasis remains elusive (159), the effectiveness of 

FTase inhibitors to control certain malignancies in combination therapies is being 

demonstrated in human clinical trials (158, 160).  The search for inhibitors of FTase has 

resulted in the synthesis of mimetics of the CaaX motif and FPP, as well as product and 

transition-state analogs, that demonstrate variable levels of potency, ranging from 

micromolar to subnanomolar IC50 values (158).    

 The precise mechanism of inhibition of FTase has remained unclear, and an 

enhanced understanding of this inhibition would provide invaluable insight for rational 

drug design.  To further probe the inhibitory mechanism, we have studied the effects of a 

specific class of FPP-competitive inhibitors that was initially discovered by a random 

screen of compounds (161).  These compounds are competitive inhibitors against FPP for 

wild-type (WT) FTase, and are thought to interact primarily in or near the FPP binding 

pocket of FTase (125).  We have probed the position of the inhibitor binding site using 

mutagenesis coupled with IC50 and Ki measurements, determined from steady-state 

kinetics.  The crystal structure of the ternary complex with bound FPP and CVFM, a slow
                                                
1 June Pais wrote this chapter, performed the described experiments, and analyzed the data, with the 
following exceptions.  Site-directed mutagenesis and purification of FTase mutants were performed by 
Katherine Bowers and Jennifer Pickett; all IC50 and Ki experiments were performed, analyzed and 
described in writing by Katherine Bowers. 
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peptide substrate, demonstrates that the FPP binding site contains two distinct regions:  a 

region of mainly hydrophobic residues that interact with the nonpolar isoprenoid portion 

of the substrate (W303β, W102β, Y251β, etc.), and a region of charged residues (K164α, 

R291β, K294β, H248β and Y300β), termed the PPi binding pocket (Figure 4.1A) (162). 

The FTase residues that interact with the peptide substrate CVFM are illustrated in Figure 

4.1B.  In addition to crucial interactions with active site residues, the cysteine thiolate of 

the CaaX peptide coordinates the active site zinc, an interaction that is paramount for 

catalysis of thioether formation (82, 163).  The remainder of the CaaX binding site arises 

from both the hydrophobic surface of the FPP isoprenoid moiety and predominantly 

aromatic FTase active site residues (Figure 4.1B) (162).   

Mutations in the PPi binding pocket, R291G and K294A, and to a lesser extent 

Y300F, dramatically decrease the IC50 values of FPP-competitive inhibitors, indicating 

that these side chains have a repulsive interaction with the inhibitors.  Previously it was 

shown for WT FTase that addition of exogenous phosphate ions enhances the potency of 

these inhibitors by as much as 170-fold (164, 165).  By comparing the effect of mutations 

located in the peptide binding pocket (W102β and W106β) with mutations in the 

diphosphate binding pocket (Y300β, R291β and K294β), we determined that the 

phosphate synergy effect is primarily restricted to the PPi binding pocket.  For R291G 

and K294A FTase, inhibitor potency is not enhanced by phosphate anions.  These data  

suggest that phosphate anions enhance inhibitor potency in wild-type FTase by 

interacting with the positive charge of R291β and K294β to decrease the repulsive 

interaction with these inhibitors.   

While steady-state analysis of the inhibition of WT and mutant FTase determined 

Ki values in the µM range, a direct measurement of the binding affinity of the free WT 

enzyme for these inhibitors reveals a dissociation constant in the nM range, comparable 

to the binding affinity for FPP.  Furthermore, there is little synergy in the binding of 

peptide and these FPP-competitive inhibitors.  The KD
peptide is comparable for binding the 

peptide to both E and E•I.  Unexpectedly, these inhibitors bind to the E•product complex 

and decrease the product dissociation rate constant.  Inhibitor binding to the E•product 

complex is competitive with FPP, with a Ki
pr of 25 nM .  A comprehensive analysis of the 

data indicates a unique mode of inhibition, where these inhibitors function by competing  
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Figure 4.1  Key interactions with FPP and peptide  

Substrate binding in the E•FPP•CVFM ternary complex (162).  (A) Amino acid side 
chains that interact with FPP (shown in CPK representation); (B) Amino acid side chains 
that interact with CVFM.  FPP is shown as a ball-and-stick representation.  The catalytic 
zinc atom (gray CPK representation) is also shown.  The residues studied by mutagenesis 
in this work are shown in red. 
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with FPP for binding to the E•product complex and inhibiting turnover by blocking 

product dissociation.  These results offer insight into enzyme-inhibitor interactions that 

could describe the mechanism of other current FTase inhibitors, and could be exploited to 

further refine potent inhibitors. 

 

Experimental Procedures 

Materials 

[1-3H]-FPP and Scintillation Proximity AssayTM (SPA) beads were purchased 

from GE Healthcare (formerly Amersham Biosciences, Piscataway, NJ).  The peptide 

substrate, biotin-(7-aminoheptanoic acid)-Thr-Lys-Cys-Val-Ile-Met (abbreviated biotin-

TKCVIM), was made by solid-state peptide synthesis as described (166, 167).  The 

peptides GCVLS and dansylated GCVLS were synthesized and purified by high-pressure 

liquid chromatography to more than 90% purity by Sigma-Genosys (The Woodlands, 

TX).  FTase inhibitors PD 0152440, PD 0161956, PD 0169451, and PD 0151824 were 

synthesized as described (168, 169) at Parke-Davis Pharmaceuticals, division of Warner-

Lambert (currently Pfizer Global Research and Development).  FPT inhibitor II (I2) 

{(E,E)-2-[2-oxo-2-[[(3,7,11-trimethyl-2,6,10-dodecatrienyl)oxy]amino]ethyl] phosphonic 

acid, sodium} was purchased from Calbiochem (San Diego, CA).  PE SIL G TLC plates 

were purchased from Whatman Ltd. (Maidstone, Kent, England).  FPP was purchased 

from Sigma-Aldrich (St. Louis, MO).  All other chemicals used were reagent grade. 

 

FTase mutagenesis 

The QuikChangeTM mutagenesis kit by Stratagene (La Jolla, CA) was utilized to 

construct FTase mutant genes in the FPTpET23a vector (148).  Overlapping sets of DNA 

primers were purchased from Life Technologies (Rockville, MD).  DNA sequencing was 

conducted in the Sequencing Core at Parke-Davis Pharmaceuticals to confirm the 

presence of the desired mutations.  For protein expression, plasmids were transformed 
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into competent BL21(DE3) E. coli cells purchased from Gibco BRL/Life Technologies 

(Rockville, MD).  

  

Preparation of WT and mutant FTase enzymes 

Recombinant WT FTase and mutants were expressed as described (170).  Cell 

pellets from a 2 L cell growth were resuspended in buffer containing 20 mM Tris-HCl 

(pH 8.0), 1 mM EDTA, 1 mM dithiothreitol (DTT) and 10 µg mL-1 phenylmethylsulfonyl 

fluoride (PMSF).  Cells were lysed using a French Press at 1200 psi.  The lysate was 

clarified by centrifugation, followed by the addition of a 10% (w:v) solution of 

streptomycin sulfate to a final concentration of 1%.  The lysate was again clarified by 

centrifugation, followed by the addition of ammonium sulfate to 55% (w:v) saturation to 

precipitate FTase.  The protein was pelleted by centrifugation and the pellet was 

resuspended in 50 mM Tris-HCl, pH 7.8, 1 mM DTT, and 20 µM ZnCl2.  All steps in the 

protein extraction procedure were carried out at 4°C.  The suspension was dialyzed 

against the same buffer, then mixed with 10% (v:v) glycerol and stored at -20 °C.  These 

crude protein stocks (~10% pure) were utilized in IC50 and Ki experiments without further 

purification.   

For KD
I, KD

peptide, and product dissociation studies, FTase was expressed and  

purified to > 90% homogeneity as determined by SDS-PAGE, as previously described 

(90, 170).  The protein was dialyzed at 4 0C against 50 mM Heppso, pH 7.8, and 2 mM 

TCEP and stored at -80 0C.  Protein concentrations were determined by active site 

titrations as previously described (90).   

 

IC50 determinations 

Inhibitor IC50 values were determined using the Scintillation Proximity AssayTM 

(SPA; GE Healthcare, formerly Amersham Biosciences, Piscataway, NJ).  Assays, 

described previously for measuring FTase activity (164), were performed in a 96-well 

plate format.  Activity was assayed in buffer containing 50 mM Hepes, 5 mM MgCl2, 

0.1% PEG 8000, 20 µM ZnCl2, pH 7.45, with 5 mM DTT (buffer A).  For phosphate 
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synergy experiments, a 12-16 mM concentration of monophosphate anions, in the form of 

potassium phosphate, was added to the buffer prior to adjusting the pH.  In earlier studies 

of phosphate synergy, a phosphate concentration of 5 mM was utilized (165).  Control 

experiments designed to test the effect of phosphate ion concentration on the calculated 

IC50 value indicated no significant alteration in the range of 5-16 mM monophosphate 

(not shown).   

Inhibitor stocks were dissolved in 100% dimethylsulfoxide (DMSO) and the final 

concentration of DMSO in each assay was 5% (v:v).  A 5 µL aliquot of 20 different 

concentrations of inhibitor in DMSO was added to a 70 µL solution containing 200 nM 

[1-3H]-FPP and 800 nM biotin-TKCVIM in buffer A or buffer A containing 12-16 mM 

potassium monophosphate (pH 7.45).  The reaction was initiated with the addition of 25 

µL of crude FTase. Control experiments were done varying the volume of crude protein 

to ensure that this concentration of enzyme is well below the KM for FPP (data not 

shown).  Reactions were allowed to run for 30 minutes at 37 0C, and were then quenched 

with the addition of 150 µL stop reagent, which was prepared by diluting a 20 mg mL-1 

SPA bead solution 1:10 with buffer containing 1.5 M magnesium acetate, 200 mM 

H3PO4, and 0.5% bovine serum albumin, pH 4.0.  The 20 mg mL-1 stock of SPA beads 

was made by resuspending dry beads in phosphate buffered saline with 5% sodium azide.  

The [3H]-labeled farnesylated peptide product was quantified on a Wallac Microbeta 

1450 scintillation counter.  The average scintillation counts per minute (CPM) of the 

controls (no inhibitor, 5% DMSO) were set as 100% product, and were used to obtain the 

percentage of product formed at each concentration of inhibitor.  The percent product was 

plotted against inhibitor concentration and Eq. 1 was fit to the data using the 

KaleidaGraph software package (Synergy Software). 
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In Eq. 1, Ymax represents 100% product, [I] is the inhibitor concentration and m represents 

the slope of the transition (~1).  For the fits, Ymax was allowed to float.   
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Ki determinations 

Ki measurements were performed using the SPA assay described above.  Time-

dependent inhibition studies were initially carried out to test if any of the inhibitor/mutant 

pairs exhibited effects consistent with slow binding or nonreversible inhibitors.  A fixed 

concentration of protein was combined with an inhibitor concentration equal to its IC50 

value (in buffer A).  The E•I complex was allowed to incubate for various times ranging 

from 0 to 30 minutes at 37 °C.  At a given time interval, turnover was initiated by adding 

[1-3H]-FPP and biotin-TKCVIM peptide at saturating concentrations.  The reaction was 

allowed to proceed for 30 minutes at 37 °C, followed by the addition of 150 µl of SPA 

stop reagent.  Product amounts, as a function of E•I incubation time, were quantified by 

scintillation counting.  Inhibitor/mutant combinations that demonstrated a significant     

(>20%) decrease in the product counts after preincubating for 30 minutes (compared to 1 

min) were considered to have slow binding characteristics.  Longer incubations did not 

lead to additional loss in activity.   

Ki determinations (versus FPP) were carried out in the following manner.  A 96-

well plate was set up with samples (75 µL) that contained varying concentrations of 

inhibitor (0-3 µM), varying concentrations of [1-3H]-FPP (5-300 nM) and a saturating 

concentration of biotin-TKCVIM.  Turnover was initiated by the addition of 25 µL of a 

fixed concentration of FTase.  Reactions were allowed to proceed for 30 minutes at 37 

°C.  Reactions were quenched with the addition of 150 µL of SPA stop reagent.  The 

amount of [1-3H]-labeled product formed was then quantified by scintillation counting.  

The CPM values at 30 minutes, taken as the initial velocity, were plotted as a function of 

[1-3H]-FPP concentration at the various inhibitor levels.  Initially, each data set was fit 

locally to the Michaelis-Menten steady-state equation to determine the effect of 

increasing inhibitor concentrations on the magnitude of Vmax and KM, allowing for a first 

approximation of the mode of inhibition.  The equations below were then fit globally to 

the entire data set for each mutant/inhibitor pair using the Systat software version 5.2 

(SYSTAT Intelligent Software, Evanston, IL).  Equations 2, 3, 4, and 5 represent models 

for competitive, noncompetitive, uncompetitive and mixed noncompetitive modes of 

inhibition, respectively. 
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In these equations, α=(1+[I]/Ki).  For the global fits, the values of Vmax, KM, Ki 

and Kiβ (uncompetitive Ki) were allowed to float.   

 

KD
I determinations 

Based on the IC50 and Ki results, compound 3 was chosen for further study as a 

representative FPP-competitive inhibitor.  The binding affinity of FTase for compound 3 

was measured by competition with [1-3H]-FPP using equilibrium dialysis.  A 500 µL 

solution containing 20-40 nM FTase was preincubated with 60 nM [1-3H]-FPP and 0-500 

nM inhibitor for 2 hours at room temperature in buffer (50 mM Heppso, pH 7.8, 2 mM 

TCEP, 5 mM MgCl2).  This solution was then dialyzed against 500 µL of the same buffer 

containing 60 nM [1-3H]-FPP and the same concentration of inhibitor using a 25,000 

molecular weight cutoff dialysis membrane (Spectra/Por 7, Spectrum Laboratories, 

Rancho Dominguez, CA).  For experiments with phosphate, 12 mM KPi (pH 7.8) was 

used in the buffer on both sides of the membrane.  After ~20 hours, the radioactivity in 

samples (50 µL) from both sides of the membrane was quantified in triplicate by 

scintillation counting.  The fraction of [1-3H]-FPP bound to FTase, [E•FPP]/[FPP]total, 

was determined by subtracting the counts on the buffer side from the counts on the 

enzyme side, and dividing the difference by the total counts.  The concentration of E•FPP 
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was calculated by multiplying [E•FPP]/[FPP]total by the initial [1-3H]-FPP concentration, 

[FPP]total (60 nM).  The assumption was made that the change in [FPP]free ([FPP]total-

[E•FPP]) would equal the concentration of inhibitor bound to FTase, [E•I].  Control 

experiments were done to determine that [E]free was negligible under these conditions, 

with over 90% of the enzyme bound (data not shown).  The concentration of free 

inhibitor ([I]free) was calculated by subtracting the concentration of E•I from the initial 

inhibitor concentration, [I]total (0-500 nM).  The dissociation constant (KD
I) was then 

determined by fitting Eq. 6 to the data, where Ymax is the maximum concentration of 

[E•FPP].  For these fits, the 

! 

K
D

FPP  for WT and K294A FTase is 10 nM and 51 nM, 

respectively, as measured previously (90).   
 

! 

E • FPP[ ] =
Y
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    Eq. (6) 

 

KD
peptide determinations  

The affinity of the E•I complex for the dansylated peptide substrate was measured 

by fluorescence anisotropy, as described previously (24, 108).  A 1.5 mL solution 

containing 2 nM dansylated GCVLS (dns-GCVLS) in buffer (50 mM Heppso, pH 7.8, 2 

mM TCEP, 5 mM MgCl2) was titrated with an equimolar solution of FTase and 

compound 3 (0-500 nM) in the same buffer.  For experiments with phosphate, 12 mM 

KPi (pH 7.8) was included in the buffer.  The samples were incubated for three minutes 

prior to each measurement at 25 0C.  Measurements were made on an SLM-Aminco 

Bowman series 2 luminescence spectrometer using a 1 cm path length, where the dansyl 

group of the peptide was excited at 340 nm (bandpass = 16 nm) and the emission was 

monitored at 496 nm (bandpass = 16 nm).  The dissociation constant for dns-GCVLS, 

KD
peptide, was determined by a weighted fit of Eq. 7 to the data, where ΔA is the observed 

fluorescence anisotropy, EP is the fluorescence anisotropy endpoint, and IF is the initial 

fluorescence anisotropy. 
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[E]

+ IF      (7) 

 

Product Dissociation Kinetics 

The effect of compound 3 on the product dissociation of FTase was measured 

using a direct fluorescent assay (described in Chapter 3).  The E•product complex was 

formed by preincubation of equimolar concentrations of FTase (5 µM) and FPP (5 µM) 

for 15 minutes at 25 0C followed by addition of dns-GCVLS (5 µM) and incubation for 1 

hour at 25 0C in 50 mM Heppso, pH 7.8, 2 mM TCEP, and 5 mM MgCl2.  The E•product 

complex was then incubated with compound 3 (0-800 nM) for 30 min.  Product 

dissociation from the complex was initiated by dilution (250-fold) into the same buffer, 

containing excess FPP (150 µM) to stimulate dissociation of product, and unlabeled 

GCVLS (10 µM) to ensure that FTase did not reassociate with the released dansylated 

product.  The increase in fluorescence intensity (λex = 340 nm, λem = 475 nm) due to 

dissociation of the dansylated, farnesylated peptide product was monitored as a function 

of time.  Measurements were made on an SLM-Aminco Bowman series 2 luminescence 

spectrometer using a 1 cm path length.  The observed rate constant for product 

dissociation (kpr) was determined by fitting Eq. 8 to the data where Pt is the fluorescence 

at time t, and P∞ is the fluorescence endpoint which varied from 3-10 (PMT = 700V).    

! 

Pt

P"
= 1# e

#kpr $t      Eq. (8) 

The 

! 

K
1/2

FPP  for activation of product dissociation for WT FTase has been measured as 22.3 

± 0.2 µM using the assay described above at varying concentrations of FPP in the 

absence of any inhibitor (Chapter 3).  Ki
pr, the inhibition constant for product 

dissociation, was measured for WT FTase by varying the concentration of inhibitor at a 

fixed value of FPP (150 µM).  A weighted fit of Eq. 9 to the data, which corresponds to a 

competitive mechanism in which the inhibitor competes with FPP for activating product 

dissociation (Scheme 4.1), was used to determine Ki
pr, where koff,1 and koff,2 are the rate 

constants for product dissociation (Scheme 4.1), [E]total was fixed at 20 nM, [FPP] was  
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fixed at 150 µM, and 

! 

K
1/2

FPP  was fixed at 22.3 µM. 
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  Eq. (9) 

To confirm that the mechanism is competitive with respect to FPP, Ki
pr  was measured at 

a different concentration of FPP (25 µM).  A global, weighted fit of Eq. 9 to the entire 

data set was done using GraphPad Prism Software (San Diego, CA, USA). 

 

Results 

Inhibitors 

Four compounds, synthesized to serve as product mimetics, were chosen for this 

study (164, 165, 168, 169).  The structures of PD 0152440 (1), PD 0161956 (2), PD 

0169451 (3) and PD 0151824 (4) are illustrated in Table 4.1.  This series of inhibitors 

including 1, 2 and 3, was initially discovered by a random screen of compounds for 

FTase inhibitors (161, 168).  The removal of the polarizable oxygen ether linkage to the 

terminal benzene ring in 1 to form compound 2 decreases the IC50 value from 9.3 µM to 

4.0 µM against WT FTase (see Table 4.2).  Addition of two methyl groups at this 

position, resulting in compound 3, further reduces the IC50 value to 1.0 µM.  These three 

compounds are hypothesized to interact primarily in or near the FPP binding pocket of 

FTase, since they are competitive inhibitors against FPP for the WT enzyme (165).  In 

addition, the presence of 5 mM phosphate anions decreases the IC50 value as much as 

170-fold (165).  Therefore, mutations in the FPP binding pocket are predicted to alter the 

affinity of these inhibitors.  Compound 4 has an IC50 value of 0.39 µM and is 

uncompetitive with respect to FPP, but competitive with respect to peptide in the WT 

enzyme (data not shown).  Mutations in the peptide binding cleft are predicted to alter the 

affinity of compound 4, with little alteration in the affinity of the FPP-competitive 

inhibitors (compounds 1-3).   



 

96 

 
 

 
 

 

 

 

 

 

 

 

 

 

Scheme 4.1  Proposed kinetic mechanism for inhibition of FTase  
Proposed mechanism of action for inhibitors (I) listed in Table 4.1 (PD 0152440, PD 0161956, PD 0169451 and PD 0151824).  The 
parameters measured in this study are indicated.   
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Table 4.1  Inhibitor structures (164, 165, 168, 169) 

Compound Identification Structure 

1 (PD 0152440 a) 

O NH
N

NH
O

O

N NH

O

O

O

 

2 (PD 0161956 b) 

O NH
N

NH

O

N
NH

O

O

O

 

3 (PD 0169451 c) 

O NH
N

NH

O

N
NH

O

O

O

 

4 (PD 0151824 d) NH
O

O

N

NH

O

 
  a [1-{(4-Benzyloxy-benzyl)-[(2-benzyloxy-ethylcarbamoyl)-methyl]-carbamoyl}-2-(1H-imidazol-4-yl)-
ethyl]-carbamic acid benzyl ester 
 b [1-{(4-Benzyloxy-benzyl)-(phenethylcarbamoyl-methyl)-carbamoyl}-2-(3H-imidazol-4-yl)-ethyl]-
carbamic acid benzyl ester 
 c [1-{(4-Benzyloxy-benzyl)-[(2-methyl-2-phenyl-propylcarbamoyl)-methyl]-carbamoyl}-2-(3H-imidazol-
4-yl)-ethyl]-carbamic acid benzyl ester  
 d 3-(1H-imidazol-4-yl)-2-(3-naphthalen-1-yl-2-naphthalen-1-ylmethyl-propionylamino)-propionic acid 
methyl ester 



 

 98 

Mutant selection 

To examine interactions between FTase and these inhibitors, we prepared and 

analyzed FTase mutants in the substrate binding regions of FTase.  Figure 4.1A illustrates 

the amino acid residues that interact directly with FPP in the ternary complex of FPP and 

the slow peptide substrate CVFM (162).  Due to the synergy with phosphate, we chose to 

investigate the role of three residues in the PPi binding pocket, R291β, K294β and 

Y300β, in determining inhibitor potency by studying the inhibition of the R291G, K294A 

and Y300F FTase mutants.  Figure 4.1B illustrates those amino acid residues that interact 

with the peptide CVFM (162).  Of these residues, we chose to investigate the importance 

of interactions with W102β and W106β by analyzing the inhibition of the W102A and 

W106A FTase mutants.  K356A FTase was analyzed as a control to test the effect of a 

mutation located at the periphery of the PPi binding pocket on inhibitor binding (location 

not shown). 

 

IC50 Data   

We first determined IC50 values from the effect of inhibition on enzyme activity, 

to test the effect of mutations on inhibitor potency and phosphate synergy.  Eq. 1 was fit 

to these data and the resulting IC50 values are listed in Table 4.2.  The values are a result 

of a single determination for each mutant/inhibitor combination, with standard errors 

given. 

In the absence of phosphate anions, mutations that decrease the positive charge in 

the PPi binding pocket of FTase (R291G and K294A) dramatically decrease the IC50 

values for compounds 1, 2 and 3, with marginal effects on compound 4. The R291G 

mutation decreases the IC50 value 233-fold for compound 1 (0.04 ± 0.01 µM), 400-fold 

for compound 2 (0.01 ± 0.002 µM) and 100-fold for compound 3 (0.01 ± 0.001 µM) with 

respect to the WT values.  The K294A mutation decreases the IC50 value 58-fold for 

compound 1 (0.16 ± 0.01 µM), 200-fold for compound 2 (0.02 ±0.004 µM) and 100-fold 

for compound 3 (0.01 ± 0.001 µM).  A third mutation in the PPi binding pocket, Y300F,  
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Table 4.2  IC50 values a   

Cmpd. 1 2 3 4 

Pi b — + — + — + — + 

WT 9.3  
(1.5) 

0.36 
(0.03) 

4.0  
(0.5) 

0.10 
(0.01) 

1.0  
(0.1) 

0.006 
(0.001) 

0.39 
(0.05) 

0.25 
(0.03) 

R291G 0.04 
(0.01) 

0.01 
(0.002) 

0.01 
(0.002) 

0.003 
(0.001) 

0.01 
(0.001) 

0.005 
(0.001) 

2.4  
(0.4) 

2.0  
(0.3) 

K294A 0.16 
(0.01) 

0.03 
(0.01) 

0.02 
(0.004) 

0.003 
(.001) 

0.01 
(0.001) 

0.006 
(0.001) 

1.8  
(0.2) 

1.3  
(0.2) 

Y300F 0.73 
(0.06) 

0.09 
(0.01) 

0.49 
(0.06) 

0.01 
(0.001) 

0.05 
(0.006) 

0.006 
(0.001) 

4.9  
(0.9) 

2.3  
(0.4) 

K356A 28    
(10) 

0.33 
(0.06) 

3.5  
(0.5) 

0.07 
(0.01) 

0.24 
(0.05) 

0.01 
(.001) 

1.2  
(0.2) 

0.9  
(0.2) 

W102A 2.1  
(0.4) 

0.3  
(0.1) 

4.2  
(0.8) 

0.21 
(0.06) 

3.6  
(0.8) 

0.02 
(0.01) 

4.2  
(1.0) 

3.5  
(0.7) 

W106A 8.1  
(0.9) 

1.0  
(0.1) 

6.3  
(0.8) 

0.06 
(0.02) 

0.73 
(0.07) 

0.02 
(0.001) 

0.35 
(0.08) 

0.14 
(0.07) 

a Values, in units of µM, are determined from fitting titration curves of % product vs. inhibitor 
concentration with Eq. 1.  Results are from a single determination for each inhibitor/mutant pair with errors 
given in parentheses, using the SPA assay as described in the Experimental Procedures.  Final solutions 
contained 25 µL crude FTase, 200 nM [1-3H]-FPP, 800 nM biotin-TKCVIM, and varying inhibitor 
concentrations in 50 mM Hepes, pH 7.45, 5 mM MgCl2, 0.1% PEG 8000, 20 µM ZnCl2 and 5mM DTT.  
All assays were conducted at 25 0C.  Data were collected and analyzed by Katherine Bowers. 
b 12-16 mM KPi (pH 7.45) was used for experiments with Pi. 
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also decreases the IC50 values but the effect is smaller; the IC50 values decrease 13-fold 

for compound 1 (0.73 ± 0.06 µM), 8-fold for compound 2 (0.49 ± 0.06 µM) and 20-fold 

for compound 3 (0.05 ± 0.006 µM).  These data demonstrate that the side chains of the 

PPi binding pocket interfere with the inhibition by (and likely the binding affinity of) 

compounds 1, 2 and 3.  In contrast, the R291G and K294A mutations modestly increase 

the IC50 value of the peptide competitive inhibitor, compound 4, by 6-fold for R291G 

(2.4 ± 0.4 µM) and 5-fold for K294A (1.8 ± 0.2 µM).  The Y300F mutation has a larger 

effect on the IC50 value for compound 4, resulting in a 13-fold increase (4.9 ± 0.9 µM).  

These data indicate that these residues provide a small, positive contribution to the 

apparent affinity of compound 4. 

Mutations in the active site also serve as probes to discern what residues are 

involved in modulating the phosphate ion synergy effect on inhibitor efficacy (165).  For 

WT FTase, the addition of phosphate anions decreases the IC50 values for compounds 1, 

2 and 3 by 26-, 40- and 167-fold, respectively (Figure 4.2, Table 4.2).  Strikingly, the 

R291G and K294A mutations completely abrogate the phosphate synergy effect; the IC50 

values for compounds 1, 2 and 3 are lowered only modestly (2-8 fold) upon addition of 

phosphate for these two mutants (Figure 4.2, Table 4.2).  Nonetheless, the IC50 values for 

these mutants in the presence of phosphate ions are still lower than the WT values.  

Therefore, the main effect of the R291G and K294A mutations is to increase the inhibitor 

affinity significantly in the absence of phosphate, suggesting that phosphate anions and 

deletion of the positively charged side chains may have a similar effect on inhibitor 

potency.  The last mutation in the PPi binding pocket, Y300F, shows a similar trend in 

increasing inhibitor potency and decreasing phosphate synergy, albeit with a smaller 

magnitude (Figure 4.2 and Table 4.2).  This mutation lowers the IC50 values to a smaller 

extent (8-20 fold versus 60-400 fold for R291G and K294A), while the enhancement in 

affinity upon addition of phosphate is 8-20 fold, intermediate between WT FTase and the 

R291G and K294A mutations.   

This observed effect on phosphate synergy is localized to compounds that bind in 

the FPP binding site.  For the peptide competitive inhibitor (compound 4), addition of 

exogenous phosphate ions decreases the IC50 values by < 2.5-fold for WT and all of the 

mutants (Table 4.2).  Furthermore, the large effect of removing the positively charged 
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Figure 4.2  Magnitude of the phosphate ion synergy effect 
The magnitude is calculated by dividing the IC50 value in the absence of phosphate ions 
by the IC50 value in the presence of 12-16 mM phosphate ions;  compound 1;               
 compound 2;  compound 3;  compound 4.  IC50 values are listed in Table 4.2.  Data 
were collected and analyzed by Katherine Bowers. 

PPi pocket Peptide-binding 
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side chains of either R291β or K294β is not simply due to a decrease in the positively 

charged surface of the protein. The K356A mutation, located on the periphery of the PPi 

binding pocket, has only small effects on IC50 values for all four compounds, while 

maintaining the phosphate synergy effect.   Relative to WT, this mutation lowers the IC50 

value 4-fold for compound 3 (0.24 ± 0.05 µM), while increasing this value 3-fold for 

compound 1 (28 ± 10 µM) and compound 4 (1.2 ± 0.2 µM).  The IC50 value for 

compound 2 remains unchanged relative to WT (3.5 ± 0.5 µM).  In the presence of 

phosphate ions, the IC50 values with this mutation for compounds 1, 2 and 3 decrease 85-, 

50- and 24-fold, respectively, which are unchanged relative to WT.    

The W102A and W106A mutations in FTase have variable effects on the IC50 

values for the inhibitors examined.  Relative to WT, the IC50 value measured for W102A 

FTase decreases 4-fold for compound 1 (2.1 ± 0.4 µM), and increases almost 4-fold for 

compound 3 (3.6 ± 0.8 µM) and 11-fold for compound 4 (4.2 ± 1.0 µM).  Alteration in 

the affinity of compound 4 with this mutation was expected owing to the fact that W102β 

lies in the peptide binding cleft and is proposed to interact with this peptide-competitive 

inhibitor.  The W106A mutation alters the IC50 values very little with respect to WT, 

demonstrating a < 2-fold increase or decrease in these values for all four compounds 

(Table 4.2).  Mutations at W102β and W106β were observed to both modestly increase 

and decrease the magnitude of the phosphate ion synergy effect.  However, a distinct 

trend was not observed.  Owing to the fact that W102β and W106β contribute to the 

isoprenoid binding cleft for FPP (Figure 4.1), slight variations in inhibitor orientation 

upon mutation could translate into slight alterations of the phosphate ion synergy effect.  

 

Ki determinations 

To determine whether inhibition of FTase by these compounds is competitive 

with FPP, and to assess the effects of mutations in the PPi binding pocket of FTase on 

inhibition, we next measured inhibition constants (Ki) using standard steady-state kinetic 

analyses for compounds 3 and 4 with R291G, K294A, K356A, and WT.  For R291G and 

K294A, time-dependent studies of inhibition suggest that compound 3 has some 

characteristics of a slow binding inhibitor.  Time-dependent experiments were carried out 
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by varying the incubation time of the E•I complex prior to initiation of the reaction with 

FPP and peptide.  In these experiments, the amount of inhibition increased modestly 

(~60%) after 30 minutes of preincubation of E•I compared to 1 minute (not shown).  For 

Ki determinations, inhibitors were incubated 1 to 30 min as needed to form the E•I 

complex.  The Ki data are analyzed by Michaelis-Menten kinetics that presume a fast 

equilibration between E and I.  Therefore, the resulting Ki values for compound 3 with 

R291G and K294A FTase represent an upper limit. 

Figure 4.3 illustrates representative double-reciprocal plots for the dependence of 

steady-state turnover as a function of both FPP and inhibitor concentrations, for WT and 

mutant FTase.  The inhibition of the activity of WT and R291G FTase by compound 3 is 

competitive with FPP (Figures 4.3A and 4.3B).  However, the inhibition of WT and 

K294A FTase activity by compound 4 is best described as uncompetitive and 

noncompetitive, respectively (Figures 4.3C and 4.3D).  Ki values for WT and mutants are 

listed in Table 4.3.  For compound 3, Ki values for all mutations are decreased as 

compared to the value for WT FTase (0.12 ± 0.03 µM).  Mutants R291G, K294A and 

K356A reduce the Ki value 30-, 30- and 6-fold, respectively.  These data are consistent 

with the lower IC50 values shown in Table 4.2.  For compound 4, mutants R291G and 

K294A increase the Ki value 3-fold relative to WT (0.64 ± 0.05), illustrating a modest 

effect of the mutations on the binding of this peptide-competitive inhibitor. 

Table 4.3 lists the mode of inhibition, with respect to FPP, determined from the 

analysis of the data by Michaelis-Menten steady-state inhibition models.  Compound 3 is 

competitive against FPP in WT FTase, a characteristic retained in the R291G, K294A, 

and K356A mutants.  Compound 4 is uncompetitive with respect to FPP in WT FTase, a 

characteristic retained in the R291G and K356A mutants.  K294A demonstrated apparent 

noncompetitive inhibition with this compound.  The determination of a noncompetitive 

versus an uncompetitive model for this inhibitor/mutant pair was based upon the effects 

of inhibition on Vmax and KM determined by fitting inhibition equations (Eq. 2-5) to these 

data (not shown).  Fitting of the data to the uncompetitive equation (Eq. 4) yields a 

similar Ki of 1.1 ± 0.1 µM (not shown). 

 



 

 104 

 
 

 

  
 

 
 

 
 

 
 

 
 

 
 

 
 
 
 

 
 

Figure 4.3  Double reciprocal plots 
Representative double reciprocal plots of the dependence of initial velocity (v) for 
formation of product under steady-state conditions as a function of FPP and inhibitor 
concentration; (A) WT activity at the following concentrations of compound 3: 0 µM (●), 
0.25 µM (■), 0.5 µM (♦), 0.75 µM (○), 1 µM (▲) and 3 µM (▼).  Eq. 2 (competitive) is 
fit to all of the data simultaneously;  (B) R291G activity at the following concentrations 
of compound 3: 0 µM (●), 0.003 µM (□), 0.005 µM (■), 0.007 µM (◊) and 0.009 µM 
(▼).  Eq. 2 (competitive) is fit to all of the data simultaneously.  Ki values are listed in 
Table 4.3 and were determined using the SPA assay after 30 min of incubation, as 
described in the Experimental Procedures.  Final solutions contained 25 µL crude FTase, 
800 nM biotin-TKCVIM, varying (5-300 nM) [1-3H]-FPP concentrations, and varying (0-
3 µM) inhibitor concentrations in 50 mM Hepes, pH 7.45, 5 mM MgCl2, 0.1% PEG-
8000, 20 µM ZnCl2 and 5 mM DTT.  All assays were conducted at 37 0C.  Data were 
collected and analyzed by Katherine Bowers. 
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Figure 4.3 (continued) Double reciprocal plots 

Representative double reciprocal plots of the dependence of initial velocity (v) for 
formation of product under steady-state conditions as a function of FPP and inhibitor 
concentration; (C) WT activity at the following concentrations of compound 4: 0 µM (●), 
0.1 µM (○), 0.2 µM (■), 0.4 µM (□), and 0.6 µM (▲).  Eq. 4 (uncompetitive) is fit to all 
of the data simultaneously; (D) K294A activity at the following concentrations of 
compound 4: 0 µM (●), 0.4 µM (○), 0.8 µM (■), 1.2 µM (□), 1.5 µM (▲).  Eq. 3 
(noncompetitive) is fit to all of the data simultaneously.  Ki values are listed in Table 4.3 
and were determined using the SPA assay after 30 min of incubation, as described in the 
Experimental Procedures.  Final solutions contained 25 µL crude FTase, 800 nM biotin-
TKCVIM, varying (5-300 nM) [1-3H]-FPP concentrations, and varying (0-3 µM) 
inhibitor concentrations in 50 mM Hepes, pH 7.45, 5 mM MgCl2, 0.1% PEG-8000, 20 
µM ZnCl2 and 5 mM DTT.  All assays were conducted at 37 0C.  Data were collected and 
analyzed by Katherine Bowers. 
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Table 4.3  Ki values for select inhibitor/mutant pairs a   

Mutant Ki  Cmpd. 3 (µM) Ki  Cmpd. 4 (µM) 
 

WT 
0.12 ± 0.03 
competitive 

0.64 ± 0.05 
uncompetitive 

R291G 
0.001 ± 0.000002 

competitive b 
1.9 ± 0.3 

uncompetitive 

K294A 
0.001 ± 0.000002 

competitive b 
1.9 ± 0.2 

noncompetitive 

K356A 
0.02 ± 0.003 
competitive 

0.67 ± 0.11 
uncompetitive 

a Data, as in Figure 4.3, were fitted with Equations 2-5, as indicated in the text, using the Systat software.  
Results are from a single determination for each mutant/inhibitor pair and standard errors from the global 
fit of the data are given. Ki values were determined using the SPA assay after 30 min of incubation, as 
described in the Experimental Procedures.  Final solutions contained 25 µL crude FTase, 800 nM biotin-
TKCVIM, varying [1-3H]-FPP concentrations (5-300 nM), and varying inhibitor concentrations (0-3 µM) 
in 50 mM Hepes, pH 7.45, 5 mM MgCl2, 0.1% PEG 8000, 20 µM ZnCl2 and 5mM DTT.  All assays were 
conducted at 37 0C.  Data were collected and analyzed by Katherine Bowers. 
b Inhibitors demonstrated a modest time-dependent increase in inhibition over a 30 min duration. 
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KD
I determinations   

For FTase, Ki determinations measured under steady-state conditions do not 

necessarily reflect the affinity of the inhibitor for either the free enzyme or the E•peptide 

complex, since FPP also binds to the E•product complex to accelerate product 

dissociation (89).  Steady-state kinetic analysis is further complicated by the slow binding 

characteristics of compound 3 with R291G and K294A FTase.  Therefore, the binding 

affinity of compound 3 for the free enzyme was determined by a direct binding asssay.  

Competitive equilibrium dialysis versus FPP was used to measure KD
I values for 

compound 3 with both WT and K294A FTase, in the presence and absence of 12 mM 

phosphate.  The inhibitor binds tightly to both WT and K294A, yielding a KD
I of  7 ± 1 

nM and 42 ± 14 nM, respectively (Figure 4.4, Table 4.4).  These numbers are comparable 

to the binding affinity of free FTase for FPP (KD
FPP= 10 nM for WT and 51 nM for 

K294A) (Table 4.4) (90).  The K294A mutation modestly reduces the affinity of the 

enzyme for the inhibitor by 6-fold, similar to the decrease in KD
FPP  for this mutant (90).  

The KD
I values are essentially unchanged by the addition of phosphate (Figure 4.4, Table 

4.4).  The KD
I values are 8 ± 4 nM for WT and 33 ± 11 nM for K294A in the presence of 

12 mM phosphate, which is within error of the values measured in the absence of 

phosphate (Figure 4.4, Table 4.4).  It is important to note that both the KD
FPP and KD

I 

values are much tighter than the Ki values for WT and mutant FTase, suggesting that the 

inhibition observed in steady-state kinetic experiments is not a result of the inhibitor 

binding to the free enzyme, but to some other complex.   

 

KD
peptide determinations   

The affinity constant of FTase for the peptide substrate was measured for 

dansylated GCVLS (dns-GCVLS) binding to a preformed E•I complex, where I is 

compound 3.  A fluorescence anisotropy assay was used, which has been previously used 

to measure peptide affinity constants using a commercial FPP-competitive inhibitor, FPT 

inhibitor II (I2) (24).  The affinity constant for dns-GCVLS binding to E•I is 19 ± 3 nM,  

~3-fold tighter than the value measured for dns-GCVLS binding to FTase•I2 (82) (Figure  
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Figure 4.4  KD
I determination 

KD
I plot of WT FTase in the absence (●) and presence (□) of 12 mM KPi (pH 7.8).  The 

plot represents the concentration of E•FPP measured as a function of the concentration of 
Ifree by competitive equilibrium dialysis, as described in the Experimental Procedures.  A 
solution containing enzyme with [3H]-FPP and inhibitor is separated by a 25,0000 
molecular weight cutoff dialysis membrane from a solution containing [3H]-FPP and 
inhibitor alone.  Final solutions contained 20 nM FTase, 60 nM [1-3H]-FPP,  and varying 
concentrations (0-500 nM) of compound 3 in 50 mM Heppso, pH 7.8, 5 mM MgCl2, and 
2 mM TCEP.  Assays were conducted at 25 0C.  The radioactivity on either side of the 
membrane is counted to determine the amount of FPP bound to FTase, which varied as a 
function of inhibitor concentration.  Eq. 6 is fit to the data and KD

I values are listed in 
Table 4.4. 
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Table 4.4  Dissociation constants for WT and K294A FTase with compound 3   

Mutant KD
FPP (nM) a KD

I (nM) b KD
peptide (nM) c 

Pi d — — + — + 

WT 10 ± 2 7 ± 1 8 ± 4 19 ± 3 16 ± 2 

K294A 51 ± 10 42 ± 14 33 ± 11 17 ± 1 35 ± 2 
a Measure of the affinity of FTase for FPP.  Data taken from ref. (90). 
b Measure of the affinity of FTase for compound 3, using competitive equilibrium dialysis as described in 
the Experimental Proecdures.  Final solutions contained 20 nM FTase, 60 nM [1-3H]-FPP,  and varying 
concentrations (0-500 nM) of compound 3 in 50 mM Heppso, pH 7.8, 5 mM MgCl2, and 2 mM TCEP.  
Assays were conducted at 25 0C.  Eq. 6 was fit to the data to determine KD

I. 
c Measure of the affinity of the FTase•compound 3 complex for dns-GCVLS, using fluorescence anisotropy 
as described in the Experimental Procedures.  Final solutions contained varying concentrations (0-500 nM) 
of an equimolar FTase•compound 3 complex, 2 nM dns-GCVLS, 50 mM Heppso, pH 7.8, 5 mM MgCl2 
and 2 mM TCEP.  Assays were conducted at 25 0C.  Eq. 7 was fit to the data to determine KD

peptide. 
d 12 mM KPi (pH 7.8) was used for experiments with Pi. 
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Figure 4.5  KD

peptide determination  
KD

peptide plot for WT (●) and K294A (□).  The plot represents the fluorescence anisotropy 
measured as a function of the concentration of E•I using compound 3, as described in the 
Experimental Procedures.    A weighted fit of Eq. 7 to the data yields the dissociation 
constants for dansylated GCVLS, listed in Table 4.4.  Final solutions contained varying 
concentrations (0-500 nM ) of an equimolar FTase•compound 3 complex, 2 nM dns-
GCVLS, 50 mM Heppso, pH 7.8, 5 mM MgCl2 and 2 mM TCEP.  Assays were 
conducted at 25 0C.   
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4.5, Table 4.4).  The affinity constant did not change when 12 mM phosphate was added 

to the assay (KD
peptide = 16 ± 2 nM) or when the experiment was repeated for the K294A 

mutant (KD
peptide = 17 ± 1 nM).  A slightly weaker peptide affinity was observed for 

K294A in the presence of 12 mM Pi, with a KD
peptide of 35 ± 2 nM (Figure 4.5, Table 4.4). 

 

Product dissociation kinetics   

One model consistent with the previous data is that compound 3 inhibits steady-

state turnover by competing with FPP to bind to the E•product complex to facilitate 

product dissociation (Scheme 4.1).  To examine this hypothesis, we used a fluorescent 

assay (described in Chapter 3) to directly measure product dissociation from a preformed 

1:1 E•product complex, using a constant FPP concentration and varying inhibitor 

concentrations.  The dependence of the dissociation rate constant on inhibitor 

concentration allows the calculation of an apparent inhibition constant, Ki
pr, using 

Equations 8 and 9 (Figure 4.6, Table 4.5).  To confirm competitive binding, Ki
pr was 

measured at two FPP concentrations (25 µM and 150 µM) for WT FTase, and Eq. 9 was 

fit to the data at both FPP concentrations.  A  Ki
pr of 21 ± 5 nM was measured for WT 

FTase (Figure 4.6, Table 4.5), which is an inhibition constant for product association that 

is lower than the steady-state Ki and comparable to the KD
I for binding compound 3 to 

FTase (Tables 4.3 and 4.4).  The apparent inhibition constant was also measured for 

K294A FTase to determine the effect of removing positive charge on the product 

dissociation step.  The value of Ki
pr was only slightly decreased (2-fold) for K294A 

relative to WT FTase, suggesting that the steady-state kinetic effects from this mutation 

are the result of other steps in catalysis.    Overall, the effect of inhibition on product 

dissociation indicates that the IC50 and Ki values measured under steady-state conditions 

may reflect inhibition of the product dissociation step in the overall reaction mechanism.  

A commercially available FPP-competitive inhibitor, FPT inhibitor II (I2), was tested as a 

control and was found to have no effect on product dissociation at µM levels (data not 

shown).  
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Figure 4.6  Plot of Ki
pr for WT FTase 

The observed rate constant for product dissociation as a function of the concentration of 
compound 3 is measured by mixing the E•product•I complex with 25 µM (□) or 150 µM 
(●) FPP, measuring the time-dependent increase in fluorescence (λex = 340 nm, λem = 475 
nm) and fitting Equations 8 and 9 to the data to determine kpr and Ki

pr values, listed in 
Table 4.5.    Final solutions contained 20 nM E•product (FTase preincubated with FPP 
and dns-GCVLS in a 1:1:1 complex for 1 hour), varying concentrations (0-800 nM) of 
compound 3 (preincubated with E•product complex for 30 min), 25 or 150 µM FPP, 10 
µM GCVLS, 50 mM Heppso, pH 7.8, 5 mM MgCl2, and 2 mM TCEP.  Assays were 
conducted at 25 0C.   
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Table 4.5  Rate and equilibrium constants for dissociation of farnesylated peptide 
product from WT and K294A FTase a  

Enzyme 

! 

K
1/2

FPP  (µM) Ki
pr (nM) koff, 1 (min-1) koff, 2

 (min-1) 

WT 22.3 ± 0.2 21 ± 5 0.013 ± 0.001 0.0024 ± 0.0004 

K294A 22.1 ± 0.3 12 ± 2 0.013 ± 0.001 0 
a  Product dissociation rate constants were detemined using a fluorescent assay described in Chapter 3.  
Final solutions contained 20 nM E•product (FTase preincubated with FPP and dns-GCVLS in a 1:1:1 
complex), varying concentrations (0-800 nM) of compound 3, 150 µM FPP, 10 µM GCVLS, 50 mM 
Heppso, pH 7.8, 5 mM MgCl2, and 2 mM TCEP.  Assays were conducted at 25 0C.  Eq. 8 was initially fit 
to the data to determine the rate constant for product dissociation, kpr, and then Eq. 9 was used to determine 
Ki

pr, koff,1, and koff, 2 (see Scheme 4.1).  
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Discussion 

Effect of mutations on FPP-competitive inhibitors 

Unexpectedly, mutations in the PPi  binding pocket (R291G, K294A and Y300F) 

significantly increase the potency, lowering the values of both IC50 and Ki, of the FPP-

competitive inhibitors, compounds 1, 2 and 3 (Tables 4.2 and 4.3).  K356A, located on 

the periphery of the FPP binding pocket, was included as a control to test the effect of 

removal of a positive charge located outside the active site on inhibitor potency.  The 

effect of the K356A mutation, as well as mutations in the peptide-binding pocket, on both 

the IC50 and Ki values for compound 3 is small when compared to the PPi binding pocket 

mutants.  These results indicate that residues that interact directly with the PPi moiety of 

FPP are important modulators of the potency of the FPP-competitive inhibitors.  These 

three residues are implicated in making electrostatic and hydrogen bonding interactions 

with the PPi moiety of FPP in both the inactive and active substrate conformations.  In 

the inactive ternary complex FTase•FPP•CVFM, R291β interacts primarily with the α-

phosphate of FPP, while Y300β and K294β interact with the β-phosphate (Figure 4.1A) 

(85).  In the proposed active substrate conformation, R291β makes a bidentate interaction 

with two of the nonbridging oxygen atoms of the PPi group, while Y300β forms a 

hydrogen bond with the phosphate oxygen bound to C1 of FPP and K294β interacts with 

the terminal oxygen atom on the β-phosphate (88, 90, 115). 

The inhibition data indicate that removal of the positive charge in the R291G and 

K294A mutants provides the most favorable environment for inhibition, while the Y300F 

mutant causes a smaller increase in potency.  The effect of these mutations on the IC50 

and Ki values is most likely due to the removal of unfavorable charge-charge or steric 

interactions between the positively charged PPi binding pocket and the inhibitors.  Other 

possibilities include a gain of new favorable interactions with the inhibitor in the active 

site of the mutant FTase, or a change in the mechanism whereby the inhibitor binds in an 

alternate site.    Several other mutations at position R291β, such as Val, Ala and Glu, 

similarly decrease the IC50 values for compounds 1, 2 and 3 (data not shown).  These 

results highlight the importance of the positive charge of R291β as being the main 
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modulator of inhibitor potency, as opposed to steric and/or hydrophobic repulsions. 

These results are most adventitious to drug design since the unfavorable interactions with 

side chains in the WT protein could be exploited to design inhibitors that could overcome 

these repulsions by inclusion of charge and/or changes in van der Waals volume and 

hydrophobicity. 

    

Effect of mutations on peptide-competitive inhibitors 

Compound 4, a peptide-competitive inhibitor, was affected quite differently from 

the other compounds by the mutations in this study.  Examining the IC50 data, the greatest 

effect on the IC50 value occurred with Y300F, causing a 13-fold decrease in the potency 

of this compound.  Y300F interacts with both the FPP and peptide substrates (close to the 

CaaX cysteine residue) in the crystal structure (Figure 4.1).  Given the intimate nature of 

the substrate binding regions of FTase, it is not unlikely that alterations to Y300β could 

bring about changes in the peptide binding pocket, either directly or indirectly, resulting 

in altered binding of compound 4.  W102A also affected the potency of compound 4, 

causing an 11-fold decrease in potency as compared to the WT protein.  Owing to the fact 

that this residue constitutes a portion of the peptide binding cleft (Figure 4.1B), 

alterations in the interaction with compound 4 are reasonable.  Unexpectedly, the W106A 

mutation has little effect on the IC50 value as compared to WT.  This residue is proposed 

to interact with the N-terminus of the peptide substrate (171), but may not directly 

contact compound 4.  R291G, K294A and K356A mutations had smaller effects, ranging 

from a 3- to 6-fold reduction in inhibitor potency as measured by IC50 and Ki values.  

These mutations must be altering the E•FPP complex conformation and/or the binding 

surface for compound 4 to some degree and affecting potency and affinity.  Without 

further structural information, it would be difficult to estimate the structural distortions 

occurring upon mutation.  However, the close proximity of the FPP and peptide binding 

pockets in FTase makes it likely that these mutations could translate into alterations of 

the binding capabilities of this peptide-competitive inhibitor.  These results indicate that 

other amino acid side chains outside of the predicted binding surface for this compound 

can affect inhibitor affinity. 
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Effect of mutations on phosphate synergy effect 

The comparison of the magnitude of the decrease in IC50 values in the absence 

and presence of 12-16 mM phosphate ions for compound 3 (Figure 4.2, Table 4.2) 

indicates that the greatest loss of the phosphate ion synergy effect occurs with the R291G 

and K294A mutations.  These data suggest that the phosphate synergy effect is due to 

interactions located primarily in the PPi binding pocket, as opposed to arising from 

allosteric effects or other interactions.  One reasonable model is that the phosphate ions 

would bind to the positively charged residues in the PPi binding pocket in the presence of 

inhibitors to mimic the PPi moiety of the natural FPP substrate.  This effect would 

neutralize the ionic environment of the PPi binding pocket residues and perhaps also alter 

the position of the hydrophobic side chains, resulting in more favorable interactions with 

bound inhibitors.  Since the affinity of these mutants for the FPP-competitive inhibitors is 

higher than with WT FTase, deletion of these side chains both decreases the protein-

inhibitor repulsions and removes the requirement for phosphate ions to interact with these 

residues.  

The phosphate synergy effect demonstrated by the IC50 data clearly supports 

earlier observations related to the ability of phosphate anions to increase the potency of 

FPP-competitive inhibitors.  Scholten et al. have suggested that the phosphate synergy 

effect is restricted to the active site of FTase, rather than anions being purely allosteric 

effector molecules (165).  The mutational data presented in this study further develop the 

argument that the phosphate synergy effect is, more specifically, restricted mainly to the 

PPi binding pocket in the active site of FTase.  These data support the hypothesis that the 

role of phosphate ions in increasing the potency of FPP-competitive inhibitors is to mask 

the unfavorable interactions of the inhibitors with the electrostatic environment of the PPi 

binding pocket. 

 

Dissociation constants for inhibitors   

Ki values normally reflect the affinity of a competitive inhibitor for Efree.  For 

FTase, however, steady-state kinetic analyses are complicated by the fact that FPP also 
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binds to the E•product complex to accelerate product release (21, 89).  Therefore, a direct 

binding analysis was needed to determine the affinity of the inhibitor for the free enzyme.  

Compound 3 binds tightly to WT FTase with a KD
I of 7 nM,  similar to the 10 nM KD

FPP 

(Table 4.4) (90).  The mutation of K294β to alanine in FTase only reduces the affinity of 

the enzyme for both the inhibitor and FPP 5 to 6-fold.  The presence of 12 mM Pi does 

not affect the KD
I values for WT or K294A FTase, indicating that the phosphate synergy 

observed in the IC50 studies is not a factor in the affinity of the free enzyme for the 

inhibitor.  Additionally, both the KD
FPP and the KD

I values are much tighter (nM) than the 

Ki values (µM) for WT FTase, demonstrating that the observed effects of inhibition 

cannot be solely explained by a simple mechanism in which the inhibitor competes with 

FPP for binding to the free enzyme.  

In addition to FPP binding, the effect of compound 3 on peptide binding was also 

measured by a fluorescence anisotropy assay that directly measures the binding of a 

dansylated peptide to the E•I complex.  The affinity constant for dns-GCVLS (KD
peptide = 

19 nM) is ~ 3-fold tighter for compound 3 with both WT and K294A than for the 

commercial inhibitor I2, which is commonly used to measure peptide affinity constants 

(82).  The presence of phosphate did not affect the KD
peptide value for WT, and only 

slightly increased the KD
peptide value for K294A, further indicating that the peptide 

binding step is not significantly altered in the overall inhibitory mechanism for WT or 

K294A FTase.  However, the affinity of the E•peptide complex for the inhibitor can be 

calculated from the affinity of FTase for peptide alone (KD = 0.35 µM) (82) and the 

affinity of FTase for the inhibitor alone (KD = 7 nM), and indicates an extremely tight 

binding (KD = 0.4 nM).  Therefore, the binding of the inhibitor to the E•peptide complex 

represents a possible mode of inhibition in the FTase mechanism.   

 

Revised model for FTase inhibitory mechanism  

To test the hypothesis that the inhibitor also competes with FPP for binding to the 

product complex, the dissociation of product from the E•product complex was directly 

measured using a fluorescent assay.  Interestingly, compound 3 inhibits product 

dissociation for WT FTase in an FPP-competitive manner.  The inhibition constant for 
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product dissociation for WT FTase is 21 ± 5 nM, reflecting a tight inhibition constant the 

same order of magnitude as the KD
FPP and KD

I values, and significantly lower than the Ki 

values measured under steady-state conditions.   A commercial FTase inhibitor, FPT 

inhibitor II (I2), did not inhibit product dissociation, indicating multiple modes for the 

inhibition of FTase (data not shown).   

We propose that these inhibition studies can be combined with previous kinetic 

studies to establish a unique mechanism for FTase inhibition whereby FPP-competitive 

inhibition is mediated by three different enzyme forms:  binding of the inhibitor to the 

free enzyme, the E•peptide complex, and the E•product complex (Scheme 4.1).  The 

binding affinities of the all three complexes for the inhibitor are tight, indicating that any 

one of these binding modes represents a possible mode of inhibition.  The kinetic 

mechanism of FTase is functionally ordered, where FPP is thought to bind before 

peptide, and additional FPP is required for product release so that the enzyme does not 

exist in an unbound form throughout the catalytic cycle (83, 92).  Therefore, the 

functional inhibitory mechanism is to prevent product dissociation.  However, the 

complex kinetic mechanism given in Scheme 4.1 makes a prediction of the steady-state 

data difficult.  For example, it remains unclear why the Ki values for WT are much larger 

than any of the inhibitor dissociation constants measured in this study.  The effect is 

likely a kinetic effect, rather than a thermodynamic effect, and may involve a rate-

limiting conformational change such as the flipping of the FPP molecule to form an 

active substrate conformation prior to catalysis.  A more detailed computational analysis 

of the available data is needed to predict the steady-state kinetic data for this enzyme. 

The inhibition of product dissociation of FTase may be a novel mechanism by 

which proteins can regulate their own activity in vivo.  Indeed, a number of peptide 

sequences have been identified for FTase that undergo a single turnover but not multiple 

turnovers (24, 25).  These peptides bind tightly to the enzyme upon farnesylation and are 

not released in the presence of FPP (25), but their dissociation may be stimulated by other 

cellular factors.  For example, studies have indicated that other peptides may catalyze 

product dissociation for these peptide products (24).  If this is indeed the case, the 

inhibitory mechanism described here may be applicable to peptidomimetic inhibitors as 



 

 119 

well, which compete for the peptide binding site and may thereby inhibit peptide-

catalyzed product dissociation.  

This phenomenon of inhibition of product release may be applicable to a broad 

range of enzymes for which product dissociation is the rate-limiting step, such as 

dihydrofolate reductase (155), many members of the GNAT superfamily of 

acetyltransferases (172), and the majority of DNA methyltransferases (156) and RNA 

polymerases.  Many of these enzymes are targets in the development of a variety of anti-

cancer, antibacterial, or antivirulent inhibitors and have been studied extensively toward 

these purposes.  The current wealth of structural information for these proteins may aid in 

the design of compounds that target the E•product complex, representing a unique 

strategy in the development of potent inhibitors. 

 

Implications for drug development 

As demonstrated by this study of inhibitor interactions with mammalian FTase, 

the ability of mutagenesis to pinpoint residues that are involved in modulating inhibitor 

potency offers one tool in determining inhibitor orientations within the active site and key 

interactions that could be exploited to improve on inhibitor potency.  Mutagenesis is a 

quicker but less exhaustive means of gaining information concerning protein/inhibitor 

interactions compared to X-ray crystallography.  Although precise orientations of the 

inhibitor in the active site cannot be determined, vital information about key interactions 

can still be obtained.  By examining the effect of selective mutations on inhibitor 

potency, one can further narrow the search for what attractive or repulsive forces would 

be the most advantageous to address for improving inhibitor efficacy.  From this work on 

FTase, it is clear that the interactions of the inhibitors with the residues located in the PPi 

binding pocket are unfavorable and can be modulated with mutagenesis.  Interactions 

with the positively charged residues of the PPi pocket should be addressed when 

designing inhibitors for FTase.  Given the fact that charged moieties on inhibitors can 

translate into poor bioavailability, alterations to limit the interaction of inhibitors with the 

PPi binding pocket (i.e. size or hydrophobicity) would be a more advantageous route to 

improved potency. 
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In addition to the information obtained through mutagenesis in this work, our 

current understanding of FTase inhibitors must be redefined by the mechanism presented 

in Scheme 4.1.  As suggested by the analog data presented in Chapter 3, the inhibition of 

product dissociation is an important inhibitory mechanism which should be considered 

when performing inhibitor screens and characterizations.  Future compounds may also be 

developed to modulate product release to design more suitable inhibitors.  With the 

available structural information, especially the structures of the ternary E•product and 

E•product•FPP complexes (21), the importansce of an inhibitor binding to these 

complexes can be elucidated.  Many inhibitors adopt a β-turn conformation in the active 

site of FTase, corresponding to the position of the farnesylated peptide product in the 

“exit groove” of the active site, suggesting a possible conformation by which product 

release may be inhibited (120).  An E•product•I complex would be particularly useful in 

determining important structural interactions that enable the inhibitor to bind to the 

E•product complex and inhibit product dissociation.  Such a structure would provide 

useful mechanistic insight into this unique mode of inhibition.   
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CHAPTER 5  
KINETIC ISOTOPE EFFECT STUDIES OF THE PROTEIN 

FARNESYLTRANSFERASE REACTION 1,2 
 

 

FTase and GGTase I are the newest members of the class of zinc metalloenzymes 

that catalyze sulfur alkylation.  Other members of this class of enzymes include 

methionine synthases, human betaine-homocysteine methyltransferase, and 

methanol:coenzyme M methyltransferases (101, 102).  Despite the extensive structural 

and kinetic data obtained for FTase, however, the structure of the chemical transition 

state for the reaction catalyzed by FTase or any other member of this class of enzymes 

has yet to be clearly defined.  A concerted mechanism has been supported by direct zinc 

ion coordination of the cysteine thiol which lowers the pKa of the thiolate nucleophile, as 

well as by inversion of stereochemistry during the FTase reaction (82, 98).  Substitution 

of Cd2+ for Zn2+ in the active site of FTase enhances peptide affinity and decreases the 

observed single turnover rate constant, further supporting a concerted associative 

mechanism with metal-thiolate coordination in the transition state (95).  However, 

substitution of electron-withdrawing fluorine atoms at the C4 methyl position of FPP 

leads to a decrease in the rate constant proportional to the number of fluorines added, 

indicating that there is substantial positive charge in the transition state of FTase (95, 99).  

An increased knowledge of the geometry and electrostatic features of the 

chemical transition state of FTase may provide a blueprint for the design of potent FTase 

inhibitors.  Given the sensitivity of transition state energies to structural perturbations, the 

                                                
1 Reproduced in part from Pais, J.E., Bowers, K.E., and Fierke, C. A. 2006. Measurement of the α-
secondary kinetic isotope effect for the reaction catalyzed by mammalian protein farnesyltransferase.  
Journal of the American Chemical Society.  128: 15086-15087.  Copyright 2006 American Chemical 
Society. 
2 June Pais wrote this chapter, performed all of the described experiments, and analyzed the data, with the 
exception of the cloning of the FPP synthase gene and initial development of methods to purify FPP 
synthase and perform enzymatic synthesis and HPLC purification of radiolabeled FPP, which were done by 
Katherine Bowers. 
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best method for investigating the structure of the transition state in FTase is the 

measurement of heavy atom kinetic isotope effects (KIEs) (133).  KIEs are defined by the 

ratio knormal/kheavy and are a vibrational phenomenon that results from changes in atomic 

vibrational states between the ground state and transition state (Scheme 5.1).  When the 

mass of a substrate is changed by isotopic substitution, the vibrational frequency of the 

substrate is changed, both in the ground and transition states but by different relative 

magnitudes (Scheme 5.1).  This results in a difference in activation energies between the 

normal and heavy substrates, which is experimentally measured as a difference in 

reaction rates.  For most reactions, the bonding environment in the transition state is less 

constrained than in the ground state and the rate constant for the normal substrate is faster 

than the rate constant for the heavy substrate (Scheme 5.1A).  Thus the KIE will be 

“normal,” or greater than 1.  For “inverse” KIEs, which are less than 1, the bonding 

environment in the transition state is more constrained, and the rate constant for the 

normal substrate is slower than the rate constant for the heavy substrate (Scheme 5.1B).   

For FTase, a purely associative reaction would exhibit a decreased bond order for 

C1, wherein C1 becomes less constrained as the geometry changes from tetrahedral to 

trigonal bipyramidal in the transition state (Scheme 5.2A).  This would result in a large 

primary 14C KIE (~10%), while the α-secondary 3H KIE would be near unity due to little 

change in the bonding environment of the α-secondary hydrogen atoms (133, 173).  In 

contrast, for a purely dissociative reaction, C1 would form a carbocation and become 

more constrained in the transition state resulting in a small or inverse primary  14C KIE 

(Scheme 5.2B).  Additionally, the increased vibrational freedom of the α-hydrogen atoms 

in a carbocation intermediate, as they change from an sp3 hybridization in the ground 

state to an sp2
 hybridization in the transition state, would result in a large α-secondary 3H 

KIE (~20%) (133, 174).  

Traditionally, KIEs for enzyme-catalyzed reactions are measured under steady-

state turnover conditions; however, this requires a reaction with a single rate-limiting step 

and a low commitment to catalysis (175).  The α-secondary 2H KIE for yeast FTase was 

measured under steady-state conditions and determined to be slightly inverse (0.977) 

(176).  However, the KIE measured under steady-state conditions is complicated by the 

rate-limiting product release and high commitment factors for both substrate binding and 
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Scheme 5.1 Transition state theory for 3H KIEs 

Reaction coordinate diagrams for a 3H KIE experiment illustrating changes in the ground 
and transition states for two reactions: (A) the bonding environment in the transition state 
is less constrained, and a normal KIE is observed (kH > kT); and (B) the bonding 
environment in the transition state is more constrained, and an inverse KIE is observed 
(kH < kT).  These diagrams are for illustrative purposes only, and energy values are not to 
scale.  
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Scheme 5.2  Possible transition states for FTase 
Proposed chemical structure of the FTase transition state, centered on the C1 of FPP, for:  
(A) an associative mechanism, where the C1 is partially bonded with both the thiolate 
nucleophile and the PPi leaving group in a symmetrical transition state with trigonal 
bipyramidal geometry; and (B) a dissociative mechanism with carbocation character and 
sp2 hybridization.   
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product formation, and probably does not reflect the intrinsic KIE for either the rat or 

yeast FTases (83, 92, 95, 96).  Therefore, we have measured the intrinsic KIEs in rat 

FTase under single turnover conditions of limiting FPP and excess enzyme, which acts as 

a stoichiometric reactant, so that the step that undergoes isotopic discrimination, the 

chemical step, is the main rate-limiting step (Scheme 5.3) (177, 178).  A combination of 

the competitive method for KIE measurement and transient kinetics has been used 

previously to measure the intrinsic KIEs for purine nucleoside phosphorylase and 

glutamate mutase (179, 180). 

Crystal structures for FTase have been solved in a number of inactive complexes, 

including a ternary substrate complex (E•FPP•CVFM), a product complex (E•F-

KKKSKTKCVIM), and a ternary product complex (E•F-KKKSKTKCVIM•FPP) in the 

absence of Mg2+ (21, 85).  Ternary complex structures place the two reactive atoms, the 

sulfur of the peptide cysteine and the C1 of FPP, greater than 7 Å apart (Figure 5.1) (84, 

85, 87).  In order for catalysis to occur, there must be a conformational rearrangement of 

one or both of the substrates, since little change in the active site of FTase itself is 

observed between the ternary and the product complexes (21).  On the basis of structural 

and mutagenesis studies, a model has been proposed in which the first two isoprene units 

of FPP rotate to bring the C1 of FPP within reacting distance (2.42 Å) of the peptide 

thiolate (88).  Furthermore, the diphosphate moiety rearranges such that Mg2+ coordinates 

the diphosphate oxygens of FPP and two carboxylate oxygens of D352β (Figure 5.2) 

(107).  Therefore, while transient kinetics are used to isolate the farnesylation step from 

the product release step, the observed rate constant under single turnover conditions of 

limiting FPP (relative to [E]) includes both this conformational rearrangement and the 

farnesylation step (Scheme 5.4) (95, 96).   

Here we measure the intrinsic primary 14C and α-secondary 3H KIEs for FTase, 

under a variety of conditions, to provide information about the sensitivity of the transition 

state structure to changes in the stability of the ground and transition states.  The intrinsic 

α-secondary 3H KIE for WT FTase is determined to be 1.20 ± 0.01.  This 3H KIE, 

together with a small observed primary 14C KIE of 1.03, is consistent with a concerted 

transition state with dissociative character.  We further explore the contribution of the 

Zn2+ metal ion to the chemical transition state of FTase by measuring the α-secondary 
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Scheme 5.3  Measurement of single turnover KIEs for FTase 
A single turnover KIE experiment is done by preincubating excess FTase with a mixture of FPP radiolabeled at a remote (FPP) 
and sensitive (FPP*) position.  The reaction is initiated by addition of excess peptide, which binds rapidly so that the 
formation of product where isotopic discrimination occurs can be measured.  

 

E    + E      + pep     E + FPP + FPP*    pep  

isotopically sensitive step 

       E      + E         product   product*  E          + E    pep 
     FPP*    FPP   FPP*   FPP  
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Figure 5.1  Ternary complex of FTase 
X-ray crystal structure of the inactive ternary complex with a slow peptide substrate, 
FTase•FPP•CVFM.  The conserved residues K164α, H248β, R291β, K294β and Y300β 
are shown interacting with the diphosphate moiety of FPP, and the zinc ion is coordinated 
to the peptide thiolate.  Protein Data Bank code: 1JCR (85).
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Figure 5.2  Proposed Mg2+ binding site in active substrate conformation  

Model for the proposed Mg2+ binding site formed in the active ternary complex (107), 
based on mutagenesis and crystallographic data (PDB ID 1JCQ (85) and 1D8D (84)).  
The octahedral binding site consists of two nonbridging oxygens of the FPP diphosphate, 
two carboxylate oxygens of D352β, a water molecule, and one carboxylate oxygen of 
D297β.  
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Scheme 5.4  Kinetic mechanism for FTase single turnover reaction 
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KIE for FTase substituted with Cd2+, which is determined to be 1.24 ± 0.01 and is 

consistent with a more dissociative transition state.  

Unexpectedly, the α-secondary KIE is masked for the pentapeptide GCVLS, 

which corresponds to the C-terminal sequence of H-Ras, a well-characterized substrate 

for FTase.  A decreased KIE indicates that the FPP conformational rearrangement, rather 

than the farnesylation step, is at least partially rate-limiting for this peptide.  Thus KIEs 

provide a way to study the kinetics and mechanism of the conformational rearrangement 

of FPP, which had previously only been inferred from crystallographic and mutagenesis 

studies.  We report α-secondary KIEs for WT FTase at varying concentrations of Mg2+, 

as well as for mutants in the PPi binding pocket of FTase, to further investigate the 

contribution of the diphosphate leaving group to catalysis.  Surprisingly, changing Mg2+ 

concentrations or removing positive charge from the PPi binding pocket did not change 

the observed KIE, although both affect the observed farnesylation rate constant and 

therefore have been proposed to stabilize the diphosphate leaving group of FPP in the 

chemical transition state.  These results implicate both Mg2+ as well as the positively 

charged residues in the PPi binding pocket in facilitating the conformational 

rearrangement of the FPP substrate as well as stabilizing the farnesylation transition state.  

In addition, here we show that the structure of the peptide substrate affects the 

equilibrium of this conformational change, as well as the chemical farnesylation step.  

Therefore, this FPP conformational change is an important determinant of substrate 

specificity for FTase, and possibly GGTase I as well.  The data lead to a detailed kinetic 

mechanism for the farnesylation of several peptides and the conformational 

rearrangement of FPP.    

 

Experimental Procedures 

Materials 

Radiolabeled isopentenyl diphosphate (IPP) and dimethyallyl diphosphate 

(DMAPP) were purchased from American Radiolabeled Chemicals (St. Louis, MO). 

Unlabeled IPP and geranyl diphosphate (GPP), dithiothreitol (DTT), N-acetyl-cysteine
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(NAC), and glutathione (GSH) were purchased from Sigma-Aldrich (St. Louis, MO).  2-

mercaptoethanol (βME) was purchased from Fisher.  Peptides were synthesized and 

purified by high-pressure liquid chromatography to > 90% purity as follows:  TKCVIF 

by American Peptide Company (Sunnyvale, CA), TKCVIM, TGCVIM, and SKTKCVIM 

by Bethyl Laboratories (Montgomery, TX) and GCVLS, GCVIM, and TKCVLS by 

Sigma-Genosys (The Woodlands, TX).  The molecular masses of peptides were 

confirmed by electrospray mass spectrometry.  Peptides and thiols were dissolved and 

stored in 5 mM Tris, pH 8, and 2 mM TCEP.  Concentrations were determined by 

reaction of the cysteine with 5,5’-dithiobis-(2-nitrobenzoic acid) using an extinction 

coefficient of 14,150 M-1cm-1 (181).  DNA primers were purchased from Invitrogen.  All 

other chemicals used were reagent grade.  Thin layer chromatography (TLC) plates were 

purchased from Whatman Ltd. (Maidstone, Kent, England) and pre-run in 100% acetone. 

 

Cloning of the FPP synthase gene 

 DNA encoding the wild-type FPP synthase gene was generated by polymerase 

chain reaction (PCR) amplification of the ispA gene from the E. coli strain DH5α 

genomic DNA with two sets of primers: 5’-ATGCATATGGACTTTCCGCAGCAACTC 

GAAGCCTGC-3’ and 5’-GTGGTGCTCGAGTTTATTACGCTGGATGATGTAGTC-

3’.  Each PCR amplification reaction was catalyzed by pfu-turbo DNA polymerase 

(Stratagene).  The resulting fragments were purified using a 1% agarose gel and then 

cloned into a pCR-Blunt II-TOPO vector and transformed into OneShot TOP10 

chemically competent E. coli cells (Invitrogen).  The purified TOPO plasmid containing 

the insert was digested with NsiI and XhoI, and the fragments were gel purified and then 

ligated into the pET31b(+) vector (Novagen) digested with the same restriction enzymes.  

The final gene contains a C-terminal 6X histidine tag.  The plasmid pET31b-ispA was 

transformed into E. coli BL21(DE3) cells, and the cells were grown in LB medium 

containing 100 mg L-1 ampicillin.  The plasmid was purified using a Plasmid Midi Kit 

(Qiagen).  The sequence of the entire gene was confirmed by DNA sequencing 

(University of Michigan DNA Sequencing Core, Ann Arbor, MI).   
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Preparation of FPP synthase 

 FPP synthase is overexpressed in E. coli BL21(DE3) pET31b-ispA cells, grown at 

37 0C to an OD600 of 0.7 in LB medium containing 100 mg L-1 ampicillin. Protein 

expression is induced by the addition of 1 mM isopropyl β-D-1-thiogalactopyranoside 

(IPTG) and 5 mM MgCl2, and incubated at 25 0C for 14-16 hours.  The harvested cells 

are resuspended in 50 mM Hepes, pH 8.5, 50 mM KCl, and 10 µg mL-1 

phenylmethylsulfonyl fluoride (PMSF), and lysed by a single pass through a 

microfluidizer (Microfluidics, Newton, MA).  The supernatant is clarified by 

centrifugation and nucleic acids are precipitated with 1% (w/v) streptomycin sulfate at 4 
0C.  The supernatant, 32 mg of total protein per run, is loaded onto a 7.8 mL Ni2+-charged 

POROS Metal Chromatography Affinity column (Applied Biosystems, Foster City, CA), 

washed in 50 mM Hepes, pH 8.5, 50 mM KCl buffer, and eluted with a 0-400 mM 

imidazole gradient.  The enzyme elutes at ~ 50 mM imidazole.  Fractions containing pure 

FPP synthase are pooled and concentrated using Amicon Ultra centrifugal filter devices 

with a 10,000 molecular weight cutoff (MWCO) filter (Millipore, Billerica, MA), and 

then dialyzed at 25 0C against 50 mM Tris, pH 8, 50 mM KCl, and 0.125 mM 

dithiothreitol.  Protein concentration and yield are determined by absorbance at 280 nm 

using a molecular weight of 31356 g mol-1 and a calculated extinction coefficient of 7680 

M-1cm-1 (147).  A typical yield of approximately 330 mg of > 95% pure FPP synthase, as 

determined by SDS-PAGE analysis,  is obtained from a 1 L growth of cells.  The protein 

is stored in 10% glycerol at -80 0C.   

 

Enzymatic synthesis of radiolabeled FPP 

The selective incorporation of radiolabels into the first and third isoprene units by 

FPP synthase using the precursors isopentenyl diphosphate (IPP), dimethylallyl 

diphosphate (DMAPP), and geranyl diphosphate (GPP) has been established by NMR 

(Scheme 5.5) (178).  To make FPP labeled in the sensitive (C1) position, radiolabeled 

IPP and unlabeled GPP are used as precursors; to make FPP labeled in the remote (C11) 

position, radiolabeled DMAPP and unlabeled IPP are used (Schemes 5.5 and 5.6).  The  
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Scheme 5.5  FPP synthase reaction 

Reaction catalyzed by FPP synthase, where the positions of the sensitive and remote 
labels are denoted by “∗” and “#”, respectively (178). 
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Scheme 5.6  Radiolabeled FPP molecules used to measure primary 14C and α-
secondary 3H KIEs 

FPP molecules are synthesized from radiolabeled precursors DMAPP and IPP by FPP 
synthase, as illustrated in Scheme 5.5.  The specific incorporation of radiolabels is not 
stereospecific.   
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enzymatic reactions are incubated for 6 hours at 37 0C using 20 µM FPP synthase in 10 

mM potassium phosphate buffer, pH 7.3, 10 mM MgCl2, 50 mM KCl, and 10 mM 2-

mercaptoethanol.  The volumes and concentrations of the precursor molecules are 

adjusted such that the concentration is ~150 µM FPP and the product forms a white 

precipitate as the reaction proceeds.  The solution is clarified by centrifugation for 30 

minutes at 14000 rpm after completion of the reaction.  The pellet is dissolved in 1 mL 

containing 25 mM NH4HCO3, pH 8, and 8.2 mM EDTA, and then purified by reversed-

phase HPLC using a Vydac 259VHP54 column with a 300 Å particle size.  Reversed-

phase HPLC has previously been used to separate phosphorylated isoprenoids on a 

preparative scale (182).  A linear, 30 minute gradient of 0-70% acetonitrile in 25 mM 

NH4HCO3, pH 8, is used at a flow rate of 0.5 mL min-1 and the absorbance is monitored 

at 214 nm.  Samples are collected every minute and counted.  Fractions corresponding to 

the radioactive peak are dried, dissolved in 70% ethanol and 50 mM NH4HCO3, pH 8, 

and stored at -20 0C.  The concentration is determined by scintillation counting, based on 

a standard curve.  Typical yields for FPP are ~ 45% of the limiting, radiolabeled starting 

material.  For 3H-labeled FPP, the specific radioactivity is decreased 10-fold by the 

addition of cold FPP to 2000 Ci mol-1, while the specific radioactivity of 14C-labeled FPP 

is maintained at 55 Ci mol-1.  

The purity and identity of FPP was confirmed by TLC analysis as follows.  To 

separate FPP from farnesol and farnesyl monophosphate, samples were loaded directly 

onto Whatman PE SIL G thin layer chromatography (TLC) plates and run in a 7:2:1 2-

propanol/NH4OH/H2O mobile phase (106).  To separate IPP, DMAPP, GPP, and FPP, 

samples were first dephosphorylated using alkaline phosphatase (183).  The subsequent 

alcohols were extracted into pentane and loaded onto Absorbosil RP-18 HPTLC plates 

which were run in a 1:2:1 50 mM NH4HCO3 (pH 8)/2-propanol/acetonitrile mobile 

phase.  For radioactive samples, plates were visualized by autoradiography and the 

samples were compared with standards to confirm that the purified reaction products 

were FPP.  Non-radioactive reactions were also run to confirm the identity and purity of 

FPP at higher concentrations, and plates were visualized by phosphomolybdic acid 

staining followed by heating.   
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Preparation of FTase 

Recombinant expression and purification of wild-type (WT) FTase and mutants 

are carried out in E. coli BL21(DE3) FPT/pET23a cells as described previously (90, 148).  

The cloning and purification of FTase mutants H248βA, K164βA, K294βA, R291βG, 

and Y300βF have previously been described (88, 90).  The purified FTase was 

determined by SDS-PAGE to be >90% pure.  The protein is dialyzed at 4 0C against 50 

mM Hepes, pH 7.8, and 2 mM TCEP, and stored at –80 °C.  Protein concentrations are 

determined by active site titrations as previously described (90). 

 

Preparation of Cd-FTase 

To reconstitute FTase with Cd2+, apo-FTase is first prepared as described 

previously (95, 103).  The active site Zn2+ and other metals are removed from FTase by 

dialysis of the protein against 5 mM EDTA in 50 mM Hepes, pH 7.8 and 2 mM TCEP for 

24 hours at 4 0C, followed by three changes against 500 mL of 50 mM Hepes, pH 7.8, 

and 2 mM TCEP with 25 g of Chelex (BioRad).  The apo-protein is then concentrated to 

100 µM using Amicon Ultra centrifugal filter devices (10,000 MWCO) and incubated 

with 1 equivalent atomic absorption grade Cd2+ (Aldrich, Milwaukee, WI) for 12 hours at 

4 0C.  Excess, unbound metals are removed by exchanging the buffer  several (>5) times 

to 50 mM Hepes, pH 7.8, and 2 mM TCEP using Amicon Ultra centrifugal filter devices 

(10,000 MWCO) and then concentrated to ~300 µM.  The metal concentration of the 

protein sample is determined by inductively coupled plasma-mass spectrometry (ICP-

MS) at the Keck Elemental Geochemistry Laboratory (University of Michigan, Ann 

Arbor, MI).  Protein concentrations are determined by active site titrations as previously 

described (90). 

 

Measurement of kinetic isotope effects  

The single turnover rate constant is measured at 25 0C as previously described 

(90, 95).  To measure primary and α-secondary KIEs, FTase, preincubated for >15 
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minutes with a mixture of FPP radiolabeled in the sensitive or remote position in buffer 

(50 mM Heppso, pH 7.8, 2 mM TCEP, 5 mM MgCl2), was rapidly mixed with peptide in 

the same buffer to give final concentrations of 4 µM FTase, 1 µM FPP, and 100 µM 

peptide (30 µL reaction volume).  A 14C:3H molar ratio of 9:1 was used to give 

approximately equal counts.  For Cd-FTase, 5 mM MgCl2 was preincubated with peptide 

immediately prior to reaction initiation. For nonpeptidic thiol substrates (GSH, NAC, 

DTT, and βME), the final reaction conditions were 4 µM FTase, 1 µM FPP, 5 mM thiol, 

50 mM Heppso, pH 7.8, 50 mM MgCl2, and 2 mM TCEP.  Reactions were quenched at 

varying times by the addition of 90 µL of 80% 2-propanol and 20% acetic acid (v:v) and 

placed on ice.  Reactions with single turnover rate constants less than 0.1 s-1 were 

performed manually, while reactions with rate constants faster than 0.1 s-1 were carried 

out using a KinTek rapid quench apparatus (KinTek Corporation, Austin, TX).  The 

farnesylated product was separated from unreacted FPP on Whatman PE SIL G TLC 

plates in an 8:1:1 (v:v:v) 2-propanol/NH4OH/H2O mobile phase (90).  Corresponding 

bands were cut from TLC plates and radioactivity was quantified by dual-label liquid 

scintillation counting using a Beckman LS 6500 liquid scintillation counter.  Counts were 

measured in disintegrations per minute (DPM), and repeated multiple times in 30 minute 

cycles to minimize the error, which was calculated using standard propagation analysis.  

The observed first order single turnover rate constant (kobs) is calculated from a single 

exponential fit of the fraction product (Pt) formed at time t defined by Eq. 1, where P∞ is 

the calculated reaction endpoint, which varied from 60-90% of the total FPP (90).   

! 

P
t

P"

= 1# e
#k

obs
$t     Eq. (1) 

An approximate KIE is obtained by calculating the ratio of the observed rate 

constants for 14C and 3H. To determine the actual observed KIE to a high precision, sets 

of 12 identical reactions are measured at 20-50% completion and compared with 

reactions measured at 100% completion (Eq. 2) (173). This apparent KIE is then 

corrected for the extent of conversion using Eq. 3 to obtain the actual observed KIE 

(184).  Alternatively, full time courses are done and the 14C:3H ratio at each time point 

(KIEapparent) is calculated and plotted as a function of extent reaction (f), according to Eq. 

3 (184).   
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! 

KIEapparent =
[product]normal /[product]heavy( )

20-50%

[product]normal /[product]heavy( )
100%

  Eq. (2) 

! 

KIEobs =
ln 1" f #KIEapparent( )

ln 1" f( )
   Eq. (3) 

 

Computational analysis and simulations 

The kinetic mechanism for FTase (Scheme 5.4) was used to determine 

approximate values for k1, k-1, and k2.  Eq. 4 reflects the obscurement of the intrinsic 

kinetic isotope effect (KIEint) by the forward commitment factor (Cf), which is defined as 

the ratio between the forward farnesylation rate constant, k2, and the reverse rate constant 

for the conformational step, k-1 (Eq. 5).  The observed rate constant measured under 

single turnover conditions, kobs, is described by Eq. 6, derived from a two-step reversible 

reaction. 

! 

KIE
obs
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    Eq. (4) 

! 
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f

=
k
2

k"1

    Eq. (5) 

! 

k
obs

=
k
1
k
2

k
1

+ k"1 + k
2

    Eq. (6) 

Using these equations and the experimentally determined values for KIEobs and 

kobs, the data were globally fit using the Solver tool from Microsoft Excel to determine 

the best solutions for k1, k-1, and k2.  The relative error, defined by Eq. 7, was calculated 

for each value of kobs and KIEobs.   

! 

relative error =
experimental - calculated( )

2

experimental
   Eq. (7) 

The sum of relative errors, or the total error, was then minimized to globally solve 

for each constant.  To determine the error for each calculated value, a range in values was 

generated from the experimental errors for kobs and KIEobs.  For experiments with Cd-

FTase, the value for KIEint was approximately the same and was solved at a fixed value 

of 1.24 ± 0.01.  Similarly, for all peptides and thiol substrates, KIEint was found to be 



 

 139 

approximately the same and was solved at a fixed value of 1.20 ± 0.01.  This value for 

KIEint was subsequently fixed as a constant for KIE experiments with FTase mutants in 

the PPi binding pocket, where the KIEint did not appear to change.  For varying Mg2+ 

concentrations with the peptide TKCVIF, KIEint and k2 were unchanged and so were 

fixed as constants to solve for k1 and k-1. 

Simulations were done on Berkeley Madonna using the calculated values for k1,  

k-1, and k2 described above.  An example of a simulated single turnover experiment for 

WT FTase with TKCVIM is shown in Figure 5.3.  The equilibration of FTase with [1-
3H]- and [11-14C]-FPP was first simulated to mimic experimental conditions (Figure 

5.3A).  The final concentrations of E•FPP were then used as initial concentrations in the 

simulated single turnover KIE experiment (Figures 5.3B and 5.3C).   The raw simulated 

data for product formation as a function of time were then analyzed exactly the same as 

the experimental data (described above), and calculated values for kobs and KIEobs from 

these simulated experiments were directly compared with experimental values.   

Reaction coordinate diagrams for the FTase single turnover reaction were 

generated by calculating the activation energy for each step, Ea, according to the 

Arrhenius equation (Eq. 8), where k is the microscopic forward or reverse first order or 

pseudo first order rate constant, A is the frequency factor 1012 s-1, R is the gas constant 

8.31 J•K-1mol-1, and T is the temperature (298 K). 

! 

k = Ae
-E

a
/RT      Eq. (8)  

The activation energy for each step was plotted, starting with the E•FPP species which is 

formed prior to the initiation of the reaction, and ending with the E•product complex 

because FPP is limiting and cannot catalyze product dissociation (Scheme 5.4).  For the 

peptide binding step, the experimental concentrations of peptide (100 µM) were used as 

well as the previously measured forward and reverse rate constants for peptide binding, 

given in Scheme 5.4 (92, 95).  Peptide sequence does not greatly affect binding affinity, 

and therefore the same rate constants were used for each peptide (24). 
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Figure 5.3  Simulated single turnover KIE experiment for FTase 

Simulated experiment for WT FTase with TKCVIM, according to Scheme 5.4.  (A) Equilibration of 4 µM WT FTase with 1 µM FPP 
(900 nM [11-14C]-FPP, 100 nM [1-3H]-FPP) to form FTase•FPP, using the microscopic rate constants given in Scheme 5.4.  The 
concentration of FPP is denoted by squares (), and the concentration of the binary complex FTase•FPP is denoted by circles ().  
Only the data for [11-14C]-FPP are shown here, for clarity.  (B) Simulated single turnover experiment, using the final concentrations 
from the equilibration experiment in (A) for the initial concentration of FTase•FPP, 100 µM TKCVIM and the reaction steps including 
the microscopic rate constants given in Scheme 5.4 and Table 5.1.  The formation of the binary complex FTase•FPP (), inactive 
ternary complex FTase•FPP•TKCVIM, (), active ternary complex [FTase•FPP•peptide]*(), and product complex FTase•product 
() are shown.  (C) First 0.1 s of the simulated experiment shown in (B).       
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Results 

Synthesis and purification of radiolabeled FPP 

FPP with radiolabels at either the sensitive (C1) or remote (C11) positions were 

synthesized using the precursors isopentenyl diphosphate and geranyl diphosphate or 

dimethylallyl diphosphate labeled in the appropriate positions, as dictated by the FPP 

synthase reaction (Schemes 5.5 and 5.6) (178).  The synthesized FPP was purified by 

reversed-phase HPLC, and chromatograms measuring both the absorbance at 214 nm as 

well as radioactive counts showed a single peak corresponding to FPP (Figure 5.4).  The 

purity and identity of the synthesized FPP was confirmed by TLC analysis (Figure 5.5).   

 

Primary and secondary kinetic isotope effects for FTase 

Primary 14C and α-secondary 3H KIEs were measured for WT FTase with 

TKCVIF, a peptide with a slow single turnover rate constant of 0.27 s-1 at saturating (5 

mM) Mg2+.  The primary 14C KIE was small (1.03 ± 0.03) and difficult to distinguish 

from unity when the high error was taken into account (Figure 5.6).  Therefore, the 

remainder of the KIE experiments have been done measuring only the α-secondary 3H 

KIE, which is large enough to measure to a high degree of precision and compare under 

different experimental conditions.  For WT FTase, the α-secondary KIE was measured as 

1.154 ± 0.006 for TKCVIF (Figure 5.7).  This is a signifcant secondary KIE, and together 

with a small primary KIE, is consistent with a concerted mechanism with dissociative 

character. 

The peptide TKCVIF was initially chosen to characterize the chemical transition 

state of FTase because the α-secondary 3H KIE measured for GCVLS, a well-

characterized substrate for FTase, was near unity (1.04 ± 0.01), indicating that another 

step besides the chemical step is most likely obscuring measurement of the intrinsic KIE 

for this peptide under these conditions.  Diphosphate release is rapid relative to the 

farnesylation rate constant (Chapter 2).  As a control, inorganic pyrophosphatase was 

added to the single turnover reaction to rapidly hydrolyze the diphosphate product; the  
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Figure 5.4  HPLC purification of FPP 
HPLC chromatograms of [11-14C]-FPP measuring (A) absorbance at 214 nm, and (B) 
radioactive counts, converted from CPM to µCi with a standard curve.  A Vydac 
259VHP54 column with a 300 Å particle size was loaded with 1 mL of the FPP synthase 
reaction, in 25 mM NH4HCO3, pH 8, and 8.2 mM EDTA.  The first large peak in (A) 
corresponds to EDTA, and the second peak corresponds to the radioactive peak in (B), 
which is confirmed by TLC analysis to be [11-14C]-FPP.  There is a 2-minute delay 
between the detector and the fraction collector, leading to an offset of the peaks in A and 
B.     
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Figure 5.5  TLC analysis of synthesized FPP 
Samples were dephosphorylated to alcohols using alkaline phosphatase, then extracted 
into pentane and loaded onto Absorbosil RP-18 HPTLC plates, and run in a 1:2:1 50 mM 
NH4HCO3 (pH 8)/2-propanol/acetonitrile mobile phase.  Radioactive plates were 
visualized by autoradiography; shown here are results from a nonradioactive FPP 
synthase reaction to confirm the identity of the reaction product.  Bands were detected 
with phosphomolybdic acid for the commercial standards GPP and FPP, but IPP did not 
extract into pentane.  Based on the number of carbons in IPP (5) compared to GPP (10) 
and FPP (15), IPP is expected to run higher than GPP on the TLC plate.  Therefore, the 
band for the reaction product corresponds to FPP.    

IPP FPP  reaction product GPP 
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Figure 5.6  Measurement of the 10 14C KIE for WT FTase with TKCVIF 
Single turnover reactions were run as described in Experimental Procedures.  Final 
solutions contained 4 µM FTase, 1 µM FPP (900 nM [1-14C]-FPP, 100 nM [11-3H]-FPP), 
100 µM TKCVIF, 50 mM Heppso, pH 7.8, and 2 mM TCEP.  (A) Fraction product 
measured by 3H () and 14C () counts, and fit to Eq. 1; (B) KIEapparent, calculated as the 
14C:3H ratio, plotted as a function of extent reaction and fit to Eq. 3 to obtain KIEobs = 
1.03 ± 0.03.   
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Figure 5.7  Measurement of α-secondary 3H KIE for WT FTase with TKCVIF 

Single turnover reactions were run as described in Experimental Procedures.  Final 
reactions contained 4 µM FTase, 1 µM FPP (900 nM [11-14C]-FPP, 100 nM [1-3H]-FPP), 
100 µM TKCVIF, 50 mM Heppso, pH 7.8, and 2 mM TCEP.  (A) Fraction product 
measured by 3H () and 14C () counts, and fit to Eq. 1; (B) KIEapparent, calculated as the 
14C:3H ratio, plotted as a function of extent reaction and fit to Eq. 3 to obtain KIEobs = 
1.154 ± 0.006.   
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observed KIE was not altered, thereby eliminating the possibility of a reversible reaction 

or a high reverse commitment factor (data not shown).  These data suggest that the rate-

limiting step for farnesylation of GCVLS is the conformational rearrangement of FPP 

prior to the chemical step that obscures the intrinsic KIE.  As described later, the kinetics 

of the conformational rearrangement is dependent on peptide structure, and the collection 

of data for different peptides with varying commitment factors and observed rate 

constants allowed a global fit of the data to solve for a common intrinsic α-secondary 3H 

KIE for WT FTase of 1.20 ± 0.01.  This calculated value for the intrinsic KIE for WT 

FTase is based on the assumption that peptide structure does not change the intrinsic KIE, 

which agreed with all of the available data.  The value of 1.20 is higher than any of the 

observed KIEs, which are obscured by varying commitment factors, and reflects a 

transition state with strong dissociative character.   

 

Kinetic mechanism of FTase 

In addition to determining the intrinsic KIE, the measurement of observed KIEs 

combined with single turnover rate constants were used to solve for the microscopic rate 

constants k1, k-1 and k2 (Scheme 5.4).  This provides the first kinetic information obtained 

for the conformational rearrangement of FPP, a step which has previously only been 

inferred from crystallographic and mutagenesis studies (21, 88).  While the solutions 

provided in Tables 5.1-5.5 do not represent unique solutions for k1, k-1 and k2, they are 

consistent with all of the data obtained thus far, and are in good agreement with 

experimental data when used in simulated experiments.  The calculated and experimental 

rate constants, as given in Scheme 5.4, were plotted on reaction coordinate diagrams to 

illustrate the changes in commitment factors and kinetic energy barriers that occur upon 

different experimental conditions.   

 

Secondary kinetic isotope effects for Cd-FTase 

To further explore the contribution of Zn2+ to the catalytic transition state of 

FTase, α-secondary 3H KIEs were measured for FTase substituted with Cd2+, a larger and 
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more thiophilic metal.  Cd-FTase was made by first preparing apo-FTase and then 

reconstituting with Cd2+.  ICP-MS analysis was done to confirm that the apo-protein had 

< 20% Zn2+ bound, and that the final purified Cd-FTase had ≥ 70% bound Cd2+.  Controls 

were done with excess Cd2+ (1.6:1), as well as with reconstituted Zn-FTase (1.3:1), to 

ensure that the varying metal concentrations did not affect the observed rate constants or 

KIE values (data not shown). 

The observed single turnover kinetic rate constant (kobs) was only modestly 

decreased (1.1 to 3.6-fold depending on the peptide) by the substitution of Cd2+ for Zn2+ 

(Table 5.1).  Previous results have shown a greater (6-fold) decrease in the single 

turnover rate constant for the reaction of FPP and GCVLS catalyzed by Cd-FTase, but 

this effect was still relatively modest and was not observed in the absence of Mg2+ (95).  

Additionally, substitution with Cd2+ had little effect on other steps in the FTase reaction 

pathway (95).  Interestingly, however, the α-secondary 3H KIE was substantially 

increased, from 1.13 ± 0.01 for TKCVIF to 1.19 ± 0.01 (Figure 5.8, Table 5.1).  A similar 

increase, from 1.179 ± 0.008 to 1.23 ± 0.01, was observed for TKCVIM, another peptide 

for which chemistry is thought to be rate-limiting; but not for GCVLS, a peptide for 

which the conformational step is partially rate-limiting (Table 5.1).  The latter control 

was done to confirm that substitution of Cd2+ does not change the rate-limiting step in 

this reaction, and that the change in the observed KIE for the other two peptides is likely 

a direct result of a change in the structure of the chemical transition state.  These results 

were validated by globally fitting the data and solving for the microscopic rate constants 

in the kinetic mechanism of FTase, using Equations 4-6 and Scheme 5.4.  For the 

peptides TKCVIF and TKCVIM, the values for k1 and k-1 are changed very little, while k2 

is slightly decreased when Cd2+ is substituted for Zn2+ (Table 5.1).  While only a slight 

change is observed for the microscopic rate constant for farnesylation (k2), the intrinsic 

KIE is solved as 1.24 ± 0.01 to account for the higher observed KIEs for TKCVIF and 

TKCVIM, but not for GCVLS.  These calculated data were simulated and yield very 

similar results to the experimental data (Figure 5.8).  A higher intrinsic α-secondary KIE 

indicates a more dissociative transition state for Cd-FTase, suggesting an integral role for 

the metal ion in modulating the reactivity of the thiolate nucleophile in the FTase-

catalyzed reaction.  
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Table 5.1  Kinetic constants for reaction of FPP and various peptides catalyzed by Zn- and Cd-FTase a 

Peptide Metal kobs (s-1) 20 3H KIEobs k1 (s-1) b k-1 (s-1) b k2 (s-1) b Cf b 

Zn-FTase 4.9 ± 0.8 1.04 ± 0.01 12 ± 2 3 ± 1 10 ± 2 4 ± 1 
GCVLS 

Cd-FTase 2.0 ± 0.2 1.03 ± 0.03 2.5 ± 0.9 3 ± 1 20 ± 10 7 ± 4 

Zn-FTase 7.2 ± 0.4 1.179 ± 0.008 138 ± 1  98 ± 1  13 ± 1 0.13 ± 0.01 
TKCVIM 

Cd-FTase 2.0 ± 0.2 1.23 ± 0.01 63 ± 3 110 ± 20 5.6 ± 0.2 0.05 ± 0.01 

Zn-FTase 0.27 ± 0.01 1.13 ± 0.01 970 ± 10 0.48 ± 0.04 0.27 ± 0.01 0.56 ± 0.06 
TKCVIF 

Cd-FTase 0.25 ± 0.01 1.19 ± 0.01 1000 ± 10 0.92 ± 0.04 0.25 ± 0.01 0.27 ± 0.01 
a Final solutions contained 4 µM FTase, 1 µM FPP (900 nM [11-14C]-FPP, 100 nM [1-3H]-FPP), 100 µM TKCVIF, 5 mM MgCl2, 50 mM Heppso, pH 
7.8, and 2 mM TCEP.  All assays were conducted at 25 0C.   
b k1, k-1, k2 and Cf are calculated constants given by Scheme 5.4 and Equations 4-6.  They were calculated by globally fitting the data for kobs and KIEobs 
using the Solver tool from Microsoft Excel, which minimized the sum of relative errors for each data set (defined by Eq. 7).  To determine the error for 
each calculated value, a range in values was generated from the experimental errors for kobs and KIEobs.  The intrinsic KIE (Eq. 4) was solved as 1.24 ± 
0.01 for Cd-FTase and 1.20 ± 0.01 for Zn-FTase.   
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Figure 5.8  Measurement of α-secondary 3H KIE for TKCVIF for Zn-FTase and 
Cd-FTase 

Measurement of α-secondary 3H KIE for TKCVIF for Zn-FTase () and Cd-FTase ().  
Final reactions contained 4 µM FTase, 1 µM FPP (900 nM [11-14C]-FPP, 100 nM [1-3H]-
FPP), 100 µM TKCVIF, 5 mM MgCl2, 50 mM Heppso, pH 7.8, and 2 mM TCEP.  The 
data from simulated experiments using the constants shown in Table 5.1 are shown in 
dotted lines.  Eq. 3 is fit to the data to determine the observed α-secondary 3H KIE, listed 
in Table 5.1.
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Effect of Mg2+ on secondary KIE 

One important catalytic feature of the proposed chemical transition state of FTase 

is the development of negative charge on the PPi leaving group (95).  Mg2+ enhances the 

single turnover rate constant catalyzed by FTase up to 700-fold for GCVLS, and has been 

proposed to stabilize the transition state by coordinating to and stabilizing the formation 

of the PPi leaving group (95, 96, 106).  Mg2+ has also been proposed to stabilize the 

conformational rearrangement of FPP by forming a high affinity Mg2+ binding site in this 

conformation (Figure 5.2) (107).  Therefore, Mg2+ could affect the rate constant for either 

the conformational change (k1, k-1) or farnesylation (k2).  Consistent with a catalytic role, 

Mg2+ enhances the single turnover rate constant for TKCVIF approximately 100-fold but 

the α-secondary 3H KIE is not greatly altered (Table 5.2).  An unchanged KIE could 

mean that the transition state structure is unchanged; however, the effect on the observed 

single turnover rate constant suggests that Mg2+ decreases the activation energy for the 

conformational step, leading to a change in the relative energies between the ground and 

transition states for the active substrate conformaton.  The data were simulated to solve 

for the microscopic rate constants in Scheme 5.4, listed in Table 5.2.  The forward rate 

constant for the conformational change, k1, is greatly increased by Mg2+, while k-1 and k2 

are changed very little, consistent with Mg2+ equally stabilizing the transition states for 

both the conformational change and farnesylation (Table 5.2).   

 

Secondary KIEs for FTase PPi binding pocket mutants 

In addition to Mg2+, the positively charged residues in the PPi binding pocket 

interact with the PPi group when FPP is bound in the inactive conformation (Figure 5.1).  

The role of these residues in the stabilization of the PPi leaving group in the chemical 

transition state and the FPP conformational change was therefore examined by measuring 

the α-secondary 3H KIEs for mutants of FTase in the PPi binding pocket.  The specific 

mutants chosen for this study (H248A, K164A, K294A, R291G and Y300F) have 

previously been characterized using steady-state and single turnover kinetics, and exhibit 

significantly decreased catalytic activity (Table 5.3)  (88, 90).  Surprisingly, the α-
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Table 5.2  Effect of Mg2+ on α-secondary 3H KIE for reaction with TKCVIF a 

[MgCl2] kobs (s-1) 20 3H KIEobs k1 (s-1) b k-1 (s-1) b k2 (s-1) b Cf  
b 

0 0.0026 ± 0.0001 1.154 ± 0.006 0.011 ± 0.002 0.9 ± 0.1 0.27 ± 0.01 0.32 ± 0.05 

0.1 mM 0.016 ± 0.001 1.14 ± 0.01 0.05 ± 0.01 0.6 ± 0.1 0.27 ± 0.01 0.4 ± 0.1 

5 mM 0.27 ± 0.01 1.13 ± 0.01 970 ± 10 0.48 ± 0.04 0.27 ± 0.01 0.56 ± 0.06 
a Final solutions contained 4 µM FTase, 1 µM FPP (900 nM [11-14C]-FPP, 100 nM [1-3H]-FPP), 100 µM TKCVIF, 0-5 mM MgCl2, 50 mM Heppso, pH 7.8, and 
2 mM TCEP.  All assays were conducted at 25 0C. 
b k1, k-1, k2 and Cf are calculated constants given by Scheme 5.4 and Equations 4-6.  They were calculated by globally fitting the data for kobs and KIEobs using the 
Solver tool from Microsoft Excel, which minimized the sum of relative errors for each data set (defined by Eq. 7).  To determine the error for each calculated 
value, a range in values was generated from the experimental errors for kobs and KIEobs.  The intrinsic KIE (Eq. 4) and k2 were unchanged for all of the data and 
were solved as 1.20 ± 0.01 and 0.27 s-1, respectively.   
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Table 5.3  Kinetic constants of FTase PPi pocket mutants a 

FTase mutant kobs (s-1) 20H KIEobs k1 (s-1) b k-1 (s-1) b k2 (s-1) b Cf  b 

WT 7.2 ± 0.4 1.179 ± 0.008 138 98 13 0.133 

H248A 0.70 ± 0.04  1.16 ± 0.01 4.5 9.7 2.6 0.27 

K164A 0.20 ± 0.02  1.19 ± 0.01 3.3 82 5.5 0.067 

K294A 0.20 ± 0.01  1.20 ± 0.02 15 390 5.5 0.014 

R291G 0.048 ± 0.001  1.179 ± 0.004 0.42 24 3.1 0.13 

Y300F 0.0149 ± 0.0003  1.20 ± 0.02 1.1 29 0.41 0.014 
a Final solutions contained 4 µM FTase, 1 µM FPP (900 nM [11-14C]-FPP, 100 nM [1-3H]-FPP), 100 µM TKCVIM, 5 mM MgCl2, 50 mM Heppso, pH 7.8, and 
2 mM TCEP.  All assays were conducted at 25 0C.   
b k1, k-1, k2 and Cf are calculated constants given by Scheme 5.4 and Equations 4-6.  They were calculated by globally fitting the data for kobs and KIEobs using the 
Solver tool from Microsoft Excel, which minimized the sum of relative errors for each data set (defined by Eq. 7).  The intrinsic KIE (Eq. 4) was unchanged for 
all of the data and was solved as 1.20 ± 0.01. 
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secondary 3H KIE changes very little for all mutations in the PPi binding pocket (Table 

5.3).  Like Mg2+, then, these positively charged residues appear to stabilize the transition 

state for the formation of the active substrate conformation as well as the farnesylation 

step (Figure 5.2).  The KIEs for the mutants for the –Mg2+ reaction were also unchanged, 

indicating that Mg2+ does not change the transition state energies in the absence of any of 

these positively charged residues (data not shown).  Alterations in the kinetics are further 

examined by fitting the kinetic mechanism of FTase to the KIEobs and kobs data (Scheme 

5.4); each of these residues greatly affects k1, while having little effect on the other rate 

constants (Table 5.3).  One exception is Y300F, which has a much slower observed rate 

constant than the other mutants, as well as a decreased calculated value for k2.  This 

results in a very low commitment factor (0.01) and a high observed KIE of 1.20 ± 0.02. 

 

Effect of thiol structure on observed secondary KIE 

The α-secondary KIE is significantly different for the reaction of FTase•FPP with 

TKCVIM (1.179) and GCVLS (1.04) (Table 5.1), suggesting that the peptide structure 

may affect the equilibrium of the FPP conformational rearrangement.  To further 

investigate the effect of the structure of the peptide substrate on reactivity, we examined 

the KIE for the FTase reaction with small, nonpeptidic thiol substrates (Scheme 5.7).  

These molecules are all smaller in size than the peptide substrate GCVLS, but have 

previously been shown to be FTase substrates (181).  However, they not only have much 

slower rate constants, but also bind Mg2+ with an apparent weaker affinity than peptide 

substrates (181).  These data suggest that the small thiols may alter the FPP 

conformational change and key interactions of FPP with Mg2+. 

KIE experiments were done at the subsaturating substrate concentrations of 5 mM 

thiol and 50 mM Mg2+.  These conditions were used to minimize the inhibition observed 

at higher concentrations of thiol and/or Mg2+ (data not shown).  The observed rate 

constants, therefore, are smaller than those previously reported at saturating 

concentrations (181).  The Mg2+ concentration has little effect on the α-secondary 3H KIE 

for peptide substrates (Table 5.2), and similarly should not change the observed KIE for 
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Scheme 5.7  Structures of nonpeptidic thiol substrates used in this study (181) 
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nonpeptidic thiols.   Although the thiol concentrations are subsaturating, the observed 

KIE most likely reflects a step after thiol binding, since the thiols bind and dissociate 

rapidly and thus the commitment for binding is low (181). 

The α-secondary KIEs for WT FTase with the small nonpeptidic thiols GSH, 

NAC, DTT and βME are near unity, within error (Table 5.4).  A smaller KIE, indicative 

of a larger commitment factor, and a smaller observed rate constant indicate that the 

transition state for the conformational change is destabilized more than the transition state 

for farnesylation for these substrates, and therefore the FPP conformational step is rate-

limiting.  Indeed, when these data are globally fit, the step that is most affected is k1, 

which is slowed down so drastically that kobs is essentially equal to k1 (Table 5.4).  The 

reverse rate constant for the conformational step, k-1, is also slowed relative to k2 so that 

the commitment factor is very high and the observed KIE is unity (Equations 4 and 5).  

Thus the FPP conformational change is sensitive to the structure of the peptide, and the 

decrease in size for the nonpeptidic thiols most likely removes important interactions that 

the peptide substrate makes with both FPP and the active site of FTase.  

 

Dependence of peptide sequence on observed secondary KIE 

To further understand the interactions between E•FPP and thiol substrates that 

enhance the conformational change, we next investigated how peptide sequence affects 

the kinetic mechanism of FTase.  Important determinants of peptide specificity that affect 

reactivity include the X group of the CaaX region and the region of polybasic residues 

located upstream of the CaaX box (24, 77).  The α-secondary KIE was measured for 

several peptides with differing X residues as well as peptides that contain an upstream 

lysine residue (Table 5.5).  A global fit of the data for all peptide substrates yields the 

same intrinsic KIE (1.20 ± 0.01).  This suggests that the structure of the peptide substrate 

does not change the structure of the chemical transition state.  This is not surprising since 

the basicity, and therefore nucleophilicity, of these compounds is similar.  The large 

differences in the observed KIE, on the other hand, reflect different commitment factors 

for each peptide (Table 5.5).   
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Table 5.4  Kinetic constants of WT FTase with small nonpeptidic thiol substrates a 

Substrate kobs
 (s-1) 20 3H KIEobs k1 (s-1) b 

GCVLS 4.9 ± 0.8 1.04 ± 0.01 12 ± 2 

GSH 0.0014 ± 0.0001 1.01 ± 0.03 0.0016 ± 0.0004 

NAC 0.00054 ± 0.00005 1.05 ± 0.09 0.0007 ± 0.0004 

DTT 0.0028 ± 0.0002 1.03 ± 0.02 0.0035 ± 0.0005 

βME 0.0005 ± 0.0001 1.00 ± 0.03 NA 
a Final solutions contained 4 µM FTase, 1 µM FPP (900 nM [11-14C]-FPP, 100 nM [1-3H]-FPP), 5 mM thiol, 50 mM MgCl2, 50 mM Heppso, pH 7.8, 
and 2 mM TCEP.  All assays were conducted at 25 0C.   
b k1 is the calculated rate constant for the conformational change (Scheme 5.4).  The values for k1, k-1, k2 and Cf were calculated by globally fitting the 
data for kobs and KIEobs using the Solver tool from Microsoft Excel, which minimized the sum of relative errors for each data set (defined by Eq. 7).  To 
determine the error for k1, a range in values was generated from the experimental errors for kobs and KIEobs.  The intrinsic KIE (Eq. 4) was unchanged for 
all of the data and was solved as 1.20 ± 0.01.  Because k1 is very small and represents the rate-determining rate constant, the values for k-1 and k2 are not 
well defined.  The value for Cf is also not well defined, but is large for all thiol substrates (≥ 4-20).   
NA = not applicable; since the observed KIE was 1.00 for βME, the commitment factor and rate constants could not be calculated.  Considering the 
error associated with the observed KIEs for all thiols, the calculated values for βME are probably similar to the other compounds.  
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Table 5.5  Kinetic constants of WT FTase with different peptides a 

Peptide kobs (s-1) 20 3H KIEobs k1 (s-1) b k-1 (s-1) b k2 (s-1) b Cf b 

TKCVIM 7.2 ± 0.4 1.179 ± 0.008 138 ± 1  98 ± 1  12.9 ± 0.8 0.133 ± 0.008 

TKCVLS 4.0 ± 0.2 1.16 ± 0.01 27.6 ± 0.4 48 ± 1 12.8 ± 0.7 0.27 ± 0.01 

TKCVIF 0.27 ± 0.01 1.13 ± 0.01 970 ± 10 0.48 ± 0.04 0.27 ± 0.01 0.56 ± 0.06 

TGCVIM 4.2 ± 0.9 1.095 ± 0.004 13 ± 3 10 ± 1 11 ± 2 1.1 ± 0.3 

SKTKCVIM 0.92 ± 0.09 1.087 ± 0.005 1.8 ± 0.2 8.5 ± 0.2 11.3 ± 0.1 1.33 ± 0.04 

GCVLS 4.9 ± 0.8 1.04 ± 0.01 12 ± 2 3 ± 1 10 ± 2 4 ± 1 
a Final solutions contained 4 µM FTase, 1 µM FPP (900 nM [11-14C]-FPP, 100 nM [1-3H]-FPP), 100 µM peptide, 5 mM MgCl2, 50 mM Heppso, pH 
7.8, and 2 mM TCEP.  All assays were conducted at 25 0C.  
b k1, k-1, k2 and Cf are calculated constants given by Scheme 5.4 and Equations 4-6.  They were calculated by globally fitting the data for kobs and KIEobs 
using the Solver tool from Microsoft Excel, which minimized the sum of relative errors for each data set (defined by Eq. 7).  To determine the error for 
each calculated value, a range in values was generated from the experimental errors for kobs and KIEobs.  The intrinsic KIE (Eq. 4) was unchanged for all 
of the data and was solved as 1.20 ± 0.01.
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Surprisingly, the identity of the X residue makes little difference in the observed 

KIE, despite drastically affecting the reactivity of FTase, as measured by both steady- 

state kinetic constants as well as the single turnover rate constant (Table 5.5) (24).  For 

example, two peptides differing only in the identity of the X residue, TKCVIM and 

TKCVIF, have similar α-secondary KIEs (1.179 and 1.13, respectively) even though 

TKCVIF is a much slower substrate (0.27 s-1 compared to 7.2 s-1 for TKCVIM) (Figure 

5.9, Table 5.5).    Similar KIEs between these two peptides reflect similar commitment 

factors (within a 5-fold difference), and therefore the ratio of k2/k-1 is changed little 

(Equations 4 and 5).  To explain the small change in KIE but the great difference in the 

observed rate constants, a decrease in k2 for the slower peptide, TKCVIF, must be 

accompanied by a corresponding decrease in k-1.  Thus the stability of the ground state of 

the active substrate conformation is greatly affected by the identity of the X group.  When 

these data are fit to determine the individual rate constants, k2 is ~10 s-1
 when X = M or S, 

whereas when X = F, k2 is reduced to ~ 0.3 s-1 (Table 5.5).  The value for k-1 changes 

accordingly so that the commitment factor does not depend greatly on the X residue, 

while there is a modest effect on the value of k1 (Table 5.5).  The calculated kinetic 

constants for TKCVIM and TKCVIF were used in a simulated experiment and are in 

good agreement with the experimental data (Figure 5.9). 

In contrast to the X residue of the CaaX sequence, the presence of a lysine one 

residue upstream of the reactive cysteine, present in the K-Ras4B template TKCVIM, 

greatly affects the forward equilibrium constant for the conformational change.  There is 

a significant increase in the observed KIE when an upstream lysine is present; for 

example, the α-secondary 3H KIEs for TKCVLS and GCVLS are 1.16 ± 0.01 and 1.04 ± 

0.01, respectively, while the observed rate constants for these peptides are quite similar 

(Figure 5.10, Table 5.5).  These data are consistent with the upstream lysine residue 

stabilizing the transition state for the FPP conformational step, while the farnesylation 

step is unchanged.  Fitting individual rate constants to these data suggests that the 

upstream lysine residue significantly increases the values of k1 and k-1 relative to k2, by 

stabilizing the transition state for formation of the active substrate conformation.  

Because k2 is unchanged, this leads to a smaller Cf and a larger observed KIE.  However, 

when more than one lysine residue is present, as in SKTKCVIM, the observed KIE is  
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Figure 5.9  Time course for TKCVIM and TKCVIF  

Single turnover experiment for WT FTase with (A) TKCVIM and (B) TKCVIF.  Final 
reactions contained 4 µM FTase, 900 nM [11-14C]-FPP, 100 µM peptide, 50 mM 
Heppso, pH 7.8, 2 mM TCEP, and 5 mM MgCl2.  Eq. 1 is fit to the data to determine kobs, 
the single turnover rate constant.  The data from simulated experiments are shown in 
dotted lines. 
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Figure 5.10  Measurement of α-secondary 3H KIE for GCVLS and TKCVLS 

Measurement of α-secondary 3H KIE for GCVLS () and TKCVLS ().  Final reactions 
contained 4 µM FTase, 1 µM FPP (900 nM [11-14C]-FPP, 100 nM [1-3H]-FPP), 100 µM 
peptide, 50 mM Heppso, pH 7.8, 2 mM TCEP, and 5 mM MgCl2.  Eq. 3 is fit to the data 
to determine the observed α-secondary 3H KIE.
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smaller (1.087 ± 0.005), indicating that Cf increases.  Peptides containing multiple lysine 

residues have a weaker apparent affinity for Mg2+ (77), which may partially explain the 

decrease in the rate constants for the conformational step, k1 and k-1, as well as the higher 

commitment factor for SKTKCVIM (Table 5.5).  These results highlight the importance 

of the peptide sequence in determining the kinetics of the conformational change, which 

may be a significant factor in the substrate specificity of FTase. 

 

Discussion 

Chemical transition state of FTase 

Isotope experiments have identified concerted mechanisms with dissociative 

character for many enzymes.  The α-secondary 3H KIE measured here is comparable to 

the α-secondary 3H KIEs for pertussis and diphtheria toxins and orotate phosphoribosyl-

transferase (1.199, 1.194, and 1.200, respectively), for which dissociative mechanisms 

with oxocarbenium-ion-like character in the transition state have been described (174, 

177, 185).  The reaction of pertussis toxin, like FTase, has an attacking cysteine thiolate 

as a nucleophile with a primary 14C KIE of 1.049 ± 0.003 and an α-secondary 3H KIE of 

1.199 ± 0.009 (177).  A transition state structure analysis of pertussis toxin reveals a 

transition state with oxocarbenium ion character due to accumulation of positive charge 

on the ribosyl ring of NAD+ (177).  For FTase, the intrinsic α-secondary 3H KIE of 1.20 

± 0.01 is consistent with a concerted mechanism with dissociative character (Scheme 

5.8), since it is significantly less than the theoretical equilibrium isotope effect for the 

formation of a fully dissociated carbocation in the transition state (1.4-1.5) (186, 187).  A 

primary 14C KIE of 1.03 ± 0.03 is consistent with this proposed transition state structure, 

in which the bond to the PPi leaving group is nearly broken, while the bond to the 

incoming thiolate nucleophile is barely formed (Scheme 5.8). 

The measurement of KIEs using transient kinetics is a powerful technique to 

overcome large commitments in complex enzymatic reactions, but has only been used for 

a limited number of systems thus far.  In the case of FTase, measurement of intrinsic 

KIEs are complicated using steady-state analysis, and the α-secondary 3H KIE  
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Scheme 5.8  Transition state model for rat FTase (95).  
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measurement reported here provides the first direct evidence of a transition state with 

dissociative character for this class of enzymes that catalyzes zinc-dependent sulfur 

alkylation.  This value is larger than the experimental α-secondary 2H KIE of 1.068 

(corresponding to a 3H KIE of 1.100) reported for yeast FTase with the unnatural 

substrate GPP using steady-state kinetic analysis, and probably reflects either a difference 

in the mechanism between these two enzymes or substrates used, or an obscurement of 

the intrinsic KIE for GPP despite a lower commitment factor than was measured for FPP  

(176, 188). 

 

Role of zinc ion in chemical transition state of FTase 

The prenyltransferases FTase and GGTase I are the newest members of the class 

of enzymes that catalyze zinc-dependent sulfur alkylation, which include methionine 

synthases, human betaine-homocysteine methyltransferase, and methanol:coenzyme M 

methyltransferases (101, 102).  Members of this class are characterized by a thiolate 

nucleophile directly coordinated to Zn2+ in a catalytic metal site.  With the exception of 

prenyltransferases, these enzyme mechanisms are characterized by poor leaving groups 

and are proposed to proceed via associative mechanisms.  FTase is the first enzyme in 

this class for which there is evidence for dissociative character in the transition state (95, 

99, 102).  Nonetheless, the zinc ion is proposed to enhance catalysis in FTase by lowering 

the pKa of the sulfur to create a more potent zinc-thiolate nucleophile (82).   This is 

supported by structural and kinetic evidence which point to the importance of zinc in 

coordinating to the peptide substrate in a concerted catalytic transition state (78-80, 82, 

95, 98, 189). 

The increased intrinsic α-secondary 3H KIE of 1.24 ± 0.01 for Cd-FTase indicates 

a more dissociative transition state when Cd2+ is substituted for Zn2+.  This result can be 

explained by the fact that Cd2+ is significantly larger (99 pm compared to 88 pm), more 

polarizable and more thiophilic than Zn2+, with Cd-FTase binding 5-fold more tightly to 

the peptide (95). While it has been proposed that the metal-thiolate distance controls the 

nucleophilicity of the FTase reaction, there is no direct evidence for this since structural 

studies are unable to capture the active substrate conformation (103).  The KIE data 
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presented here are consistent with the role of Zn2+ in being essential to the nucleophilic 

participation of the thiolate in the chemical transition state (Scheme 5.8).  The ambiguous 

effect of Cd2+ substitution on the observed single turnover rate constant measured here 

and elsewhere (Table 5.1) (95) may be explained by the fact that the observed single 

turnover rate constant does not necessarily reflect the farnesylation step, as previously 

thought.  Thus the determination of the α-secondary KIE provides more direct 

information regarding the effect of Cd2+ on the chemical transition state.    

 

Role of diphosphate leaving group 

An important feature of the dissociative transition state model stabilized by FTase 

is the buildup of charge on the diphosphate leaving group, because the bond with the 

oxygen atom is nearly broken (Scheme 5.8) (95).  The diphosphate moiety in many 

enzymes is important for catalysis as a leaving group, a characteristic which is facilitated 

by coordination of the diphosphate by Mg2+.  In addition, for FTase a high affinity Mg2+ 

binding site is crucial for formation of the active substrate conformation (Figure 5.2).  

This site consists of the two nonbridging oxygens of the diphosphate, the two carboxylate 

oxygens of D352β, a water molecule, and one carboxylate oxygen of D297β (shared with 

Zn2+) (107).  It had been suggested from these studies that the binding site for Mg2+ is not 

created until the bound FPP rearranges into the active substrate conformation.  Here we 

show that Mg2+ equally stabilizes the transition states for both the conformational change 

and the chemical farnesylation step, as well as the ground state for the active substrate 

conformation (Table 5.2, Figure 5.11).  The net effect is an apparent increase in k1, which 

leads to an increase in the observed single turnover rate constant but no change in the 

observed KIE.  

While less is known about the mechanism of GGTase I, this enzyme is generally 

thought to proceed via a similar catalytic and kinetic mechanism as FTase, with the 

notable exception that Mg2+ does not accelerate catalysis for GGTase I (12, 108).  The 

FTase aspartate residue, D352β, is changed in GGTase I to a lysine, which is thought to 

replace Mg2+ in the FTase active site (107, 108).  Thus it seems likely that for GGTase I, 

the conformational rearrangement of geranylgeranyl diphosphate is not accelerated by  
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Figure 5.11  Effect of Mg2+ on the reaction pathway of FTase 
Reaction coordinate diagram following the FTase reaction pathway during a single 
turnover experiment, illustrating how the conformational rearrangement and chemical 
steps are affected by magnesium.  Free energies were calculated from the kinetic rate 
constants given in Scheme 5.4 and Table 5.2, using Eq. 8, for WT FTase with 100 µM 
TKCVIF at 5 mM MgCl2 (solid line) and 0 mM MgCl2 (dashed line).  Concentrations 
used are the same as experimental conditions (see Experimental Procedures).  
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Mg2+ because there is no high affinity Mg2+ binding site present in the active substrate 

conformation for GGTase I.  Given that the formation of the active substrate 

conformation is dependent on the structure of the peptide substrate, this difference 

between the two prenyltransferases may partially explain some key differences in their 

peptide substrate specificities.   

The interactions of the positively charged residues in the PPi binding pocket with 

the diphosphate of FPP in the inactive ternary conformations have been determined from 

crystallographic studies (84, 85, 87), while interactions with the diphosphate in the active  

substrate conformation are inferred from structural modeling and mutagenesis studies 

(88, 90).  In the inactive ternary complex FTase•FPP•CVFM, K164α and R291β interact 

primarily with the α-phosphate of FPP, while Y300β, H248β, and K294β interact with 

the β-phosphate (Figure 5.1) (85).  In the proposed active substrate conformation, on the 

other hand, K164α forms a hydrogen bond with the β-phosphate and R291β makes a 

bidentate interaction with two of the nonbridging oxygen atoms of the PPi group, while 

Y300β forms a hydrogen bond with the phosphate oxygen bound to C1 of FPP, H248β 

interacts with the diphosphate bridging oxygen, and K294β interacts with the terminal 

oxygen atom on the β-phosphate (Figure 5.2) (88, 90, 115).  Like Mg2+, then, these 

residues have been proposed to be important in catalysis by stabilizing the diphosphate 

leaving group as well as correctly orienting the PPi group in the active substrate 

conformation (88, 90).  

The KIEs measured for the PPi binding pocket mutants H248βA, K164βA, 

K294βA, R291βG, and Y300βF are not changed, despite the fact that the reactivity is 

drastically affected (Table 5.3).  These data mirror the results for Mg2+, and indicate that 

interactions with the PPi group mediated by both Mg2+ and positively charged residues in 

the PPi binding pocket are involved in the structural rearrangement of the FPP substrate 

prior to farnesylation as well as stabilizing the transition state for farnesylation. While 

this had previously been inferred from structural studies, the kinetic studies presented 

here confirm the importance of the FPP conformational rearrangement in the catalytic 

cycle of FTase. 

 



 

 167 

FPP conformational rearrangement is dependent on peptide structure 

The conformational rearrangement of FPP has indirectly been studied by crystal 

structures, site-directed mutagenesis and substrate analogs (21, 88, 90, 107).  The use of 

kinetic isotope effects provides information about this conformational step that is not 

available from crystal structures, and may identify interactions that are important but not 

observed in the inactive conformation illustrated in crystal structures.  Here we see that 

the peptide structure has a great influence on the conformational rearrangement of FPP.  

Nonpeptidic thiols are extremely slow substrates with α-secondary KIEs near unity, 

suggesting that the conformational change of FPP is slow (Table 5.4).  While these 

molecules are FTase substrates, their small size most likely prevents them from properly 

activating the FPP substrate molecule.  It is also possible that key side chain interactions 

are lacking when peptide/protein substrates are substituted with nonpeptidic thiols.  This 

may be due to the loss of interactions of the X residue of the peptide substrate with the 

FTase active site, or the loss of direct interactions between the peptide and the FPP 

molecule.     

The hydrophobicity or volume of the “X” residue is an important determinant of 

peptide specificity, and is proposed to alter the prenylation step, as well as an additional 

kinetic step (24).   From crystal structures, the identity of the X residue affects both the 

position of this side chain in the binding pocket of FTase as well as the conformation of 

the backbone of the peptide substrate in the active site (23).  Thus the X residue has been 

suggested to affect the equilibrium between the active and inactive conformers of the FPP 

substrate, by differentially orienting the peptide substrate in the active site and affecting 

side chain interactions that optimally induce rotations about the C1 of FPP during the 

formation of the active ternary complex (23, 24).  The KIE studies here indicate that the 

X group significantly affects the stability of the active substrate conformation ground 

state relative to the transition states for both the conformational change and farnesylation 

(Figure 5.12).  These results are consistent with crystallographic studies highlighting the 

importance of the X residue in the formation of the active substrate conformation.     

In addition to a CaaX sequence, many FTase substrates contain an upstream 

polybasic region, which increases the affinity of the substrate and aids in plasma 

membrane localization (74-76).  This region of positively charged residues in the peptide  
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Figure 5.12  Effect of the X residue on the reaction pathway of FTase 
Reaction coordinate diagram following the FTase reaction pathway during a single 
turnover experiment, illustrating how the conformational rearrangement and chemical 
steps are affected by the X residue.  Free energies were calculated from the kinetic rate 
constants given in Scheme 5.4 and Table 5.5, using Eq. 8, for WT FTase with 100 µM 
TKCVIF (solid line) and 100 µM TKCVIM (dashed line) at 5 mM MgCl2.  
Concentrations used are the same as experimental conditions (see Experimental 
Procedures).  
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substrate enhances the binding affinity for FTase but decreases the catalytic efficiency, as 

measured by kcat/KM, reflecting a decrease in the rate constant for peptide association, 

prenyl chain rotation, and/or the farnesylation step (77).  KIE data clearly show the 

importance of the lysine residue upstream of the CaaX box in lowering the energy barrier 

for the conformational rearrangement of FPP, while having little effect on the 

farnesylation step (Table 5.5, Figure 5.13).  This lysine residue is thought to interact in 

both the inactive and active substrate conformations with K164α, a residue in the PPi 

pocket which is important in the stabilization of the transition states for the 

conformational change and farnesylation (Table 5.3) (84, 88).  This interaction may 

therefore be important in increasing the rate constant for the conformational step, 

although additional experiments are required to address exactly why the lysine of the 

peptide substrate has such a significant impact on the conformational rearrangement of 

FPP.  Intriguingly, the presence of more than one lysine residue in the substrate 

SKTKCVIM appears to slow the conformational change when compared with TKCVIM 

(Table 5.5).  This may be due to the decreased apparent Mg2+ affinity observed for 

substrates with polybasic residues (77), and further crystallographic and kinetic studies 

on the role of these additional lysine residues would shed light on any important 

interactions with Mg2+ that might affect the conformational change for these substrates.   

 

Implications for substrate specificity 

The reaction of FTase is extremely complex and offers a variety of mechanisms 

by which to control substrate specificity.  The affinity of different peptides for the 

FTase•FPP complex is insensitive to the identity of the X group, while the single turnover 

rate constant for farnesylation depends greatly on the X group structure (24). 

Additionally, other steps in the catalytic cycle may be regulated by the peptide structure.  

The KIE experiments here demonstrate that both the rate constants for the conformational 

change and for farnesylation depend on the structure of the thiol substrate.  The final step 

of the catalytic cycle, dissociation of farnesylated product, is another step where the 

specificity of FTase for certain substrates may be controlled (see Chapter 3) (24).  

Nonetheless, the data presented here provide clear evidence that the substrate specificity 



 

 170 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

Figure 5.13  Effect of the upsteam lysine residue on the reaction pathway of FTase 
Reaction coordinate diagram following the FTase reaction pathway during a single 
turnover experiment, illustrating how the conformational rearrangement and chemical 
steps are affected by the upstream lysine residue of the peptide.  Free energies were 
calculated from the kinetic rate constants given in Scheme 5.4 and Table 5.5, using Eq. 8, 
for WT FTase with 100 µM TGCVIM (solid line) and 100 µM TKCVIM (dashed line) at 
5 mM MgCl2.  Concentrations used are the same as experimental conditions (see 
Experimental Procedures).  
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of FTase can be modulated by the concerted structural dynamics of the substrate 

conformational change prior to catalysis.  This conformational rearrangement may 

partially explain how farnesylation is regulated in cells.  For instance, the nonspecific 

farnesylation of nonpeptidic thiols, which has been observed in vitro, is limited by the 

slow conformational rearrangement of FPP required for farnesylation.  This specificity 

constraint is potentially an important regulatory mechanism, due to the high cellular 

concentrations of some of these small molecules, such as GSH and cysteine. The need for 

a better understanding of the protein substrate specificity of FTase is highlighted by both 

the uncertainty as to the identity of all of the proteins farnesylated in vivo and the unclear 

mode of action of current inhibitors.  Further insights into the mechanism of FTase will 

provide additional information about the determinants of substrate specificity that may 

enhance the development and application of FTase inhibitors as well as our 

understanding of the biological pathways affected by farnesylation in cells. 

 

Transition state inhibitors 

There are no direct methods to observe the structure of the transition state for any 

chemical reaction, which is thought to have a lifetime near 10-13 s, the time corresponding 

to a single bond vibration (173).  Enzymes function by lowering the activation energy for 

a given reaction, and transition state mimics bind tightly to enzymes by capturing a 

fraction of this binding energy.  The TS structures for AMP deaminase, nucleoside 

hydrolase, and purine nucleoside phosphorylase have been estimated from KIE 

measurements and these data have led to the development of powerful transition state 

analog inhibitors of these respective enzymes (133).  Transition state analogs for FTase 

have been designed to mimic the buildup of positive charge in the transition state (99).  

However, these compounds are very poor inhibitors and suggest that an increased 

knowledge of the geometry and electrostatic features of the transition state of FTase, as 

measured by KIEs, may provide a blueprint for the design of potent FTase inhibitors.  

Unexpectedly, KIEs also provide additional information about the conformational 

rearrangement of FPP, a step which appears to be an important determinant in substrate 

specificity and which may therefore also lead to the development of potent, specific 
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FTase inhibitors.  The data presented in this work suggest that key features of the active 

substrate conformation may represent a novel target for FTase inhibition. Possible potent 

inhibitors include compounds with restricted mobility in the active site, or compounds 

that coordinate Mg2+ or residues in the PPi binding pocket in the active substrate 

conformation of FTase.   
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CHAPTER 6 
SUMMARY, CONCLUSIONS AND FUTURE DIRECTIONS 

 

Assay for prenyltransferase activity 

The protein prenyltransferases have been the subject of intensive scientific 

investigation for both biological and pharmaceutical reasons.  FTase, in particular, is 

studied by many research groups investigating various features of the mechanism, 

substrate specificity, cellular regulation and inhibition of farnesylation.  As described in 

Chapter 2, the development of a continuous, fluorescence-based assay that measures the 

rate of diphosphate release during the FTase reaction presents several clear advantages 

over other assays presently used to measure FTase activity.  First, the MDCC-PBP/PPiase 

assay is practical, in terms of both expense and time, and easily amenable to a high-

throughput format.  Second, the assay is more general than methods that require a 

radiolabeled FPP or dansylated peptide, and thus can be used to study reactions with 

inhibitors, substrate analogs and full-length proteins.  By using unmodified substrates for 

FTase, effects of the dansyl group on binding and/or reactivity may also be avoided.  

Finally and more broadly, this assay can be used to study the enzymatic activity for any 

reaction where diphosphate is a product, including polymerases, ligases and aminoacyl 

tRNA synthetases.   

While the majority of prenylation research has focused on farnesylation, 

geranylgeranylation is increasingly recognized as being crucial to the proper function of 

the majority of prenylated proteins, and GGTase I is proving to be a clinical target with 

considerable promise in the treatment of a variety of maladies (40-43).  As a result, 

mechanistic and structural studies on GGTase I have been carried out recently and 

provide valuable information about the mechanism and substrate specificity of the CaaX 

prenyltransferases (20, 23, 24, 71-73, 77, 108).  While less well studied, GGTase II is 
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also of interest due to key structural differences and its unique role in vesicular transport 

by specifically prenylating Rab proteins (29).  The development of a continuous 

fluorescent assay for prenyltransferase activity should greatly facilitate studies of both 

GGTase I and II, to increase our understanding of the important similarities and 

differences between the three classes of prenyltransferases.   

 

Catalytic and kinetic mechanism of FTase 

The kinetic isotope effects studies presented in Chapter 5 provide the first direct 

measurement of the dissociative character in the chemical transition state of FTase.  

These results are consistent with previous studies which have suggested an “exploded” 

transition state for FTase, where the stabilization of develping charge in the transition 

state is an important catalytic feature (95).  The KIE studies presented here could aid in 

the design of powerful transition state inhibitors that combine many features of the 

chemical transition state.  The role of the zinc ion in creating a potent thiolate nucleophile 

is confirmed by substitution of Zn2+ with the more thiophilic cadmium, which increases 

the α-secondary KIE reflecting a reduction in the associative character of the transiton 

state.  

Unexpectedly, the KIE studies presented in Chapter 5 have also provided 

information about the rotational movement of FPP that occurs prior to catalysis, which 

had previously been thought to be rapid compared to farnesylation.  This work, however, 

clearly shows that under certain conditions, this step becomes partially rate-limiting and 

masks the observed KIE, as well as contributes to the observed rate constant measured 

under single turnover conditions.  This provides the first direct kinetic evidence for a 

conformational rearrangement, which had previously only been inferred from structural 

and mutagenesis studies (21, 88).  Combining KIE measurements with single turnover 

kinetics, the commitment factors and kinetic energy barriers were calculated under a 

variety of different experimental conditions, providing a detailed characterization of the 

kinetic mechanism for FTase.  Interestingly, changing Mg2+ concentrations or removing 

positive charge from the PPi binding pocket significantly impact the observed rate 

constant but do not affect the KIE.  Therefore, the stabilization of positive charge on the 
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diphosphate group appears to be important in both the chemical transition state and the 

formation of an active substrate conformation prior to catalysis. 

The most intriguing result from these KIE studies was the observation that the 

peptide structure greatly affects the rate constant for the conformational rearrangement of 

the bound FPP molecule.  Small nonpeptidic thiols are substrates, albeit very poor ones; 

one main effect of these substrates on catalysis is to greatly decrease the forward rate 

constant for the FPP conformational change.  These results may have implications for 

substrate specificity in vivo, as the nonspecific farnesylation of molecules such as 

glutathione and dithiothrietol may be limited by the kinetic barrier that must be overcome 

to form the active substrate conformation of FPP.  Furthermore, KIE experiments 

demonstrated that the X residue is important in stabilizing the active substrate 

conformation, while the lysine one residue upstream of the CaaX sequence is important 

in lowering the activation energy for the conformational rearrangement of FPP.  It is 

unclear from the crystal structures how these residues might affect these steps, because 

these structures represent inactive ternary complexes.  However, crystallographic and 

modeling studies have suggested that the upstream lysine residue of the peptide substrate 

interacts with a lysine residue in the active site of FTase, K164α (88). We have shown 

that K164α is important for catalysis by facilitating the formation of the active substrate 

conformation of FPP, and thus it is reasonable that this may be an important interaction.  

The upstream lysine residue has also been proposed to make a third-shell interaction with 

zinc, through the zinc ligand H362β and the D359β residue (84).  Further kinetic studies 

using site-directed mutagenesis and different peptide sequences may address the 

significance of these interactions and lead to an understanding of the importance of this 

lysine residue in FTase substrates.  Additionally, the importance of the entire upstream 

polybasic region in catalysis is of great interest, since this region is present in many 

proteins including K-RasB and RhoB.  

These recent observations about the mechanism of FTase raise several important 

questions regarding geranylgeranylation.  While GGTase I and FTase have different 

substrate requirements, it has been assumed that the reaction pathway proceeds similarly 

for both enzymes (20).  However, the role of Mg2+ in the isoprenoid conformational 

change in FTase suggests that there may be differences in this step for GGTase I.  Mg2+ 



 

 176 

does not accelerate the GGTase I-catalyzed reaction (12-14).  However, the K311β 

residue that replaces the Mg2+ ligand in FTase may serve a similar role for GGTase I as 

Mg2+ does for FTase.  KIE measurements for the reaction catalyzed by GGTase I would 

illuminate differences in the kinetics of the active substrate conformational change  

between GGTase I and FTase, and may provide a mechanistic basis for key differences in 

their substrate specificities.   

 

Product dissociation and inhibition of FTase 

While it was previously shown that the farnesylated product dissociates very 

slowly in the absence of additional substrate, very little was known about the kinetic 

mechanism behind this unusual catalytic feature for FTase.  In Chapter 3, we have 

directly measured product dissociation and shown a dependence on both FPP and Mg2+.  

Therefore, FTase does not exist in an unbound form throughout the catalytic pathway, 

and one must be wary when interpreting steady-state kinetics experiments.  The apparent 

KMg measured under steady-state turnover, for instance, likely reflects Mg2+ binding to 

the E•product complex, as well as to the E•FPP complex.  Moreover, the kinetic 

parameter KM for FPP includes the step where FPP binds to the E•product complex to 

enhance product dissociation.   

The binding of a second molecule of FPP to the E•product complex appears to be 

a very important step in the overall turnover of FTase, as well as substrate selectivity.  

Alterations in the structure of the FPP substrate have very little effect on the 

conformational rearrangement or the formation of bound farnesylated product, but affect 

turnover by decreasing the observed rate constant for product dissociation.  Interestingly, 

some FPP analogs affect this step much more significantly than others, and much work 

remains to delineate the important interactions that facilitate product dissociation.  It is 

clear that the correct orientation of the diphosphate as well as the isoprenoid moiety is 

important in the product dissociation step, and structural studies of additional product 

complexes would certainly complement the work described here.  One important question 

that remains is the location of the binding sites for the second FPP and peptide molecules 

in the product complex.  While the crystal structure shows FPP bound in the original FPP 
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binding site (21), it is possible that FPP binds first in a separate site and then the product 

moves to the exit groove, followed by movement of the FPP to the binding site observed 

in the crystal structure.  In this mechanism, FPP binding catalyzes the conformational 

rearrangement of the bound product.  The other possibility is that the prenyl group of the 

product moves first  to the exit groove and then FPP binds in the FPP-binding site 

observed in the crystal structure.  In this case, the FPP molecule captures the product 

complex that dissociates more rapidly.  Our studies with FPP analogs suggest the latter 

mechanism and indicate that one possible mode of inhibition is to bind to the exit groove 

to inhibit product dissociation.  Additional structural and mechanistic studies with 

substrate analogs and inhibitors are needed to further understand the mechanism of 

product dissociation.    

While peptide-catalyzed product dissociation has been observed, it is less well 

understood than FPP-catalyzed product dissociation (89).  There are several curious 

observations that point to the importance of peptide-catalyzed product dissociation as a 

means of regulating the activity of FTase, or even serving as a determinant of substrate 

specificity.  There are a number of peptide sequences corresponding to farnesylated 

proteins which undergo a single turnover but not multiple turnovers (24, 25).  These 

peptides bind tightly to the enzyme upon farnesylation and are not released in the 

presence of FPP, indicating that in vivo their dissociation may be induced by cellular 

factors, such as other proteins.  It is also possible that product dissociation may be 

stimulated by the presence of the ER membrane or the CaaX protease Rce1, as a means 

of regulating the proper transport of farnesylated proteins and/or protecting FTase in the 

cellular environment.  

Studies on the product dissociation step carry many implications for the inhibition 

of FTase.  The data presented in Chapter 4 for a group of FPP-competitive inhibitors have 

shown that an important inhibitory feature for these compounds is the inhibition of 

product dissociation. This novel mechanism may describe many current FTIs, and may be 

exploited in the design of future inhibitors.  Given that peptides may also catalyze 

product dissociation, this inhibitory mechanism may be applicable to peptidomimetic 

inhibitors as well.  A further understanding of the binding mode for inhibitors and key 

interactions that enable inhibition would therefore aid in the design of not only more 
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potent inhibitors, but also more specific inhibitors that could be designed to selectively 

block the farnesylation of specific proteins.  These studies would be greatly accelerated 

by a crystal structure of the inhibitor bound to the product complex, which would provide 

invaluable information about the inhibitor binding site.  

 

Closing remarks 

 The work presented here has substantially enhanced our current understanding of 

the mechanism of FTase.  Studies on the kinetic and catalytic mechanism for this enzyme 

provide valuable information about the catalysis of zinc enzymes and the biochemistry of 

alkyl transfer.  The developed methodology and results of this work may also be used 

toward the study of prenylation in vivo.  The identification of prenylated proteins in the 

cell is of great interest, and a better physiological understanding of prenylation will also 

lead to a clearer picture of the inhibition of prenyltransferases.  FTase inhibitors show 

significant promise in the treatment of a variety of diseases, especially cancer, and studies 

on the mechanism, substrate specificity and inhibition of FTase will contribute to the 

growth of this field and the development of specific and effective inhibitors.   
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