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CHAPTER I

INTRODUCTION

A, Background

Nucleate boiling is often utilized in removing large
quantities of heat which are generated in systems having
relatively small volumes such as the nuclear reactor and
the rocket motor. Because of recent important applications
of boiling heat transfer, a great deal of research has
been done in this field (1, 2, 3). During the past 25
years considerable effort has been devoted to the study of
boiling systems which has improved the scientific
description and understanding of many aspects of two-
phase phenomena. In spite of this intensified research
activity, there is no theory which will adequately
predict the various processes associated with forced
convection boiling heat transfer such as incipient
boiling, bubble formation and growth, pressure drop,
density distribution, and burnout. The lack of such a
theory is traced first to the complexity of boiling
phenomenon and second, to the absence of a simplified
model which adequately represents the actual processes
and also lends itself to mathematical treatment. Much of
the work which has been done has understandably dealt
with measurements of gross effects rather than local

effects. Any theory which will satisfactorily predict
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boiling heat transfer and two-phase flow processes

must rest on a complete description of the local
hydrodynamic and thermodynamic mechanisms involved. An
investigation which is directed at the study of the mechanics
of vapor bubble formation processes in the boundary layer
regions for forced convection flow over a heated plate

is a favorable approach to this problem. Such flow
conditions are encountered in the coolant channels of
pressurized water nuclear reactors, in rocket motor coolant
passages, cryogenic transfer lines, chemical reactors and
other devices wherever surface boiling occurs. Under

these circumstances fhe normal single-phase boundary layer
processes are replaced by hydrodynamic and thermodynamic
conditions imposed by the growth and mutual interaction

of vapor bubbles. The mechanics of these processes are
almost completely unknown, yet they control the thermo-

dynamic behavior of the system.

B. Purpose

The object of this study is to investigate the inception
of bubbles for forced convection flow of distilled,
degassed water over a heated plate in a pressurized channel
and their consequent mutual interaction in the formation of
a type of two phase boundary layer which is called the
"bubble boundary layer'™. The heated plate, which is

0.50" wide and 9.48" long is to be vertically oriented in



a 0.50" x 0.46" rectangular channel. The investigation

is to be carried out at pressures of 200 to 1000 psia,

velocities of 1 to 6 ft/sec and subcoolings of 50 to 3000F.
Specifically, the following three interrelated

problems will be investigated:

1. The conditions necessary for the initial appearance
of observable bubbles over a heated surface in subcooled
forced convection bhoiling. The term '"incipient boiling"
shall refer to this phase of the investigation.

2. The growth of bubbles and the consequent development
of a two-phase region along the heated surface. This
region shall be called the "bubble boundary layer' as
illustrated in Figure (1).

3. The temperature distribution and fluctuations
within the single-phase liquid core and bubble boundary

layer.

C. Literature Survey

A great deal of research has been done in the field
of boiling heat transfer and two-phase flow. Most of the
work was done on boiling outside heated wires and inside
tubes (4, 5, 6, 7, 12, 13, 41). More recently work was
done on boiling in rectangular channelé (17, 18, 19, 22,
23, 24). Theoretical and experimental studies have been
conducted on bubble formation (8, 9, 10, 11), pressure

drop (7, 12, 13, 14, 15, 41, 50, 51, 52), burnout heat

’
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fiux (4, 6, 16, 17, 18, 1¢, 41) and void fraction and
density variation (20, 21, 22, 23, 37, 45, 47, 48, 4¢).

Incipient hoiling for forced convection flow inside
tubes was investigated by Buchbherg, et al. (41). The point
of initial nucleation was detected by means of surface
temperature measurements. They observed that an abrupt
change in the character of surface temperature
fluctuations takes place at the point of initial nucleation

of bubhles. In the region of the tube in which boiling 1is
well established little or no fluctuations in the wall
temperature were indicated, while fluctuations of at least
50F were ohserved along the non-hoiling portion of the tubhe.

Dyer (24) ohtained photographs of the bubhle houndary
layer for the flow hetween two heated plates in a rectangular
channel. The bubble boundary layer thickness was observed
to increase in the downstream direction. He made gross
measurements at the inlet and outlet of the test section
for a limited range of heat flux, velocity, and subcooling
at pressures up to 56 psia.

Other photographic investigations have heen conducted
on the bhoiling process. Gunther and Kreith (11) made
photographic studies on the mechanism of surface hoiling
in a subcooled pool, using a metal strip as a heating
element. To investigate the effect of forced convection
on the mechanism of boiling heat transfer, Gunther (25)

made a high speed photographic study of hoiling in



rectangular channels. Similar studies have heen carried
out by various other investigators (26, 27, 28).

Because it is'necessary to know the density of the
coolant in a nuclear reactor, several investigations have
been conducted to study the variation of density or void
fraction along rectangular channels. The approach to
predicting the density of steam-water mixtures has been
almost completely empirical. An experimental program was
conducted at the Battelle Memorial Institute by Egen,
et al. (20) to investigate the formation and distribution
of vapor in a rectangular channel under bhoiling conditions
at 2000 psia. The effect of heat flux, flow rate and inlet
temperature on the void distribution and formation was
determined. Similar studies were conducted at the Argonne
National Lahoratory by Marchaterre (22). He investigated
the effect of pressure on the density of a steam-water
mixture in natural convection bhoiling in rectangular
channels at pressures up to 600 psia. Void volume
fraction was calculated from measurements of gamma ray
attenuation. Neither the Battelle Memorial Institute nor
the Argonne National Laboratory analysis and experiments
treated the bubble boundary layer as a separate region
from the single-phase liquid core.

Griffith, et al. (21), studied void volumes in a

rectangular flow channel for subhcooled boiling from a



single heated surface at pressures of 500, 1000, and
1500 psia. A semi-empirical method for predicting the
void fraction along a heated surface in a rectangular
channel was presented in this work.

Extensive studies on burnout in channels were conducted
by the Westinghouse Atomic Power Division (18, 190, 29),
Similar experiments were carried out at the Battelle
Memorial Institute (17).

The effect of L/D ratio (L is the distance from inlet
to point of initial burnout; D is the equivalent diameter)
on burnout heat flux is an additional factor which needs
careful study. It has been found that the burnout heat
flux was more than halved by increasing the L/D ratio
from 65 to ahout 300 (30).

Gunther (25) obtained an empiricalvexpression for
forced convection burnout heat flux for a heated metal strip
suspended lengthwise along the center plane of a rectan-
gular channel. The empirical equation fits the results
of 38 burnout tests at low pressures (30 - 164 psia)
and subcooling from 220F to 282°F. Buchberg, et al. (41)
studied burnout heat flux at 2000 psia. However, they
indicated that prediction of burnout heat flux for
pressures other than 2000 psia or tubes of different
diameters cannot be made with confidence by using the

same empirical equation.



Jens and Lottes (49) summarized experiments by
Rohsenow and Clark (12) and Buchberg, et al.(41) on
surface boiling of water flowing in vertical tubes.

Data from these experiments on burnout heat flux and
surface temperature were correlated.

In a recent study on the mechanism of subcooled
nucleate boiling, Bankoff (43) proposed a three-step
model for the transfer of heat. First the heat flows from
the surface to the adjacent two-phase region. Secondly,
heat flows through the two-phase region, and finally
from the edge of this layer to the main core. Simplified
expressions were deduced for the first and third steps
which gave reasonable agreement with Gunther's (25)
data. The author points out that these expressions are
highly speculative in view of the many simplifying
assumptions and that considerahbly more experimental data
on the local parameters are needed. An approximate
expression for estimating the temperature at the edge
of the two-phase region was also deduced by Bankoff.
Using Gunther's data this temperature was calculated
and found to rise steeply towards the saturation

temperature as burnout is approached.



CHAPTER II
THEORETICAL ANALYSIS OF INCIPIENT BOILING

It is desirable to make an analytical investigation
of the conditions necessary for the inception of boiling
for a fluid flowing over a heated surface. Specifically,
the relation hetween heat flux and the position along
the heated surface where initial nucleation takes place
is desired as a function of inlet pressure, velocity
and subcooling.

Referring to Figure 2, let Xy be the distance
from the leading edge to the point of initial nucleation
of bubbles. For a small element dX at X = X7 one

can write

dOD= hx(TW—Tb) CIA

or

(f!{—/ik); h (T = T,) (1)

Since for an electrically heated uniform plate in
steady-state the energy dissipated per unit surface

area is constant, equation (1) becomes
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B, = b (T-T) e

where (q/A)7 is the incipient heat flux, i.e. the flux
necessary to initiate boiling at X = X; for a fixed inlet
state.

The bulk temperature T, may bhe determined from the

b
first law of thermodynamics

WC(Ty = T)

=L
I

or

T, = TSGR -

Boiling takes place when the surface temperature is
equal to or greater than saturation temperature. As a
first step towards the solution of this problem the

assumption will be made that at X = X1

T = Tae (4)
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Substituting Equations (3) and (4) into Equation (2)

one obtains

(%\I - hy (Teat = T0)

' +h b X; (5)

The heat transfer coefficient hy should be evaluated at
X = Xy. Since by definition no boiling takes place in

the region O X< X it follows that the film

1)
coefficient h, in the this region may be determined from
existing correlation equations. For forced convection

turbulent flow over a heated plate Knudsen and Katz (70)

suggest the'following equation

E
) e

Equation (6) applies to a flat plate at constant wall

0.8
he X _ 00292 (Q_X_> Gp/“
k e k

temperature. However, according to Seban and Shimazaki
(72), for turbulent flow in tubes at Prandtl numbers

close to unity, the ratio of heat transfer coefficient for
constant wall temperature to the heat transfer coefficient
for constant heat flux is equal to 0.97. Therefore,
Equation (6) may be used, with good approximation, to

describe the local heat transfer film coefficient for



turbulent flow over a flat plate at constant heat flux.
Fluid properties in Equation (6) are to be evaluated

at the film temperature Ty defined as follows:

Te =2 (T,~T) 7

Since Ty, is assumed to be equal to saturation temperature,

then

Thus, for a given inlet pressure, velocity, and
subcooling the relation hetween incipient heat flux
(q/A)I and the location of initial nucleation of

bubbles Xy is given by Equation (5).



CHAPTER 111
EXPERIMENTAL APPARATUS AND INSTRUMENTATION

A. Introduction

To meet the objectives of this investigation a system
was designed such that boiling of distilled and degassified
water flowing over a flat surface in a rectangular channel
may be observed and photographed. Furthermore, the design
incorporates a method for making temperature profile
measurements of the fluid at various locations along the
heated surface. Means for varying the heat flux,
pressure, fluid velocity, and subcooling were also provided.

The system was designed to operate within the flowing

ranges:
Heat flux: 0 - 1.7 x 109 BTU/hr-ft2
Pressure: 30 - 1000 psia
Velocity: 1 - 6 ft/sec

Mass velocity: 0.2 x 100 - 1.2 x 10° 1bm/hr-ft2
Subcooling: 50 - 300 °F
The experimental apparatus is basically made up of
a pressurizing system and three closed loops; the main
loop, the ion-exchanger loop and the degassification loop.
The main loop controls the flow to the test section while
the ion-exchanger loop filters the fluid and maintains the

electrical resistivity at a level above 1 x 100 ohm-cm.

-14-
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The degassifier loop deacrates the distilled water prior
to each test.

Since it was desired to ohserve hoiling of distilled
water, all the materials which come in contact with the
fluid were carefully selected so that no corrosion takes
place. All pipes, tubes, and fittings were made of
stainless steel types 304 or 316. Type 304L, 316L, 321
or 347 stainless steel was used wherever welding was
necessary. Compression fittings (Swagelok and Autoclave)
were employed throughout the system so that each component
can he removed from the system for possible repairs,
inspection or cleaning.

Vents were provided at various points of the
system where air pockets could form. Drain plugs were
also provided so that the system can he drained when
necessary.

A photograph of the experimental apparatus is

shown in Figure 3.

B. Equipment and Apparatus
1. Main Loop
Figure 4 is a schematic diagram of the main loop
which consists.of the test section, heat exchanger, cir-
culation pump, flow control valve, flowmeter and preheater.

All these components are assembled in one plane with the
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Photographic View of the Experimental Apparatus

Figure 3.
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center of the test section window at 5 feet above floor
level. Three different tube sizes were used throughout
this loop: %" gage 16, 3/4" gage 13, and 1" gage 11.
a. Test Section
1) General Considerations

The test section is the housing unit for
the heated strip. It provides the means for ohservation of
the boiling liquid and making fluid temperature profile
measurements. It is oriented such that the flow over the
strip is vertical and upward. Figure 5 is an assembly
drawing of the test section and the strip. The test
section is a modified design of a Yarway liquid level boiler
gage. The modifications were necessary in order to provide
a rectangular flow channel, the means for making temperature
profile measurements, and also assembling and housing the
strip. It has two viewing windows which are 10 inches
long and 0.5 inches wide. Figure 6 is a cross section of
the test section. All parts, except the test section body
and the filler glass, are identical to that of Yarway gage
No. 4191, 2500 psi series manufactured by Yarnell-Waring Co.,
Philadelphia, Pa. The test section body was redesigned
to prévide rectangular inlet and outlet flow channels
and to meet the necessary instrumentation requirements.
Figure 7 is a detailed drawing of the test section body.

The filler glass was added so that the flow channel (of
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which the strip is one side) would have a cross section
which is identical with that of the inlet section. This
inlet section extends 3.5 inches up-stream from the leading
edge of the strip. To insure that a fully developed flow
is established at the leading edge of the strip, a 40.5 in.
long rectangular tubing is connected to the inlet section.
This arrangement provided a 44" long (approximately 90
diameters) approach channel with a cross section of 0.50"
x 0.46", which is identical to that of the strip channel.
The rectangular tubing is inserted inside a 1.0" O.D.
gage 11 tube intended to withstand the liquid pressure.

Figure 8 is a photograph showing the test section
assembly.

2) Strip Assembly
The strip is an electrically heated ribbon

used as a boiling surface. It is designed to provide a
heat flux of 1.7 x 10® BTU/hr-ft2 at 800 amps and 21 volts.
It is 0.500" wide, 0.0328" thick and 9.48" long. The
strip material is commercially known as Chromel-A
manufactured by the Hoskins Co., Detroit, Michigan.
Chromel-A is an alloy with nominal composition of 80% Ni
and 20% Cr. The resistance of the strip is 0.0323 + 2%
ohms/ft. The surface‘was polished and its roughness was
measured in two directions with a profilometer. The

profilometer registered approximately 3 rms when moved



v D, B

Pigure 8., Photograph of the Test Section Assembly
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in a lengthwise direction, and 10 rms when traversed the
width of the strip.

Figure 9 shows the strip assembly which consists
of the strip itself and two stainless steel end blocks.
The strip was silver soldered to the blocks to provide
good electric contact. To prevent any buckling of the
strip at high temperatures, the exit end block is free to
expand in the downstream direction. The electric circuit
is closed at the exit block with four thin (gage 30)
silver ribbons designed to buckle when the strip expands.

The strip was electrically insulated from the test
section body with 0.015" thick insulation material
commercially known as "Durabla'. This material was used
wherever electric insulation was necessary.

To prevent any bubbles which might form on the
insulated side of the strip from finding their way to the
filow channel, it was necessary to clamp the strip against
the test section body. Gage 26 Chromel-A wires were
discharge-welded along bhoth edges of the strip at 3/8"
intervals. These wires were then cut to 3/8" long. When
the strip is assembled inside the test section the
wires are wedged between the filler glass and the test
section body as illustrated in Figure 10. This method
prevented the strip from buckling and adequately sealed

of f any bubbles which may form underneath the strip.
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3) Electrodes

Two electrodes were used to connect
the strip assembhly to the bus bhars. The two electrodes
are essentially chrome plated copper rods. Because of
assemhly and disassembly problems it was not possible to
weld the electrodes to the strip end blocks. At the
inlet end of the strip the method of contact between the
electrode and the end block is illustrated in Figure 11.
A }-20 stainless steel set screw was used to establish
contact between the electrode shoulder and the end block
surface. To assure good contact a 1/16" silver washer
was used. All contact surfaces were polished before
assembly. This method was found to be adequate at
currents up to 700 amps. Difficulties were experienced
when a smaller screw (size 10-24) and a lead washer
were used. The screw failed at high currents due to
excessive heating. Fiéﬁre 12 illustrates the method
used to connect the outlet end of the strip assémbly to
the electrode. To seal and insulate the electrodes from
the test section body, two Conax Electrode Glands (Type
ELG-5) were used. These are special fittings designéd
for this purpose and manufactured by the Conax Corporation,
Buffalo, New York. Figuré 5 shows how the electrodes

and the strip are assembled in the test section.
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b. Preheater

To control the liquid temperature at the inlet
to the strip a 9 kw electric heater was installed 10 ft
upstream of the test section. It is an immersion type
stainless steel electric heater designed for high pressure
applications. The heating element (Chromalax type TMI
309B XX) is manufactured by the Edwin L. Wiegand Company,
Pittsburgh, Pa. The heater is controlled by a three phase
General Radio Variac type W20-G3. An assembly drawing
of the preheater is shown in Figure 13.

c. Circulation Pump

A high pressure high temperature stainless
steel pump was used to circulate the fluid through the
three loops. It is Model CFH-1% - 3/4 S Chempump manu-
factured by Chempump Division, Fostoria Corp., Huntingdon
Valley, Pa. The pump and motor are built together into
a single unit with a portion of the pumped fluid allowed
to enter the motor section to cool it. The only moving
part is the rotor-impeller assembly which turns in the
pumped fluid, thereby eliminating the need for seals or
stuffing boxes. Pumped fluid is isolated from the stator
windings by a non-magnetic corrosion resistant ''can' or
liner welded into the air gap section of the motor. The
pump was designed to operate at 1500 psi and deliver

15 gpm at 80 ft. head. A wrap around heat exchanger
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permits the pump to operate at fluid temperatures up
to 600°F. A drawing of the pump is shown in Figure 14,

d. Heat Exchanger

A tube and shell heat exchanger was used to

remove some of the heat added to the fluid in the test
section and the preheater. It consists of 16 ft. of
3/4" 0.D, gage 13 stainless steel tube bent into a U-shape
and two 1" pipe shells. Special fittings were used to
allow for the expansion of the tube wheéen operating at
high temperatures. City water was used as the cooling
liquid in the heat exchanger. A detailed drawing of
the heat exchanger is shown in Figure 15.

e. Plow Control Valve

A needle valve is installed between the pump
outlet and the preheater to control the flow through the
test section. The valve (Autoclave Part No. TV-8001)
is manufactured by the Autoclave Engineers Sales Corp.,
Erie, Pa.
2. Ion-Exchanger Loop

To filter thé fluid and maintain its electrical
resistivity at a high level (above 1 x 10 ohm-cm) an
ion-exchanger equipment was incorporated with the system.
It consists of an ion-exchanger, regenerative type heat
exchanger, and cooler. These components were designed

to withstand fluid working pressure up to 1500 psi.
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The regenerator and cooler were designed such that the
flow rate through the ion-exchanger is approximately 0.85
gpm. This corresponds to 20% of the flow rate through the
test section at maximum velocity. Flow through the ion-
exchanger was controlled with a teflon sealed needle
valve (Autoclave Part No. TV-6002). 3/8'" 0.D. gage 16
tubing was used throughout this loop. Figure 16 shows
a schematic diagram of the ion-exchanger 1loop.
a. Ion-exchanger

The monobed ion-exchanger was designed to
maintain the electrical resistivity of water ahove 1 x 10°
ohm-cm. Approximately seven pounds of Amberlite MB-1
resin were used in the ion-exchanger. This resin is
supplied by Rohm and Haas Co., Philadelphia, Pa.
Incorporated in the design of the ion-exchanger are two
filters. A 'Neva-Clog'" filter is placed at the inlet to
the resin bed. It is made out of 347 stainless steel and
manufactured by Multi-Metal Wire Cloth Co., New York,N.Y.
A porous stainless steel filter (Micr-Metalic" Grade H,
5 micron mean-port opening) is placed at the outlet of
the resin hed. This filter is supplied by Micro Metalic
Division, Pall Corp., Glen Cove, N.Y. PFigure 17 1is
an illustration of the ion-exchanger assembly.

b. Cooler
Because the maximum operating temperature

of the resin is 140°F it was necessary to provide a method
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for cooling the water before entering the ion-exchanger.
The cooling is accomplished by a cooler and a regenerator.
The cooler consists of 13% ft of 3/8" O.D. gage 16
stainless steel tube bent into a U-shape and two 3/4"
pipe shells. A detail drawing of the cooler is shown
in Figure 18.
c. Regenerator

The regenerator is U-shaped shell-tube heat
exchanger. It consists of 101 ft. of 3/8" 0.D. gage 16
stainless steel tube and two shells made out of 3/4"
schedule 40 stainless steel pipe. A detail drawing of
the regenerator is shown in Figure 19.

3. Degassification Loop
A degassification system was installed to provide

the means for water deaeration prior to each test.
Degassification is accomplished by vigorously boiling the
water in the degassifier tank and continuously circulating
it through the main loop and the ion-exchanger loop.
At the same time air is vented to the atmosphere at the
top of the degassifier. The degassifier was located
12 ft. above floor level so that the system can be filled
by gravity. Because it was intended to degassify the
water prior to each test only, this loop was designed
to withstand working pressures up to 70 psia. Two

valves were provided to cut off the degassification loop
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from the rest of the system before pressurizing. 3/8"
0.D. gage 20 stainless steel tubing was used throughout
the loop. Figure 20 shows the degassification system
which consists of the following components.
a. Degassification Tank
A 15 gal. stainless steel tank was used for
storage and degassification. It was equipped with a liquid
leﬁel gage and a filling port. The tank was insulated
to minimize the loss of heat to the surroundings.
b. Electric Heater
A 2.5 kw stainless steel electric immersion
heater was installed at the bottom of the degassifier tank.
The heater, Chromalox catalog No. MTS-225 B, is manufactured
by the Edwin L., Wiedgand Co., Pittsburgh, Pa. It was
controlled by a General Radio Variac.
c. Condenser
To prevent steam from being vented with the air,
a condenser was installed in the degassifier. The con-
denser consists of 8 ft of 1/8" O0.D. gage 22 stainless
steel tubing. It is housed inside a one ft. long size
2" stainless steel pipe welded to the top of the de-
gassification tank. City water was used as the cooling
fluid in the condenser.
4. Pressurizing System
A nitrogen charged hydraulic accumulator was

employed to pressurize the system. A 5 gal. '"Bladder™
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type, 3000 psi water service Greer Hydraulic accumulator
(Model 30"-5WS) was selected for this purpose. This type
of accumulator has a separator bag made of synthetic
compound (Buna N) which separates the nitrogen from
system fluid. The discharge port assembly is made of
stainless steel while the shell is made of alloy steel
(SAE 4130) coated on the inside with Lithcote LC-24.

This material is a phenol-formaldehyde, spirit-soluble
resin suitable for distilled water applications.

The accumulator was equipped with a valve and gage
assembly for charging it when it is desired to pressurize
the system. A relief valve was used to discharge the
nitrogen to lower system pressure. Figure 21 shows how
the accumulator is constructed and Figure 22 is a schematic
diagram of the pressurizing system.

5. Safety System

Several safety devices were incorporated in the
system. A stainless steel rupture disc assembly (American
Instrument Co., Cat. No. 45-9106) was assembled with the
main loop. The disc was designed to rupture if system
pressure exceeds 1500 psi. A pressure relief valve
(Farris Engineering Corp. Type 2745) was connected to the
nitrogen line and was adjusted to relieve the nitrogen
if system pressure (or nitrogen line pressure) exceeds

a pre set limit. This limit was usually set at
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approximately 100 psi above test pressure.

An excess surge check valve (Autoclave Part No.
10K-6602) was installed at the accumulator liquid discharge
line. The purpose of this valve was to prevent the
compressed liquid within the accumulator from discharging
when a sudden drop in system pressure takes place (such
as a sudden leak, disc rupture or test section glass
breakage).

A removable steel guard 1/8" thick was placed
around the test section. This guard has two 9" x 14"
glass windows to permit observation of the test section.
Each window was made of two glass layérs; a ¢ auto
safety plate glass and a 3" "Tuf-Flex" (Libbey;Owens-
Ford) glass.

6. Power Supply
The strip was supplied with D.C. electric power
by a 50 kw transformer-rectifier manufactured by Hansen-
Van Winkle Munning Co. Rated maximum continuous output
of this unit is 2000 amp at 25 volts. It is equipped
with a remote control apparatus which is used to control
the power supply to the strip.
7. Photographic Apparatus
Photographs of the test section channel were
taken with a 4" x 5" Graphex camera. Camera setting of

f = 11 and Kodak Royal Pan pahchromatic film were used
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for all photographs. The test section channel was back
lighted with two General Electric Photolights (cat.

No. 9364688G). It was found necessary to use two
photolights in order to photograph the whole channel.

These photolights have an effective light duration of

2 x 106 sec. A 12" x 16" opaque plate glass was placed
between the photolights and the test sectioh to diffuse the

light and give uniform brightness throughout the channel.

C. Instrumentation and Measurements
1. Heat PFlux

The heat flux was calculated from measurements of
current and voltage. Current through the strip was
measured by means of a current shunt rated at 50 mv at
2000 amp. Voltage leads were taken from the strip end
blocks at two points as close aé pussible to the leading
and exit ends of the strip. By means of a bridge
circuit the voltage drop between these two points was
reduced by a factor of 2000. This voltage was measured
with a precision potentiometer (Leeds and Northrup
Model 8662). The two voltage lead wires, shown in
Figure 9, were discharge-welded to the strip end blocks
after the strip was assembled inside the test section.
Two stainless steel packing glands with Teflon sealant were
used to seal the wires and pass them through the test

section. Because it was not possible to weld the lead



wires exactly at the leading and exit ends of the strip,
it was necessary to estimate the small voltage drop through
the end blocks. This drop, which amounted to 1.3% of the
strip voltage drop, was calculated from the measured
current and the resistivity of blocks.
2. Inlet Velocity
The inlet velocity to the strip was calculated
from the continuity equation. The flow rate was measured
with a stainless steel turbine type flowmeter (Potter
Model 1/4 - 1029A) located in the main loop. The
flowmeter output frequency, which is proportional to the
volumetric flow rate, was measured with an electric
counter (Hewlett-Packard Model 522B).
3. 1Inlet Pressure
The pressure at the inlet to the test section was
measured with a 12'" dial, 0-1500 psi Heise Gage manufactured
by the Heise Bourdon Tube Co., Inc., Newtown, Conn. This
gage has 750 graduations and is accurate to within
0.1 of 1% of full scale at any -point on the dial.
4, Temperature Measurements
a. Thermocouples
The test section was instrumented with ten
thermocouples all of which, except the outlet thermocouple,
were designed to traverse the flow channel. The inlet

thermocouple was placed 1/16'" upstream of the leading edge
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of the strip while the outlet thermocouple was installed
approximately 6'" downstream of the exit end of the strip.
It was found that sufficient mixing of the fluid was not
achieved at the exit thermocouple and it was decided

to install two other exit thermocouples, one 12"
downstream from the exit end of the strip and another

at 30", Eight traversing thermocouples, assembled one
inch apart, were located in the heated channel. The
first thermocouple was placed 1'" downstream from the
leading edge of the strip. Figure 23 shows the location
of these thermocouples. Chromel-constantan 30 gage
thermocouple prohes were used for all temperature
measurements in the test section. The wires are

ceramic insulated within a stainless steel sheath

1/16' O0.D. The hot junction is exposed for a length

of 9/16" to obtain fast response and to minimize flow
disturhance. The thermocouple probes (Aeropack
Thermocouples) were supplied by Aero Research Instrument
Co., Inc., Chicago, I11. Figure 24 is a drawing of the
thermocouple probe.

Since all thermocouples were made from the same
spools of wire only one was calibrated by the manufacturer.
Table I gives the manufacturer calibration data. A
laboratory check at the steam point for all thermocouples

showed a maximum deviation emf of 0.005 mv. An isothermal
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test was carried out to check the thermocouples at 300°0F,

All readings checked to within 0.2 per cent.

TABLE I
CALIBRATION DATA FOR THE TRAVERSING THERMOCOUPLES

Observed Observed emf Standard emf Deviation emf
temperature (mv) (mv) (mv)
(OF)
211.2 6.294 6.331 0.037
544.,1 10,835 19.836 0.001
800.8 31.125 31.158 0.033

b. Thermocouple Traversing Mechanism

To make temperature profile measurements of
the fluid in the test section channel, a mechanism was
designed to traverse each thermocouple individually
from the unheated side of the channel to the strip surface.
Figure 25 illustrates how the thermocouple probe was
sealed while traversing the channel. A stainless steel
packing gland with Teflon sealant was used for this purpose.
With this arrangement it was possible to traverse the
thermocouple probe assembly without any leakage at pres-
sures up to 800 psia. A set screw waé used to dri?e the

probe toward the strip surface while system pressure
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was utilized in forcing the probe away from the strip
surface. ZEach driving mechanism was equipped with a
micrometer to indicate the position of the hot junction
with respect to the strip surface.

c. Measuring and Recording Instruments

Thermocouple emfs were measured with a Leeds
and Northrup Model 8662 potentiometer. Double pole,
double throw copper knife switches were used so that all
test section thermocouples can also be recorded with a
recording galvanometer (Minneapolis-Honeywell Visicorder
Model 1012). The galvanometers used were Heiland type No.
40-120 with a voltage sensitivity of approximately 1.0
in/mv. This corresponds to approximately 250F/in.
5. Bubble Boundary Layer Measurements

To minimize inaccuracies in bubble boundary layer
measurements each photograph was projected on a screen
and enlarged by a factor of approximately 3. A trace
of the bubbles and the channel was made from the pro-
jected image and a best fit curve was drawn to describe
the bubble boundary. The thickness of the hubble
boundary was then measured with a scale from the enlarged
trace.

6. Electric Resisitivity
A portable conductivity cell and bridge were used

to measure the electric resistivity of the water. This
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instrument has a resolution of approximately + 5%
at 1 x 106 ohm-cm.
7. Control Panel
To facilitate operation of the system all valves,
switches and gages were mounted on an 8' x 10' panel.
A photograph of the control panel is shown in Figure 26

and a schematic diagram is shown in Figure 27.
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CHAPTER 1V
TEST PROCEDURE

A. Preliminary Preparations

The system was filled with distilled water and then
pressurized to approximately 60 psig. ;After turning the
circulation pump on, the inlet pressure was then maintained
at 40 psig. Cooling water to the ion-exchanger cooler
was turned on to maintain the inlet temperature to the
ion-exchanger below 140°F, Maximum flow was maintained
through the main loop and ion-exéhanger loop (flow
control valves fully open) while the flow through the
degassifier loop was shut-off. The preheater was then
turned on and adjusted to maintain the system at
approximately 210°P, The degassifier heater was turned
on while the air vent valve waslleft open. After all
the air in the degassifier was vented, the valve was closed
and the degassifier pressure was allowed to build up
to approximately 30 psig. Degassifier flow control valve
was then opened and degassification of system water was
continued for approximately 2% hours. 1In another boiling
investigation Clark and Rohsenow (6) found that a
period of 3/4 hours was sufficient to reduce the oxygen
content to approximately 1.5 ml air/1. The degassifier
loop was then shut-of f from the main system by closing

the two degassification valves.

-58-~
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Power to the strip was turned on after the desired
test pressure, velocity, and subcooling were established.
By controlling the preheater, the inlet temperature to
the strip was maintained at the desired test value.

A 4" x 5" Polaroid photograph was taken to detect
boiling. If no bubbles could he detected the heat flux
was increased and another photograph was taken. This
process was repeated until bubbles appeared at the exit

end of the strip.

B. Measurements and Data Recording

After steady state was reached the pressure, flowmeter
frequency, voltage, current, inlet and outlet temperatures
were recorded and a photograph was taken. ZEach traversing
thermocouple was individually moved through the channel
and temperature measurements were made at eleven locations.
Because the temperature gradient is high near the strip
surface, measurements were made at 0.01", 0.025" and
0.05" from the surface. The other eight measurements were
made at 0.05" intervals. At each location the temperature
was first recorded on the "Visicorder'" and then measured
with the potentiometer.

At the end of each test a water sample was taken
from the system and its electrical resistivity was

measured and recorded.
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C. Range of Variables

To determine the effect of pressure, velocity, subcool-
ing and heat flux on incipient boiling and the bubble
boundary layer, tests were conducted such that the pressure,
velocity, and subcooling were held constant while the heat
flux was varied. The range of variables covered is

listed in Table II.

TABLE II

RANGE OF VARIABLES COVERED IN EXPERIMENTAL TESTS

Pressure Subcooling Velocity Heat flux range
(psia) (OF) (ft/sec) (BTU/hr-ft2)
200 50,100,200 1,3,5,6 0.19 x 100 - 1.5 x 106
500 100,200,300 1,3,5,6 0.14 x 106 - 1.4 x 100
800 100 1,3,5 0.16 x 10% - 0.73 x 106
1000 200 1 0.26 x 109 - 0.92 x 106

In all tests the electrical resistivity ranged between

1 and 2 megohm,



CHAPTER V

RESULTS

A. Incipient Boiling

1. Introduction

Incipient boiling as defined here shall mean the

initial appearance of observabhle bubbhles over a heated
sﬁrface° The point of incipient boiling is the location
along the surface where bubbles first appear. The dis-
tance from the leading edge to this point is referred
to as the incipient distance. The point of incipient
boiling was detected by visual inspection of full scale
photographs of the boiling liquid. While this point
was not sharply defined, nevertheless, it was possible,
in general, to ascertain its location to within + % in.
Typical photographs are shown in Figures 28 and 29 in
which the incipient distance Xy is 4.5 and 0.9 in.
respectively. These are photographs of two tests in
which all variables were held constant except the heat
flux. It is noted that increasing the heat flux causes
the point of incipient boiling to move towards the leading
edge.

2. Comparison with Theoretical Incipient Heat Flux

For each test the incipient distance was measured

from the photograph and the corresponding heat flux was

-6]1~=
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calculated. Equation (5) was then used to calculate the
theoretical heat flux, for the same test conditions,
which will initiate boiling at the same point. This was
done for all tests and it was found that the theoretical
heat flux, as predicted by Equation (5),.is always less
than the actual heat flux. 1In general, Equation (5)
under estimates the incipient heat flux by a factor of
approximately 3. Figure 30 is a plot of the ratio of
actual to theoretical incipient heat flux vs. incipient
distance for all-tests. This ratio is approximately
equal to 4 at Xy = 0.5 in. and 2.8 at Xy = 7 in. Because
of this discrepancy it was decided to investigate the
extent to which the assumption that the surface temp-
erature at the point of incipient boiling is equal to
saturation temperature may have contributed to this
disagreement.

Jens and Lottes (49) summarized experiments by
Rohsenow and Clark (12) and Buchberg, et al.(41) on
surface boiling of water flowing in vertical stainless
steel tubes and correlated their data on surface temp-

erature by the following dimensional equation

IS (%/A)!z

To= e SF7500

(8)



9anjexadwad] uorjeiniesS o3} fenbg ainjexaduay 3dejang
uo pased xXnTd TedT3}dI09YL ay3 pue xnTd 3edH
duryrog juatrdrouyl Ten3dy udamlag uostIedwo) °Qf dIndty

NI * 3903 ONIQV31 WOodd 3ONVLSIA ' Ix

(v/b)Iv2113403HL 7 Y(w/b) vnLov

1

ol 6 8 2 9 S v ¢ 2 I
L'
] —o r
y mo
" Bay
I 002 0001 +
Se'l 00! 008 v
9'Ge’ | 00£'002‘ 00! 00S .
9'G'e’ | 002 '001'0S 002 (0]
J3S/13 Jo viSd
ALIDON3A 9NIN002aNS  3UNSSINd
13INI 137NI 137N A




-H66~

While the assumption that at the inception of boiling
the surface temperature is equal to saturation temperature
is a conservative estimate of T,, , Equation (8) over
estimates it. When Equations (3) and (8) are substituted

in Equation (2) the following is obtained

- P/aoo 1
~ h (T = T) 1oh, € A%
(%/p})l— 1+hi8—ﬁ} + 1*"&?&} </A>1 (9
P P

Figure 31 shows the effect of assuming a higher
surface temperature than saturation on the incipient
heat flux for a typical inlet state. The incipient
heat flux (q/A)I for every test was calculated from
Equation (9) and compared with the actual flux. The
result is plotted in Figure 32 as the ratio of the two
fluxes vs. Xy. While the overall effect of assuming
a surface temperature which is greater than the saturation
temperature is an improvement in predicting (q/A)I,
Equation (9) still under estimates the incipient heat
flux by a factor of approximately 2.5 (as compared
with 3 for Ty = Tga¢). This indicates that the

large discrepancy between actual and predicted (q/A)j
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cannot be attributed to an erronious assumption of the
surface temperature. The disagreement is due to the fact
that a higher flux is required to facilitate detection
of bubbles by visual observation than that which is
necessary to initiate them. It is therefore possible
that nucleation of bubbles actually does take place at
the flux predicted by Equation (5) but in order to
detect the bubbles by visual observation this flux must
be increased by a factor of approximately 3.

3. Correlation of Incipieﬁt Boiling Heat Flux

Examination of Figure 30 suggests that even

though Equation (5) under estimates (q/A)I, a simple
relation exists between theoretical and actual incipient
heat flux.

Since bubbles may be present but cannot be observed
at O <X< X; , it follows that the actual heat
transfer coefficient hy is greater than that described
by Equation (6). It was found that a reasonably good
correlation for incipient boiling data is obtained when
this value of hy is multiplied by a factor of 3.33.

Fur ther refinemént in the correlation equation was obtained
when the factor (X1/4H)?-08 was introduced into Equation (5).
H is the height of the channel, or the spacing between

the heated and the adiabatic surface. Thus, the physical

significance of(XI/ﬁH) is that it represents the number
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of equivalent diameters for the flow hetween two heated
plates with a spacing of 2H. The resulting correlation

equation is therefore

(%/A\ _ 3330 (T - T) ( XN ° (10)
1

bX 4H
| + 333h, TJ"CIF;

where hy is given by Equation (6). Equation (10)
correlates the incipient boiling heat transfer data for
all tests to within + 15 per cent as shown in Figure 33.
Comparison between actual incipient heat flux and that
predicted by correlation equation (10) for several tests

is shown in Figures 34 through 41,

B. Bubble Boundary Layer
1. Introduction
The bubhle houndary layer is defined as the two-
phase region adjacent to a heated surface in forced
convection boiling. The boundary of this region is
defined by a line which separates the single-phase 1liquid
core from the bubble boundary layer as shown in Figure 42.

The bubble boundary thickness S is the distance from
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Incipient Boiling Heat Flux vs. Incipient Distance
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the heated surface to this line. Other photographs

showing nucleation of bubbles and the development and
growth of the bubble boundary layer over the heated
surface are found in Appendix B.

To avoid burnout of the strip the maximum heat
flux was limited to 50 per cent of burnout heat flux as
calculated from Jens and Lottes (49) correlation
equations. This, in turn, limited the maximum bubble
boundary layer thickness to approximately 0.35 inches
which corresponds to 75 per cent of channel height.

2. Effect of Heat Flux, Ve€locity, Subcooling and
Pressure on the Bubble Boundary Layer Thickness

To study the effect of heat flux, velocity, sub-
cooling and pressure on the bubble houndary layer,
measurements of © at various distances from the
leading edge were made for all tests and plots of
é vs X were constructed. In these plots a solid
line was used to define the outline of the bubble
boundary layer.

a) The Effect of Heat Flux

When all variables are held constant an
increase in the heat flux causes an increase in the
bubble boundary layer thickness as shown in Figures 43
to 47. This is expected since larger bubbles can be

maintained at higher flux.
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b) Effect of Inlet Velocity
For constant pressure, subcooling and heat
flux, increasing the velocity causes a decrease in the
bubble boundary layer as illustrated in Figures 48 and
49,
c) Effect of Subcooling
An increase in inlet subcooling for constant
pressure, velocity and flux decreases the bubble boundary
layer thickness as shown in Figure 50. This is an
expected behavior since the higher the subcooling the
greater the rate of bubble condensation.
d) Effect of Pressure
Comparison of the bubble boundary layer
thickness for various tests in which the inlet velocity,
subcooling, and heat flux were kept constant while the
pressure was varied show that the bubble boundary layer
thickness is not affected by the pressure in a simple
manner. Figure 51 shows that the bubble houndary layer
thickness is greater at 500 psia than at 200 psia.
On the other hand, Figure 52 shows that the bubble boundary
layer thickness is larger at 500 psia than 800 psia.
Thus it cannot be concluded that the higher the pressure
the smaller is the bubble boundary layer thickness.
3. Correlation of the Bubble Boundary Layer Thickness

To correlate the experimental data for the bubble
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boundary layer thickness, a regression analysis program
was carried out on the IBM 709 Computor. In this program
the sum of the squares of the differences between observed
and predicted values of S is minimized. The correlation

equation was assumed to be of the form

a
§ = a Zf‘ ZSZ Z33.....Z (11)

where Z,,Z,,Z,,...,Z, are independent variables
which affect ) and Q,, &, Q,,Q,,.+0, are constants
to be determined by the method of least squares. Using
this method two correlation equations were determined
which adequately predict the bubble boundary layer
thickness.
a) Dimensional Correlation Equation

Equation (12) was found to predict S to

within + 20 per cent for the range of variables listed

in Table II.

e |63
7o)

5 6xlO4' ( T 0 S04 (05 A>.256(x ) 0.534 (12)
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Equation (12) is plotted in Figure 54 together
with experimental data on the bubble boundary layer
thickness. For each test the thickness 5 at four
locations along the strip is compared with the predicted
value.
b) Dimensionless Correlation Equation

Another correlation equation in terms of
significant dimensionless groups was also obtained.
Equation (13) predicts the bubble boundary layer thickness

> to within + 20 per cent.

Si42 =00 0.448 0.302 0.237
2P _ gs4x0 [i_ [_S’__ ) 1]0 I: (%0 ] (%/AXX x;) ':P(X—XI)] (13
g K ?V CPG (Tsat. T g

The fluid properties Cp,/bt and k are evaluated
at the film temperature while the surface tension G—
is evaluated at the saturation temperature.

A plot of Equation (13) is given in Figure 55 and
experimental points on the bubble boundary thickness

are shown.
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Figure 54, Dimensional Correlation of the

Bubble Boundary Layer Thickness
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C. Results of Temperature Measurements
1. Introduction

"Visicorder" traces of the traversing thermocouple
signals indicated considerable fluctuations in temperature
within the turbulent boundary layer as well as the bubble
boundary layer. These fluctuations, as illustrated in
Figure 56, suggested the definition of the following
temperature terms:

a) '"Minimum Temperature"

The lowest extreme of temperature fluctuations
as indicated by the "Visicorder" is referred to as the
"minimum temperature' as illustrated in Figure 56.

b) '"Maximum Temperature"

The upper level of temperature fluctuations
is referred to as the "maximum temperature'. This
temperature is also determined from the '"'Visicorder"
record.

c) '™ean Temperature'

The mean temperature is the time average of
the temperature fluctuations. It is measured by the
potentiometer after damping out fluctuations in thermo-
couple output signal.

Because the '"Visicorder' has a finite time response,
certain amount of damping in temperature fluctuations is

expected. This means that the lowest temperature level
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existing at the thermocouple hot junction is less than

T and the highest level is greater than T, .

MIN
Typical plots of maximum, minimum and mean temperature
profiles for various conditions are shown in Figures
57 and 58.

2. Fluid Temperature Profiles

"Mean temperature' profile plots for various tests

are shown in Figures 59 through 69. In no case was the
measured mean temperature near the surface greater than
saturation temperature. Furthermore, it is noted that
the temperature gradient within the bubble boundary lavyer
at a given distance from the he ated surface decreases
with increasing heat flux.

"Maximum temperature'" profiles are shown in Figures
70 through 76. While temperatures as high as saturation
were recorded near the surface it is observed that super-'
heated vapor was seldom detected at locations as close
to the surface as 0.01 inches. However, because of
"Visicorder' damping, this does not rule out the exisfence
of a superheated film near the surface. Referring to
Figure 74, the temperature at X = 6" and y = 0.01"
is 477°F, which corresponds to 10°F superheat. The
surface temperature, as approximated by equation (8),
is 498CF which indicates that a maximum superheat of

319F may exist near the surface.
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"Minimum temperature' profiles are shown in Figures
77 through 83. The bubble boundary layer thickness is
shown on these plots to point out the ekistence of highly
subcooled liquid well within the two phase region.

3. Temperature Distribution at the Single-phase
Core~Bubble Boundary Interface

To investigate the extent to which suhcooled

liquid exists along the bubhle boundary layer (i.e.
at y=% ), plots of (Tgat - T, s / (Tgat - TP
vS. Yy were constructed. This dimensionless temperature
ratio is an indication of the degree to which inlet
subcooling is maintained along the bubble houndary layer.
A ratio of unity means that liquid particles at the inlet
temperature exist along the bubble boundary layer.
These plots are shown in Figures 84 through 88. It is
noted that in some tests a temperature ratio of unity
was maintained as far downstream as 6 inches from the
leading edge. Furthermore, it is observed that for
the same inlet pressure, velocity and subcooling,
this temperature ratio increases with increasing heat
flux.

Bankoff (43) derived an approximate expression
for estimating the mean temperature at the single-phase
core-bubble boundary interface. Using Gunther's (25)

data he found that this temperature rises steeply towards
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saturation temperature as burnout is approached.
To compare Bankoff's analysis with the findings of this
investigation, plots of (Tgat - Tyean %ms// (Tgat - Ty
VS, Y are shown in Figures 89 through 93. These
plots show that as the heat flux is increased the
dimensionless temperature ratio approaches unity. Or,
in other words, the mean temperature at the interface
approaches the inlet temperature as the heat flux is
increased. This appears to contradict Bankoff's
predictions,
4, Temperature Fluctuations

A typical "Visicorder'" trace showing the temp-
erature fluctuations at various distances from the strip
surface is reproduced in Figures 94 and 95. It is noted
that the amplitudes of temperature fluctuations are
random. Their frequency, however, remains virtually
constant throughout the single-phase core as well as
the bubble boundary layer. This frequency is estimated
to be 20 cycles/sec. In general, the amplitude of
temperature fluctuations decreases with increasing
distance from the heated surface. To investigate the
behavior of temperature fluctuations, plots of (T -

MAK

ffmwn ) vs. Yy for various tests were constructed.

These plots are shown in Figures 96 through 101. It is

noted that the amplitude of temperature fluctuations
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Figure 96. The Effect of Heat Flux on Temperature

Fluctuations
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Figure 97. The Effect of Heat Flux on Temperature Fluctuations
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Figure 99. The Effect of Heat Flux on Temperature Fluctuations
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first increases and then decreases as the thermocouple

is traversed away from the heated surface. This suggests
that a thin film may exist near the surface in which
temperature fluctuations are partially damped out. It

is possible, however, that the decrease in magnitude

of temperature fluctuations near the surface may be
partially due to changes in the time response of the
thermocouple, owing to the presence of an increased
vapor fraction there. Based on the method outlined by
Clark (73), an approximate value for the ratio of the
damped amplitude of temperature fluctuations to the
undamped amplitude was obtained. For a typical test

this ratio was estimated to be 0.99 in the single phase
core and 0.91 near the surface at y = .01", where it

was assumed that the fluid is all vapor flowing at the
same mass velocity as the liquid core. Another important
observation is that within this film the amplitude of
measured temperature fluctuations decreases as the heat
flux is increased. It is reasonable to assume that the
decrease in the indicated amplitude is primarily the
result of an actual reduction in temperature fluctuations
of the fluid itself rather than a change in the thermo-
couple time response, since in this process the hot
junction is surrounded by predominately saturated vapor.

Table 111 summarizes the temperature measurements at 0,01"
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from the heated surface and 6" from the leading edge

for two tests at 500 psia, 3.5 ft/sec and 100° subcooling

and varying heat flux.

The amplitude of temperature

fluctuations is 53°F at 0.638 x 10° BTU/hr-ft2 while

it is 309F at 0.898 x 100 BTU/hr-ft2,

TABLE III

TYPICAL TEMPERATURE DISTRIBUTION AT y = 0.01"

(q/A) BTU/hr-ft2

MIN

0.638 x 106 422

0.898 x 10° 450

T (°F) T

wmx(oF) (TMM<‘TMW )OF
475 53
480 30

Table III also shows that at 0.638 x 100 BTU/hr-ft?

the superheat, based on T, .. , 1is

109 BTU/hr-ft2 it is 13°F. Based
one may postulate that as burnout
a thin layer of superheated steam
surface with a characteristically

coefficient. Burnout takes place

8°F while at 0.898 x

on these observations
heat flux is approached
is formed over the

low heat transfer

when the rate of heat

transfer through this layer becomes less than the rate

at which heat is added at the surface.

Figure 102 shows the behavior of temperature fluctu-
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ations at various locations along the strip. The amplitude
of temperature fluctuations near the surface decreases
as the distance from the leading edge is increased.
This trend is shown in Figure 103 where (T, x - Tmn )
at Yy = 0.01 in, is plotted against the distance
from the leading edge.
5. Surface Temperature Measurements

Several attemps were made to measure the adiabatic
surface temperature of the strip. The first attempt
was to weld the thermocouple wires to the adiahatic
surface of the strip. Because it was difficult to weld
the two thermocouple wires on an equipotential line,
considerable D.C. voltage was picked up. The "Visicorder"
was used to calibrate this D.C. pick-up and it was found
that it is of the same order of magnitude as the thermal
emf. Therefore, to make accurate surface temperature
measurements, extremely accurate calibration of the D.C.
voltage was necessary.

Because of the presence of liquid next to the
adiabatic side of the strip, it is expected that local
boiling does take place whenever the adiabatic surface
temperature reaches saturation. The boiling of the liquid
around the hot junction influenced the indicated thermo-
couple temperature, resulting in severe fluctuations of

emf,
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Fluid Temperature Fluctuation Profiles
at Various Locations Along Heated Surface
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In a second attempt to measure the surface temperature,

the D.C. voltage pick-up was eliminated by electrically
insulating the hot junction with a thin (0.002") mica
sheet. Because of poor mechanical contact hetween the
hot junction and the heated surface, the thermocouple
gave low surface temperature readings. 1In several
tests during boiling the recorded surface temperature
did not exceed saturation temperature.

In a third method, to obtain a good mechanical
contact between the hot junction and the strip, a 1/16"
0.D. thermocouple probe, with the hot junctibn welded
intégrally with the sheath ('Aeropack'" - Design No. T-14,
junction No. 8), was used. The probe was forced against
the strip surface by means of a spring mounted outside
the test section. D.C. pick-up was eliminated by
insulating the hof junction with a 0.002" mica sheet.
Test during boiling showed that theirecorded surface
temperature did not exceed saturatibn temperature.

Because of the various difficulties experienced in
attempting to measure the surface temperature no satis-
factory data was obtained and these measurements were

abandoned.



CHAPTER VI
CONCLUSIONS

1. Within the range of variables investigated the
assumption that nucleation takes place when the surface
temperature is equal to saturation temperature appears to
be reasonable for the purpose of correlating experimental
data on incipient boiling.

2. For the same velocity and subcooling, the
pressure does not appreciably affect the relationship
between incipient heat flux and incipient distance.

3. High speed movies (7500 frames per second)

showed that bubbles move along the heated surface and
that they are seldom detached from the surface.

4, No systematic relation exists between pressure
and the bubble boundary layer thickness. It does not
always follow that the thickness decreases with
increasing pressure for the same velocity, subcooling,
and heat flux.

5. The bubble boundary layer thickness increases
with increasing distance from the leading edge. The
increase in bubble boundary layer thickness is primarily
the result of an increase in bubble size. Furthermore,
since the bubble boundary layer thickness at a given point
along the strip is determined by the size of an

individual bubble at that location, it follows that

-154-
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correlation equation (12) or (13) may be used to predict

bubble size.

6. The mean temperature at the single-phase core-
bubble houndary interface approaches inlet temperature
as the heat flux is increased towards burnout.

7. It is speculated that as burnout heat flux is
approached a stagnant layer of superheated vapor is
formed over the heated surface. This layer is character-
ized by small temperature fluctuations and consequently
by a decrease in the rate of heat transfer. Burnout
takes place when the rate of heat transfer through

this layer becomes less than the rate at which heat is
generated within the surface.

8. The amplitude of temperature fluctuations near
the heated surface decreases as the distance from the
leading edge is increased.

9. A simplified model for forced convection boiling
is one in which the flow regime is divided into two
regions; a single-phase core,which is at the inlet

temperature, and a two phase bubble boundary layer region.



APPENDIX A

ESTIMATION OF ERRORS

A. Introduction

Since uncertainties in experimental measurements
propagate into the results, it is essential to estimate
the extent to which these uncertainties affect the
accuracy of the results. The method used to determine
the uncertainties in the results is outlined by Kline
and McClintock (71) and is briefly discussed here.

If the result R is a linear function of n independent
variables, then the uncertainty interval, Wp, of the result
is related to the uncertainty interval of the variables,

W,, according to the following equation

L
2

where V., is the independent variable. Each variable

is described by the mean of the readings M, and an un-
certainty interval based on certain odds. This may

he expressed as Mp + W, . A 'confidence 1limit" is placed
on the value of M, which is based on specific odds that
the true value of M, lies within My + W,. A 95% con-
fidence 1imit means that the oddé are 19:1 that the

true value of Mp lies within My + W,. To estimate the

-156-
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uncertainties in the results it is necessary to specify

the uncertainty, W,, of each measured variable.

B. Uncertainties in Measurements
1. Thermocouple Calibration

Since all thermocouples were made from the same
spools of wire only one was calibrated by the manufacturer.
This calibration showed an average deviation from standard
calibration tables of 0.23 per cent. A calibration check
was made for all traversing thermocouples at the steam
pqint which agreed to within 0.6 per cent with the manu-
facturer calibration.

2. Visicorder
a. Calibhration
A precision potentiometer (L & N No. 8662)

was used to calihrate the galvanometer deflection vs.
applied emf. All galvanometers were found to be linear
to within 2 per cent over a deflection range of four
inches.

b. Steady state deflection measurements

Galvanometer deflections are traced on the

""Wisicorder' paper and can be measured to within 0.015
inch. Since this error is constant, it follows that the
per cent error decreases with increasing deflections.
Since in all tests the galvanometers were "“ucked hy

a constant voltage which corresponds to the inlet thermo-
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couple emf and since this represents approximately a
deflection of 3.5 inchés at the lowest inlet temperature,

it follows that the maximum error in deflection measurements
is approximately 0.43 per cent.

c. Maximum and minimum deflections due to
temperature fluctuations

Temperature fluctuations in the turbulent
boundary layer as well as in the bubble bhoundary layer
were recorded by the "Visicorder' as fluctuations in
galvanometer deflection. Maximum and minimum deflection
levels were observed in all such traces as shown in
Figure 94. Since these two deflection levels were not,
in general, clearly defined limits some error was in-
volved in specifying the maximum and minimum deflections.
This error is estimated to be 0.10"; Since in all tests
the galvanometers were bucked by a constant voltage which
corresponds to the inlet thermocouple emf and since for
a typical test this represents approximately 8 inches
of galvanometer deflection it follows that a typical per
cent error in estimating the minimum deflection level
is 1;25 and the corresponding error in the maximum
deflection level is 1.0 per cent.

3. Potentiometer
a. Sensitive Scale
The L & N No. 8662 potentiometer can be read

to within + 0.005 mv on the low range scale. When used
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to measure thermocouple emf this uncertainty corresponds
to 0.1 per cent at the lowest recorded temperature.

b. Damped signal

Because of temperature fluctuations within

the thermal boundary layer and the bubble boundary layer
it was found necessary to damp out these fluctuations
whenever it was desired to obtain a mean reading. A
resistor was added in series with the thermocouple circuit
which damped out some of the fluctuations but reduced
the potentiometer sensitivity. The error due to this
is estimated to be + 0.03 mv. For a typical reading
of 8 mv this corresponds to 0.37 per cent.

c. Fluctuating signal

At high amplitudes of temperature fluctuations
it was not possible to completely damp out the thermo-
cbuple fluctuating signal. This caused the potentiometer
balancing needle to oscillate and made it necessary to
estimate the mean value of the oscillating emf. The
uncertainty involved in this is estimated to be + 0.08 mv.
For a typical reading of 8 mv the per cent error is 1.0.
4, Current

The potentiometer was used to measure shunt
voltage and the current waé then calculated from this
measurement. A typical error in such a measurement is

0.2 per cent.



-160-

5. Voltage
The voltage was reduced by a factor of 2000 and
the potentiometer was used to measure this reduced
voltage. A typical error in such a measurement is 0.1
per cent. However, the calculated voltage has a greater
uncertainty because the bridge resistors which were used
to reduce the voltage are accurate to within + 1%.
6. Flowmeter Calibration
The turbine type flowmeter used was calibrated
for water at room temperature by the manufacturer. The
calibration was checked with a weigh tank at water
temperatures up to 160°F, This check agreed to within
0.7 per cent with the manufacturer's calibration.
7. Pressure
The Heise pressure gage, as calibrated by the
manufacturer, is accurate to within + 1.5 psi anywhere
on the scale. The per cent error for a typical pressure
of 500 psig is 0.3.
8. Bubble Boundary Thickness Measurement
Two sources of errors are involved in specifying
the bubble boundary layer; (1) the inconsistency in
drawing a best fit curve which describes the bubble
boundary layer and, (2) error in scaling the bubble
boundary layer thickness. To estimate the first error,

a typical eniarged trace of the bubble boundary was
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selected and a flexible plastic spline was used to
describe the bubble boundary layer. Twenty five measure-
ments of the bubhble houndary layer thickness were made at
three different locations along the strip. Each measure-
ment was hased on an independent spline fit of the bubble
boundary layer. The deviation from the mean bubhle
boundary thickness for all three locations was found to
be approximately 3.8%.

An error of + 0.015 in. is involved in scaling
the bubhle houndary layer thickness. This error 1is
constant, however, the per cent error decreases with
increasing bubble boundary layer thickness. For a
typical thickness of 0.5 inch, measured on an enlarged
trace, the per cent error is 3.0.

Typical uncertainty intervals for various measured

quantities are summarized in Table 1IV.

C. Uncertainty in Experimental Results
Uncertainty intervals for the experimental results
were calculated for 95 per cent confidence 1imit by
using Equation (14 and the appropriate uncertainties
in measurements,
In determining the uncertainty interval for the
heat flux it was assumed that all the energy dissipated

in the strip is transferred to the liquid. Actually



Mj
Measurement Units
value
1. Thermocouple Mv 7
calibration
2. "Visicorder" Mv/in 2.0
Calibration
3. "Wisicorder"
deflection
a) Steady in 3.0
state
b) Maximum in 10
deflection
level
c) Minimum in 8
deflection
level
4, Potentiometer
a) Sensitive Mv 5
scale
b) Damped Mv 8
c) Fluctuating Mv 8
5. Current Mv 2.5
6. Voltage Mv 5.0
7. Flowmeter cts/gal 75
8. Pressure psig 500
9. Bubble bound- 1in 0.79
ary layer
thickness
(enlarged)

TABLE IV

UNCERTAINTY INTERVALS OF MEASUREMENTS

Typical mean Typical uncert-
ainty interval
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some energy is lost to the surroundings by conduction
and convection from the test section. Because of the
complicated geometry of the test section it is difficult
to accurately estimate the heat loss to the surroundings.
However, based on simplifying assumptions this loss 1is
estimated at 2 per cent for a typical test.

Typical uncertainty intervals for the experimental

results are listed in Table V.

TABLE V

TYPICAL UNCERTAINTY INTERVALS FOR
EXPERIMENTAL RESULTS

Results Uncertainty Interval
per cent
1. 1Inlet temperature 0.3
2. '"Mean'" temperature 1.0
3. "Minimum" temperature 1.6
4, "“Maximum't temperature 1.4
5. Saturation temperature 0.1
6. Inlet pressure 0.3
7. 1Inlet velocity 2.1
8. Heat flux 1.7
9. Bubble boundary layer 3.8

thickness



APPENDIX B

PHOTOGRAPHS SHOWING NUCLEATION OF BUBBLES
AND THE FORMATION AND DEVELOPMENT OF
THE BUBBLE BOUNDARY LAYER IN FORCED
CONVECTION FLOW OVER A HEATED PLATE
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