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PACS. 03.67.Lx – Quantum computation.

PACS. 03.67.Pp – Quantum error correction and other methods for protection against deco-
herence.

PACS. 32.80.Qk – Coherent control of atomic interactions with photons.

Abstract. – We propose a scheme to implement arbitrary-speed quantum entangling gates
on two trapped ions immersed in a large linear crystal of ions, with minimal control of laser
beams. For gate speeds slower than the oscillation frequencies in the trap, a single appropriately
detuned laser pulse is sufficient for high-fidelity gates. For gate speeds comparable to or faster
than the local ion oscillation frequency, we discover a five-pulse protocol that exploits only
the local phonon modes. This points to a method for efficiently scaling the ion trap quantum
computer without shuttling ions.

Significant advances have been made towards trapped ion quantum computation in the last
decade [1]. Many ingredients of quantum computing have been demonstrated experimentally
with this system [2–12]; and different versions of quantum gate schemes have been proposed,
each offering particular advantages [13–20]. In conventional approaches to trapped ion quan-
tum gates, the interaction between the ions is mediated by a particular phonon mode (PM)
in the ion crystal through the sideband addressing with laser beams. In these types of gates,
the control of the laser beams is relatively simple, requiring only a continuous-wave beam
with an appropriate detuning; but to resolve individual motional sidebands, the gate speed
must be much smaller than the ion trap oscillation frequencies. More recently, fast quantum
gates have also been proposed, which can operate with a speed comparable with or greater
than the trap frequencies [19, 20]. These types of gates involve simultaneous excitation of all
PMs [12, 18–20] and require more complicated control of either the pulse shape [19] and/or
the timing of a fast pulse sequence [19,20].

In this paper, we develop a gate scheme that combines the desirable features of the above
two types of gates. A conditional phase gate with arbitrary speed is constructed in a large
ion array by optimization of few relevant experimental parameters. As a result, first we show
that with simple control of the detuning of a continuous-wave laser beam, one can achieve
a high-fidelity gate with the gate speed approaching the ion trap frequency. This result is
a bit surprising as many PMs are excited during the gate. However, with control of just
one experimental parameter (the detuning), each of the modes becomes nearly disentangled
with the ion internal states at the end of the gate. Secondly, we show that as the gate speed
becomes larger than the local ion oscillation frequency (specified below and see also ref. [20]),
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only “local” PMs will be primarily excited during the gate. This yields a scaling method
for trapped ion quantum computation: a significant scaling obstacle to trapped ion quantum
computation is that due to the long-range Coulomb interaction, any collective gate on two ions
is necessarily influenced by all the other ions in the architecture, which makes the gate control
increasingly difficult with growth of the qubit number. Conventionally, one needs to use the
ion shuttling in a complicated trap architecture to avoid this undesirable influence [2,5,10,16].
However, if the gate speed becomes comparable with the local ion oscillation frequency, we
have an alternative scaling method without the requirement of ion shuttling: one can perform
the gate by exciting only the local PMs, which avoids the complicated influence from the
background ions. This result also improves the fast gate scaling method proposed in ref. [20],
as here to excite only the local PMs, instead of using hundreds of short pulses, we only need to
apply five long pulses with optimized amplitudes chopped from a continuous-wave laser beam.

The system we have in mind is N ions in a linear trap with a global trap frequency ω. To
perform arbitrary-speed quantum gates, we need to consider all the PMs [19, 20]. Without
laser beams, the ion motional Hamiltonian has the standard form H0 =

∑N
k=1 h̄ωk(a

†
kak+1/2)

with ak, a
†
k as the annihilation and creation operators of the k-th PM. The eigen-frequency of

the PM ωk ≡ √
µkω is determined by solving the eigen-equations

∑
nAnlb

k
n = µkbk

l , where
the matrix elements Anl = 1 + 2

∑N
p=1,p�=l 1/|ul − up|3 for n = l, and Anl = −2/|ul − un|3

for n �= l. The parameter un = x0
n/

3
√
e2/4πε0Mω2 with x0

n representing the equilibrium
position of the n-th ion and M denoting the mass [21]. To perform quantum gates, we need
to apply some spin-dependent force on the ions, which can be induced, for instance, through
the ac-Stark shift from two propagating laser beams with a relative angle and detuning [7].
As it is the case in experiments [7,11], we assume that when the ions are in their equilibrium
positions, the ac-Stark shifts for the ion qubit states |0〉 and |1〉 are equivalent. Then, under
the Lamb-Dicke condition and in the interaction picture with respect to H0, the Hamiltonian
for the spin-dependent force is given by

H = −
N∑

n,k=1

Fn(t)gk
n(a

†
ke

iωkt + ake
−iωkt)σz

n, (1)

where σz
n ≡ |1〉 〈1| − |0〉 〈0| is the Pauli operator, Fn(t) is the force on the n-th ion, and

gk
n =

√
h̄/2Mωkbk

n is the coupling constant between the n-th ion and the k-th PM. Using
Magnus’ formula, the evolution operator corresponding to the Hamiltonian (1) is found as [22]

U(τ) = exp


i

∑
n

φn(τ)σz
n + i

∑
l,n

φln(τ)σz
l σ

z
n


 , (2)

where φn(τ) =
∑

k[α
k
n(τ)a

†
k − αk∗

n (τ)ak] with αk
n(τ) = i

h̄

∫ τ

0
Fn(t)gk

ne
iωktdt, and φln(τ) =

2
h̄2

∫ τ

0

∫ t2
0

∑
k Fl(t2)gk

l g
k
nFn(t1) sinωk(t2 − t1)dt1dt2.

A conditional phase flip (CPF) gate on two arbitrary ions i and j can be accomplished with
identical spin-dependent forces on only these two ions with Fi(t) = Fj(t) = F (t). In this case,
the evolution operator U(τ) in eq. (2) exactly corresponds to a CPF gate Uij = exp[iπσz

i σ
z
j /4]

if φij(τ) = π/4 and αk
i(j)(τ) = 0 for all the modes k. In principle, it is always possible to

satisfy this set of constraints by designing a sufficiently complicated pulse shape for the forces.
However, this kind of solution typically requires exquisite control of many parameters that
determine the exact shape of F (t), which may be difficult experimentally. In the following,
we show that in typical cases it is only necessary to approximately satisfy these constraints,
allowing a much simpler class of laser pulse shapes to be used.
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To design gate, we optimize the gate fidelity subject to a certain class of laser pulses,
with simple control parameters. With an initial state |Ψ0〉, the final state would be given
by |Ψf 〉 = Uij |Ψ0〉 after a perfect CPF gate. However, with imperfect control, some of the
PMs will not evolve along a closed loop in the phase space corresponding to αk

i,j(τ) �= 0. In
that case, the final internal state of the ions is mixed and described by the density operator
ρr = Trm[U(τ)|Ψ0〉〈ψ0|U†(τ)], where the trace is over the motional state of all the ions. The
overlap between the ideal state |Ψf 〉 and the actual density operator ρr defines the fidelity
Fg = 〈Ψf |ρr|Ψf 〉. Without loss of generality, we choose here a typical initial state with
|Ψ0〉 = (|0〉i+ |1〉i)⊗ (|0〉j + |1〉j)/2 for calculation of the gate fidelity Fg. We assume that the
PMs are initially in thermal states with an effective temperature T . Then, with the evolution
operator U(τ) given in eq. (2), the gate fidelity Fg is found to be

Fg =
1
8
[2 + 2(Γi + Γj) + Γ+ + Γ−], (3)

where Γi(j) = exp[−∑
k |αk

i(j)(τ)|2β̄k/2], and Γ± = exp[−∑
k |αk

i (τ) ± αk
j (τ)|2β̄k/2]. The

parameter β̄k is given by β̄k = coth(h̄ωk/kBT ) = coth[
√

µk

2 ln(1 + 1/n̄c)], with kB denoting
the Boltzman constant and n̄c = (eh̄ω/kBT − 1)−1 representing the mean phonon number of
the center-of-mass mode [23].

To maximize the gate fidelity, we choose our control parameters to be simply the detun-
ing and the amplitude of the laser beams that introduce the spin-dependent force. With the
ac Stark shift from the Raman laser beams [7, 11], the force function F (t) has the form of
Ω sin(µt), where µ is determined by the detuning between the Raman laser beams and Ω
is the two-photon Rabi frequency. To introduce more control parameters, we can chop the
continuous-wave laser beam into m equal-time segments with the Rabi frequency for the p-th
(p=1, 2, · · · ,m) segment given by a controllable value Ωp. The force F (t) then takes the form
F (t)=Ωp sin(µt) for the interval (p−1)τ/m≤ t<pτ/m. This kind of amplitude control for the
Raman beams can be done, for example, with simple acoustic- or electro-optical modulators.

With a sufficient number of control parameters Ωp, it is always possible to make the gate
infidelity Fin ≡ 1 − Fg = 0. In this case, the conditions αk

i,j(τ) = 0 require
∑m

p=1 Ωp ×∫ pτ/m

(p−1)τ/m
sin(µt) exp[iωkt]dt = 0 for any k mode, which are a set of linear constraints for

the ratios fp ≡ Ωp/Ω1. For the case of N PMs, it is possible to satisfy these N complex
constraints with 2N real parameters fi (i = 2, 3, · · · , 2N + 1), so the required number of
segments is m = 2N + 1. In the following, we will show that we can actually use a much
smaller number of segments (control parameters) to reduce the gate infidelity to almost zero.

First we consider the case of the minimal control of the laser beams: a single amplitude
and detuning of the laser beam, or a single segment (m = 1). This situation corresponds
exactly to current experimental configurations [7, 11]. Without shape control of the laser
beams, all the known gate schemes require the gate speed to be much smaller than the ion
trap frequency for sideband addressing of a particular PM. Here, by taking into account all
the PMs, we show that one can still get a high-fidelity gate even if the gate speed approaches
the ion trap frequency, which is well beyond the limit set by the sideband addressing.

In our calculation, we first consider the gate acting on the two central ions in a 20-ion
array. In fig. 1a, the gate fidelity calculated from eq. (3) is shown as a function of the laser
detuning for various gate speeds. When the gate time τ is significantly larger than τ0 with
τ0 ≡ 2π/ω, the gate fidelity has local maximum at the detuning µ = ωk+2πl/τ with an integer
l. This corresponds to the well-known condition in the phase (the Milburn-Sorensen-Molmer)
gate [7,14,15] . When τ approaches τ0, it is better to choose a detuning with either µ < ω or
µ > max {ωk} to have a higher gate fidelity. The optimal detunings shift a bit downwards in
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Fig. 1 – For the two center ions in a 20-ion array, the gate fidelity (a) and the required Rabi fre-
quency (b) shown as a function of the detuning µ with τ = 50τ0, 5τ0, 2τ0, τ0, 0.05τ0, respectively. The
other parameters: n̄c = 3 and m = 1.

the region µ < ω and upwards in the region µ > max {ωk} compared with the values given by
µ = ωk+2πl/τ . A distinct result from this calculation is that the gate fidelity can be still very
high even if the gate speed goes well beyond the sideband addressing limit. For instance, the
optimal fidelity Fg � 99.97% (Fg � 99%) for the gate time τ = 2τ0 (τ = 1.5τ0), respectively,
with the corresponding detuning µ pretty close to ω − 2π/τ . If we further increase the gate
speed, the fidelity quickly goes down. For instance, the optimal fidelity is only 80% for τ = τ0
and reduces to the minimum of 25% (corresponding to a completely mixed state after the
gate) when τ ≤ 0.05τ0.

As the gate time τ approaches τ0, many PMs are involved during the gate, and they
ultimately get nearly disentangled with the ion internal state. To see this, we checked the
contribution to the conditional phase φij from all the other (non center-of-mass) PMs for
the case of the optimal detuning very close to ω − 2π/τ . The relative contributions from
the “spectator” PMs is about 1.3%, 10%, and 18.1% for the gate time τ = 50τ0, 5τ0, and
2τ0, respectively. It is a bit surprising that, for instance at τ = 2τ0, the “spectator” PMs
contribute 18.1% of the conditional phase but induce an infidelity of only 0.03%.

We have also calculated the required laser power (proportional to Ωp for the Raman con-
figuration) for achieving the high-speed gates, and the result is shown in fig. 1b. Note that the
optimal detuning µ not only maximizes the gate fidelity, but also requires the least amount
of laser power. We can see from this figure that with increase of the gate speed, the required
laser power grows slower than a linear increase in the region τ ≥ τ0. In current experiments,
typically τ ∼ 100τ0 [7], so with moderate increase of the laser power, one can expect a signifi-
cant increase of the gate speed even without any laser shape control. Similar calculations are
also done for gates on different pairs of ions in the array. The results are qualitatively similar,
although the gate fidelity is somewhat lower for the pair of ions with a larger distance. For
instance, with τ = 2τ0 and an optimal µ, the gate fidelity Fg is about 99% for the 1st and
2nd ions (at the edge of the trap), and is 95% for the 1st and 20th ions (the worst case).

The above calculation shows that without chopping of the laser beams, the gate fidelity
quickly decreases in the region τ ≤ 1.5τ0. To improve the gate fidelity, we need to introduce
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Fig. 2 – (a) The gate fidelity as a function of the detuning µ with m = 5 and τ = 0.18τ0, 0.1τ0, 0.05τ0,
respectively. (b) The optimal sequence of the force (Ωp) for the gate with τ = 0.1τ0 and µ = 10ω
(denoted by an arrow in (a)). The numbers n above the curve denote how many neighboring ions’
motion is taken into account for calculating the force sequence. With n = 18, all the PMs are included.
The force sequences are basically indistinguishable for n = 2, 4, 6, 18.

more control parameters by dividing the laser beams into m segments. One might expect
that to attain a certain gate fidelity, the number of segments m (i.e., the number of control
parameters) should continuously increase with 1/τ , as more and more normal PMs will be
substantially excited during such a fast gate. However, this is actually not the case as we
will see here. The key point is that as the gate speed becomes faster than the ion motional
response time, only the local PMs (which are superpositions of many normal PMs) of the
two ions involved in the gate will be substantially excited, greatly simplifying the control. To
make this point more precise, we characterize the ion response time by its local oscillation
frequency ωLi [20]. The ωLi for the i-th ion is defined as the eigen-oscillation frequency of
this ion if we fix all the other ions in the trap at their equilibrium positions. If the gate speed
becomes faster than ωLi, we expect that the gate in a large ion array could be reduced to an
effective two-ion problem, so with m = 2N +1 = 5 segments of laser pulses, we should expect
good gate fidelity. In the following, we test this idea by calculating the gate fidelity with 5
laser pulses under various gate speeds.

We still take a 20-ion array, and for the center ions the local ion oscillation frequency ωLi �
9.2ω. We calculate the gate fidelity with m = 5 and the optimized parameters Ω1,Ω2, · · · ,Ω5,
and the result is shown in fig. 2a for τ = 0.18τ0, 0.1τ0, and 0.05τ0, respectively. The fidelity Fg

is above 99.99% for all µ for τ ≤ 0.05τ0 ∼ 2π/ (2ωLi), clearly demonstrating the above idea.
Even for τ = 0.1τ0 ∼ 2π/ωLi, we find that the gate fidelity is above 99% at the optimal values
of the detuning with µ = 5.4ω, 7.0ω, 10.0ω, or 10.7ω. The corresponding force sequence Ωp

for µ = 10.0ω (corresponding to a fidelity Fg = 99.76%) is shown in fig. 2(b). To see that only
the local PMs are substantially involved during the gate, we also calculate the optimal Ωp

subject to the constraint that only a few neighboring ions around the target ions are allowed to
oscillate during the gate (all the other ions are assumed fixed at their equilibrium positions).
Including the motion of n (n = 0, 2, 4, 6) neighboring ions, the corresponding optimal force
sequences are shown in fig. 2(b). The force sequences become indistinguishable as soon as
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Fig. 3 – The gate fidelity as a function of the detuning µ with τ = 0.5τ0 and m = 1, 5, 13, 17,
respectively. The other parameters are the same as in fig. 1.

n ≥ 2, which means that the motion of the ions beyond the nearest neighbors has no influence
on the gate with a speed faster than ωLi. This result has important implications for using
the fast gates as a method to scale up ion trap quantum computation [20]. For a large-scale
computation with any ion trap architecture, as soon as the gate speed becomes larger than
the local ion oscillation frequency, we need only consider the influence of neighboring ions on
the target ions. The other ions, near their equilibrium positions, only provide an effective
static potential, and the design of the gate can always be well approximated by considering
only a few ions. So the control complexity of each gate does not increase with the number of
ions in the computation, which provides an effective scaling method.

It turns out that it is most difficult to perform a gate with the gate speed between the
trap frequency ω and the local ion oscillation frequency ωLi. In that region, one needs to
introduce more control parameters by dividing the laser beams into more segments. But even
in this worst case, it is still possible to get a high-fidelity gate with the number of segments m
much smaller than 2N +1. For instance, with 20 ions, the worst case occurs with a gate time
τ ∼ 0.5τ0, which requires the largest number of control parameters. For this worst case, we
plot the gate fidelity in fig. 3 as a function of µ with m = 1, 5, 13, 17, respectively. The fidelity
Fg has been above 99% at some optimal values of the detuning µ with m = 13, and a fidelity
larger than 98.5% can be reached at almost any µ with m ≥ 17. Note that this value is still
significantly smaller than 2N +1 = 41. We have also done calculations with different number
of ions in the array and for gates on different pairs of ions. The results are qualitatively very
similar to what we have described. For instance, with N = 40 ions, a gate fidelity higher than
98.8% can be reached for the two center ions with the number of segments m = 1 if the gate
time τ ≥ 1.7τ0; and a fidelity large than 99.6% is achievable with m = 5 segments of laser
beams if the gate time τ ≤ 2π/ωLi (in this case ωLi = 16.7ω for the center ions).

Before ending the manuscript, we briefly discuss some experimental imperfections. One
of them is the intensity and phase fluctuations of the laser beams for the Raman operations
(which influences the effective Rabi frequency). In this case, the fixed Rabi frequency is
replaced by the one with a small random fluctuation term ε, i.e., Ω[1+ ε]. The additional infi-
delity due to this fluctuation can be estimated by π2ε2/2. This term has the same dependence
on fluctuation ε as the conventional trapped ion quantum gates, and they typically contribute
to a small fraction of the infidelity in current experimenters [7]. Similarly, we can also discuss
the imperfection in the trap potential, such as its anharmonicity. This dependence is actually
the same as some other types of fast gates (see, e.g., the discussion in ref. [19]). With typical
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experimental configurations, the additional gate infidelity due to the trap anharmonicity is
significantly smaller than other contributions (such as those discussed in this manuscript).

In summary, we have described a scheme to achieve arbitrary-speed quantum gates on ions
immersed in a large ion array, through minimum control of the amplitude of a continuous-wave
laser beam. With the same control complexity as the conventional gates, we have shown how
to push the gate speed towards the ion trap frequency. We have also shown a version of fast
gates with five laser pulses which can operate in any large ion crystal and thus provide an
efficient scaling method for ion trap quantum computation.
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