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Abstract
Simultaneous ascending auctions present agents with various strategic prob-

lems, depending on preference structure. As long as bids represent non-repudiable
offers, submitting non-contingent bids to separate auctions entails an exposure
problem: bidding to acquire a bundle risks the possibility of obtaining an unde-
sired subset of the goods. With multiple goods (or units of a homogeneous good)
bidders also need to account for their own effects on prices. Auction theory does
not provide analytic solutions for optimal bidding strategies in the face of these
problems. We present a new family of decision-theoretic bidding strategies that
use probabilistic predictions of final prices: self-confirming distribution-prediction
strategies. Bidding based on these is provably not optimal in general. But evi-
dence using empirical game-theoretic methods we developed indicates the strat-
egy is quite effective compared to other known methods when preferences exhibit
complementarities. When preferences exhibit substitutability, simpler demand-
reduction strategies address the own price effect problem more directly and per-
form better.

1 Introduction
A simultaneous ascending auction (SAA) [Cramton, 2005] allocates a set of m related
goods among n agents via separate, concurrent English auctions for each good. This is
characteristic of a variety of related but not identical real-world auctions, such as bid-
ders participating in concurrent independent auctions on eBay, power markets, spec-
trum auctions in many countries, and other explicitly designed trading environments
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[Milgrom, 2003]. Moreover, some of the key strategic issues presented by SAAs apply
whenever there are concurrent markets for interrelated goods, even if those markets are
not formal auctions.

Simultaneity is significant only if demands (or supplies) for the various goods are
interrelated. We address here some of the challenges bidders with such demands face
when formulating their strategies for participation in SAAs. Interrelated demands gen-
erally exhibit complementarity or substitutability (or both), each of which induces char-
acteristic bidding problems.

To study bidding strategies in the face of the strategic challenges presented by com-
plementarity or substitutability, we intentionally abstract from any single application.
There are features specific to spectrum auctions, for example, that we do not address,
just as there are unaddressed features specific to simultaneous eBay auctions and other
particular SAA environments. In hope of producing results generalizable to a range of
applications, we analyze a generic SAA exhibiting a few important characteristics that
are common across most specific settings.

Complementarity manifests when an agent’s value for a good is greater if it also
obtains one or more other goods [Lehmann et al., 2006]. For example, an airline pas-
senger may wish to obtain two connecting segments to complete a trip. Goods exhibit
complementarity from the perspective of an agent when her valuation for those goods is
superadditive. Let X , Y , and Z be sets of goods such that Y ∪Z = X and Y ∩Z = ∅.
Given a quasi-linear valuation function, v : 2|X| → R, that assigns value to possible
subsets of X , superadditive preference for Y and Z means that v(X) > v(Y ) + v(Z).
In other words, the combined bundle X is worth more than the sum of its parts. As a
special case, if goods in a set are each worthless without the others, they are perfect
complements. We say that a valuation exhibits complementarities if there are some
subsets of goods for which preference is superadditive.

When the inequality is reversed, the valuation is subadditive, which occurs for
example when goods are substitutes. Flights on the same route by different airlines
would typically be considered substitutes, as would flights to two candidate vacation
destinations. Technically, goods are substitutes when raising the price of one does not
decrease demand for others—that is, for any optimal bundle before the price increase
there is an optimal bundle post-increase that includes at least as much demand for all
goods that did not increase in price. Substitutability is a strictly stronger condition than
subadditivity [Lehmann et al., 2006]. An important extreme case of substitutability is
perfect substitutes or single-unit demand [Gul and Stacchetti, 1999], where for all Y ⊆
X , v(Y ) = maxi∈Y v({i}). If, in addition, goods are (for this agent) homogeneous
then they are 1:1 perfect substitutes.

Concurrent auctions with interdependent goods are strategically challenging be-
cause agents bid separately in auctions for each item, but willingness-to-pay depends
nontrivially on which combination of items the agent ultimately wins. Since bids rep-
resent non-repudiable offers, submitting bids to separate auctions entails an exposure
problem. With complementarities, if an agent bids on a set of items based on her
willingness-to-pay for the set, she may pay more than her valuation for the subset she
actually wins. With subadditive preferences, an agent bidding based on willingness-
to-pay for individual goods risks paying more for a set than it is worth. The SAA
mechanism makes it easy for agents to avoid exposure in the case of substitutes. Since
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a price increase for one good cannot decrease demand for others, the agents can man-
age their bids to ensure they are never winning more goods than they want at the current
prices. With any violation of substitutability, however, a bidder cannot in general obtain
a desired package without incurring some exposure risk.

The exposure problem motivates mechanisms that take complementarities directly
into account, such as combinatorial auctions [Cramton et al., 2005, de Vries and Vohra,
2003], in which the auction mechanism determines optimal packages based on agent
bids over bundles. Although such mechanisms may provide an effective solution in
many cases, there are often significant barriers to their application [MacKie-Mason and
Wellman, 2005]. Indeed, SAA-based auctions are often deliberately adopted, despite
awareness of strategic complications [Milgrom, 2003, McAfee and McMillan, 1996].

A second strategic problem for bidders is accounting for own price effects: the
impact of their own bids on resulting prices. For example, a bidder winning q units
may find that bidding less than her incremental value for the q + 1st unit results in a
price sufficiently lower for the first q units that the inframarginal surplus gain exceeds
the incremental surplus from winning the q + 1st unit. The strategy of shading bids to
exploit this benefit is known as demand reduction [Ausubel and Cramton, 2002, Weber,
1997].

Given exposure and own price effects, it is clear that bidding willingness-to-pay is
generally not optimal. Worse for designers, researchers, and bidders, auction theory to
date [Krishna, 2002] has little to say about how one should bid in simultaneous mar-
kets with substitutes or complements. There exists no useful analytical characterization
of equilibria for SAA games, and indeed deriving such results appears intractable for
nontrivial environments. Moreover, the best-response strategies to even simple spec-
ified bidding policies can be surprisingly complex [Reeves et al., 2005]. Simulation
studies shed light on some strategic issues [Csirik et al., 2001], as have accounts of
strategies employed in specific auctions [Cramton, 1995, Weber, 1997], but the game
is too complex to admit definitive strategic recommendations.

We employ a different approach to analyze bidding strategies, which we elsewhere
describe as a computational reasoning [MacKie-Mason and Wellman, 2005] or em-
pirical game-theoretic methodology [Wellman, 2006] for analyzing mechanisms and
strategies. We begin with an explicit formulation of the resource allocation prob-
lem, generate a set of candidate parametrized strategies, then simulate the game for
various profiles of strategy parameters. Through simulation, we in effect convert an
extensive-form game of incomplete information with high-dimensional strategy space
into a normal-form game over the restricted set of strategies defined by the instances of
strategy parameters explored. We then use standard tools to solve the restricted-strategy
(yet often still quite large) normal-form games, and analyze the results. For the families
of candidate strategies we study, we are able to characterize those which participate in
equilibria of the transformed game, and the quality of the resulting outcomes.

One advantage of this fundamentally empirical method is that if others believe they
have superior strategies, it is straightforward to apply the method incrementally to eval-
uate the new candidates with respect the best-performing strategies known to date. This
is important because the SAA environment is so complex, and in any SAA the specific
rules may call for variations on the basic strategy family we study. For example, some
auctions impose activity rules, which introduces an eligibility management problem
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into the design of bidding strategies. Budget constraints may also affect the design of
bidding strategies. We do not claim that our present analysis covers the entire space
of bidding-strategy design for SAAs. We do claim that our method allows us to ac-
cumulate empirical learning on strategy performance in a generic SAA setting, and
that strategic lessons from this environment will be a useful starting point for those
designing strategies for the particular SAA rules they face.

We next proceed with a formal specification of the problem and of the generic SAA
mechanism we study.

2 The Simultaneous Ascending Auctions (SAA) Domain
The formal specification of the SAA game includes a number of agents, n, a num-
ber of goods, m, a type distribution that yields valuation functions, vj for the agents
j ∈ {1, . . . , n},1 and a specification of the SAA mechanism rules. In general the SAA
mechanism comprises m separate auctions, one for each good, that operate over multi-
ple rounds of bidding. In the generic SAA version we study, bidding is synchronized so
that in each round each agent submits a bid in every auction in which it chooses to bid.
At any given time, the bid price on good i is βi, defined to be the highest bid bi received
thus far, or zero if there have been no bids. The bid price along with the current winner
in every auction is announced at the beginning of each new round. To be admissible, a
new bid must meet the ask price, i.e., the bid price plus a bid increment (which we take
to be one w.l.o.g., allowing for scaling of the agent values): bnew

i ≥ βi + 1. If an auc-
tion receives multiple admissible bids in a given round, it admits the highest, breaking
ties randomly. An auction is quiescent when a round passes with no new admissible
bids, i.e., the new bid prices βnew = β which become the final prices p. When every
auction is simultaneously quiescent they all close, allocating their respective goods per
the last admitted bids.

An agent’s current information state, B, comprises the current bid prices, β, along
with a bit vector indicating which goods the agent is currently winning. Let B denote
the set of possible current information states. A local bidding strategy is a mapping
B → b, where the bid vector b specifies a bid for each of the m auctions. More
generally, an agent’s bidding strategy maps the history of information states to bids.
For the present work, we limit consideration to local bidding strategies. This is a
substantive limitation, ruling out, for example, methods that infer other agent’s types
from dynamic price patterns, or strategies that punish other’s behavior. Nevertheless,
the strategic issues we consider primary can be addressed at the level of local bidding
strategies, and thus we take the simplification achieved through ignoring history to be
worthwhile.2

Submitting an inadmissible bid (e.g., bi = 0) is equivalent to not bidding. An
agent’s payoff—also referred to as its surplus—is defined by the auction outcomes,

1We may include in the type distribution Nature’s type which determines the random tie-breaking when
agents place identical bids.

2Assuming that agents submit bids for a subset of goods at the minimum increment, the size of the
strategy space is |B|2m. Conditioning on a history of length t would expand this space by a factor of 2mt.
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namely, the set of goods it wins, X , and the final prices, p:

σ(X, p) ≡ v(X)−
∑
i∈X

pi. (1)

The following sections describe the family of strategies we consider in this study.
As explained below, our strategy class is restricted, but covers a wide range of bidding
strategies previously explored in the literature.

3 Perceived-Price Bidding Strategies
If an agent knew the final prices of all m goods and if those prices did not depend on
its own bidding strategy, then its optimal strategy would be clear: bid on a subset of
goods that maximizes its surplus at known prices. When prices are uncertain or bid-
dependent, this is not optimal, but may nevertheless serve as a useful starting point. In
this section, we define a class of bidding strategies that generalizes this approach by
selecting a subset of goods that maximizes surplus at perceived prices.

Definition 1 (Perceived-Price Bidder) A perceived-price bidder is parametrized by a
perceived-price function ρ : B → Zm

∗ which maps the agent’s information state, B, to
a (nonnegative, integer) perceived-price vector, ρ(B). It computes the subset of goods

X∗ = arg max
X

σ(X, ρ(B))

breaking ties in favor of smaller subsets and lower-numbered goods.3 Then, given X∗,
the agent bids bi = βi + 1 (the ask price) for the i ∈ X∗ that it is not already winning.

A perceived-price bidding strategy is defined by how the agent constructs the perceived
price from its information state. We now define two versions of the function ρ, corre-
sponding to perceived-price bidding strategies well-studied in prior literature. In Sec-
tion 4 we define the newer price-prediction perceived-price strategies we analyze in
this article. Our discussion focuses on the particularly challenging case of superaddi-
tive preference—complementary goods. We return to address the case of substitutable
goods in Section 7.

3.1 Straightforward Bidding
One example of a perceived-price bidder is the widely studied straightforward bidding
(SB) strategy.4 An SB agent sets ρ(B) to myopically perceived prices: the bid price

3More precisely: when multiple subsets tie for the highest surplus, the agent chooses the smallest. If the
smallest subset is not unique it picks the subset whose bit-vector representation is lexicographically greatest.
(The bit-vector representation ω of X ⊆ {1, . . . , m} has ωi = 1 if i ∈ X and 0 otherwise. For example,
the bit-vector representation of {1, 3} ⊆ {1, 2, 3} is 〈1, 0, 1〉.) This tie-breaking scheme is somewhat
arbitrary, and we expect alternative choices would be inconsequential. We describe our version here in detail
to facilitate replication of our experimental results.

4We adopt the terminology introduced by Milgrom [2000]. The same concept is also referred to as
“myopic best response”, “myopically optimal”, and “myoptimal” [Kephart et al., 1998].
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for goods it was winning in the previous round and the ask price for the others:

ρi(B) =

{
βi if winning good i

βi + 1 otherwise,
(2)

where β is the current bid prices.
Straightforward bidding is a reasonable strategy in some environments. When all

agents have single-unit demand, and value every good equally (i.e., the goods are all
1:1 perfect substitutes), the situation is equivalent to a problem in which all buyers have
an inelastic demand for a single unit of a homogeneous commodity. For this problem,
Peters and Severinov [2006] show that straightforward bidding is a perfect Bayes-Nash
equilibrium.

If agents have additive utility, i.e., v(Y ) =
∑

i∈Y v({i}), then they can treat the
auctions as independent and in this case too, SB is in equilibrium. To see this, consider
the case that all other agents are playing SB with additive preference. Then your bid
in one auction does not affect your surplus in another. This implies the auctions can be
treated independently and SB is a best response.

The degenerate SAA with m = 1, i.e., a single ascending auction, is strategically
equivalent to a second-price sealed-bid auction [Vickrey, 1961]. In other words, SB is a
weakly dominant strategy in a single ascending auction, similarly to “truth-telling” in a
second-price sealed-bid auction.5 For m > 1, however, the joint strategy space allows
threats such as “if you raise the price on my good I will raise it on yours.” These will
then support demand-reduction equilibria, even in the additive case. Thus, although
SB is a good strategy and is in equilibrium for some special-case environments without
complementarities, it is not (even weakly) dominant.

Up to a discretization error, the allocation in an SAA with single-unit demand is
efficient when agents follow straightforward bidding. It can also be shown [Bertsekas,
1992, Wellman et al., 2001] that the final prices will differ from the minimum unique
equilibrium prices by at most min(m,n) times the bid increment. The value of the
allocation, defined to be the sum of the bidder surpluses, will differ from the optimal
by at most the bid increment times min(m,n)(1 + min(m,n)).

Unfortunately, none of these properties hold for general preferences. The final SAA
prices can differ from the minimum equilibrium price vector, and the allocation value
can differ from the optimal, by arbitrarily large amounts [Wellman et al., 2001]. And
most importantly, SB need not be a Nash equilibrium.

Example 1 There are two agents, with values for two goods as shown in Table 1. One
admissible straightforward bidding path6 leads to a state in which agent 2 is winning
both goods at prices (15,14). Then, in the next round, agent 1 would bid 15 for good 2.
The auction would end at this point, with agent 1 receiving good 2 and agent 2 receiving
good 1, both at a price of 15.

5Technically, this equivalence applies to a strategically restricted version of the ascending auction which
does not allow arbitrary bids above the ask price (and raises the ask price continuously rather than discretely).
Otherwise, there exist strategies (albeit pathological) to which SB is not a best response. For example,
suppose my policy is to not bid more than $100 unless the bidding starts lower, in which case I will keep
bidding indefinitely. The best response to such a strategy requires jump bidding.

6The realized progression of the SAA protocol depends on tie-breaking.
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v({1}) v({2}) v({1, 2})
Agent 1 20 20 20
Agent 2 0 0 30

Table 1: A simple problem illustrating the pitfalls of SB (Example 1).

In this example, SB leads to a result with total allocation value 20, whereas the op-
timal allocation would produce a value of 30. We can construct slightly more complex
examples by adding goods and agents, enabling us to magnify the suboptimality to an
arbitrary degree.

We see that straightforward bidding fails to guarantee high quality allocations. It is
also easy to show that straightforward bidding is not an equilibrium strategy in general.
Consider again Example 1. If agents follow the SB strategy, the mechanism reaches
quiescence at prices {15, 15}. However, it is not rational for agent 2 to stop at this
point. If, for example, agent 2 continued bidding, prices would reach {21, 20} with
agent 2 winning both goods, and the auction would end (assuming agent 1 plays SB).
Agent 2 would be better off, with a surplus of −11 rather than −15.

It is clear that SB is not a reasonable candidate for a general strategy in SAA. We
show next how a simple parametric generalization to SB can address a key strategic
shortfall.

3.2 Sunk-Awareness
We showed in Example 1 that in some problems agents following a straightforward
bidding strategy may stop bidding prematurely. We now consider why SB is failing
in this situation. In a given round, agents following SB bid on the set of goods that
maximizes their surplus at myopically perceived prices (current bid or ask prices). If
none of the nonempty subsets of goods appear to yield positive net surplus, the agent
chooses the empty set, i.e., it does not bid at all, because the alternative is to earn
negative surplus. However, this behavior ignores outstanding commitments: the agent
may already be winning one or more goods. If the agent drops out of the bidding,
and others do not bid away the goods the agent already is winning, then its alternative
surplus could be much worse than if it continued to bid despite preferring the empty
bundle at current prices. In the case of an agent dropping out of the bidding on some
goods in a bundle of perfect complements, its surplus is negative the sum of the bid
prices for the goods in the bundle it gets stuck with. This failure of straightforward
bidding is due to ignoring the true opportunity cost of not bidding.

We refer to this property of straightforward bidding as “sunk-unawareness” [Reeves
et al., 2005]. SB agents bid as if the incremental cost for goods they are currently
winning is the full price, βi. However, if the probability that someone else will outbid
the agent for this good is α, then the agent is already committed to an expected payment
of (1 − α)βi. This represents a sunk cost that should not affect rational continuation
bidding. We can think of the difference, αβi, as a rough measure of the incremental
cost the agent incurs by deciding to stay with this good.
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To address this limitation of straightforward bidding, we parametrize a family of
perceived-price bidding strategies (Definition 1) that permits agents to account to a
greater or lesser extent for the true incremental cost of goods they are currently win-
ning. We call this strategy “sunk aware”. A sunk-aware agent bids as if the incremental
cost for goods it is currently winning is somewhere on the interval of zero and the cur-
rent bid price.

Our sunk-aware strategies generalize SB’s method for choosing the perceived-price
vector (Equation 2) through the parameter k ∈ [0, 1]:

ρi(B) =

{
kβi if winning good i

βi + 1 otherwise.

Using this perceived-price vector to define sunk-aware bidders, Definition 1 above
gives us a complete specification of the agent’s bidding strategy. If k = 1 the strat-
egy is identical to straightforward bidding. At k = 0 the agent is fully sunk aware,
bidding as if it would retain the goods it is currently winning with certainty. Interme-
diate values are akin to bidding as if the agent puts an intermediate probability on the
likelihood of retaining the goods it is currently winning. We treat as a special case
agents with single-unit demand: their sunk-aware strategy is to bid straightforwardly
(k = 1) since for such agents SB is a no-regret strategy.

The sunk-awareness parameter provides a heuristic for a complex tradeoff: the
agent’s bidding behavior changes after it finds itself exposed to the underlying problem
(owning goods for which the agent has lower value if not part of a larger package). In
our previous study we experimentally determined good settings of the sunk-awareness
parameter in various environments [Reeves et al., 2005].

4 Prediction-Based Perceived-Price Bidding Strategies
for SAA

Whenever an agent has non-substitutes preference and chooses to bid on a bundle of
size greater than one, it may face exposure. Exposure in SAA is a direct tradeoff:
bidding on a needed good increases the prospects for completing a bundle, but also
increases the expected loss in case the full set of required goods cannot be acquired.
A decision-theoretic approach would account for these expected costs and benefits,
bidding when the benefits prevail, and cutting losses in the alternative.

Re-consider agent 2’s plight in Example 1: following SB it is caught by the ex-
posure problem, stuck with a useless good and a surplus of −15. (Other tie-breaking
choices result in different outcomes but all of them leave agent 2 exposed and with
negative surplus.) If the agent instead plays a fully sunk-aware strategy the result could
be an outcome in which it purchases both goods at prices {21, 20} for a net surplus of
30 − 41 = −11. This is better than using SB, but the agent would fare better still by
not bidding at all.

The effectiveness of a particular strategy will in general be highly dependent on the
characteristics of other agents in the environment. This observation motivates the use
of price prediction. We would prefer strategies that employ type-distribution beliefs
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to guide bidding behavior, rather than relying only on current price information as in
the sunk-aware strategies (including SB). Forming price predictions for the goods in
SAA is a natural use for type-distribution beliefs. In Example 1, suppose agent 2 could
predict with certainty before the auctions start that the prices would total at least 30.
Then it could conclude that bidding is futile, not participate, and avoid the exposure
problem altogether. Of course, agents will not in general make perfect predictions.
However, we find that even modestly informed predictions can significantly improve
performance.

We now propose to improve on SB and sunk-awareness by using explicit price
predictions for perceived prices. Let F ≡ F (B) denote a joint cumulative distribution
function over final prices, representing the agent’s belief given its current information
state B. We assume that prices are bounded above by a known constant, V . Thus, F
associates probabilities with price vectors in {1, . . . , V }m.

We next consider two ways to use prediction information to generate perceived
prices. We first define a point prediction for perceived prices, π, that anticipates pos-
sible exposure risks. Then we define a distribution prediction for perceived prices, ∆,
that explicitly models uncertainty about the exposure prospects. The distribution ap-
proach also supports evaluation of the likelihood that the agent’s current winning bids
are sunk costs. (As with sunk-awareness, price-prediction strategies for agents with
single-unit demand ignore the predictions and play SB.)

Before we define our price-prediction strategies we want to make two points. First,
we are not (initially) concerned with how the agent formulates her beliefs (price pre-
dictions), nor the optimality of the prediction method. Rather, we propose strategies
that use some beliefs. In our experiments we investigate several different predictors.7

Second, since these are strategies for bidding in iterative auctions, we face the question
of how to update the initial price predictions (based on information revealed by the
bidding, for example), we are not concerned in this paper with discovering the optimal
updating procedure; again, we are interested in designing strategies that are defined up
to the use of some belief updating procedure. Indeed, while we experiment with dif-
ferent initial price predictors, in this paper we use only one specific, simple, updating
procedure.

4.1 Point Price Prediction
Suppose the agent has (at least) point beliefs about the final prices that will be realized
for each good. Let π(B) be a vector of predicted final prices. Before the auctions
begin the price prediction is π(∅), where ∅ is the null information state available
pre-auctions.

The auctions in SAA reveal the bid prices each round. Since the auctions are as-
cending, once the current bid price for good i reaches βi, there is zero probability that
the final price pi will be less than βi. We define a simple updating rule using this fact:
the current price prediction for good i is the maximum of the initial prediction and the

7We believe that finding the optimal predictor to use in a particular strategy is likely to be as computa-
tionally infeasible as the problem of finding an optimal strategy.
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myopically perceived price:

πi(B) ≡

{
max(πi(∅), βi) if winning good i

max(πi(∅), βi + 1) otherwise.
(3)

Armed with these predictions, the agent plays the perceived-price bidding strat-
egy (Definition 1) with ρ(B) ≡ π(B). We denote a specific point price-prediction
strategy in this family by PP(πx), where x labels particular initial prediction vectors,
π(∅). Note that straightforward bidding is the special case of price prediction with
the predictions all equal to zero: SB = PP(0). If the agent underestimates the final
prices, it will behave identically to SB after the prices exceed the prediction. If the
agent overestimates the final prices, it may stop bidding prematurely.

4.2 Distribution Price Prediction
We generalize the class of price-prediction strategies by taking into account the entire
distribution F , rather than just a nominal point estimate (e.g., the expectation of F ). We
assume the agent generates F (∅), an initial, pre-auction belief about the distribution
of final prices.

As with the point predictor, we restrict the updating in our distribution predictor
to conditioning the distribution on the fact that prices are bounded below by β. Let
Pr(p | B) be the probability, according to F , that the final price vector will be p,
conditioned on the information revealed by the auction, B. Then, with Pr(p | ∅) as
the pre-auction initial prediction, we define:

Pr(p | B) ≡


Pr(p | ∅)∑

q≥β

Pr(q | ∅)
if p ≥ β

0 otherwise.

(4)

(By x ≥ y we mean xi ≥ yi for all i.) For (4) to be well defined for all possible β we
define the price upper bounds such that Pr(V, . . . , V | ∅) > 0.

We now use the distribution information to implement a further enhancement to
take sunk costs into account in a more decision-theoretic way than the sunk-aware
agent. If an agent is currently not winning a good and bids on it, then the expected
incremental cost of winning the good is the expected final price, with the expectation
calculated with respect to the distribution F . If the agent is currently winning a good,
however, then the expected incremental cost of winning that good depends on the like-
lihood that the current bid price will be increased by another agent, so that the first
agent has to bid again to obtain the good. If, to the contrary, it keeps the good at the
current bid, the full price is sunk (already committed) and thus should not affect incre-
mental bidding. Based on this logic we define ∆i(B), the expected incremental price
for good i.

First, for simplicity, we use only the information contained in the vector of marginal
distributions, (F1, . . . , Fm), as if the final prices were independent across goods. De-

10



fine the expected final price conditional on the most recent vector of bid prices, β:

EF (pi | β) =
V∑

qi=0

Pr(qi | βi)qi =
V∑

qi=βi

Pr(qi | βi)qi.

The expected incremental price depends on whether the agent is currently winning
good i. If not, then the lowest final price at which it could win is βi + 1, and the
expected incremental price is simply the expected price conditional on pi ≥ βi + 1,

∆L
i (B) ≡ EF (pi | pi > βi + 1) =

V∑
qi=βi+1

Pr(qi | pi > βi + 1)qi.

If the agent is winning good i, then the incremental price is zero if no one outbids the
agent. With probability 1− Pr(βi | βi) the final price is higher than the current price,
and the agent is outbid with a new bid price βi+1. Then, to obtain the good to complete
a bundle, the agent will need to bid at least βi + 2, and the expected incremental price
is

∆W
i (B) = (1− Pr(βi | βi))

V∑
qi=βi+2

Pr(qi | βi + 2)qi.

The vector of expected incremental prices is then defined by

∆i(B) =

{
∆W

i (B) if winning good i

∆L
i (B) otherwise.

The agent then plays the perceived-price bidding strategy (Definition 1) with ρ(B) ≡
∆(B). We denote the strategy of bidding based on a particular distribution prediction
by PP(F x), where x labels various pre-auction distribution predictions, F (∅).

5 Some Methods for Predicting Prices in SAA
Definition 1 parametrizes the class of perceived-price bidding strategies, and in Sec-
tion 4 we define point price and distribution-based prediction methods that construct
perceived prices from the agent’s information state. The point and distribution predic-
tors are classes of strategies parametrized by the choice of initial prediction—a vector
of predicted final prices in the case of the point predictor, or, more generally, a dis-
tribution of final prices for the distribution predictor. We now present several ways to
obtain an initial prediction. These methods all take as input the problem’s type distri-
bution, and so (unlike a particular sunk-awareness setting, for example) are potentially
appropriate to apply across different environments.

5.1 Walrasian Equilibrium for Point and Distribution Prediction
The first method we describe predicts that prices will attain a Walrasian price equilib-
rium with respect to the m goods and agent valuation functions over those goods. In
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practice, to use this method, agents (who know only their own valuation function) will
need to have probabilistic beliefs over the valuation functions for other agents.

Given a distribution of agent types we can generalize the price-equilibrium calcu-
lation in two ways to allow for probabilistic knowledge of the aggregate demand func-
tion. The first is to find the expected price equilibrium (EPE): the expectation (over the
type distribution) of the Walrasian price-equilibrium vector. The most straightforward
way to estimate this is Monte Carlo simulation, sampling from the type distribution. A
particular sampled type determines the demand function x, which we can then employ
in a tatonnement protocol. Repeated sampling of types and application of tatonnement
yields a crude Monte Carlo estimate of the expected price equilibrium.

An alternative (which may sometimes be preferred for computational reasons) to
estimating a price equilibrium in the face of probabilistic demand is the expected-
demand price equilibrium (EDPE): the Walrasian price equilibrium with respect to
expected aggregate demand. In other words, we calculate or estimate the expected
demand function and then apply tatonnement once to find an equilibrium and equilib-
rium prices as if realized demand were in fact equal to expected demand. We calculate
expected demand analytically when possible; otherwise, we can estimate it by Monte
Carlo simulation, again sampling from the type distribution.

Either of these generalized Walrasian price-equilibrium methods can be applied
to generate point predictions. We denote the expected price-equilibrium point pre-
dictor by PP(πEPE) and the expected-demand price-equilibrium point predictor by
PP(πEDPE). The method of expected price equilibrium can also be straightforwardly
generalized—by tracking the empirical distribution of price equilibria instead of just
average prices—to the case of distribution predictors. This predictor is denoted PP(FEPE).8

5.2 Predictions from Historical Data
One natural method for generating an initial prediction is to observe a history of simu-
lated games, and calculate from the outcomes an empirical price distribution for a given
strategy profile. Below, we run our game simulator repeatedly, tracking not payoffs but
final prices, similar to the tatonnement-sampling approach to estimating equilibrium
price distributions. For a point price prediction we compute average final prices, and
for a distribution-based prediction we compute final price histograms. We then specify
a particular price-prediction strategy by the type of predictor (point vs. distribution)
and by a strategy profile from which we glean a distribution of final prices.

As a noteworthy special case of the above, our baseline prediction is the distribution
of final prices resulting when all agents follow the SB strategy. We denote the baseline
point predictor PP(πSB) and the baseline distribution predictor PP(F SB).

8Unlike the EPE method, which produces a price vector for each sample from the type distribution, the
EDPE-method price data is always a price vector, because tatonnement is applied only once at the last step.
Therefore, we did not construct distribution price-prediction strategies based on the latter; we do construct
PP(πEDPE), the EDPE point prediction strategies.
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5.3 Self-Confirming Price Predictions
Related to predictions from historical data, but somewhat forward-looking, is a price
estimate for a prediction strategy based on simulations of itself. We refer to these as
self-confirming predictions. We begin with the simpler case of point predictions.

Definition 2 (Self-Confirming Point Price Prediction) Let Γ be an instance of an
SAA game. The prediction π is a self-confirming prediction for Γ iff π is equal to
the expectation (over the type distribution) of the final prices when all agents play
PP(π).

In other words, if all agents use a point price-prediction strategy, then the self-confirming
predictions are those that on average are correct at the end of the auction.9 We denote
the self-confirming prediction vector by πSC and the self-confirming point prediction
strategy by PP(πSC).

The key feature of self-confirming predictions is that agents make decisions based
on predictions that turn out to be correct with respect to the type distribution and the
assumption that all agents play this particular prediction strategy.10 Since agents are
employing these predictions strategically, we might reasonably expect the strategy to
perform well in an environment where its predictions are confirmed.

We next define the concept of a self-confirming distribution of final prices in SAA.

Definition 3 (Self-Confirming Price Distribution) Let Γ be an instance of an SAA
game. The prediction F is a self-confirming price distribution for Γ iff F is the distri-
bution of prices resulting when all agents play bidding strategy PP(F ).

The actual joint distribution will in general have dependencies across prices for
different goods. We are also interested in the situation in which if the agents play a
strategy based just on marginal distributions, that resulting distribution has the same
marginals, despite dependencies.

Definition 4 (Self-Confirming Marginal Distribution) Let Γ be an instance of an
SAA game. The prediction F = (F1, . . . , Fm) is a vector of self-confirming marginal
price distributions for Γ iff for all i, Fi is the marginal distribution of prices for good i
resulting when all agents play bidding strategy PP(F ) in Γ.

5.3.1 Existence of Self-Confirming Predictions

We demonstrate in Section 5.3.2 that we can often find approximately self-confirming
point and distribution predictions. However, we first observe that they do not always
exist. Consider once again the m = n = 2 configuration of Example 1 (Table 1).
Versions of this example, in which one agent views the goods as complements and the
other as substitutes, are commonly employed to illustrate the absence of a competitive

9As described above, our price-prediction strategies perform simple updating based on price-quote in-
formation as the auction proceeds. Our self-confirmation notion, however, applies only to initial predictions
and final prices–we do not insist that the intermediate updated predictions are also confirmed.

10An equilibrium with this feature is sometimes called a “fulfilled expectations equilibrium” [Novshek
and Sonnenschein, 1982].
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equilibrium [Cramton, 2005, McAfee and McMillan, 1996]. There exist no prices for
goods 1 and 2 such that both agents optimize their demands at the specified prices and
the markets clear.

Proposition 1 There exist SAA games for which no self-confirming point price predic-
tion exists, nor do any self-confirming or marginally self-confirming price distributions.

Proof. Define an SAA game corresponding to the configuration of Table 1. Given a
deterministic SAA mechanism (one without asynchrony or random tie-breaking), for
fixed value functions the outcome from playing any profile of deterministic trading
strategies is a constant. Thus, the only possible self-confirming distributions (which
were defined for agents playing the deterministic PP(F ) strategies) must assign prob-
ability one to the actual resulting prices. But given such a prediction, our trading strat-
egy will pursue the agent’s best bundle at those prices, and must actually get them
since the prices are correct if the distribution is indeed self-confirming. But then the
markets would all clear, contrary to the fact that the predicted prices cannot constitute
an equilibrium, since such prices do not exist in this instance. �

Despite this negative finding, we conjecture that price distributions that are self-
confirming to a reasonable degree of approximation exist for a large class of nonde-
generate preference distributions, and can be computed given a specification of the
preference distribution. We now present a procedure for deriving such distributions,
and some evidence for its effectiveness.

5.3.2 Deriving Self-Confirming Price Predictions

To find approximate self-confirming point predictions, we follow a simple iterative
procedure. First, we initialize the predicting agents with some prediction vector (e.g.,
all zero) and simulate many game instances with the all-predict profile. When average
prices obtained by these agents are determined, we replace the initial prediction vector
with the average prices and repeat. When this process reaches a fixed point, we have
the self-confirming prediction, πSC. In Figure 1 we show the convergence to a self-
confirming price-prediction vector for a particular SAA game with five agents and five
goods. Within 30 iterations the prices have essentially converged, although there is
some persistent oscillation. We found that by resetting the vector of predicted prices
to equal the averages around which the prices are oscillating, the process converges
immediately to a more precise fixed point, which we use as πSC.

A similar approach can be applied to derive distribution predictions. Starting from
an arbitrary prediction F 0, we run many SAA game instances (sampling from the given
preference distributions) with all agents playing strategy PP(F 0).11 We record the
resulting prices from each instance, and designate the sample distribution observed by
F 1. We repeat the process using the new distribution F t for iteration t + 1 for some
further series of iterations. If it ever reaches an approximate fixed point, with F t ≈
F t+1 for some t, then we have statistically identified an approximate self-confirming
price distribution for this environment.

11In our experiments the initial prediction is zero prices, but our results do not appear sensitive to this.
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Figure 1: Convergence to a self-confirming price-prediction vector, starting with an
initial prediction that all prices would be zero. The prices at each iteration are deter-
mined by 500 thousand simulated games. The graph plots the distance between the
price vectors in consecutive iterations. We define vector distance as the maximum over
pointwise distances, measured as a percentage of the upper bound on the value, V , of
a single good. The bound V equals 50 in all of our SAA games with complementary
preferences.
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We employ the Kolmogorov-Smirnov (KS) statistic as one reasonable measure of
similarity of probability distributions, defined as the maximal distance between any
two corresponding points in the CDFs:

KS (F, F ′) = max
x
|F (x)− F ′(x)|.

For self-confirming marginal distributions, we take the maximum of the KS distances
measured separately for each good: KSmarg = maxi KS (Fi, F

′
i ).

Our procedure requires (1) a number of samples per iteration, (2) a threshold on KS
or KSmarg on which to halt the iterations and return a result, (3) a maximum number of
iterations in case the threshold is not met, and (4) a smoothing parameter k designating
a number of iterations to average over when the procedure reaches the maximum itera-
tions without meeting the threshold. The bound on the number of iterations ensures the
procedure terminates and returns a price distribution, which may or may not be self-
confirming. When this occurs, the smoothing parameter avoids returning a distribution
that is known to cause oscillation. We do not, of course, expect the bidding strategy to
perform as well when we cannot find a convergent self-confirming distribution and the
underlying oscillations are large.

For our empirical analyses, we specify an SAA game based on a scheduling prob-
lem in which there are m units (called time slots) of a single schedulable resource,
indexed 1, . . . ,m. Each of n agents has a single job that can be accomplished using
the resource. Agent j’s job requires λj time slots to complete, and by accomplish-
ing this job it obtains some value depending on the time it completes. Specifically,
if j acquires λj time slots by deadline t, it accrues value vj(t). Deadline values are
nonincreasing: t < t′ implies vj(t) ≥ vj(t′).

To illustrate, we consider such a scheduling problem with five agents competing for
five time slots. We draw job lengths randomly from U [1, 5]. We choose deadline values
randomly from U [1, 50] then prune to impose monotonicity [Reeves et al., 2005]. We
set the algorithm parameters at one million games per iteration, and a 0.01 KS conver-
gence criterion. The predicted and empirical distributions quickly converge, with a KS
statistic of 0.007 after only six iterations.

To see if our method produces useful results with some regularity, we applied it to
22 additional instances of the scheduling problem, varying the numbers of agents and
goods, and the preference distributions. We again drew deadline values from U [1, 50]
and pruned them for monotonicity. We used two probability models for job lengths in
the first 21 instances. In the uniform model, they are drawn from U [1,m]. In the expo-
nential model job length λ has probability 2−λ, for λ = 1, . . . ,m− 1, and probability
2−(m−1) when λ = m.

We constructed 10 instances of the uniform model, comprising various combination
of 3 ≤ n ≤ 9 and 3 ≤ m ≤ 7. In each case, our procedure found self-confirming
marginal price distributions (KS threshold 0.01) within 11 iterations. Similarly, for
11 instances of the exponential model, with the number of agents and goods varying
over the same range, we found SC distributions within seven iterations. We plot the
distribution of KS values from these 21 instances in Figure 2.

The 22nd instance was designed to be more challenging: we used the n = m = 2
example with fixed preferences described in Table 1. Since there exists no SC distribu-
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Figure 2: Convergence of iterative SC price estimation.

tion, our algorithm did not find one, and as expected, after a small number of iterations
it began to oscillate among a few states indefinitely. After reaching the limit of 100
iterations, our algorithm returned as its prediction distribution the average over the last
k = 10.

6 Empirical-Game Analysis: Complementary Prefer-
ences

We now analyze the performance of self-confirming price distribution predictors in a
variety of SAA games, against a variety of other strategies. We use Monte Carlo sim-
ulation to estimate the payoff function for an empirical game, which maps profiles of
agent strategies to expected payoffs for each agent. This approach converts a game in
extensive form to normal form in the expected payoffs. We then analyze equilibria in
these normal forms. Our methods extend the approach developed in our prior work
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[MacKie-Mason et al., 2004, Reeves et al., 2005, Wellman, 2006], and build on ideas
from other recent studies in a similar empirical vein [Armantier et al., 2000, Kephart
et al., 1998, Walsh et al., 2002]. We emphasize here that all of the analysis below ap-
plies directly to the estimated empirical game. These correspond to statistical claims
about the actual restricted-strategy game, and lead to arguments generalizing the ob-
servations to related games.

6.1 Environments and Strategy Space
We studied SAAs applied to market-based scheduling problems, as described in Sec-
tion 5.3.2. Particular environments are defined by specifying the number m of goods,
the number n of agents, and a preference model comprising probability distributions
over job lengths and deadline values. The bulk of our computational effort went into an
extensive analysis of one particular environment, the m = n = 5 uniform model pre-
sented above. As described in Section 6.2, the empirical game for this setting provides
much evidence supporting the unique strategic stability of PP(FSC). We complement
this most detailed trial with smaller empirical games for a range of other scheduling-
based SAA environments. Altogether, we have studied selected environments with
uniform, exponential, and fixed distributions for job lengths; a modified uniform dis-
tribution for deadline values; and agents in 3 ≤ n ≤ 8; goods in 3 ≤ m ≤ 7.

To varying degrees, we have analyzed the interacting performance of 53 different
strategies. These were drawn from four strategy families described above: SB, sunk-
aware, point predictor, and distribution predictor. For each family we varied a defining
parameter to generate the different specific strategies.12 The choice of strategies was
based on prior experience. We believe that the set includes the best strategy candidates
from the prior literature, though we make no claim to have covered all reasonable
variations. Naturally, our emphasis is on evaluating the performance of PP(FSC) in
combination with the other strategies.

Given n agents and S possible strategies, the corresponding symmetric normal-
form game comprises

(
n+S−1

n

)
distinct strategy profiles. The game size thus grows

exponentially in n and S; for the n = 5, S = 53 game we estimate below, there are
over four million different strategy profiles to evaluate. We first illustrate the process
for a simpler game, with five agents, each choosing between SB or the baseline point
price-prediction strategy PP(πSB) (abbreviated PP). There are six possible profiles
which can be described as profiles with j agents playing PP (and the rest SB) for
j = 0, . . . , 5. We simulate a large number of games for each profile and average the
payoffs for a player of each type (PP, SB). We present the resulting empirical game
in Figure 3. For this simple game, we can solve the normal form for a unique pure-
strategy Nash equilibrium by inspection, illustrated by the arrows. If all five players
choose SB, any one can get a higher expected payoff by deviating to PP. If only one
plays PP, a second can beneficially deviate to PP. Likewise for each profile except all
playing PP, from which none can gain by deviating to SB, establishing a unique Nash
equilibrium.

12Space considerations preclude a full description of the 53 strategies here. An appendix with specification
of all parameters, including description of the prediction methods used for point and distribution predictors,
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6.2 5×5 Uniform Environment
By far the largest empirical SAA game we have constructed is for the SAA schedul-
ing environment discussed in Section 5.3.2, with five agents, five goods, and uniform
distributions over job lengths and deadline values. We estimate payoffs empirically for
each profile by running millions of simulations of the auction protocol, so estimating
the entire payoff function for over 4.2 million strategy profiles is infeasible. However,
we can estimate the payoff matrix for subsets of all profiles, and as we describe be-
low, with well-chosen subsets we can reach useful conclusions about equilibria in the
53-strategy game.

Our results are based on estimated payoffs for 4958 strategy profiles, calculated
from an average of 10 million samples per profile (with some profiles simulated for
as few as 200 thousand games, and some for as many as 200 million, depending on
sampling variances). Despite the sparseness of the estimated payoff function (covering
only 0.1% of possible profiles), we have been able to obtain several results.

First, as discussed above, we conjectured that the self-confirming distribution-
prediction strategy, PP(FSC), would perform well. We have directly verified this:
the profile where all five agents play a pure PP(FSC) strategy is a Nash equilibrium
of the empirical game. That is, we verified that no unilateral deviation to any of the
other 52 pure strategies is profitable. Note that in order to verify a pure-strategy sym-
metric equilibrium (all agents playing a strategy s) for n players and S strategies, one
needs only S profiles: one for each strategy playing against n−1 copies of s. Similarly,
to refute the possibility of a particular profile being in Nash equilibrium, we need to
find only one profitable deviation profile (i.e., obtained by changing the strategy of one
player to earn a higher payoff given the others’ strategies).

The fact that PP(FSC) is pure symmetric Nash for this game does not of course
rule out the existence of other Nash equilibria. Indeed, without evaluating any partic-
ular profile, we cannot eliminate the possibility that it represents a (non-symmetric)
pure-strategy equilibrium itself. However, the profiles we did estimate provide sig-
nificant additional evidence, including the elimination of broad classes of potential
symmetric mixed equilibria.

Let us define a strategy clique as a set of strategies for which we have estimated
payoffs for all combinations.13 Each clique defines a subgame, for which we have
complete payoff information. Within our 4958 profiles we have eight maximal cliques
that include strategy PP(FSC). For each of these subgames, PP(FSC) is the only
strategy that survives iterated elimination of (strictly) dominated strategies. It follows
that PP(FSC) is the unique (pure- or mixed-strategy) Nash equilibrium in each of
these clique games. We can further conclude that in the full 53-strategy game there are
no equilibria with support contained within any of the cliques, other than the special
case of the pure-strategy PP(FSC) equilibrium.

Analysis of the available two-strategy cliques (not generally maximal) provides
further evidence about potential alternative equilibria. Of the

(
52
2

)
= 1326 pairs of

strategies not including PP(FSC), we have all profile combinations for 49. Based

is available at http://www-personal.umich.edu/˜annaose/papers/saa-appendix.pdf.
13Thus we have a 2-strategy clique if we have estimated all six profiles that five agents can form from

these two strategies.
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on profiles estimated, we have determined that for any symmetric profile defined by a
mixture of one of these pairs, an agent can improve its payoff by a minimum of 0.32
through deviating to some other pure strategy. For reference, the average payoff for the
all-PP(FSC) profile is 4.51, so this represents a nontrivial difference.

That is, none of the two-strategy mixtures for which we have data comes very close
to equilibrium, further strengthening our confidence in PP(FSC).

Finally, for each of the 4958 evaluated profiles, we can derive a bound on the ε
rendering the profile itself an ε-Nash pure-strategy equilibrium. The three most strate-
gically stable profiles by this measure are:

1. all PP(FSC): ε = 0 (confirmed Nash equilibrium of the empirical game);

2. one PP(FSB), four PP(FSC): ε > 0.13;

3. two PP(FSB), three PP(FSC): ε > 0.19.

All the remaining profiles have ε > 0.25 based on confirmed deviations.
Our conclusion from these observations is that PP(FSC) is a highly stable strategy

within this strategic environment, and likely uniquely so. Of course, only limited infer-
ence can be drawn from even an extensive analysis of only one particular distribution
of preferences, so we now consider other environments.

6.3 Self-Confirming Prediction in Other Environments
To test whether the strong performance of PP(FSC) generalizes across other SAA
games, we undertook smaller versions of this analysis on variations of the model above.
We explored 17 additional instances of the market-based scheduling problem: eight
with the uniform (U), eight with the exponential (E) preference models (3–8 agents, 3–
7 goods), and one with fixed preferences, corresponding to the counterexample model
of Table 1. For each we derived self-confirming price distributions (failing in the last
case, of course), as reported in Section 5.3.2. We also derived price vectors and dis-
tributions for the other prediction-based strategies. For 11 of the symmetric games
(eight U and three E models), we evaluated 27 profiles: one with all PP(FSC), and
for each of 26 other strategies s, one profile with n − 1 PP(FSC) and one s. For the
non-symmetric game with fixed preferences, we evaluated all 53 profiles with at least
one agent playing PP(FSC). We ran between two and ten million games per profile in
all of these environments.

In eight of the eleven symmetric games, PP(FSC) and PP(FSB) were among
top three unilateral deviations from PP(FSC) in the all-PP(FSC) profile. For each of
the eleven games, we identified five (additional) top-ranking deviations from PP(FSC)
and evaluated complete 7-cliques involving these five strategies, PP(FSC) and PP(FSB)
in the respective environments (at least 340,000 samples per profile). We introduced
five additional E models, and evaluated all profiles over seven strategies for each of
these as well.14

14For these additional five E models we did not incur the additional computational cost of evaluating all
27 profiles to select best deviations from PP(F SC), which is a somewhat arbitrary procedure for selecting
strategies for a clique in any case. For these additional models, we selected the seven candidate strategies
based on regularities in the results from the other 11 games described above.
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Our results for U and E models are summarized in Table 2. For each case, we
report the ε that, for the estimated payoff matrix, renders all-PP(FSC) an ε-Nash equi-
librium. The next two columns report sensitivity information about this figure, given
its basis in payoffs estimated from samples. First, since our payoff matrix is estimated
(and thus each payoff has a sampling variance), we calculate the expected value ε̄ of
ε with respect to the empirical distributions of the estimated payoffs (assuming that
the errors in our payoff estimates are independent, and using the sample variances as
population variances). Thus, for example, the environment E(3, 5) has a pure Nash
equilibrium of all-PP(FSC) for the estimated payoff matrix, but taking into account
sampling variation, on average that profile has an ε of 0.005.

Under the same independence assumption, “Pr(ε = 0)” represents the probability
that all-PP(FSC) is actually an equilibrium. Finally, for each empirical game with
n ≤ 6 we also obtained a symmetric mixed-strategy Nash equilibrium using replicator
dynamics.15 The rightmost column reports the probability of playing PP(FSC) in the
resulting mixture, to evaluate its significance when it does not constitute a pure-strategy
equilibrium.

Env(m,n) ε-gain ε̄-gain Pr(ε = 0): Probability
from adjusted for Probability of of play in

one-player sampling exact Nash rep. dyn.
deviation error equilibrium solution

E(3, 3) 0 0 1.00 1.00
E(3, 5) 0 .005 .600 .996
E(3, 8) .031 .032 0 —
E(5, 3) 0 0 1.00 .999
E(5, 5) 0 .001 .900 .998
E(5, 8) .029 .031 0 —
E(7, 3) 0 .007 .667 .992
E(7, 6) .003 .007 .567 .549
U(3, 3) .097 .099 0 .725
U(3, 5) 0 0 1.00 1.00
U(3, 8) .017 .016 0 —
U(5, 3) .103 .103 0 .809
U(5, 8) .047 .048 0 —
U(7, 3) .058 .060 0 .942
U(7, 6) .018 .018 0 .929
U(7, 8) .133 .132 0 —

Table 2: Evaluations of all-PP(FSC) profile for U and E models.

15By replicator dynamics we mean an iterative (evolutionary) algorithm for finding symmetric Nash equi-
libria in symmetric games. Our implementation is based on the replicator dynamics formalism introduced
by Taylor and Jonker [Taylor and Jonker, 1978] and Schuster and Sigmund [Schuster and Sigmund, 1983]
and is described in detail in our earlier work [Reeves et al., 2005]. We have found the method particularly
useful for finding mixed-strategy equilibria in many-player games with large strategy spaces, but it does not
guarantee to find all equilibria.
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In 14 out of these 16 environments, PP(FSC) was verified to be an ε-Nash equi-
librium for ε < 0.1. Twelve have ε < 0.05, and in six of these (one U and five E) it
was an exact equilibrium. The two worst environments were U(5, 3) and U(7, 8). In
the last case, expected payoff for all-PP(FSC) was 2.67, so ε represents about 5% of
the value. For no other case did it reach 2%. Moreover, the results are quite insensitive
to statistical variation. The ε̄ values never exceed ε by much, and in every environment
for which we produced an equilibrium with replicator dynamics, PP(FSC) appears in
this symmetric mixed-strategy profile with substantial if not overwhelming probability.

Overall, we regard this as favorable evidence for the PP(FSC) strategy across the
range of market-based scheduling environments. Not surprisingly, the environment
with fixed preferences is an entirely different story. Recall that in this case the iterative
procedure failed to find a self-confirming price distribution. The distribution it settled
on was quite inaccurate, and the trading strategy based on this performed poorly—
generally obtaining negative payoffs regardless of other strategies. Since one of the
available strategies simply does not trade, PP(FSC) is clearly not a best-response
player in this environment.

7 Strategies for Environments with Substitutes
In the previous sections we focused on the exposure problem when there are com-
plementarities in preferences. We found that strategies based on price prediction can
be quite effective in mitigating the problem. In this section we extend our analysis
of bidding strategies to the case of substitutable goods. The strategic challenge in
this environment is bidding when there are significant own price effects: bidding be-
low willingness-to-pay for the marginal unit may lower the price sufficiently on infra-
marginal units to be a profitable strategy [Ausubel and Cramton, 2002]. We consider
simple demand-reduction strategies as well as a sophisticated approach to predicting
own price effects inspired by the success of self-confirming price prediction for en-
vironments with complementarities. In the environment with substitutes we study, we
find that the simple demand-reduction strategies clearly outperform this price predictor.

To analyze bidding strategies in an SAA game with substitutes, we assume that each
auction sells one unit of a homogeneous indivisible good, and the bidders’ marginal
value for units of this good is weakly decreasing. We implemented such preferences by
randomly drawing marginal values vk for the kth good from U [0, vk−1], with v0 = V
a uniform upper bound on the marginal value of one unit.

In homogeneous-good environments bidders derive the same value from any bundle
of k goods regardless of their labels. The definitions of strategies in this section rely
on this assumption, though it would not be difficult to generalize their approaches to
apply to environments with a more general type of substitutability. The assumption
of homogeneous goods is convenient for computational implementation and analysis,
however, we believe that it is not essential to our main results.
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7.1 Demand-Reduction Strategy
Consider an SAA game with m auctions, each selling one unit of an identical (ho-
mogeneous) good. If all agents follow SB, the outcome is that the bidders for the
m most highly valued units win them, at a uniform price equal to the value of the
most highly valued losing unit (possibly plus the bid increment). This is virtually
equivalent to truth-telling in an m + 1st sealed-bid uniform-price auction. Like the
truth-telling/sealed-bid case, the all-play-SB outcome is efficient (modulo the bid in-
crement), but it is not an equilibrium. In fact, efficient equilibria in the m + 1st sealed-
bid uniform-price auction do not exist [Ausubel and Cramton, 2002]. To motivate
a possibly better strategy, consider the intuition for the non-existence of an efficient
equilibrium: if a bidder has a positive probability of influencing price in a situation in
which the bidder wins a positive quantity, then the bidder has an incentive to shade her
bid in a sealed-bid uniform-price auction. Bid-shading leads to inefficient outcomes.
This intuition and the failure of SB motivates considering strategies that suppress de-
mand.16

We introduce a relatively simple demand-reduction strategy, DR. Let us modify
SB by introducing a parameter κ ∈ [0, V ] defining the degree of the agent’s demand
reduction: the agent bids the ask price on the lth cheapest good as long as it is not
winning that good, and its marginal surplus is at least κ(l − 1). In other words, the
agent considers the goods in order of price, adding the lth good to its bundle until the
marginal value vl drops below the ask price plus κ(l−1). We denote a specific demand-
reduction strategy in this family by DR(κ). The DR strategy family is a simple way of
capturing the intuitions of the demand-reduction literature: bidders should shade their
bids, and the amount of shading increases with the number of winning goods [Ausubel
and Cramton, 2002].

Formally, define DR(κ)’s perceived price of the good with the lth lowest myopi-
cally perceived price (defined in Section 3):

ρl(B) ≡

{
βl + κ(l − 1) if winning the good
βl + 1 + κ(l − 1) otherwise,

(5)

where β is the vector of current bid prices. Agent DR(κ) plays the perceived-price
bidding strategy using ρ(B). Note that in our definition of ρ(B) for this strategy, we
assume that goods with different labels are indistinguishable. We use the subscript l
instead of i to emphasize that each good is labeled by its myopic price rank order rather
than by the auction selling it.

16Note that the sunk-awareness modification of SB we introduced in Section 3.2 to address the exposure
problem leads to overbidding, as opposed to bid-shading, in this environment. Using the terminology of
Definition 1, the perceived-price vector of a sunk-aware strategy is equal to or below the myopic perceived-
price vector used by SB, which results in more aggressive bidding. The perceived price of the demand-
reduction strategy we introduce in this section is always at least as high as the myopic perceived-price
vector.
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7.2 Predicting Own Price Effects
The ability of a single agent to affect final prices is strategically central when goods
are substitutes. Therefore, the focus of price prediction in the substitutes case is to
model this relationship. Specifically, for the homogeneous-good environment, price
predictions take the form of a mapping from purchase sizes (i.e., the agent’s chosen
demand) to final prices. The main role of this prediction is to guide the agent as to
when it is beneficial to refrain from bidding on potentially valuable goods.

The assumption that final prices depend on the number of goods the agent is trying
to win implies that the agent’s prediction of the final price of good i can no longer be
represented by a scalar. Let πik(B) be the predicted final price of good i given that
the agent tries to win k goods and its information state at the current round is B. We
can think of the agent’s predicted own-effect prices as an m ×m matrix, in which the
rows are auction labels and the columns are the intended purchase sizes. We define
an updating rule for πik, i, k ∈ {1, . . . ,m}, similar to the point price-prediction rule
described in Section 4.1. The current price prediction for good i when the agent plans
to bid on k goods is the maximum of the initial prediction and the myopically perceived
price:

πik(B) ≡

{
max(πik(∅), βi) if winning good i

max(πik(∅), βi + 1) otherwise.
(6)

There is no apparent reason why an agent should believe that the final price of
a homogeneous good on one auction will be higher than the price on another auc-
tion. Therefore, we construct the initial price prediction to be equal across auctions:
πik(∅) = πjk(∅) for all i and j for all purchase sizes k. In other words, the elements
in a column are identical in the agent’s initial prediction matrix. We label the initial
prediction matrix of predicted own-effect prices by πx, in which the subscript x labels
particular initial predictions.

In the homogeneous-good environment, agents are indifferent between item subsets
of equal sizes. Thus, in our strategy, the agent uses price prediction to determine the
number k∗ of units to buy, but not to identify specific auctions in which to participate
in the current round. Formally,

k∗ = arg max
k

max
|Y |=k

σ(Y, π.k(B)),

where σ(Y, p) is the agent’s surplus for goods Y defined by Equation (1), and |Y |
refers to the number of goods in set Y .

Given k∗, the choice of goods X∗ on which to actually bid is based on the current
myopically perceived prices, ρ(B) (Equation 2). Using myopically perceived prices
ensures that the agent never regrets the composition of its bid set (conditional on size)
even if its predicted own-effect prices are wrong.

X∗ = arg max
|X|=k∗

σ(X, ρ(B))

The agent breaks ties as in Definition 1. Given X∗, the agent bids bi = βi + 1 (the
ask price) for the i ∈ X∗ that it is not already winning. We call this strategy family
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the own-effect price predictor (OEPP) and denote a specific strategy in this family by
OEPP(πx).

Similar to the point price predictor defined for complementary goods, the OEPP
family includes SB as a special case when the predicted own-effect prices are a matrix
of zeros: SB = OEPP(0). As mentioned in Section 7.1, if all players follow SB, the
allocation is efficient. Perceived prices based on an own-effect price matrix with posi-
tive elements are weakly higher than the myopic perceived prices SB uses. Therefore,
an OEPP agent using positive predictions tends to bid on fewer items than is efficient
given the others’ bids, and never bids on more goods than SB would.

7.3 Self-Confirming Own-Effect Prices
We define the concept of self-confirming own-effect price prediction similarly to self-
confirming point price prediction for complementary environments.

Definition 5 (Self-Confirming Own-Effect Prices) Let Γ be an instance of an SAA
game with homogeneous goods. Matrix π is a self-confirming own-effect price matrix
for Γ, if for all i, k ∈ {1, . . . ,m}, πik(∅) is equal to the expectation (with respect to
the type distribution) of the final price when one agent tries to win k goods and all the
other agents follow OEPP(π).

In other words, self-confirming own-effect prices satisfy the condition that if one of the
agents bids to win k goods and the other agents “exploit” their own-effect price pre-
dictions, that prediction on average is correct for all k. We denote the self-confirming
own-effect price matrix by πSC and the self-confirming own-effect price-prediction
strategy by OEPP(πSC).

To find approximate self-confirming own-effect prices, we follow an iterative pro-
cedure similar to that described in Section 5.3. First, we initialize the own-effect
predictors with some own-effect price matrix (e.g., all zero) and, sampling from the
homogeneous-good type distribution, run many SAA game instances with a profile in
which one agent (the explorer) ignores its preferences and tries to win a single good,
while the others follow OEPP. When average prices obtained by these agents are
determined, we replace the first column in the own-effect price matrix with a column
vector with all elements equal to the average price, reset the explorer to win two goods
and repeat. After the second batch of simulations, we replace all elements in the second
column of the own-effect matrix with the average price and increase the explorer’s tar-
get number of goods by one. We repeat the process, recycling back to a single unit after
the exploration target reaches m. When this process reaches a fixed point, we have the
matrix of self-confirming own-effect prices, πSC . We have not investigated whether
a fixed point necessarily exists in homogeneous-good environments, but the price pre-
dictions converged in this environment within 30 iterations in all of our experiments
(see Figure 4).

7.4 Empirical-Game Analysis
We perform analyses similar to, but less extensive than, those reported in Section 6.
We analyzed the m = n = 5 environment with uniform preferences introduced at
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Figure 4: Convergence to a self-confirming own-effect price matrix, starting with an
initial prediction that all prices would be zero regardless of the size of the agent’s pur-
chase. The prices at each iteration are determined by 10 thousand simulated games.
The graph plots the distance between the own-effect prices in consecutive iterations.
We define distance between matrices as the maximum over pointwise distances, mea-
sured as a percentage of the upper bound on the marginal value, V , of a single unit of
the good. The bound V equals 127 in all of our SAA games with substitutes.
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Figure 5: Preference distribution in the homogeneous-good environment.

the beginning of Section 7. We set the upper bound V to 127. In Figure 5 we dis-
play the agents’ average valuations as a function of the number of goods. As before,
our goal is to evaluate the performance of a self-confirming price-prediction strategy,
OEPP(πSC) in this instance. Since the literature predicts that agents suppress demand
in equilibrium, we include many instances of our demand-reduction strategy family.
We analyzed 51 strategies: SB, 47 DR(κ) with 1 ≤ κ ≤ 120, one sunk-aware strategy
with parameter k = 0.5, a self-confirming own-effect price predictor OEPP(πSC),
and the baseline distribution predictor PP(F SB) (defined in Section 5).

We estimated payoffs for 16542 strategy profiles (out of 3.48 million possible),
based on an average of 1.9 million samples per profile. Some profiles are simulated
for as few as 40 thousand samples; near-Nash-equilibrium profiles were simulated for
up to 205 million game instances per profile. Despite the high-quality information
OEPP(πSC) employs about own effect on final prices, the strategy’s use of this in-
formation did not provide any advantage over the simpler information-free demand-
reduction agents. In the majority of profile settings where it was tested, OEPP(πSC)
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Figure 6: Distribution of best deviations. The light bars reflect the number of esti-
mated profiles in which the corresponding strategy appeared. The dark bars reflect
how many times the strategy in fact was a best deviation. We index demand-reduction
strategies DR(κ) by their corresponding κ-values. OEPP refers to OEPP(πSC), PP
to PP(F SB), and SA refers to the sunk-aware strategy with k = 0.5.
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can be refuted with a DR(κ) strategy. Indeed, we found DR(κ) with 10 ≤ κ ≤ 22 to
be the best deviation for 96% of 16542 profiles we have analyzed. By the best devia-
tion for a given profile we mean the most profitable of all possible deviations from a
strategy in this profile based on neighboring profiles available in our dataset. For 108
profiles our dataset includes estimated payoffs for all deviations from all strategies.
The best deviations for these profiles are always DR(κ) with 16 ≤ κ ≤ 19.

We provide more evidence in Figure 6 by displaying the number of times a strategy
was a best deviation (dark bars) relative to the number of estimated profiles in which
that strategy appeared (light bars). The latter is proportional to the approximate number
of opportunities for that strategy to be a best deviation from some other profile. The
dark bars reflect the preponderance of situations in which agents prefer moving toward
a DR(κ) strategy with κ near 15. The light bars document our decision, as this evidence
was emerging, to focus our finite computational resources on estimating regions of the
payoff matrix most important for (near-)equilibrium play.

We found only 14 profiles for which the highest gain can be obtained by deviating
to OEPP(πSC). This is 0.085% of all estimated profiles and 6.36% of all profiles
containing at least one OEPP(πSC) player. We found 40 profiles for which SB is the
best deviation. The sunk-aware and PP(F SB) strategies are never the most attractive
deviations in our data.

We found many pure-strategy asymmetric ε-Nash equilibria in this environment.
Those with the lowest ε are profiles of DR(κ) with 14 ≤ κ ≤ 17. To give a sense of the
magnitude of demand (bid) suppression, these κs correspond to 33–40% of the average
final unit price if all players follow SB. In Table 3 we present all ε-Nash equilibria for
which ε ≤ 0.01517 and two of our benchmark profiles: all-SB and all-OEPP(πSC)
(for which the ε is rather large). The probability that the profile is an exact Nash
equilibrium was estimated empirically as described in Section 6.3. The profiles are
listed in the order of increasing ε. We have estimated payoffs of all unilateral deviations
from the strategies in the near-Nash-equilibrium profiles to all of the other 50 pure
strategies. These ε-equilibria all consist of DR(κ) with κs in a narrow range; the best
deviations are to nearby κs (column 2). If all agents follow OEPP(πSC), a single
agent can improve her payoff by at least 2.86 (5.5% of the average payoff) by deviating
to DR(24).

As expected, equilibrium outcomes are inefficient in this environment. However,
the efficiency loss is small: all-16, the symmetric profile with the smallest ε, achieves
98.55% efficiency. We present efficiency results for a few symmetric near-Nash-equilibrium
profiles and our benchmark profiles in Table 4.

Our results suggest that OEPP(πSC) is a weak competitor against DR(κ). The
weakness of OEPP(πSC) may lie in its failure to adjust its bidding to its opponents’
behavior: having good information does not guarantee strategic advantage. We observe
that OEPP(πSC) bids like an aggressive demand-reduction agent. As a consequence,
it earns high profits when playing against other predictors: essentially, in a profile of
all-OEPP, players are tacitly colluding to reduce demand and thus prices. Payoffs
would be higher if all agents could commit to this behavior. However, when collusion

17For reference, the payoffs range from 30 to 69 in our empirical payoff matrix. Thus, the near-equilibrium
profiles in Table 3 are quite close to equilibria: the ε of 0.015 constitutes at most 0.05% of the payoff.
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ε-Nash- Best ε-gain from ε̄-gain Probability the
equilibrium deviation one-player adjusted for profile is exact
profile deviation sampling error Nash equilibrium
15 15 16 16 16 15 → 16 0 0.001 0.58
all-16 16 → 15 0.001 0.004 0.25
15 16 16 16 16 16 → 15 0.001 0.006 0.14
15 15 15 16 16 15 → 16 0.004 0.005 0.11
14 16 16 16 16 16 → 15 0.004 0.008 0.02
15 15 15 15 16 15 → 16 0.005 0.009 0
15 16 16 16 17 15 → 16 0.006 0.007 0.11
14 14 15 15 16 14 → 15 0.006 0.008 0.02
14 14 14 16 16 14 → 15 0.007 0.008 0.09
14 15 15 16 16 14 → 16 0.008 0.009 0.02
15 15 17 17 17 17 → 16 0.008 0.012 0
14 14 15 15 15 14 → 15 0.009 0.008 0.07
15 15 15 17 17 17 → 15 0.009 0.010 0.02
14 14 14 15 15 14 → 15 0.010 0.010 0.05
14 15 15 15 16 16 → 15 0.011 0.010 0.02
16 16 16 16 17 17 → 15 0.011 0.010 0.02
all-15 15 → 16 0.012 0.012 0.04
15 15 16 17 17 17 → 16 0.012 0.012 0.01
15 16 16 17 17 17 → 16 0.012 0.013 0
14 14 16 16 16 14 → 15 0.012 0.013 0
15 17 17 17 17 15 → 16 0.012 0.014 0
14 14 14 15 16 16 → 15 0.013 0.015 0
14 15 16 16 16 14 → 15 0.013 0.014 0.01
15 15 16 16 17 17 → 16 0.013 0.013 0
14 14 15 16 16 14 → 15 0.014 0.014 0
all-17 17 → 16 0.014 0.015 0
15 16 17 17 17 15 → 16 0.015 0.015 0
16 17 17 17 17 17 → 16 0.015 0.015 0
all-SB SB → 14 1.450 1.469 0
all-OEPP OEPP → 24 2.857 2.905 0

Table 3: ε-Nash equilibria for the substitutes environment. The profiles are listed in
order of increasing ε.
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ε-Nash- Best ε-gain from Average Efficiency
equilibrium deviation one-player payoff (%)
profile deviation
all-SB SB → 14 1.450 34.266 100
all-14 14 → 15 0.020 44.665 98.82
all-15 15 → 16 0.012 45.230 98.69
all-16 16 → 15 0.001 45.773 98.55
all-17 17 → 16 0.014 46.307 98.40
all-18 18 → 17 0.035 46.810 98.26
all-OEPP OEPP → 24 2.857 52.063 93.75

Table 4: Efficiency of some symmetric ε-Nash equilibria in the substitutes environ-
ment. The profiles are listed in order of decreasing efficiency.

is unenforceable, the usual motive to deviate unilaterally is strong.

8 Discussion
Our investigation of bidding strategies for simultaneous auctions leads to qualitatively
different conclusions for environments characterized by complementary and substi-
tutable preferences. For the case of complements, we find strong support for a bid-
ding strategy based on probabilistic price prediction, with self-confirming predictions
derived through an equilibration process. Like other decision-theoretic approaches to
bidding [Greenwald and Boyan, 2004], this strategy tackles the exposure problem head-
on, by explicitly weighing the risks and benefits of placing bids on alternative bundles,
or no bundle at all. The fact that the predictions are self-confirming suggests that this
cost-benefit analysis will be accurate when other agents are following the same strat-
egy.

Given the analytic and computational intractability of the SAA game, we evaluated
our self-confirming probabilistic price-prediction strategy, PP(FSC), using an empir-
ical game-theoretic methodology. We explored a restricted strategy space including
PP(FSC) along with a range of candidate strategies identified in prior work. De-
spite the infeasibility of exhaustively exploring the profile spaces, our analyses support
several game-theoretic conclusions. The results provide favorable evidence for our
new strategy—very strong evidence in one environment we investigated intensely, and
somewhat less categorical evidence for a range of variant environments.

For the case of substitutes, the driving strategic issue is demand reduction rather
than exposure risk, and thus it is necessary to predict own price effects as well as
exogenous price levels. We defined a bidding strategy, OEPP, based on such predic-
tions, and a concept of self-confirming prices analogous to the approach that proved
so successful in complementary environments. In this domain, however, the strategy
OEPP(πSC) based on explicit self-confirming predictions did not fare well, prov-
ing in our empirical experiments significantly inferior to an approach based on simple
across-the-board demand reduction.
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There are several possible explanations for the relative lack of success of explicit
price prediction in substitutes environments. One is that the particular OEPP method
we investigated measures own price effects under unrealistic assumptions. Specifically,
the strategy predicts the effect of selecting a demand level (number of goods to go for),
and sticking with that choice thereafter. In actuality, the agent can and does reconsider
its choice at each round conditional on the current auction information. This myopic
assumption about the agent’s own behavior would tend to overestimate the effect of
its immediate decision about demand at the current prices, and thus cause it to reduce
demand more aggressively than warranted.

The simple demand-reduction strategy, DR(κ), can pursue an appropriate degree of
demand reduction in a particular environment by tuning the free parameter κ. This ap-
proach was successful in our experimental environment, but would presumably need to
be retuned for a different configuration of goods and preferences. It remains for future
work to identify a general approach for deriving robust demand-reduction strategies
directly from specification of preference distributions.

Returning to environments with complementarities, our results establish the self-
confirming price-prediction strategy as the leading contender for dealing broadly with
the exposure problem. If agents make optimal decisions with respect to prices that turn
out to be right, there may not be room for performing a lot better. On the other hand,
there are certainly areas where improvement should be possible, for example:

• incorporating price dependencies (but with reasonable computational effort);

• more graceful handling of instances when self-confirming price distributions do
not exist;

• more sophisticated prediction updates given price quotes, including possible in-
corporation of history; and,

• timing of bids: trading off the risk of premature quiescence with the cost of
pushing prices up.

Dealing with combinations of complementarity and substitutability, by combining con-
siderations of exposure and demand reduction, is perhaps the most obvious direction
for extending the scope of bidding-strategy ideas developed here.

Finally, an indirect contribution of this work is to demonstrate an empirical method-
ology for game-theoretic analysis when strategy determination is analytically intractable
[MacKie-Mason and Wellman, 2005, Wellman, 2006]. We find that even when strat-
egy spaces are enormous, much can be learned by empirically converting an extensive-
form game into a normal form in expected payoffs for strategy choices, combined with
thoughtful selection of payoff-matrix regions to estimate, and carefully targeted analy-
ses of results.
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