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SUMMARY

In controlling distributed parameter systems it is often desirable to obtain low-order, finite-dimensional
controllers in order to minimize real-time computational requirements. Standard approaches to this
problem employ model/controller reduction techniques in conjunction with LQG theory. In this paper we
consider the finite-dimensional approximation of the infinite-dimensional Bernstein/Hyland optimal
projection theory. Our approach yields fixed-finite-order controllers which are optimal with respect to
high-order, approximating, finite-dimensional plant models. We illustrate the technique by computing a
sequence of first-order controllers for one-dimensional, single-input/single-output parabolic (heat/
diffusion) and hereditary systems using a spline-based, Ritz—Galerkin, finite element approximation. Our
numerical studies indicate convergence of the feedback gains with less than 2% performance degradation
over full-order LQG controllers for the parabolic system and 10% degradation for the hereditary system.

KEY WORDS Finite-dimensional compensation Distributed parameter systems Optimal control

1. INTRODUCTION

Approximation methods for the optimal control of distributed parameter systems have been
widely studied. In particular, the approach taken in References 1—12 involves approximating
the original distributed parameter system by a sequence of finite-dimensional systems and then
using finite-dimensional control design techniques to obtain a sequence of approximating,
suboptimal control laws, observers or compensators. Furthermore, in these treatments it was
demonstrated that if the open-loop system is approximated appropriately, then it is possible
to guarantee convergence of the sequence of suboptimal controllers, observers or compensators
respectively to the optimal controller, observer or compensator for the original infinite-
dimensional system. In addition, it can be shown that when the approximating suboptimal
control laws or estimators are applied to the original system, near-optimal performance can
frequently be obtained. These ideas have been pursued in the context of both open- and closed-
loop control, in both continuous and discrete time, and for both full-state-feedback control and
LQG (i.e. Kalman-filter-based) state estimation and compensation.

In practical situations, however, it is often of interest to obtain the simplest (i.e. the lowest-
order) controller which provides a given desired feedback performance. This is usually achieved
in one of two ways: either the plant approximation order is reduced prior to controller design
or reduction techniques are applied to a given high-order control law. Unfortunately, the
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former approach may result in undesirable spillover effects while the latter may yield low-order
controllers of low authority which perform unacceptably. In fact, with the second approach
this may occur even when a suitable controller is known to exist. For example, as is shown in
Reference 13, controller reduction techniques may even destabilize the closed-loop system.

A third, more direct approach involves fixing the controller order a priori and then
optimizing a performance criterion over the class of fixed-order controllers. In a finite-
dimensional setting a set of necessary conditions in the form of four coupled matrix equations
(as a direct extension of the pair of separated Riccati equations of LQG theory) which
characterize the optimal fixed-order compensator was derived in Reference 14. These four
equations are coupled via an oblique projection (idempotent) matrix. In the full-order case this
projection becomes the identity, thus effectively eliminating the additional two equations, and
the necessary conditions reduce to the standard LQG Riccati equations.

The notion that this direct (i.e. fixed-finite-order) approach can be applied to distributed
parameter systems was first suggested by Johnson'® and further developed in References 16 and
17. To realize such an approach, however, would require a suitable generalization of the
optimality conditions for the finite-dimensional fixed-order theory. This result was
subsequently obtained in Reference 18, where the matrix optimal projection equations obtained
in Reference 14 for finite-dimensional systems were extended to a set of four coupled operator
Riccati and Lyapunov equations characterizing optimal fixed-finite-order controllers for
infinite-dimensional systems.

In developing numerical schemes to actually compute fixed-finite-order compensators for
infinite-dimensional systems, one might consider an approach wherein LQG reduction
procedures are applied to a sequence of controllers obtained by using finite-dimensional full-
order design techniques in conjunction with high-order finite-dimensional plant approxi-
mations. However, such an approach is unappealing for two reasons. First, since such methods
are not predicated on the minimization of a performance index, prospects for convergence are
slim. Secondly, controller reduction methods have not proven to be reliable in producing
stabilizing compensators (see e.g. Reference 13).

Hence, as an alternative, we develop an abstract approximation framework (and ultimately
computational schemes) which combines the infinite-dimensional optimal projection theory of
Reference 18 with the approximation ideas developed in References 9-12 for infinite-
dimensional LQG problems. More precisely, our approach involves constructing a sequence of
approximating finite-dimensional subspaces of the original, underlying, infinite-dimensional
Hilbert state space along with corresponding sequences of bounded linear operators which
approximate the given input, output and system operators. Then, by choosing bases for these
approximating subspaces and applying the finite-dimensional optimal projection theory, a
sequence of matrix equations characterizing a sequence of approximating optimal fixed-finite-
order compensators for the distributed system is obtained. Finally, numerical techniques for
solving the matrix optimal projection equations (e.g. the homotopic continuation algorithm
described in References 19 and 20) can be used to compute the sequence of approximating
gains.

Our primary aim in this paper is to describe the general approach we are proposing, to discuss
its implementation and to demonstrate its feasibility and practicality. We offer no convergence
arguments here but rather hope to treat them in a more theoretical paper to follow. Instead
we consider the application of our technique to two examples. One involves the control of a
one-dimensional, single-input/single-output parabolic (heat/diffusion) system while the other
involves a single-input/single-output one-dimensional hereditary control system. These
relatively simple examples have been used throughout the distributed parameter control
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literature to illustrate the application of new theories and techniques. A detailed discussion of
the application of our ideas to more complex control systems, e.g. the vibration control of
flexible structures, will also appear elsewhere. We use spline-based Ritz—Galerkin finite element
schemes to approximate the open-loop systems (one for which convergence can be
demonstrated in the LQG case) and present and discuss some of the numerical results which
we have obtained using our general approximation framework.

We now outline the remainder of the paper. In Section 2 we briefly review the infinite-
dimensional optimal projection theory from Reference 18, describe the approximation
framework and derive the corresponding equivalent matrix equations and feedback gains which
characterize the approximating fixed-finite-order compensator. In Section 3 we consider the
examples, construct the approximation schemes and discuss our numerical findings. Section 4
contains a summary and some concluding remarks.

2. OPTIMAL PROJECTION THEORY AND FINITE-DIMENSIONAL
APPROXIMATION

We consider the following fixed-finite-order dynamic compensation problem. Given the
infinite-dimensional control system

x(t)= Ax(t) + Bu(t) + Hiw(¢) (1)
with measurements
y(t)=Cx() + Hw(2) ()
where 7€ [0, =), design a finite-dimensional, n.th-order dynamic compensator
Xc(t) = Acxc(t) + Bey (1) (3)
u(t) = Cexe(t) 4)

which minimizes the steady-state performance criterion

J(Ac, Be, Co) & lim E[CR1x(2), x(2)) + u(t) "Rou(t)] (5)

{—+ o0
For convenience we denote the infinite-dimensional plant by II; that is,
H é {A,B, C, R];RZs VI) VZ;

Here x(f) lies in a real, separable Hilbert space 2" with inner product (-,-), A:
Dom(A) C 2= 2" is a closed, densely defined operator which generates a Cy semigroup
{T(t): t > 0} of bounded linear operators on 2", Be Z(R™, 2)and C€ £ (2, R'). We assume
that the state and measurement are corrupted by a white noise signal w(¢) in a real, separable
Hilbert space 2" (see Reference 21 or 22), that H, € Z(9", &), H2 € (9", R"), R € Z (&) is
(self-adjoint) non-negative definite and that R is an m X m (symmetric) positive definite matrix.
We define V, = H\H{ and V, = H,H5, where ( )* denotes adjoint, and assume for convenience
that H,H> =0 and that V5 is positive definite. In addition we make the assumption that either
the open-loop semigroup {7(¢): t = 0} is Hilbert—Schmidt or the operator V; is trace class.
Recall that a linear semigroup {S(z): ¢ = 0} is said to be Hilbert—Schmidt if the opergtors S(7)
are Hilbert—Schmidt for 7 > 0. Note also that H; Hilbert—Schmidt is sufficient for V; to be
trace class. The compensator is assumed to be of fixed finite order n. (i.e. x.(¢) € R"<) and A,
B. and C. are matrices of appropriate dimension. For further details and discussion on the
problem statement and the above assumptions, see Reference 18.
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We summarize here the primary result from Reference 18 characterizing optimal fixed-finite-
order controllers. For convenience define & 2 BR; 'B* and £ 2 C*V;'C. Also let I, and I,
denote respectively the n. X n. identity matrix and the identity operator on 2"

Theorem 1

Let n. be given and suppose there exists a controllable and observable n.th-order dynamic
compensator (Ac, Be, Cc) which minimizes J given by (5) and for which the closed-loop

semigroup generated by
8 [ A BCC] )

B{_‘C Ac

is uniformly exponentially stable. Then there exist non-negative definite operators Q, P, O, P
on 4 such that 4., B. and C, are given by

A=T(A - 0L - EPYG* @)
B.=TQC*V5! (8)
C:==R;B*"PG" (9)

where {.7(f): t = 0} is the closed-loop semigroup on 2" x R™ generated by the operator .«
given by (6),

rank O =rank P =rank QP = n.

(10)
QP =G*MT, PG =, (11)
for some Me R™ * ™,
0=AQ+QA*+ V- QEQ + 7. QL0r (12)
0=A*P+ PA+R — PCP+7:PCPrL (13)
0=(A-ZP)O+0(A-TP)*+0ZQ- 7,007} (14)
0=(A4-0%)Y'P+P(A-QL)+ PLP— 7 PLPr, (15)
where
FAETP. T & T,—1
Furthermore, the resulting optimal closed-loop cost is given by
A . B, CoY =t S: TV TR dt (16)

where { 7 (¢): t = 0} is the closed-loop semigroup on 2 x R™ generated by the operator .+

given by (6)
4 a Vi 0
0 B.V,B!

i R 0

R4 »
[ 0 CJRZCCJ

A It is sl}own in Reference 18 that the factorization (11) for the non-negative definite operators

O and P satisfying rank QP = n. always exists and is unique except for a change of basis in

R". Also shown is that G™: R" — Dom(A) so that the expression (7) is well-defined.
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Equations (12)—(15) are, in general, infinite-dimensional operator equations. To actually use
them to compute the optimal fixed-order compensator, a finite-dimensional plant
approximation is required. For each N=1,2, ... let 2" denote a finite-dimensional subspace
of 2 and let #": 2 — 2’V denote the corresponding orthogonal projection of 2" onto 2™".
Let ANe (™), BNe 2(R™, ™), CVe 2(2V,R), R e (") and V' e £ (™). We
consider the system (7)—(15) with the plant IT replaced by the plant TV given by

HXE a2 BE. oY RY R Vs

Typically, the operators BN, CN,RY and V{ are chosen as BN=2"B, cN=c»",
Ry = #~R, and V{ = 2™V, with the requirement that #" converge strongly to the identity
I, as N— . The operator A" is chosen so that it and its adjoint satisfy the hypotheses
of the Trotter—Kato semigroup approximation theorem (i.e. stability and consistency; see
e.g. Reference 23). That is, A~ is chosen so that limN_.mTN(f)J’Nqﬁ =T(t)¢ and
limy-ow TN@)* %26 = T(t)*¢ uniformly in ¢ for ¢ in bounded intervals for each ¢ ¢ 2;
where TN(I) =exp(tA"V), t > 0. We shall say more about these choices for A~, BY, ¢V, R{
and V)Y when we make some remarks concerning convergence questions below.

Although with the plant IT" equations (12)—(15) are finite-dimensional, they are still operator
equations. It is their matrix equivalents which are used in computations. Unless orthonormal
bases are chosen for the subspaces 2 (which is typically not the case in practice), some care
must be taken to obtain the appropriate matrix system.

For each N=1,2,... let {¢/V]X| be a basis for 2"~ and choose the standard bases for
all Euclidean spaces. For a linear operator L with domain and range 2" or any Euclidean
space, Iet [ L] denote its matrix representation with respect to the bases chosen above Also,
let &V denote the k™-square Gram matrix corresponding to the basis {¢/} X 1; that is,
&L= (N, 0N, i,j=1,2,..., kY. Noting that

(™) T=@ ) LAY E", [(B™)*] = [BY]Te", (€M) =@")'[Cc™MT
(@D =@ [117eY, [ZV] = [BY]R:'[BY]T@",
[Z¥] =@M CcMTvr e

the matrix equivalents of the operator equations (11)—(14) become

0=[AY Q"] + [QM1@M) ' [AMTeN + V] - [QMT[EN] QM)

+ [7111QMIEM QM - (@™) ' [+Y] "oV (17)
={@) “EARTREEEPY & [PE) <[ T--IRN = ERTEENTLES]
+ (@) 'Y 1TeN [ PN] - (=M1 [PV Y] (18)
0=([4™] - [ZM1[P])IOM] + [OM1 @M)~ ' (1 A™] - [ZM1 [PM])TeV
+ [N IZEMIOM - 7Y 11N IEM [ Q*‘“’J@*"")‘1 [ ]1TeN (19)
0=@") ' ([AM - [@MI[EV)T@N[AY] + [PM1(1AN] - QN [EN
+ [PM1EM[PM] —(@M) 'Y 1T N[ PN (ZM1 [ PN [+ ] (20)
Therefore, if we define the k™ X k" non-negative definite matrices
8’2 QY] (@M), Py & @V PN )
0’2 [OM(@M), By 2 N[ PM)
Ve (v @™, R{' 2 @V([RY"]
Z¢ & [BMR:'[BMT Lo'8 [CM1Tvit e
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we can solve the matrix optimal projection equations given in Reference 14 corresponding to
the matrix plant model

Y 2 ([ AN, [BM], [CM1,RY, Re, VI, V2)

to obtain the matrices QF, P§’, 08 and P{. The approximating optimal ncth-order dynamic
compensator {Ae”, BY, cX} is then given by

AY =T¢&([AN] - QLY — 28 Po )G T
BY=T¢Qy [C] Vs
cd=-R;'[BY1TP{(G)T
where T, GY e R™ * ¥ and MM e R™ * " satisfy
WA= GEM'TY  THG =1
[=Y] =(G") T8, [rL] == [+"]

When an infinite-dimensional controller will suffice, C.= —R5'B*Pe¢ £(2°,R™) and
B.=QC*Vi'e #(R', @) are the usual infinite-dimensional LQG controller and observer
gains.® The operators P, Q € # (2°) are the non-negative definite solutions to the two decoupled
operator algebraic Riccati equations (12) and (13) with 7 and 7, formally set to /4 and 0
respectively. Since C. has range in R™ and B. has domain R/, there exist vectors
ce=(cd, e e x™y & and b= (b, ..., b)) T € x =1 & such that

[Cex)i=(ct, x), i=1,2,....m X€X

i
ch=b(‘:ry=§ yibé, }’,I(.yly'”!},l]’)e|-Q'JI

The vectors ¢. and b. are referred to as the optimal LQG functional controller and observer
gains respectively.

With regard to approximation for the full order LQG problem, for each N=1,2, ... we take
ne = k™. Then it is not difficult to show that

CNLPN R =6l 0 sr @
Bly=(bM)"y, yeR'

where e x 7Ly 2 and bl € x ', 2" are given by ¢’ = CY(@") '¢" and bl = (BY) o™
respectively with  ¢" = (¢, ...,00) € xS, 2V, The vectors ¢~ and bY are
referred to as the approximating optimal LQG functional controller and observer gains
respectively. To compute them we need only solve two standard decoupled matrix algebraic
Riccati equations for the k™ x k™ non-negative definite matrices Q§’ and P¢'.

A rather complete convergence theory for LQG approximation can be found in Reference
9. Essentially, it is shown there that if the approximating subspaces 2N are chosen so that the
projections 2~ converge strongly to the identity as N — o, the operators AN BN N R and
V¥ are chosen as was described above and the operators Q™ and PV are uniformly bounded
in N, then O~ and P” converge weakly to Q and P respectively as N — oo. This in turn implies
that CY — C. strongly, BY — B. weakly, ¢~ = c. and bl — b. weakly and the closed-loop
semigroup for the approximating optimal LQG compensator converges weakly te the closed-
loop semigroup for the optimal infinite-dimensional LQG compensator as N — o, If, in
addition, the operators S™¥(t)=TV(@)+ B CY and SVN(t)= TV(t) — BYC" are uniformly
exponentially stable, uniformly in N, then Q¥ — Q and P"— P strongly, CY— C. and
BY — B. in norm, ¢ — ¢ and b — b, strongly and the closed-loop semigroups converge



DISTRIBUTED PARAMETER SYSTEM COMPENSATION 7

strongly as N — oo. If R and V{" are coercive, uniformly in N, then S™(r) and $"(r) will be
uniformly exponentially stable. If it is also true that R; and V) are trace class and RYM#N > R,
and VY 2" - V, in trace norm, then Q and P are trace class and Q~ 2"~ - Q and PN2" > P
in trace norm as N— . The development of a complete convergence theory for the
approximating fixed-order designs appears to be a much more difficult question. One would
expect, however, that any such theory would require at least minimally that the sufficient
conditions for convergence of the approximating LQG designs be satisfied.

Returning to the fixed-finite-order case we note that in general the approximating optimal
\projection equations may not possess a unique solution. However, Richter!® shows for the
finite-dimensional case that it is possible to obtain an upper bound for the number of stabilizing
solutions. He uses topological degree theory to obtain the following result.

Theorem 2

Consider equations (12)—(15) with the infinite-dimensional plant IT replaced by the finite-
dimensional plant IT". Let n, denote the dimension of the unstable subspace of A" and assume
that 7. > n,. Then in the class of non-negative definite operators Q~, PV, Q", PN on 27V
satisfying rank O” =rank P" =rank O"P" = n. there exist at most

(rnin(kN, m, ) — ny

), ne < min(kN, m,l)
nc_nu

1, otherwise

solutions of (12)—(15), each of which is stabilizing. If, in addition, the plant (A", BY,C") is
stabilizable by an n.th-order controller, then there exists at least one stabilizing solution of
(10)—(15).

Theorem 2 shows that while there may exist multiple solutions to the finite-dimensional
optimal projection equations, in practice this number can be quite small. For example, if
ne = ny and the system is either single-input (7 = 1) or single-output (/ = 1), then there exists
at most one solution to (10)—(15) for the plant IT. Moreover, the number of solutions of the
approximating optimal projection equations remains bounded in N, since for N sufficiently
large, min(k"™, m, ) = min(m, /). The existence of at least one stabilizing solution of course
depends upon whether or not the plant is stabilizable by an n.th-order controller (for relevant
results, see Reference 24). Finally, while it may be possible to stabilize a plant with n. < ny,
this case lies outside the scope of the analysis given in Reference 19.

3. EXAMPLES AND NUMERICAL RESULTS

We first consider the one-dimensional, single-input/single-output parabolic (heat/diffusion)
control system with Dirichlet boundary conditions given by

9%v

g—? (t,n)=a an? (t,m) +bmu@) + hipwi(t,n), 0<n<l1, >0 (21)

v(t,0)=0, v(,1)=0, t>0 (32)

1
yld) = SD eliulh, 55 dn+ hewsld), E50 23)
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where a > 0, and b(-) and c(-) are given by
1/(B2=01), Bri<n<P

blm)= [O, elsewhere
(Hvz=v1), m<9< 2
cln)= [0, elsewhere

with0< 81 < B2 < 1and 0 < v <72 <1.In (21) and (23), A(-) € L(0, 1), wi(z, ) € L2(0, 1),
almost all 7€ [0, ) (see Reference 23, p. 314), h; is a non-zero constant and w2 (") is unit-
intensity white noise.

To rewrite (21)—(23) in the form (1), (2), in the usual way we take 2" = L,(0, 1) endowed with
the standard L, inner product, let x(f)=uv(t, ), ¢t =0, define A: Dom(A) C &'~ 2" by
Aé = aD*¢ for ¢ € DomA 2 H?(0,1) N H}(0, 1) and define Be #(R', 2°) and Ce (2, R")
by Bu=b(-)u for u€ R and Coé = {§ c(n)¢(n) dn for ¢ € L»(0, 1) respectively. Furthermore,
let 22 Ly(0,1) xR, set w(t)2 (wi(t, ), w2(t))€ & and define H;€Z(4,2) and
H> e (9, R") by Hiz=hi(-)z1 and Hzz = haz2 for z=(21,22) € 4 respectively.

It is well known (see e.g. Reference 23) that A is closed, densely defined and negative definite.
Furthermore, A is the infinitesimal generator of a uniformly exponentially stable, analytic
(abstract parabolic) Hilbert—Schmidt semigroup {7(¢): ¢ = 0} of bounded, self-adjoint linear
operators on 4.

We consider a linear spline-based Ritz—Galerkin approximation for the open-loop system.
For each N=2,3,... let {¢/Y}X71' be the linear spline (‘hat’) functions defined on the
interval [0, 1] with respect to the uniform partition {0,1/N,2/N, ..., 1}, i.e.

, Nn—j+1, ne[(—-1DIN,jIN)
&f()=1{Jj+1-Nqg, n€l[jIN,(j+1)/N)
0, elsewhere on [0, 1]

j=1,2,...,N—-1. Set @¥=span{¢"}/Xi' and note that k“=dim 2¥=N-1 and
aN c Hy(0,1) for all N. If 2™: 27— 2N denotes the orthogonal projection of 2" onto 27V,
then standard convergence estimates for interpolatory splines®® can be used to show that
limy-w V¢ =¢ in L,(0,1) for ¢ € L2(0, 1).

There are two equivalent ways to obtain an operator representation for the usual
Ritz—Galerkin approximation to A. First, A can be extended to a bounded linear operator
from H§(0, 1) onto its dual, H~'(0, 1), via

(A$)(W) = — a(Dé, DYy, &,4 €H(0,1) (24)

Since 27N € H§(0, 1) for all N=2,3, ..., we define AN e Z(@") by AVoN = AN, ¢V e 2V,
with 46~ € H~'(0, 1) considered to be linear functional on 2'". From the Riesz representation
theorem we obtain 4V¢”™ = ¢y where ¢ " is that element in 2" which satisfies (4~o™)(xV)
= —a(Do"™, Dx"™y = (Y™, x™.

Alternatively and equivalently, by using the fact that A is self-adjoint, we can define AV as
follows. Let #{: H}(0,1)— 2’V denote the orthogonal projection of the Hilbert space
H§0,1) onto 2V. Using the definition (24) it is not difficult to show that
— A€ Z(HLO0,1),H '(0,1)) is coercive and therefore that A~ ': H~ (0, 1) = He(0, 1) exists
and is bounded. We then define AV e £(2™) to be the inverse of the operator given by
(AN 1 =2VA™ |4,

Using either definition it is easily argued that A" is well-defined, self-adjoint and is the
infinitesimal generator of a uniformly exponentially stable (uniformly in N) semigroup,
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TN(t) = exp(tA™), t > 0, of bounded linear operators on 2". Also, using the approximation
properties of splines it is not difficult to show that limy-o(A™N)'2Vp = 479, ¢ € @
Consequently, the hypotheses of the Trotter—Kato theorem?® are satisfied and we have
limy— w TN(I)S?’NQB =T(f)¢ and limy - TN(r)*éaN(b = T(r)*¢>, ¢ € 4, uniformly in ¢ for ¢ in
bounded intervals. A detailed discussion of the results just outlined can be found in Reference
8.

We define BY = 2B and C" = C#", from which it immediately follows that limy— « B"
=B and limy-«~ C~ = C in norm and similarly for their adjoints. For the example we shall
consider here, we have chosen R, =ri/4 and Rz = r2 [, with ri, r2 > 0. Setting hi1(y) = e,
0<n<l1, and ha = UZVZ, with vy, v2 > 0, we obtain V,=uv,/4 and V> =v,. We then take
R =2"R, and V' =2"V,. For the LQG problem the open-loop uniform exponential
stability of both the infinite-dimensional system and the approximating systems is sufficient to
conclude the strong convergence of the approximating Riccati operators to the unique solutions
of the infinite-dimensional Riccati equations, the uniform norm convergence of the
approximating controller and observer gains and the strong convergence of the functional gains
as N‘_’ 00_2,7,9

Since the basis elements {¢;"}/X7' are piecewise linear with respect to the uniform mesh
{0,1/N,2[N,...,1} on [0, 1], the equivalent matrix representations for the operators defined
above can be computed directly and in closed form. The Gram matrix &= (o, ¢}V,
i,j=1,2,..., N—1, is given by PN = (i/N)Trldlag{é, 2,11, and if we define the generalized stiff-
ness matrix ‘I"\ by ‘If = — a(Dqﬁ, ,an:gf ), ivi= 132000 N— 15 then N = aN Tridiag{1, —2,1}.
It follows that [A ] (@N)~ lqﬂ‘, [BN] = (@N)~ lb“ and [CN] =cV, with b = (b, ¢/) =
[1/(B2~B1)] 15 6/(n) dn and e = (e, 6y = [1(r2 = y)) B 6 (0) dn, i=1,2,.., N~ 1,
and that Ry = ri®”™ and V§' = v (@M L

For our numerical study we set a=1,8,=0-75-0-03/2, B,=0:75+0-042,
y1=0-25- 0-04\,-'2, v2=0-25+ 0'03\;’2, rn=uvi=1,rn=v=10"%and hi(y) = 1, and used our
technique to compute approximating optimal LQG (i.e. n. = N — 1) and first-order (i.e. n. = 1)
compensators for various values of N. The open-loop stability of system (21)—(23) and the
approximating systems implies that the finite-dimensional approximating optimal projection
equations have a solution. Theorem 2, on the other hand, with n,=0and n.=10r n.= N—1,
implies that they have at most one solution. Consequently, the system of equations (12)—(15)
with the plants IT" admits a unique solution.

The optimal projection equations (12)—(15) were solved by using the homotopic continuation
algorithm described in Reference 19. There it is shown that the operation count for the
algorithm is proportional to p(2n®+ (m + n*+ (m +1)°nd), where p is the number of
integration steps and » is the dimension of the finite-dimensional plant. This count is
competitive with the operation count for the Hamiltonian solution of the standard Riccati
equations, which is O(16n°) for LQG. Also, note that the computational burden for the
solution of the optimal projection equations decreases with nc.

Since m = /=1 in the LQG case, the optimal functional observer and feedback control gains
bc and c. and the approximating gains b and ¢ are all simply L, functions with b and c&
elements in 2. We plot the functions b and ¢ we obtained for various values of N in
Figures 1 and 2 respectively. The apparent symmetry of the plots given in Figures 1 and 2 is
a result of the nearly symmetric placement of the sensor and actuator (i.e. the choice of
B1,B82,v1 and ~2) in this particular example. That convergence is indeed achieved can
immediately be observed in the figures. In the fixed-order case with n. = 1, the compensator
gains Ac, B. and C. are all scalars. Also, for a first-order controller there are only'two
independent parameters, A. and B.C.. In Table 1 we give the values we obtained for AY and
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Figure 1. Parabolic system approximating optimal LQG functional observer gains; N =4, 8, 12, 16, 20, 24, 28, 32

BXNCY for various values of N. Once again it is clear that the gains are converging as N
increases. In addition, in Table 1 we provide the closed-loop costs Jioc and Jfo computed via
formula (16) for the LQG and first-order controllers. These closed-loop costs are evaluated
using a 64th-order modal approximation to the infinite-dimensional system. For all values of
N the performance of the fixed-order compensator was within 2% of the corresponding LQG
controller. Thus, for example, the replacement of an approximating optimal LQG controller
of any desired order by an approximating optimal first-order controller can yield considerable
implementation simplification with only minor performance degradation. Note that for the
example we consider here it is possible to compute the open-loop cost for the infinite-
dimensional system in closed form. We have

o 5 MT*ORT(@) di=vir tr | T()? dt
0 W0

oo - +] o 1 »
= —2n2r2at) dt = AL £
nir n; 50 exp(—2n’nat) 5.0 ’EJI -
hrn 1
=—=— = (.08333
12¢ 12
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Figure 2. Parabolic system approximating optimal LQG functional control gains; N = 4,8, 12, 16, 20, 24, 28,32

Table I. Parabolic system approximating optimal first-order
compensator gains

N Al BYcY Jioc Jto

4 — 6876 5470 0-06999 0-07014

8 ~720-9 5231 0-06870 0-06993
12 ~730-9 5182 0-06872 0-06991
16 —734-3 5145 0-06874 0-06990
20 ~738-0 5127 0-06875 0-06990
24 ~737-6 5108 0-06876 0-06990
28 ~739-8 5109 0-06876 0-06990
32 =73RT 5099 0-06877 0-06990

Finally, for comparison purposes, we tried applying balancing techniques to the LQG
controllers to reduce their order. However, with n. = 1, such controllers were found to be
destabilizing. On the basis of the results in Reference 13, this was not unexpected. Furthermore,
a first-order controller based upon a truncated model consisting of the first mode only was
found to yield an unstable closed-loop system for the 64th-order truth model.
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As a second example we consider the one-dimensional, single-input/single-output hereditary
control system given by

0(2) = aov(t) + arv(t — p) + bou(t) + hiw(t), t>0 (25)
y(t) = cov(t) + haw(t), t>0 (26)

where ao, a1, bo, Co, h1, h2, p € R! with p >0, h, #0, and w is a unit-intensity white noise
process. To rewrite (25), (26) in the form (1), (2), we take 2" = R%x La(—p,0) endowed with
the usual product space inner product, { (4, %), (& ¥)) =né+ (%, ¥, and let x(¢) = (v(¢), v1),
t >0, where for 1 >0, v,€ Lo(—p,0) is given by v, (0)=v(t+6), —p <0 <0. Define A:
Dom(A)C 2~ 2 by Aé=(a$(0)+ ad(—p), Do) for é=(4(0),¢)eDom(A)
LY e YyeH (—p,0),¢¥(0)=¢} and let Be (R', 2°) and Ce (2", R') be given by
Bu = (bou,0) and C(n,$)=con respectively. Let 24'=R' and define H,€ ¥ (4, 2°) and
H,e (9, R") by Hiz = (hz,0) and Haz = hyz respectively for z€ R'.

The operator A is densely defined and is the infinitesimal generator of a Co semigroup { 7(¢):
t > 0} of bounded linear operators on 2" with T(¢)(n,¢) = (v(t; 7, ), vi(n,¢)), t = 0, where
v(*; n, ¢) is the unique solution to (25) with b = A1 = 0 and initial conditions v(0) = 5, vo = ¢.
We take R, € () and R, € Z(R') to be Ri(n,¢) = (r1n,0) and R,u = ru respectively with
r1,r2 > 0. The definitions of H; and H, given above imply that V; € (2") and V> € Z(R') are
given by Vi(n,¢) = (hin,0) and Vyz = h3z respectively for (n,¢)€ 2°and z € R!. Although in
this example the open-loop semigroup { 7(¢): £ = 0} is not compact, the operator H, is of finite
rank and therefore Hilbert—Schmidt. The operator V; is thus trace class.

We employ an appropriate scheme recently proposed by Ito and Kappel.*® We briefly outline
it here; a more detailed discussion can be found in Reference 26. For each N=1,2, ... let
x; € Ly(—p,0) denote the characteristic function for the interval[ — jo/N, —(j— 1)p/N),
j=1,2,...,N, and let 2'" be the (N + 1)-dimensional subspace of 2" defined by

N = span{(1,0), (0, x{), ..., (0, xN))

Let #V: 2°— 2V denote the orthogonal projection of 2" onto 2™. Let {¢;"} /-0 denote the
linear B-spline functions defined on the interval [ —p,0] with respect to the uniform mesh
[—0,...., —p/N,0} and set 27 = span{ (¢;" (0), qbf)]j—”;o. Then 27 is an (N + 1)-dimensional
subspace of Dom(A4) and is not difficult to demonstrate that the restriction of # Nto ais
a bijection into 2°V. Using the fact that A restricted to 21" has range in 2", we define
AVNe 2 (V) by AN = A(#") ! and set TV(r) = exp(4 ™), t > 0. Noting that R(B) C 27,
we take BY € 2 (R!, 2°V) to be given by B" = B. Similarly, we take R = R, and V{¥ = V/;. We
set CN=C.

It is shown in Reference 26 that 2" (,¢)— (4,¢), TY)# (,¢)—= T(t)(n,¢) and
™V * 2N, )= T)*(,¢) for (n,¢)€ 2 as N— oo, uniformly in ¢, for 7 in bounded
subsets of [0, o). It then follows that limy—-« BY =B and limy-« C¥# " = C in norm.

For the LQG (full-order) problem the optimal functional observer and feedback control
gains b, and ¢, are of the form b. = (8o, 81) and cc = (yo, v1) respecmely with ,6’0, Y0 € R! and
B1,v1 € Lz( 0, O) The approx1mat1ng gams are of the form b = (8¢", 81") and ¢& = (v¢', 4{")
with 3¢§" ,ﬁ,«o ‘¢ R! and B ,71 € span{y;j }J_| Since we are treating a one-dimensional example,
if by # 0, the theory in Reference 26 implies that 3§’ = 8o and v¢' — vo in R and that 3{" = 3,
and i = 1 in La(—p,0) as N— oo.

Once again, as in the first example, matrix representations for the operators A N BN CY R
and V{¥ are not difficult to compute in closed form. Indeed, the (N + 1) X (N + 1) matrix
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representation for the bijection #~: 21 — 2 is given by

1 0
110
[y.-'\" - 0 % % 0
i 0
Then [AN] = [KV][#2"] 7! where

_ao 0

Nlp = N/p 0

i 0

0

td |t Pt

[ BT

0 Nlp
0

= O

— Nlp
Nlp

13

a

0
— Nlp |

We have the (N+1)x 1 matrix [B"] =[bo 0...0]" and the 1x (N+ 1) matrix [C"] =
[co 0...0], while [R¥] =r [.#«"] and [ V] = hi[.#"] where the (N + 1) X (N + 1) matrix

[#7] is given by

We set ap=ar=bo=co=nrn=h=p=1,

rn=0-1

and h;=/(0-1) and computed

approximating optimal LQG (i.e. nc= N+ 1) and first-order (i.e. n. = 1) compensators for
N=8,16,24 and 32. The optimal LQG observer gains are given in Table 3 and Figure 3; the
control gains are given in Table 4 and Figure 4. The symmetry in the observer and control gains

Table II. Hereditary
system open-loop poles

1-278465

—1-588317 £ 4-1553051

—-2-417631 £ 10-
—2-861502 = 17
= 3167754 & 23-
—3-401945 £+ 29
—3-591627 * 36
—3-751047 = 42
—3-888543 £ 48-
—4-009422 £ 54-
—-4-117267 * 61
—4-214618 *+ 67

68603i
05611i
38558i

697981
001461
- 299651

59442i
88686i

177611
-46710i

Table I11. Hereditary system approximating optimal LQG
scalar observer gains

N 8

16

24

32

By 4-4213

4-4229

44233

4-4234
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Figure 3. Hereditary system approximating optimal LQG functional observer gains; N =8, 16, 24, 32
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Table IV. Hereditary system approximating optimal LQG scalar
control gains

N 8 16 24 32

0 ~4-4213 ~4-4229 ~4-4233 —4-4234

Table V. Hereditary system approximating optimal first-order
compensator gains

N AN 1. Tl ol Jtoo Jto
8 —4-835 —16-057 1-4042 1-5221
16 ~4-936 ~16-343 1-403877 1-5298
24 —4-959 ~16-378 1-403856 1-5309
32 ~4-962 ~16-404 1-403852 1-5317

is due to the nature of the input and output we have chosen and the usual duality which exists
between the optimal regulator and filtering problems. The first 23 open-loop poles of the
system?’ are given in Table 2. The approximating first-order compensator gains along with the
corresponding and LQG closed-loop costs are given in Table 5. These costs were computed
using an evaluation model obtained by setting N = 64. Note that the performance of the first-
order controllers is within 10% of the performance of the LQG controllers. Once again, on the
basis of the numerical results presented here, it appears that the approximating fixed-order
compensator gains are converging as /N — co.

4. SUMMARY AND CONCLUDING REMARKS

We have proposed an approximation technique for computing optimal fixed-order compen-
sators for distributed parameter systems. Our approach involves using the optimal projection
theory for infinite-dimensional systems (which characterizes the optimal fixed-order
compensator) developed in Reference 18 in conjunction with finite-dimensional approximation
of the infinite-dimensional plant. We demonstrated the feasibility of our approach with two
examples wherein we used spline-based Ritz—Galerkin finite element schemes to compute
approximating optimal first-order controllers for one-dimensional, single-input/single-output
parabolic (heat/diffusion) and hereditary control systems. The numerical studies that we have
carried out indicate, at least for the examples that we have considered, that convergence of the
compensator gains is achieved and that using the first-order controller would lead to only
minimal performance degradation over a standard LQG compensator while simplifying the
implementation significantly.

At this point one is led naturally to ask the question of whether or not a satisfactory
convergence theory could be developed. We are working on this at present and expect that such
a theory would conform closely in form and spirit to the convergence results for LQG
approximation found in References 9 and 10 and outlined in Section 2 above. We also intend
to consider our approximation ideas in the context of discrete-time or sampled data systems,
and for continuous-time systems involving unbounded input and/or output (e.g. boundary
control systems) and systems with control or measurement delays.!!'!? Finally, we intend to
investigate the application of our approximation framework to other infinite-dimensional
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control systems, in particular the vibration control of flexible structures (i.e. second-order
systems such as wave, beam or plate equations).
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