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Direct Adaptive Dynamic Compensation for
Minimum Phase Systems With

Unknown Relative Degree
Jesse B. Hoagg and Dennis S. Bernstein

Abstract—We consider parameter-monotonic direct adap-
tive control for single-input–single-output minimum-phase
linear time-invariant systems with knowledge of the sign of
the high-frequency gain (first nonzero Markov parameter) and
an upper bound on the magnitude of the high-frequency gain.
The first part of the paper is devoted to fixed-gain analysis of
single-parameter high-gain-stabilizing controllers. Two novel
fixed-gain dynamic compensators are presented for stabilizing
minimum-phase systems. One compensator stabilizes systems
with arbitrary-but-known relative degree, while the other uti-
lizes a Fibonacci series construction to stabilize systems with
unknown-but-bounded relative degree. Next, we provide a general
treatment of parameter-monotonic adaptive control, including
a result that guarantees state convergence to zero. This result is
then combined with the high-gain-stabilizing controllers to yield
parameter-monotonic direct adaptive dynamic compensation
for minimum-phase systems with either arbitrary-but-known or
unknown-but-bounded relative degree.

Index Terms—Adaptive control, Fibonacci, parameter mono-
tonic, relative degree.

I. INTRODUCTION

MANY adaptive control methods rely on parameter es-
timation algorithms such as recursive least squares,

gradient descent, and projection algorithms [1], [2]. Param-
eter estimation algorithms are used with indirect adaptive
control methods to identify plant parameters, and with direct
adaptive control methods to update controller parameters.
Parameter-estimation-based adaptive controllers generally
require an increasing number of adaptive parameters as the
order of the system increases. For example, the dimension of
a direct model reference adaptive controller increases at least
linearly with the order of the plant, while the dimension of a
recursive-least-squares-based algorithm increases quadratically
with the order of the plant.

Alternatively, high-gain adaptive stabilization methods typ-
ically invoke a minimum phase assumption since zeros attract
poles under high gain [3]–[12]. Adaptive high-gain proportional
feedback can stabilize square multi-input multi-output systems
that are minimum phase and relative degree one [3], [5], [6].
Adaptive controllers that do not require knowledge of the sign
of the high-frequency gain are called universal stabilizers [6],
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[13]–[18]. However, these controllers usually do not perform
well on high-order systems due to slow convergence of the gain-
searching algorithms.

In [7], high-gain dynamic compensation is used to guarantee
output convergence of single-input–single-output (SISO) min-
imum phase systems with arbitrary-but-known relative degree.
This work is surprising since classical root locus is not high-gain
stable for plants with relative degree exceeding two. The dy-
namic compensators in [7] are of order , where
is the relative degree. However, as we show in Section II, the
results of [7] can fail when the relative degree of the plant is
greater than four. Related work on high-gain adaptive control of
systems with arbitrary-but-known relative degree includes [19],
[20], which use high-gain observers.

In this paper, we first develop a class of high-gain dynamic
compensators that use knowledge of the sign of the high-fre-
quency gain to stabilize SISO minimum-phase systems with ar-
bitrary-but-known relative degree. These controllers are of lower
order than those in [7]. Furthermore, we construct a novel class
of high-gain dynamic compensators for SISO minimum-phase
systems with unknown-but-bounded relative degree. This con-
struction uses the Fibonacci series and a variation of root locus.

The present paper also includes a general treatment of param-
eter-monotonic adaptive control. In [3], [5], and [6], the stability
proofs for high-gain adaptive systems require that the control
signal be linear in the adaptive parameter and the closed-loop
system be affine in the adaptive parameter. Although the control
signal in [7] is not linear in the adaptive parameter, the proof of
output convergence requires that the adaptive parameter be a uni-
formly continuous function of time. This a priori assumption on
the adaptive parameter is equivalent to assuming that the output
is bounded. In the present paper, a parameter-monotonic adap-
tation law is shown to guarantee state convergence to zero for a
large class of high-gain-stable closed-loop systems. The param-
eter-monotonic adaptive law incorporates an exponentially de-
caying factor, which has no counterpart in [3] and [5]–[7].

Finally, the parameter-monotonic adaptive law is combined
with the Fibonacci-based high-gain dynamic compensator.
Thus, the main result of the paper is parameter-monotonic
adaptive stabilization of SISO minimum-phase systems with
unknown-but-bounded relative degree.

In Section II, we present a motivating counterexample to the
results presented in [7]. In Section III, we introduce the notion
of parameter-dependent dynamic compensation. Section IV
summarizes relevant root locus results, including a proportional
feedback controller for systems with relative degree not ex-
ceeding two. In Section V, we analyze a fixed-gain compensator
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Fig. 1. Root locus for the closed-loop dynamics of the controller proposed in [7]. The system is not high-gain stable.

that stabilizes minimum-phase systems of arbitrary-but-known
relative degree. Section VI presents a fixed-gain analysis
of a Fibonacci-based compensator that stabilizes systems
with unknown-but-bounded relative degree. In Section VII,
we present parameter-monotonic adaptive stabilization. Sec-
tion VIII presents parameter-monotonic adaptive stabilization
for minimum-phase systems with unknown-but-bounded rela-
tive degree. Numerical examples are given in Sections IX and
X. Conclusions are given in Section XI.

II. COUNTEREXAMPLE TO THE RESULTS OF [7]

Consider the unstable plant

(2.1)
Lemma 4 and [7, Fig. 1] propose a 10th-order controller to high-
gain stabilize (2.1). To satisfy the hypotheses of Lemma 4, an
upper bound on the high-frequency gain of the plant is chosen
to be . The gains , , , and

are chosen so that the polynomial
is Hurwitz. Furthermore, define the monic

Hurwitz polynomials ,
, , and

. The controller given in [7, Lemma 4] yields the
closed-loop characteristic polynomial

Fig. 1 provides a root locus for as . The zero-gain
( ) pole locations are shown by ’s, while the locations
of the roots of , which attract certain poles, are
shown by ’s. Ten of the closed-loop poles converge to the stable
roots of as . The real parts of three of
the remaining five closed-loop poles approach minus infinity as

. However, the real parts of the two remaining poles
approach plus infinity as . Thus, the closed-loop system
is not stable for all sufficiently large . However, [7, Lemma
4] claims that there exists such that, for all ,

is asymptotically stable. In fact, the controller proposed in
[7] with parameters , , , , and

fails to stabilize all unstable relative-degree-5 plants
with a high-frequency gain of 1.

The error in [7] can be traced to the application of Lemma
3 to obtain Lemma 4. The Hurwitz hypothesis on is not
sufficient for stability of the closed-loop system. However, it
suffices to require that be
Hurwitz for all . The polynomial with ,

, , , and does not possess this
property. We revisit this example in Section IX.

III. PARAMETER-DEPENDENT DYNAMIC COMPENSATION

We consider the strictly proper SISO linear time-invariant
system

(3.1)

where

(3.2)

We make the following assumptions.
(A1) is a real monic Hurwitz polynomial but is other-
wise unknown.
(A2) is a real monic polynomial but is otherwise un-
known.
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(A3) and are coprime.
(A4) The magnitude of the high-frequency gain satisfies

, where is known.
(A5) The sign of the high-frequency gain is known.

For later use, we define the notation ,
, and .

Let and be parameter-dependent polynomials,
that is, polynomials in over the reals whose coefficients are
functions of a real parameter . Furthermore, define the param-
eter-dependent transfer function , where,
for all , . Note that the polynomials and

need not be coprime for all .
Definition 3.1: is high-gain Hurwitz if there exists
such that is Hurwitz for all .
Definition 3.2: is high-gain stable if there exist param-

eter-dependent polynomials and such that is
high-gain Hurwitz and, for all , .

Now, consider the system (3.1) and (3.2) with the input
, where is given by

(3.3)

where and and are param-
eter-dependent polynomials. For example, letting
and yields , and the closed-loop poles
can be determined by classical root locus. In general, the closed-
loop transfer function from input to output is

where and
. is high-gain stable if its parameter-depen-

dent characteristic polynomial is high-gain Hurwitz.

IV. STATIC FEEDBACK FOR RELATIVE DEGREE AND

In this section, we stabilize (3.1) and (3.2) with proportional
feedback so that

(4.1)

where and . The fol-
lowing results from root locus analysis [21], [22] are needed.

Lemma 4.1: Let be a degree monic polyno-
mial, and let be a degree polynomial with positive
leading coefficient. Then, as , roots of

converge to the roots of , and the remaining root ap-
proaches . If, in addition, is Hurwitz, then
is high-gain Hurwitz.

Lemma 4.2: Let be a degree monic polynomial,
and let be a degree polynomial with positive leading

coefficient. Let and de-
note the roots of and , respectively, and define the root
locus center

Then, as , roots of converge to the
roots of , and the two remaining roots approach

. If, in addition, is Hurwitz and , then
is high-gain Hurwitz.

The following consequences of lemmas 4.1 and 4.2 do not
require knowledge of in (A4).

Proposition 4.1: Consider the closed-loop transfer function
(4.1). If or if and , then is high-
gain Hurwitz, and thus is high-gain stable. Furthermore,
as , of the roots of converge to the roots of .
If , then the remaining root approaches . If , then
the remaining two roots approach .

Proposition 4.2: Consider the closed-loop transfer function
(4.1). If and or if , then is not
high-gain stable. In particular, if , then, as , two
roots of approach . If , then, as ,
the real part of at least one root of approaches .

V. DYNAMIC COMPENSATION FOR SYSTEMS WITH

ARBITRARY-BUT-KNOWN RELATIVE DEGREE

Consider the feedback (3.3) with the strictly proper controller

(5.1)

where are real and is a degree monic
polynomial. Then

(5.2)

where

(5.3)

(5.4)

For implementation, it is desirable that the controller
be stable. The following result characterizes controllers that are
stable for all .

Proposition 5.1: The controller given by (5.1)
is asymptotically stable for all if and only if

is Hurwitz.
Proof: Let denote the roots of . It follows

that the poles of are given by . Therefore,
for all , is asymptotically stable if and only if
is Hurwitz.
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The following generalization of root locus analysis can be
viewed as an iterative application of Lemma 4.1.

Lemma 5.1: Let be a positive integer and let . Then
there exists a degree- monic polynomial

(5.5)

such that is Hurwitz for all . Now, assume that
given by (5.5) is Hurwitz for all . Furthermore, let

be a nonnegative integer, and, for all , let
be a monic polynomial of degree , where is Hurwitz.
Then, for all , the degree monic polynomial

(5.6)

is high-gain Hurwitz. Furthermore, as , roots of
converge to the roots of , and the real parts of the remaining

roots approach .
Proof: First, we show that there exists a polynomial

of the form (5.5) that is Hurwitz for all . Let
, where is the positive th root of . Define

. For , has roots at . It
follows from root locus analysis that, for , the roots of

lie on concentric circles centered at . Furthermore, the
radii of these circles varies from 0 for to for .
Thus, for all , is Hurwitz.

Now, write . The
Hurwitz conditions for the stability of are polynomials in

. For sufficiently large , the Hurwitz conditions for are
satisfied if and only if

...

...
. . .

...

...

...
. . .

...

For all and for , if and only if

. The conditions
are equivalent to the Hurwitz conditions for . Since

, the last conditions are equivalent to the
Hurwitz conditions for . Therefore, is high-gain
Hurwitz.

The last statement of Lemma 5.1 follows from factoring (5.6)
as

(5.7)

Iteratively, applying root locus techniques to a sequence of
relative-degree-one polynomials yields the asymptotic result.

The following result is an immediate consequence of Lemma
5.1 with , , , for

, and for .
Theorem 5.1: Consider the closed-loop transfer function

(5.2)–(5.4), and assume that the and

(5.8)

are Hurwitz for all . Then is high-gain Hurwitz,
and thus is high-gain stable. Furthermore, as ,

roots of converge to the roots of , and the
real parts of the remaining roots of approach .

Now we comment on the robustness of the compensator (5.1)
to errors in the relative degree of . Consider (5.1) designed
for and satisfying the assumptions of Theorem 5.1. The
closed-loop system can be shown to be high-gain stable if the
actual relative degree of is 0, 1, or 2. The proof uses the
same reasoning as the proof of Lemma 5.1.

Next, consider (5.1) designed for and satisfying the
assumptions of Theorem 5.1. For example, consider the high-
gain-stabilizing parameter-dependent dynamic compensator

(5.9)

Theorem 5.1 states that (5.9) is high-gain stabilizing for rela-
tive-degree-3 plants satisfying assumptions (A1)-(A5), where
the bound on the magnitude of the high-frequency gain is

. Now assume that the true plant is , which
has relative degree 2. Fig. 2 shows that all of the closed-loop
poles begin at the origin for . As , two of the
closed-loop poles converge to the stable roots of ,
while one closed-loop pole approach minus infinity. However,
the remaining two poles diverge to infinity through the right half
plane. Thus, this controller is not high-gain stabilizing for the
relative-degree-2 double integrator. In fact, the following result
shows that the controller (5.1) with is never high-gain
stabilizing for plants with relative degree 2.

Proposition 5.2: Consider the controller (5.1) with .
If the relative degree of is 2, then is not high-gain
stable.

Proof: The Hurwitz conditions for the stability of
are polynomials in . For sufficiently large , the Hurwitz con-
ditions for are satisfied if and only if

The second condition is violated for all

sufficiently large . Therefore, is not high-gain Hurwitz,
and is not high-gain stable.

Motivated by Proposition 5.2, we consider an alternative con-
troller structure that is robust to errors in relative degree when
the relative degree is greater than two.
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Fig. 2. Root locus for the closed-loop dynamics of the relative degree 2 plant G(s) = 60=s and the controller (5.9). The system is not high-gain stable.

VI. DYNAMIC COMPENSATION FOR SYSTEMS WITH

UNKNOWN-BUT-BOUNDED RELATIVE DEGREE

We now assume that an integral bound on the relative
degree of (3.1) and (3.2) is known. Hence . For
all let be the th Fibonacci number, where ,

,
, and define , where satisfies
. We use the Fibonacci numbers to construct a parameter-

dependent dynamic compensator, where, for sufficiently large
values of the parameter , the Hurwitz stability conditions on the
closed-loop dynamics are satisfied and independent of . The
exact Fibonacci series is required in the controller construction.

Consider the feedback (3.3) with the strictly proper controller

(6.1)

where are real and is a degree monic
polynomial. The closed-loop transfer function is

(6.2)

where

(6.3)

(6.4)

The following result can be viewed as a robust version of
Lemma 5.1.

Lemma 6.1: Let and let . For all ,
there exist such that, for all ,
the polynomials

(6.5)

are Hurwitz. Now, assume that given by
(6.5) are Hurwitz. Furthermore, let be a positive integer, and,
for all , let be a monic polynomial of
degree . Finally, let and let be a monic
Hurwitz polynomial of degree . Then, for all ,
the degree monic polynomial

(6.6)

is high-gain Hurwitz. Furthermore, as , roots
of converge to the roots of , and the real parts of the
remaining roots of approach .

Proof: First, we show that there exist coefficients
such that the polynomials

are Hurwitz. First, let and be such that
, which implies that is

Hurwitz. Next, let , which implies that
is Hurwitz. In the same manner, for , let

so that is Hurwitz. Thus,
are Hurwitz.

Now, suppose and write
. The Hurwitz conditions for the stability of

are polynomials in . For sufficiently large , the Hurwitz con-
ditions for are satisfied if and only if

...
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...
. . .

...

...
. . .

...

...

...
. . .

For all , and for , if and only if

. Similarly, if and

only if . Since the
powers of in are determined by the Fibonacci
series, it follows that are independent of . Fur-
thermore, are equivalent to for

, and , which is satisfied since
is Hurwitz. Since , the last conditions

are equivalent to the Hurwitz conditions for . Therefore,
is high-gain Hurwitz.

Suppose and write
. For sufficiently large , the Hurwitz conditions for

are satisfied if and only if

...

...
. . .

...

...

...
. . .

The first conditions are equivalent to for all
, and , which is satisfied since

is Hurwitz. Since , the last conditions
are equivalent to the Hurwitz conditions for . Therefore,

is high-gain Hurwitz.
Suppose and let be a degree polyno-

mial. For sufficiently large , the first Hurwitz condi-
tions for are equivalent to for ,
and , which is satisfied since is Hur-
witz. Since , the last conditions are equiv-
alent to the Hurwitz conditions for . Therefore, is

high-gain Hurwitz. The same argument holds for deg
.

Suppose and let be a degree poly-
nomial. For sufficiently large , the first two Hurwitz conditions
for are satisfied if and only if and . The Hur-
witz assumption for implies that the remaining
Hurwitz conditions for are satisfied for sufficiently large

. Therefore, is high-gain Hurwitz.
Suppose and let be a degree polynomial.

For sufficiently large , the first Hurwitz condition for is
satisfied if and only if . The Hurwitz assumption for
implies that the remaining Hurwitz conditions for

are satisfied for sufficiently large . Therefore, is
high-gain Hurwitz.

The last statement of Lemma 5.1 follows from factoring (6.6)
in in a similar fashion to (5.7). Iteratively, applying root locus
techniques to a sequence of relative-degree-one polyno-
mials yields the asymptotic result.

The following result is an immediate consequence of Lemma
6.1 with , , , for

, and for .
Theorem 6.1: Consider the closed-loop transfer function

(6.2)–(6.4). Assume that the polynomials ,

(6.7)

and, for ,

(6.8)

are Hurwitz. Then, is high-gain Hurwitz, and thus
is high-gain stable. Furthermore, as , roots
of converge to the roots of , and the real parts of
the remaining roots approach .

VII. PARAMETER-MONOTONIC ADAPTIVE STABILIZATION

In Section VI, we presented the strictly proper compensator
(6.1), where the stabilizing threshold is unknown. In this
section, we consider parameter-monotonic adaptive stabiliza-
tion for a class of high-gain-stable systems. Although the high-
gain-stable closed-loop systems considered in Sections IV–VI
are single-output systems, in this section we consider multiple-
output high-gain-stable systems. The following result concerns
parameter-monotonic adaptive stabilization. Let denote the
Euclidean norm.

Theorem 7.1: Let and have poly-
nomial entries in , and assume there exists such that,
for all , is detectable. Assume there exists

such that, for all , is asymptotically stable.
Consider the system

(7.1)

(7.2)

and the parameter-monotonic adaptive law

(7.3)
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where and . Then, for all initial conditions and
, exists and .

Proof: Since (7.1)–(7.3) is locally Lipschitz, it follows that
the solution to (7.1)–(7.3) exists and is unique locally, that is,
there exists such that exists and is unique on
the interval .

First, we show that if escapes at , then escapes
at . Assume that does not escape at . Let

so that is continuous on . Then,
is a linear time-varying differential equation on

, where is continuous in . The solution to
exists and is unique on [23]. Therefore,

does not escape at and, by uniqueness, on .
Consequently, does not escape at . Hence, if escapes
at , then escapes at .

Now, we show that converges. For contradiction, sup-
pose that escapes at . Let , and
using Lemma A.1, for all , let satisfy (A.1). Lemma
A.2 implies that there exists such that, for all ,

. Since diverges to infinity at , there
exists such that .

For all , define . Note
that is not to be considered a candidate Lyapunov func-
tion but is nonnegative for all and for all . For
all the derivative of along trajectories of
(7.1)–(7.3) satisfies

(7.4)

Integrating (7.4) from to and solving for yields

(7.5)

for . Hence, is bounded on , which is a
contradiction. Therefore, the solution to (7.1)–(7.3) exists and
is unique on all finite intervals. Then integrating (7.4) from
to yields (7.5) for . Therefore,

is bounded. Since is nondecreasing,
exists.

Since for all , , it follows that

and, thus, is square integrable on . This property will
be used later.

Next, we show that . Define
and . Since is detectable, it follows

that there exists such that is
asymptotically stable. Then, (7.1) can be written as

(7.6)

where . Note that
is asymptotically stable and as . Consider

the function

where and . Taking the
derivative of along trajectories of (7.6) yields

Since , it follows that
, which implies that

where . Since as ,
it follows that there exists such that, for all ,

. Therefore, for all

Integrating from to yields

(7.7)

Since and is square integrable, it follows from (7.7)
that is square integrable and is bounded. Since
is bounded, is bounded. Next, since converges,
is continuous, and is bounded, it follows from (7.1) that

is bounded. Therefore,

is bounded and, thus, is uniformly continuous. Since
is uniformly continuous and

exists, Barbalat’s lemma implies that .
Note that the parameter-monotonic adaptive law (7.3) con-

tains the factor , which decays exponentially as in-
creases. This factor helps to prevent from growing unnec-
essarily large, that is, overshooting the stabilizing threshold .
The proof of Theorem 7.1 requires that the parameter monotonic
adaptive law (7.3) include the exponentially decaying factor

, where . This factor has no counterpart in [3]
and [5]–[7].

VIII. PARAMETER-MONOTONIC ADAPTIVE STABILIZATION FOR

SYSTEMS WITH UNKNOWN-BUT-BOUNDED RELATIVE DEGREE

Now, we apply Theorem 7.1 to the strictly proper parameter-
dependent dynamic compensator (6.1), which stabilizes min-
imum-phase systems with unknown-but-bounded relative de-
gree. To complete our analysis, we construct state–space real-
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Fig. 3. Block diagram of the closed-loop adaptive system.

izations of the open-loop system (3.1) and (3.2) and the com-
pensator (3.3) and (6.1). Let the system (3.1) and (3.2) have the
minimal state–space realization

(8.1)

where , , and . This SISO plant
satisfies assumptions (A1)–(A5).

Next, consider the controller given by (6.1) and write
, so that has

the state–space realization

(8.2)

where , , and are given
by

...
. . .

... ...
(8.3)

(8.4)

Note that, for all nonzero , is observable.
Let and the closed-loop system (8.1) and (8.2)–(8.4)
is

(8.5)

where

(8.6)
Now, we present the main result of this paper. Fig. 3 illustrates

the closed-loop adaptive system presented in Theorem 8.1.
Theorem 8.1: Consider the closed-loop system (8.5) and (8.6)

consisting of the open-loop system (8.1) with unknown rela-
tive degree satisfying , and the feedback con-
troller (8.2)–(8.4). Furthermore, consider the parameter-mono-
tonic adaptive law

(8.7)

where and . Assume that the polynomials
given by (6.7) and (6.8) are Hurwitz,

and assume that the polynomial is Hurwitz. Then, for
all initial conditions and , converges and

.
Proof: First, we show that for all , the pair

is detectable. Let be an element of the closed
right-half plane. Then

is nonsingular because is a minimal realiza-
tion of the minimum phase plant (3.1) and (3.2). Thus,

. Since, for

all , is observable, it follows that for all

, . Therefore, for all ,

is detectable.
Theorem 6.1 implies that there exists such that, for

all , is asymptotically stable. Since is

detectable for all , it follows from Theorem 7.1 that
converges and .

Theorem 8.1 presents an adaptive compensator for systems
with unknown-but-bounded relative degree. If the relative de-
gree of the plant is arbitrary-but-known, then the con-
troller (5.1) can be used with the parameter-monotonic adaptive
law . The conclusions and proof remains
unchanged.

Theorem 8.2: Consider the closed-loop system consisting of
the open-loop system (8.1) and the feedback controller (8.2),
where and is a state–space realiza-
tion of (5.1) given by

...
. . .

... ...

where . Let de-
note the state of the closed-loop system. Furthermore, consider
the parameter-monotonic adaptive law ,
where and . Assume that, for all , the
polynomial given by (5.8) is Hurwitz, and assume that the
polynomial is Hurwitz. Then, for all initial conditions
and , converges and .
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Fig. 4. Root locus of the closed-loop dynamics using parameter-dependent dynamic compensation. The closed-loop system is high-gain stable.

IX. COUNTEREXAMPLE TO THE RESULTS OF [7] REVISITED

In this section, we consider the system where
is the unstable plant (2.1). It was shown in Section II that

the tenth-order controller proposed in [7] fails to stabilize (2.1).
In contrast, consider the fifth-order parameter-dependent dy-
namic compensator

where is a degree 4 monic Hurwitz polynomial. We assume
that the high-frequency gain of (2.1) is known to be positive and
that as in Section II. To satisfy the assumptions of
Theorem 5.1, the numerator polynomial is chosen to be

and the design parameters
are chosen to be , , , , and

.
Fig. 4 illustrates the root locus for the closed-loop character-

istic polynomial as . The zero-gain ( ) pole loca-
tions are shown by ’s, while the zero locations, which attract
certain poles, are shown by ’s. Four of the closed-loop poles
converge to the stable zero locations as . The remaining
six closed-loop poles diverge to infinity through the left-half
plane. Thus, the closed-loop system is high-gain stable.

Theorem 8.2 yields the adaptive controller

(9.1)

(9.2)

(9.3)

where we choose and .
The system is simulated with the initial condition

, where the state
corresponds to a controllable canonical realization of . The

adaptive controller (9.1)–(9.3) is implemented in the feedback
loop with the initial conditions and . Fig. 5
shows that the output of the closed-loop system converges
to zero, while the adaptive parameter converges to approx-
imately 708.

X. ADAPTIVE CONTROLLER FOR EITHER THE DOUBLE OR

TRIPLE INTEGRATOR

Consider the uncertain system , where the sign
of the high-frequency gain is positive, the upper bound on the
magnitude of the high-frequency gain is , and the bound
on the relative degree is . Furthermore, consider the pa-
rameter-dependent dynamic compensator

where is a degree 2 monic Hurwitz polynomial. To sat-
isfy the assumptions of Theorem 6.1, the design parameters are
chosen to be , , , and

. Theorem 8.1 yields the adaptive controller

(10.1)

(10.2)

(10.3)

where we choose and .
Let the unknown system be the triple integrator .

The triple integrator is simulated with the initial condition
, where the state corre-

sponds to a controllable canonical realization of . The
adaptive controller (10.1)–(10.3) is implemented in the feed-
back loop with the initial conditions and .
Fig. 6 shows the time history of the output of the
closed-loop system. The output convergence rate depends on
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Fig. 5. Time histories of the output y(t) (left) and the adaptive parameter k(t) (right) for the closed-loop system consisting of the open-loop system y = G(s)u
and the adaptive controller (9.1)–(9.3).

Fig. 6. Time histories of the output y(t) (left) and the adaptive parameter k(t) (right) for the closed-loop system consisting of the triple integrator G(s) = 2=s
and the adaptive controller (10.1)–(10.3).

the open-loop zeros and the design parameters , , ,
and . In this example, there are no open-loop zeros so the
choice of , which effectively places two of the closed-loop
poles, most directly affects the convergence rate. Fig. 6 also
shows the time history of the adaptive parameter , which
converges to approximately 41.6.

Now, let the unknown system be the double integrator
. The double integrator is simulated with the initial condi-

tion , where the state corresponds to
a controllable canonical realization of . The adaptive con-
troller is implemented in the feedback loop with the same pa-
rameters and the initial conditions and .
Fig. 7 shows that the output converges to zero, while the
adaptive parameter converges to approximately 14.5.

XI. CONCLUSION

In this paper, we presented a direct adaptive controller
for SISO minimum phase linear time-invariant systems with
unknown-but-bounded relative degree. The controller requires
knowledge of the sign of the high-frequency gain and an
upper bound on the magnitude of the high frequency gain.
The adaptive controller, constructed using generalized root
locus principles and the Fibonacci series, guarantees state

convergence to zero. Unlike model reference adaptive control
methods, this control does not require knowledge of the system
order and requires only an upper bound on the relative degree.
Furthermore, the adaptive controller presented herein has only
one adaptive parameter regardless of system order. The order
of the adaptive controller increases linearly with the relative
degree of the plant. As with many parameter-monotonic adap-
tive laws, persistent output disturbance can cause the adaptive
parameter to grow without bound. However, this problem can
be corrected for in practice by turning off the adaptation mech-
anism once the system become stables. The adaptive controller
presented in this paper has direct application to command
following and disturbance rejection problems where the control
objective is output convergence, see [24]. Future work includes
extensions to MIMO systems.

APPENDIX

PRELIMINARY RESULTS FOR ANALYZING

PARAMETER-MONOTONIC ADAPTIVE SYSTEMS

Lemma A.1: Let have entries that are poly-
nomials in . Assume that there exists such that, for all

, is asymptotically stable. Let have
entries that are polynomial functions of where, for all ,
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Fig. 7. Time histories of the output y(t) (left) and adaptive parameter k(t) (right) for the closed-loop system consisting of the double integrator G(s) = 4=s
and the adaptive controller (10.1)–(10.3).

is positive definite. Then there exists
such that each entry of is a real rational function, and for all

, is positive definite and satisfies

(A.1)

Proof: For all , (A.1) has the unique solution

where is the column stacking operator and is the Kro-
necker sum [25, Prop. 11.8.3]. Then, is positive definite
with entries that are real rational functions of .

The entries of are not necessarily proper rational func-
tions of .

We recall the -notation. Let and
be continuous functions. Then as
if there exist and such that, for all ,

. For convenience, we will omit “ ”
from the -notation for the remainder of this paper.

Lemma A.2: Let and consider ,
where each entry of is a real rational function. Assume that,
for all , is positive definite. Then, for all ,
there exists such that, for all

Proof: Let ...
... where, for

, is the real rational function

where and are nonnegative integers. Then, for all ,
can be expressed as

where is an integer and .
The term is a
real rational function of whose denominator is a polyno-
mial in of degree and whose numerator is a poly-
nomial in of degree at most . Therefore,

and,
hence, .

For all , the determinants of the leading principal mi-
nors of are

...

where, for , is an integer, and depends
on the constants . Since is positive
definite for all , it follows that, for all and for

, and, thus, .
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Next, consider the derivative of with respect to . For
, . Let

. Then, for

For all , the determinants of the leading principal minors
of are

...
...

...

Since , it follows that, for , . There-
fore, for all sufficiently large , and, thus,

is positive definite.
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