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Technical Notes and Correspondence

Some Explicit Formulas for
the Matrix Exponential

Dennis S. Bernstein and Wasin So

Abstract—The matrix exponential plays a central role in linear sys-
tems and control theory. In this note, we give explicit formulas for
computing the exponential of some special matrices.

1. INTRODUCTION

The linear vector differential equation x(¢) = Ax(¢), where
x(¢) is an n-vector and A is an # X n matrix, plays a fundamen-
tal role in the study of dynamical systems [3] and linear control
systems [5]. As is well known, the solution to this equation is
given by x(£) = e*'x(0), where e = Ty_o(k!)~1(A41)* denotes
the exponential of the matrix At. The theoretical and computa-
tional properties of the matrix exponential function have been
widely studied in [6] and the numerous references given therein.
Nevertheless, despite its classical nature, the matrix exponential
possesses numerous interesting properties that are still being
explored [2], [8], [9].

Because of the ubiquitous presence of the matrix exponential
in the study of linear dynamical systems, our objective is to
provide explicit formulas to facilitate its exposition and usage.
This note appears to be the first attempt to collect together as
many such formulas as possible in one place. In addition to their
usefulness in linear system theory, these formulas should be
helpful in future research concerning the matrix exponential.

In Section II we begin by deriving formulas for the exponen-
tial of an arbitrary 2 X 2 matrix in terms of either its eigenvalues
or entries. These results are then applied to the second-order
mechanical vibration equation with weak or strong damping. In
Section III some formulas for the exponential of » X r matrices
are given for matrices that satisfy an arbitrary quadratic polyno-
mial. Besides the 2 X 2 matrices considered in Section II these
results encompass involutory, rank 1, and idempotent matrices.
In Section 1V, we consider n X n matrices that satisfy a special
cubic polynomial. These results are applied to the case of
a 3 X 3 skew symmetric matrix whose exponential represents
the constant rotation of a rigid body about a fixed axis. For fur-
ther discussion of the role of the matrix exponential in rota-
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tional kinematics, see [7]. An extensive treatment of this topic
including the relationship between rotations and quaternions is
discussed in [1].

II. THE EXPONENTIAL OF A GENERAL 2 X 2 MATRIX

In this section, we derive formulas for the exponential of a
general 2 X 2 complex matrix 4. Formulas are given in terms of
either the eigenvalues of A4 or the entries of A. The results are
specialized to the case in which A is a real matrix. Let R and C
denote the real and complex numbers respectively.

Lemma 2.1: Let A = (g 3) e 22,
i) If a = d then e” = e“(l b).

01

" A_ | ble® — e?)/(a - d)
ii) If @ # d then e —(0 ; )

e

The following result characterizes e” in terms of the
eigenvalues of A.

Theorem 2.2: Let A and u denote the eigenvalues of 4 €
o2,

i) If &= Athen

et =1 - DI+ Al
ii) If u # A then
et — et

n—A

pet — de#

w=A

A

e

Proof:

i) Since x = A, there exists an invertible matrix X such
that 4 = X 3 ;)X’l for some x. Hence e = e‘X((ll ’l‘)X‘1
=M1 — DI + Al

i) Since p # A, there exists an invertible matrix X such

that 4 =X(3 2)X‘1. Hence e =X(‘0A eou)X‘l. Then, not-

ing that (“ 0

o E#) = (pe* - re*)/(p — M +

(e* —eM/(p— A)(g 2) yields the expression in ii). a
Next we characterize e in terms of the entries of A.
Corollary 2.3: Let A = (Z 5) e C¥*?,

i) If (a — d)? + 4bc = 0 then

ed = platd)/2

ii) If (@ — d)* + 4bc # 0 then

sinh (A)
cosh (A) + b—
el = elatd)y/2 2 A A
sinh (A) H(A a —d sinh (A)
c—3 cosh (A) 2 A
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where

1‘/ 2
A=—=V(a—-d) + 4bc.

2

Proof: The eigenvalues of 4 are A= (a +d —

\/(a—d)2+ 4bc)/2 and u (a + d +

V(a —d)* + 4bc)/2. Hence, A = p if and only if (a — d)? +

4bc = 0. Then the desired results follow by substituting A and u
into the formulas in Theorem 2.2. m]
We now specialize Corollary 2.3 to the case in which A is real.

Corollary 2.4: Let A = (’Z Z) € R**?,

i) If (@ — d)? + 4bc = 0 then
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where

)

Hence, we wish to obtain an expression for e’. The case k = 0
is the simplest one since A is reduced to triangular form. In this
case, we apply Lemma 2.1 to obtain

Case 1) Rigid Body: If k = 0 and ¢ = 0 then

ce(d 1)

01

0 1
~k/m —c/m

a—d Case 2) Damped Rigid Body: If k = 0 and ¢ # 0 then
1+ b
o4 = pla+d/D) 2 J m
a - = m
c 1= > oAt = 1 —C—(l—e t/my
0' e—ct/m
ii) If (@ — d)? + 4bc > 0 then
a — d sinh (8 inh (8
cosh (5) + L4 S (3) pSinh (2)
e = pla+dy/2 8 8
sinh (&) hes a — d sinh (8)
e cosh (8) — 5
where 8 = (1/2)Y(a — 4 + 4bc.
iii) If (a — d)® + 4bc < 0 then
a —d sin(d sin (&
cos(8) + (%) b (2)
o4 = @+d)2 2 8 6 )
sin (&) 5 a —d sin(8)
¢ cos (8) 3 3

where 6 = (1/2)V|(a — d)* + 4bc|.

Proof: For i) and ii), they are essentially the same as
Corollary 2.3. For iii), we observe that A = &i. Hence,
cosh (A) = cos(8), and sinh (A)/A = sin(8) /8. O

We illustrate the use of these formulas by two examples given
in [5, p. 172].

Example 1: If A is the real matrix (_" ‘") then

w o
oAt = got| cOs Wt sin ot
—sin wt cos ot )’

Example 2: If A is the real matrix (Z _2) then

g ()]
cosh (§) + Esinh(&) Esinh(s)

’

)
Esinh(a)

where 8 = Vo? + 2.

As an application of Corollary 2.4, we consider the second-
order mechanical vibration equation

o
cosh (8) — 3 sinh (8)

mi + ¢k + ke =0,

where m, ¢, and k are real. If m # O then we can write this
equation in companion form as the system

Z=Az,

Next we consider the case m > 0, ¢ > 0, and k > 0. In this
case we define

k c

Z=2M,

where w, denotes the (undamped) natural frequency of vibration
and ¢ denotes the damping ratio. Now A4 can be written as

4 0 1
Tl e 2w,
Note that w, > 0 and ¢ > 0. Now we apply Corollary 2.4 to

obtain
Case 3) Undamped: If k > 0 and ¢ = 0 then

1
ot cos (w,t) :,, sin (w,t)

—w, sin(w,t)  cos(w,t)
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Case 4) Underdamped: 1f k > 0 and 0 < ¢ < 1 then

cos (wyt) +

eAt = e-{wnt

1_—;2 sin (w,t)

where w; = w,y1 — {? is the damped natural frequency.
Case 5) Critically Damped: If k > 0 and { = 1 then

1+ w,t t
eAt = @t s .

—w,t 1 - w,t

Case 6) Overdamped: If k > 0 and { > 1 then

cos (wyt) +

~Lw,t

@a .
— t
1=¢7 sin (w,t)

where w; = w,\/¢% - 1.

IL. THE EXPONENTIAL OF 7 X n MATRICES SATISFYING A
QUADRATIC POLYNOMIAL

In this section, we derive formulas for n X n matrices that
satisfy a quadratic polynomial. Since, by the Cayley—Hamilton
Theorem, this class includes all 2 x 2 matrices, the results of the
previous section are recovered as a special case. In addition,
these results apply to certain n X n matrices such as involutory,
rank 1, and idempotent matrices.

Lemma 3.1: Let A € C" " and suppose that A = pl, where
peC.

DIf p=0then et =1+ A,
ii) If p # 0 then e = cosh(y/p)I + (sinh (/p)/ Yp)A.
Proof:
) Immediate.
ii) Since A% = pl, A% = p*I and A%**1 = pk A for
k = 0. Hence,

mAk
A=y L
k=0k!
A2 4 3 5
=[+—2—!+F+ ]+[A+-3—'+?"‘ :I

2
14 14
=(1+E+H+"'

= cosh (yp)I + ﬂh‘/(;ﬁA. o

Lemma 3.1 applies to nilpotent and involutory matrices.
Corollary 3.2: Let A € C™*",

DIf A2=0then e4 =7+ A.
ii) If A% =1 then e = cosh(1)7 + sinh (1) A.
Theorem 3.3: Let A € C**" and suppose that A% + 214 +
pd =0, where A\, p € C.
) If A2 = g then
et =e (1 + NI+ A4).

{ .
—‘/1—_——(2_ sin (a)dt) Py

ﬁ sin (w,t)
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1
— sin (w,t)

cos (wyt) —

% SiI](ll)dt)
1-¢
ii) If A2 % u then

ed = e {[cosh (V2 —u)+ ‘/A_z—'\__u— sinh (\/m)]l
+ Tl— sinh (/2% = )A} )

A —p

1
— sin (w,t)
Wy

cos (wyt) —

—1‘/f=£2 sin (wyt)

Proof: Note that B? = (A> — u)I where B = A4 + AL By
Lemma 4.1, we have
D e B
eI + B]
e N + NI + A].

sinh(\/z\z - ,L)

B

_ e-A{[cosh(m)

e — sinh (Y7~ 4

1
+2—sinh(\/)t2—p,)A}. o
A=
We now specialize Theorem 3.3 to the case in which A4 is real.
Corollary 3.4: Let A € R**" and suppose that 42 + 244 +
md =0, where A, u €R.

i) If A2 = u then
et = e M1 + VI + A].
i) If A2> u then

. { [oosh =) + e sinh(m)Jz
++ sinh(ﬁ)/l}.

A= p

1

iii) If A2 < w then

- { [cos(m) A sin(m)]l

-

e (,/m)A}.

w— A
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If A is the 2 X 2 complex matrix (': Z) then, by the Cayley~

Hamilton Theorem, A% — (a + d)A + (ad — bc)I = 0. By
applying Theorem 33 with A= —(a +d)/2 and p =
ad — bc, we will recover Corollary 2.3.

Corollary 3.5: Let A € C"*" and suppose that rank A4 = 1.

DIftrA=0then e! =1+ A4.
ii) IftrA # 0then e? =1+ ((e" 4 — 1)/tr A)A.
Proof: Since rank A =1, A% = (tr A)A. Hence, we can
apply Theorem 3.3 with A = (tr A)/2 and u = 0 to obtain the
desired results. a
Next, we consider the case in which A is idempotent.
Corollary 3.6: Let A € C™*" and suppose that A2 = A. Then
e =1+ (e - DA.
Proof: Apply Theorem 3.3 with A= —(1/2) and u = 0.
(]

IV. THE EXPONENTIAL OF 1 X n MATRICES SATISFYING A
SpECIAL CUBIC POLYNOMIAL
Theorem 4.1: Let A € C**" and suppose that A3 = pA,
where p € C.

DIf p=0then e? =1+ A4 + A2/2.
ii) If p+ 0 then e’ =TI + (sinh (yp)/ yp)4
+((cosh (y/p) — 1)/p) A%
Proof: The first case is easy. For the second case, since
A% = pA, A?**+? = p¥4? and A%**1 = p*4 for k > 0. Hence,

© k
A
k-0 K!
A A3 A* 4
=1+ A+¥+—5—!—+"']+[E+E+“']

3t 5! 2!

. sinh‘/(;‘/;)A . cosh(\/p;) “l,

2 1
=1+(1+£+p—+~-)A+(—+4—p‘+---)A2

Theorem 4.1 yields the exponential of tripotent matrices.
Corollary 4.2: Let A € C**" and suppose that A% = 4. Then

e =1+ sinh(1)A4 + (cosh (1) — 1) 42,
When Theorem 4.1 is specialized to real matrices, we have the
following result.

Corollary 4.3: Let A € R"™™" and suppose that A4°> = pA,
where p € R. Then

i) If p=0then e =1+ A4 + A%/2.

i) If p> 0 then e =1 + (sinh (/p)/ p)A4
+((cosh (/o) — D/p) A%

ii) If p<0 then et =1+ (sin(y— p)/y—p)4
+((cos (Y= p) — 1)/p) A2

Next we apply this result to a 3 X 3 skew symmetric real

matrix.
V] a b
Corollary 4.4: Let A = (74 0 c) € R**3, Then A®+
-6 -¢c 0

v2A =0, where y=Va?+b%2+c%. If y#0 then e4 =1+
(siny/y)A + (1 — cos y)/y2) A%

Corollary 4.4 can be interpreted in terms of kinematics of
rotating bodies. To see this, let @ = (w;, w,, ;)7 € R® be a
fixed nonzero vector and let B denote a rigid body of arbitrary
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shape. Now assume that B is rotating with respect to w in the
sense that the motion of each point in B traces out a circle
whose center lies on the line containing @ and which lies in a
plane that is perpendicular to the line containing . Further-
more, assume that each point in B rotates about w at the
constant angular rate of wy = m radians per second. Then
o is called the angular velocity vector [4, p. 22].

Now let x(2) = (x(1), x,(2), x3(t))T denote the coordinates of
an arbitrary point in B. Then x(¢) satisfies

(1) = o X x(2),

where x(0) = x,. The cross product operation can be repre-
sented equivalently by

i(1) = A(w)x(2),

0 —w; @y
where A(w)=| o 0 - |. Hence, x(¢) is given by
—wy; W) 0

x(2) = e, Since e’ is an orthogonal matrix, x(¢) has

a constant Euclidean length Vx(t)"x(t) = y/xfx, as is intu-

itively clear. Now Corollary 4.4 implies that

sin w,t 1 — cos w,t
ey =1+ T A(w) + ———— AN w),
wo wo

which shows that the motion of each point in B has a rotational
period of 21/ w, seconds. Since A%(w) = ww’ — w?ll, the matrix

exponential e“(“” is given alternatively b
Xp g y by
n w,t 1 — cos w,t
e = cos(w,t)] + 2 Alw) + ——— o’
o 2
o 0

Finally, suppose that the body B undergoes an arbitrary series
of rotations with a single fixed point at the origin. Then the final
orientation can be viewed as an orthogonal transformation of
the original orientation. The corresponding orthogonal matrix
can then be shown to be the exponential of a skew symmetric
matrix of the form 4(9), where 8 = (8, 6,, 8,)". Normalizing 0
by 6= 8/8,, where 6, = \/ﬁ, it follows that

€9 = (cos 64)] + (sin 8,).A(8) + (1 — cos 6,)H67.

In accordance with Euler’s Theorem [4, p. 10], this orthogonal
transformation represents a rotation of 6, radians about the
axis of rotation given by 6.
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Single-Loop Stability Margins for Multirate and
Periodic Control Systems

David S. Flamm

Abstract—We show how to compute the stability margins of periodic
systems with respect to compatible periodic perturbations of such sys-
tems. We suggest that the nonstandard time-invariant model for peri-
odic systems introduced in [3] leads to a simpler computation, although
the standard model gives the same result.

1. INTRODUCTION

The validation of a control system design requires the compu-
tation of stability margins with respect to errors in the model of
the system to be controlled. In the absence of a practical
technique for computing stability margins with respect to simul-
taneous variations in real plant parameters, it is common for
control practitioners to compute single-loop gain and phase
margins at points in a feedback system at which model variations
have physical significance. Typically, it is desirable to do these
computations in the frequency domain, so that well-developed
engineering interpretations can be applied.

Many practical control designs are implemented as multirate
systems in order to utilize hardware as efficiently as possible
when computing power presents a limitation on design. Some
techniques for the frequency domain analysis of multirate sys-
tems are limited by the fact that the natural models for multi-
rate systems are not time invariant but periodically time varying.
It is only when a loop is broken at a point at which the sampling
rate is the greatest common divisor of all the sampling rates in
the system that the natural input-output model is time invari-
ant.

These limitations were partially addressed in the 1950s by the
work of Kranc [8] and Kalman—Bertram [6]. Since it is easy to
see, say using the Kalman-Bertram approach, that a multirate
system is periodic if the sampling rates are rationally related, we
shall phrase our results in the context of periodic systems. The
cited work may be summarized by saying that by breaking the
loop at any point and accumulating all inputs and outputs over a
time interval for which the overall system is periodic into a
vector input and a vector output one can obtain a time-invariant
model. However, this time-invariant system is not readily
amenable to stability margin calculation.

The obvious approach to the control analyst of “modern”
inclinations is to compute the frequency dependent singular
values of the transfer function matrix for the multiinput/multi-
output (MIMO) time-invariant model. The singular value de-
composition provides both a lower bound for the gain margin of
the time-varying loop and a natural (constant) destabilizing
perturbation corresponding to this margin. Unfortunately, this
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u[n] S y(n]
- 1
Fig. 1. Periodic feedback system.

constant perturbation will generally correspond to a noncausal
perturbation of the original periodic system.

In this note (which is a revised version of [4]) we show that the
singular value calculation just mentioned gives a stability margin
which is nonconservative in the sense that there is a periodic
perturbation within the computed stability radius which destabi-
lizes the closed loop.

II. PROBLEM FORMULATION
We assume that we have a feedback system as in Fig. 1. Here
&, is a periodic time varying linear system in discrete time, given
by the equations

x[n + 11 = A,x[n] + B,uln] 1

yln] = C,x[n] + D,uln] (2)
where x[i] € R?, u[i] € R? and y[il € R, for i = 0,1,---. We
assume that this system has period N, so that A, =4, y,
B, = B, y, etc. The system % is assumed to be a linear system
which may have additional properties as discussed below. %7 is a
perturbation of the identity system, and we use it to define and
analyze stability margins.

Such models cover a large class of “hybrid” (interconnected
continuous- and discrete-time) systems. Using the methods pre-
sented by Kalman-Bertram [6] one can write down time-
invariant models for these systems. Such modéls have been
recently presented in a more elegant mathematical framework in
[7] and [5]. This class includes multirate sampled-data systems, as
considered, for example, by [1}.

For the present purposes, we assume that the feedback loop
represented in Fig. 1 is a scalar signal which we have “pulled
out” of the overall system in order to do a stability margin
analysis. In other words, we assume g = r = 1. We shall call this
the periodic single-input /single-output (PSISO) case.

The problem we consider is the following: Assuming the
closed loop system is stable if % = 1, find the largest w > 0 (the
margin) such that the closed-loop system is stable for all stable
% (subject to additional assumptions below) satisfying [l1 —.7Z]|
< . Here |- || is the /%-induced operator norm.

There are three natural sets of assumptions about %, which
are of increasing generality:

1) & is memoryless. It therefore has a transfer function K
which may be a real constant, a unit-magnitude complex num-
ber, or a general complex constant. These possibilities result in
what may be called the gain margin, phase margin, and complex
margin problems, respectively. )

2) % is a time-invariant system with transfer function K(z),
which we assume to be stable. This we call the time-invariant
perturbation stability problem. Here we assume that the sampling
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