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Optimal Tradeoff Between Hz Performance and Tracking
Accuracy in Servocompensator Synthesis
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The problem of optimal HI disturbance rejection while tracking uncertain constant or sinusoidal reference
commands is considered. The internal model principle is used to ensure that the tracking error approaches zero

asymptotically. Necessary conditions are given for controllers that minimize an HI disturbance rejection cost plus
a worst-case integral square tracking error for transient tracking performance. The necessary conditions provide

expressions for the gradients of the cost with respect to each of the control gains. These expressions are then
used in a quasi-Newton gradient search algorithm to determine the optimal feedback gains. Numerical examples
demonstrate the tradeoff between the two competing objectives in the cost function.

I. Introduction

T HE servomechanism problem, in which certain system out-
puts are required to foIIow specified reference commands such

as steps, ramps, sinusoids, or polynomial functions of time, has re-
ceived considerable attention by researchers. For a system to achieve
asymptotic tracking, the controIIer must contain an internal model
of the exogenous dynamics that produce the reference command. 1
Furthermore, asymptotic tracking of commands in several feedback
loops requires that the exogenous dynamics be replicated in each
loop. A compensator is used to stabilize the augmented system
consisting of the plant and the internal model. The combination
of internal model and stabilizing controIIer is referred to as a ser-
vocompensator. A classical example of a servocompensator is the
case of constant reference commands, in which an integrator pro-
vides a model of the exogenous dynamics. In this case, a type- I
controller constructed by including an integrator tracks constant
reference commands with zero steady-state error.

Because a controller that achieves asymptotic tracking consists of
both an internal model and a stabilizing controller, there is consider-
able freedom in the design of such controIIers. This design freedom
can be used to meet additional objectives such as pole placement,
time and frequency response criteria, or optimization of a perfor-
mance criterion.2 One control objective of particular interest is dis-
rurbance rejection via minimization of an H2 norm. Unforrunately,
the problem of minimizing the H2 norm of a closed-loop system
while achieving asymptotic tracking of reference commands is not
straightforward. Since the internal models for reference commands
such as steps, ramps, and sinusoids have imaginary axis eigenval-
ues, these modes are not observable by the performance variables
used in the HI cost function when the internal model is augmented
with the plant- '::" ,: ,,_,., ":",',

The problem of subOptimal H2 control with asymptotic tracking
of constant and sinusoidal reference commands was addressed by
augmenting the plant with the appropriate internal model and finding
the gains that stabilize the augmented system? By using control
gains parameterized by a scalar parameter, the closed-loop H2 norm
can be made arbitrarily close to the optimal, H2 cost by reducing the
scalar parameter. ' ' ' ,

Although the use of an internal model addresses the steady-state
tracking problem, transient tracking performance is also of interest
Integral square tracking error measures the transient tracking error
and thus the effectiveness of the controller in following reference
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commands. In addition, including integral square error in the cost
function aIIows the tradeoff between H2 disrurbance rejection and
transient tracking performance by varying the relative weights. Pre-
viously, the integral square error was considered and feedforward
gains were used to minimize it.4..1However, it was assumed that
the feedback gains are already given, having been found to meet
some other criterion. In addition, it was assumed that the reference
command is completely known a priori.

While previous research chose controIIers primarily to achieve
zero steady-state tracking error and to stabilize the augmented
plant,J the goal of the present paper is to determine controIIers that
achieve better transient tracking performance for the same H2 cost
for constant reference commands whose magnitudes are unknown
and for sinusoidal reference commands of known frequency and un-
known amplitudes and phases. To do this, necessary conditions are
given for the problem of minimizing a cost function consisting of an
H2 cost plus a worst-case integral square tracking error. These nec-
essary conditions provide analytical expressions for the gradients
of the cost with respect to each of the control gains. These expres-
sions are then used by a gradient optimization algorithm to find the
control gains that minimize the cost function. Finally, the tradeoff
between H2 performance and integral square tracking accuracy is
demonstrated numericaIIy. '

II. Problem Formulation
Consider the plant model

i(t) = Ax(t) + Bu(t) + Dlw(t) (I)

y(t) = Cx(t) + D2w(i) '::, . ." ". ':. .:, (2)

;.~ .:'.: -...-.

z(t) = E;;(r)~E~~,(ir',.'. ,', ::~: ;:,:' '. (3)

,where x(t) ERn is the plant staie;'u(t) E'R'" is the control input,
w(t) e Rq is a stochastic disturbance, z(t) E RP is the performance
variable, y(t) E R' is the measured output, (A, B) is controllable,
and (C, A) is observable. Partitioning y(t) as ,

(t) =
[

YI(t)

]
,

y ,Y2(t) ':

where Yl (t) E R", the control objective is to have YI(t) foIlow a
reference command r(t) such that the expected value of the tracking
error

~ '

e(t) =YI(t) - r(t)

approaches zero asymptoticaIIy. In addition, we wish to minimize
the H2 norm of the closed-loop transfer function between w(r)

and z(t) as wen as the integral square tracking error 10""JE[e(t)]T
ME[e(t») dt, where M is a nonnegative-definite matrix.
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In this paper, two types of reference signals r(c) will be con-
sidered, namely, constant reference commands and sinusoidal
referencecommands. For the case of constant referencecommands,
we assume thateach element ri of the vectorr(c) is uncertain, that is,

r(C) =

[

;:

]r'l

where the elements ri are uncertain. For the case of sinusoidal ref-
erence commands, we assume that each element ri(c) of the vector
r(c) consists of a sinusoid whose frequency w is known but whose
amplitude and phase are uncertain, that is,

[

rl sin(wc + 4>1)

]

r2 sin(wc + 4>2)

r(c) = .

r'l sin(~C + 4>'1)

where the amplitudes ri and the phases 4>iare uncertain. The more
general case in which the components of r(c) have different fre-
quencies Wi can also be considered. However, this generalization
complicates the development and is deferred to a later paper.

We represent the reference command r(c) by means of an exoge-
nous system of the form

where x, (c) ERn,. For the case of constant commands, let n, = I,
A, = 0, and Xra= 1. so that r(t) = C" and thus the elementsof C,
determine the magnitudes of the reference command components.
Similarly, for sinusoidal reference commands, let n, = 2,

and let C, E JR'Ix2 be an uncertain matrix. Then, ri (c) = C'1i
sinwc+ C,2jcos wc, where C,1iand C,2jare the ith elementsof the
first and second columns of C,. Equivalently,ri(c) can be rewritten
as r;(c) = r; sin(wc + 4>;), where ri = ./(C:1i + C:2j) and 4>;=
tan-I (C,2j/C,Ii). Conversely,

Hence, each component r;(c) of the reference command has uncer-
tain amplitude and phase.

To guarantee that the expected value of the tracking error E[e(c)]
approaches zero asymptotically, the feedback loop must contain
an internal model, which is a replicated version of the exogenous
dynamics (6).1The internal model is given in state-space form by3

where xsc(t) E JR'se:is the servocompensator state and where Asc is
comprised of II replications of the matrix A,. Hence, nsc = Iln,.
For a constant reference command r(c) = Cr, the matrices Asc and
Bsc are given by

where Oixj is the i x j zero matrix and I; is the i x i identity matrix.
Analogously, for a sinusoidal reference input r(c) = Cd sin wC+
C,2 cos wc, the matrices Asc and Bsc are given by

_
[

0'1x,'
]Bsc- 1'1

(10)

Letting YJ(c) = Clx(c) + D2\w(c) where CI has full row rank,
we can now form the augmented system

where

(5) XD(c)£
[

x(c)

]xsc;(c) ,

0. x.",

]Asc;

BA.
[

B

]tl - OIlSCx m .
The following lemma gives sufficient conditions for the
(AD'BIl)of the augmented system (11) to be controllable.6

Lemma2.1. If .

[

)WI -A B

]rank -CI ° = n +1\

pair

(12)

then the pair (All' BIl) is controllable.
Proof. Define

~(A) £ [AI - All
AI - Asc

0" XIII(

~]
Since the pair (A, B) is controllable, rank[AI - A B) =n for all
A E C. First, suppose A ? )W, in which case rank (AI - Asc;)= nsc;.
Because of the n x nsc;zero block in ~(A), it can be seen that rank
~(A) =n + nsc; for all A? )W.

Next write

(6)

(7) [

In

~(A)= °

For all A E C, the rank of the first factor is n + nsc;for Asc;and B",

given by Eq. (10). Now, if A = )W, then it follows from (12) that
the rank of the second factor is n + II + nsc. Now, by Sylvester's
inequality,

(n + nsc)+ (n + I, + nsc;)- (n + I] + nsc;) ~ rank ~(A)

~ min(n + nsc,n + II + n",)

which implies rank ~(A) = n + nsc for A = )W. Hence, rank [AI -
AD BIl]= n + n", for all A E C, which implies that (All' BIl) is
controllable. 0

Remark 2.1. The rank condition in Eq. (12) ensures that there
areno pole-zerocancellations in the cascaded realization of the plant
model and the internal model. This rank condition is a requirement
for the asymptotic tracking of the reference command.

Remark 2.2. Lemma 2.1 specializes to the case of a constant
reference command by letting w =0.

Remark 2.3. The rank assumption in Eq. (12) requires that
m ~ II'

Consider a dynamic compensator of the form

ic(t) = Acxc(c) + Acscxsc(t)+ BcJe(c)+ Bc2Y2(C) (13)

(14)
(8)

where xc(c) E JR". The controller consisting of the servocompen-
sator (8) and the dynamic compensator (13), (14) has the realization

(9)
o

(15)

The closed-loop system thus has the form

i(c) = Ai(c) + Dw(t) + D,r(t)

x(t) = Ei(t)

", e(c) = ei(c) - r(c)

(16)

(I i)

(18)

- ---

---.
'ii:

i
-~

~.'...'>......
.;..
,

.'

I
I
I
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Fig. 1 Closed-loop system
with reference command.

[

X(t)

]
i(t) ~ Xsc(t) ,

Xc(t)

I

t

Since (C, A) is observable by assumption, it followsthat if(Aa, Ba)
is stabilizable, then a stabilizing control exists so that the cIosed-
loop augmented system is asymptotically stable. A block diagram
of the closed-loop system is shown in Fig. I.

Lemma 2.2. Suppose the reference command r(t) = C,and
assume the augmented matrix A in Eq. (16) with internal model (9)
is asymptotically stable. Then E[e(t») - 0 as t - 00.

Proof. Since A in Eq. (16) is asymptotically stable, and r(t) is
constant, it follows that E[i",,) ~ lim,_ coE[i(t») exists and satis-
fies

£
t

I

J
J
i

i

0= AE[i",,]+ D,C,

Expanding this equation in terms of its components gives

(19)

where

With the internal model matrices givenby Eq. (9), the secondequa-
tion in (19) reduces to C.E[xoo] = C" and hence, by Eq. (4),
Iim,_""E[e(t)] =0. 0

Remark 2.4. The internal model (9) ensures that the expected
value of each component of the error decays to zero. It is essential
that the exogenous dynamics be replicated /\ times in the internal
model, since a single copy of the exogenous system dynamics is
not sufficient to ensure that the expected value of each of the el-
ements of the error signal decays to zero individually. If a single
copy of the exogenous system dynamics were used in the internal
model, then only a linear combination of the elements of the ex-
pected value of the error vector would decay to zero. Hence, in that
case, BscE[e(t)] _ 0 as t _ 00.

Remark 2.5. Although C, is used in the proof of Lemma 2.2,
the result that E[e(l)] _ 0 does not require that C, be known.

Lemma 2.3. Suppose the reference command r(l) = CrI sinwI
+C'2 cos ClJland assume the augmented matrix A in Eq. (16) with
internal model (10) is asymptotically stable. Then E[e(t)] - 0 as
1_ 00.

Proof. Consider the response of the closed-loop system (16) to
a disturbance r(t) = CrI sinwt + C,2coswt. Since w(t) has zero
mean, the expected value of the response of the system is

E[i(t)] =:t eA(H) D,(CrI sinwt" + C,2 cos~t") dt"

Using

sin wt = eJWl- e- JWl

yields

(A2 +w2I)E[i(I)] = (weA' - sinwtA -wCOSClJlI)D,CrI

+(Ae"'-cosWIA +wsinwII)D,C'2 (20)

Partitioning Eq. (20), taking the second component equation as was
done in the proof of Lemma 2.2, noting from Eq. (10) that A;" +
w21 = 0, rearranging terms, and simplifying yield

d
Bsc-E[e(l)] + AscBscE[e(t)]

dl

= [0 IOK O]eA'(wD,C'1+ AD,C'2)

Taking the limit as 1 - 00 and noting that A is asymptotically
stable, we obtain

lim (Bsc~E[e(I)] + AscBscE[e(t)] )= 0
,-"" dt .

Now, accounting for the structure of the internal model realization
in Eq. (10) yields

[

wE[e(l)]

]
lim d =0

'-00 diE[e(I)]

which implies lim,_ "" E[e(l)] = O. 0
Remark 2.6. As in the case of Lemma 2.2, the exogenous dy-

namics need to be replicated /1 times in the internal model to ensure
that the expected value of each element of the error signal decays
to zero individually.

The following propositions provide expressions for the integral
square error.

Proposilion2.1. Letr(t) = C"and suppose A is asymptotically
stable. Then the integral square error is given by

1"" E[e(t)f ME[e(I)]dl = c; D;T D,C,
(21)

where T satisfies

Proof. It follows from Eq. (16) that

. E[i(t)] = l' eA('-T)D,C, dt"= ~-Ie~' D,C, - kl D,C,

Thus, E[e(l)] = CA-1eA' D,C, - (ckl D,C, + C,). Next, using
Eq. (16) and since A is asymptotically stable, lim,_ "" E[i(t») =
-A-\ D,C,. It followsthat lim,_"" E[e(l)] = -(CA-1 D,C,+C,).
Since, by Lemma 2.2, E[e(t)] - 0 as t _ 00, it follows that
CA-1 D,C, + C, = 0, and hence E[e(l») = CA-leA' D,C" which
yields Eq. (21), where T satisfies Eq. (22). 0

By Proposition 2.1, the minimum value of the integral square
error depends on C" which is uncertain. For constant references,
we assume that C, belongs to the set C" defined by

where V ::: 0 is a given uncertainty bound. Thus, if C, E C" then it
follows that

\ .

.l"" E[e(t)f ME[e(t)] dt ~ tr D;T D, V (23)
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Proposition 2.2. Let r(t) = Cd sin wt + C,2cos wt, and let A
be asymptotically stable. Then the integral square error is

100 E[e(t)f ME[e(t)] dt

( T T T T -T )
-

= wC'ID, + C'2D,A T(wD,Cd + AD,C,2)
where T satisfies

0= ATT + TA + (A2+ (21)-T cTMC(A2 + (21)-1

Proof. It followsfromEqs.(4)and(20)that
E[e(t)] = C(A2+ (21)-JeA'(wD,Crt+ AD,C'2)

(24)

(25)

- (Cd sin WI + C,2 cos wt)

- C(A2 + (21)-J[(A sinwt + wcoswt I)D,Cd

+ (AcosWl -wsinwtl)D,C,2] (26)

Since, by Lemma 2.3, E[e(t») -+ 0 as t -+ 00, and A is asymptoti-
cally stable, it follows that eAr -+ 0 as t -+ 00. Taking the limit of
both sides ofEq. (26), it follows that the terms involvingsinwt and
cos wt are zero. Hence, the expected value of the error is

E[e(t») = C(A2+ (21)-leA'(wD,C'1 + AD, Cd

The integral square error can be written as Eq. (24) where T satisfies
Eq. (25). 0

By Proposition 2.2, the minimum value of the integral square
error depends on C" which is uncertain. For sinusoidal references,
we assume that C, belongs to the set C" defined by

C,~
{

C, e Rtl ><2:
[

C,I

] [
C'I

]
T ::s

[
V~ V12

]
= V

}
(27)

C,2 C,2 VI2 V2

where V ::: 0 is a given uncertainty bound. Thus, if C, e Cr, then it
follows that

100 E[e(t)f ME[e(t)] dt ::sw2tr D;T DrVI

+tr D; ATTAD, V2+ 2wtr D;T AD, VI~ (28)
We now introduce the optimal control problem.

Optimal Robust Command-Following Problem. Given the plant
dynamics (I) and the internal model dynamics (8), find control gains
Ae, Be, Ce, Acse, and Csc that stabilize A and minimize

l(Ae. Be. Ce. Acse. C",) ~ IIT:wll~

+ max1 00: E[e(t)f ME[e(t)] dt (29)
CreCr 0

where T:wis the transfer function from wet) to let).

m. Command-Following Problem
Necessary Conditions

In this sectionwe presentthe maincontributionof the paper.
Necessaryconditionsare givenfor the optimalrobustcommand-
followingproblem,for whichthe referencecommandsignalsare
constantsand sinusoids.Forconvenience,let Xij denotethe ij(th)
block of X partitioned in the same manner as A.

Theorem 3.1. Suppose Ae, Be, Ce, Acse,and Cscsolve the op-
timal robust command-following problem for constant reference
inputs. Then there exist nonnegative-definite matrices P. Q. T. S
that satisfy

o = ATP + PA + iT i

0= AQ+ QAT+ iJiJT

(30)

(31)

(32)

(33)

(34)

0= A2SAT + ASA2T + D, VD;

o = a;3 + 4>;3+ e;3 + \jJf3

+ (a;3 + 4>;3+ e;3 + \jJ~)CT

0= Ef(EIQI3 + E2CscQu + E2CeQ33)

+ BT (a;1 + 4>fl+ e;1 + \jJJ.)

o = a~ + 4>~+ e~ + \jJi;

0= Ef (EI QI2 + E2CscQ22+ E2CeQ32)

+BT(a~1 + 4>~1+ e~1 + \jJf.)

(35)

(36)

(37)

(38)

where a~ QP, 4>~SATTA, e~ ASATT, and \jJ~SA2TT.
Proof. Toobtain thenecessaryconditions, firstwrite the H2cost

in theformtr P iJiJT, where P is the solutionto Eq. (30). Next,write
the cost (29) as .

- -T T
1 (Ae. Be. Ce. Acse.Csc)= tr P DD + tr D, T D, V (39)

and note that Eq. (22) can be rewritten as Eq. (32). Form the
Lagrangian J:.by affixing Eqs. (30) and (32) via Lagrange multi-
pliers Q and S, respectively,to 1 to obtain

J:.=tr piJiJT + trQ(ATP + PAiT i)

+trT DrV D; + tr S(A2TT A + ATT A2 + cT MC) (40)

Setting ~(aJ:./aAe), ~(aJ:./aBe), ~(aJ:.faCe), ~(a.c;aAcse), and
~(a.c;aCsc) to zero yields the necessary conditions (34-38). Tak-
ing the derivativesa.c;aQ, a.c;ap, a.c;as, and aJ:./aT and setting
them equal to zero give Eqs. (30-33). 0

Theorem 3.2. Suppose Ae, Be, Ce, Acse,and Csc solve the
optimal robust command-following problem for sinusoidal refer-
ence commands. Then there exist nonnegative-definite matrices
P. Q, T, S that satisfy Eqs. (30) and (31),

0= (A2 + (21)T ATT(A2 + (21)

+ (A2+ (21)TTA(A2+ (21) + CTMC

o= (A2 + w2I)AS(A2 + w2ll + (A2 + (21)

x SAT(A2+w2ll + w2D,VID; + AD, V2D;AT

(41)

0= af3 + 4>f3+ e;3 + rf3 + \jJ1+ n;3 + L\;3+ 1\;3 (43)

0= (P3IDJ+ P32BscD2+ P33BeD2)Df

(44)

e T r T ...T n T T T
)+ -31 + 31 + "'31 + 31 + L\31+ 1\31 (45)

o =a~+ 4>~+ e~ + ri; + \jJi;+ n~3+ L\~+ 1\~3 (46)

0= Ef (EI QI2+ E2CscQ22+ E2CeQ32)+ BT (a~1 + 4>rl

(47)

where 4>~ S(A2+w2I)TT A2. e ~ AS(A2+w2IlT A, r ~ (A2+
(21)S(A2 + w2llT. a~QP, \jJ~AS(A2 + w2IlATT.
n ~ S(A2+w2I)T A:"TTA. L\ ~wDr VI~D:.and 1\ ~ D, V2D:AT.

-

'.

.

..
-



11
1

,

SPARKS AND BERNSTEIN 1243

Proof To obtain the necessary conditions, first write the H2 cost
in the form tr P b iF, as in the proof of Theorem 3.1. Next, ""TIte
the cost J from Eq. (29) as

- -T , T
J(Ae, Be, Ce. Acsc. C$<)= tr P DD + w-tr D, T D, VI

T -T - T - T
+tr D, A TAD, V2+2wtr D, TAD, VI2 (48)

and note that Eq. (25) can be rewritten as Eq. (41). Form the
Lagrangian r. by affixing Eqs. (30) and (41) via Lagrange multi-
pliers Q and S, respectively,to J to obtain

r. = tr P bbT + tr Q(AT P + PA + iT i)

'T T -T - T - T
+w-tr D, TD, VI+tr D, A TAD, V2+2wtr D, T AD,VI2

+ tr S[(A2 + w2l)T ATT(A2 + w2I)

+ (A2 + w2IlT A(A2 + w2l) + CTMC] (49)

Setting ~(ar.jaAe), ~(ar.jaBe), ~(aqaCe), ~(ar.jaAcsc), and
~(ar.jac$<) to zero gives the necessary conditions (43-47). Taking

the derivatives ar.jaQ, ar.jap, ar.jaS, and ar.jaT and setting
them equal to zero gives Eqs. (30), (31), (41), and (42). 0

I
1

t
i
I

I
,

I
I

I

I

I

I

Iv. NumericalExample
Theorems 3.1 and 3.2 give expressions for the gradient of the

Lagrangian with respect to each of the control gains. For example,
in Theorem 3.1, the gradients (34-38) are ~(ar.jaAc), ~(ar.jaBc),
!(ar.jaCc), ~(aqaAcsc), and !(ar.jac$<)' respectively.Although
there is no straightforward way to solve these equations directly,
gradient optimization algorithms can use the to find the optimal
gains. A quasi-Newton algorithm was used to find the feedback
gains that minimize the cost function by approximating the inverse
of the Hessian and using the gradient expressions.'

Consider the second-order model of a pressurized head box2:

[
-0.395 0.001145

]x(t) = -0.011 0 .:e(t)

[

0.03362 1.038

] [
0.1

+ 0.000966 0 u(t) + 0

.

[

.:e(I)

]Y(I) = [I 0).:c(1)+ 0.1W2(1), Z(I) = U(I)

For constant reference commands, a family of controllers was found
by setting V = I and varying the weighting M in the tracking error
cost. The two components of the cost are plotted as the solid line
in Fig. 2. For comparison, a family of controllers was computed
using the technique of Abedor et al.3 by varying the scalar design
parameter Ct.The suboptimal costs are shown by the dashed line in

1.4x 10'

~1.35u
'"
.5 1.3""u..
,:: 1.25

-...-............
--...- -- . -..--------- --- .. --- --

1~.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12 12.2
H2a>st

3'S

[

S 3

i2.5
,:: 2

1.5
11.24 11.26 11.28 -. 11.3 11.32 11.34 11.36 11.38

. H2cosl

Fig. 2 Tracking cost vs Hz cost for constant reference command (op-
timal, solid; suboptimal, dashed).

, ,

,

126 8 10
H2 cost

Fig.3 Tracking cost vs Hz cost for sinusoidal reference command (op-

timal, solid; suboptimal, dashed; Hz optimal, dotted).

14 164

Fig. 2. The two sets of costs were plotted on different axes because
of the large difference in the sizes of the tracking costs. Clearly,
the controllers found using the technique in this paper have lower
tracking costs for comparable H2 costs.

Two families of controllers were found in a similar fashion for a

sinusoidal reference command of frequency ~1l"with VI = I, VI2 =
V2 = O.The costs for these controllers are shown in Fig. 3. Again,
the tracking costs for the controllers found using the technique in
this paper are lower than those found using the technique of Abedor
et al.3 for comparable H2 costs.

V. Conclusions

A technique for finding a control law that achieves asymptotic
tracking of constant and sinusoidal reference commands while min-
imizing a cost consisting of an H2disturbance rejection component
and an integral square error component was presented. The solu-
tion was derived by writing the integral square error in tenns of the
solution to a Lyapunov equation and attaching the H2 and integral
square error Lyapunov equations to the cost via matrix Lagrange
multipliers. Necessary conditions were obtained as the gradients
of the Lagrangian with respect to each of the control gains. Con-
trollers satisfying the necessary conditions provide better transient
tracking performance for a given level of H2 disturbance attenu-
ation than all other controllers that achieve asymptotic tracking.
Hence, controllers satisfying the necessary conditions provide the
optimal tradeoff between the two components of the cost function.
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