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In this appendix we describe bidding strategies we have designed to study si-
multaneous ascending auction games [Reeves et al., 2003, MacKie-Mason et al.,
2004, Reeves et al., 2005, Osepayshvili et al., 2005, Wellman et al., 2007].
Throughout this appendix we use the concept of an SAA environment, which
comprises an SAA mechanism over M goods, a set of N agents, and a prob-
ability distribution D over M -good value functions for each agent. We refer
to this distribution as the distribution of the agents’ preferences, and label the
environment D(M,N).

In the first five sections we describe the strategy families and the details of
their implementation. Refer to Table 1 for the content of these sections. In
sections 6 through 8 we report the strategy pools in the restricted games we
studied in [Osepayshvili et al., 2005] and [Wellman et al., 2007].

1 Straightforward Bidding Strategy

A straightforward bidder (SB) takes a vector of perceived prices for the goods
as given, and bids those prices for the bundle of goods that would maximize the
agent’s surplus if it were to win all of its bids at those prices. The perceived
price of a good for an SB agent is equal to the current price of that good if
the agent is winning the good, and to the current price plus the minimum price
increment (set by the auction rules) if the agent is not winning the good. We
describe details of SB in prior work [Reeves et al., 2005].

2 Sunk-Aware Strategies

A sunk-aware agent is a modification of the SB agent that bids as if the in-
cremental cost for goods the agent is currently winning is somewhere on the
interval of zero and the current bid price. To implement this modification, we
introduced the sunk awareness parameter, k ∈ [0, 1]. If k = 1 the strategy is
identical to straightforward bidding. At k = 0 the agent is fully sunk aware,
bidding as if it would retain the goods it is currently winning with certainty.
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Strategy Family Family Parameter Examples Appendix Section
and Notation
Straightforward N/A SB 1
bidder, SB
Sunk-Aware Sunk-awareness SA(k) 2
Agent, SA(k) parameter, k k = {0, 0.05, 0.1, . . . 0.95}
Point Price Beliefs about PP(πZero) 3
Predictors, average final PP(π∞)
PP(πx) prices of PP(πECE)

the goods, x PP(πEDCE)
PP(πSB)
PP(πSC)

Point Price Beliefs about PP(π∞) w/ P.O. 3
Predictors average final PP(πZero) w/ P.O.
with participation prices of PP(πECE) w/ P.O.
only, the goods, x PP(πEDCE) w/ P.O.
PP(πx) w/ P.O. PP(πSB) w/ P.O.

PP(πSC) w/ P.O.
Price Beliefs about PP(FZero) 3
Distribution final price PP(FU )
Predictors, distributions. PP(FSB)
PP(F x) Such beliefs are PP(FCE)
PP(G(µ(x), σ(y))) labeled by x PP(G(µ(CE), σ(CE)))

or a pair (x, y) PP(G(µ(SB), σ(SB)))
PP(F (πx)) PP(F (πECE))

PP(F (πEDCE))
PP(F (πSB))
PP(F (πSC))

Demand Demand reduction DR(κ) 4
Reduction parameter, κ κ = {1, 2, . . . 30, 32, 34,
Agent, DR(κ) 36, 38, 40, 44, 48, 50, 52, 56,

60, 70, 80, 90, 100, 110, 120}
Own-Effect Beliefs about OEPP(πSB) 5
Price own effect on
Predictor, OEPP(πx) final prices

Table 1: Reference table.
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Intermediate values are consistent with bidding as if the agent puts an interme-
diate probability on the likelihood of retaining the goods it is currently winning.
We label sunk aware agents as SA(k). We describe the details of this strategy
family in prior work [Reeves et al., 2005].

3 Price Predicting Strategies

Agents using price prediction strategies generate an initial, pre-auction belief
about the final prices of the goods. For example, the agent can believe that the
final prices will all equal zero or they are distributed normally or uniformly on
some interval. The derivation of most beliefs we employ involves Monte Carlo
sampling. To obtain a belief for a particular distribution of agents’ preferences,
we simulate a large number of game instances with agents drawn from the
preference distribution.

In most of our reported results we used the uniform and exponential dis-
tributions of number of goods demanded by the agent. In our earlier studies
we also considered agents who demanded a fixed number of goods. We refer to
such a preference distribution as a fixed distribution.

We consider two families of price predictors (see Osepayshvili et al. [2005]).
The point prediction strategy family has point beliefs about the final prices
that will be realized for each good. The point price predicting strategy is thus
parameterized by its vector of point beliefs. We label such beliefs π(Ω0, φ).1

Any price vector with the number of elements equal to the number of goods
can represent initial beliefs. Point beliefs based on sampling are obtained by
averaging across final prices or demands in the simulated games.

The point prediction family includes a sub-class of strategies with participation-
only-prediction. The idea behind this strategy is that it ignores its predictions
at some stages of decision making (unlike the full point predictor, which al-
ways relies on the predicted vector). We describe this strategy variant in detail
elsewhere [MacKie-Mason et al., 2004].

The distribution prediction strategy family has beliefs about the final price
distributions. Let F ≡ F (Ω0;φ) denote a joint cumulative distribution function
over final prices, representing the agent’s pre-auction belief. We assume that
prices are bounded above by a known constant, V . Thus, F associates cumula-
tive probabilities with price vectors in {0, . . . , V }M . For simplicity we use only
the information contained in the vector of marginal distributions, (F1, . . . , FM ),
as if the final prices are independent across goods.

For technical reasons we require that initial beliefs are such that for each good
all prices in {0, . . . , V } have a positive probability of occurring. To ensure that
this requirement is satisfied for initial beliefs obtained from empirical samples,
we modify the latter before constructing beliefs. In particular, we add to the
empirically obtained sample of prices a sample of (V + 1) prices from 0 to V .
Suppose the empirical sample consists of n games. The probability that the

1Here and later in the appendix φ refers to the empty set of bid information available
pre-auction.
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good will have final price p ∈ {0, . . . , V } is then

Pr(p) =
np + 1

n + (V + 1)
, (1)

where np is the number of times the final price equaled p in the original sample.
If n is high relative to V , the effect of adding an artificial sample to the

empirical one is negligible. In the restricted games we studied V = 50 and
n ≥ 340000.

In the following sections we describe some examples of beliefs. We denote
a specific point price prediction strategy by PP(πx), where x labels particular
initial point beliefs, π(Ω0, φ). We denote the strategy of bidding based on
a particular distribution predictor by PP(F x), where x labels various initial
beliefs about final price distributions, F (Ω0;φ). If the initial beliefs x are based
on Monte Carlo sampling, we write xu and xe to distinguish between beliefs
obtained using draws from uniform and exponential preference distributions.2

3.1 Zero Beliefs

To construct zero beliefs for the distribution predictor, we assume that we have
a sample of n = 1000000 zero final prices. After we add another artificial sample
of (V + 1) = 51 prices (see equation (1)), the probability that the final price of
a good will be zero becomes 1000000/1000051 = 0.99995. The probability that
the final price of this good will equal p ∈ [1, V ] becomes 1/1000051 < 10−6.
Note, however, that as soon as the ask price exceeds zero, the distribution
predictor reconditions its beliefs based on that information. So once all the
ask prices are above zero it bids identically to distribution predictor having a
uniform distribution for final prices.

For the point price predictor, zero beliefs are simply a vector of zeros. The
point price predictor with zero beliefs is equivalent to SB (see Section 1).

We denote the point and distribution predictors using zero beliefs by PP(πZero)
and PP(FZero) respectively.

3.2 Infinite Point Beliefs

Infinite point beliefs are defined only for the point price predictor. We label
such a predictor PP(π∞). We define this strategy so that it reverts to SB if the
agent has single-unit preference (see Osepayshvili et al. [2005]). Since there is
no exposure problem, the agent will bid if and only if it has a positive value for
exactly one of the goods (despite the expectation that the price will be infinite).

2In our results [MacKie-Mason et al., 2004, Osepayshvili et al., 2005] all agents have beliefs
derived for the preference distribution of their environment. We suppress the subscripts of
beliefs to simplify the notation. Thus, if we consider a uniform environment, x refers to initial
beliefs based on samples from uniformly distributed types. If we consider an exponential
environment, x refers to initial beliefs based on samples from exponentially distributed types.
One exception is the 53-strategy game that we constructed for the 5×5 uniform environment
[Osepayshvili et al., 2005]. In this game some predictors had beliefs based on the exponential
distribution. The 53 strategies are described in Section 6.
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The average performance of this strategy across a Monte Carlo sample provides
a useful performance benchmark for price predicting strategies.

3.3 Uniform Distribution Beliefs

The uniform distribution beliefs are defined only for the distribution predictor,
which we denote PP(FU ). According to the uniform beliefs, probability that
the final price of a good will equal p ∈ [0, V ] is 1/51 = 0.0196.

3.4 SB Beliefs

SB beliefs are based on final prices in a sample of games in which players used
the SB strategy (see Section 1). The point SB beliefs are a vector of average
final prices of the goods available. The distribution SB beliefs are a vector of
marginal price distributions computed according to equation (1). Our sample
size is n = 1000000 games, and the upper bound on prices is V = 50 for all
goods.

We denote the point predictors with SB beliefs derived using samples from
the uniform and exponential distributions by PP(πSBu) and PP(πSBe) re-
spectively. Similarly, the distribution predictors with SB beliefs are labeled
PP(FSBu) and PP(FSBe).

3.5 Competitive Equilibrium Beliefs

Suppose that the final prices form a competitive (or Walrasian) equilibrium
(CE) in the SAA game. This is guaranteed, for example, when SB (see section
1) all demand only single goods, but is not true in general. However, in our
experience, the final prices are generally not too far from CE prices. Therefore,
we calculate the Walrasian equilibrium for an SAA environment and use the
resulting prices to create initial beliefs.

Let SE be an SAA environment. To find the vector of competitive equilibrium
price distributions for SE, FCE , we randomly generate many (n = 25000) game
instances with agents drawn from the preference distribution of SE, and use
tatonnement to solve for the equilibrium prices in each. The CE distribution
beliefs are computed based on the sample of the equilibrium prices according
to the equation (1). We label the CE distribution predictor as PP(FCEu) if
the preference distribution of the sample is uniform, and as PP(FCEe) if it is
exponential.

We calculate the expected competitive equilibrium beliefs, πECE , by averag-
ing across the prices in the sample. We calculate the expected demand compet-
itive equilibrium beliefs, πEDCE , by calculating the expected demand function
for each of the game instances, and then solving for the competitive equilibrium
based on the average demands. We label the corresponding bid strategies as
PP(πECEu) and PP(πEDCEu) if the preference distribution of the sample is
uniform, and as PP(πECEe) and PP(πEDCEe) if it is exponential.3

3The prices to which tatonnement converges are sensitive to the choice of initial prices and
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3.6 Self-Confirming Prices

The self-confirming (SC) distribution beliefs are what we call self-confirming
marginal price distributions. Let SE be an SAA environment. The prediction
F = (F1, . . . , FM ) is a vector of self-confirming marginal price distributions for
SE iff for all m, Fm is the marginal distribution of prices for good m resulting
when all agents play bidding strategy PP(F ) in SE.

The SC point beliefs are what we call self-confirming point predictions, which
are defined as a vector of point predictions that on average are correct, if all
agents use point price prediction (π). Note that the mean of a SC distribution
may be different from SC point predictions for the same environment.

The general idea behind the derivation algorithms if both types of self-
confirming predictions is as follows. Given an SAA environment, we derive
self-confirming predictions through an iterative simulation process. Starting
from an arbitrary prediction, we run many instances (n) of an SAA environ-
ment (sampling from the given preference distributions) with all agents playing
the same predicting strategy (either point prediction or distribution prediction).
We record the resulting prices from each instance, and create new beliefs for the
predictors. The new point beliefs are a vector of average final prices from the
first iteration. The new distribution beliefs are the sample distribution. We re-
peat the process using the new beliefs for each new iteration. If it ever reaches
an approximate fixed point, then we have statistically identified approximate
self-confirming predictions for this environment. For more details on SC point
and distribution predictions, see MacKie-Mason et al. [2004] and Osepayshvili
et al. [2005] respectively.

For the environment we investigate, we could find both SC point predictions
and distributions. In our experiments n = 500000 for SC point predictions and
n = 1000000 for SC distributions; the initial beliefs used in the first iteration
are zero beliefs (see 3.1), although our results do not appear sensitive to this.

3.7 Gaussian Distribution Beliefs

The Gaussian distribution beliefs are defined only for the distribution predic-
tor. Suppose we know the expected prices µ and the standard deviations
σ for all the goods. Then we can approximate the final price distribution
of good m with a Gaussian centered on µm with the restriction that prices
p ∈ [0, V ]. To implement Gaussian beliefs we draw a random sample of size
n = 1000000 from N(µm, σm) for each good m and discard prices outside
[0, V ].4 Then we compute the final price probabilities according to equation
(1). We denote distribution predictors with such beliefs by G(x, y), where
x and y label the expected prices and standard deviations respectively. For
example, agent PP(G(µ(CEu), σ(CEu))) has Gaussian beliefs created using

other parameters of the algorithm. In Section 6 we list all the price vectors we obtained for
the 5×5 uniform environment. At the time of writing this appendix, we have not derived CE
beliefs for alternative environments.

4One drawback of this approach is that truncating the tails shifts the means of the distri-
bution.
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the means and standard deviations of the distribution vector FCEu ; agent
PP(G(πEDCEu , σ(CEu))) has Gaussian beliefs created using πEDCEu as the
means vector and the standard deviations of the distribution vector FCEu .

3.8 Degenerate Distribution Beliefs

The degenerate distribution beliefs are defined only for the distribution predic-
tor. They are degenerate in the sense that according to such beliefs each good
has a deterministic final price. Let π be a vector of prices. For every good m,
assign probability 1 to m’th element of π and probability 0 to all other prices in
[0, V ]. We denote the distribution predictor with such beliefs by PP(F (π)). If
we round the vector π before generating the distributions, we mark the vector
by a prime in the strategy name: PP(F (π

′
)). For example, PP(F (πSBu)) has

beliefs that the final prices will equal πSBu with probability 1; PP(F (πECE′
u))

has beliefs that the final prices will equal the rounded elements of πECEu with
probability 1. The former beliefs match better the information that the corre-
sponding point predictor has. The latter beliefs can be justified by the fact that
prices are integers in our model.

4 Demand Reduction Strategy

The demand reduction strategy family, DR(κ), has been designed for homoge-
neous goods environments (see Wellman et al. [2007]). In such an environment,
each auction sells one unit of a homogeneous indivisible good, and the bidders’
marginal value for units of this good is weakly decreasing. We implemented
such preferences by randomly drawing marginal values vk for the kth good from
U [0, vk−1], with v0 a uniform upper bound on the marginal value of one unit
equal to 127. The parameter κ ∈ 0, . . . , 127 defines the degree of the agent’s
demand reduction. Larger κ implies that the agent bids on fewer units. When
κ = 0, the agent’s bidding behavior is equivalent to SB (see Section 1). In the
other extreme case when κ = 127, the agent never bids at all. For more details
on the strategy, see Wellman et al. [2007].

5 Own-Effect Price Predictors

Own-effect price predictor, OEPP(πx), is an extension of the price predictor(see
Section 3 in the Appendix), designed for homogeneous goods environments (see
Wellman et al. [2007]). Its belief is an m×m matrix (πik(B)), where πik(B) is
a predicted final price of good i given that the agent tries to win k goods and
its information state at the current round is B.

As we argue in Wellman et al. [2007], there is no obvious reason why an
agent should believe that the final price of a homogeneous good on one auction
will be higher than the price on another auction. Due to this consideration,
we construct the initial price prediction to be equal across auctions: πik(∅) =
πjk(∅) for all i and j for all purchase sizes k. In other words, the elements in a
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column are identical in the agent’s initial prediction matrix. We label the initial
prediction matrix of predicted own-effect prices by πx, in which the subscript x
labels particular initial predictions.

Any m ×m matrix can potentially be the agent’s beliefs. We have studied
self-confirming own price effects, i.e. beliefs that on average are correct.

5.1 Self-Confirming Own-Effect Prices

Let Γ be an instance of an SAA game with homogeneous goods. A vector π is
self-confirming own-effect price vector for Γ, if for all k ∈ {1, . . . ,m}, the final
price is equal to the expectation (over the type distribution) of the final price
when one agent tries to win k goods and all the other agents follow OEPP(π).

We denote the self-confirming own-effect price vector by πSC and the self-
confirming own-effect price prediction strategy by OEPP(πSC).

To find approximate self-confirming own-effect prices trough an iterative
procedure. First, we initialize the price effect predictors’ beliefs with an arbi-
trary matrix and simulate many games with a profile in which one agent (the
explorer) ignores its preferences and tries to win a single unit of the good, while
the others follow OEPP. When average prices obtained by these agents are
determined, we replace the first element in the price effects vector with the av-
erage price, re-program the explorer to win two goods and repeat. After the
second batch of simulations, we replace the second element of the price effects
vector with the average price and increase the explorer’s bundle size s by one
or, if s + 1 > m, return to s = 1. When this process reaches a fixed point, we
have the self-confirming vector of own-effect prices, πSC .

We implemented OEPP(πSC) for a homogeneous environment with 5 goods
and 5 agents (see Wellman et al. [2007]). We set the initial beliefs to a matrix
of zeros, and simulated 10 thousand games for every bundle size of the explorer.
The explorer’s bundle size was changed 500 times, i.e., each bundle size was
updated 100 times. We created 10 approximate self-confirming vectors through
this procedure and used their average as πSC . The approximate self-confirming
vectors and their average are presented in Table 2.

6 53-Strategy Game For 5×5 Uniform Comple-
mentary Environment

In this section we describe 53 strategies that we constructed for the 5×5 uniform
environment (see Osepayshvili et al. [2005]). In Table 3 we list all the strategies,
relevant sections of this appendix and all our publications in which the strategies
were mentioned. Table 4 presents all initial point beliefs for the price predicting
strategies we derived for 5×5 uniform environment, as well as relevant sections
of this appendix.
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1 2 3 4 5
19.0538 39.994 60.934 80.4613 101.15
19.7819 39.6585 60.9936 80.3963 101.755
19.3541 40.2281 60.9409 80.4295 102.034
19.2679 39.8432 60.8178 80.2026 101.359
18.5337 39.5263 60.5431 80.4075 101.501
19.5411 40.2917 61.0213 80.5834 101.373
18.9921 40.0143 61.2818 80.377 101.792
18.2261 39.8009 61.2354 80.4773 101.684
18.73 39.5478 61.2418 80.572 101.787
18.4487 39.7332 61.4828 80.5034 101.204
18.99294 39.8638 61.04925 80.44103 101.5639

Table 2: Approximate self-confirming own-effect price vectors and their average.
The columns are the target purchase sizes.

7 Strategies For Alternative Complementary En-
vironments

Table 5 describes a pool of 27 strategies, which we searched for for a profitable
deviation from playing PP(FSC) when all the other agents play PP(FSC). Ta-
ble 6 describes 7-strategy games (7-cliques) for each of the alternative environ-
ments we considered in Osepayshvili et al. [2005]. Some of the strategies are price
predictors whose initial beliefs are derived using Monte Carlo sampling. Such
beliefs are therefore parameterized by the underlying preference distribution.
However, we suppress the preference distribution labels in the tables, because
we derived these beliefs only for the environment in which the corresponding
predicting strategy was used, and therefore there is no ambiguity about how the
beliefs were derived.
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St. Family # Strategy Notation Sec. Publication
N/A 1 SB 1 Reeves et al. [2003]

MacKie-Mason et al. [2004]
Reeves et al. [2005]
Osepayshvili et al. [2005]

Sunk- 20 SA(k) 2 Reeves et al. [2003]
Aware k = 0, 0.05, 0.1, . . . 0.95 MacKie-Mason et al. [2004]

Reeves et al. [2005]
Osepayshvili et al. [2005]

Point 13 PP(π∞), 3 Reeves et al. [2005]
Price PP(πSBu), PP(πSBu) w/ P.O., Osepayshvili et al. [2005]
Predictors PP(πECEu), PP(πECE∗

u), PP(πECE∗∗
u ),

PP(πECEe), PP(πECE∗
e ),

PP(πEDCEu), PP(πEDCE∗
u),

PP(πEDCEe), PP(πEDCE∗
e ),

PP(πSCu)
Price 19 PP(FZero),PP(FU ) 3 Osepayshvili et al. [2005]
Distribution PP(FSBu),PP(FSCu),
Predictors PP(FCEu),

PP(G(µ(CEu), σ(CEu))),
PP(G(µ(SBu), σ(SBu))),
PP(G(πEDCEu , σ(CEu))),
PP(G(πEDCEu , σ(SBu))),
PP(G(πSCu , σ(CEu))),
PP(G(πSCu , σ(SBu))),
PP(F (πECEu)), PP(F (πECE′

u)),
PP(F (πEDCEu)), PP(F (πEDCE′

u)),
PP(F (πSBu)), PP(F (πSB′

u))
PP(F (πSCu)), PP(F (πSC′

u))

Table 3: 53 strategies for the largest 5×5 uniform environment game. The
strategies are listed in column 3, and their strategy families are given in col-
umn 1. P.O. refers to participation only prediction. Different point beliefs
created by the same (non-deterministic) algorithm are marked by asterisks. In
column 2 we report the total number of strategies from a particular family rep-
resented in the 53-strategy game. The relevant Appendix sections are reported
in column 4. Our publications, in which the strategies were mentioned, are
listed in column 5.
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Beliefs/Good 1 2 3 4 5 Appendix Section
Initial Point Beliefs

π∞ 1000 1000 1000 1000 1000 3.2
πSBu 14.8 10.7 7.6 4.6 1.9 3.4
πSCu 13.0 8.7 5.4 3.0 1.2 3.6
πECEu 16.6 10.8 6.5 3.1 0.7 3.5
πECE∗

u 16.5 10.7 6.4 3.1 0.8 3.5
πECE∗∗

u 26.0 14.2 6.9 2.5 0.3 3.5
πECEe 6.0 4.1 1.8 0.6 0.1 3.5
πECE∗

e 30.5 11.9 6.0 2.7 0.4 3.5
πEDCEu 20.0 12.0 8.0 2.0 0.0 3.5
πEDCE∗

u 20.8 11.4 8.2 1.8 0.0 3.5
πEDCEe 25.0 10.0 5.1 0.9 0.0 3.5
πEDCE∗

e 24.5 10.5 5.5 1.5 0.0 3.5

Table 4: Initial beliefs (rounded to one decimal point) for 5×5 uniform environ-
ment. The notation for the beliefs is presented in column 1. The vectors of point
beliefs are presented in column 2. The goods are numbered from 1 through 5.
The monotonicity of the prices is due to the specifics of the scheduling games
(see MacKie-Mason et al. [2004] and Reeves et al. [2005]) we considered in our
experiments. For information about price predicting strategies, see Section 3.
The subsections of Section 3 that are most relevant to a particular belief are
presented in column 3.

Strategy Family # Strategy Notation Section
N/A 1 SB 1
Sunk- 20 SA(k) 2
Aware k = {0, 0.05, 0.1, . . . 0.95}
Point Price 3 PP(π∞), PP(πSB), PP(πSC) 3
Predictors
Price Distribution 3 PP(FU ), PP(FSB), PP(FSC) 3
Predictors

Table 5: Pool of 27 deviators for alternative environments. The strategies are
listed in column 3, and their strategy families are given in column 1. Column 2
gives then total number of strategies from a particular family represented in the
27-strategy pool. The relevant Appendix sections are listed in column 4.
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Environment Strategies
E(3, 3) PP(FSC), PP(FSB), SA(0.6), SA(0.7), SA(0.75), SA(0.8), SA(0.85)
E(3, 5) PP(FSC), PP(FSB), PP(FU ), PP(πSC), PP(πSB), PP(π∞), SA(0.85)
E(3, 8) PP(FSC), PP(FSB), PP(FU ), PP(πSC), PP(πSB), PP(π∞), SA(0.85)
E(5, 3) PP(FSC), PP(FSB), PP(FU ), PP(πSC), PP(πSB), PP(π∞), SB
E(5, 5) PP(FSC), PP(FSB), PP(FU ), PP(πSC), PP(πSB), PP(π∞), SA(0.35)
E(5, 8) PP(FSC), PP(FSB), PP(FU ), PP(πSC), PP(πSB), PP(π∞), SA(0.35)
E(7, 3) PP(FSC), PP(FSB), SA(0.55), SA(0.65), SA(0.7), SA(0.75), SA(0.8)
E(7, 6) PP(FSC), PP(FSB), PP(FU ), PP(πSC), PP(πSB), PP(π∞), SB
U(3, 3) PP(FSC), PP(FSB), SA(0.65), SA(0.7), SA(0.75), SA(0.8), SA(0.85)
U(3, 5) PP(FSC), PP(FSB), PP(πSC), PP(πSB), SA(0.7), SA(0.75), SA(0.85)
U(3, 8) PP(FSC), PP(FSB), PP(FU ), PP(πSC), PP(πSB), PP(π∞), SA(0.9)
U(5, 3) PP(FSC), PP(FSB), SA(0.6), SA(0.65), SA(0.7), SA(0.75), SA(0.8)
U(5, 8) PP(FSC), PP(FSB), PP(FU ), PP(πSC), PP(πSB), PP(π∞), SA(0.9)
U(7, 3) PP(FSC), PP(FSB), SA(0.55), SA(0.65), SA(0.7), SA(0.75), SA(0.8)
U(7, 6) PP(FSC), PP(FSB), PP(πSC), PP(πSB), SA(0.75), SA(0.8), SA(0.9)
U(7, 8) PP(FSC), PP(FSB), PP(FU ), PP(πSC), PP(πSB), PP(π∞), SB

Table 6: 7-strategy games for alternative environments. E(M,N) and U(M,N)
refer to the environments with exponential and uniform preference distribution
respectively, M goods and N agents.

8 51-Strategy Game for 5× 5 Uniform Homoge-
neous Environment

In Table 7 we report 51 strategies that we constucted for the 5×5 homogeneous
goods environment (Wellman et al. [2007]), relevant sections of this appendix
and all our publications in which the strategies have been mentioned.
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St. Family # Strategy Notation Sec. Publication
N/A 1 SB 1 Reeves et al. [2003]

MacKie-Mason et al. [2004]
Reeves et al. [2005]
Osepayshvili et al. [2005]
Wellman et al. [2007]

Sunk- 1 SA(k) 2 Reeves et al. [2003]
Aware k = 0.5 MacKie-Mason et al. [2004]

Reeves et al. [2005]
Osepayshvili et al. [2005]
Wellman et al. [2007]

Price 1 PP(FSBu) 3 Osepayshvili et al. [2005]
Distribution Wellman et al. [2007]
Predictor
Demand 47 DR(κ) 4 Wellman et al. [2007]
Reduction κ = {1, 2, . . . 30, 32, 34,
Agent 36, 38, 40, 44, 48, 50, 52, 56,

60, 70, 80, 90, 100, 110, 120}
Own-Effect 1 OEPP(πSC) 5 Wellman et al. [2007]
Price
Predictor

Table 7: 51 strategies for the 5×5 homogeneous goods environment game. The
strategies are listed in column 3, and their strategy families are given in col-
umn 1. In column 2 we report the total number of strategies from a particular
family represented in the 51-strategy game. The relevant Appendix sections are
reported in column 4. Our publications, in which the strategies were mentioned,
are listed in column 5.
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