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Abstract A discrete-ime H, static outpul feedback design problem involving a constramnt on H_, disturbance attenuation 1s
addressed and state space formulae are denived The dual problem of discrete-time dynamic estimation with an H_, error bound 1s
also addressed. These results are analogous to results obtained previously for the continuous-time problem
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1. Introduction

It has recently been shown [1,3,5,7,10,12,17] that H_-constrained controllers can be characterized by
means of algebraic Riccati equations These results comprise a fairly extensive theory encompassing both
static and dynamic controllers. In particular, the results in [1,7] address both H, and H_ design aspects
simultaneously within the context of the standard problem for full- and reduced-order controllers. This
mixed-norm problem thus permuts design tradeoffs between loop shaping, unstructured uncertainty, and
rms performance.

Although the results cited above have been developed for continuous-time plants controlled by analog
controllers, there has also been some effort directed toward developing a discrete-time version of the H_
Riccat: equation theory [6,9,11,13-15]. The purpose of the present paper is to extend the mixed-norm
H,/H_ Riccati equation approach of [1,7] to the discrete-time case.

For sampled-data systems that involve continuous-time plants controlled by discrete-time controllers
with A /D and D /A interfaces it is often possible to first design analog controllers which can subsequently
be discretized for digital implementation. This indirect method has the advantage that the sample rate can
be changed without redesigning the original analog control law. However, there are several disadvantages
to this approach. For example, if the sampling rate 1s ultimately limited (as it usually is in practice), then
the onginal continuous-time design must have correspondingly limited bandwidth. Furthermore, the
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discreuzation (i.e , digitahization) process 1tself 1s nontrivial since there are many alternative discretization
procedures exhibiting different characteristics.

The goal of the discrete-time H,/H, problem 1s to mummuze an H, performance criterion subject to a
prespecified H_ constraint on the closed-loop transfer function. As in the continuous-time case, the H_
constraint 1s embedded within the optimization process by replacing the closed-loop covariance Lyapunov
equation by an appropriate discrete-time Riccati equation whose solution leads to an upper bound on the
H, performance. The key idea to this approach 1s to view the upper bound as an auxihary cost and, for a
fixed controller structure, seek feedback gains that minimize the H, bound and guarantee that the
disturbance attenuation constraint is enforced. The principal result 1s a sufficient condition involving
coupled Riccati/Lyapunov equations whose solutions, when they exist, are used to explicitly construct
feedback gains for characterizing full-state and static output feedback controllers with bounded H, and
H,, costs Note that, strictly speaking, the problem addressed 1s suboptimal in both the H, sense and the
H,, sense. However, solving the design equations for successively smaller H_ disturbance attenuation
constraints should, in the limut, yield an H_-optimal controller over the class of fixed-structure stabilizing
controllers Although our main result gives sufficient conditions, these conditions will also be necessary as
long as the mixed-norm optimization problem possesses at least one extremal over the class of fixed-struc-
ture controllers (see Lemma 2 2)

Finally, we also consider the discrete-time H,/H, dynamic estimation problem. Specifically, we extend
the least squares discrete-time formulation to include a frequency-domain bound (ie., H_ norm) on the
state-estimation error For details on continuous-time H,/H_ esttmation see [2,8]. As a special case of the
results given 1n the present paper we obtain the H, static output feedback solution, discrete-time LQR
problem, and the discrete-time steady-state Kalman filter problem.

Notation

R, R E real numbers, r X s real matrices, expected value,

I ( Yo )* r X r identity matrix, transpose, complex conjugate transpose,
tr trace,

Onax (X) largest singular value of matnix X,

RH, real-rational subspace of H_,

n, m, I, d, r, q, d_ positive integers,

X, Yy X, Yoo U n, I, n, g, m-dimenstonal vectors,

A, B, C nXn, n Xm, | X n matrices,

A, B,C,, K nXn, nXI, gxXn, mXx/! matrices,

D, D, D, D, nxd, nxd,, nxd, |Xd matrces,

E E,E rX g, g X m, g X m matnces,

R, R, R,,, R, E'E, E'E,, E'E,, EJE,, R>0, R, >0,

w(k) d-dimensional discrete-time white noise process,

w (k) [, disturbance signal,

V. V.V, covariance of Dw(-), Dyw(-), Dyw(-); V=DD"', V,=D,D], V, = D,D} > 0,

cross covariance of Dyw(-), Dyw(-); Vy, = DlDzT

=

2. Problem statement

In this section we introduce the discrete-time static output-feedback control problem with constrained
H_ disturbance attenuation Without the H, performance criterion the problem considered here corre-
sponds to a standard discrete-time H_ control problem.
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H_-constrained static output feedback control problem. Given the nth-order plant

x(k+1)=Ax(k)+Bu(k)+Dw(k), k=0,1,2,.., (2.1)

y(k)=Cx(k), (2.2)
determine a static output feedback law

u(k) = Ky(k) (23)

that satisfies the following design criteria

(1) the closed-loop system (2.1)—(2.3) is asymptotically stable, 1.e, A2 A+ BKC is asymptotically
stable;

(i1) the g X d_, transfer function

G(z) 2 (E, + E,KC)(zI,— ) ' D,, (2 4)
from disturbances w,_ (k) to performance variables z(k) = E,x(k) + E,u(k) satisfies the constraint
1G(2) | o <> (2.5)
where
[EA1P

0
1G(2) 1w = sup =77 = SUP Onu IG(e) I,
w1, w2 ge[0,27)]

and y > 01s a given constant; and
(1ii) the performance functional

J(K)2 Jim E[xT(k)Ryx(k) +2xT(k) Ryu(k) + u" (k) Ryu(k)] (2.6)

1s munimuzed.
Note that the closed-loop system (2.1)—(2.3) can be written as

x(k+1)=(A4+ BKC)x(k)+ Dw(k) 2.7
and that (2 6) becomes

J(K)= hm E[(E, + E,KC)x(k)]"[(E, + E,KC)x(k)]

= hm E[x"(k)Rx(k)], (2.8)
k— oo
where
R2R,+ R,KC+ C'K"R}, + C'K'R,KC. (2.9)

For converuence we have defined R, 2 EE, and R, £ E;E, which appear in subsequent expressions.
Note that R,, 2 E]JE, 1s a cross-weighting term which 1s included for greater design flexibihity. Further-
more, by defining the transfer function

G(z) 2 (E, + E,KC)(zI,— A) "' D, (2.10)
1t can be shown that when A is asymptotically stable, (2 8) 1s given by
J(K)=11G ()15 (211)

Note that for both the H, and H_, designs, the respective transfer functions (2.10) and (2.4) involve the
same weighting matrices E, and E, for the state and control variables However, the disturbances w(k)
and w,_(k) are different. Specifically, w(k) is a discrete-time white noise process, while w_(k) 1s an /,
disturbance signal.
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Next, we note that if 4 1s asymptotically stable for a given feedback law K, then the H, performance
(2 8) 1s given by

J(K)=1tr OR, (2.12)
where the steady-state closed-loop state covariance defined by

02 lim E[x(k)x"(k)] (213)

exists and satisfies the n X n algebraic Lyapunov equation
Q=AQA" +V, (2 14)

where V2 DDT. Finally, we need the following proposition for the statement of the main result of this
section.

Proposition 2.1. Suppose 4 1s asymptotically stable for a given K € R™*'. Then
J(K)=tr PV, (2 15)
where P 1s the unique, n X n nonnegative-definite solution to

P=A"PA+R. (2.16)

Proof. It need only be noted that
rQR=tr Y AVA"R=tr V
1=0 1

ATRA = tr PV. O

Ps

The key step 1n enforcing the disturbance attenuation constraint (2 5) 1s to replace the algebraic
Lyapunov equation (2.16) by an algebraic Riccati equation that overbounds P given by (2.16). Justifica-
tion of this technique is provided by the following result

Lemma 2.1. Let K € R™™! be given and assume there exists an n X n nonnegatie-definite matrix P satisfying

P=A"PA+APD (v, - DIPD,) 'DIPA +R (2.17)
Then

(A, R) is detectable (2.18)
if and only if

As asymptotically stable . (2.19)

In this case,

1G () . <v (2.20)
and

P<P (221)
Consequently,

J(K)<f(K. P), (2.22)
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where

F(K, P)2u PV (2.23)

Proof. It follows from [16, Theorem 3 6] that (2.18) implies that
(4. 4D (v, - DIPD,)  DIPA+R)

15 also detectable. Using the assumed existence of a nonnegative solution to (2 17) and [16, Lemma 12.27,
p- 282] 1t now follows that A4 1s asymptotically stable. The converse is immediate. To prove (2.20) replace
R by ETE where E 2 E, + E,KC and define M £y?I, — D PD,_, so that (2.17) becomes

0= —EVE—APA+P—-APD_M"'DIA, (2 24)
or, equivalently,
ETE= —APAd+e¢"Pe™ — A'"PD_M"'DIPA, (2 25)

where 8 € [0, 2). Next, define z £ e and add and subtract A"PA, A"Pz, and ZPA to (2 25) so that (2 25)
becomes

ETE= —A"PA + 2Pz — A" PD_M 'DIPA + A"PA — A"PA + 2PA — 2PA + APz — APz, (2 26)
or, equivalently

E"E=(z1,- A)'P(z1,— A) + (21, ~ A) PA + A'P(2I,~ A) — APD M~ 'DIPA. (2.27)
Next, forming DX(zI, — A)~7 (2.27) (zI, — A)™'D,, yelds

DX(z1,~ A) "E"E(zf,— A)"'D, = DIPD, + DLPA(21,~ 4)”'D, + DI(31,— A) "A'PD,,
— pX(zI,— A) APD MDD} PA(z1,~ A) 'D,. (2.28)
Multiplying (2.28) by —1 and adding y?I,_ to both sides of (2.28) yields
v, —G*(2)G(z) = [M‘/2 — M™\2DIPA(zI, - ,i)‘lpw] )
[ M2~ M= 2DIPA(21, - A)7'D, ] 20,

which mmplies G*(z)G(z) < yzldm This proves (2.20). To prove (2 21), subtract (2.16) from (2.17) to
obtain

P—P=A"(P—PB)A+A"PD(v, - DIPD.) DIPA
which, since A 1s asymptotically stable, is equivalent to

P—P=

1

(l‘f')T[ATPDw(YZIdm _ DDTOPDDO)”D;PJ] A'>0.

M8

Finally, (2.23) follows immediately from (2.21). O

Lemma 2.1 shows that H_ disturbance attenuation is automatically enforced when a nonnegative-defi-
nite solution to (2 17) 1s known to exist and A 1s asymptotically stable Furthermore, all such solutions
provide upper bounds on the H, performance criterion (2.6). Next, we present a partial converse of
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Lemma 21 that guarantees the existence of a unique nonnegative-definite solution to (2.17) when (2.20) 15
satisfied.

Lemma 22. Let K€R™™' be gwen, suppose A 1s asymptotically stable, and let G(z) € RH, with
1G(2) |l x <y Then there exists a umque nonnegative-definite solution P satisfying (2.17) and such that the
eigenvalues of A + Dm(yzldm — DIPD_)DIPA lie in the open unit disk.

Proof. The assumptions that G(z) € Z#, and ||G(z)]| . <y imply that
I~ v7G"(2)G(2) > 0.

for all z such that |z| =1 This guarantees the existence of a spectral factor N(z) such that
I, =y ?G*(z)G(z)=N*(z)N(z).

for all z, where N *'(z) € #5#,. It is easily verified that (see [4, Theorem 41))

N(z)=y 'MV? =y "M VDI Pd(z1,— A) 'D

ao

where P = P" satisfies (2 17). The proof that the eigenvalues of 4 + D (vl a, ~ DIPD_)DIPA lie n the
open unit disk and the uniqueness of P is given 1n [6]. O

3. The auxiliary minimization problem

As shown in the previous section, replacing (2.16) by (2.17) enforces the H_ disturbance attenuation
constraint (2.20) and yields an upper bound for the H, performance criterion. That is, given a controller X
for which there exists a nonnegative-definite solution to (2.17), the actual H, performance of the controller
1s guaranteed to be no worse than the bound given by #(K, P). Hence, #(K, P) can be interpreted as an
auxthiary cost which leads to the following optimization problem

Aucxiliary minimization problem. Determine K € R™*/ that minimizes #(K, P) subject to (2.17).
It follows from Lemma 2.1 that the satisfaction of (2.17) along with the genenic condition (2.18) leads
to' (1) closed-loop stability, (2) prespecified H_ performance attenuation; and (3) an upper bound for the

H, performance cnterion Hence, it remains to determine (K, P) that mmmmizes #(K, P) and thus
provides an optimized bound for the actual H, performance J(K)

4. Sufficient conditions for H_ disturbance attenuation
In this section we state sufficient conditions for characterizing static output feedback controllers
guaranteeing closed-loop stability, constrained H, disturbance attenuation, and an optimized H, perfor-
mance bound. For arbitrary P, Q € R"*" define the notation
-1
R,,2 R,+B"PB+ B"PD, (v, — DIPD,) DIPB,
-1
P,2B"PA+ R}, + B™PD, (v, — DIPD_) DLPa,
v20CT(CoCT) 'C, v 21—,

when the 1ndicated inverses exist.
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Theorem 4.1. Suppose there exist n X n nonnegative-definite matrices P, Q such that CQCT >0 and

-1
P=A"PA+ R, + A"PD_(y*,_— DLPD,) DIPA— PR3P, +v| PIR;,Py, . (4.1)

a

0= [1,, + D (v, _— D;PDDD)—ID;P](A — BR;!P,»)Q(A - BR;P,v)"

_ T
-[1,,+Dm(yzldm—D;PDw) ID;P] +V, (42)
and let K be giwen by
K= —R;P,0CT(cOCT)™" (4.3)

Then (A, R) s detectable if and only if A 15 asymptotically stable. In this case, the closed-loop transfer
function G(z) sausfies the H disturbance attenuation constraint (2.20) and the H, performance criterion
(2.6) sausfies the bound

J(K)=|G(z) s <tr PV (4.4)
Proof. First we obtain necessary conditions for the auxiliary minimization problem and then show by

construction that these conditions serve as sufficient conditions for closed-loop stability and prespecified
disturbance attenuation. Thus, to optimize (2.23) subject to (2.17) over the open set

FL {(K P) P>0and 4+ Dw(yzldm - DCIPDw)DlPA. 1s asymptotically stable} ,

form the Lagrangian
ZL(K,P,Q NE tr[}\PV+ (A"TPA' +APD,(v1,_ - DCIPDDO)_]D;PJ +R- P)Q], (4.5)

where the Lagrange multipliers A > 0 and Q € R”*" are not both zero. By viewing K, P as independent
variables and using the identity 3/3Y tr( XY 'Z) = —(Y™1ZxY YT, we obtain

_ - _ T
g_f= [1" + D, (v, - DIPD,) 1DI,P] AQA'T[I,, +D(y, - DIPD,) lD;,P] —Q+ V.
(4.6)

Since 4 + D (y*I,_— DIPD_) 'DIPA is assumed to be asymptotically stable, A =0 implies Q=0
Hence 1t can be assumed without loss of generality that A =1 Furthermore, note that  is nonnegative-
defimite. Thus the stationary conditions with A =1 are given by

9L 2 T T T AT
ﬁ=[ln+Dw(y 1, - DIPD,) DwP]AQA

_ T
-[I,, +D, (v, - DIPD,) ‘D;P] +V—Q=0, (4.7)

0.7 -
3% = R.KCQC™ + BPBKCQC™ + B"PD, (v, - DIPD,)  DIBKCQCT

+ BTPAQCT + RLOC" + B'PD_ (v, - DIPD,) ' DIPAQCT=0 (4.8)

Since CQCT is invertible (see Remark 4.5), (4 8) implies (4.3). Next, with K given by (4.3), equations (4.1)
and (4.2) are equvalent to (2.17) and (47), respectively. It now follows from Lemma 2.1 that the
detectabiity condition (2.18) 1s equivalent to the stabihity of A. In this case the H_ disturbance
attenuation constraint (2.20) holds, and the H, cost 1s bounded from above and is given by (2.23) or,
equivalently, (44) O
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Remark 4.1. Theorem 4.1 presents sufficient conditions for designing discrete-time static output feedback
controllers with a prespecified H_, constraint on the closed-loop transfer function. These sufficient
condrtions comprise a system of two algebraic equations, one modified discrete-time Riccati equation and
one modified discrete-time Lyapunov equation If the H_ disturbance attenuation constraint is sufficiently
relaxed, ie, y = oo, then (y’I, — DLPD,) ' — 0 and thus equations (4 1), (4.2) collapse to the standard
H, discrete-time output feedback result.

Remark 4.2. In applying Theorem 4.1 1t is not actually necessary to check (2.18) which holds generically
Rather, 1t suffices to check the stability of 4 directly which is guaranteed to be equivalent to (2.18).

Remark 4.3. In applying Theorem 4.1 the principal 1ssue concerns conditions on the problem data under
which equations (4 1) and (42) possess nonnegative-definite solutions. Thus, 1f || G(z) |l o <Y can be
satisfied for a given y > 0, 1t 1s of interest to know whether one such controller can be obtamed by solving
(4.1), (42) Lemma 2.2 guarantees that (2.17) possesses a solution for any controller satisfying || G(z) || o
< y. Thus, our sufficient condition will also be necessary as long as the auxiliary mimimization problem
possesses at least one extremal over .%.

Remark 4.4. The set % 1n the proof of Theorem 4.1 constitutes sufficient conditions under which the
Lagrange multiphier techmque is applicable to the auxiliary mimmzation problem. Specifically, the
requirement that P > 0 replaces P > 0 by an open set constraint, while the stability of 4 + D (v a,
DIPD_) 'DI PA serves as a normality condition

Remark 4.5. The definiteness condition CQC" > 0 holds if C has full row rank and Q is positive definite.
Conversely, if CQCT > 0, then C must have full row rank but QO need not necessarily be positive definite.
As shown 1n the proof of Theorem 4 1, this condition implies the existence of the static-gain projection ».

Remark 4.6. As shown 1n the proof of Theorem 4 1, equations (4.1) and (4 2) are obtained by mipimlzmg
F(K, P)=tr PV thus providing a minimized upper bound for the actual H, cost J(K)=tr PV since
P>P

Next, we specialize Theorem 4.1 to the full-state feedback case. When the full state 1s available C = I,
so that the projection » =1, and v, = 0. In this case (4 3) becomes

K= —R;P (4.9)

2at a

and (4 1) specializes to
P=A"PA+R + ATPDw(yzldm - DIPD,) HDCIPA —PIR; P, (4.10)
while (4.2) 15 superfluous and can be omitted Furthermore, the H, cost is bounded by

J(K)<tr PV (4.11)

Finally, to recover the standard discrete-ime LQR result let y — oo so that (4.10) corresponds to the
standard discrete-time regulator Riccati equation

S. Dynamic estimation with an H_ error constraint
In this section we introduce the discrete-time mixed norm H,/H, estimation problem with an H_

constraint on the H_ norm of the state-estimation error Specifically, we constrain the transfer function
between disturbances and error states to have H_ norm less than v.
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H_-constrained Kalman filter problem. Given the nth-order observable dynamic system

x(k+1)=Ax(k) +Dw(k), k=0,1,2,. , (5.1)

y(k)=Cx(k) + D,w(k), (5.2)
determine an nth-order state estimator

x (k+1)=A4,x,(k)+ B,y(k), (5.3)

ye(k) = Cox (k). (54)

that satisfies the following design critena:
(1) A, 1s asymptotically stable,
(1) the r X d transfer function

H(Z) £ EL(ZIn _Ae)_](Dl - BeDZ)
from disturbances w( k) to error states E[Lx(k) — y,(k)] satisfies the constraint
NH(Z) o =<7. (55)

where y > 0 1s a given constant; and
(in) the H, state-estimation error criterion

J(4,. B,,C,) 2 hm E[Lx(k)—y,(k)]"R[Lx(k) =y, (k)] (5.6)
k— oo
1s mummized and
Im [x(k)—x,(k)] =0, (5.7)
k— o
for all x(0) and x,(0) when D, =0 and D, =0.

Note that (56) 1s the usual least-squares estimation criterion whereas (5.7) imples that perfect
observation is achieved at steady state for the plant and observer dynamics under zero external
disturbances and arbitrary mitial conditions

To satisfy the observation constraint (5 7), define the error states e(k) = x(k) — x,(k) satisfying

e(k+1)=x(k+1)—x,(k+1)
=(A4-BC)x(k) - Ax(k)+ (D, —B,D)w(k) (5.8)

Next, note that the explicit dependence of the error states e(k) on the states x(k) can be eliminated by
constraining

A,=A—-BC, (5.9)
so that (5.8) becomes
e(k+1)=(A—-BC)e(k)+ (D, —B,D,)w(k). (510)

This formulation permits the state x(k) to contain unstable modes, i.e., 4 can be unstable. Analogously,
note that the H, least-squares state-estimation error criterion can be written as

J(4,. B..C)= lm E[Lx(k) = Cox,(k)]"R[ Lx(k) = Cx, (k)] (511)

so that the explicit dependence of the estimation error criterion on the state x(k) can be ehiminated by
constraining

C,=L. (5.12)
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Henceforth, we assume that A, and C, are given by (5 9) and (5.12). In this case, (5.11) becomes
J(A,, B,,C,)= lim tr E[ L"RLe(k)e"(k)]. (5.13)
k— o0

Next, 1f 4, 1s asymptotically stable, then the H, estimation-error criterion (5.13) is given by

J(4,. B.,C)=|H(z)|; =t QL'RL, (5.14)
where the steady-state error covarnance defined by

0= m E[e(k)eT(k)]. (515)
exasts and satisfies the n X n algebraic Lyapunov equation

Q0=(A—-BC)O(A-BC) +V, (5.16)
where ¥ 1s the n X n nonnegative-definite intensity of (D, — B, D,)w(k) given by

Vay-—v,B'-BVI+BV,B' (5.17)
Finally, note that by defining

(k) =E[Lx(k)- Cx,(k)] = ELe(k), (5.18)

1t follows from (5.10) and (5 18) that the transfer function from disturbances w(k) to error states ELe(k)
1s given by H(z) A novel feature of this mathematical formulation is the dual interpretation of the
disturbance w(k). Spealfically, within the context of H, optimality the disturbances are interpreted as
white noise signals while, simultaneously, for the purpose of H_ error estimation the very same
disturbance signals have the alternative interpretation of /, disturbance signals.

Once again, the key step 1n enforcing (5.5) 1s to replace the error covanance equation (5.16) by an
algebraic Riccati equation that enforces the H_ norm constraint and overbounds the error covanance Q.

Lemma 5.1. Let B, € R"*/ be given and assume there exists an n X n nonnegatwe-definite matrix Q satisfying

Q=(A-BC)Q(A-BC)"

+(A—BC)QL'E™(yM, — ELQL'ET) 'ELQ(A —BC) + V (5.19)

Then

(A4 —B,C, V) 1s stabilizable (5 20)
if and only If

A, 1s asymprotically stable. (521)
In this case,

NH(z) || . <v (5.22)
and

0<0. (523)
Consequently,

J(4,, B, C,)<f(4,, B.,C,, Q), (5.24)
where

F#(4,, B,,C., Q) =tr OL'RL (5.25)
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Finally, if H(z) ERH, and || H(z)| o, <Y, then there exists a unique nonnegative-definite solution Q
satisfying (5.19) and such that the eigenvalues of

(4-BC)+(A—BC)QLYE™ (v, — ELQL'ET)EL

he in the open unit disk.
Proof. The proof 1s completely analogous to the proofs of Lemma 21 and Lemma 2.2. O

Lemma 5.1 shows that the H,_ estimation error constraint 1s enforced when a nonnegative-definite
solution to (5.19) 1s known to exist and A, is asymptotically stable Furthermore, all such solutions
provide upper bounds for the H, estimation error || H(z) ||Z. Thus, as 1n the first part of the paper, the
combined H,/H_ estimation problem can be recast as an auxiliary mimimization problem.

6. Sufficient conditions for combined least-squares and frequency-domain error estimation

In this section we state sufficient conditions for charactenzing discrete-time dynamic estimators
guaranteeing H_-constrained estimation with an optimized bound on the least-squares state-estimation
error criterion. For convenience in stating this result define the additional notation

V,, 2V, +CQCT + CQLTE™ (v, — ELQLTET)_lELQCT,
0,2 40CT + V,, + AQL'E™(yI, — ELQLE™) 'ELQCT,
for arbitrary Q € R">"

Theorem 6.1. Suppose there exists an n X n nonnegatwe-definite matrix Q satisfying

Q=AQA"+ V, + AQL'E™(vy*I,— ELQLTET)‘IELQAT - Qv ok, (61)
and let (A,, B,, C,) be given by

A,=A4-0QV3'C, (62)

B, =0V}, (6.3)

C.=L. (6.4)

Then (A,, V') s stabilizable if and only if A, 15 asymptotically stable. In this case, the transfer function H(z)
satisfies the H_ estimation error constraint (5.22) and the H, least-squares state-estimation error criterion
(5.6) satisfies the bound

J(4,, B,, C,) = H(z) |7 <tr QL'RL (6.5)

Proof. As in the proof of Theorem 4.1 we first obtain necessary conditions for the auxihary mimimization
problem and then show by construction that these conditions serve as sufficient conditions for stabulity of
the estimator dynamics and a prespecified H_-constraint on the state-estimation error. Thus, to optimize
(5 19) subject to (5.25) over the open set

%2 {(A,, B.,C., Q) (4—-BC)+(A—-BC)QL'E"(y*], - ELQL'ET) EL
1s asymptotically stable and

(4.+A4,0L"E™(vI, - ELQL'E") T'EL, C,) is observable},
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form the Lagrangian
2(B,. Q. P, \) 2t AQL'RL + [(4 ~ B.C)Q(A ~ BC)

+(A—BC)QL'E™ (v, — ELQL'E™) 'ELQ(A4 - BC) + V — Q] P},
(6 6)
where the Lagrange multipliers A > 0 and P € R"*" are not both zero By viewing B,, Q as independent
variables we obtain
L TET( .2 T T T
30 = [1,+ QLYET(yI,— ELQLET)EL] (4 - BC)"P(4 - BC)
|1,+ QLE™(v*1,— ELQLE™) 'EL| — P+ AL'RL. (6.7)
Since (A —B,C)+(A—B,C)QL'E"(y?I, — ELQL'ET)"'EL 1s assumed to be stable, A =0 imples
P = 0. Hence, 1t can be assumed without loss of generality that A = 1. Thus the stationary conditions with
A =1 are given by

0L TET(L2 TeT) ! T T
@=[I,,+QLE (y*1,— ELQL'E™) EL] (A-BC) P(A-BC)
[1,, +QL'E"(y*,— ELQL'E") ’IEL] + L'TRL — P=0, (6.8)
¥ _
g 5 = PB.V,+ PBCQOC" + PB,COL'E"(y4, - ELQL'ET) 'ELQCT

~ PAQC" — PV,,QC" — PAQL'E™ (vl — ELQL'ET) TELOCT=0 (6.9)

Next, note that (6 8) 1s equivalent to
_ T
P=|4,+4,0L"E"(v1, - ELQLE™) 'EL| P
. [Ae +A,QL'ET(y*I, — ELQL'E™) "EL] + CRC,. (6.10)

Now, since (A, + A,QLTET(y2I, — ELQL'ET)"'EL, C,) 1s observable it follows from standard discrete-
time Lyapunov theory that P 1s positive-definite.

Thus, since P 1s invertible (6.9) implies (6.3). Now (6.2) 1s a restatement of (5.9) with B, given by (6 3)
Next, with B, given by (6.2), equation (6.1) 1s equivalent to (5 19). It now follows from Lemma 5 1 that the
stabilizability condition (5.20) is equivalent to the stability of A4,. In this case the H_-norm constraint on
the state-estimation error (5 22) holds, and the H, state-estimation criterion is bounded from above and is
given by (5.25) DO

Remark 6.1. Theorem 6.1 presents sufficient conditions for designing full-order discrete-time dynamic
estimators with a prespecified H_-norm constraint on the state-estimation error These conditions involve
one modified Riccati equation simular to the discrete-time observer Riccati equation with additional
quadratic terms of the form 4QLTET(y2I — ELQLTE") 'ELQAT which enforce the H_ constraint. Note
that 1if the H_ estimation constraint is sufficiently relaxed, i.e., y = o0, (6 1) reduces to the standard
observer Riccati equation of steady-state discrete-time Kalman filter theory.

Remark 6.2. The principal issue in applying Theorem 6 1 concerns conditions on the problem data under
which the modified observer Riccati equation possesses nonnegative-definite solutions. For y sufficiently
large, (6.1) approximates the standard discrete-time Kalman filter result so that existence is assured.
However, the important case of interest involves small y so that significant H_, estimation 1s enforced The
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last part of Lemma 5.1 implies that (6.1) possesses a solution for any dynamuc estimator satisfying
| H(z)|| . <7Y- Thus, it follows that the sufficient conditions of Theorem 6.1 are also necessary as long as
the auxiliary mimimization problem possesses at least one extremal over %,.

Remark 6.3. Equations (4 10) and (6 1) give the solutions to the mixed norm H,/H, regulation and
estimation problems. Although the form of (4.10), (6.1) would lead one to surmise that the mixed-norm
H,/H__ output feedback dynamic compensation result would involve equations (4.10) and (6.1), this is not
generally the case since separation between regulation and estimation does not hold for the mixed-norm
H,/H_ problem as was pointed out in [1] for the continuous-time case Of course, under certain
simplifying assumptions (see [1], Section 5) one may obtain separation. However, the resulting structure of
the compensator gains differs markedly from the standard LQG gains As shown in [15], the H, dynamuc
compensation problem without any H, contribution mvolves two decoupled equations given by (4.10) and
(6.1).
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