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CHAPTER 1

Introduction

This dissertation deals with problems in reliability and lifetime data analysis. The

first part focuses on the study of graphical estimators from probability plots with

right censored data. The second part deals with reliability inference for repairable

systems.

Part I: Probability plots are popular graphical tools for assessing parametric dis-

tributional assumptions among reliability engineers and other practitioners. They

are particularly well suited for location-scale families or those that can be trans-

formed to such families. When the plot indicates a reasonable conformity to the

assumed family, it is common to estimate the underlying location and scale para-

meters by fitting a line through the plot. This quick-and-easy method is especially

useful with censored data. Indeed, the current version of a popular statistical soft-

ware package uses this as the default estimation method. Part I of the dissertation

investigates the properties of graphical estimators with multiply right-censored data

and compares their performance to maximum likelihood estimators. Large-sample

results on consistency, asymptotic normality, and asymptotic variance expressions

are obtained. Small-sample properties are studied through simulation for selected

distributions and censoring patterns. The results presented in this study extend the

work of Nair (1984) to right-censored data.

Part II: Analysis of failure data arising from repairable systems has received con-
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siderable attention in the statistical, engineering, computer software, and medical

literature. Data pertaining to a repairable system is viewed as some type of ‘recur-

rent event’. Part II of the dissertation investigates some models and methodologies

for analyzing failures from repairable systems with multiple failure modes. We con-

sider the case where the cause-specific failures (from each failure mode) follow some

counting processes with an emphasis on nonhomogeneous Poisson processes (NH-

PPs). Some properties of the data are characterized and estimation methods are

studied, both from a single system and multiple systems assuming independence of

the failure modes. Some results are also developed when there is partial masking of

the failure modes. The NHPP case with a power law intensity function is studied in

detail.



CHAPTER 2

Graphical Estimators from Probability Plots with Right
Censored Data

2.1 Introduction

The quantile-quantile (Q-Q) plot, often called probability plot, is a very useful

graphical tool for assessing distributional assumptions, viz., whether a set of data

can be modeled adequately by a hypothesized parametric family. We start with the

simple case of uncensored data. Let Xi, i = 1, . . . , N be iid observations from a

distribution F (x). We will restrict attention in the paper to location-scale families

or those which can be transformed to location-scale families such as the Weibull and

lognormal. So, F (x; µ, σ) = F0(
x−µ

σ
) for unknown location parameter µ and scale

parameter σ > 0. For ease of exposition, we shall henceforth suppress the parameters

µ, σ while describing either F (·) or F0(·).

Define Y1N < . . . < YNN to be the order statistics (sample quantiles) of the data.

Let piN = (i − .5)/N, i = 1, . . . , N , and FiN = F−1
0 (piN). Then, F1N < F2N <

. . . < FNN are (approximately) the ordered theoretical quantiles of the baseline

hypothesized distribution F0(·). If the model is true, then YiN ≈ µ + σFiN . Hence,

if we plot the sample quantiles against the theoretical quantiles, the data should fall

roughly on a line with slope σ and intercept µ.

If the plot looks linear (indicating that hypothesized model is reasonable), a quick-

and-easy method of graphical estimation is to fit a line to the data (typically a least-

3



4

squares (LS) regression line) and use the slope and intercept to estimate σ and µ.

The estimators of scale and location from the ordinary LS (or OLS) line can be

written as

σ̂ =
1
N

∑N
i=1(FiN − F̄ )(YiN − Ȳ )

S2
F

(2.1)

and

µ̂ = Ȳ − σ̂F̄ ,(2.2)

where F̄ =
∑N

i=1 FiN/N , Ȳ =
∑N

i=1 YiN/N and S2
F =

∑N
i=1(FiN − F̄ )2/N .

Although these estimators are generally viewed as inefficient compared to maxi-

mum likelihood estimators (MLEs), they are still popular among reliability engineers

primarily due to their ease of computation. [In fact, version 15.0 of Minitab uses

the graphical estimators from Q-Q plots as the default option for parametric esti-

mation with Weibull and lognormal distributions.] Practitioners sometimes also use

the standard errors from a regression package to obtain the standard errors of these

graphical estimators. This is of course inappropriate as the data (the order statistics)

are neither independent nor identically distributed

The use of probability plotting extends in a natural way to situations with cen-

sored data. With multiple right censoring, the Kaplan-Meier (K-M) or product-limit

(PL) estimator provides a basis for the plotting positions. Situations with more

complicated censoring can also be handled using the nonparametric MLE of the un-

derlying distribution function (DF). However, we will restrict attention to multiple

right censoring.

As we shall see, there are at least two different ways of generalizing the OLS esti-

mator in the uncensored case to censored situations. We consider general weighted

least-squares (WLS) estimators that include both of these as special cases. We use

the asymptotic properties of the weighted quantile processes of the K-M estimator

to obtain the limiting distributions of these estimators. We show that the behavior
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of the estimators from the Q-Q plots is equivalent, up to op(N
−1/2), to the esti-

mators obtained as weighted sample mean and standard deviations of the subset of

uncensored observations. The finite sample properties of the estimators are studied

through an extensive simulation study for the Weibull, lognormal, and log-logistic

distributions under various censoring schemes and intensities.

Expressions for standard errors of the graphical estimators in the uncensored case

are given in Nair (1984). Those for censored data are quite complicated (See Section

2.3). Version 15.0 of Minitab uses variances of the MLEs to incorrectly estimate the

variance and covariances of these graphical estimators.

This chapter is organized as follows. Section 2.2 describes the graphical estimators

from the Q-Q plot with censored data. Section 2.3 summarizes previous results in the

literature for the uncensored cases, discusses the large-sample results, and compares

the asymptotic relative efficiencies of OLS estimators compared to MLEs. Section

2.4 summarizes findings on finite-sample behavior from an extensive simulation study.

2.2 Location-Scale Estimation with Multiple Right Censoring

Let (Y 0
i , Ci) be the underlying failure and censoring times for the i−th unit, for

i = 1, . . . , N . These are assumed to be iid from the cumulative distribution functions

(CDFs) F (·) and G(·) respectively. We will assume throughout that the failure and

censoring times are independent. Further, both F (·) and G(·) are assumed to be

continuous and differentiable with densities that are strictly positive.

We observe Y ¦
i =min{Y 0

i , Ci} and the indicator variable δi which equals 1 or 0

as Y 0
i ≤ Ci or Y 0

i > Ci. The censoring rate (θ) is defined as Pr(Y 0 > C). By

independence, the Y ¦
i ’s are iid with survival function (SF): 1−H(·) = (1−F (·))(1−

G(·)). Throughout, let Y ¦
1N < . . . < Y ¦

NN be the ordered data, and define δiN as the

δi’s corresponding to these ordered Y ¦
iN ’s. Further, we use the notation Y1M , . . . , YMM
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to define the ordered uncensored observations, i.e., ordered subset of the Y ¦
i ’s with

δi = 1, i = 1, . . . , N .

Define

(2.3) kj =
∑

{i :Y ¦iN<YjM}
(1− δiN)

to be the number of censored observations that are less than YjM . Then, the K-M

or PL estimator F̂N of F can be written as

F̂N(y) = 1−
i∏

j=1

(
1− 1

N − kj − j + 1

)
, Yi−1 M < y ≤ YiM .(2.4)

We can use the K-M estimator to get the plotting positions for the Q-Q plot as

piM =
(
F̂N(YiM) + F̂N(Yi−1 M)

)
/2

(see Meeker and Escobar 1998). One can use other plotting positions, but this choice

reduces to the commonly used choice of i−.5
N

in the uncensored case. Throughout this

chapter, we let

XiM = F−1
0 (piM).

The Q-Q plot with right-censored data is then a plot of {XiM , YiM}, 1 ≤ i ≤ M .

Figure 2.1 is a Weibull Q-Q plot of the shock absorber data in Meeker and Escobar

(1998, page 630). There were two competing failure modes in this example, and

Figure 2.1 is based on failure data for failure mode M1. The (random) failure times

of mode M2 induces right censoring for M1. The plot suggests that the Weibull model

is a reasonable fit, so the next step is estimation of the Weibull (or the corresponding

smallest extreme-value) parameters. The default method in Minitab Version 15.0 is

graphical estimation obtained by fitting an ordinary least-squares line through the

plot (see Minitab output in Figure 1). We will revisit this example later in this

chapter.
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Figure 2.1: Weibull probability plot and fitted line for shock absorber data with failure mode M1
(see Meeker and Escobar 1998, page 630). The line corresponds to OLS estimators.

We will consider a general class of graphical estimators obtained from the slope

and intercept of lines that minimize the weighted sum of squared deviations

M∑
i=1

wiM(YiM − µ− σXiM)2(2.5)

with nonnegative weights wiM , 1 ≤ i ≤ M , where
∑N

i=1 wiM = 1. We will allow for

random weights as well.

We need some additional notations. Define

Ȳw =
∑M

i=1 wiMYiM , S2
Y,w =

∑M
i=1 wiM(YiM − Ȳw)2,(2.6)

X̄w =
∑M

i=1 wiMXiM , S2
X,w =

∑M
i=1 wiM(XiM − X̄w)2

to be the weighted means and variances. Then, the WLS estimators (graphical

estimators) of location and scale that minimize (2.5) are given by

σ̂w =

∑M
i=1 wiM(XiM − X̄w)(YiM − Ȳw)

S2
X,w

(2.7)

and

µ̂w = Ȳw − σ̂wX̄w.(2.8)

The most common choice is wiM = 1/M . This corresponds to the line shown on
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Figure 2.1 for the shock absorber data set. The corresponding Weibull parameters

(for the log-location-scale Weibull distribution) are indicated on the plot.

However, there is another estimator that can also be considered a generalization

to the censored case. To see this, denote the theoretical quantile function of the

baseline CDF by F−1
0 (t) = inf{y : F0(y) ≥ t}, and the K-M quantile function by

F̂−1
N (t) = inf{y : F̂N(y) ≥ t}. Then, in situations with no censoring, minimizing (2.5)

with constant weights is equivalent (asymptotically) to minimizing the “integral”

version

(2.9)

∫ (
F̂−1

N (t)− µ− σF−1
0 (t)

)2

dF̂N(t).

This is so because the empirical CDF has constant jumps of 1/N in the uncensored

case. But under right censoring, the K-M estimator has jumps ∆iM = F̂N(YiM) −

F̂N(Yi−1 M). So the use of constant weights in (2.9) leads to random weights wiM =

∆iM/F̂N(YMM) in the discrete version in (2.5). Thus, there are two ways of gen-

eralizing the OLS estimator in the uncensored case, depending on whether we use

constant weights in (2.5) or in (2.9). We will consider both of these. The former

will be referred to as OLS (wiM = 1/M) and the latter (wiM ∝ ∆iM) as modified

LS (MLS) in this chapter. However, we will focus for the most part on the OLS

estimators. The large-sample results in the paper will be developed for general WLS

estimators and will include both of these as special cases.

2.3 Theoretical Results

2.3.1 Review of the Uncensored Case

The properties of the estimators from probability plots have been studied in the

uncensored case by several authors (see Lloyd 1952, Downton 1954, Blom 1958, Ali

and Chan 1964, and Nair 1984). Relevant results from Nair (1984) and references

therein are summarized below.
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1. If the underlying location-scale family is symmetric, we get X̄w = 0 for any

symmetric set of weights wiN ’s. In this case, µ̂w = Ȳw; in particular, for the

OLS case with equal weights, µ̂w is just the sample mean.

2. The situation with the scale estimator is more interesting. For the symmetric

case, σ̂w is proportional to
∑N

i=1 wiNFiNYiN . This is an L-estimator (linear-

combination of order statistics) of scale.

3. If the underlying distribution is normal, the OLS estimator of location is just

the sample mean. The graphical estimator of scale is equal (essentially) to

∑N
i=1 Φ−1( i−.5

N
)YiN where Φ−1(·) is standard normal quantile function (the de-

nominator is close to 1). This is the optimal L-estimator of scale (Chernoff,

Gastwirth, and Johns 1967). The results in Nair (1984) show that this L-

estimator is equivalent to the sample standard deviation up to order op(N
−1/2).

4. The following more general result was established in Nair (1984). Recall the

estimators S2
Y,w and S2

X,w defined in (2.6). The difference |σ̂w −SY,w/SX,w| goes

to zero at the rate N−1/2. So the difference between the graphical estimator of

scale and the weighted, normalized sample standard deviation is asymptotically

very small. In particular, the large-sample distributions of the two estimators of

scale are the same for all WLS estimators with their weight functions satisfying

Condition 5 and 8 in Nair (1984).

5. Hence, the graphical estimators of scale and location are as good (or as bad)

as the weighted, normalized standard deviation SY,w and weighted and centered

mean Ȳw, respectively. In particular, the graphical estimators are efficient in

the normal case because they are equivalent to the sample mean and standard

deviation which are the MLEs. But in other cases such as the logistic or smallest-

extreme value, they are as (in)efficient as the sample mean and SD.

6. The focus in this chapter is on multiple right censoring. Two-sided trimmed and
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Winsorized estimators were studied in Nair (1984). One-sided right trimming

is equivalent to Type I right censoring.

2.3.2 Large-Sample Results for the Multiply Censored Case

We will summarize the results on asymptotic distributions in this section. The

technical results and proofs are deferred to Section 2.7 Before turning to formal

statements of results, we provide an intuitive discussion.

Recall that if the hypothesized location-scale model holds, YiM = µ + σXiM+

error, where XiM = F−1
0 (piM) for i = 1, . . . , M . Substituting YiM = µ + σXiM into

the expressions for the estimators in equations (2.7) and (2.8) and simplifying, we can

see that E(σ̂w) ≈ σ and E(µ̂w) ≈ µ, suggesting that the WLS graphical estimators

will be consistent. This is formalized in Theorem 2.2 under suitable conditions.

To state the results formally, we will need to specify the conditions on the dis-

tributions and weight functions. These are stronger than we need but they are easy

to state and verify in this form. Besides, they are satisfied for the two classes of

estimators considered in the paper. First, define WN(t) as follows.

(2.10)

WN(t) =





wiM/∆iM , if F̂N(Yi−1 M) < t ≤ F̂N(YiM) ∧ F̂N(T ) (i = 1, . . . , M)

0, if F̂N(YMM) ∧ F̂N(T ) < t ≤ 1

Conditions:

1. The location-scale family F0(y) has a density that is continuous and strictly

positive on (−∞,∞).

2. The CDF F0(y) has a finite absolute moment of order ν for some ν ≥ 4.

3. WN(t) →a.s. W (t) where W (t) is continuous a.e. for t ∈ (0, 1) with |W (t)| ≤ L

for some constant L.
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Theorem 2.1 below studies the relationship between the graphical scale estima-

tor and the corresponding estimator SY,w/SX,w based on the normalized weighted

standard deviation of the Kaplan-Meier quantiles. It turns out that the differences

between these two estimators are very small and hence they have very similar be-

havior. The latter estimator can also be computed easily and is thus an alternative

method of doing quick-and-easy estimation. However, the graphical estimators are

more robust as they involve only linear functions of the order statistics and not their

squared terms.

Theorem 2.1. Under Conditions 1-3, N1/2[σ̂w−SY,w/SX,w] converges in probability

to zero as N →∞.

The formal proof is deferred to Section 2.7, but we provide here a remark about the

consequences of this finding. Consider the weighted correlation coefficient between

{XiM} and {YiM} in the Q-Q plot

Rw =
M∑
i=1

wiM(YiM − Ȳw)(XiM − X̄w)/SY,wSX,w.(2.11)

From (2.7) and (2.11), we can rewrite the graphical WLS estimator of scale as

σ̂w = RwSY,w/SX,w.(2.12)

It turns out that N1/2(Rw − 1) converges to zero in probability , and so the dif-

ference |SY,w/SX,w − σ̂w| = (Rw − 1)SY,w/SX,w converges in probability to zero at

rate op(N
−1/2). This result implies, in particular, that the scale estimator from the

Q-Q plot σ̂w = RwSY,w/SX,w and the normalized, ratio of weighted sample standard

deviations SY,w/SX,w have the same limiting distribution. But Theorem 2.1 gives us

more, the differences in the two classes of estimators are small, so they should be

close to each other even in moderate samples.

Theorem 2.2 below establishes that the WLS graphical estimators are consistent

and asymptotically normal and obtains explicit expressions for the asymptotic vari-

ance of the estimators. This is true only if the hypothesized parametric model holds.
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Theorem 2.2. Under Conditions 1-3, N1/2[(µ̂w − µ), (σ̂w − σ)]T has a limiting bi-

variate normal distribution with mean 0 and covariance matrix V with elements

V11 = σ2(λ11 + m2
1λ22/4−m1λ12)(2.13)

V12 = σ2(λ12 −m1λ22/2)/2

V22 = σ2λ22/4

where the λij’s are given by equation (2.18) and the m1 is given in Lemma 2.2 (see

Section 2.7).

The OLS estimators with censored data correspond to wiM = 1/M and the MLS

estimators to wiM = ∆iM/F̂N(YMM). Both of these satisfy Conditions 1-3.

In the uncensored case, the graphical estimators satisfy the usual location-scale

invariance/equivariance properties. With censoring, however, these properties no

longer hold. This is also true for MLE and other methods of estimation with complex

censoring. It can, however, be shown that the invariance/equivariance properties

continue to hold if the censoring distribution also belongs to the same location-scale

family and the censoring proportion is held constant.

Theorem 2.2 provides expressions for the asymptotic variance-covariance matrix

of the estimators later in this section. However, these are rather involved and must

be evaluated numerically. In practice, it would be simpler to use the bootstrap

resampling technique to estimate the variances and also obtain confidence intervals.

The use of bootstrap with multiple censored data has been discussed extensively in

the literature (Efron and Tibshirani 1993, Efron 1981, and Burr 1994), so we consider

only some of the relevant details here and the full details are discussed in Section

2.5. It is reasonable to use the parametric bootstrap for the distribution of interest

since the parameterization and the estimation problem make sense only under the

model. The censoring distribution G, however, is a nuisance parameter and can be

estimated parametrically or nonparametrically. If there is a low degree of censoring in
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the original problem, the censoring distribution suffers from high censoring and may

not be estimable in the right tails. In such cases, one has to resort to a parametric

model. Of course, this requires knowledge of the model, either from prior information

or through graphical methods such as the Q-Q plot of the K-M estimator of G. Of

course, with high censoring, the Q-Q plot will have limited information on the right

tail and the model selection will be driven by the lower-end of the distributions. This

is a practical difficulty in any situation.

2.3.3 Shock Absorber Data Revisited

Consider again the shock absorber data from Meeker and Escobar (1998) discussed

earlier. Figure 1 also gives the OLS estimators of the Weibull parameters from

Minitab: scale = η̂ = 34, 250.9 and shape = β̂ = 2.591. The corresponding estimates

of location and scale for the smallest-extreme value distribution are: µ̂OLS = log(η̂) =

10.44 and σ̂OLS = 1/β̂ = 0.386 (see Table 2.1). For comparison, the MLEs are also

given in the table.

The more relevant issue for our purpose is computation of standard errors (SEs)

and using it for inference. Table 2.1 gives SEs of the MLE using the information

matrix and of the OLS estimators using bootstrap. The OLS estimators have slightly

larger variability, as to be expected. The relative efficiencies are studied in the next

section. The table also shows two other incorrect estimates of the SEs of OLS

estimators that are sometimes used. Regression refers to the naive use of SEs from

a regression package as done by some reliability practitioners. This ignores the

correlation and unequal variances of the order statistics. In this data set, it grossly

underestimates the variability. Minitab refers to the output from Minitab Version

15.0. Our understanding is that this is obtained using the information matrix and

plugging in the OLS estimators for the unknown parameters. This measures the SE

of the MLE rather than OLS and hence is incorrect. These values would normally



14

Table 2.1: Comparison of estimates and standard errors for the shock absorber data
Parameter Method Estimate ŜE

σ MLE 0.296 0.084
σ OLS 0.363 Bootstrap: 0.096

Regression: 0.025
Minitab: 0.161

µ MLE 10.35 0.148
µ OLS 10.46 Bootstrap: 0.171

Regression: 0.059
Minitab: 0.243

be closer to the SEs for the MLE. To check this, we used 500 bootstrap samples and

computed the 500 SEs. The median of these values were very close to the SEs for

the MLEs in Table 2.1.

2.3.4 Asymptotic Relative Efficiency

Table 2.2 gives the asymptotic relative efficiencies (AREs) of the OLS estimators

of location and scale (compared to MLEs) for various (log)location-scale distribu-

tions and censoring schemes. Table 2.3 gives the corresponding AREs for various

quantiles (design life in reliability terminology). These were based on the asymp-

totic variances of the OLS and ML estimators for various failure-time and censoring

DF’s and censoring rates. The asymptotic variances were computed by numerical

integration using the expression from Theorem 2.2, and were evaluated by using

function dblquad() in Matlab 7.0.

There are several relevant conclusions from Table 2.2. The results for θ = 0 (the

uncensored case) are consistent with those in Nair (1984). In particular, the OLS

estimators are asymptotically fully efficient for the lognormal (or equivalently normal

location-scale) case. Even with censoring, the OLS estimators remain quite efficient

for estimating both location and scale estimators. The AREs are very close to 1 when

the censoring distribution is also lognormal. They are lower with uniform censoring

(which has a finite end-point) and decrease as the censoring proportion increases (the

end-point of the uniform distribution gets smaller) but are still close to 90%. For
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Table 2.2: Asymptotic relative efficiencies (AREs) of the OLS estimators. (ARE is defined as the
ratio of asymptotic variance of MLE to that of the OLS estimator.)

ARE
Location Scale

Underlying Distribution Censoring Rate (θ) Censoring Distribution Censoring Distribution
Same Family Uniform Same Family Uniform

Weibull 0.00 0.949 0.949 0.551 0.551
0.25 0.840 0.802 0.552 0.555
0.50 0.667 0.560 0.554 0.547
0.75 0.520 0.434 0.555 0.543

Lognormal 0.00 1.000 1.000 1.000 1.000
0.25 0.997 0.994 0.993 0.970
0.50 0.998 0.955 0.997 0.916
0.75 1.000 0.862 0.999 0.855

Log-logistic 0.00 0.912 0.913 0.911 0.909
0.25 0.967 0.991 0.854 0.765
0.50 0.961 0.847 0.819 0.646
0.75 0.939 0.580 0.814 0.587

the Weibull (which is equivalent to the smallest extreme value location-scale family),

in the case with no censoring, the ARE of the scale estimator remains around 55%.

This is the same as the ARE of the normalized sample variance, and it is known in

the literature that the normalized sample variance is quite inefficient in the smallest

extreme-value distribution. The comparative performance of the location estimator

is more interesting. In the uncensored case, the graphical estimator of location is

a centered version of the usual sample mean and its efficiency is quite good (95%).

But as the censoring proportion increases, its ARE efficiency drops considerably, to

a low of 45-50% with very high censoring (θ = 0.75). As before, uniform censoring

leads to lower AREs than censoring from the same family.

The Weibull and lognormal are the most common parametric distributions among

reliability practitioners; the log-logistic is less common. Nevertheless, it is interesting

to examine another log-location scale family where the underlying location-scale

distribution is symmetric but has heavier tails than the normal. The performance of

the graphical estimators are in between those for the Weibull and lognormal cases.

The AREs with log-logistic censoring are quite high for both location and scale

estimators and closer to the AREs for the lognormal case. The effect of the censoring
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Table 2.3: Asymptotic relative efficiencies (AREs) of the OLS estimators of quantiles Xp (or log of
design life) for selected values of p. The quantiles are in the scale of the location-scale
family (which is the pivot used for log-location-scale distributions).

ARE
Censoring Settings Censoring rate (θ) X0.10 X0.25 X0.50 X0.75 X0.90

Weibull/Weibull 0.00 0.685 0.792 0.951 0.869 0.709
0.25 0.680 0.780 0.883 0.753 0.634
0.50 0.668 0.732 0.726 0.612 0.556
0.75 0.621 0.606 0.544 0.507 0.500

Weibull/uniform. 0.00 0.685 0.792 0.951 0.869 0.709
0.25 0.681 0.774 0.855 0.716 0.609
0.50 0.647 0.678 0.617 0.521 0.493
0.75 0.570 0.514 0.446 0.433 0.441

Logormal/Lognormal 0.00 1.000 1.000 1.000 1.000 1.000
0.25 0.995 0.997 0.996 0.994 0.993
0.50 0.999 0.999 0.998 0.997 0.996
0.75 0.999 1.000 1.000 1.000 1.000

Lognormal/uniform 0.00 1.000 1.000 1.000 1.000 1.000
0.25 0.987 0.994 0.994 0.984 0.977
0.50 0.955 0.965 0.955 0.931 0.920
0.75 0.889 0.885 0.862 0.847 0.844

Log-logistic/log-logistic 0.00 0.912 0.912 0.913 0.912 0.911
0.25 0.887 0.926 0.967 0.945 0.910
0.50 0.873 0.927 0.961 0.911 0.870
0.75 0.875 0.927 0.939 0.892 0.859

Log-logistic/uniform 0.00 0.912 0.912 0.913 0.912 0.911
0.25 0.846 0.924 0.991 0.918 0.845
0.50 0.767 0.854 0.847 0.724 0.670
0.75 0.654 0.640 0.580 0.555 0.554
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distribution seems to play a much bigger role here. With uniform censoring, the

AREs decrease quite a bit more and are less than 60% for θ = 0.75, closer to the

Weibull case.

The location and scale parameters themselves are not of direct interest in reli-

ability applications. The primary goal is to estimate quantities such as design life

(quantiles), survival probabilities, hazard rates, and so on. Table 2.3 shows the AREs

for quantiles in the log-scale, i.e., quantiles of the underlying location-scale family.

These are the pivots used for computing confidence intervals, so it is appropriate

to compute AREs in this scale. The overall conclusions from Table 2.3 are similar

to those from Table 2.2. The graphical estimators do quite well in the lognormal

case, quite poorly in the Weibull case, and are in between in the log-logistic case.

Again, the AREs for uniform censoring are lower (in some cases much lower) than

for censoring from the same family. Note also that the results are not symmetric

in the quantiles (Xp vs X1−p) for the symmetric location-scale families (normal and

logistic). This is due to the different effects of censoring in the left and right tails.

Further, the impact of censoring is greater on larger quantiles; the AREs for smaller

quantiles are generally better.

2.4 Finite-Sample Results

This section examines the finite-sample behavior of both the OLS and MLS es-

timators and compares them with those of the MLE’s through simulation. We also

studied the RSD (ratio of standard deviations, SY /SX , with constant weights 1/M).

But the performance of this estimator was very similar to OLS, so we omit this in

the discussion below.

The design of the simulation study was as follows. We considered sample sizes

N = 25, 50, 75, 100 and 500 for the following failure time and censoring distribution
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combinations: a) Weibull/Weibull, b) Weibull/uniform, c) lognormal/lognormal, d)

lognormal/uniform, e) log-logistic/log-logistic, and f) log-logistic/uniform. The cen-

soring proportions θ were chosen as 0, .25, .50, and .75. For censoring proportion .75,

we did not consider sample size of 25 due to the high probability that all observations

can be censored. The simulation was done in Matlab and the results are based on

simulation samples of size 5, 000.

Throughout, µF and σF of F were set to be 0 and 1. The desired θ, censoring

proportion was determined as follows: (i) if F and G are from the same family, set

σF = σG and choose µG to get the desired θ; (ii) if G is from uniform distribution G ∼

uniform[0, a], choose a to get the desired θ. For example, for lognormal/lognormal

with θ=25%, we let F ∼ lognormal(0, 1) and chose G ∼ lognormal(0.954, 1). For

the lognormal/uniform with θ=25%, we set F ∼ lognormal(0, 1) and chose G ∼

uniform[0, 6.066]. In most scenarios, the values of µG are computed numerically to

satisfy desire θ. However, when F and G are from lognormal distributions with the

same scale parameter σF = σG = σ. Let suppose Y ∼ F and C ∼ G. At fixed θ, by

setting Pr(Y > C) = θ, it can be shown that

µG = µF −
√

2σΦ−1(θ)(2.14)

where Φ−1(·) is a quantile function for standard normal distribution. The result in

(2.14) follows by the fact that log C− log Y ∼ N(µ2−µ1, 2σ
2), hence, Pr(Y > C) =

Pr(log C − log Y < 0) = Φ
(

µF−µG√
2σ

)
≡ θ where Φ(·) is CDF for standard normal.

Similarly, when F and G are from the Weibull distribution with the same shape

parameter βF = βG = β = 1/σ, then the scale parameter of G, ηG = log(µG), can be

written as below,

ηG = ηF

(
1− θ

θ

)1/β

or(2.15)

µG = µF + σ log

(
1− θ

θ

)
.
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By considering, Pr(Y > C) = E[Pr(Y > C|C)] = E[e−(C/ηF )β
] = 1�

ηG
ηF

�β
+1
≡ θ, the

result in (2.15) follows. Below is Table 2.4 listing the values of µG or aG used in the

simulation under different scenarios.

Table 2.4 shows the values of µG or aG used in the simulations under different

scenarios.

Table 2.4: The values of µG or aG for the simulation under different scenarios.
F G from Same Family G from uniform[0, aG]

Lognormal θ = .25 µG=0.954 aG=6.066
.50 0.000 2.403
.75 -0.954 1.045

Weibull θ=.25 µG=1.099 aG=3.921
.50 0.000 1.594
.75 -1.099 0.606

Log-logistic θ = .25 µG=1.633 aG=9.347
.50 0.000 2.513
.75 -1.633 0.734

2.4.1 Relative Efficiency

We now turn to the relative efficiency (RE) of the graphical estimators. RE is

defined as the ratio of the mean squared error (MSE) of MLE to that of the estimator

being compared. The results for the Weibull distributions are given in Figure 2.2 for

location and Figure 2.3 for scale. Figures 2.4 and 2.5 summarize the corresponding

results for lognormal. And Figures 2.6 and 2.7 are for log-logistic.

There are several conclusions to be made overall:

1. The overall conclusion about the OLS estimators is the same as that from the

AREs in the last section: they are quite efficient in the lognormal case even with

censored data, inefficient in the Weibull case, and have reasonable performance

in the log-logistic case. Furthermore, the performance is poorer with uniform

censoring.

2. The MLS estimators are very interesting. They are less efficient than the OLS

for lognormal but much more efficient in the Weibull case! The performance in
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Figure 2.2: Relative efficiencies of OLS and MLS location estimators compared to ML location
estimator for Weibull/Weibull (left) and Weibull/uniform (right) censoring. X-axis is
the sample size in log-scale.
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Figure 2.3: Relative efficiencies of OLS and MLS scale estimators compared to ML scale estimator
for Weibull/Weibull (left) and Weibull/uniform (right) censoring. X-axis is the sample
size in log-scale.
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Figure 2.5: Relative efficiencies of OLS and MLS scale estimators compared to ML scale estimator
for lognormal/lognormal (left) and lognormal/uniform (right) censoring settings. X-axis
is the sample size in log-scale.
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Figure 2.6: Relative efficiencies of OLS and MLS location estimators compared to ML location
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settings. X-axis is the sample size in log-scale.
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the log-logistic case is mixed. Ordinarily, this would merit further investigation

to understand and possibly exploit this feature. However, our goal here is not to

recommend new estimators over the MLEs but just documenting the behavior

of these graphical estimators.

3. All of the curves are decreasing as sample size increases, suggesting that the

small sample relative efficiencies are better than the AREs in the last section.

This is most striking for the MLS estimators (see Figure 2.4 with lognormal

censoring and θ = 0.75). For the OLS estimators, however, most of these differ-

ences are relatively small. For example, for the Weibull OLS scale estimators,

the REs drop from about 0.7 to 0.6.

4. In some cases, the RE is higher than 1, indicating that the graphical estimators

can be more efficient than the MLEs in small samples.

2.5 Use of Bootstrap for Inference

One can do inference (confidence regions or hypothesis tests) using the expres-

sions for the limiting variance-covariance matrix in equation (2.13). However, they

are complicated and must be computed numerically. In addition, the large-sample

approximations may not work well in finite samples. We briefly review the use of the

bootstrap in this section.

The bootstrap is a popular resampling procedure (see Efron and Tibshirani 1993,

Efron 1981, and Burr 1994) that has been used quite effectively in a variety of situ-

ations to provide standard error estimates. There are several ways of bootstrapping

in the presence of censoring. We adopt a version of the method described in Burr

(1994). Recall that that we are interested in (log) location-scale distribution F of

failure times, and the data are censored by variables from unknown censoring distri-

bution G. We observe only (Y ¦
i , δi)’s for i = 1, . . . , N where Y ¦

i = Y 0
i ∧Ci and δi = 1
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if Y ¦
i = Y 0

i or = 0 otherwise.

The following steps can be used to obtain the bootstrap estimates of variance and

confidence intervals:

1. Assume the TTF distribution follows a (log)location-scale family given by F0.

Obtain σ̂w and µ̂w from the Q-Q plot observed as described in (2.7) and (2.8).

This yields a parametric estimate F̂ = F0(
y−µ̂w

σ̂w
).

2. Estimate G by Ĝ. This can be done nonparametrically using a K-M estimator

with (Y ¦
i , 1− δi)’s. If there is a low degree of censoring, however, nonparametric

estimation can be problematic. In this case, we suggest using a parametric

model (based either on prior knowledge or through graphical methods such as

the Q-Q plot, but now using the K-M estimator of G).

3. Draw B bootstrap samples. Specifically for each bootstrap sample, draw Y 0∗
i ’s

from F̂ and C∗
i ’s from Ĝ for i = 1, . . . , N . This leads to “bootstrapped observed

data” (Y ¦∗
i , δ∗i )’s where Y ¦∗

i = Y 0∗
i ∧C∗

i and δ∗i = 1 if Y ¦∗
i = Y 0∗

i , = 0 otherwise.

4. Calculate the WLS location and scale estimators of F from each bootstrap

sample. This leads to (µ̂
∗(j)
w , σ̂

∗(j)
w )’s for j = 1, . . . ,B. Now,compute the stan-

dard error from the bootstrap sample. One can also compute the quantile of

(µ̂
∗(j)
w , σ̂

∗(j)
w )’s to obtain the confidence interval from WLS estimators.

It is reasonable to re-sample variables parametric from F since the entire esti-

mation process is predicated on the model being correct. However, G is a nuisance

parameter, so it is more desirable to estimate G nonparametrically. However, as al-

ready noted, if there is a low degree of censoring, one may not be able to estimate the

right-tails of the censoring distribution well. We have done extensive comparisons

of the use of parametric and nonparametric methods for G. Figures 2.8-2.13 shows

the histograms from the parametric and nonparametric methods have comparable in

shape including variability and center values. This indicates that the results seems
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to be comparable in the most part for parametric and nonparametric bootstrap.

2.6 Summary

We have studied the properties of graphical estimators of location and scale and

corresponding estimators of design life (quantiles) from probability plots with cen-

sored data. The results include large-sample properties and asymptotic variances as

well as finite-sample performance. The relative efficiencies of these estimators, com-

pared to the MLEs, suggest that they do well for lognormal failure-time distributions,

reasonably well for log-logistic distributions, and poorly for Weibull distributions.

The discussion of these graphical estimators suggest a related class of scale estima-

tors based on the ratio of weighted sample standard deviations. Their performances

are essentially the same as the corresponding scale estimators from a weighted least-

squares line fitted to the Q-Q plot. While they are even easier to compute, they are

not as robust.

It is not the goal of this chapter to recommend the use of these quick-and-easy

estimators over the MLEs. Rather, our intention is to shed light on the behavior

of these graphical estimators that appear to be popular among some practitioners.

Some have been using incorrect estimates of standard-errors in conjunction with

these estimators. The results and discussion in this chapter point out these prob-

lems and suggest alternative methods.

2.7 Technical Results and Proofs

The asymptotic distributions of the K-M estimator and the corresponding quantile

process have been studied in the literature. We provide a summary before proceeding

to our results.
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Figure 2.8: Histogram of the
√

N× standard errors and correlation for OLS estimators from the
bootstrap simulation compare to asymptotic value (♦) and its true value (4) for
Weibull/Weibull censoring setting. ‘Parametric’ and ‘Nonparametric’ refer to the as-
sumption made on censoring distribution G.
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Figure 2.9: Histogram of the
√

N× standard errors and correlation for OLS estimators from the
bootstrap simulation compare to asymptotic value (♦) and its true value (4) for
Weibull/uniform censoring setting. ‘Parametric’ and ‘Nonparametric’ refer to the as-
sumption made on censoring distribution G.
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Figure 2.10: Histogram of the
√

N× standard errors and correlation for OLS estimators from the
bootstrap simulation compare to asymptotic value (♦) and its true value (4) for
lognormal/lognormal censoring setting. ‘Parametric’ and ‘Nonparametric’ refer to the
assumption made on censoring distribution G.
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Figure 2.11: Histogram of the
√

N× standard errors and correlation for OLS estimators from the
bootstrap simulation compare to asymptotic value (♦) and its true value (4) for
lognormal/uniform censoring setting. ‘Parametric’ and ‘Nonparametric’ refer to the
assumption made on censoring distribution G.
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Figure 2.12: Histogram of the
√

N× standard errors and correlation for OLS estimators from the
bootstrap simulation compare to asymptotic value (♦) and its true value (4) for log-
logistic/log-logistic censoring setting. ‘Parametric’ and ‘Nonparametric’ refer to the
assumption made on censoring distribution G.
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Figure 2.13: Histogram of the
√

N× standard errors and correlation for OLS estimators from the
bootstrap simulation compare to asymptotic value (♦) and its true value (4) for
log-logistic/uniform censoring setting. ‘Parametric’ and ‘Nonparametric’ refer to the
assumption made on censoring distribution G.



35

We will assume throughout that the data have been transformed if necessary so

that we have an underlying location-scale distribution that is supported on (−∞, ∞).

For technical reasons, we have to restrict the support of the K-M estimator and the

quantile process on the right tail to a finite value T < ∞ such that y ≤ T < H−1(1).

[Recall that (1−H) = (1− F )(1−G).] The practical implication of this is that the

largest order-statistics YiM used in the Q-Q plot will have to be bounded above by

this value of T . It is possible to extend the results to the entire line in special cases,

such as when the censoring distribution also has support on the entire line. But we

will not pursue such technical issues here.

Let 0 < t < 1 and define
√

N(F̂N(F−1(t)) − t) = ZN(t). Then, Breslow and

Crowley (1974) showed that

ZN(t)
D→ Z(t), 0 < t < F (T )

where Z(t) is a Gaussian process with

COV[Z(s), Z(t)] = (1− s)(1− t)B(s ∧ t).

Here s ∧ t = min(s, t) and B(t) =
∫ t

0
[(1− u)2(1−G(F−1(u)))]−1du.

This result has been extended to the whole line under suitable conditions (see, for

example, Gill 1983). The asymptotic behavior of the K-M estimator can be used to

get results about the Kaplan-Meier quantile process.

Fix ε > 0 and let t ∈ (ε,H(T )). Then, it has been shown that (see, for example.

Aly, Csörgő, and Horváth 1985)

√
N(F̂−1

N (t)− F−1(t)) = Z∗
N(t)

D→ Z∗(t), t ∈ (ε,H(T ))

where Z∗ is a Gaussian process with

COV[Z∗(s), Z∗(t)] =
(1− s)(1− t)B(s ∧ t)

f(F−1(s))f(F−1(t))
,

Here the quantile process is restricted to a finite interval on both tails. Relaxing

the right-tail involves rather technical conditions. In addition, the variances of the
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Kaplan-Meier order statistics in the right-tail can become very large under heavy

censoring. So we will keep this restriction. However, we do want to remove small

order statistics (left tail) in fitting the least-squares line to the Q-Q plot. Since we

are interested only in linear combinations of order statistics or (weighted) integrals

of the quantile process, we can let ε → 0 for such integrals under suitable conditions.

We will do this under moment assumptions on F and some mild conditions on the

weights wiM . Required Conditions 1-3 are stated in Section 2.3.2.

2.7.1 Proof of Theorems 2.1 and 2.2

The following lemma is the key result we need to establish Theorems 2.1 and 2.2.

Lemma 2.1. Let µ = 0 and σ = 1 so that YiM(1 ≤ i ≤ M ≤ N) denote the censored

observations from F0. Define

DN =
M∑
i=1

wiM(YiM −XiM)2.(2.16)

Under Conditions 1-3,
√

NDN →P 0 as N →∞.

Proof. Recall that XiM = F−1
0 (piM). We can express (2.16) as

DN =

∫ F (T )

0

WN(t)[F̂−1
N (t)− F−1

0 (t)]2dt + op(N
−1/2).

Define the process QN(t) = F0(F̂
−1
N (t)). This is a censored quantile process for the

uniform distribution. So, we can write

DN =

∫ F (T )

0

WN(t)[F−1
0 (QN(t))− F−1

0 (t)]2dt + op(N
−1/2).(2.17)

From Shorack and Wellner (Theorem 1, page 657, 1986), sup0<t<F (T ) |QN(t)−t| →a.s.

0 as N →∞. This result and Conditions 1-3 can be used to show that the first term
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in (2.17) above is also op(N
−1/2), establishing the result.

Let σ̂RSD,w = SY,w/SX,w be, respectively, the ratio of sample standard deviations

of the observed failures and the corresponding percentiles from the hypothesized

distribution. We can now state the main asymptotic results. Define T1N = (Ȳw −

µ− σX̄w), T2N = (σ̂2
RSD,w − σ2), and TN = (T1N , T2N)T .

Lemma 2.2. Under Conditions 1-3,
√

NTN has a limiting bivariate normal distri-

bution with mean 0 and covariance matrix Λ with elements λ∗ij = σi+jλij where the

λij’s are given by

λij =

∫ F (T )

0

∫ F (T )

0

(1− s)(1− t)B(s ∧ t)W (s)W (t)dH̃i(s)dH̃j(t)(2.18)

with s ∧ t = min(s, t), H̃1(t) = F−1
0 (t), H̃2(t) =

(
F−1

0 (t) − m1

)2
/m2, m1 =

∫ F (T )

0
W (t)F−1

0 (t)dt, and m2 =
∫ F (T )

0
W (t)[F−1

0 (t)−m1]
2dt.

Proof. Suppose F (y) = F0((y − µ)/σ), then Y ∗
iM = (YiM − µ)/σ ∼ F0 and F̂−1

N (t) =

σF̂0
−1

N (t) + µ. Define

(2.19) Z∗
N(t) =

√
N(F̂0

−1

N (t)− F−1
0 (t)).

Then,

√
NT1N = σ

∫ F (T )

0

WN(t)
√

N(F̂0
−1

N (t)− F−1
0 (t))dt + op(1)(2.20)

=

∫ F (T )

0

σW (t)Z∗
N(t)dt + op(1).

Consider now the limiting distribution of T2N . It is easy to show that X̄w →P m1
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and S2
X,w →P m2. After some manipulations, we get

√
NT2N =

√
N [

σ2

S2
Xw

M∑
i=1

wiM(Y ∗
iM − Ȳ ∗

w)2 − σ2](2.21)

=
σ2

S2
X

[
2

∫ F (T )

0

WN(t)(F−1
0 (t)− X̄w)Z∗

N(t)dt + op(1)
]

=

∫ F (T )

0

β(t)Z∗
N(t)dt + op(1),

where β(t) = 2σ2

m2
W (t)(F−1

0 (t)−m1). Using these results, we get

√
NTN →D N







0

0


 ,




σ2λ11 σ3λ12

σ3λ12 σ4λ22







which completes the proof.

We are now ready to prove Theorem 2.1 and 2.2.

Proof of Theorem 2.1.

Again, it suffices to consider the case µ = 0, σ = 1. Let AN =
∑M

i=1 wiM [(YiM− Ȳw)−

(XiM − X̄w)]2. Then

AN = S2
X,w(σ̂2

RSD,w + 1− 2σ̂w)(2.22)

= S2
X,w[(σ̂RSD,w − 1)2 + 2(σ̂RSD,w − σ̂w)].

But AN can also be rewritten as

AN =
M∑
i=1

wiM(YiM −XiM)2 − (Ȳw − X̄w)2.(2.23)

From Lemma 2.1, the first term on the RHS of (2.23) is op(N
−1/2). The second term

is also op(N
−1/2) from Lemma 2.2. Lemma 2.2 further shows that (σ̂RSD,w − 1)2 =

op(N
−1/2). Since S2

X,w →P m2, the result follows in view of (2.22).
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Proof of Theorem 2.2.

By Theorem 2.1, (σ̂RSD,w−σ̂w) is op(N
−1/2). This shows that the limiting distribution

of [µ̂w, σ̂2
w] is the same as that in Lemma 2.2. Now, we can apply Taylor Series to get

the limiting distribution of σ̂w from that of σ̂2
w. The details are straightforward.

2.7.2 Properties of ∆iM

The MLS estimator corresponds to a constant weight function WN(t), so Con-

dition 3 in the last section is satisfied. The OLS estimator, however, corresponds

to WN(t) = 1/∆iM , where ∆iM = F̂N(YiM) − F̂N(Yi−1 M), for i = 1, . . . , M , with

F̂N(Y0M) = 0. So we need to show that this is bounded in order for Condition 3 to

hold. This requires studying the behavior of the Kaplan-Meier jumps ∆iM .

Define UN(t) = [M∆iM ]−1 for F̂N(Yi−1,M) < t ≤ F̂N(YiM)∧ F̂N(T ) (i = 1, . . . , M)

and = 0 for F̂N(YMM) ∧ F̂N(T ) < t ≤ 1. Further, let U(t) = 1
1−θ

(1−G(F−1(t))) for

0 < t < 1.

Lemma 2.3.

a). 1
N
≤ ∆iM = (1− F̂N(Yi−1 M))

(
1

N−ki−i+1

)
≤ 1 for i = 1, . . . , M.

b). UN(t) →P U(t) as N →∞.

c). If YiM < T ,
√

N∆iM →P 0 as N →∞.

Proof.

a). The fact that ∆iM ≤ 1 is obvious. Now,

∆iM = F̂N(YiM)− F̂N(Y(i−1) M)(2.24)

= (1− F̂N(Y(i−1) M))
( 1

N − ki − i + 1

)

=
( 1

N − k1

) i−1∏
j=1

( N − kj − j

N − kj+1 − j

)
.
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Since kj’s form a nondecreasing sequence of nonnegative integers, we must have

∆iM ≥ 1/N .

b). First, recall that H(·) is a CDF of Y ¦(= min{Y 0, C}) and that (1 − H(·)) =

(1 − F (·))(1 − G(·)). If ĤN and ĜN are K-M estimators of H and G , then (1 −

ĤN(Y ¦
iN)) = N−i

N
= (1 − F̂N(Y ¦

iN))(1 − ĜN(Y ¦
iN)). Recall that ki is the number of

censored observations smaller than YiM so YiM = Y ¦
ki+i N and Yi−1 M ≤ Y ¦

ki+i−1 N <

YiM . Now suppose YiM = Y ¦
jN (where j = ki + i). Then F̂N(YiM) = F̂N(Y ¦

jN) >

F̂N(Y ¦
j−1 N) = F̂N(Yi−1 M) since F̂N(·) is a nondecreasing step function with a jump

at Yi−1 M and YiM . ĜN(·) is also a nondecreasing step function, but since it jumps

at the censoring times, so there is no jump at YiM(= Y ¦
ki+i N). Thus, ĜN(YiM) =

ĜN(Y ¦
ki+i−1 N). Hence,

N − ki − i + 1

N
= 1− ĤN(Y ¦

ki+i−1 N)

= (1− F̂N(Y(i−1) M))(1− ĜN(YiM)).

Now, for t such that F̂N(Yi−1 M) < t ≤ F̂N(YiM) for i = 1, . . . , M using the fact that

YiM = F̂−1
N (t), we get

UN(t) = [M(F̂N(YiM)− F̂N(Yi−1 M))]−1

=
( N

M

)(
1− ĜN(YiM)

)

=
( N

M

)(
1− ĜN(F̂−1

N (t))
)

→P 1

1− θ

(
1−G(F−1(t))

)
, as N →∞.

Now rewriting YMM = max{Y ¦
i | δ¦i = 1}, we have YMM →P T = H−1(1) as N →∞.

Hence, UN(t) →P 1
1−θ

(
1 − G(F−1(t))

)
for 0 ≤ t ≤ F (T ). Since (1 − H(·)) =
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Table 2.5: Function U(t) = 1
1−θ

(
1−G(σF−1

0 (t) + µ)
)

under different censoring scenarios.

Censoring Setting U(t)

Weibull/Weibull 1
1−θ (1− t)

θ
1−θ

Weibull/uniform 1
1−θ [(1 + log(1−t)

aθ
) ∨ 0]

Lognormal/lognormal 1
1−θ [1− Φ(Φ−1(t) +

√
2Φ−1(θ))]

Lognormal/uniform 1
1−θ [(1− eΦ−1(t)

bθ
) ∨ 0]

Log-logistic/log-logistic 1
1−θ [1− Φlogis(Φ−1

logis(t)− cθ)]

Log-logistic/uniform 1
1−θ [(1− e

Φ−1
logis

(t)

dθ
∨ 0)]

(1−F (·))(1−G(·)) and H−1(1) = T , min{(1−F (T )) , (1−G(T ))} = 0. If F (T ) < 1

(i.e., (1− F (T )) > 0), then (1−G(T )) = 0 and U(t) = 1
1−θ

(
1−G(F−1(t))

)
= 0 for

F (T ) < t ≤ 1.

Therefore, for F̂N(YMM) < t ≤ 1, UN(t) = 0 →P 0 = U(t) for F (T ) < t ≤ 1 as

N →∞. Hence, UN(t) →P 1
1−θ

(
1−G(F−1(t))

)
= U(t) for 0 ≤ t ≤ 1.

c).
√

N∆iM =
√

N
M

(M∆iM) = 1√
N
· 1

M/N
· 1

UN (t)
. Since UN(t) →P U(t) > 0 for

t ∈ [0, F (T )], the result follows.

For location-scale family of distributions, U(t) = 1
1−θ

(
1−G(σF−1

0 (t)+µ)
)
. Table

2.5 presents expressions for U(t) at different failure/censoring distribution combina-

tions with µ = 0, and σ = 1. In the table, aθ’s are 3.9207, 1.5936, .6059 for θ =

.25, .50, and .75, respectively. Φ(t), and Φ−1(t) are the CDF and inverse CDF of

standard normal distribution. bθ’s are 6.066, 2.403, 1.045 for θ = .25, .50, and .75,

respectively. For the same censoring rates, cθ’s are 1.6325, 0, -1.6325, and dθ’s are

9.3466, 2.5128, 0.7336, respectively. Φlogis(t) and Φ−1
logis(t) are the CDF and quantile

function of standard logistic distribution.



CHAPTER 3

Inference for Repairable Systems under Competing Risks

3.1 Introduction

Analysis of failure data arising from repairable systems has received considerable

attention in the statistical, engineering, computer software, and medical literature

over the past three decades. In many industrial applications, data pertaining to a

repairable system is viewed as some type of recurrent event. Situations in which

individuals or systems experience recurrent events are common in areas such as

manufacturing, risk analysis, and clinical trials.

In reliability applications, one area of interest is in the study of reliability growth,

which can be described as follows. At the initial stage of many production processes

involving complex systems, prototypes are put into life test under a developmen-

tal testing program, corrections or design changes are made at the occurrences of

failures, and the modified system is tested again. As this test-redesign-retest se-

quence contributes to an improvement in the system performance, failures become

increasingly sparse at the later stages of testing making it more difficult to assess the

current reliability, a quantity of utmost importance to reliability engineers. A relia-

bility growth (RG) model provides a structure through which the failure data from

the current as well as previous stages of testing could be analyzed in an integrated

way in order to make efficient inference on system reliability, and other aspects of

the underlying failure process.

42
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In a medical application, the ‘failures’ are translated into times until the oc-

currence of a recurrent event (e.g., appearance of tumor) in individuals. Clinical

experiments typically consist of a fairly large number of individuals observed over a

relatively short period of time. This is also common with databases of manufactured

products generating warranty claims. By contrast, most of the field and bench test

data for demonstrating product reliability consist of a very small number of proto-

types put under test for a fairly long time. The major objective in either situation is

to study the rates of recurrence of the events in question, compare different systems,

assess the effect of explanatory variables, or predict a future event.

This chapter investigates some models and methodologies for analyzing failures

from repairable systems with multiple failure modes. For non-repairable systems,

analysis of failures under multiple failure modes, traditionally studied under the

broad umbrella of ‘competing risks’, is typically undertaken in the framework where

occurrence of a system failure is caused by the earliest onset of any of the component

failures (a series system). In medical applications, often the censoring mechanism

is viewed as a competing risk to the event of interest which could be recurrent or

otherwise. There is a substantial body of research in the area of competing risks

analysis. Instead of referring to individual articles, we cite here a recent book by

Crowder (2001) that provides an excellent overview of models and methodologies

pertaining to failure data subject to competing risks. There is also a great deal of

research within the reliability community on competing risks models where the exact

causes of failure are observed.

In engineering applications, one, however, encounters data where the cause-of-

failure is not completely known (c.f. Reiser, Guttman, Lin, Guess, and Usher 1995;

Reiser, Flehinger, and Conn 1996). In the statistical literature, such data are termed

as masked failure data. Masking is often the manifestation of an attempt to expedite

the process of repair by replacing the entire subset of components responsible for fail-
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ure instead of further investigation towards identifying the specific component which

is the culprit. Failure data with masked cause-of-failure is also common in medical

applications. The sources of failure (death) in a medical context typically refer to

various potential risk factors for a patient observed in a clinical study. Available

applications include patients in a heart transplant study (Greenhouse and Wolfe

1984) and breast cancer patients (Cummings et al. 1986) observed longitudinally

over several years.

While there has been substantial research in competing risks for non-repairable

systems, very little has been done in the area of analyzing failures of systems and

associated components that are subjected to multiple recurrent failure processes.

Majumdar (1993) documents 262 recurrent failure times of a vertical boring machine

spanning a total of 18,285 hours along with the components that are responsible for

the failure. Recently, Langseth and Lindqvist (2006) reported cumulative service

times of a component spanning over 1600 time units, amplifying each failure with

the specific mode causing the failure. The causes were categorized into two broad

groups, with several sub-causes specified under each. Both of these examples deal

with failures of a single system. Lawless et al. (2001) analyze repeated shunt failures

in infants diagnosed with hydrocephalus, where the failures are known to occur due to

a variety of causes. All of these examples clearly demonstrate a need for a systematic

development of methodologies to analyze recurrent failures under competing risks,

which is the focus of this part of the dissertation.

The rest of the chapter is organized as follows. Section 3.2 presents the general

framework for analyzing repairable systems subject to multiple failure modes, and

some key issues. In the context of analyzing failures of a single repairable system,

Section 3.3 discusses statistical inference for a parametric model that extends from a

popular single-failure-mode model. Section 3.4 discuses the results for the multiple

repairable systems under a nonhomogeneous Poisson process (NHPP) framework.
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Section 3.5 discusses an example for a single repairable system case. Section 3.6

discusses the simulation results, section 3.7 summarizes the findings and Section 3.8

discusses possible future research.

3.2 Framework and Results for General Counting Processes

Consider a single repairable system , and let 0 < T1 < T2 < . . . be the (cumulative)

failure times of the system observed until a fixed time (Type-I censoring) or fixed

number of failures (Type-II censoring). Suppose there are J failure modes, and at

the i−th failure time Ti, we also observe δi ∈ {1, . . . , J}, the failure mode indicator

associated with the i−th failure. We can view the sequence (Ti, δi) as observations

of a marked point process. Let N(a, b] denote the number of system failures in

time interval (a, b]. An essential ingredient in describing recurrent failures under

competing risks is the cause-specific intensity associated to failure mode-j is defined

as

λj(t) = lim
h→0

Pr(δ(t) = j, N(t, t + h] ≥ 1)

h
.

The overall system intensity function equals

λ(t) = lim
h→0

Pr(N(t, t + h] ≥ 1)

h
=

∑
j

λj(t).

One can conceptually introduce a counting process Nj with an associated (mar-

ginal) intensity function λ(j), which simply records the failures due to mode-j for

each j = 1, . . . , J . Under that framework, N =
∑

Nj is the process associated with

all the failures and is simply the superposition of Nj’s. It is important to note, how-

ever, that under a competing risks framework, one does not observe the marginals,

and in general λj 6= λ(j). The only exception is the case where the failure modes

can be assumed to act independently of each other. In this case, the cause-specific

quantities match the marginals, and one can carry out inference without having to
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deal with issues of identifiability.

Under some general conditions, the cause-specific intensities completely determine

the likelihood function of the observed data. The following theorem demonstrates

that a special structure of the intensity functions provides a necessary and sufficient

condition for the time and cause of failure to be stochastically independent. Note that

this is simply the repairable system version of an analogous result in Elandt-Johnson

(1976) (see also Kochar and Proschan 1991).

Theorem 3.1. The cumulative failure time and the mode of failure are independent

if and only if λj(t)’s are proportional to each other, or equivalently λj(t) = pjλ(t)

where pj’s are non-negative constants with
∑J

j=1 pj = 1.

Proof. Conditional on the fact that a failure has occurred at time point t, the prob-

ability that the failure is caused by mode-j is given by

pj(t) ≡ lim
h→0

Pr(δ(t) = j|N(t, t + h] ≥ 1)(3.1)

=
limh→0 Pr(δ(t) = j, N(t, t + h] ≥ 1)/h

limh→0 Pr(N(t, t + h] ≥ 1)/h
= λj(t)/λ(t).

The left hand side of the above equation is independent of t if and only if the right

hand side is, establishing that the time and cause of failure are independent if and

only if λj(t)/λ(t) = pj for j = 1, ..., J .

Theorem 3.1 describes the marginal distribution of δ(t). The following theorem

goes further to describe the joint distribution of the cause-specific counting processes

Nj’s. Suppose that the λj’s are proportional to each other, i.e., λj(t) = pjλ(t) as

described in Theorem 3.1. Let T1 < T2 < . . . be the cumulative failure times for the

system, given that N(T ) = n, and let δ1, δ2, . . . be the failure modes corresponding

to Ti’s. For any fixed time T , let Nj(T ) =
∑

i:Ti≤T{δi = j} for j = 1, . . . , J and

X = {N1(T ), N2(T ), . . . , NJ(T )}.
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Theorem 3.2. X|N(T ) = n ∼ Multinomial(n, p1, . . . , pJ) if N(t), the overall sys-

tem counting process, has independent increments and all failure modes are mutually

independent.

Proof. Recall that Nj(T ) =
∑n

i=1 1{δi = j} for j = 1, . . . , J . So it is sufficient to

show that δi’s are iid with Pr(δi = j) ≡ pj for i = 1, . . . , n. Consider the case n = 2.

Pr(δ1 = k, δ2 = l)

= lim
h→0

Pr(δ(T1) = k, δ(T2) = l|N(T1, T1 + h] ≥ 1, N(T2, T2 + h] ≥ 1])

= lim
h→0

Pr(δ(T1) = k, δ(T2) = l, N(T1, T1 + h] ≥ 1, N(T2, T2 + h] ≥ 1)

Pr(N(T1, T1 + h] ≥ 1, N(T2, T2 + h] ≥ 1)

= lim
h→0

Pr(δ(T1) = k,N(T1, T1 + h] ≥ 1)

Pr(N(T1, T1 + h] ≥ 1)
× Pr(δ(T2) = l, N(T2, T2 + h] ≥ 1)

Pr(N(T2, T2 + h] ≥ 1)

= lim
h→0

Pr(δ(T1) = k|N(T1, T1 + h] ≥ 1)× lim
h→0

Pr(δ(T2) = l|N(T2, T2 + h] ≥ 1)

= Pr(δ1 = k)× Pr(δ2 = l)

where the third equality holds when N(t) has independent increments and all failure

modes are mutually independent.

Now since λj’s are proportional, it follows from Theorem 3.1 that Pr(δi = j) = pj

for all i = 1, 2, . . . , n. Therefore, when N(t) has independent increments, it follows

that the δi’s are iid with Pr(δi = j) = pj for j = 1, 2, . . . , J .

3.2.1 Tail Behavior of the Counting Processes and Failures

This section characterizes the tail behavior of Nj(t) as t → ∞ under the simple

condition 3.1 below. To simplify the problem, we consider the counting processes

N1(t) and N2(t) corresponding to failure modes 1 and 2 respectively. Let Λj(t) for

j = 1, 2 be the corresponding cumulative intensity functions, which, under mild
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conditions, match E[Nj(t)]. Throughout, we suppose that the Λj(t)’s are monotone

increasing.

Condition 3.1. Suppose Λj(t) →∞ and Nj(t)/Λj(t) →a.s. 1 as t →∞ for j = 1, 2.

Note that Condition 3.1 does not make any assumption about independent in-

crements or independence among failure modes. An example of a counting process

that satisfies Condition 3.1 is a nonhomogeneous Poisson process (NHPP) with a

cumulative intensity function that grows as a positive power of time.

Lemma 3.1. Under Condition 3.1, Λ(t) →∞ and N(t)/Λ(t) →a.s. 1 as t →∞.

Proof. With N(t) = N1(t) + N2(t), it follows that Λ(t) = E[N(t)] = E[N1(t)] +

E[N2(t)] = Λ1(t) + Λ2(t) →∞ as t →∞. Now we consider below,

N(t)/Λ(t) =
Λ1(t)

Λ(t)
· N1(t)

Λ1(t)
+

Λ2(t)

Λ(t)
· N2(t)

Λ2(t)
.

Since Nj(t)/Λj(t) →a.s. 1 for j = 1, 2 as t →∞, it follows that N(t)/Λ(t) →a.s. 1 as

t →∞.

This result simply states the property of overall counting process under Condition

3.1. One may also be interested in the case where the systems are observed under

failure censoring, i.e., they are observed until the n−th failure with fixed n. Hence,

the observed cumulative failure times are T1 < T2 < . . . < Tn. If Tn is the n−th

failure time, we have N(Tn) = n. Let nj = Nj(Tn) for j = 1, 2 be the number of

cause-specific failures under failure censoring. We have n2 = n− n1. Condition 3.1,

then needs to be replaced by Condition 3.1′.

Condition 3.1′. nj/Λj(Tn) →a.s. 1 as n →∞ for j = 1, 2.

Now we study the limiting rate of nj’s, for failure censoring with n going to infinity,

under two cases of interest: (a) 0 < c ≤ 1 and (b) c = 0, where c = limt→∞
Λ2(t)
Λ1(t)

.
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Not that any c > 1 situation corresponds to one of (a) or (b) if we interchange the

roles of Λ1, Λ2.

Case 1: 0 < c ≤ 1

Theorem 3.3. Suppose Condition 3.1′ is satisfied and limt→∞
Λ2(t)
Λ1(t)

= c with 0 <

c ≤ 1. Then, n1/n →a.s. 1/(1 + c) and n2/n →a.s. c/(1 + c) as n →∞.

Proof. Since limt→∞
Λ1(t)
Λ(t)

= 1/(1+ c), Tn →∞ and nj/Λj(Tn) →a.s. 1 as n →∞ for

j = 1, 2,

n1

n
=

N1(Tn)

Λ1(Tn)
× Λ1(Tn)

Λ(Tn)
× Λ(Tn)

n
→a.s. 1

1 + c
as n →∞.

And similarly,

n2

n
=

N2(tn)

Λ2(tn)
× Λ2(tn)

Λ(tn)
× Λ(tn)

n
→a.s. c

1 + c
as n →∞.

Case 2: c = 0

When c = 0, we have Λ1(t)
Λ(t)

→a.s. 1 and Λ2(t)
Λ(t)

→a.s. 0 as t →∞. This simply implies

that as we observe the system failure for the very long period of time, almost all of

systems failures would be coming from failure mode 1.

On the other hand, it follows from Conditions 3.1 and 3.1′ that n2 still goes to

infinity. Therefore, it is of interest to study the rate of n2 as n →∞. Theorem 3.4

below characterizes this under some situations. The definition of a regularly varying

function and the proof are deferred to Section 3.9.

Theorem 3.4. Suppose Condition 3.1 is satisfied and Λ2◦Λ−1
1 (s) = Λ2(Λ

−1
1 (s)) with

Λ−1
1 (s) = inf{t : Λ1(t) = s, t ≥ 0}. If limt→∞

Λ2(t)
Λ1(t)

= 0, then

a). n1/n →a.s. 1 as n →∞,
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b). if Λ2 ◦ Λ−1
1 is a regularly varying function with exponent 0 ≤ ρ < ∞,

n2/Λ2 ◦ Λ−1
1 (n) →a.s. 1 as n →∞.

3.3 Inference for a Single Repairable System

This section discusses statistical analysis of a single repairable system under com-

peting risks. With data only from a single system, the intensity function can be

estimated using the natural estimator (Ascher and Feingold 1984),

λ̂(t) =
Number of failures in [t, t + ∆t]

∆t
.

This can also be applied to the the cause-specific intensity function,

λ̂j(t) =
Number of mode-j failures in [t, t + ∆t]

∆t
,

for j = 1, . . . , J .

It is common to assume a parametric model when dealing with a single system,

which allows one (a) to assess growth or decay in reliability, and (b) prediction in a

formal model based way. The most common model assumed for the system failures

is a nonhomogeneous Poisson process (NHPP) with parametric intensity function

λ(t; φ) where φ is the set of parameter(s) for λ(·). For this section and the next, we

assume that the failures from each mode follows a NHPP, with power law cumulative

intensity function which is also known as Power Law Process (PLP).

3.3.1 Parametric Model under Power Law Process (PLP)

To simplify the problem, we assume that the system has two independent failure

modes. The system is observed until the n−th failure, analogous to Type-II censor-

ing. We also assume that the failures from mode-j follows a NHPP with intensity

function

λj(t) = µjβjt
βj−1, for j = 1, 2.
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This is also called power law process (PLP) and has been popularized by Crow (1974)

as a reasonable model for analyzing failures from a repairable system. The linear

relation of the intensity (or cumulative intensity) with time in log-log scale conforms

to various failure processes encountered in manufacturing or automotive engineering.

Further the elegance of the statistical properties and the ease of its implementation

have made PLP a popular choice of reliability practitioners over the decades.

It follows that the overall system intensity function is

λ(t) = λ1(t) + λ2(t) = µ1β1t
β1−1 + µ2β2t

β2−1

which yields a PLP if and only if the shape parameters from both modes are equal

(β1 = β2). With only two failure modes, we let δj = 1 for failure mode-1 and = 0

otherwise. The observed data are {ti, δi}i=1,...,n with 0 < t1 < . . . < tn. The general

form of the likelihood function can written as

L(Data|φ) =
n∏

i=1

λ1(ti)
δiλ2(ti)

1−δi exp

[
−

∫ tn

0

λ(t)dt

]

with φ = (µ1, µ2, β1, β2). The MLEs of the parameters and their properties are

discussed next.

Case: Equal Shape Paramters (β1 = β2)

We start with the case where equality of β1 and β2 is assumed. This is, of course,

a testable assumption and should be checked first. The case, nonetheless, is an

important one as it is the only case where both the individual and system level

failure processes conform to PLP. In this case, the cause-specific intensity for mode-j

is λj(t) = µjβtβ−1, j = 1, 2. The cause specific intensities are proportional and the

overall system intensity is λ(t) = λ1(t) + λ2(t) = (µ1 + µ2)βtβ−1, which is also the

intensity from PLP. With n1 =
∑n

i=1 δi, the likelihood function is

L(Data|µ1, µ2, β) = µn1
1 µn−n1

2 βn

n∏
i=1

tβ−1
i exp

[−(µ1 + µ2)t
β
n

]
.



52

By maximizing the likelihood above, we get the MLEs as

µ̂1 = n1/t
β̂
n, µ̂2 = (n− n1)/t

β̂
n, β̂ = n/

n∑
i=1

log(tn/ti).(3.2)

Since the overall system has the intensity function from PLP, the following results

are readily obtained from the single component case results (see Bain 1978, Theorem

5.2.1):

2nβ/β̂ ∼ χ2
2(n−1), 2(µ1 + µ2)t

β
n ∼ χ2

2n.(3.3)

With proportional cause-specific intensity functions and independent increment prop-

erty of the NHPPs, we can apply Theorems 3.1 and 3.2 to get the following results:

δi
iid∼ Bernoulli

(
µ1

µ1+µ2

)
, n1 ∼ Bin

(
n, µ1

µ1+µ2

)
,(3.4)

where both terms are independent of t.

Note that 2nβ/β̂, 2(µ1 + µ2)t
β
n, and n1 (or δi) are mutually independent. These

exact distributions are useful for obtaining the inference results, as we illustrate next.

To obtain the confidence region for parameters, it is convenient to reparameterize

the parameters to (ρ, µ, β) with µ = µ1 + µ2 and ρ = µ1/µ. It follows that

ρ̂ = n1/n, µ̂ = n/tβ̂n(3.5)

and β̂ remains the same. Then the confidence region for µ and β can be obtained from

the results in Finkelstein (1976) and Bhattacharyya and Ghosh (1991). From these

and from (3.3) and (3.4), a 100(1 − α)% confidence region for (ρ, µ, β) is provided

by the set

D = {(ρ, µ, β) : a1n < X < a2n, b1n < Y < b2n, c1n < Z < c2n}

where Pr(D) = 1−α with X = ρ̂, Y = 2nβ/β̂ and Z = 2µtβn. Using the fact that X

are independent of Y and Z, we recommend choosing D = D1 ∩ D2 such that

D1 = {ρ : a1n < X < a2n} and D2 = {(µ, β) : b1n < Y < b2n, c1n < Z < c2n}
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Note that one can easily find a confidence region D2 with an exactly specified proba-

bility content. For D1, one can either choose an interval based on normal approxima-

tion, or can choose an conservative confidence interval based on the exact ‘binomial’

distribution of nX. Finally, the overall probability content of D is obtained as the

product of those of D1 and D2.

Prediction Intervals for Future Failure Times

Since the overall system has the intensity function of a PLP, the prediction interval for

tn+k, the (n+k)−th system failure time, follows the result from the single component

system in Bain (1978). We can get a lower (1− α) prediction limit for tn+k as

TL(k, α) = tn exp

[
νkFα(νk, 2(n− 1))

2(n− 1)ckβ̂

]

where ck = ψ(n+k)−ψ(n)
n[ψ′(n)−ψ(n+k)]

, νk = 2n[ψ(n + k) − ψ(n)]ck, and Fα(a, b) is the α−th

quantile for F -distribution with degrees of freedom a and b. ψ(·) is the digamma

function. For k = 1, the next system failure time, the formulation is simply reduced

to

TL(1, α) = tn exp

[
(1− α)−1/(n−1) − 1

β̂

]
.

To obtain the prediction interval for the future failure time from a specific failure

mode, assume first that ρ is known. Now consider the probability of tn+l being the

next mode-1 failure time, with δ being independent of t,

Pr(tn+l, δn+l = 1, δn+1 = . . . = δn+l−1 = 0|Data)

= Pr(δn+l = 1, δn+1 = . . . = δn+l−1 = 0)× Pr(tn+l|Data)

= ρ(1− ρ)l−1Pr(tn+l|Data)

with Pr(tn+l|Data) ∝ tβ−1
n+l exp(−µtβn+l)I(tn+l > tn) from Bain (1978). We can see

here that, l ∼ Geo(ρ). Hence, if we let t
(M1)
1 be the next mode-1 failure time, then

Pr(t
(M1)
1 |Data) =

∞∑

l=1

ρ(1− ρ)l−1Pr(tn+l|Data).
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Hence, the lower (1− α) prediction limit for t
(M1)
1 is

TM1,L(1, α) =

{
T :

∞∑

l=1

ρ(1− ρ)l−1Pr(tn+l ≥ T |Data) = 1− α

}
.

In the similar fashion, the future k−th failure time from mode-1 is

TM1,L(k, α) =





T :
∞∑

l=k




l − 1

k − 1


 ρk(1− ρ)l−kPr(tn+l ≥ T |Data) = 1− α





.

In practice, ρ is unknown, and it is reasonable to use ρ̂ instead. We recommend

the following procedure for obtaining the lower (1−α) prediction limit for t
(M1)
1 : for

b = 1, . . . , B,

1. draw n
(b)
1 from Bin(n, ρ̂) and let ρ(b) = n

(b)
1 /n [With large n, one can draw ρ(b)

from N(ρ̂, ρ̂(1− ρ̂)/n).]

2. draw l(b) from Geo(ρ(b)),

3. draw y(b) from F (νl(b) , 2(n− 1)).

4. let t(b) = tn exp[νl(b)y
(b)/2(n− 1)cl(b) β̂].

Then, TM1,L(1, α) = 1
B

∑B
b=1 t(b) can be used as the estimated for the lower bound for

of the next failure time caused by mode-1. The TM1,L(k, α) can also be obtained by

modifying Step 2 above. Similar arguments can be applied for prediction of future

failure time from failure mode-2.

Large-sample Distributions of Estimators

We now study the asymptotic properties of the MLEs. Similar to Theorem 2.1 in

Bhattacharyya and Ghosh (1991), the MLEs are consistent but converge at different

rates.
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Theorem 3.5. With ρ̂, µ̂, and β̂ defined in (3.2) and (3.5), let

W1n =
√

n(ρ̂− ρ),

W2n =
√

n(log n)−1(µ̂− µ),

W3n =
√

n(β̂ − β).

Then Wn = (W1n, W2n,W3n)′ is asymptotically (singular) multivariate normal N3(0,Σ)

where

Σ =




ρ(1− ρ) 0 0

0 µ2 −µβ

0 −µβ β2




.

Proof. Since µ, β can be envisioned as the parameters from the PLP governing the

system failures, it follows from Theorem 2.1 in Bhattachryya and Ghosh (1991) that

(W2n,W3n)′
d→ N2


0,




µ2 −µβ

−µβ β2





 .

And from (3.4), we have n1 ∼ Bin(n, ρ), independently of µ̂, β̂. Hence W1n
d→

N(0, ρ(1− ρ)) and is independent from W2n and W3n. The result follows.

We can reformulate the above result in terms of the original parameters. The vec-

tor W ∗
n = [

√
n(log n)−1(µ̂1−µ1),

√
n(log n)−1(µ̂2−µ2),

√
n(β̂−β)]′ is asymptotically

normal with mean vector 0 and variance-covariance matrix

Σ∗ =




µ2
1 µ1µ2 −µ1β

µ1µ2 µ2
2 −µ2β

−µ1β −µ2β β2




.

The asymptotic result provides some curious insights into the behavior of the

MLEs. An interesting observation regarding the large-sample behavior possibly lies
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at the root of the pathology we observe here. The joint asymptotic of φ = (µ1, µ2, β)

rests on the crucial Taylor-expansion step, that can be expressed (after suitable

scaling) as



n−1/2(log n)−1l1n(φ0)

n−1/2(log n)−1l2n(φ0)

n−1/2l3n(φ0)




= (log n)Cn(ζ∗n)Wn(3.6)

where ln = (l1n, l2n, l3n)′ is the score vector, φ0 is the true parameter value, Cn is the

(appropriately scaled) second derivative of the log-likelihood, ζ∗n is an intermediate

random point between φ̂ and φ0. While Wn = Op(1), Cn can be shown to converge

to a nonstochastic singular matrix uniformly in a neighborhood around φ0. In spite

of the presence of the growing multiplier of (log n) on the right of (3.6), the left hand

side converges to a (singular) normal, thereby making it a Op(1) term. This is in

stark contrast to the classical iid asymptotics.

Case: Unequal Shape Parameters (β1 6= β2)

The likelihood function is now

L(Data|µ1, µ2, β1, β2) =
m∏

i=1

[
µ1β1t

β1−1
i

]δi
[
µ2β2t

β2−1
i

]1−δi

exp
[−(µ1t

β1
n + µ2t

β2
n )

]
.

The likelihood above is simply the product of likelihood contributed from each inde-

pendent component. By maximizing the likelihood, we get the MLEs as

µ̂1 = n1/t
β̂1
n , β̂1 = n1/

∑n
i=1 log(tn/ti)δi,(3.7)

µ̂2 = (n− n1)/t
β̂2
n , β̂2 = (n− n1)/

∑n
i=1 log(tn/ti)(1− δi).

Note that the MLEs for each failure mode are simply the functions of ti’s correspond-

ing to their own failure mode.

We now study the exact distribution of estimators. The overall intensity is λ(t) =

µ1β1t
β1−1 + µ2β2t

β2−1. Now using the property of NHPP, it follows that

µ1t
β1
n + µ2t

β2
n ∼ Gamma(n, 1).(3.8)
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And by using (3.1), we have

δi|ti ∼ Bernoulli

(
µ1β1t

β1−1
i

µ1β1t
β1−1
i + µ2β2t

β2−1
i

)
,(3.9)

which now depends on ti. Using the NHPP property of each failure mode, we have

n1|tn = N1(0, tn] | {N1(0, tn] + N2(0, tn] = n, tn} where Nj(a, b], for j = 1, 2, is the

number of failures from failure mode-j in the interval (a, b]. Since Nj(0, tn]|tn ∼

Poisson
(∫ tn

0
λj(t)dt

)
, it follows that

n1|tn ∼ Bin

(
n,

µ1t
β1
n

µ1t
β1
n + µ2t

β2
n

)
.(3.10)

Now by conditioning on n1 and the cause of the last failure δn, we can use the results

from a single-failure-mode system with failure censoring to get

2µ1t
β1
n |n1, δn = 1 ∼ χ2

2n1
,(3.11)

2µ2t
β2
n |n1, δn = 0 ∼ χ2

2(n−n1),

2n1β1/β̂1|n1, δn ∼ χ2
2(n1−δn),

2(n− n1)β2/β̂2|n1, δn ∼ χ2
2(n−n1−(1−δn)).

Further, all the terms in (3.11) are mutually independent. Combining the last two

terms in (3.11), we get the exact (unconditional) distribution below,

2n1β1/β̂1 + 2(n− n1)β2/β̂2 ∼ χ2
2(n−1).(3.12)

Based on the results in (3.11), one can obtain exact conditional inference. The

unconditional distributions, however, are complicated and do not lend themselves to

tractable inference.

The asymptotic distribution for the estimators is studied next. We require a

lemma to prepare the groundwork.

Lemma 3.2. Suppose β1 > β2, as n →∞,

a). n1/n →a.s. 1,
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b). log n1/ log n →a.s. 1,

c). (n− n1)/µ2(n/µ1)
β2/β1 →a.s. 1, and

d). log(n− n1)/ log(µ2(n/µ1)
β2/β1) →a.s. 1.

Proof. The results simply follow Theorems 3.4 and 3.11.

Lemma 3.2 simply shows that with β1 > β2, both n1 and n − n1 go to infinity

almost surely at rates, n and nβ2/β1 , respectively.

Theorem 3.6. With µ̂1, µ̂2, β̂1, and β̂2 defined as in (3.7), and β1 > β2, let

U1,n =
√

n(log n)−1(µ̂1 − µ1)

U2,n =
√

n(β̂1 − β1)

V1,n =
√

nβ2/β1(log n)−1(µ̂2 − µ2)

V2,n =
√

nβ2/β1(β̂2 − β2).

Then, Un = (U1,n, U2,n)′ →D U ∼ N2(0, Σ1) and Vn = (V1,n, V2,n)′ →D V ∼ N2(0, Σ2)

where U and V are independent and

Σ1 =




µ2
1 −µ1β1

−µβ1 β2
1


 , Σ2 = µ

β2/β1

1 β2
2




µ2/β
2
1 −1/β1

−1/β1 1/µ2


 .

Proof. Let

S1n = β1

n∑
i=1

log(tn/ti)δi and S2n = β2

n∑
i=1

log(tn/ti)(1− δi).

Now we define

υ1n = (S1n − n1)/
√

n1 and υ2n = (S2n − (n− n1))/
√

n2.
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We need to show that (υ1n, υ2n)′ →D N2(0, I2), as n → ∞ with I2 denotes 2x2

identity matrix. This can be shown by using moment generating functions of υ1n

and υ2n. First, we assume δn = 0, then by (3.11), we have S1n|n1 ∼ Gamma(n1, 1).

Hence,

E[eυ1nt] = En1

[
E

(
e

1√
n1

(S1n−n1) | n1

)]
= En1

[
e
√

n1t

(
1

1− t√
n1

)n1
]

.

By applying Taylor series expansion, we get

log

[
e
√

n1t

(
1

1− t√
n1

)n1
]

= t2/2 + o(n
−1/2
1 ).

With Lemma 3.2a, it follows that E[eυ1nt] = exp
[
t2/2 + op

(
n−1/2

)]
. The result re-

mains the same if δn = 1. Thus, υ1n →d N(0, 1). Apply the same strategy and

Lemma 3.2c, υ2n →d N(0, 1). Furthermore, given tn, S1n and S2n are independent

because they are functions of failure times corresponding to two independent failure

modes. Additionally, by Lemma 3.2a, tn/(n/µ1)
1/β1 →a.s. 1 as n → ∞, imply-

ing that S1n and S2n are asymptotically independent unconditional on tn. Hence,

(υ1n, υ2n)′ →d N2(0, I2).

Let V ∗
1n =

√
g(n)(log g(n))−1(µ̂2 − µ2) and V ∗

2n =
√

g(n)(β̂2 − β2) with g(n) =

µ2(n/µ1)
β2/β1 . From (3.7), we have β̂1 = n1β1/S1n and β̂2 = (n− n1)β2/S2n. Hence,

with Lemma 3.2, it follows that

U2n = −β1υ1n + op(1) and V ∗
2n = −β2υ2n + op(1).(3.13)

Now, we consider the following,

log µ̂1 = (log n1)

(
1− β̂1

β1

)
− β̂1

β1

log

(
µ1t

β1
n

n1

)
+

β̂1

β1

log µ1.
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With Lemma 3.2, it follows that µ1t
β1
n /n1 →a.s. 1 as n →∞. Hence,

√
n(log n)−1(log µ̂1 − log µ1) = υ1n + op(1).

By Taylor series expansion, it implies that U1n = µ1υ1n + op(1). Similarly, V ∗
1n =

µ2υ2n + op(1). It can be shown that

V1n =

√
µ

β2/β1

1

µ2

· β2

β1

V ∗
1n + op(1) and V2n =

√
µ

β2/β1

1

µ2

V ∗
2n.(3.14)

The results follows.

Theorem 3.6 implies that when β1 > β2, MLEs are consistent converging to true

parameters with rates, Op(1/
√

n) for β̂1, Op(log n/
√

n) for µ̂1, Op(1/
√

nβ2/β1) for µ̂2,

and Op(log n/
√

nβ2/β1) for β̂2.

Statistical Inference from Data with Partial Masking

Masked failures arise in the context of competing risks when, in order to save time

and cost in pinpointing the real cause of failure, the entire subset of the components

responsible for failure is replaced. We now consider the simple case where the mask-

ing probability is independent of the failure process. For a system with two failure

modes, only complete masking is possible. For a system with more than two failure

modes, one can encounter partial masking where a subset of the components could

be identified to be the potential cause of failure. We will concentrate, however, on a

2-mode system. First, we let δi = 1 for failure mode-1, = 2 for failure mode-2, and

= (∗) when failure mode is masked.

β1 = β2

We first consider the case where β1 = β2 = β. The likelihood function is

µn1
1 µn2

2 (µ1 + µ2)
n−n1−n2βn

n∏
i=1

tβ−1
i exp[−(µ1 + µ2)t

β
n]× γn−n1−n2(1− γ)n1+n2
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where n1 =
∑n

i=1 1{δi = 1}, n2 =
∑n

i=1 1{δi = 2} and γ = Pr(δ = (∗)) the proba-

bility of the data being masked. By maximizing the likelihood function above, the

MLEs from masked data are

µ̂1 =
(

n
n1+n2

)
n1/t

β̂
n , µ̂2 =

(
n

n1+n2

)
n2/t

β̂
n,(3.15)

β̂ = n/
∑n

i=1 log(tn/ti) and γ̂ = (n− n1 − n2)/n.

By comparing to the expressions of the MLEs in (3.2), we see that β̂ does not change.

However, µ̂1 and µ̂2 are different from the ones in (3.2) by a factor of
(

n
n1+n2

)
. Note

that n/(n1 + n2) is precisely the masking adjustment used to inflate estimators of

µ1, µ2 based solely on the unmasked failures. Moreover,

(n1, n2, n− n1 − n2) ∼ Multinomial

(
n,

µ1

µ1 + µ2

(1− γ),
µ2

µ1 + µ2

(1− γ), γ

)
.

The inference results are similar to the unmasked case, and are not detailed here.

β1 6= β2

The likelihood function is

L(Data|µ1, µ2, β1, β2)(3.16)

=
n∏

i=1

[
µ1β1t

β1−1
i

]1{δi=1} [
µ2β2t

β2−1
i

]1{δi=2} [
µ1β1t

β1−1
i + µ2β2t

β2−1
i

]1{δi=(∗)}

× exp
[−(µ1t

β1
n + µ2t

β2
n )

]× γn−n1−n2(1− γ)n1+n2 .

The MLEs based on (3.16) are not available in closed form. By considering δi = (∗) as

a missing value, we can use the E-M algorithm to estimate parameters. Note first that

by (3.9), δi|ti ∼ Bernoulli

(
µ1β1t

β1−1
i

µ1β1t
β1−1
i +µ2β2t

β2−1
i

)
. Hence (E-Step), for k ∈ {δk = (∗)},

let δ
(b)
k =

µ
(b)
1 β

(b)
1 t

β
(b)
1 −1

k

µ
(b)
1 β

(b)
1 t

β
(b)
1 −1

k +µ
(b)
2 β

(b)
2 t

β
(b)
2 −1

k

and for l ∈ {δl 6= (∗)}, δ
(b)
l = 1{δl = 1}. The

complete-data likelihood function is in the same form as in (3.7). However, it is

important to note that δ
(b)
i now could be a fractional number. Then (M-Step), the
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MLE’s from the complete-data likelihood are

µ
(b+1)
1 =

n∑
i=1

δ
(b)
i /tβ

(b+1)
1

n , β
(b+1)
1 =

n∑
i=1

δ
(b)
i /

n∑
i=1

log(tn/ti)δ
(b)
i ,

µ
(b+1)
2 =

n∑
i=1

(1− δ
(b)
i )/tβ

(b+1)
2

n , and β
(b+1)
2 =

n∑
i=1

(1− δ
(b)
i )/

n∑
i=1

log(tn/ti)(1− δ
(b)
i ).

By picking the initial values, and repeating E-M Steps, the solution for MLEs is

guaranteed to converge. By Theorem 1 of Dempster et al. (1977), the likelihood

function (3.16) increases at each EM iteration. Thus, above algorithm converges to

a local maximum. To guarantee the convergence to global maximum, the likelihood

(3.16) needs to be a concave function of (µj, βj)
′s, j = 1, 2. It can be shown that this

condition is met when nj ≥ 2, for both j = 1 and 2.

Interestingly, the above results can be recast in a Bayesian framework with a non-

informative choice of prior. For the equal shape parameter case, using the (ρ, µ, β)

parameterization, the likelihood function is

L(Data|ρ, µ, β) = ρn1(1− ρ)n−n1(µβ)n

n∏
i=1

tβ−1
i exp[−µtβn].

The conjugate prior for ρ is a Beta(α1, α2) distribution. We choose the noninforma-

tive joint prior for (µ, β) in the form π(µ, β) ∝ (µβ1+ε)−1 where ε is usually 1, but

not necessarily. The motivation for such a prior choice can be found in the argu-

ment leading to Jeffrey’s prior (see Bar-lev, Lavi, and Reiser 1992). This gives the

following results:

ρ|Data ∼ Beta(n1 + α1, n− n1 + α2),(3.17)

β|Data ∼ (β̂/2n)χ2
2(n−ε), and

µ|β,Data ∼ (2tβn)−1χ2
2n.

Note that the posterior inference is analogous to the frequentist analysis. In particu-

lar, with the choice ε = 1, the posterior distribution of β is identical to the sampling

distribution of β̂.
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For the case where β1 6= β2, using the independence between failure modes, we can

write the likelihood function as the product of the likelihood from each component

such as

L(Data|µ1, µ2, β1, β2) =
n∏

i=1

[µ1β1t
β1−1
i ]δi exp(−µ1t

β1
n )

︸ ︷︷ ︸
L1(Data|µ1,β1)

×
n∏

i=1

[µ2β2t
β2−1
i ]1−δi exp(−µ2t

β2
n )

︸ ︷︷ ︸
L2(Data|µ2,β2)

.

Now we can apply the Bayesian inference on each component separately. We can

treat each component like a system with single failure mode. Hence, we can choose

the noninformative joint prior for (µ1, β1) and (µ2, β2) to be

π1(µ1, β1) ∝ (µ1β
1+ε1
1 )−1 and π2(µ2, β2) ∝ (µ2β

1+ε2
2 )−1

independently of each other. With these priors, we get the following,

β1|Data ∼ (β̂1/2n1)χ
2
2(n1−ε1), µ1|β1, Data ∼ (2tβ1

n )−1χ2
2n1

,(3.18)

β2|Data ∼ (β̂2/2(n− n1))χ
2
2(n−n1−ε2), and µ2|β2, Data ∼ (2tβ2

n )−1χ2
2(n−n1)

.

The posterior inference is straightforward and is based on distributions, in view of

(3.18).

Goodness of Fit Tests

It is important to assess the fit of the PLP for the failures from each mode. This

can be graphically checked by Duane plots (Duane 1964) for the failure times of each

mode separately by plotting {log ti|δi = j , log(Nj(ti)/ti)} for j = 1, 2. The linear

forms of the plots indicate a good fit and the slopes are rough estimates for βj’s.

There are several tests that we can use. Most of these are using the fact that the

transformation of the data would follow random variables from uniform or exponen-

tial distribution. Conditional on tn, we can test the goodness of fit for each mode

separately. The details of the test can be found in Section 4.6 and 4.7.4 in Rigdon

and Basu (2000) which we will not go in details here. Here, we list several well known
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tests; Lilliefors’, Kuiper’s V , Cramér-von Mises C2, Watson’s U2, Anderson-Darling

A2, Shapiro-Wilk W , and Stepens’ W ∗ tests.

Test equality of βj’s

To test the equality of the βj’s, with independence between two modes, we can

consider the failure times from each mode are from different systems. Therefore, we

can use the F -test discussed Section 5.5.1 in Rigdon and Basu (2000). Given δn and

n1, we have

2n1β1

β̂1

∼ χ2
2(n1−δn) and

2(n− n1)β2

β̂2

∼ χ2
2(n−n1−1+δn).

Since both terms are independent, the statistic F =
2n1β1

β̂1
/2(n1−δn)

2(n−n1)β2
β̂2

/2(n−n1−1+δn)
. Under null

hypothesis H0 : β1 = β2,

F =
n1(n− n1 − 1 + δn)

(n− n1)(n1 − δn)

β̂2

β̂1

(3.19)

and F ∼ F
(
2(n1−δn), 2(n−n1−1+δn)

)
. Therefore, for a size α test of H0 : β1 = β2

against the two-sided alternative Ha : β1 6= β2 is to reject H0 if

F < Fα/2

(
2(n1−δn), 2(n−n1−1+δn)

)
or F > F1−α/2

(
2(n1−δn), 2(n−n1−1+δn)

)
.

When there are more than two failure modes, one can test the equality of βj’s by

a conditional χ2-test, that is analogous to Bartlett’s test of homogeneity of variance

for independent normal distributions.

3.4 Statistical Inference for Multiple Repairable Systems

We now turn to the analysis for multiple repairable systems. To avoid confusion,

we redefine the notation below.
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Notation:

k : system index, k = 1, . . . , m.

i : recurrent event index, i = 1, 2, . . . , nk.

j : failure mode index, j = 1, . . . , J.

τ : censoring time.

δ : exact cause of failure (may be masked).

Tki : time to the i−th event for the k−th system.

Ski : Masking subset of causes for the i−th failure in the k−th system.

Xk : covariate associated with the k−th system.

The observed data are {Ski, Tki, Xk, δki}k=1,...,m;i=1...,nk
. Note that 0 < Tk1 < . . . <

Tk,nk
≤ τk for all k. Suppose the failure process of each mode is governed by a

NHPP with some intensity function λkj(t; Xk). Then, the likelihood contribution of

the k−th system is

Lk =

nk∏
i=1

J∏
j=1

{∑

l∈Ski

Pr(Ski|Tki, Xk, δki = l)λkl(Tki, Xk)

}I(δki=j)

× exp

[
−

J∑
j=1

∫ τk

0

λkj(t,Xk)dt

]
.

Throughout this section, we assume the following:

• the censoring times for the k−th system, τk, is non-informative and independent

of the failure process, and

• λkj(t; Xk) = λ0j(t) exp(γT
j Xk) (proportional hazards).

Further, we shall drop the masking and covariate context for simplification and

assume that all causes of failures are known exactly. Treatment of masking can be

carried out under some additional assumption as in Dewanji and Sengupta (2003),

or under a general Bayesian framework.



66

3.4.1 Parametric Estimators and Theoretical Results under PLP

Now we consider the parametric estimators, especially when the intensity function

of each failure mode follows PLP such that

λj(t) = µjβjt
βj , j = 1, . . . , J.

All systems are assumed independent and identically distributed. The observed data

are Tki and δki where Tki is the i−th failure time of the k−th system, and δki is the

failure mode indicator corresponding to Tki for k = 1, . . . , m and i = 1, . . . , nk.

Under the assumption that the failure modes are independent, one can consider

the (cumulative) failure times of each mode as the data from different independent

systems. Then the known results for the multiple repairable systems under PLP can

be applied here (see Rigdon and Basu 2000, Section 5).

For brevity, we focus our study on the case where all systems are observed starting

from the same time and stopping at the same censoring time τk = T for all k. T

could be T ∗
n where T ∗

n is the n−th superposition cumulative failure times from all

m systems so that all m systems are being observed under failure censoring. Or,

T could be a predetermined valued so that all m systems are being observed under

time censoring. Both cases are studied and discussed here. Analogous to the single

system case, we assume that there are only two failure modes. Therefore, δki = 1 if

the failure of the k−th system at Tki is caused by failure mode-1 and =0 otherwise.

We first study the case when we assume that failure modes are independent. Later

on, we would consider the case where the failure modes are dependent under the

frailty framework.

Independent Failure Modes

Here, we assume that the failure modes are independent. Therefore, if λj(t), j =

1, 2 is the intensity function corresponding to each failure mode, then the likelihood
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function from the data is

L(Data|λk(·), j = 1, 2)(3.20)

=

[∏

k,i

λ1(tki)
δkiλ2(tki)

1−δki

]
× exp

[
−m

∫ T

0

λ1(t) + λ2(t)dt

]
.

Note that the likelihood function in (3.20) remains unchanged whether the systems

is being observed under time censoring or failure censoring (by setting T = T ∗
n). We

would consider the case where the equality of β1 and β2 is assumed and when it is not.

Inference under Failure Censoring

In this case, m systems are observed until n total failures occurs. Since all systems

are iid. We can superpose the cumulative failure times from m systems so we observe

t∗1 < t∗2 < . . . < t∗n and δ∗i where t∗i are the i−th superposed cumulative failure time

from m systems and δ∗i is the failure mode indicator corresponding to t∗i . It follows

that the intensity function of the superposition counting process is multiplied by

factor of m. Therefore, we have the likelihood function below.

L(Data|λk(·), j = 1, 2)(3.21)

=

[∏

k,i

λ1(t
∗
i )

δ∗i λ2(t
∗
i )

1−δ∗i

]
× exp

[
−m

∫ t∗n

0

(λ1(t) + λ2(t)) dt

]
.

We can view this case as a single system with µ∗j = mµj and β∗j = βj. Hence, the

results for a single systems in the previous chapter can be applied very easily. The

asymptotic results from the previous chapter also hold here when we consider the

number of systems, m, fixed and let the number of failures, n goes to infinity. Hence,

in the case with equal shape parameters, the MLEs are consistent and converge to

true parameter at rate Op(1/
√

n) for β̂ and Op(log n/
√

n) for µ̂1, µ̂2. In the case with

unequal shape parameters with β1 > β2, the MLEs are consistent converge to the

true parameters with rates, Op(1/
√

n) for β̂1, Op(log n/
√

n) for µ̂1, Op(1/
√

nβ2/β1),

for β̂2, and Op(log n/
√

nβ2/β1) for µ̂2.
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Inference under Time Censoring

We now come back to the case where the censoring time T is predetermined.

Case: Equal Shape Parameters

With N =
∑

k nk and N1 =
∑

k,i δki, the likelihood function is

L(Data|µ1, µ2, β) = µN1
1 µN−N1

2 βN
∏

k,i

tβ−1
ki × exp

[−m(µ1 + µ2)T
β
]
.

The corresponding MLEs are

µ̂1 = N1/mT β̂, µ̂2 = (N −N1)/mT β̂, and β̂ = N/
∑

k,i

log(T/tki).(3.22)

With NHPP properties, it follows that

nk ∼ Poisson
(
(µ1 + µ2)T

β
)
, nkj ∼ Poisson(µjT

β),(3.23)

N ∼ Poisson
(
m(µ1 + µ2)T

β
)

and Nj ∼ Poisson
(
mµjT

β
)

for k = 1, · · · ,m, j = 1, 2 where nk1 =
∑nk

i=1 δki, nk2 = nk − nk1, and N2 = N −N1.

The results in (3.1) and Theorem 3.1 are still applied here, so we have

δki
iid∼ Bernoulli

(
µ1

µ1 + µ2

)

which independent of tki. Furthermore, given N , it follows that

2Nβ/β̂|N ∼ χ2
2N .

One may interest in the limiting distributions of these estimators in (3.22) when

we let m →∞. It is described in Theorem 3.7 below.

Theorem 3.7. With estimators in (3.22), let X1m =
√

m(µ̂1−µ1), X2m =
√

m(µ̂2−

µ2), and X3m =
√

m(β̂ − β). Then, Xm = (X1m, X2m, X3m)′ →d N3(0, Ξ) such that

Ξ =
1

T β




(µ1β log T )2

µ1+µ2
+ µ1

µ1µ2(β log T )2

µ1+µ2
−µ1β2 log T

µ1+µ2

µ1µ2(β log T )2

µ1+µ2

(µ2β log T )2

µ1+µ2
+ µ2 −µ2β2 log T

µ1+µ2

−µ1β2 log T
µ1+µ2

−µ2β2 log T
µ1+µ2

β2

µ1+µ2




.
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Proof. First, we Let Sm = β
∑

k,i log(T/tki). Given N , we have Sm ∼ Gamma(N, 1).

By (3.23), it follows that N/m(µ1 + µ2)T
β →a.s. 1 as m → ∞. Hence, N →a.s.

∞ as m → ∞. Furthermore if we let νm = (Sm − N)/
√

N , then E[eνmt] =

exp
[
t2/2 + op(m

−1/2)
]

by a similar argument as in the proof of Theorem 3.6. Hence,

νm →d N(0, 1) as m → ∞. It is important to mention that νm is dependent on

N(= N1 + N2), however, limm→∞ νm is not dependent on N . Now consider the

following,

√
m(β̂ − β) =

1√
(µ1 + µ2)T β

√
m(µ1 + µ2)T β

N

√
N(β̂ − β)(3.24)

=
β√

(µ1 + µ2)T β

(
N − Sm√

N

)
× N

Sm

=
−β√

(µ1 + µ2)T β
νm + op(1).

Now let ujm =
√

mµjT β log(Nj/mµjT
β), j = 1, 2, then by (3.23), the central

limit theorem, and the delta method, ujm →d N(0, 1). Furthermore, ujm’s are

mutually independent since the two failure modes are assumed independent and also

independent to limm→∞ νm.

Now let consider

log(µ̂1) = log(N1/mT β̂) = log(µ1) + log(N1/mµ1T
β) + (β − β̂) log(T )(3.25)

= log(µ1) + (β − β̂) log(T ) + u1m/
√

mµ1T β.

It follows that

√
m(log µ̂1 − log µ1) =

β log T√
(µ1 + µ2)T β

νm +
u1m√
µ1T β

+ op(1).

By Taylor expansion, we get

√
m(µ̂1 − µ1) =

µ1β log T√
(µ1 + µ2)T β

νm +

√
µ1

T β
u1m + op(1).(3.26)
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By similar argument we also get

√
m(µ̂2 − µ2) =

µ1β log T√
(µ1 + µ2)T β

νm +

√
µ2

T β
u2m + op(1).(3.27)

By (3.24), (3.26) and (3.27), the results follow.

Case: Unequal Shape Parameters

When the equality of β1 and β2 is not assumed, we can view the likelihood function

as the product of the likelihood from failure mode-1 and -2,

L(Data|µ1, µ2, β1, β2)

=
∏

k,i

[µ1β1t
β1−1
ki ]δki exp(−mµ1T

β1)

︸ ︷︷ ︸
L1(Data|µ1,β1)

×
∏

k,i

[µ2β2t
β2−1
ki ]1−δki exp(−mµ2T

β2)

︸ ︷︷ ︸
L2(Data|µ2,β2)

.

The MLEs are

µ̂1 = N1/mT β̂1 , β̂1 = N1/
∑

k,i log(T/tki)δki,(3.28)

µ̂2 = (N −N1)/mT β̂2 , and β̂2 = (N −N1)/
∑

k,i log(T/tki)(1− δki).

These estimators are the functions of failure times corresponding to their specific

failure modes.

With NHPP properties, we get

nk ∼ Poisson
(
(µ1T

β1 + µ2T
β2)

)
, nkj ∼ Poisson

(
µjT

βj
)
,(3.29)

N ∼ Poisson
(
m(µ1T

β1 + µ2T
β2)

)
and Nj ∼ Poisson

(
mµjT

βj
)

for j = 1, 2.

And

δki|tki ∼ Bernoulli

(
µ1β1t

β1−1
ki

µ1β1t
β1−1
ki + µ2β2t

β2−1
ki

)

which depends on tki. Moreover, we have

2N1β1/β̂1|N1 ∼ χ2
2N1

, 2(N −N1)β2/β̂2|N −N1 ∼ χ2
2(N−N1)

and

2N1β1/β̂1 + 2(N −N1)β2/β̂2|N ∼ χ2
2N .
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Below is Theorem 3.8 that describes the limiting distribution of estimators when

we let m →∞.

Theorem 3.8. With estimators in (3.28), let A1m =
√

m(µ̂1−µ1), A2m =
√

m(β̂1−

β1), B1m =
√

m(µ̂2 − µ2) and B2m =
√

m(β̂2 − β2). If Am = (A1m, A2m)′ and

Bm = (B1m, B2m)′, then Am →d A and Bm →d B as m → ∞ with A and B are

independent and A ∼ N2(0, Ξ1) and B ∼ N2(0, Ξ2) with

Ξj =
1

T βj




µj(βj log T )2 + µj −β2
j log T

−β2
n log T

β2
j

µj


 for j = 1, 2.

Proof. Note that the MLEs for the parameters of the failure mode-j (j = 1, 2) are the

function of tki’s corresponding to the mode-j. With assumption on independence of

failure modes, the MLEs for the failure mode-1 are independent from the MLEs for

the failure mode-2. Now we can apply the result from Crow (1974) for each failure

mode to get the limiting distribution of Am and Bm. This concludes the proof.

3.4.2 Dependent Failure Modes Under A Frailty Framework

We now consider the case where the failure modes are dependent using a frailty

framework. Let Zk be the unobserved frailty variables. We consider the case

where Zk
iid∼ Gamma(η−1, η) so that Zk has mean 1 and variance η. Under frailty

framework, given Zk = zk, two failure modes from the k−th system are inde-

pendent with the cumulative intensity function zkµjt
βj , j = 1, 2. [Note that un-

conditionally, Nj(t) ∼ NegBin(r, pj(t)), j = 1, 2 and N(t) ∼ NegBin(r, p(t))

with r = η−1, pj(t) = (1 + ηµjt
βj)−1, p(t) = (1 + η(µ1t

β1 + µ2t
β2))−1. Moreover,

Pr(N1(t) = x,N2(t) = y) = Γ(1/η+x+y)(µ1tβ1 )x(µ2tβ2 )y

Γ(1/η)η1/η(1/η+µ1tβ1+µ2tβ2 )x!y!
.]
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Estimator for η when Z is Gamma-frailty for NHPPs

We now consider the case when Nkj(t)’s follows some NHPPs and the frailty variables

are from gamma distribution with mean of 1 and variance of η. All m systems are

observed until fixed time T . We starts by considering the conditional likelihood

function from the data.

Lk(Data|Zk = zk) = znk
k

nk∏
i=1

[
λ1(tki)

δkiλ2(tki)
1−δki

]× exp [−zkΛ(T )] .

By taking expectation on Z, we get the unconditional likelihood below,

Lk(Data) =

nk∏
i=1

[
λ1(tki)

δkiλ2(tki)
1−δki

]× Γ(1/η + nk)

Γ(1/n)η1/η[Λ(T ) + 1/η]1/η+nk
.

Hence, the likelihood from m systems is

L(Data) =
m∏

k=1

nk∏
i=1

[
λ1(tki)

δkiλ2(tki)
1−δki

]×
∏m

k=1 Γ(1/η + nk)

Γ(1/n)mηm/η[Λ(T ) + 1/η]m/η+N
.

It can be shown that the MLE for Λ(T ) is Λ̂(T ) = N/m where N =
∑m

k=1 nk, then

it follows that

η̂ = arg max
η

∏m
k=1 Γ(1/η + nk)

Γ(1/n)mηm/η[N/m + 1/η]m/η+N
.(3.30)

It is important to note that η̂ does not depend on the form of Λ(t) or Λj(t)’s. It can

be shown the the variance of η̂ is

1

m
η4

[
ψ′(1/η)− η +

1

Λ(T ) + 1/η
− Eψ′(1/η + n1)

]−1

(3.31)

where ψ(·) is digamma function such that ψ(z) = d log Γ(z)
dz

and ψ′(·) is the derivation

of digamma function. The proof of this is deferred to Section 3.9.

Inference under Time censoring

We now consider the case where the failures follows PLPs under time censoring.

First let us consider the case where the equality of βj’s are assumed. The conditional

likelihood function from the k−th system is

Lk(Data|Zk = zk) = znk
k µnk1µnk−nk1

2 βnk

nk∏
i=1

tβ−1
ki exp[−zk(µ1 + µ2)T

β].
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With Zk ∼ Gamma(η−1, η), we get

Lk(Data) = µnk1
1 µnk−nk1

2 βnk

n1∏

k=1

tβ−1
ki × Γ(1/η + nk)

Γ(1/η)η1/η[(µ1 + µ2)T β + 1/η]1/η+nk
.

Hence the likelihood function contributed from all systems is

L(Data) =
m∏

k=1

Lk(Data) = µN1
1 µN−N1

2 βN
∏

k,i

tβ−1
ki

×
∏m

k=1 Γ(1/η + nk)

Γ(1/η)mηm/η[(µ1 + µ2)T β + 1/η]m/η+N
.

By maximizing the likelihood, we get MLEs,

µ̂1 = N1/mT β̂, µ̂2 = N2/mT β̂, β̂ = N/
∑

k,i

log(T/tki), and(3.32)

η̂ = arg max
η

∏m
k=1 Γ(1/η + nk)

Γ(1/η)mηm/η[N/m + 1/η]m/η+N
.

Note that η̂ above is the same η̂ in (3.30) where it is not depend on the forms of

λj(·).

Below is Lemma 3.3 describing the limiting distribution of N1 and N2. Note that

the results from Lemma 3.3 are not restricted to PLP and distribution of frailty

variables.

Lemma 3.3. With the nonnegative frailty variables Z such that E(Z) = 1 and

VAR(Z) = η. Furthermore, given Zk = zk, n′kjs are independent and nkj|zk ∼

Poisson(zkΛj) for 0 < Λj < ∞, k = 1, . . . , m, j = 1, 2 with Nj =
∑m

k=1 nkj. Then

the following are true.

a).
√

m




N1/m− Λ1

N2/m− Λ2


 →d N2


0,




Λ1 + ηΛ2
1 ηΛ1Λ2

ηΛ1Λ2 Λ2 + ηΛ2
2





, as m →∞.

b). For N = N1 + N2 and Λ = Λ1 + Λ2,
√

m(N/m − Λ) →d N(0, Λ + ηΛ2) as

m →∞.
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Proof. a). It suffice to show that E(nkj) = Λj, VAR(nkj) = Λj+ηΛ2
j , and COV(nk1, nk2) =

ηΛ1Λ2 for k = 1, . . . , m, j = 1, 2. Then we can apply the central limit theorem to

get the results. For j = 1, 2, we consider below,

E(nkj) = E[E(nkj|zk)] = E(zkΛj) = Λj,

VAR(nkj) = E[VAR(nkj|zk)] + VAR[E(nkj|zk)]

= E(zkΛj) + VAR(zkΛj) = Λj + ηΛ2
j , and

COV(nk1, nk2) = E[COV(nk1, nk2|zk)] + COV[E(nk1|zk),E(nk2|zk)]

= 0 + COV(zkΛ1, zkΛ2) = ηΛ1Λ2.

b). It is easy to see that nk|zk ∼ Poisson(zkΛ). By applying a), we get b).

Theorem 3.9 below describes the asymptotic distributions of estimators in (3.32).

Similar to Lemma 3.3, the frailty variable Z in Theorem 3.9 is not restricted to

gamma distribution.

Theorem 3.9. With the nonnegative frailty variables Z such that E(Z) = 1 and

VAR(Z) = η and the estimators in (3.32), let W1m =
√

m(µ̂1−µ1), W2m =
√

m(µ̂2−

µ2), W3m =
√

m(β̂ − β) and Wm = (W1m,W2m,W3m)′. Then Wm →d N3(0, ∆) as

m →∞ where

∆ =
1

T β




(µ1β log T )2

µ1+µ2
+ µ1(1 + ηµ1T

β) µ1µ2(β log T )β

µ1+µ2
+ ηµ1µ2T

β −µ1β2 log T
µ1+µ2

µ1µ2(β log T )β

µ1+µ2
+ ηµ1µ2T

β (µ2β log T )2

µ1+µ2
+ µ2(1 + ηµ2T

β) −µ2β2 log T
µ1+µ2

−µ1β2 log T
µ1+µ2

−µ2β2 log T
µ1+µ2

β2

µ1+µ2




Proof. The proof here is similar to the proof of Theorem 3.7 with some modification.

First let Sm = β
∑

k,i log(T/tki). Given N, zk’s, we have Sm ∼ Gamma(N, 1). By

Lemma 3.3b with Λ = (µ1 + µ2)T
β, it follows that N/m(µ1 + µ2)T

β →a.s. 1 as
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m →∞. Hence N →a.s. ∞ as m →∞. Furthermore if we let νm = (Sm −N)/
√

N ,

then E[eνmt] = exp[t2/2+op(m
−1/2)] by a similar argument as in the proof of Theorem

3.6. Hence νm →d N(0, 1) as m →∞. It is important to mention that though νm is

dependent on N and zk’s, limm→∞ νm is not dependent on N and zk’s. Then similar

to (3.24), we have

√
m(β̂ − β) =

−β√
(µ1 + µ2)T β

νm + op(1).(3.33)

Now let ujm =
√

m log(Nj/mµjT
β), j = 1, 2 and um = (u1m, u2m)′, then by using

the result from Lemma 3.3a with Λj = µjT
β and applying the delta method, we get

um →d N2


0,




1+ηµ1T β

µ1T β η

η 1+ηµ2T β

µ2T β





 , as m →∞.

Note the um and νm are asymptotically independent. limm→∞ νm.

Now similar to (3.26), we get

log µ̂j = log µj + (β − β̂) log T + ujm/
√

m, j = 1, 2.

It follows that

√
m(log µ̂j − log µj) =

β log T√
(µ1 + µ2)T β

νm + ujm + op(1), j = 1, 2.

And by Taylor series expansion, we have

√
m(µ̂j − µj) =

µjβ log T√
(µ1 + µ2)T β

νm + µjukm + op(1), j = 1, 2.(3.34)

By (3.33) and (3.34), the results follow.

Now without the equality assumption of βj’s, the likelihood function is

L(Data) = (µ1β1)
N1(µ2β2)

N−N1

∏

k,i

t
β1δki+β2(1−δki)−1
ki

×
∏m

k=1 Γ(1/η + nk)

Γ(1/η)mηm/η[µ1T β1 + µ2T β2 + 1/η]m/η+N
.
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The MLEs are

µ̂1 = N1/mT β̂1 , β̂1 = N1/
∑

k,i log(T/tki)δki,

µ̂2 = (N −N1)/mT β̂2 , β̂2 = (N −N1)/
∑

k,i log(T/tki)(1− δki).

and

η̂ = arg max
η

∏m
k=1 Γ(1/η + nk)

Γ(1/η)mηm/η[N/m + 1/η]m/η+N
.(3.35)

We can see that regardless of the equality assumption of βj’s, η̂ is the same and the

MLEs for other parameters are exactly the same as when the independence among

failure modes is assumed which is the result from (3.30). The form of η̂ would depend

on the choice of distribution of Z. Below is Theorem 3.10 describing the limiting

distribution of MLEs in (3.35).

Theorem 3.10. With the nonnegative frailty variables Z such that E(Z) = 1 and

VAR(Z) = η and the estimators in (3.35), let Q1m =
√

m(µ̂1−µ1), Q2m =
√

m(β̂1−

β1), Q3m =
√

m(µ̂2 − µ2), Q4m =
√

m(β̂2 − β2) and Qm = (Q1m, Q2m, Q3m, Q4m)′.

Then Qm →d N4(0, Ω) where

Ω =




ω11 ω12

ω′12 ω22




with

ω11 =
1

T β1




µ1(β1 log T )2 + µ1(1 + ηµ1T
β1) −β2

1 log T

−β2
1 log T β2

1/µ1


 ,

ω22 =
1

T β2




µ2(β2 log T )2 + µ2(1 + ηµ2T
β2) −β2

2 log T

−β2
2 log T β2

2/µ2


 ,
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and

ω12 =




µ1µ2η 0

0 0




Proof. Let First, let Sjm = βj

∑
k,i log(T/tki) for j = 1, 2. Given Nj and zk’s, we

have Sjm ∼ Gamma(Nj, 1) with S1m and S2m are mutually independent. By Lemma

3.3a with Λj = µjT
βj , it follows that Nj/mµjT

βj →a.s. 1 as m → ∞. Hence,

Nj →a.s. ∞ as m → ∞. Furthermore, if we let νjm = (Sjm − Nj)/
√

Nj, then

E[eνkmt] = exp[t2/2 + op(m
−1/2)] by a similar argument as in the proof of Theo-

rem 3.6. Hence, (ν1m, ν2m)′ →d N2(0, I2) as m → ∞. It is important to note

that though ν1m and ν2m are dependent, they are asymptotically independent - -

COV[limm→∞ ν1m, limm→∞ ν2m] = 0. Moreover, limm→∞ ν1m and limm→∞ ν2m are

not dependent on N1 and N2. By following a similar argument as in (3.33), we get

√
m(β̂j − βj) =

−βj√
µjT βj

νjm + op(1), j = 1, 2.(3.36)

Now let ujm =
√

m log(Nj/mµjT
βj) for j = 1, 2 and um = (u1m, u2m)′, then by

Lemma 3.3a and applying the delta method, we have

um →d N


0,




1+ηµ1T β1

µ1
η

η 1+ηµ2T β2

µ2





 , as m →∞.

Similar to argument in (3.34), we get

√
m(µ̂j − µj) =

µjβj log T√
µjT βj

νjm + µjujm + op(1), j = 1, 2.(3.37)

By (3.36) and (3.37), the results follow.
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3.5 Example: Vertical Boring Machine (Majumdar, 1993)

Majumdar (1993) studied recurrent failure times from a vertical boring machine

that is subjected to multiple failure modes. The data consists of 262 recurrent failure

times spanning a total of 18,285 hours. There are 11 failure times with masked

failure causes. For simplicity of the exposition, are combine failure causes to present

a 2-mode analysis. By combining groups of failure causes from the classification of

Deshpande et al. (2000), we let failure mode-1 be failures from group 1,4,5 and 6

and mode-2 be the failures from groups 2 and 3. Moreover, 11 failure times with

unknown caused are considered masked. Therefore, there 176, 75, and 11 failure

times are from mode-1, mode-2, and masked, respectively.

Now that the failure modes have been defined, we start by checking if PLPs

are good fits for the failure times for both failure modes. We first check the fits

graphically by the Duane plots in Figure 3.1 below where the plots (a) and (b) are for

mode-1 and mode-2 respectively. Although the plots do not exhibit strong linearity,

a PLP assumption may not be too unreasonable, especially for mode-1 failures. This

is further confirmed by a Cramér-von Mises test. Primarily, for the purposes of

illustration, we shall assume PLP’s to govern the underlying failure process for both

modes.

We test the equality of the shape parameters using the F -test in (3.19). Since

δi’s for masked failure times are unknown, we estimate them using Pr(δi = 1) =

µ̂1β̂2t
β̂1−1
i

µ̂1β̂1t
β̂1−1
i +µ̂2β̂2t

β̂2−1
i

. So, we get n1 = 185.409 for calculating F -statistics. The F -

statistics is 2.132 which greater than the critical value 1.316 (0.975−th quantile) at

significant level 0.05 from F-distribution with degrees of freedom 368.82 and 153.18.

Therefore, we do not assume the equality of β1 and β2.

The MLEs are

µ̂1 = 3.294× 10−4, β̂1 = 1.347, µ̂2 = 5.391× 10−11, and β̂2 = 2.856.
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Figure 3.1: Duane plots for the recurrent failure times excluding masked data for failure mode-1
(a) and failure mode-2 (b).
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By using the formula β̂j × 1
2nj

[χ2
2(n1−δn),.025, χ

2
2(n1−1+δn),.975], j = 1, 2 with n2 =

n − n1 and χ2
ν,α is the α−th quantile from χ2-distribution with degree of freedom

ν, the (conditional) exact 95% confidence interval for β1 is [1.1534, 1.5399], and for

β2 is [2.2527, 3.5306]. Again, n1 is estimated by δ̂i’s of masked data. Since we do

not assume equality of β1 and β2, we cannot get the exact confidence intervals of

µ1 and µ2. However, we can get their confidence intervals by using the asymptotic

distribution. By using the formula µ̂j × exp([±z.975 ∗ log nj/
√

nj]), j = 1, 2 with

z.975 is the 0.975−th quantile from N(0, 1), the 95% confidence interval for µ1 is

[1.5531, 6.9846]× 10−4, and for µ2 is [2.0402, 14.2432]× 10−11. Note that we use nj’s

instead of g(n) and n in Theorem 3.6 (Note that β̂2 > β̂1 in this example.) since the

sample size is small especially when the converging rate of µ̂j’s are Op(log n/
√

nβ1/β2)

and Op(log n/
√

n) respectively.

0  5000 10000 15000 20000
0

50

100

150

200

250

300

t

N
(t

)

Model: Λ(t)=µ
1
tβ1+µ

2
tβ2  (− −),  Model: Λ(t)=µtβ (⋅ ⋅ ⋅)

Figure 3.2: The plot of operating times against # of failures with their 95% confidence intervals
under different models with single failure mode (- - -) and two failure modes (· · ·).

We also use the MLEs to get the 95% confidence intervals for the number of

the system failures at time t as shown in Figure 3.2 above. This plot is under

the assumption that N(t) ∼ Poisson(Λ(t)) where we estimate Λ(t) by using the
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Λ̂(t) = µ̂1t
β̂1 + µ̂2t

β̂2 . Figure 3.2 shows the intervals under two models; two failure

modes and single failure mode [Λ̂(t) = µ̂tβ̂]. In general, the intervals from both

models are similar. However, under the single failure mode model, the observed

failure times at around 4000 and 11000 do not lie inside the confidence interval,

while they do under two failure modes model. This shows that the model with two

failure modes is doing a better job, even though not by much. We also need to keep

in mind that it is expected that the model with two failure modes would do better

since it has more parameters and it is the generalized form of the single failure mode

model.

3.6 Simulation Results

In this section, the simulations for single system and multiple systems are studied.

All the simulations here are based on the simulation size of 5000.

3.6.1 Single System

For single system, the simulation results are divided into two parts, namely, (a)

where the equality of β1 and β2 is assumed and (b) where it is not.

Case: Equal Shape Parameters

In this part, we will study the behavior of log-MLEs instead of MLEs since asymp-

totically the bias and their variances and covariances should not depend on values

of true parameters. It is confirmed from the simulations that this is true for β, how-

ever, it is not for µj’s, j = 1, 2. This is due to the fact the µ̂j’s (log µ̂j’s) converge

at a slower rate of
√

n/ log n than
√

n of β̂ (log β̂) . For example, for n = 10000,

√
n/ log n = 10.86 but

√
n = 100. More specifically, it is due to the exact distribution

of log µ̂j which can be written as

log µ̂1 =d logAn,ρ +
2n

Bn

[log Cn − log µ]
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Table 3.1: Biases and covariance matrices of log-MLEs from the simulations at different settings
where only the size of µ1 + µ2 changes.

a). (µ1, µ2, β)′ = (.125, .125, 1)′; µ1 + µ2 = .25 and µ1/(µ1 + µ2) = 0.5.

n 25 100 1000

Bias

0B@ −0.42

−0.41

0.06

1CA 0B@ −0.12

−0.12

0.02

1CA 0B@ −0.02

−0.02

0.00

1CA
Covariance Matrix

0B@ 2.85 2.67−1.63

2.67 2.91−1.65

−1.63−1.65 1.04

1CA 0B@ 1.85 1.75−1.30

1.75 1.84−1.30

−1.30−1.30 0.97

1CA 0B@ 1.46 1.42−1.18

1.42 1.58−1.18

−1.18−1.18 0.99

1CA
b). (µ1, µ2, β)′ = (.5, .5, 1)′; µ1 + µ2 = 1 and µ1/(µ1 + µ2) = 0.5.

n 25 100 1000

Bias

0B@ −0.29

−0.28

−0.06

1CA 0B@ −0.10

−0.09

0.02

1CA 0B@ −0.02

−0.02

0.00

1CA
Covariance Matrix

0B@ 1.59 1.37−1.19

1.37 1.58−1.19

−1.19−1.19 1.07

1CA 0B@ 1.14 1.04−1.01

1.04 1.14−1.01

−1.01−1.01 0.98

1CA 0B@ 1.08 1.04−1.03

1.04 1.08−1.04

−1.03−1.04 1.03

1CA
c). (µ1, µ2, β)′ = (2, 2, 1)′; µ1 + µ2 = 4 and µ1/(µ1 + µ2) = 0.5.

n 25 100 1000

Bias

0B@ −0.15

−0.16

0.06

1CA 0B@ −0.07

−0.07

0.02

1CA 0B@ −0.01

−0.01

0.00

1CA
Covariance Matrix

0B@ 0.66 0.45−0.66

0.45 0.67−0.67

−0.66−0.67 1.06

1CA 0B@ 0.63 0.53−0.74

0.53 0.63−0.74

−0.74−0.74 1.03

1CA 0B@ 0.68 0.64−0.80

0.64 0.68−0.80

−0.80−0.80 0.98

1CA
and

log µ̂2 =d logAn,1−ρ +
2n

Bn

[log Cn − log µ]

where µ = µ1 +µ2, ρ = µ1/µ, An,ρ ∼ Bin(n, ρ), Bn ∼ χ2
2n−2, and Cn ∼ Gamma(n, 1)

with An,∗, Bn, and Cn are mutually independent. This can be shown by letting

An,ρ = n1,An,1−ρ = n2,Bn = 2nβ/β̂, and Cn = µtβn. We can see that the exact

distributions of log µ̂j’s depend of the values of µ and ρ, however, they will no longer

depend on µ and ρ as n →∞.

The results for different values of µ1 + µ2 and µ1/(µ1 + µ2) are discussed here

where we set β = 1 throughout. Note that according to Theorem 3.5 and the delta



83

Table 3.2: Biases and covariance matrices of log-MLEs from the simulations at different settings
where only the size of µ1/(µ1 + µ2) changes.

a). (µ1, µ2, β)′ = (.65, .35, 1)′; µ1 + µ2 = 1 and µ1/(µ1 + µ2) = 0.65.

n 25 100 1000

Bias

0B@ −0.28

−0.31

0.06

1CA 0B@ −0.08

−0.09

0.01

1CA 0B@ −0.01

−0.01

0.00

1CA
Covariance Matrix

0B@ 1.57 1.41−1.22

1.41 1.73−1.22

−1.22−1.22 1.10

1CA 0B@ 1.12 1.06−1.03

1.06 1.20−1.04

−1.03−1.04 1.02

1CA 0B@ 1.02 1.00−1.00

1.00 1.06−1.00

−1.00−1.00 1.00

1CA
b). (µ1, µ2, β)′ = (.8, .2, 1)′; µ1 + µ2 = 1 and µ1/(µ1 + µ2) = 0.8.

n 25 100 1000

Bias

0B@ −0.29

−0.33

0.07

1CA 0B@ −0.10

−0.12

0.02

1CA 0B@ −0.01

−0.01

0.00

1CA
Covariance Matrix

0B@ 1.56 1.45−1.22

1.45 1.93−1.23

−1.22−1.23 1.09

1CA 0B@ 1.14 1.08−1.04

1.08 1.34−1.04

−1.04−1.04 1.01

1CA 0B@ 1.02 0.99−0.99

0.99 1.10−0.99

−0.99−0.99 0.98

1CA
c). (µ1, µ2, β)′ = (.95, .05, 1)′; µ1 + µ2 = 1 and µ1/(µ1 + µ2) = 0.95.

n 25 100 1000

Bias

0B@ −0.31

0.39

0.06

1CA 0B@ −0.08

−0.13

0.01

1CA 0B@ −0.01

−0.02

0.00

1CA
Covariance Matrix

0B@ 1.43 1.41−1.66

1.41 1.60−1.17

−1.66−1.17 1.06

1CA 0B@ 1.10 1.07−1.02

1.07 1.96−1.04

−1.02−1.04 1.00

1CA 0B@ 1.02 1.02−0.99

1.02 1.47−1.02

−0.99−1.02 0.99

1CA
method,




√
n(log n)−1(log µ̂1 − log µ1)

√
n(log n)−1(log µ̂2 − log µ2)

√
n(log β̂ − log β)



→d N




0,




1 1 −1

1 1 −1

−1 −1 1







as n →∞.

Therefore, we will use the covariance matrix above for comparison of covariance

matrices in Table 3.1 and 3.2. Furthermore, the biases in Table 3.1 and 3.2 are

defined as log µ̂1 − log µ1 and so on.

First we examine the case where the size of µ1 +µ2 changes where β and µ1/(µ1 +

µ2) are held fixed at values of 1 and 0.5 respectively. The summary of the sim-

ulation are shown in Table 3.1. Table 3.1 shows that the sizes of biases and the
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variances/covariances corresponding to µ̂1 (log µ̂1) and µ̂2 (log µ̂2) are affected by

the size of the µ1 + µ2 where they increase as the size µ1 + µ2 increases. However,

it is not the case for β̂ (log β̂). This effect does not diminish even at sample size of

1000. As mentioned before, this may be due to the rate
√

n/ log n of µ̂j’s (log µ̂j’s).

Now we examine the case where the ratio of µ1 and µ2 varies. WLOG, we

let µ1 > µ2. Table 3.2 shows that as the ratio
(

µ1

µ1+µ2

)
increases, it affects the

sizes of biases and variances/covariances corresponding to µ̂2 (log µ̂2), a little to

µ̂1 (log µ̂1) and virtually none to β̂ (log β̂). For µ̂2 (log µ̂2), the sizes of biases and

variances/covariaces increase as the ratio increases. However, this effect seems to

diminish at large sample size. This due to the fact that as the ratio increase, the

number of failures from mode-2 decreases and that would affect the efficiency of

µ̂2 (log µ̂2).

Case: Unequal Shape Parameters

Now let use consider the case where the equality of β1 and β2 are not assumed. We

also study the behaviors of log µ̂j’s and log β̂j for j = 1, 2 since they asymptotically

do depend on the choices of true parameters. According to Theorem 3.6 and the

delta method,




√
n(log n)−1(log µ̂1 − log µ1)

√
n(log β̂1 − log β1)

√
g(n)(log g(n))−1(log µ̂2 − log µ2)

√
g(n)(log β̂2 − log β2)




→d N




0,




1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1







,

as n →∞. We will use the covariance matrix above to compare covariance matrices

from Table 3.3. Furthermore, the biases in Table 3.3 are defined as log µ̂1 − log µ1

and so on.

First let us look at Table 3.3a. With equal µj’s but β1 = 2 > 1 = β2, the sizes

of biases and variances/covariances from mode-2 are larger than those from mode-1.

But, they all converge to asymptotic values as sample size increases. In Table 3.3b,
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Table 3.3: Biases and covariance matrices of log-MLEs from the simulations at different settings
where the equality of β1 and β2 are not assumed.

a). (µ1, β1, µ2, β2)
′ = (1, 2, 1, 1)′.

n 25 100 1000

n̄1/n 0.814 0.905 0.969

Bias

0BBB@
−0.30

0.07

−0.78

0.16

1CCCA
0BBB@
−0.10

0.02

−0.38

0.07

1CCCA
0BBB@
−0.01

0.00

−0.15

0.02

1CCCA
Cov. Matrix

0BBB@
1.70−1.41−0.13 0.05

−1.41 1.34 0.15−0.04

−0.13 0.15 26.18−4.16

0.05−0.04−4.16 1.71

1CCCA
0BBB@

1.21−1.13 0.02−0.01

−1.13 1.12−0.02 0.02

0.02−0.02 2.49−1.57

−0.01 0.02−1.57 1.26

1CCCA
0BBB@

1.05−1.03−0.02 0.01

−1.03 1.03 0.02−0.01

−0.02 0.02 1.36−1.15

0.01−0.01−1.15 1.08

1CCCA
b). (µ1, β1, µ2, β2)

′ = (1, 4, 1, 1)′.

n 25 100 1000

n̄1/n 0.881 0.963 0.994

Bias

0BBB@
−0.28

0.07

−0.29

0.23

1CCCA
0BBB@
−0.09

0.02

−0.55

0.18

1CCCA
0BBB@
−0.01

0.00

−0.52

0.10

1CCCA
Cov. Matrix

0BBB@
1.58−1.30−0.03 0.04

−1.30 1.21 0.05−0.03

−0.03 0.05 11.78−2.64

0.04−0.03−2.64 1.09

1CCCA
0BBB@

1.14−1.07−0.01 0.00

−1.07 1.06 0.00 0.00

−0.01 0.00 12.77−2.91

0.00 0.00−2.91 1.24

1CCCA
0BBB@

1.02−0.99−0.04 0.01

−0.99 0.99 0.04−0.01

−0.04 0.04 4.83−2.04

0.01−0.01−2.04 1.28

1CCCA
c). (µ1, β1, µ2, β2)

′ = (4, 2, .25, 1)′.

n 25 100 1000

n̄1/n 0.912 0.975 0.996

Bias

0BBB@
−0.18

0.07

0.22

0.30

1CCCA
0BBB@
−0.06

0.01

−0.58

0.23

1CCCA
0BBB@
−0.01

0.00

−1.09

0.14

1CCCA
Cov. Matrix

0BBB@
0.57−0.70 −0.09 0.00

−0.70 1.16 0.00 0.00

−0.09 0.00 181.72 3.41

0.00 0.00 3.41 0.41

1CCCA
0BBB@

0.56−0.72 0.37 −0.01

−0.72 1.01 −0.43 0.01

0.37−0.43 453.50−12.78

−0.01 0.01−12.78 0.67

1CCCA
0BBB@

0.68−0.83−0.04 0.00

−0.83 1.03 0.03 0.01

−0.04 0.03 27.31−4.77

0.00 0.01−4.77 1.25

1CCCA
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we increase β1 to 4, the sizes of biases and variances/covariances from mode-2 are

larger than those from mode-1. However, the biases of µ̂2 (log µ̂2) at sample size 100

and 1000 are larger than that at sample size of 25. By observing the values n̄1/n,

we can see that the proportion failure from mode-2 drops as sample size increases.

With converging rate of
√

g(n)/ log g(n) (see Theorem 3.8), the simulation results

for µ̂2 (log µ̂2) can be very unstable even at sample size of 1000. In Table 3.3c, βj’s

are as same as in Table 3.3a, however, µ1 = 4 > .25 = µ2. The results of Table 3.3c

compared to Table 3.3a are similar to those of Table 3.3b to Table 3.3a. This implies

that both ratio of βj’s and of µj’s do affect of efficiency of estimators especially for

the failure mode with smaller proportion of failures.

3.6.2 Multiple Systems

The simulation for multiple systems are also studied but the details are omitted.

However, we summarize the result here. The simulation results are consistent with

Theorem 3.7-3.10 even at small m if the time censoring T is at moderate size. As

long as, there are moderated number of failures fall into each failure mode, the esti-

mators seems to do very well. Under frailty dependence, the size of frailty variance

does have the negative impact the to the efficiency of the estimators. Moreover, the

choice of frailty distribution also affects the efficiency of estimator especially at small

sample.

3.7 Summary

We have laid down a general framework for repairable systems under competing

risks. Under the assumption that the number of failures from each failure mode

follows some general counting process, some properties and necessary condition are

studied. These properties are studied so that it could be applied directly but not

limited to nonhomogeneous Poisson process (NHPP).
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In the latter part of this chapter, we have studied the inferences for a single

repairable system and multiple repairable systems under PLP. For a single system,

we restrict our study to data from the system under (system) failure censoring. When

the shape parameters are equal, some results can be derived from known results of a

single-failure-mode system. For the case with unequal shape parameters, as we let n

go to infinity, the system failures are dominated by the failures from the mode with

the bigger shape parameter. However, the number of failures from the smaller shape

parameter still goes to infinity but with slower rate. We have also studied the case

where failure modes of the data are partially masked. The problem can be easily

handled if it is viewed under bayesian framework.

With data from multiple repairable systems, we focus our study mainly under

time censoring scenario where the systems are being observed until a fixed time T .

We have mentioned that under the failure censoring, the results from a single re-

pairable systems can be applied. The study are mainly divided into two cases when

the independence among failure modes are assumed and it is not. For the case with

the independence assumed, the MLEs converges in distribution to the true parame-

ters with rate of
√

m since all systems are iid. Likewise, when the dependence among

failure modes assumed, the MLEs also converges weakly with rate of
√

m, however,

the covariance matrix has the frailty parameter involved in it especially the terms

relating to the scale parameter µ1 and µ2. The estimators and their variances of

shape parameters β1 and β2 are not affected by frailty parameter η.

3.8 Future Research

In this section, we discuss the possible future research for the inferences for re-

pairable systems under competing risks. It is also of interest to study some properties

when the recurrent failures follows some counting processes under different assump-
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tions not included in this study. The assumptions in this study for the general

counting processes are made so that it could be applied to NHPP and PLP frame-

work easily. One may want to study the case where the failures follow different kinds

of counting process. The different parametric forms of the cumulative intensive func-

tions are also at interest such as when Λ(t) = µ[1− exp(βt)]. For the case when the

failure mode are dependent, one may be interested to study the inferences under the

dependent that does not follow frailty framework as it does in our study.

3.9 Technical Results and Proofs

In this section, we summary some technical results needed for some results stated

in the earlier sections. We start by introducing regularly and slowly varying function.

(for formal definitions, see Feller 1996).

Definition 3.1. A nonnegative function L defined on [0,∞] is a regularly varying

function with exponent −∞ < ρ < ∞ iff

L(xt)

L(t)
→ xρ as t →∞.

And L is a slowly varying function iff L is a regularly varying function with exponent

0 such that

L(xt)

L(t)
→ 1 as t →∞.

Examples for regularly, slowly, and non-regularly functions are power function

(tρ), logarithm function (log(t)) and exponential function (exp(t)), respectively. Note

that logarithm function is also regularly varying function, however, power function is

not slowly varying function. Now suppose L is a nonnegative differentiable monotone

increasing function, and L−1 exists as a nonnegative differentiable monotone increas-

ing function. We have Lemma 3.4 below which is needed for the proof of Theorem

3.4 later on.
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Lemma 3.4. Suppose L is a nonnegative differentiable monotone increasing function

on [0,∞] such that

L(xt)

L(t)
→ xρ as t →∞,

then

L−1(ys)

L−1(s)
→ y1/ρ as s →∞, for 0 ≤ ρ ≤ ∞.

Proof. Since L is a nonnegative differentiable monotone increasing function on [0,∞],

L−1 exists and also is a nonnegative differentiable monotone increasing function on

[0,∞]. By L’Hospital rule,

lim
t→∞

L(xt)

L(t)
=

limt→∞ d
dt

[L(xt)]

limt→∞ L′(t)
=

x limt→∞ L′(xt)

limt→∞ L′(t)
≡ xρ

implying that

h(x) ≡ limt→∞ L′(xt)

limt→∞ L′(t)
= xρ−1

where L′(t) = d
dt

L(t). Note that d
ds

[L−1(s)] = 1
L′(L−1(s))

. Let Z = lims→∞
L−1(ys)

L(s)
.

Now suppose Z exists, consider below,

Z =
lims→∞ d

ds
[L−1(ys)]

lims→∞ d
ds

[L−1(s)]
=

lims→∞
y

L′(L−1(ys))

lims→∞ 1
L′(L−1(s))

= y×

 lims→∞ L′

(
L−1(ys)
L−1(s)

× L−1(s)
)

lims→∞ L′(L−1(s))



−1

.

Since L−1(s) →∞ as s →∞, the above equation can be rewritten as,

Z = y × [h(Z)]−1 = y × Z1−ρ

Hence, Z = y1/ρ. This completes the proof.

Lemma 3.4 can be applied to a nonnegative differentiable monotone increasing

function, as shown in Corollary 3.1 below.
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Corollary 3.1. Suppose L is a nonnegative differentiable monotone increasing func-

tion.

a). If L is a regularly varying function with exponent ρ 6= 0 then L−1 is also a

regularly varying function with exponent 1/ρ.

b). L is a slowly varying function iff L−1 is not regularly varying function.

Proof. The proof simply follows from the results from Lemma 3.4.

Now we are ready to state the theorem needed for the proof of Theorem 3.4

Theorem 3.11. Suppose Xn and Yn are nonnegative random variables nondecreasing

in n such that Xn →a.s. ∞ and Yn →a.s. ∞, as n → ∞, and f , a nonnegative

differentiable monotone increasing function, regularly varying with exponent 0 ≤ ρ <

∞ such that limt→∞
f(xt)
f(t)

= xρ.

a). If Xn/Yn →a.s. 1 as n →∞, then f(Xn)/f(Yn) →a.s. 1, as n →∞.

b). Suppose ρ 6= 0, Xn/Yn →a.s. 1 iff f(Xn)/f(Yn) →a.s. 1 as n →∞.

Proof.

a). With Xn

Yn
→a.s. 1 as n →∞, we have

f(Xn)

f(Yn)
=

f
(

Xn

Yn
× Yn

)

f(Yn)
→

(
Xn

Yn

)ρ

→a.s. 1 as n →∞.

b). Now suppose ρ is nonzero . Then by Corollary 3.1a, f−1 is also regularly varying

function. Now, we can write Xn

Yn
= f−1(f(Xn))

f−1(f(Yn))
, then applying the result from a) to

complete the proof.

With Theorem 3.11 now proved, we state here the proof of Theorem 3.4.
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3.9.1 Proof of Theorem 3.4

Proof. a). Since limt→∞
Λ1(t)
Λ(t)

→ 1 , Tn → ∞ and nj/Λj(Tn) →a.s. 1 as n → ∞ for

j = 1, 2, we have n1

n
= N1(Tn)

Λ1(Tn)
× Λ1(Tn)

Λ(Tn)
× Λ(Tn)

n
→a.s. 1 as n →∞.

b). Suppose Λ2 ◦ Λ−1
1 is a regularly varying function with 0 ≤ ρ < ∞. Under

Condition 3.1, it follows that Λ2 ◦Λ−1
1 is a nonnegative differential monotone increas-

ing function. Therefore, by applying Theorem 3.11a and result from a), we have

n2

Λ2◦Λ−1
1 (n)

= N2(Tn)
Λ2(Tn)

× Λ2◦Λ−1
1 (Λ1(Tn))

Λ2◦Λ−1
1 (N1(Tn))

× Λ2◦Λ−1
1 (n1)

Λ2◦Λ−1
1 (n)

→a.s. 1 as n →∞. This completes the

proof.

Theorem 3.4 shows that n1 goes to infinity with rate n, however, n2 goes to infinity

at rate slower than n where the rate for n2 can only be specified when Λ2 ◦ Λ−1
1 is

regularly varying function. In the case where Λ2 ◦ Λ−1 is non-regularly varying

function, we only be able to say that n2 will go to infinity at some rate less than n.

3.9.2 Proof of (3.31)

Proof. For convenient, we let θ = 1/η. Hence, we have

lk ≡ log Lk(Data) = log Γ(θ+nk)−log Γ(θ)+θ log(θ)−(θ+nk) log(Λ(T )+θ)+Constant.

Then,

∂lk
∂θ

= ψ(θ + nk)− ψ(θ) + 1 + log(θ)−
[
log(Λ(T ) + θ) +

θ + nk

Λ(T ) + θ

]

= ψ(θ + nk)− ψ(θ) + 1 + log(θ)−
[
log(Λ(T ) + θ) + 1 +

nk − Λ(T )

Λ(T ) + θ

]
.

And,

∂2lk
∂θ2

= ψ′(θ + nk)− ψ′(θ) +
1

θ
−

[
1

Λ(T ) + θ
− nk − Λ(T )

(Λ(T ) + θ)2

]



92

Hence, the Fisher information for the data from the k−th system is

−E
[
∂2lk
∂θ2

]
= ψ′(θ)− 1

θ
+

1

Λ(T ) + θ
− E[ψ′(θ + nk)]

since E[nk] = Λ(T ). Hence, the variance of θ̂ = 1/η̂ is

1

m

[
ψ′(1/η)− η +

1

Λ(T ) + 1/η
− E[ψ′(1/η + nk)]

]−1

.

By applying the delta method with η = 1/θ, the result follows.
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[2] Aly, E. A. A., Csörgő, M., and Horváth, L. (1985), “Strong approximations of the quantile
process of the product-limit estimator (Corr: V19 p366),” Journal of Multivariate Analysis,
16 , 185-210.

[3] Ascher, H. and Feingold, H. (1984), Repairable Systems Reliability, New York: Marcel Dekker.

[4] Bain, L. J. (1978), Statistical Analysis of Reliability and Life-Testing Models: Theory and

Methods, Volume 24, New York: Marcel Dekker.

[5] Bar-Lev, S. K, Lavi, I. and Reiser, B. (1992), “Bayesian inference for the power law process,”
Annals of the Institute of Statistical Mathematics, 44, 623-639.

[6] Bhattacharyya, G. K. and Ghosh, J. K. (1991), “Asymptotic properties of estimators in a bino-
mial reliability growth model and its continuous-time analog,” Journal of Statistical Planning

and Inference, 29, 43-53.

[7] Blom, G. (1958), Statistical Estimates and Transformed Beta Variables, New York: John
Wiley.

[8] Breslow, N., and Crowley, J. (1974), “A Large Sample Study of the Life Table and Product
Limit Estimate Under Random Censorship,” Annals of Statistics, 2, 437-453.

[9] Burr, D. (1994), “A comparison of certain bootstrap confidence intervals in the Cox model,”
Journal of the American Statistical Association, 89 , 1290-1302.

[10] Chernoff, H., Gastwirth, J. L., and Johns, M. V. (1967), “Asymptotic Distribution of Linear
Combinations of Fuctions of Order Statistics With Applications to Estimation,” Annals of

Mathematical Statistics, 38, 52-72.

[11] Crow, L. H. (1974), “Reliability analysis for complex, repairable systems,” Reliability and

Biometry, F. Proschan and R.J. Serfling, eds., SIAM, Philadelphia, 379- 410.

[12] Crowder, M. (2001), Classical Competing Risks, New York: Chapman & Hall/CRC.

[13] Cummings, F. J., Gray, R., Davis, T. E., Tormey, D. C., Harris, J. E., Falkson, G. G., and
Arsenequ, J. (1986), “Tamoxifen versus placebo: double blind adjuvant trial in elderly woman
with stage II breast cancer,” National Cancer Institute Monographs, 1, 119-23.

[14] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), “Maximum likelihood from incomplete
data via the EM Algorithm,” Journal of the Royal Statistical Society. Series B (Methodologi-

cal), 39, 1-38.



95

[15] Deshpande, J. V., Mukhopadhyay, M. and naik-Nimbalkar, U. V. (2000), “Tests for equality
of tntensities of failures of a repairable system under two competing risks,” in Recent Ad-

vances in Reliability Theory: Methodology, Practice and Inference (Statistics for Industry and

Technology), eds. by N. Limnios and M. Nikulin , Birkhäuser, pp. 391-404.
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