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Abstract
With the advent of commercial image-guided radiotherapy, daily correction of
the setup uncertainty is feasible. It is beneficial to understand the dependence
of the probability density function (pdf) of the corrected setup variation on
the action level, localization uncertainty and re-positioning uncertainty so that
an appropriate action level is used. Also, that pdf can be used in treatment
planning to incorporate setup variation directly in the planning process to
generate treatment plans more robust to setup variations. We have found
an analytical expression of the pdf of the corrected setup variation assuming
normal distributions for the uncertainties. Using the second moment of that
pdf as a metric, we have explored the dependence of the metric on the action
level for the following cases: (1) the uncertainties in measurement and re-
positioning are less than the initial setup uncertainty, (2) the uncertainties in
measurement and re-positioning are on the order of the initial setup uncertainty,
(3) the uncertainty in measurement is the least and (4) the uncertainty in re-
positioning is the least. An optimal action level exists in case 3. We have also
found that an action level of

√
µ2

p + σ 2
p + σ 2

m works well in practice where µp

is the mean of the re-positioning uncertainty, σp is the standard deviation of the
re-positioning uncertainty and σm is the standard deviation of the localization
uncertainty. In typical clinical situations, the distribution of the corrected setup
variation can be closely approximated by a normal distribution.

1. Introduction

After electronic portal imaging devices (EPID) were available, more frequent patient
localization using imaging became manageable. A body of work has been published on
optimal protocols for offline correction of systematic setup uncertainties (Amer et al 2001,
Bel et al 1993, Bijhold et al 1992, Bortfeld et al 2002, de Boer and Heijmen 2001, de Boer
et al 2001, 2005, Gluhchev 1998, Hoogeman et al 2005, Nuver et al 2007, Yan et al 1995). The
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effect of the correction of the systematic error on the distribution of patient setup positions
will be a translation of the mean of that distribution to a different value. Following the
commercial introduction of image-guided radiotherapy (IGRT) (Court et al 2005, Enmark
et al 2006, Guckenberger et al 2006, Hansen et al 2006, Keller et al 2006, Lauve et al 2006, Ling
et al 2006, Mohan et al 2005, Perkins et al 2006, Song et al 2007) and the gain in experience
in using EPID in the clinic, even daily correction of the setup position is feasible (De Neve
et al 1992, Enmark et al 2006, Guckenberger et al 2006, Hansen et al 2006, Keller et al 2006,
Perkins et al 2006, Yan et al 1995). With daily online correction, both the systematic setup
error and the random setup error can potentially be reduced. Although an obvious purpose of
the correction is to modify the mean location and spread of each patient’s setup distribution,
the resulting distributions after the implementation of a daily correction protocol have not
been explored.

Concurrent with the studies on patient setup variations, the relationship between the setup
uncertainty and the setup margin used in treatment planning has been extensively studied
(Austin-Seymour et al 1995, Balter et al 1993, Goitein 1983, 1985, McKenzie et al 2000,
Remeijer et al 2002, van Herk et al 2000, 2002). This leads to a closer look at the concept of
the setup margin. Setup uncertainty distributions are starting to be used directly in treatment
planning to generate treatment plans that are optimized with respect to an estimated setup
uncertainty distribution without incorporation of a setup margin around the tumor (Birkner
et al 2003, Li and Xing 2000, Löf et al 1995, 1998, Lujan et al 1999, McShan et al 2006,
Unkelbach and Oelfke 2004, Unkelbach and Oelfke 2005a, 2005b). However, what type of
distribution is to be used in the optimization remains an open question when a setup correction
protocol is also being employed.

In the following, we will derive an analytical expression for the probability density
function (pdf) of the corrected setup variation. Based on the analytical expression, we will
explore the dependence of the corrected setup variation on the action level and attempt
to determine appropriate action levels under different situations. Finally, we will study
whether the corrected setup variation can be approximated by a normal distribution under
some conditions to simplify its use in treatment planning.

2. Probability density function of the corrected setup variation

In this paper, we assume that the patient treatment position problem is defined by three sources
of uncertainties: the inter-fraction setup variations themselves, the uncertainty in the ability
to localize the patient in the treatment room and the variation in re-positioning of the patient
after a corrective action has been decided upon. Also, we will assume that these three sources
of uncertainties can be described by normal distributions. We also assume that a positional
interval (action level) has been defined in the setup correction protocol to re-position only if
the localization indicates that the setup is outside of the interval. The interval could be null for
the case of a no threshold correction protocol. We will only consider rigid body translations.
If we assume that the three dimensions of the translation are statistically independent, we can
reduce the problem to three independent one-dimensional problems.

We will consider the problem in a one-dimensional coordinate system with the origin at
the planned position of the target. We assume that the positioning protocol uses an action level
represented by the open interval (a, b). There are three random variables: (s, l, r). Here, s

is the initial setup position, l is the error in localization, i.e. it is the difference between the
measured position and the actual position and r is the error in re-positioning. If the measured
position is within the action level and no re-positioning is performed for a particular fraction, a
realization of r is still sampled from the distribution although it is not used. If we assume that
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the variation in the initial setup position, the uncertainty in localization and the uncertainty in
re-positioning are statistically independent, the trivariate probability density function can be
written as

p1(s, l, r) = fs(s)fm(l)fp(r)

where fs, fm and fp are the pdfs for the initial setup uncertainty, measurement uncertainty
and re-positioning uncertainty, respectively. The three random variables (s, l, r) are not very
convenient for our problem. Firstly, the action level is compared to the measured position
which is not one of these three variables. Secondly, we want to find the pdf of the corrected
setup position. We will introduce two random variables: m and x. m is the measured position
and x is the corrected setup position. m is not equal to s because there is uncertainty in
measurement and

l = m − s.

x is not zero because there are uncertainties in both measurement and re-positioning so that
the correction is not perfect. Let us consider the following two situations separately.

If m /∈ (a, b), the patient is re-positioned by correcting for the measured position m and
not s. If the re-positioning has no uncertainty, the target will be at a fictitious position

z = s − m = −l.

Actually, the target is re-positioned with uncertainty r . Thus,

r = x − z.

As a result,

s = z + m

l = −z

r = x − z.

If m ∈ (a, b), the measured position is within the action level and the patient is not re-positioned
and

s = x

l = m − s = m − x.

Since the patient is not re-positioned and r is not used, we can set it to the fictitious position
z, i.e.,

r = z.

The trivariate pdf can then be written as

p2(x,m, z) =
{
fs(x)fm(m − x)fp(z) m ∈ (a, b)

fs(z + m)fm(−z)fp(x − z) m /∈ (a, b).

In order to obtain the pdf of the corrected setup variation x and measurement m, we can
integrate over z. The pdf will be

fs(x)fm(m − x) m ∈ (a, b)∫ ∞

−∞
fs(z + m)fm(−z)fp(x − z) dz m /∈ (a, b)

(1)

The pdf of the corrected setup variation can be computed by integrating over all measurements
m:

g(x) =
∫ a

−∞

∫ ∞

−∞
fs(z + m)fm(−z)fp(x − z) dz dm

+
∫ b

a

fs(x)fm(m − x) dm +
∫ ∞

b

∫ ∞

−∞
fs(z + m)fm(−z)fp(x − z) dz dm. (2)
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If the setup uncertainty, the uncertainty in measurement and the uncertainty in re-positioning
can be described by normal distributions, the corresponding pdfs are

fs(s) = 1√
2π

1

σs

exp

[
− (s − µs)

2

2σ 2
s

]
,

fm(l) = 1√
2π

1

σm

exp

[
− (l − µm)2

2σ 2
m

]
and

fp(r) = 1√
2π

1

σp

exp

[
− (r − µp)2

2σ 2
p

]

where µs, µm,µp are means and σs, σm, σp are standard deviations of their respective
distributions.

Then,

g(x) = 1

2πσsσm

∫ b

a

exp

[
− (x − µs)

2

2σ 2
s

− ({m − x} − µm)2

2σ 2
m

]
dm +

1

(2π)3/2

1

σsσmσp

×
∫ a

−∞

∫ ∞

−∞
exp

[
− (z + m − µs)

2

2σ 2
s

− (z + µm)2

2σ 2
m

− (x − z − µp)2

2σ 2
p

]
dz dm

+
1

(2π)3/2

1

σsσmσp

×
∫ ∞

b

∫ ∞

−∞
exp

[
− (z + m − µs)

2

2σ 2
s

− (z + µm)2

2σ 2
m

− (x − z − µp)2

2σ 2
p

]
dz dm.

(3)

If we denote the (cumulative) normal distribution function with mean µ and standard
deviation σ by F(x;µ, σ), then the first term in g(x) will be 1√

2πσs

exp
[− (x−µs)

2

2σ 2
s

]
[F(b; x + µm, σm) − F(a; x + µm, σm)]. By completing the squares for the variables z and m

in the exponent, the second term can be integrated to√
1

2π
(
σ 2

m + σ 2
p

) exp

{
− (x − µp + µm)2

2
(
σ 2

m + σ 2
p

)
}

×F

(
a;µs +

σ 2
p

σ 2
m + σ 2

p

µm − σ 2
m

σ 2
m + σ 2

p

(x − µp),

√
σ 2

mσ 2
p + σ 2

s σ 2
p + σ 2

mσ 2
s

σ 2
m + σ 2

p

)
.

The third term is similar to the second term except for the change in integration limits:√
1

2π
(
σ 2

m + σ 2
p

) exp

{
− (x − µp + µm)2

2
(
σ 2

m + σ 2
p

)
}[

1 − F

(
b;µs +

σ 2
p

σ 2
m + σ 2

p

µm − σ 2
m

σ 2
m + σ 2

p

(x − µp),

√
σ 2

mσ 2
p + σ 2

s σ 2
p + σ 2

mσ 2
s

σ 2
m + σ 2

p

)]

Together, the pdf for x will be

g(x) = N(x;µs, σs) − N(x;µs, σs)[1 − D(x + µm; a, b, σm)] + N
(
x;µp − µm,

√
σ 2

m + σ 2
p

)
×

[
1 − D

(
µs +

σ 2
p

σ 2
m + σ 2

p

µm − σ 2
m

σ 2
m + σ 2

p

(x − µp); a, b,

√
σ 2

s +
σ 2

mσ 2
p

σ 2
m + σ 2

p

)]

(4)
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Figure 1. Normal difference distribution function (see the text) for (i) b = −a = 0.2, σ = 1; (ii)
b = −a = 5, σ = 1 and (iii) b = −a = 0.2, σ = 0.1.

where

N(x;µ, σ) ≡
√

1

2πσ 2
exp

[
− (x − µ)2

2σ 2

]
D(x; a, b, σ ) ≡ F(b; x, σ ) − F(a; x, σ ).

We will designate D(x; a, b, σ ) to be the normal difference distribution function (normal ddf).
For a given σ and (a, b) with b > a, D(x; a, b, σ ) starts at zero, increases to a peak value
which is less than or equal to one, and reduces back to zero, when x changes from −∞ to ∞.
The steepness of the rise from zero to the peak is determined by σ . The interval of x where the
normal ddf stays at a high value depends on (b − a)/σ . For (b − a)/σ � 1, D(x; a, b, σ )

has a plateau close to 1 with a width ∼ (b − a). As (b − a)/σ approaches 1, the plateau
region merges with the sloping region. For (b − a)/σ � 1, D(x; a, b, σ ) takes the shape
of (b − a)N

(
x; a+b

2 , σ
)

as a function of x. Figure 1 illustrates the ddf for (b − a)/σ < 1,
(b − a)/σ � 1 and for small σ .

The expression for g(x) has an obvious interpretation. The first term is the original
density function of the setup variation. The second term is the part of the density function
that is removed because the measurement is above the threshold. The third term is the density
function of the corrected setup that replaces the part that has been removed. If the third term
is more favorable than the second term, the correction will help reduce the setup variation.

3. Effect of the action level

3.1. Dependence of the setup uncertainty on the action level

The corrected setup variations for different initial patient setup uncertainties, uncertainties in
patient localization, mechanical tolerance for re-positioning and the action level for making
corrections can be computed from g(x). For a given treatment, the parameter that can be easily
adjusted is the action level. We will also limit our study to situations that a = −b and designate
an action level c ≡ b. When the measurement uncertainty and the re-positioning uncertainty
are both larger than the setup uncertainty, it is not advantageous to perform localization and
correction. Thus, we will only consider the following four situations: the magnitudes of
the measurement uncertainty and the re-positioning uncertainty are either much less than or
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comparable to the setup uncertainty; the magnitude of either the measurement uncertainty or
the re-positioning uncertainty is much less than the other two uncertainties.

3.1.1. Metric for the setup uncertainty. The pdf contains a lot of information. In order to
compare different action levels, we need a cost which quantifies the resulting patient setup
uncertainty. We have chosen to use the second moment µ′

2 of g(x) as the metric e to evaluate
the error in the corrected setup position x. It is a measure of how far the setup is from zero
error on the average in terms of the square of the distance. The second moments of g(x) can
be computed analytically:

e ≡ µ′
2 ≡

∫
g(x)x2 dx

= (
µ2

s + σ 2
s

)
+

[
(−µs + µm − 2µp)σ 2

m + (−µs + µm)σ 2
s

]
×

[
N

(
c;µs + µm,

√
σ 2

s + σ 2
m

)
−N

(
c;−µs − µm,

√
σ 2

s + σ 2
m

)
]

+
(−σ 2

s + σ 2
m

)
c[

N
(
c;µs + µm,

√
σ 2

s + σ 2
m

)
+ N

(
c;−µs − µm,

√
σ 2

s + σ 2
m

)]
+

[{
(−µp + µm)2 + σ 2

p + σ 2
m

} − {
µ2

s + σ 2
s

}]
[

2 − F
(
c;µs + µm,

√
σ 2

s + σ 2
m

)
−F

(
c;−µs − µm,

√
σ 2

s + σ 2
m

)
]

.
(5)

We can study the dependence of the setup uncertainty metric e on the action level c for various
values of (µs, σs, µm, σm,µp, σp) using the analytical result above. We will consider several
situations that are relevant clinically.

3.1.2. The magnitudes of the measurement uncertainty and the re-positioning uncertainty are
much less than the magnitude of the setup uncertainty. This is the typical clinical situation
where a correction can potentially reduce the resulting setup uncertainty. The dependence of
the error metric on the action level for a sample parameter set is shown in figure 2. It has
three distinct regions: a region where the mean and standard deviation of the corrected setup
uncertainty are close to the combined mean and standard deviation of the measurement and
re-positioning uncertainties for the low action level; a region where the mean and standard
deviation are close to the original setup uncertainty for the high action level; and a transition
region where the mean and standard deviation are changing. When the action level is low,
almost every fraction is corrected. As a result, the pdf of the corrected setup uncertainty is
determined only by the localization uncertainty and the re-positioning uncertainty with the
corresponding setup uncertainty metric (equation (5)) of e = (µp − µm)2 +σ 2

p +σ 2
m. When the

action level is high, very few fractions are corrected and the setup uncertainty metric remains
the same as the original setup uncertainty metric before correction, i.e., e = µ2

s + σ 2
s .

3.1.3. The magnitude of the setup uncertainty is comparable to the magnitude of the
measurement uncertainty and the re-positioning uncertainties. When all three uncertainties
are comparable, the correction does not improve the accuracy and precision of the resulting
setup. An example of this kind of situation is in radiosurgery where the head frame can
position the patient as accurately as the imaging system can measure position. Verification
measurements are more for the purpose of eliminating gross errors. Figure 3 shows a situation
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Figure 2. The dependence of the setup uncertainty on the action level for σs = 5 mm, σm =
1 mm, σp = 1 mm. The action level according to equation (6) is indicated by the dotted line.
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Figure 3. The dependence of the setup uncertainty on the action level for σs = 1 mm, σm =
1 mm, σp = 1 mm. The action level according to equation (6) is indicated by the dotted line.

when all three uncertainties have the same standard deviation. In this case, the least resulting
setup uncertainty is achieved by setting the action level very high, i.e. no correction.

3.1.4. The magnitude of the measurement uncertainty or the re-positioning uncertainty is
much less than the magnitudes of the other uncertainties. When there is an improvement
in imaging technology so that the setup uncertainty can be measured more accurately and
precisely, the measurements can be substantially better than the ability to correct the setup
uncertainty. Also, this can be used to evaluate the potential gain during the development
of new localization techniques. An example of the result for such situations is shown in
figure 4(a). The parameters are the same as that in figure 3 except that the measurement
uncertainty is reduced by 50%. There is now an optimal action level as the setup uncertainty
changes from that limited by the combination of localization and re-position uncertainties at
the low action level to that determined by the original setup uncertainty at the high action level.
The existence of the minimum in the setup uncertainty can be understood by the following
observation. For each treatment fraction, different setup deviations are realized as specified
by the distribution of the setup uncertainty. Using the more accurate and precise localization,
one can select those fractions within the distribution that will benefit from the re-positioning.
For those fractions of treatment where the setup uncertainty happens to be small, the patient is
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Figure 4. (a) The dependence of the setup uncertainty on the action level for σs = 1 mm, σm =
0.5 mm, σp = 1 mm. The action level according to equation (6) is indicated by the dotted line.
(b) The dependence of the setup uncertainty on the action level for σs = 1 mm, σm = 1 mm, σp =
0.5 mm. The action level according to equation (6) is indicated by the dotted line.

not re-positioned. By selecting an action level appropriate for the re-positioning uncertainty,
one can improve the setup uncertainty beyond what can be achieved by re-positioning every
fraction. This can be compared to an equivalent improvement in the re-position uncertainty
instead of the localization uncertainty as shown in figure 4(b). The minimum does not exist
and the error measure is higher than that in figure 4(a).

3.2. Practical rule for the action level

When there is a minimum in the error metric, the action level can be set to that corresponding
value. For an error metric distribution which does not have a minimum, such as that in
figure 2, it is desirable to set the action level before the error metric starts to rise steeply.
The exact value depends on the trade-off between accepting higher uncertainty or higher
incidences of the correction. We have surveyed the error metric function for different values
of (µs, σs, µm, σm,µp, σp). For cases where the localization uncertainty and the re-positioning
uncertainty are less than the original setup uncertainty so that the setup correction is potentially
beneficial, we found that the following rule for the action level works well in practice:

crule =
√

µ2
p + σ 2

p + σ 2
m. (6)

The action levels indicated in figures 2–4 are based on this rule. One useful characteristic
of this choice of the action level is that it is independent of the distribution of the original
setup uncertainty. As a result, the same action level can be used for all patients. This rule
has a simple interpretation. Only setup deviations that are larger than the uncertainty of the
equipment need to be corrected.

4. Approximation of the probability density function by a normal probability density
function

As shown in section 3, if the threshold for action is very large, the setup deviation is almost never
corrected and the pdf is the same as that of the original setup uncertainty. If the threshold is
very narrow, the setup deviation of almost every fraction is corrected. The corrected setup will
not depend on the patient and will instead be determined only by the correction technique. The
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Figure 5. The probability density functions of the original setup uncertainty and the corrected
setup uncertainty with parameters chosen to illustrate the effect of an action level on the corrected
setup uncertainty. The standard deviation for the original setup uncertainty distribution is 5 mm
and those for the measurement and re-positioning are both 0.5 mm. The action level was set to
7 mm as can be seen from the steep slope at ±7 mm for the corrected setup uncertainty density
function.

systematic error becomes the difference of the means of the measurement and re-positioning.
The random error becomes the quadratic sum of the standard deviations of the measurement
and re-positioning. In both cases, the pdf approaches a normal density function. As the action
level changes from a wide window to a narrow window, the pdf changes smoothly from the
original distribution to a distribution determined by the technique.

For an intermediate action level, i.e. b ∼ nσs, a ∼ −mσs where 1 < m < 3, 1 < n < 3,
and |µp − µm| � |µs |, σ 2

m + σ 2
p � σ 2

s , the ends of the normal pdf in the first term of
equation (4) are clipped by the normal ddf in the second term. In the third term, the normal
ddf , which has a σ ∼ σs , is much wider than the normal pdf. It determines the relative weight
of the third term and the shape is mainly determined by the normal pdf in the third term. As
a result, the third term has the shape of a relatively narrow normal pdf. Thus, the probability
density function of the corrected setup uncertainty will have a narrow spike on a normal pdf
which has clipped ends (figure 5).

The clipped ends of the uncorrected pdf are above the action level and they are corrected
so that they show up as the spike. Also, it can be seen from the figure that the width of the
corrected pdf can be reduced by moving the action levels closer to the spike. As a result, when
the optimal action levels are used, the pdf will not have the spike-on-a-clipped-distribution
feature. In typical clinical situations, |µp − µm| and

√
σ 2

m + σ 2
p are smaller than |µs | and σs ,

respectively, but they are not very much smaller. For example, |µp − µm| and
√

σ 2
m + σ 2

p

may be about 1–2 mm, where as |µs | and σs may be about 5 mm. Under these conditions,
the width of the two normal density functions in equation (4) is not drastically different and
the pdf of the corrected setup uncertainty will not have the spike-on-a-bell-shaped-profile
character. In figures 6 and 7 we have shown the corrected setup uncertainty pdf and its normal
approximation for the action level based on equation (6) and parameters in figures 2 and 4(a),
respectively. The expression for the first moment of the corrected distribution is

µ′
1 ≡

∫
g(x)x dx

=
√

σ 2
m + σ 2

s

2π

{
exp

[
− (c + {µm + µs})2

2
(
σ 2

m + σ 2
s

)
]

− exp

[
− (c − {µm + µs})2

2
(
σ 2

m + σ 2
s

)
]}
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Figure 6. The probability density functions of the original setup uncertainty, the corrected setup
uncertainty and the normal approximation to the corrected setup uncertainty. The action level
(1.4 mm) was that determined by equation (6) and the other parameters are the same as that in
figure 2. The normal approximation is so close to the corrected setup uncertainty that the two
graphs basically overlap.
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Figure 7. The probability density functions of the original setup uncertainty, the corrected setup
uncertainty and the normal approximation to the corrected setup uncertainty. The action level
(1.1 mm) was that determined by equation (6) and the other parameters are the same as that in
figure 4(a).

+ (µm + µs − µp)
[
F

(
c;µm + µs,

√
σ 2

m + σ 2
s

)
+ F

(
c;−µm − µs,

√
σ 2

m + σ 2
s

)]
+ 2µp − 2µm − µs.

This in combination with the second moment (equation (5)) can be used to determine the mean
and variance of the normal pdf approximation.

In order to quantify the similarity between the corrected setup uncertainty and the normal
approximation, we use the percentage of area that the overlapping region occupies as a
similarity measure and name it pao for per cent area overlap. The pao of the distributions
shown in figures 6 and 7 are 99.8% and 96.1%, respectively.

5. Conclusions

Here, we have focused on analytical methods to study the corrected setup uncertainty. An
advantage of analytical methods is that we are studying the setup distributions directly instead
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of the measured samples of the distributions, especially when the measurement uncertainty is
one of the random variables in the multivariate distribution. Also one purpose of the study
is to determine the pdf of the corrected setup variation so that it can be used in treatment
planning. An analytical method is most suitable for the investigation of the pdf. However,
assumptions need to be made in order to arrive at a solution and sometimes those assumptions
can be questioned. The same assumptions may not be needed if a clinical study is used in
the investigation. The results of the theoretical analysis need to be verified by future clinical
studies.

The analytical solution of section 2 gives the pdf of the patient setup uncertainty after
correction for a given action level. It can be used in treatment planning protocols that do not
use the concept of the setup margin and optimize the treatment plan using the distribution of
setup uncertainties. The analytical solution for the probability density function of the setup
variation is expressed in terms of the normal distribution function and the normal density
function. Numerical approximations to these functions are available. The treatment planning
system can potentially vary the action level and optimize the treatment plan against the action
level. It may then generate an optimal treatment plan together with an optimal action level as
a result of the planning session based on the analytical solution.

In section 3, we have used a geometrical metric instead of a dosimetric metric to evaluate
the effect of the action level. The analytical results again depend only on the normal density
function and the normal distribution function. It can be implemented in a program to provide
the optimal action level for specific clinical cases. We have programmed a spreadsheet to graph
the error metric as a function of the action level and find it useful in exploring the effect of the
changing action level for sample cases encountered in our patient population. The resulted
distribution of the setup uncertainty can then be approximated by a normal distribution using
the results in section 4.

For current clinical practice, the simple rule for the action level is a convenient tool, when
it is applicable, to select the appropriate action level with minimal computations that can be
done on a calculator. For most cases, σ 2

m + σ 2
p < σ 2

s . The situation is similar to what is shown
in figure 2 and the simple rule works well. The comparison in figure 4 indicates that it is
advantageous to reduce the uncertainty in measurement for situations when σ 2

m + σ 2
p ∼ σ 2

s .
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