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A double-gimbalcontrol-momentgyro (CMG) is modeled using Lagrange’s equations,and an adaptive feedback
control law is developed to follow a commanded CMG motion. The control law does not require knowledge of the
mass properties of the CMG. A Lyapunov argument is used to prove that command following is achieved globally
with asymptoticconvergence. Numerical simulationsare performed to illustrate the commandfollowing algorithm.
A CMG testbed was designed and constructed to implement and demonstrate the adaptive algorithm.This testbed
is described, and experimental results are given.

I. Introduction

A CTUATORS for spacecraft fall into two distinct categories,
namely, inertial and noninertial. Inertial actuators provide

torques to a spacecraft by reacting against inertial space and, thus,
change the angular momentum of the spacecraft. Thrusters, which
require fuel, are the principal type of inertial actuators. Magnetic
actuators, which react to the Earth’s magnetic � eld and which do
not require fuel, also serve as inertial actuators.

Noninertial actuators include reaction wheels, momentum
wheels, and single-gimbal and double-gimbal control moment gy-
ros (CMGs). Whereas these actuators require electric power, they
do not require fuel, and they do not change the total angularmomen-
tum of the spacecraft.1 Among noninertial actuators, the dual-axis
CMG is the most sophisticated because it has the ability to apply
control torques around arbitrary axes with the exceptionof singular
orientationscorrespondingto gimbal lock. In applications,multiple
CMGs are used for reliability, to avoid gimbal lock, and to avoid
large angle motion.

Becausea CMG is a multibodysystem, its dynamicsare complex,
especially if large angle motion is allowed. Theoretical analysis of
CMG dynamics is given in Ref. 2, whereas engineering aspects of
CMG controlare consideredin Refs. 3–5. In thepresentpaperwe are
concerned with the problem of wheel imbalance in CMGs. At high
rotational speeds (5,000–10,000 rpm is typical for CMGs), small
mass imbalances in the CMG wheel or due to asymmetric lubricant
buildup can produce signi� cant disturbance forces at the frequency
of the wheel angular velocity.6 Mass imbalance effects also arise in
momentum wheels where active isolationstages are used for distur-
bance suppression.7 These studies suggest that noninertialactuators
are often the source of the largest component of disturbance forces
on spacecraft.

In the present paper we model a double-gimbal CMG with un-
known mass imbalance,mounted on a support structure � xed to the
Earth. Using Lagrange’s equations(see Ref. 8), we accountfor large
anglemotion and the presenceof imbalance,which to the best of our
knowledge has not been done. A double-gimbal CMG testbed was
designed and constructed to permit various control experiments to
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be performed.The control objective is to develop a control law that
counteractsthe effects of mass imbalance without knowledgeof the
mass distribution of the CMG while allowing the CMG to follow a
commanded motion that includes unbounded rotational motion of
the CMG gimbals and wheel.

Adaptive control laws for mechanical systems with linear depen-
dence on parameters that are able to follow a commanded motion
have been developed.9¡11 However, in Ref. 9 and 10, the class of
commanded motions do not include those that permit unbounded
rotational motion of the mechanical systems because the rotational
motionof the systemis describedin terms of anglesand theirderiva-
tives. In Ref. 11, differentialgeometric techniquesare used to guar-
antee convergence to a set consisting of four states, one of which is
the desired state, but requiresknowledgeof boundsof the unknown
parameters.

In this paper, the rotational motion of the CMG is described by
using trigonometric functions of the half-anglesof the gimbals and
wheel, which transform unboundedCMG rotational motion to mo-
tion on a compact set. This formulation permits the development
of a control algorithm, which is presented in Sec. IV, that allows
unbounded rotational motion of the CMG gimbals and wheel. A
proof of the control law is based on a variant of standard Lyapunov
arguments found in Ref. 12 to account for the motion on closed
sets. The control law is a direct adaptive control law13¡16 and has
the form of a dynamic compensator whose order depends on the
number of uncertainparameters and whose states provide estimates
of the wheel and gimbal moments of inertiaand centersof mass.Our
controller can be viewed as an extension of the control law derived
in Ref. 17 for spacecraft tracking with unknown mass distribution.

The contents of the paper are as follows. In Sec. II, we describe
the equations that govern the CMG motion; in Sec. III, we de� ne
the command following problem; and in Sec. IV, we formulate a
controlalgorithmthat permits the CMG to track a desired trajectory.
In Sec. V, we illustrate the adaptive control law using a numerical
example, in Sec. VI, we describe the experimental setup, and in
Sec. VII, we present experimental results.

II. Equations of Motion
In this section,we model the CMG as a system of interconnected

rigid bodies and apply Lagrange’s equations for a system of rigid
bodies to obtain the equations that govern the CMG’s motion.

For a system of rigid bodies, Lagrange’s equations are given by

d

dt

³
@L

@ Pqi

´
¡ @L

@qi
D Q 0

i ; i D 1; : : : ; n (1)

where n is the number of degreesof freedom, q1; : : : ; qn 2 < are the
independentgeneralizedcoordinates, Pq1; : : : ; Pqn 2 < are the deriva-
tives of q1; : : : ; qn , and L D L.q; Pq/ 2 < is the Lagrangian of the
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Fig. 1 CMG nomenclature.

system, where q D [q1 ¢ ¢ ¢ qn ]T 2 <n and Pq D [ Pq1 ¢ ¢ ¢ Pqn ]T 2 <n , and
L is given by

L D T ¡ V (2)

where T D T .q; Pq/ 2 < is the kinetic energy of the system, V D
V.q/ 2 < is the potential energy of the system, Q 0

1; : : : ; Q 0
n 2 < are

the generalized forces not derivable from a potential function and
are given by

Q 0
i D

mX

j D 1

F j ¢
@½ j

@qi
; i D 1; : : : ; n (3)

where, for j D 1; : : : ; m; F j is a force not derivable from a potential
functionand acting at position½ j D ½ j .q/ and m is a positiveinteger
representing the total number of forces not derivable from a poten-
tial. If there are no forces not derivable from a potential function,
then Q 0

1 D ¢ ¢ ¢ D Q 0
n D 0.

The kinetic energy of a single rigid body r is

T D 1
2 !r ¢ I r

x ¢ !r C 1
2
mr vx ¢ vx C mr !r ¢ ½xy £ vx (4)

where 1
2 !r ¢ I r

x ¢ !r represents the rotational kinetic energy and
1
2
mr vx ¢ vx C mr !r ¢ ½xy £ vx represents the translationalkinetic en-

ergy, where mr > 0 is the mass of r , x is a point on r , y is the center
of mass of r; ½x y D ½xy .q/ is the vector from x to y, vx D vx .q; Pq/
is the velocity of x , !r D !r .q; Pq/ is the angular velocity of r , and
I r
x D I r

x .q/ is the positive de� nite inertia tensor of r about x . The
potential energy of r in the presence of a uniform gravitational� eld
is

V D ¡mr g ¢ ½y (5)

where ½y D ½y.q/ denotes the position of y and g is the gravity
vector.

The CMG shown in Fig. 1 consists of a rectangularouter gimbal,
which rotates through an angle Ã about an axis ³3, an inner gimbal,
which rotates within the outer gimbal through an angle µ about an

G it .q/
1D

2

4
0 0 0

0 0 m i . f2 £ ½bu/ ¢ .³3 £ ½cb/

0 m i . f2 £ ½bu/ ¢ .³3 £ ½cb/ m i [.³3 £ ½cb/ ¢ .³3 £ ½cb/ C 2.³3 £ ½bu/ ¢ .³3 £ ½cb/]

3

5 (12)

Gwt .q/
1D

2

4
0 mw.e1 £ ½at / ¢ . f2 £ ½ba/ mw.e1 £ ½at / ¢ .³3 £ ½ca /

mw.e1 £ ½at / ¢ . f2 £ ½ba/ Z1 Z2

mw.e1 £ ½at / ¢ .³3 £ ½ca/ Z2 Z3

3

5 (13)

axis f2 perpendicular to the outer gimbal axis, and a wheel � xed to
the inner gimbal, which spins through an angle Á about an axis e1

perpendicularto the inner gimbal axis. We assume that the CMG is
constructedso that ³3 is perpendicularto e1 initially. The CMG has
three actuators, speci� cally, an outer gimbal motor, which is � xed
to the support structure, an inner gimbal motor, which is � xed to

the outer gimbal, and a wheel motor, which is attached to the inner
gimbal.

We model the outer gimbal, the inner gimbal, and the wheel as
rigidbodiesandassumethat the supportstructureonwhich theCMG
is mounted is inertially � xed. We employ the following body-� xed
frames to determine the kinetic energy of the CMG. Let (³1; ³2; ³3 )
be a frame � xed to the outer gimbal, where ³3 is the outer gimbal
axis and ³2 is the inner gimbal axis. Let ( f1; f2; f3) be a frame � xed
to the inner gimbal, where f1 is the wheel axis and is obtained by
rotating (³1; ³2; ³3) through an angle µ about ³2 so that

2

4
f1

f2

f3

3

5 D

2

4
cos µ 0 ¡sinµ

0 1 0

sin µ 0 cos µ

3

5

2

4
³1

³2

³3

3

5 (6)

Finally, let (e1; e2; e3) be a frame � xed to the wheel obtained by
rotating . f1; f2; f3/ through an angle Á about f1 so that

2

4
e1

e2

e3

3

5 D

2

4
1 0 0

0 cosÁ sin Á

0 ¡sin Á cos Á

3

5

2

4
f1

f2

f3

3

5 (7)

Now, the kinetic energy of the CMG is the sum of the kineticenergy
of the outer gimbal, the inner gimbal, and the wheel. When Eq. (4)
is applied to the outer gimbal, inner gimbal, and wheel, the kinetic
energy of the CMG is given by

T D 1
2

PqT M.q/ Pq (8)

where q D [Á µ Ã ]T 2 <3 , Pq D [ PÁ Pµ PÃ]T 2 <3, and M : <3 !
<3 £ 3 is de� ned by

M.q/ D GT
wr .q/I w

a Gwr .q/ C GT
wt .q/Gwt .q/ C GT

ir .q/I i
bG ir .q/

C GT
i t .q/G it .q/ C GT

o .q/I o
c Go.q/ (9)

where a, b, and c are arbitrary points on the axis of ro-
tation of the wheel, inner gimbal, and outer gimbal, respec-
tively; I o

c is the inertia matrix of the outer gimbal about c ex-
pressed in frame (³1; ³2; ³3 ); I i

b is the inertia matrix of the in-
ner gimbal about b expressed in frame ( f1; f2; f3 ); and I w

a is
the inertia matrix of the wheel about the point a expressed
in frame (e1; e2; e3 ), where Go : <3 ! <3 £ 3 , G ir : <3 ! <3 £ 3,
G it : <3 ! <3 £ 3, Gwr : <3 ! <3 £ 3 , and Gwt : <3 ! <3 £ 3 are de-
� ned by

Go.q/
1D

2

4
0 0 0

0 0 0

0 0 1

3

5; G ir .q/
1D

2

4
0 0 ¡sin µ

0 1 0

0 0 cosµ

3

5 (10)

Gwr .q/
1D

2

4
1 0 ¡sin µ

0 cos Á cosµ sin Á

0 ¡sinÁ cosµ cos Á

3

5 (11)

where

Z1 D mw[. f2 £ ½ba/ ¢ . f2 £ ½ba/ C 2. f2 £ ½at / £ . f2 £ ½ba/]

Z2 D mw[.³3 £ ½ca/ ¢ . f2 £ ½ba/ C .³3 £ ½at / ¢ . f2 £ ½ba/

C . f2 £ ½at / ¢ .³3 £ ½ca /]

Z3 D mw[.³3 £ ½ca/ ¢ .³3 £ ½ca / C 2.³3 £ ½at / ¢ .³3 £ ½ca /]
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where t and u are the centers of mass of the wheel and inner gimbal,
respectively. The potential energy of the CMG is the sum of the
potentialenergyof theouter gimbal, the inner gimbal,and thewheel.
We assume that the gravitational � eld is uniform and when Eq. (5)
is applied, the potential energy of the CMG is given by

V.q/
1D ¡g ¢ .mw½t C m i ½u C mo½v/ (14)

where v is the center of mass of the outer gimbal. The generalized
forces not derivable from a potential, obtained by applying Eq. (3),
are

Q 0
Á D ¿w C fw C sw (15)

Q 0
µ D ¿i C fi C si (16)

Q 0
Ã D ¿o C fo C so (17)

where ¿w; ¿i , and ¿o are the torques applied by the wheel, the inner
gimbal, and the outer gimbal motor, respectively; fw; fi , and fo are
the torques due to friction; and sw; si , and so are the torques due to
stiffness acting on the wheel, the inner gimbal, and the outer gimbal,
respectively.For the CMG describedin Sec. VI, the stiffnesstorques
model the effect of the cables on the CMG.

Applying Eq. (1), we obtain

M .q/ Rq C [C.q; Pq/ ¡ F.q; Pq/] Pq C G.q/ ¡ S.q/ D u (18)

where C : <3 £ <3 ! <3 £ 3 is de� ned by

C.q; Pq/
1D 1

2 [ PM .q; Pq/ C BT . Pq; q/ ¡ B. Pq; q/] (19)

PM : <3 £ <3 ! <3 £ 3 is de� ned by

PM.q; Pq/
1D @M T

@q
. Pq ­I3/ (20)

In is the n by n identity matrix, ­ is the Kronecker product,
.@ M T =@q/ : <3 £ <3 ! <3 £ 9 is de� ned by

@ MT

@q
1D

µ
@M

@Á

@ M

@µ

@ M

@Ã

¶
(21)

B : <3 £ <3 ! <3 £ 3 is de� ned by

B.q; Pq/
1D

¡
I3 ­ PqT

¢ @M

@q
(22)

G : <3 ! <3 is de� ned by

G.q/
1D

2

4
¡mw g ¢ .e1 £ ½at /

¡g ¢ [mw f2 £ .½ba C ½at / C m i f2 £ ½bu ]

¡g ¢ [mw³3 £ .½cb C ½ba C ½at / C m i ³3 £ .½cb C ½bu/ C mo³3 £ ½cv]

3

5 (23)

and u
1D [¿w ¿i ¿o]T . In addition, we assume the friction and stiff-

ness torques are of the form

2

4
fw

fi

fo

3

5 D F.q; Pq/ Pq;

2

4
sw

si

so

3

5 D S.q/ (24)

where F : <3 £ <3 ! <3 £ 3 and S : <3 ! <3 .

III. Error Equations Command Following Problem
In this section, we employ a suitable change of coordinates so

that unboundedcommanded rotational motion of the CMG is trans-
formed to motion on a compact set. We then de� ne suitable error

states and express the command followingproblemin terms of these
error coordinates.

Consider the transformationh : <3 ! <6 given by

h.p/
1D

2

66666664

sin p1=2

sin p2=2

sin p3=2

cos p1=2

cos p2=2

cos p3=2

3

77777775

(25)

where p D [p1 p2 p3]T . We observe from Eq. (25) that

h.<3/ D U (26)

where U is the compact set given by

U
1D

©
.w1; w2; w3; w4; w5; w6/ 2 <6 :w2

i C w2
i C 3 D 1; i D 1; 2; 3

ª

(27)
Let

zd D h.qd / (28)

where qd D [Ád µd Ãd ]T : [0; 1/ ! <3 is the commanded motion.
Using Eqs. (26) and (28), we observethat zd is boundedfor everyqd ,
including those qd that are unbounded.Thus, unbounded rotational
commanded motion of the CMG is transformed to motion on the
compact set U .

Next, we show that Eq. (18) can be rewritten in terms of z, where

z D h.q/ (29)

The dependence of M on q is only in the form of trigonometric
functions of Á; µ; and Ã . Because sin Á D 2 sin Á=2 cos Á=2 and
cos Á D sin2 Á=2 ¡ cos2 Á=2, with similar expressions for µ and Ã ,
it follows that M.q/ can be rewritten in terms of z to obtain the
function OM.z/. Similarly, because the dependenceof C and G on q
is only in the form of the trigonometric functions, we can express
C.q; Pq/ and G.q/ in terms of z and Pq to obtain the functions OC.z; Pq/

and OG.z/. Assuming the arguments of F and S depend only on
trigonometric functions, we rewrite F and S to obtain OF .z; Pq/ and
OS.z/.

Rewriting Eq. (18) in terms of z and Pq, we obtain

OM.z/ Rq C [ OC.z; Pq/ ¡ OF.z; Pq/] Pq C OG.z/ ¡ OS.z/ D u (30)

Pz D
µ

0 O. Pq/

¡O. Pq/ 0

¶
z (31)

where O : <3 ! <3 £ 3 is de� ned by

O.p/ D 1

2

2

4
p1 0 0

0 p2 0

0 0 p3

3

5 (32)

where p D [p1 p2 p3]T .
Next, the error state Ez is de� ned by

Ez
1D

µ
E
OE

¶
1D H .zd/z (33)
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where E 2 <3 , OE 2 <3, and H : <6 ! <6 £ 6 is given by

H .w/
1D

2

66666664

w4 0 0 ¡w1 0 0

0 w5 0 0 ¡w2 0

0 0 w6 0 0 ¡w3

w1 0 0 w4 0 0

0 w2 0 0 w5 0

0 0 w3 0 0 w6

3

77777775

(34)

where w D [w1 w2 w3 w4 w5 w6]T . Using Eq. (34), we observe
that that H .w/H T .w/ D H T .w/H .w/ D I6 for all w 2 U , where U
is given by Eq. (27). Hence, Eq. (33) implies

z D H T .zd/Ez (35)

E D

2

64
sin.Á=2 ¡ Ád =2/

sin.µ=2 ¡ µd=2/

sin.Ã=2 ¡ Ãd=2/

3

75; OE D

2

64
cos.Á=2 ¡ Ád=2/

cos.µ=2 ¡ µd =2/

cos.Ã=2 ¡ Ãd=2/

3

75 (36)

Note that E D 0 if and only if Á ¡ Ád D 0 mod 2¼ , µ ¡ µd D 0 mod
2¼; and Á ¡ Ád D 0 mod 2¼ . Furthermore, de� ne the error state

e Pq
1D Pq ¡ Pqd (37)

For the command following problem, assume qd : [0; 1/ ! <3

is C 2. Find a dynamic feedback control law of the form

PO® D f .zd ; Pqd ; Rqd ; O®; z; Pq/ (38)

u D g.zd ; Pqd ; Rqd ; O®; z; Pq/ (39)

for Eqs. (30) and (31), where O®.t/ 2 <º , t 2 [0; 1/, such that E ! 0
and e Pq ! 0 as t ! 1 for all initial conditions z.0/ 2 U; Pq.0/ 2 <3;
and O®.0/ 2 <º .

Command following problem as stated requires E ! 0 and
e Pq ! 0, which using Eqs. (36) and (37) implies that the CMG
follow a commanded motion, and permits all suf� ciently smooth
qd , including those that are unbounded. Note that the control algo-
rithm as stated in Eqs. (38) and (39) does not have to be independent
of the mass distribution of the CMG. However, in Sec. IV we shall
develop a control algorithm that requires no knowledge of the mass
or inertia properties of the CMG.

Next, we recast Eqs. (30) and (31) in terms of the error states Ez

and e Pq and restate the command following problem in terms of Ez

and e Pq . To do this, de� ne QM : [0; 1/ £ <6 ! <3 £ 3 by

QM .t; Ez/
1D OM

©
H T [zd .t/]Ez

ª
(40)

QC : [0; 1/ £ <6 £ <3 ! <3 £ 3 by

QC.t; Ez; e Pq /
1D OC

©
H T [zd .t/]Ez; e Pq C Pqd .t/

ª
(41)

and QG : [0; 1/ £ <6 ! <3 by

G.t; Ez/
1D OG

©
H T [zd.t/]Ez

ª
(42)

When Eqs. (35) and (37) are used, Eqs. (30) and (31) become

QM.t; Ez/. Pe Pq C Rqd / D [¡ QC.t ; Ez; e Pq/ C QF.t ; Ez; e Pq/].e Pq C Pqd/

C QS.t; Ez/ ¡ QG.t; Ez/ C u (43)

PEz D
µ

0 O.e Pq/

¡O.e Pq/ 0

¶
Ez (44)

Then, Eqs. (33) and (34) imply that

E 2
i C OE 2

i D z2
i C z2

i C 3; i D 1; 2; 3 (45)

It follows from Eq. (45) that the command following problem is
solved if and only if E ! 0 and e Pq ! 0 in Eqs. (43) and (44) for
all initial conditions Ez 2 U and e Pq.0/ 2 <3 .

We assume that measurements of q and Pq are available. It can be
seen from Eqs. (25), (34), and (37) that the quantities z, zd , E , OE ,
and e Pq can be calculated. In Sec. IV, the control law Eqs. (38) and
(39) is expressed in terms of O®, Ez , e Pq , zd , Pqd , and Rqd .

IV. Adaptive Control Law
In this section, we present a feedback control law that asymp-

totically follows a commanded trajectory.The control law does not
require knowledge of the mass distribution of the CMG.

UsingEqs. (9), (12), (13), (34), and (40), we observethat QM.t ; Ez/
dependson the inertia,mass, and centerof mass locationparameters,
namely, I w

a11, I w
a22 , I w

a33 , I w
a23, I w

a13 , I w
a12, I i

b11, I i
b22, I i

b33, I i
b23, I i

b13, I i
b12,

I o
c33, mw , m i , mo , ½at1 , ½at2 , ½at3 , ½bu1 , ½bu2 , ½bu3 , ½ba1 , ½ba2, ½ba3,

½cb1 , ½cb2 , and ½cb3 , where ½at is expressed in .e1; e2; e3/, ½bu and
½ba are expressed in . f1; f2; f3/, and ½cb is expressed in .³1; ³2; ³3/,
and where xi is the i th component of x 2 <n and Ai j is the .i; j/
entry of A 2 <m £ n . Next, note from Eqs. (9), (12), (13), (34), and
(40) that QM .t ; Ez/ depends linearly on ®m , where ®m consists of
inertia, mass and center of mass location parameters, and products
of these. In practice, some of these parameters may be known. In
this case, we assume that ®m consists only of uncertain parameters
and products of parameters, at least one of which is uncertain. It
can be shown that the dimension of ®m is between 0 (no uncertain
parameters) and 50 (all uncertain parameters).

Similarly,usingEqs. (23), (34), and (42),we observethat QG.t ; Ez/
depends on the gravitational parameters, namely, g1 , g2 , g3 , mw ,
m i , mo , ½at1, ½at2, ½at3 , ½bu1 , ½bu2 , ½bu3, ½ba1 , ½ba2, ½ba3 , ½cb1 , ½cb2,
½cb3 , ½cv1; and ½cv2 where g is expressed in an arbitrary inertially
� xed frame and ½cv is expressed in (³1; ³2; ³3 ). Next, note from
Eqs. (23), (34), and (42) that QG.t; Ez/ dependslinearlyon ®g , where
®g consists of the center of gravity locationparameters and products
of these. It can be shown that the dimension of ®g is between 0 (no
uncertain parameters) and 15 (all uncertain parameters). For the
friction and stiffness torques, we assume that there exist parameters
® f and ®s , so that QF .t; Ez; e Pq/ and QS.t ; Ez/ depend linearly on ® f

and ®s .
The number of uncertain parameters º depends on assumptions

made about the CMG con� guration, as well as on QF and QS. In the
specialcase in which thereareno frictionand stiffnesstorques, there
exists a common point that lies on the axis of rotation of all of these
motors, that is, a D b D c so that Gwt D G it D 0, and g2 D g3 D 0,
where g is expressed in an inertially � xed frame .²1; ²2; ²3/ such
that, at t D 0; .²1; ²2; ²3/ coincides with .³1; ³2; ³3/; then it can be
seen that º D 21. This is the case considered in Sec. V.

The following lemmas will be needed.
Lemma 1: OM .z/ and QM.t ; Ez/ are positive de� nite for all z 2 <6,

t 2 [0; 1/, and Ez 2 <6.
Proof: Recall that OM .z/ is formed by replacing the trigonometric

functions of the angles Ã; µ , and Á by z using Eq. (25). When
OGo.z/; OG ir .z/; OG it .z/; OGwr .z/, and OGwt .z/ are de� ned in a similar

manner, it follows from Eqs. (9) and (29) that

OM.z/ D OGT
o .z/I o

c
OGo.z/ C OGT

ir .z/I i
b

OG ir .z/ C OGT
it .z/ OG i t .z/

C OGT
wr .z/I w

a
OGwr .z/ C OGT

wt .z/ OGwt .z/ (46)

From Eq. (46), it follows that OM.z/ is the sum of positive semide� -
nite terms and is, thus, positivesemide� nite for all z 2 <6. Let z 2 <6

and let p 2 <3 satisfy pT OM .z/p D 0. Thus, it follows that

OGo.z/p D OG ir .z/p D OGwr .z/p D 0 (47)

When Eq. (10) is used, OGo.z/ p D 0 implies that p3 D 0. Similarly,
p3 D 0 and OG ir .z/ p D 0 imply p2 D 0. Finally,when Eq. (11) is used
with p2 D p3 D 0 and OGwr .z/p D 0, it follows that p1 D 0; hence,
p D 0, which implies that OM.z/ is positive de� nite for all z 2 <6.
Finally it follows from Eq. (40) that QM.t; Ez/ is positivede� nite for
all t 2 [0; 1/ and Ez 2 <6.
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Lemma 2: There exist ¹1 > 0 and ¹2 > 0 such that

¹1 I3 · OM .z/ · ¹2 I3; z 2 U (48)

¹1 I3 · QM.t; Ez/ · ¹2 I3; t 2 [0; 1/; Ez 2 U (49)

where U is given by Eq. (27).
Proof: Because U is a compact subset of <6; OM is a continuous

function, and OM .z/ is positive de� nite for all z 2 <6, it follows that
there exist positive ¹1 and ¹2 satisfying Eq. (48). Equation (49) is
immediate.

Finally, we isolate the parameters that characterize the inertia,
mass, center of mass locations, center of gravity locations, and the
friction and stiffness torques by de� ning Y : [0; 1/ £ <6 £ <3 £
<3 £ <3 £ <3 ! <3 £ º by

Y .t ; Ez; e Pq ; ·; Q·; O·/®
1D ¡ QM.t; Ez/· ¡ QC.t ; Ez; e Pq/ Q·

C QF.t ; Ez; e Pq / O· ¡ QG.t; Ez/ C QS.t ; Ez/ (50)

where · 2 <3; Q· 2 <3; O· 2 <3 , and ® 2 <º is the vector of
parameters.

Next,we presenta control law that solves the command following
problem with a proof based on Lyapunov theory. Note from the
de� nition of the command following problem as stated in Sec. III
that we are only interested in initial conditions that belong to the
closed set <3 £ U £ <º . The standard Lyapunov theorem as found
in Ref. 18 is only valid for open sets, and so we use a variant of the
standard Lyapunov argument found in Ref. 12.

Theorem: Assume that Pqd and Rqd are bounded for all t 2 [0; 1/.
Let 3 : [0; 1/ ! <3 £ 3 be continuous, K : [0; 1/ ! <3 £ 3 be con-
tinuous,31 2 <3 £ 3, 32 2 <3 £ 3 , K1 2 <3 £ 3, and K2 2 <3 £ 3 be such
that 31 , 32 , and 3.t/ are diagonal for all t 2 [0; 1/,

0 < 31 < 3.t/ < 32; t 2 [0; 1/ (51)

0 < K1 < K .t/ < K2; t 2 [0; 1/ (52)

Let P 2 <3 £ 3 be diagonal and positive de� nite, and let Q 2 <º £ º

be positive de� nite. Then the control law

PO® D Q¡1Y T [t ; Ez; e Pq ; Rqd ¡ 3O.e Pq/ OE; ¡3E

C Pqd ; e Pq C Pqd ].e Pq C 3E/ (53)

u D ¡Y [t ; Ez; e Pq ; Rqd ¡ 3O.e Pq/ OE; ¡3E C Pqd ; e Pq C Pqd ] O®

¡ P E ¡ K .e Pq C 3E/ (54)

solves the command followingproblem. Furthermore, O® is bounded
for all t ¸ 0, and PO® ! 0 as t ! 1.

Proof: De� ne ¾; Oe; ez; and ¯ by

¾
1D e Pq C 3E (55)

Oe 1D OE ¡ ´1 (56)

ez
1D [E T OeT ]T (57)

¯
1D ® ¡ O® (58)

where ´1 D [1 1 1]T . For conciseness,we write

Y D Y [t; ez C ´2; ¾ ¡ 3E; Rqd ¡ 3O.¾ ¡ 3E/. Oe C ´1/;

¡ 3E C Pqd ; ¾ ¡ 3E C Pqd ] (59)

where ´2 D [0 0 0 1 1 1]T . Using Eqs. (43), (44), and (53–59),
we obtain

QM.t ; ez C ´2/ P¾ D Y¯ ¡ QC .t; ez C ´2; 1E /¾ ¡ PE ¡ K ¾ (60)

Pez D
µ

0 O.¾ ¡ 3E/

¡O.¾ ¡ 3E/ 0

¶
.ez C ´2/ (61)

P̄ D ¡Q¡1Y T ¾ (62)

Let Â D [¾ T eT
z ¯ T ]T . Then the origin Â D 0 is an equilibrium solu-

tion of the system (60–62).
Next, we show that ¾ ! 0 and E ! 0 as t ! 1 for initial

conditions Â.0/ 2 D, where D
1D <3 £ OU £ <º , where OU 1D

fw 2 <6 : w C ´2 2 U g. To do this we use Theorem 3.2 of Ref. 12,
which entails constructing a Lyapunov function, showing that D is
an invariant set and all solutions are bounded.

Consider the candidate Lyapunov function V : [0; 1/ £ <3 £
<6 £ <º ! < de� ned by

V .t; Â/ D 1
2

£
¾ T QM.t; ez C ´2/¾ C ¯T Q¯

¤
C E T PE C OeT P Oe (63)

The candidate Lyapunov function is the sum of a pseudokinetic
energy term 1

2 ¾ T QM.t ; ez C ´2/¾ , a pseudopotential energy term
E T PE C OeT P Oe, and 1

2 ¯T Q¯ , a positive de� nite function in the pa-
rameter error. The total time derivative of V along the trajectories
of the system is given by

PV .t ; Â/ D ¡¾ T K .t/¾ ¡ E T P3.t/E · ¡¾ T K1¾ ¡ E T P31 E

(64)
Because D is closed, V is positive semide� nite on [0; 1/ £ D, and
PV satis� es Eq. (64), it follows that V is a valid Lyapunov function

on D.
Next we show that D is an invariant set and that all solutions

are bounded. Let Â.t/ be a solution of Eqs. (60–62) de� ned on an
interval I , such that Â.0/ 2 D. Now Â.t/ remains in D because
e2

z;i .t/ C [ez;i C 3.t/ C 1]2 D 1, t 2 I . When Eq. (49) and Ez D ez C ´2

are used, it follows that

¹1 I3 · QM.t ; ez C ´2/ · ¹2 I3; t 2 [0; 1/; ez 2 OU (65)

Now, it follows from Eq. (65) that

W1.Â/ · V .t ; Â/ · W2.Â/; t 2 [0; 1/; Â 2 D (66)

where W1 : <3 £ <6 £ <º ! < and W2 : <3 £ <6 £ <º ! < are the
radially unbounded positive de� nite functions

W1.Â/ D 1
2

£
¹1¾

T ¾ C ¯T Q¯
¤

C ET PE C OeT P Oe (67)

W2.Â/ D 1
2

£
¹2¾

T ¾ C ¯T Q¯
¤

C ET PE C OeT P Oe (68)

When the sets Ai;± D fÂ 2 D : Wi .Â/ · ±g are de� ned, where
i D 1; 2; ± > 0, and Ät;± D fÂ 2 D : V .t; Â/ · ±g, where t ¸ 0 and
± > 0, it follows that

A2;± ½ Ät‚± ½ A1‚± ; t ¸ 0; ± > 0 (69)

Because W1 and W2 are radially unbounded, it follows that the sets
A1;± and A2;± areboundedfor all ± > 0, and, furthermore,there exists
O± > 0 large enough such that Â.0/ 2 A2; O± . Now from Eq. (64) it
follows that V [t ; Â.t/] is not increasingand with the use of Eq. (69)
that the solutionÂ.t/ remains in the compact set A1; O±. It now follows
from Theorem 2.4 of Ref. 18 that Â.t/ exists for all t ¸ 0.

Next notethat the totaltime derivativeof W3 : <3 £ <6 £ <º ! <
de� ned by

W3.Â/ D ¡¾ T K1¾ ¡ ET P31 E (70)

along the trajectories of the system is given by

PW3.t; Â/ D ¡2¾ T K1[ QM.t ; ez C ´2/]¡1[Y¯ ¡ E ¡ K ¾

¡ QC.t ; ez C ´2; ¾ ¡ 3E /] ¡ 2E T 31 F.¾ ¡ 3E/.ez C ´2/

Because QM¡1, QC , Y , F , Â , Pqd , and Rqd are continuous functions,
Â.t/ is bounded, and by assumption 3, K , Pqd , and Rqd are bounded,
it followsthat PW3[t ; Â.t/] is bounded.UsingTheorem3.2ofRef. 12,
we conclude that ¾ ! 0 and E ! 0. Furthermore, because Pqd and
Rqd are bounded and ¾ ! 0 and E ! 0, it follows from Eq. (62) that
P̄ ! 0 and, thus, PO® ! 0.

Because ¾ ! 0, E ! 0, and 3 is bounded, it follows from
Eq. (55) that e Pq ! 0. Hence, we conclude that Eqs. (53) and (54)
solve the command following problem.
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Fig. 2 Error states E1; E2 , and E3.

Fig. 3 Error states e Çq = [e ÇÁ e Çµ e ÇÃ]T .

Using Eqs. (50), (53), and (54), we observe that the control algo-
rithm does not requireany knowledgeof the mass distributionof the
CMG and only requires knowledge of the CMG states z; Pq; zd ; Pqd ,
and Rqd . Furthermore,we observe that the right-handside of Eq. (53)
is independent of O® and that the right-hand side of Eq. (54) is de-
pendent only on the CMG states and O®. Hence, the control law (53)
and (54) is a proportional– integral compensator.

The parameter Q represents the gain of the adaptation law, and
3; K , and P represent the gains of the proportional–integral con-
troller. In Sec. VII, we describe how we chose these gains for our
experimental setup. The state O® represents adjustable parameters,
whereas Eq. (53) represents the mechanism for adjusting these pa-
rameters. Although the time derivative of the adaptive parameter O®
converges to zero as t ! 1; O® does not necessarily converge. See
Ref. 17 for additional details concerning the use of O® for parameter
identi� cation.

V. Numerical Example
In this section we illustrate command following for the desired

trajectory:

Ád.t/ D 2000¼=60t rad (71)

µd .t/ D .30¼=180/ sin.15¼=180t/ rad (72)

Ãd.t/ D .40¼=180/ sin.10¼=180t/ rad (73)

This command representsa CMG motion in which the wheel spinsat
a constant rate of 1000 rpm, the inner gimbal oscillatessinusoidally
with an amplitude of 30 deg and frequency of 15 deg/s, and the
outer gimbal oscillates sinusoidally with an amplitude of 40 deg
and a frequency of 10 deg/s.

The numerical simulationsare performed for a model of the plant
given by Eqs. (30) and (31) based on the CMG described in Sec. VI.
The nominal values for the various mass, inertia, center of mass
location, and gravitational parameters are given by Eqs. (76–81).
Note from Eqs. (80) and (81) that we have considered the case in
which there exists a common point that lies on the axis of rotationof
each motor, that is, a D b D c, so that G it D Gwt D 0 and g2 D g3 D 0,
where g is expressed in the inertially � xed frame .²1; ²2; ²3/ such
that, at t D 0; .²1; ²2; ²3/ coincides with (³1; ³2; ³3). In this section
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Fig. 4 Motor torques.

we assume that there are no friction and stiffness torques so that
QF D QS D 0. With this assumption, the number of parameters is re-

duced from 65 to 21. In this case, ® D [®T
m ®T

g ]T , where

®m D

2

64
®T

w

®T
i

®T
o

3

75; ®w D

2

6666666664

I w
a11

I w
a22

I w
a33

I w
a23

I w
a13

I w
a12

3

7777777775

; ®i D

2

6666666664

I i
b11

I i
b22

I i
b33

I i
b23

I i
b13

I I
b12

3

7777777775

®o D I o
c33; ®g D

2

666666666664

¡mw g1½ar 1

¡mw g1½at2

¡mw g1½at3

¡m i g1½bu1

¡m i g1½bu2

¡m i g1½bu3

¡mog1½cv1

¡mog1½cv2

3

777777777775

(74)

The initial orientation is q D [0 0 0]T rad, the initial rate is
Pq D[0 0 0]T rad/s, and the initial value of the adaptive parameter is
O® D [O®T

w O®T
i O®T

o O®T
g ]T , where O®w D 1:0e¡3[1:4 7:5 1:2 1:0e¡

3 3:0e¡3 4:0e¡4]T kg ¢ m2 , O®i D 1:0e¡4[1:3 3:1 2:9 1:0e¡2
2:0e¡2 3:0e¡2]T kg ¢ m2, O®o D 7:2e¡3 kg ¢ m2 and O®g D [3:2e¡2
01:2e¡81:2e¡9 7:2e¡1 2:0e¡6 1:0e¡5 8:1e¡6]T kg ¢ m2/s3 . The
gains are chosen to be

3.t/ D

2

4
0:2 0 0

0 4 0

0 0 4

3

5; K .t/ D

2

4
0:1 0 0

0 2:4 0

0 0 2:4

3

5

t 2 [0; 1/ (75)

P D I3 and Q D 100;000I21 .
For the CMG described in Sec. VI, the wheel motor can generate

a maximum torque of 0.01332 N ¢ m, the inner gimbal motor can
generate a maximum torque of 0.113 N ¢ m, and the outer gimbal
motor can generate a maximum torque of 1.769 N ¢ m. We apply
the control law given by Eqs. (53) and (54) to Eqs. (30) and (31),
but saturate the controller so that it does not exceed the maximum

allowable torque. We observe from Figs. 2 and 3 that command
following is achieved.Figure 4 indicates the control effort required.
Figures 5 and 6 indicate the estimates of ®w , which are given by
O®1; : : : ; O®6 . Note from Fig. 5 that O®1; O®2, and O®3 do not converge to
the approximate values as given in Sec. VI and from Fig. 6 that O®5

and O®6 are oscillatory and do not seem to converge.

VI. Experiment Description
The CMG testbed was designed to allow large angle rotational

motion of the wheel. Each of the gimbals is able to rotate nearly
180 deg in both directions, providing a range of motion suf� cient
for high precession angles and large angle slewing maneuvers. The
gimbals cannot complete a full revolution because the electrical
connections are made using wires rather than slip rings. The outer
gimbal and inner gimbals are machined from a single block of alu-
minum to provide precise alignment. For details see Ref. 19.

Figure 7 shows a photograph of the actual CMG testbed with
connectors and wiring. The wheel shown in Fig. 7 contains slots to
which we can add masses to unbalance the wheel. To further vary
the center of mass location, the wheel can be moved translationally
along its rotation axis.

The approximate values for the various mass, inertia, center of
mass location, and center of gravity location parameters based on a
nominal con� guration of the CMG are

I w
a D

2

4
4:79e¡4 1:0e¡6 2:0e¡6

1:0e¡6 6:1005e¡4 1:0e¡6

2:0e¡6 1:0e¡6 6:1005e¡4

3

5 kg ¢ m2 (76)

I i
b D

2

4
1:287e¡3 1:0e¡6 1:0e¡6

1:0e¡6 5:0185e¡4 0:0

1:0e¡6 0:0 1:605e¡3

3

5 kg ¢ m2

I o
c33 D 8:231e¡3 kg ¢ m2 (77)

mw D 0:3 kg; m i D 0:35 kg; mo D 1:23 kg (78)

g1 D ¡9:81 m/s2; g2 D 0:0 m/s2; g3 D 0:0 m/s2 (79)

½at D [0:02 0:0 0:0]T m; ½bu D [¡0:07 0:0 0:0]T m

½cv D [0:0 0:0 0:0 2]T m (80)

½cb D [0:0 0:0 0:0]T m; ½ba D [0:0 0:0 0:0]T m (81)
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Fig. 5 Adaptive parameters Ã®1; Ã®2, and Ã®3 (estimates of Iw
a11, Iw

a22 , and Iw
a33, respectively).

Fig. 6 Adaptive parameters Ã®4 , Ã®5, and Ã®6 (estimates of Iw
a23; Iw

a13 , and Iw
a12 , respectively).

Fig. 7 CMG testbed.

where we express g in an inertially � xed frame ("1; "2; "3) such
that, at t D 0, ("1; "2; "3) coincides with (³1; ³2; ³3). Note from
Eqs. (80) and (81) that in the nominal con� guration we have as-
sumed that a D b D c.

All of the motors are equippedwith optical incrementalencoders,
providing measurements of the angles of the gimbals and wheel.
We differentiate and � lter the encoder signals to obtain PÁ; Pµ , and
PÃ . The inner gimbal and wheel motors, manufactured by Maxon,
Inc., were chosen for their high torque-to-weight ratio, low inertia,
and low torque ripple. The control processor is the DS1103 board
manufactured by dSPACE, Inc. The code for simulation and con-
troller implementation is written in C using the S-function blocks
of Simulink®. The sampling rate is 1000 Hz.

VII. Experimental Results
In this section we present experimental results to illustrate com-

mand following for the desired trajectory
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Fig. 8 Wheel rate.

Fig. 9 Inner gimbal angle.

Ád .t/ D 2000¼=60t rad (82)

µd.t/ D 120¼=180 rad (83)

Ãd .t/ D ¡40¼=180 rad (84)

This command represents a CMG motion in which the wheel spins
at a constant rate of 1000 rpm, the inner gimbal is oriented to an
angle of 120 deg, and the outer gimbal is oriented to an angle of
¡40 deg. Once convergence has been attained, the command is
abruptly changed so that the inner gimbal is reoriented to an angle
of ¡60 deg and the outer gimbal is reoriented to an angle of 60 deg.
The control law given by Eqs. (53) and (54) is applied to the CMG
described in Sec. VI.

We assume the friction and stiffness torques are of the form

F .p; Op/ D

2

4
F1 0 0

0 F2 0

0 0 F3

3

5 (85)

where F1; F2 , and F3 are real numbers independentof p and Op,

S.p/ D

2

4
s1 sin.p1/ 0 0

0 s2 sin.p2/ 0

0 0 s3 sin.p3/

3

5; s1; s2; s3 2 <

(86)
so that ® D [®T

m ®T
g ®T

f ®T
s ]T , where ®m and ®g are given by

Eq. (74), and

® f D

2

4
f1

f2

f3

3

5; ®s D

2

4
s1

s2

s3

3

5 (87)

The tuning parameters are chosen to be

3.t/ D

2

4
50:0 0 0

0 0:2 0

0 0 0:2

3

5 C .1 ¡ e¡0:001t /

2

4
¡40:0 0 0

0 1:8 0

0 0 19:8

3

5

(88)
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Fig. 10 Outer gimbal angle.

Fig. 11 Wheel motor torque.

K .t/ D

2

4
2:0e¡4 0 0

0 4:0e¡5 0

0 0 4:0e¡4

3

5

C .1 ¡ e¡0:001t /

2

4
0:0 0 0

0 0:0 0

0 0 0:0396

3

5 (89)

P D 1:0e¡3I3

Q D diag.Q1; Q2; Q3; Q4; Q5; Q6; Q7; Q8/ (90)

where

Q1 D diag.1:0e¡11; 1:0e¡11; 1:0e¡11; 1:0e¡14;

1:0e¡14; 1:0e¡14/ (91)

Q2 D diag.1:0e¡6; 1:0e¡6; 1:0e¡6; 1:0e¡9;

1:0e¡9; 1:0e¡9/; Q3 D 1:0e¡2 (92)

Q4 D 1:0e¡5I3; Q5 D 1:0e¡2I3; Q6 D 1:0e¡3I2

(93)

Q7 D diag.1:0e¡9; 1:0e¡5; 1:0e¡1/

Q8 D diag.1:0e¡4; 100:0; 10:0/ (94)

The gains were chosen to prevent saturation of the motors for
any appreciable period of time. In our tests on our setup, we found
that saturationof the motors for signi� cant periods of time resulted
in the buildup of large amplitude oscillations. Also, saturation of
the motors might cause damage to the motors if continued for long
periods of time. With this view in mind, most of the time-varying
gains are initially chosen small because parametric uncertainity is
initally large. As the adaptationproceeds, these gains are increased.
However, note that 311.t/ actually decreases in magnitude.

The torques that are transmitted to the gimbals and wheel can
be turned on or off using a master switch that can be controlled
using software developed by dSPACE, Inc. We apply the control
law (53) and (54) at t D 0 s, but the master switch is turned on
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Fig. 12 Torque generated by inner and outer gimbal motors.

only at approximately t D 20 s, and thus, the motors are effectively
turned off for t 2 [0; 20/. The spikes in Figs. 8–11 at approximately
t D 20 s are due to the master switch being turned on. Figures 11
and12 showthecontroleffortsas requiredby the control law. Before
t D 20 s, these torques are not transmitted to the CMG because the
master switch has not yet been turned on.

We observe from Fig. 8 that the wheel attainsa speedof 1000 rpm
at approximately t D 30 s. Figure 9 shows that the inner gimbal at-
tains an angle of 120 deg at approximately t D 350 s, and Fig. 10
shows that the outer gimbal attains an angle of ¡40 deg at ap-
proximately t D 200 s. At approximately t D 350 s, we modify the
commandas describedearlier.We observefromFig. 8 that thewheel
attains the speedof 1000 rpm at approximatelyt D 350 s, from Fig. 9
that the inner gimbal attains an angle of ¡60 deg at approximately
t D 600 s, and from Fig. 10 that the outer gimbal attains an angle
of 60 deg at approximately t D 400 s. In Figs. 9 and 10, it can be
seen that the gimbals undergo transients due to startup as well as a
transient at t D 350 s due to the abrupt change in setpoint.

VIII. Conclusions
In this paper, we are interested in developinga control algorithm

that follows a commanded CMG rotational motion, including com-
manded rotational motions that are unbounded. To do this, we de-
scribe the rotational motion of the CMG in terms of the trigono-
metric functions of the half-angles of the gimbals and wheel. This
formulation transforms unbounded rotational motion of the CMG
onto motion on a compact set and is the key ingredient in the devel-
opment of the control algorithm (53) and (54).

In a similarvein, it is theuseof time-varyinggains that permits the
successful use of Eqs. (53) and (54) to achieve command following
in ourexperimentalsetup.The use of constantgainsresultedin either
saturationof the controller for signi� cant periodsof time, which led
to the buildup of large amplitude oscillations, or to extremely slow
time responses.

In future research the control law will be modi� ed to suppress re-
action torques transmitted to the support structuredue to imbalance.

References
1Bryson, A. E., Jr., Control of Spacecraft and Aircraft, Princeton Univ.

Press, Princeton, NJ, 1994, pp. 74–92.
2Marguiles, G., and Aubrun, J. N., “Geometric Theory of Single-Gimbal

Control Moment Gyro Systems,” AIAA Guidance and Control Conference,

AIAA, New York, 1976, pp. 255–267.
3Liden, S. P., “Precision CMG Control for High-Accuracy Pointing,”

AIAA Guidance and Control Conference, AIAA, New York, 1973, pp. 236–

240.
4Chubb, W. B., Kennel, H. F., Rupp, C. C., and Seltzer, S. M., “Flight

Performance of Skylab Attitude and Pointing Control System,” AIAA Me-
chanics and Control of Flight Conference, AIAA, New York, 1974,pp. 220–

227.
5Kurokawa, H., Yajima, N., and Usui, S., “A New Steering Law of a Single

Gimbal CMG System of Pyramid Con� guration,” IFAC Automatic Control
in Space, IEEE Publications, Piscataway, NJ, 1985, pp. 251–257.

6Bodora, J. A., and Bamlde, H., “Experimental and System Study of
Reaction Wheels,” ESA Contract Report, 1982.

7Neat, G. W., Melody, J. W., and Lurie, B. J., “Vibration Attenuation
Approach for Spaceborne Optical Interferometers,” IEEE Transactions on
Control Systems Technology, Vol. 6, No. 6, 1998, pp. 687–700.

8Greenwood, D. T., Principles of Dynamics, Prentice–Hall, Englewood
Cliffs, NJ, 1988, pp. 239–299.

9Bayard, D. S., and Wen, T. J., “A New Class of ControlLaws for Robotic
Manipulators—Part II: Adaptive Case,” International Journal of Control,
Vol. 47, No. 5, 1988, pp. 1387–1406.

10Arimoto, S., Control Theory of Non-Linear Mechanical Systems: A
Passivity-Based and Circuit-Theoretic Approach, Vol. 49, Oxford Univ.
Press, Oxford, England, U.K., 1996.

11Koditschek,D. E., “Appplicationof a New LyapunovFunctionto Global
Adaptive Attitude Tracking,” IEEE Conference on Decision and Control,
Inst. of Electrical and Electronics Engineers, New York, 1988, pp. 63–68.

12Hale, J. K., Ordinary Differential Equations, Wiley, New York, 1969,
p. 305.

13Slotine, J. J. E., and Li, W., Applied Nonlinear Control, Prentice–Hall,
Upper Saddle River, NJ, 1989.

14Sastry, S., and Bodson, M., Adaptive Control: Stability, Convergence,
and Robustness, Prentice–Hall, Upper Saddle River, NJ, 1989.

15Astrom, K. J., and Wittenmark, B., AdaptiveControl, 2nd ed., Addison–

Wesley, Reading, MA, 1995.
16Narendra, K. S., and Annaswamy, A. M., Stable Adaptive Systems,

Prentice Hall, Englewood Cliffs, NJ, 1988, Chap. 1.
17Ahmed, J., Coppola,V. T., andBernstein,D. S., “AsymptoticTrackingof

Spacecraft AttitudeMotionwith Inertia Identi� cation,” JournalofGuidance,
Control, and Dynamics, Vol. 21, No. 5, 1998, pp. 684–691.

18Khalil, H. K., Nonlinear Systems, Prentice–Hall, Upper Saddle River,
NJ, 1996, p. 77, 138.

19Ahmed, J., Miller, R. H., Hoopman, E. H., Coppola, V. T., Andrusiak,
T., Acton, D., and Bernstein, D. S., “An Actively Controlled Control Mo-
ment Gyro/GyroPendulumTestbed,” Proceedings of Conference on Control
Applications, IEEE Publications, Piscataway, NJ, 1997, pp. 250–252.

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0020-7179^281988^2947:5L.1387[aid=1898237]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0731-5090^281998^2921:5L.684[aid=866599]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0020-7179^281988^2947:5L.1387[aid=1898237]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0731-5090^281998^2921:5L.684[aid=866599]

