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Adaptive Control of Double-Gimbal Control-Moment
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A double-gimbal control-moment gyro (CMG) is modeled using Lagrange’s equations, and an adaptive feedback
control law is developed to follow a commanded CMG motion. The control law does not require knowledge of the
mass properties of the CMG. A Lyapunov argument is used to prove that command following is achieved globally
with asymptotic convergence. Numerical simulationsare performed to illustrate the command following algorithm.
A CMG testbed was designed and constructed to implement and demonstrate the adaptive algorithm. This testbed

is described, and experimental results are given.

I. Introduction

CTUATORS for spacecraft fall into two distinct categories,

namely, inertial and noninertial. Inertial actuators provide
torques to a spacecraft by reacting against inertial space and, thus,
change the angular momentum of the spacecraft. Thrusters, which
require fuel, are the principal type of inertial actuators. Magnetic
actuators, which react to the Earth’s magnetic field and which do
not require fuel, also serve as inertial actuators.

Noninertial actuators include reaction wheels, momentum
wheels, and single-gimbal and double-gimbal control moment gy-
ros (CMGs). Whereas these actuators require electric power, they
do notrequire fuel, and they do not change the total angular momen-
tum of the spacecraft! Among noninertial actuators, the dual-axis
CMG is the most sophisticated because it has the ability to apply
control torques around arbitrary axes with the exception of singular
orientationscorrespondingto gimbal lock. In applications, multiple
CMGs are used for reliability, to avoid gimbal lock, and to avoid
large angle motion.

Becausea CMG is a multibody system, its dynamics are complex,
especially if large angle motion is allowed. Theoretical analysis of
CMG dynamics is given in Ref. 2, whereas engineering aspects of
CMG controlare consideredin Refs. 3-5. In the presentpaper we are
concerned with the problem of wheel imbalance in CMGs. At high
rotational speeds (5,000-10,000 rpm is typical for CMGs), small
mass imbalances in the CMG wheel or due to asymmetric lubricant
buildup can produce significant disturbance forces at the frequency
of the wheel angular velocity® Mass imbalance effects also arise in
momentum wheels where active isolation stages are used for distur-
bance suppression.” These studies suggestthat noninertial actuators
are often the source of the largest component of disturbance forces
on spacecraft.

In the present paper we model a double-gimbal CMG with un-
known mass imbalance, mounted on a support structure fixed to the
Earth. Using Lagrange’s equations (see Ref. 8), we accountfor large
angle motion and the presence of imbalance, which to the best of our
knowledge has not been done. A double-gimbal CMG testbed was
designed and constructed to permit various control experiments to
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be performed. The control objective is to develop a control law that
counteractsthe effects of mass imbalance without knowledge of the
mass distribution of the CMG while allowing the CMG to follow a
commanded motion that includes unbounded rotational motion of
the CMG gimbals and wheel.

Adaptive control laws for mechanical systems with linear depen-
dence on parameters that are able to follow a commanded motion
have been developed’~!'! However, in Ref. 9 and 10, the class of
commanded motions do not include those that permit unbounded
rotational motion of the mechanical systems because the rotational
motion of the systemis describedin terms of angles and their deriva-
tives. In Ref. 11, differential geometric techniques are used to guar-
antee convergence to a set consisting of four states, one of which is
the desired state, but requires knowledge of bounds of the unknown
parameters.

In this paper, the rotational motion of the CMG is described by
using trigonometric functions of the half-angles of the gimbals and
wheel, which transform unbounded CMG rotational motion to mo-
tion on a compact set. This formulation permits the development
of a control algorithm, which is presented in Sec. IV, that allows
unbounded rotational motion of the CMG gimbals and wheel. A
proof of the control law is based on a variant of standard Lyapunov
arguments found in Ref. 12 to account for the motion on closed
sets. The control law is a direct adaptive control law!*~!® and has
the form of a dynamic compensator whose order depends on the
number of uncertain parameters and whose states provide estimates
of the wheel and gimbal moments of inertiaand centers of mass. Our
controller can be viewed as an extension of the control law derived
in Ref. 17 for spacecraft tracking with unknown mass distribution.

The contents of the paper are as follows. In Sec. II, we describe
the equations that govern the CMG motion; in Sec. III, we define
the command following problem; and in Sec. IV, we formulate a
control algorithm that permits the CMG to track a desired trajectory.
In Sec. V, we illustrate the adaptive control law using a numerical
example, in Sec. VI, we describe the experimental setup, and in
Sec. VII, we present experimental results.

II. Equations of Motion
In this section, we model the CMG as a system of interconnected
rigid bodies and apply Lagrange’s equations for a system of rigid
bodies to obtain the equations that govern the CMG’s motion.
For a system of rigid bodies, Lagrange’s equations are given by

d[dL
dr \ 9g;

where n is the number of degrees of freedom, gy, .. ., g, € N are the
independent generalized coordinates, gy, . . ., ¢, € N are the deriva-
tivesof ¢y, ..., ¢,, and L=L(q, q) € N is the Lagrangian of the
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Fig.1 CMG nomenclature.

system, where ¢ =[q; -+ - ¢,]T € W* and ¢ =[q, -- - ¢,]" € N", and
L is given by

L=T-YV 2)

where T =T (q, q) €N is the kinetic energy of the system, V =
V(q) € Nis the potentialenergy of the system, Q7, ..., Q) € Nare
the generalized forces not derivable from a potential function and
are given by

T=E F, . —L, i=1,...,n 3
QI P J aql ( )
where, for j =1, ..., m, F; is a force not derivable from a potential

functionand acting at position p; = p; (¢) and m is a positive integer
representing the total number of forces not derivable from a poten-
tial. If there are no forces not derivable from a potential function,

then Q| = --- =Q, =0.
The kinetic energy of a single rigid body r is
T = %(L),- : I; c @y + %mrvx Uy + m,w, - Pxy X Uy (4)

where %w,. 1] -w, represents the rotational kinetic energy and
%m,. Uy - Uy + 1,0, - Py, X V, representsthe translationalkinetic en-
ergy, where m, > 0 is the mass of r, x is a pointon r, y is the center
of mass of , p,, = p,,(¢) is the vector from x to y, v, =v,(q, )
is the velocity of x, w, = w,(q, q) is the angular velocity of r, and
I =17(q) is the positive definite inertia tensor of r about x. The
potentialenergy of r in the presence of a uniform gravitational field
is

where p, = p,(gq) denotes the position of y and g is the gravity
vector.

The CMG shown in Fig. 1 consists of a rectangular outer gimbal,
which rotates through an angle ¢ aboutan axis ¢3, an inner gimbal,
which rotates within the outer gimbal through an angle 6 about an

0 0
Gu(q)= |0 0

the outer gimbal, and a wheel motor, which is attached to the inner
gimbal.

We model the outer gimbal, the inner gimbal, and the wheel as
rigidbodiesand assume thatthe supportstructure on whichthe CMG
is mounted is inertially fixed. We employ the following body-fixed
frames to determine the kinetic energy of the CMG. Let (¢, &, 3)
be a frame fixed to the outer gimbal, where ¢; is the outer gimbal
axis and ¢, is the inner gimbal axis. Let (f1, f>, f3) be a frame fixed
to the inner gimbal, where f; is the wheel axis and is obtained by
rotating (¢, £», £3) through an angle 6 about ¢, so that

fi cos® 0 —sind] [¢
fl=] 0 1 0 & (6)
f sinf 0 cosf ¢

Finally, let (e;, e>, e3) be a frame fixed to the wheel obtained by
rotating (f, f>, f3) through an angle ¢ about f; so that

e 1 0 0 fi
e | =10 cos¢p sing b (7)
e3 0 —sing cos¢ f

Now, the kinetic energy of the CMG is the sum of the kinetic energy
of the outer gimbal, the inner gimbal, and the wheel. When Eq. (4)
is applied to the outer gimbal, inner gimbal, and wheel, the kinetic
energy of the CMG is given by

T =34"M(q)q ®)

where g=[¢ 6 V1" €N, G=[¢ 6 ¥]" €N, and M : R —
N33 is defined by

M(q) =GL (9)1"G,, (@) + GI ()G ,.(¢) + G (DI][G, ()

+Gl()Gi(q) + G, (@) IG,(q) ©)
where a, b, and c¢ are arbitrary points on the axis of ro-
tation of the wheel, inner gimbal, and outer gimbal, respec-
tively; /¢ is the inertia matrix of the outer gimbal about ¢ ex-
pressed in frame (&1, &2, &3); I} is the inertia matrix of the in-
ner gimbal about b expressed in frame (fi, f>, f3); and I is
the inertia matrix of the wheel about the point a expressed
in frame (e, e,, e3), where G,: 0> — N33, G, :R3 — R3Ix3,
Gii iR = M3, G, 1M — W33 and G, 1 N> — R3*3 are de-
fined by

00 0 0 0 —sin6
G,)=2[0 0 0], G,()=]0 1 0 (10)
0 0 1 0 0 cosé

1 0 —sin6
G, (q) 2o cos¢  cos6sing (11

0 —sin¢g cosfcos¢p

where

0
m; (fy X ppu) * (53 X pep) (12)

0 mi(f2 X opu) - (&3 X pep) M [(53 X pep) + (&3 X pep) +2(83 X Ppu) * (§3 X Pep)]

Gmt(q) é mm(el X )Oat) : (f2 X )Oba)

0 mm(el X )Oat) : (f2 X )Oba) mm(el X )Oat) : (;’5 X )0('0)
Z, Z, (13)
Z, Z5

mm(el X )Oat) : ({’5 X )Ot'a)

axis f> perpendicularto the outer gimbal axis, and a wheel fixed to
the inner gimbal, which spins through an angle ¢ about an axis e,
perpendicularto the inner gimbal axis. We assume that the CMG is
constructed so that ¢z is perpendicularto e; initially. The CMG has
three actuators, specifically, an outer gimbal motor, which is fixed
to the support structure, an inner gimbal motor, which is fixed to

Zy = myl(f2 X ppa) + (f2 X Ppa) + 2(f2 X par) X (f2 X ppa)l

Zy = my[(&5 X pea) * (f2 X Poa) + (83 X par) = (2 X Pba)
+(f2 X par) + (&3 X pea)]

Zy = my[(&5 X pea) + (£ X Pea) + 2055 X Par) - (3 X Peg)]
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where t and u are the centers of mass of the wheel and inner gimbal,
respectively. The potential energy of the CMG is the sum of the
potentialenergy of the outer gimbal, the inner gimbal, and the wheel.
We assume that the gravitational field is uniform and when Eq. (5)
is applied, the potential energy of the CMG is given by

V(q) é -8 (mwiot +m;p, + mopv) (14’)

where v is the center of mass of the outer gimbal. The generalized
forces not derivable from a potential, obtained by applying Eq. (3),
are

Q(;) = rll? + ﬁl? + SIU (1 5)
Qé)zfi"_fi"_si (16)
Q;p = r{) + ﬁ) + S() (17)

where 7, 7;, and t, are the torques applied by the wheel, the inner
gimbal, and the outer gimbal motor, respectively; f,,, fi, and f, are
the torques due to friction; and s,,, s;, and s, are the torques due to
stiffness acting on the wheel, the inner gimbal, and the outer gimbal,
respectively.For the CMG describedin Sec. VI, the stiffnesstorques
model the effect of the cables on the CMG.

Applying Eq. (1), we obtain

M(@)i +1C(q,9) — F(g,DIg +G@) — S(@) =u  (18)
where C : {3 x N3 — R3*3 is defined by
Cg,q) = LM(q,q)+B"(G,q) — B, ¢l (19)

M 03 x 03— %33 is defined by

T

. oA OMT

M(q,q) = (@®5) (20)
dq

I, is the n by n identity matrix, ® is the Kronecker product,

(AMT /3g): M x R — R =2 is defined by

OMT A | OM OM oM
N et @1)
aq a¢p 060 oY
B : M x N — N3*3 is defined by
. . oM
Bg,9) = (L ®4¢") e (22)

G : M3 — N3 is defined by

states and express the command following problemin terms of these
error coordinates.
Consider the transformation i : %> — R® given by

_sinpl/z_
sin p,/2
sin p3/2
cos p1/2
cos p,/2

| cos p3/2 |

h(p) = (25)

where p=[p, p» p3]". We observe from Eq. (25) that
h) =U (26)
where U is the compact set given by

A 6.2 2 .
U= {(wl,wz,wg,w4,w5,w6)e§ﬁ Tw; +wi+3=1,t=1,2,3}

27
Let

24 = h(qa) (28)

where g, = [¢q s V4] : [0, 00) — N3 is the commanded motion.
Using Egs. (26) and (28), we observethat z, is bounded for every q,,
including those g, that are unbounded. Thus, unboundedrotational
commanded motion of the CMG is transformed to motion on the
compactset U.

Next, we show that Eq. (18) can be rewritten in terms of z, where

z="h(q) (29)

The dependence of M on ¢ is only in the form of trigonometric
functions of ¢, 0, and . Because sin¢ =2sin¢/2cos¢/2 and
cos ¢ = sin® ¢ /2 — cos? ¢ /2, with similar expressions for 8 and v,
it follows that M(q) can be rewritten in terms of z to obtain the
function M (z). Similarly, because the dependenceof C and G on g
is only in the form of the trigonometric functions, we can express
C(q, g) and G(g) in terms of z and g to obtain the functions C(z, ¢)
and G(z). Assuming the arguments of F' and S depend only on
trigonometric functions, we rewrite ' and S to obtain F(z, q) and
S(2).
Rewriting Eq. (18) in terms of z and g, we obtain

M@)i+1C,¢) - Fz,d)ld+G6@) —S@ =u  (30)

—myg - (61 X )Out)

G(g) =

-8 [mwf2 X (IObll + )Out) + mif2 X )Obu] (23)

-8 [mwgfi X (IO('b + Ppa + )Out) + mi;fi X (IO('b + )Obu) + mo;} X )0('1/]

A .. . . .
andu = [t, 7; 7,]’.In addition, we assume the friction and stiff-
ness torques are of the form

ﬁl? SIU
fi | =F@,94q, si | =8(q) (24)
fo S,

where F: 3 x 03— R3*3 and S N3 — N3,

III. Error Equations Command Following Problem

In this section, we employ a suitable change of coordinates so
that unbounded commanded rotational motion of the CMG is trans-
formed to motion on a compact set. We then define suitable error

. 0 0q)
= 31
z |:_0(q) 0 :| z (1)
where O : W3 — R3*3 is defined by
1 pi 0 O
O(p) = > 0 po O (32)

where p=1[p; p» ps3l".
Next, the error state E. is defined by

>

E Elay
z E = (ZJ)Z (33)
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where E € %3, E € %, and H: %® — RO is given by

Wy 0 0 — W) 0 0 7]
0 Ws 0 0 —Ww; 0

Hw) 2 (34)

where w=[w; w, ws wy ws ws]”. Using Eq. (34), we observe
thatthat H(w)H" (w) = HT (w)H (w) = I forallw € U, where U
is given by Eq. (27). Hence, Eq. (33) implies

z=H"(z)E, (35)

cos(¢/2 — ¢4/2)
cos(0/2 —6,/2) (36)
cos(¥/2 — ¥4 /2)

sin(¢/2 — ¢q/2)
E=| sin(0/2—6,/2) |, E=
sin(y/2 — ¥q/2)

Note that E =0 if and only if ¢ — ¢, =0 mod 27, § — 6, = 0 mod
27, and ¢ — ¢, =0 mod 2. Furthermore, define the error state

e = q—q (37)

For the command following problem, assume ¢, : [0, 00) — N>
is C2. Find a dynamic feedback control law of the form

& = fGa 4as Ga, 8.2, 4) (38)
u =g(Zdv qtlv éd’&v <, q) (39)

for Egs. (30) and (31), where & (1) € K", ¢ € [0, 00), such that E — 0
and e, — 0 as t — oo for all initial conditions z(0) € U, ¢ (0) € %?,
and a(0) € R".

Command following problem as stated requires £E — 0 and
e; — 0, which using Eqs. (36) and (37) implies that the CMG
follow a commanded motion, and permits all sufficiently smooth
q4, including those that are unbounded. Note that the control algo-
rithm as stated in Egs. (38) and (39) does not have to be independent
of the mass distribution of the CMG. However, in Sec. IV we shall
develop a control algorithm that requires no knowledge of the mass
or inertia properties of the CMG.

Next, we recast Egs. (30) and (31) in terms of the error states E,
and e; and restate the command following problem in terms of E,
and ¢;. To do this, define M : [0, 00) x R — R3*3 by

M, E) = M{H[z,(n)E.} (40)
C: [0, 00) x H® x N3 — R3*3 by
C(t E..e)) = C{H [zy(D]E.. ¢ + 4u (1)} 1)
and G: [0, 00) x N6 — R by
Gt E) = G{H[z40)]E.} 42)

When Egs. (35) and (37) are used, Egs. (30) and (31) become
M(t, E))(é4 +Gy) = [=C(t, E-,ep) + F(t, E. e))(e; +4a)

+S8(t,E.))—G(t,E.)+u (43)
EZ _ [ 0 0(64):| Ez (44)

Then, Egs. (33) and (34) imply that

E?+E}=22+22, . i=1,273 (45)

It follows from Eq. (45) that the command following problem is
solved if and only if E — 0 and e¢; — 0 in Eqgs. (43) and (44) for
all initial conditions E, € U and ¢,(0) € R,

We assume that measurements of ¢ and g are available. It can be
seen from Egs. (25), (34), and (37) that the quantities z, z4, E, E,
and e, can be calculated. In Sec. IV, the control law Eqgs. (38) and
(39) is expressed in terms of &, E, ¢;, 24, a4, and §y.

IV. Adaptive Control Law

In this section, we present a feedback control law that asymp-
totically follows a commanded trajectory. The control law does not
require knowledge of the mass distribution of the CMG.

UsingEgs. (9), (12), (13), (34), and (40), we observethat M (¢, E.)
dependsonthe inertia, mass, and center of mass locationparameters,
namely, I3, I, Lz, Iss 131 100 Tonts 1ons Tosss 1ioss Tpiss i
I((-)j;j;s My, Mis My, Patls Par2s Pards Pbuls Pbu2s Pbu3s Pbals Pba2s Pba3s
Pevts Peb2> and pep3, Where o, is expressed in (ey, €2, €3), pp, and
P are expressedin (f1, f2, f3), and p,, is expressedin (¢q, &, &3),
and where x; is the ith componentof x € R" and A;; is the (i, j)
entry of A € 1" >". Next, note from Egs. (9), (12), (13), (34), and
(40) that M (t, E.) depends linearly on «,,, where «,, consists of
inertia, mass and center of mass location parameters, and products
of these. In practice, some of these parameters may be known. In
this case, we assume that «,, consists only of uncertain parameters
and products of parameters, at least one of which is uncertain. It
can be shown that the dimension of «,, is between O (no uncertain
parameters) and 50 (all uncertain parameters). ~

Similarly, using Egs. (23),(34),and (42), we observethat G (¢, E.)
depends on the gravitational parameters, namely, g, g2, &3, My,
M, My, Parls Par2s Par3s Pbuls Pou2s Pbu3s Pbals Pba2s Pba3s Pcbls LPcb2s
Peb3s Pevi> and pqn Where g is expressed in an arbitrary inertially
fixed frame and p., is expressed in (¢, &, ¢3). Next, note from
Egs. (23), (34), and (42) that G (¢, E,) dependslinearly on «,, where
o, consists of the center of gravity location parameters and products
of these. It can be shown that the dimension of ¢, is between 0 (no
uncertain parameters) and 15 (all uncertain parameters). For the
friction and stiffness torques, we assume that there exist parameters
a; and oy, so that F (¢, E., e;) and S(¢, E,) depend linearly on o,
and o.

The number of uncertain parameters v depends on assumptions
made about the CMG configuration, as well as on F and S. In the
special case in which there are no friction and stiffness torques, there
exists a common point that lies on the axis of rotation of all of these
motors, that is, a=b=c so that G,, =G;; =0, and g, =g3 =0,
where g is expressed in an inertially fixed frame (e, €,, €3) such
that, at t =0, (€1, €2, €3) coincides with ({1, &, £3); then it can be
seen that v =21. This is the case considered in Sec. V.

The following lemmas will be needed.

Lemma 1: M (z) and M (¢, E.) are positive definite for all z € R®,
t€[0, 00),and E, € R°.

Proof: Recall that M (z) is formed by replacing the trigonometric
functions of the angles ¥, 6, and ¢ by z using Eq. (25). When
G,(2), G (2), Gy (2), Gy, (2), and G, (z) are defined in a similar
manner, it follows from Egs. (9) and (29) that
M@ =Gl (1G,() + GGy (2) + G ()G (2)

it

+GT (1", (2) + G ()G (2) (46)

wr wt

From Eq. (46), it follows that M(z) is the sum of positive semidefi-
nite terms and is, thus, positive semidefinite for all z € R°. Let z € R
and let p € %3 satisfy p” M (z) p =0. Thus, it follows that

G,p=6,@p=G,@@p=0 (47)

When Eq. (10) is used, G,(z) p =0 implies that p; = 0. Similarly,
p3=0and G,,(z) p=0imply p, = 0. Finally, when Eq. (11) is used
with p,=p;=0 and G,,(z)p =0, it follows that p; =0; hence,
p =0, which implies that M (z) is positive definite for all z € NS
Finally it follows from Eq. (40) that M (¢, E.) is positive definite for
all 7 € [0, 00) and E, € R°. o
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Lemma 2: There exist i1 > 0 and u, > 0 such that
mlh =M@ < b,  zeU (48)

wils < M(t,E.) < uols,  t€[0, 00), E.eU (49)
where U is given by Eq. (27). A

Proof: Because U is a compact subset of M6, M is a continuous
function,and M (z) is positive definite for all z € RS, it follows that
there exist positive u; and u, satisfying Eq. (48). Equation (49) is
immediate.

Finally, we isolate the parameters that characterize the inertia,
mass, center of mass locations, center of gravity locations, and the
friction and stiffness torques by defining Y : [0, 00) x RO x R3 x
R3 x R x R — RN3*Y by

Y(t,E., ek, &, R = —M(t, E)c — C(t, E., )k

+ F(t,E., ek — G(t, E.) + S(t, E.) (50)

where k€N, ke, ke, and aeNR’ is the vector of
parameters.

Next, we presenta controllaw that solves the command following
problem with a proof based on Lyapunov theory. Note from the
definition of the command following problem as stated in Sec. III
that we are only interested in initial conditions that belong to the
closed set R* x U x M. The standard Lyapunov theorem as found
in Ref. 18 is only valid for open sets, and so we use a variant of the
standard Lyapunov argument found in Ref. 12.

Theorem: Assume that g, and g, are bounded for all ¢ € [0, 00).
Let A : [0, 00) — 93 *3 be continuous, K : [0, 00) — %> *3 be con-
tinuous, A; € W3*3, A, e W3*3, K, € W3*3, and K, € N3 *3 be such
that A, A,, and A (¢) are diagonal for all ¢ € [0, 00),

0< A <A@ < Ay, t € [0, c0) (51)
0<K, <K@ < K>, t € [0, 00) (52)

Let P € %33 be diagonal and positive definite, and let Q € R” <"
be positive definite. Then the control law

&= Q0 'Y'[t,E,. e iy — AO(e,)E, —AE
+da, €5+ qalle; + AE) (53)
u=—Y[t,E, e5 4. — NO(e)E, —AE +4q, e5 + 4ala

— PE — K(e; + AE) (54)

solves the command following problem. Furthermore, & is bounded
forall >0, and @ — 0 as t — oo.
Proof: Define o, ¢, e,, and 8 by

o =e,+AE (55)
e=E—ny, (56)
e, 2[ET oT1" 57)
BEa—a (58)

where n; =[1 1 1]7. For conciseness, we write

Y=Y[t,e,+m,0—AE,§, —ANO(o — AE)(@ +m),

_AE+qtlvU_AE+qtl] (59)

where n,=[0 0 0 1 1 1]”. Using Egs. (43), (44), and (53-59),
we obtain

M(t,e, + )6 = YB —C(t,e, + 1o, AE)o —PE — Ko (60)

O(c — AE)

. 0
ez_|:—0(U—AE) 0 :|(ez+772) (6])

f=-0""Y"o (62)

Let x =[c"el BT]". Then the origin x =0 is an equilibrium solu-
tion of the system (60-62).

Next, we show that o — 0 and E — 0 as t — oo for initial
conditions x(0) € D, where D = R3 x U xN’, where U =
{w e MN®:w+n, € U}. To do this we use Theorem 3.2 of Ref. 12,
which entails constructing a Lyapunov function, showing that D is
an invariant set and all solutions are bounded.

Consider the candidate Lyapunov function V : [0, 00) x i3 x
RO x R — R defined by

Vit x) =4[c" M(t,e.+m)o + BT Q|+ ETPE+E"Pé (63)

The candidate Lyapunov function is the sum of a pseudokinetic
energy term %O’TM(I‘, e, +ny)o, a pseudopotential energy term
ETPE+¢é" Pe, and 187 OB, a positive definite function in the pa-
rameter error. The total time derivative of V along the trajectories
of the system is given by

V(t,x)=—0"K({t)o — ETPAG)E < —6"K,0 — ETPAE

(64)
Because D is closed, V is positive semidefinite on [0, 00) x D, and
V satisfies Eq. (64), it follows that V' is a valid Lyapunov function
on D.

Next we show that D is an invariant set and that all solutions
are bounded. Let x () be a solution of Egs. (60-62) defined on an
interval I, such that x (0) € D. Now x(f) remains in D because
eZ.()+ e 3(t) +1PP=1,1r€1. WhenEq. (49)and E. =e, + 1,
are used, it follows that

il < M(t,e.+ 1) < uoly,  t€[0,00), e.eU (65
Now, it follows from Eq. (65) that
Wi(x) =V, x) = Walx), t € [0, 00), x €D (66)

where W, : 9% x 0% x RY — Rand W, : N3 x RC x R” — N are the
radially unbounded positive definite functions

Wi(x) = t[ioTo + BT O] + ETPE+ETPe (67
Wo(x) = {[mo "o + BT OB + ETPE +6TPé  (68)

When the sets A;;={x € D:W;(x) <68} are defined, where
i=1,2,>0,and Q,;={x€D:V(t, x) <é8}, where t >0 and
§ > 0, it follows that

AQV(S C Qt,ri C Al,fi’ > O, 5 > O (69)

Because W, and W, are radially unbounded, it follows that the sets
A s and A, s areboundedforall§ > 0,and, furthermore, there exists
8 >0 large enough such that x(0) € A, ;. Now from Eq. (64) it
follows that V¢, x (¢)] is not increasing and with the use of Eq. (69)
thatthe solution x (#) remainsin the compactset A, ;. Itnow follows
from Theorem 2.4 of Ref. 18 that x () exists for all # > 0.

Nextnotethat the total time derivativeof Wj : i3 x 9% x R — N
defined by

Ws(x)=—-0"K,c — ETPAE (70)
along the trajectories of the system is given by
Wi(t, x) = —20"K\[M(t,e. +m)]"'[YB — E — Ko
—C(t,e.+m.,0 — AE)]—2E"A\F(oc — AE)(e. + 1)

Because M~!, C, Y, F, x, qq, and §, are continuous functions,
x (t) is bounded, and by assumption A, K, g,, and g, are bounded,
itfollowsthat W[z, x ()] isbounded.Using Theorem 3.2 of Ref. 12,
we conclude that o — 0 and E — 0. Furthermore, because ¢, and
ga are boundedand o — 0 and E — 0, it follows from Eq. (62) that
B — 0 and, thus, & — 0.

Because 0 — 0, E— 0, and A is bounded, it follows from
Eq. (55) that e; — 0. Hence, we conclude that Eqs. (53) and (54)
solve the command following problem.
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Using Eqs. (50), (§3), and (54), we observe that the control algo-
rithm does not require any knowledge of the mass distribution of the
CMG and only requires knowledge of the CMG states z, ¢, z4, 44,
and g, . Furthermore, we observe that the right-hand side of Eq. (53)
is independent of & and that the right-hand side of Eq. (54) is de-
pendentonly on the CMG states and &. Hence, the control law (53)
and (54) is a proportional-integral compensator.

The parameter Q represents the gain of the adaptation law, and
A, K, and P represent the gains of the proportional-integral con-
troller. In Sec. VII, we describe how we chose these gains for our
experimental setup. The state & represents adjustable parameters,
whereas Eq. (53) represents the mechanism for adjusting these pa-
rameters. Although the time derivative of the adaptive parameter &
converges to zero as t — 00, @ does not necessarily converge. See
Ref. 17 for additional details concerning the use of & for parameter
identification.

V. Numerical Example

In this section we illustrate command following for the desired
trajectory:

¢4 (t) = 2000 /60t rad (71)
6,() = (307 /180) sin(157 /180¢) rad (72)

Yq(t) = (407t /180) sin(107r /180¢) rad (73)

This commandrepresentsa CMG motionin which the wheel spins at
a constantrate of 1000 rpm, the inner gimbal oscillates sinusoidally
with an amplitude of 30 deg and frequency of 15 deg/s, and the
outer gimbal oscillates sinusoidally with an amplitude of 40 deg
and a frequency of 10 deg/s.

The numerical simulations are performed for a model of the plant
given by Eqgs. (30) and (31) based on the CMG described in Sec. VI.
The nominal values for the various mass, inertia, center of mass
location, and gravitational parameters are given by Eqs. (76-81).
Note from Egs. (80) and (81) that we have considered the case in
which there exists a common point that lies on the axis of rotation of
each motor, thatis,a =b=c,sothatG;, =G,, =0and g, = g; =0,
where g is expressed in the inertially fixed frame (e, €,, €3) such
that, at t =0, (¢, €, €3) coincides with (¢, ¢, £3). In this section
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Fig.4 Motor torques.

we assume that there are no friction and stiffness torques so that
F = §=0. With this assumption, the number of parameters is re-

duced from 65 to 21. In this case, o = [« ozT]T where
B w b C7i 7]
Ial 1 Ibl 1
w I
OlT 1(122 b22
w w [i
_ T _ Ia’i'& _ b33
Q, =1 | Qy = ) o = i
v I
OlT a3 b23
o v I
al3 b13
1
w
_IalZ_ _Ib12
My, 81 Part
My, 81 Par2
My, 81Par3
—M; 81 Pbul
=13, o = (74)
M &1Pbu2
—M;81Pbu3
mM,81Pcvi
m,81Pcv2 _

The initial orientation is ¢ =[0 0 0]” rad, the initial rate is
G =[0 0 0]" rad/s, and the initial value of the adaptive parameteris
&:[&T al al &1, where &,=1.0e-3[1.4 7.5 1.2 1.0e—
3 3.0e—34.0e— 4]T kg-m?, & =1.0e—4[1.3 3.1 2.9 1.0e—
2.0e—2 3.0e—2]" kg-m?, &, =7.2¢—3 kg-m* and &, =[3.2¢—2
01.2¢—81.2¢—97.2¢—12.0e—61.0e—58.1e—6]" kg-m?/s>. The
gains are chosen to be

02 0 O 01 0 O
Aty=1 0 4 0}, K®)y=10 24 0
0 0 4 0 0 24

t €[0,00) (75)

P =1; and Q =100,0001,,.

For the CMG describedin Sec. VI, the wheel motor can generate
a maximum torque of 0.01332 N - m, the inner gimbal motor can
generate a maximum torque of 0.113 N - m, and the outer gimbal
motor can generate a maximum torque of 1.769 N -m. We apply
the control law given by Egs. (53) and (54) to Egs. (30) and (31),
but saturate the controller so that it does not exceed the maximum

allowable torque. We observe from Figs. 2 and 3 that command
followingis achieved. Figure 4 indicates the control effort required.
Figures 5 and 6 indicate the estimates of «,,, which are given by
ai, ..., as. Note from Fig. 5 that &1, @, and @3 do not converge to
the approximate values as given in Sec. VI and from Fig. 6 that &
and @ are oscillatory and do not seem to converge.

VI. Experiment Description

The CMG testbed was designed to allow large angle rotational
motion of the wheel. Each of the gimbals is able to rotate nearly
180 deg in both directions, providing a range of motion sufficient
for high precession angles and large angle slewing maneuvers. The
gimbals cannot complete a full revolution because the electrical
connections are made using wires rather than slip rings. The outer
gimbal and inner gimbals are machined from a single block of alu-
minum to provide precise alignment. For details see Ref. 19.

Figure 7 shows a photograph of the actual CMG testbed with
connectors and wiring. The wheel shown in Fig. 7 contains slots to
which we can add masses to unbalance the wheel. To further vary
the center of mass location, the wheel can be moved translationally
along its rotation axis.

The approximate values for the various mass, inertia, center of
mass location, and center of gravity location parameters based on a
nominal configuration of the CMG are

479 —4  1.0e—6  2.0e—6
I"=| 1.0e=6 6.1005¢—4 1.0e—6 |kg-m®> (76)
20e—6  1.0e—6  6.1005¢—4

1.287¢—3 1.0e—6 1.0e—6

I} =] 1.0e—6 5.0185e—4 0.0 kg - m?
1.0e—6 0.0 1.605¢—3
I, = 8.231e—3 kg - m’ (77)
m, = 0.3 kg, m; = 0.35 kg, m, =123kg (78)

g1 = —9.81 m/s?, g = 0.0 m/s?, g3 =0.0m/s> (79)

0a =[0.02 0.0 0.0]" m, o =[—0.07 0.0 0.0]" m
P =100 0.0 0.0 2]"m (80)

o =10.0 0.0 0.0]" m, o =100 0.0 0.0"m (81)
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where we express g in an inertially fixed frame (e, &, &3) such
that, at t =0, (gy, &, &3) coincides with (¢y, ¢, £3). Note from
Eqs. (80) and (81) that in the nominal configuration we have as-
sumed thata =b=c.

All of the motors are equipped with optical incremental encoders,
providing measurements of the angles of the gimbals and wheel.
We differentiate and filter the encoder signals to obtain $,6, and
Y. The inner gimbal and wheel motors, manufactured by Maxon,
Inc., were chosen for their high torque-to-weightratio, low inertia,
and low torque ripple. The control processor is the DS1103 board
manufactured by dSPACE, Inc. The code for simulation and con-
troller implementation is written in C using the S-function blocks
of Simulink®. The sampling rate is 1000 Hz.

VII. Experimental Results

In this section we present experimental results to illustrate com-
Fig.7 CMG testbed. mand following for the desired trajectory
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¢q(t) = 20005 /60t rad (82) where Fy, F,, and F; are real numbers independentof p and p,
sy sin(py) 0 0
0(1(1‘) = 12071/180rad (83) S(p) — 0 K Sin(p2) 0 s S1,8,83 € N
Y (t) = —40m /180 rad (84) 0 0 §3 sin(ps3) @6
This command represents a CMG motion in which the wheel spins so that o =[a] agT oz; a!1", where «,, and «, are given by
at a constant rate of 1000 rpm, the inner gimbal is oriented to an Eq. (74), and ’
angle of 120 deg, and the outer gimbal is oriented to an angle of
—40 deg. Once convergence has been attained, the command is fi 51
abruptly changed so that the inner gimbal is reoriented to an angle ar=|fol, o, = |5 87)
of —60 deg and the outer gimbal is reoriented to an angle of 60 deg. f 55
The control law given by Eqgs. (53) and (54) is applied to the CMG ’ ’
described in Sec. VI. The tuning parameters are chosen to be
We assume the friction and stiffness torques are of the form 500 0 0 400 0 0
FF 0 0 A)=| 0 02 0| +@—e®Hf 0 1.8 0
F(p,p)={0 F 0 (85) 0 0 02 0 0 19.8

(88)
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2.0e—4 0 0 Q, = 1.0e—51, 05 = 1.0e—21;, Q¢ = 1.0e-31,
0 0 4.0e—4
0, = diag(1.0e—9, 1.0e—5, 1.0e—1)
00 O 0
L1 —ey| o 00 0 (89) Qs = diag(1.0e—4, 100.0, 10.0) (94)
0 0 0.039 The gains were chosen to prevent saturation of the motors for
P = 1.0e—31 any appreciable period of time. In our tests on our setup, we found
= 1Ue=20h that saturation of the motors for significant periods of time resulted
T in the buildup of large amplitude oscillations. Also, saturation of
Q = diag(Q, 02, @3, Qu, Os, Qo, 07, Os) (90) the motors might cause damage to the motors if continued for long
where periods of time. With this view in mind, most of the time-varying
0, = diag(1.0e—11, 1.0e—11, 1.0e—11, 1.0e—14 gains are initially chosen small because parametric uncertainity is
initally large. As the adaptation proceeds, these gains are increased.
1.0e—14, 1.0e—14) 1) However, note that A, (¢) actually decreases in magnitude.
The torques that are transmitted to the gimbals and wheel can
0, = diag(1.0e—6, 1.0e—6, 1.0e—6, 1.0e—9, be turned on or off using a master switch that can be controlled
using software developed by dSPACE, Inc. We apply the control
1.0e—9, 1.0e—9), 03 = 1.0e—2 92) law (53) and (54) at t =0 s, but the master switch is turned on
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only at approximately t = 20 s, and thus, the motors are effectively
turned off for ¢ € [0, 20). The spikesin Figs. 8-11 at approximately
t =20 s are due to the master switch being turned on. Figures 11
and 12 show the controlefforts as required by the controllaw. Before
t =20 s, these torques are not transmitted to the CMG because the
master switch has not yet been turned on.

We observe from Fig. 8 that the wheel attains a speed of 1000 rpm
at approximately = 30 s. Figure 9 shows that the inner gimbal at-
tains an angle of 120 deg at approximately t =350 s, and Fig. 10
shows that the outer gimbal attains an angle of —40 deg at ap-
proximately t =200 s. At approximately t =350 s, we modify the
command as describedearlier. We observefrom Fig. 8 that the wheel
attainsthe speed of 1000 rpm at approximately? = 350s, from Fig. 9
that the inner gimbal attains an angle of —60 deg at approximately
t =600 s, and from Fig. 10 that the outer gimbal attains an angle
of 60 deg at approximately # =400 s. In Figs. 9 and 10, it can be
seen that the gimbals undergo transients due to startup as well as a
transientat t =350 s due to the abrupt change in setpoint.

VIII. Conclusions

In this paper, we are interested in developinga control algorithm
that follows a commanded CMG rotational motion, including com-
manded rotational motions that are unbounded. To do this, we de-
scribe the rotational motion of the CMG in terms of the trigono-
metric functions of the half-angles of the gimbals and wheel. This
formulation transforms unbounded rotational motion of the CMG
onto motion on a compact set and is the key ingredientin the devel-
opment of the control algorithm (53) and (54).

In asimilarvein, it is the use of time-varyinggains that permits the
successfuluse of Egs. (53) and (54) to achieve command following
in ourexperimentalsetup. The use of constantgainsresultedin either
saturation of the controller for significant periods of time, which led
to the buildup of large amplitude oscillations, or to extremely slow
time responses.

In future research the control law will be modified to suppressre-
action torques transmitted to the support structure due to imbalance.
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