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Modelling chemical reactions using semiconductor quantum dots
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Abstract – We propose the use of semiconductor quantum dots for simulating chemical reactions,
as electrons are redistributed among such artificial atoms. We show that it is possible to achieve
various reaction regimes and obtain different reaction products by varying the speed of voltage
changes applied to the gates forming quantum dots. Considering the simplest possible reaction,
H2+H→H+H2, we show how the necessary initial state can be obtained and what voltage pulses
should be applied to achieve a desirable final product. Our calculations have been performed using
the Pechukas gas approach, which can be extended for more complicated reactions.
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Detailed simulations of chemical and biological
processes can provide crucial insight on these and help
determining optimal experimental regimes and conditions.
However, the high-accuracy modelling, at the quantum
level, of even the simplest chemical reactions represents
a significant challenge because it encompasses changes
that involve the motion of electrons in the forming and
breaking of chemical bonds. On classical computers, the
resource requirements for the complete simulation of the
time-dependent Schrödinger equation scale exponentially
with the number of atoms in a molecule, imposing very
severe limitations in the systems that can be modelled.
However, recent developments of novel quantum compu-
tation schemes allow a polynomial scale of required
resources. Via these approaches, a quantum system can
simulate the behavior of another quantum system of
interest (see, e.g., [1–3]).
Semiconductor quantum dots can be described as arti-

ficial atoms (see, e.g., [4]). These have discrete electron
spectra revealing a shell structure and exchange correc-
tions to the electron energies according to Hund’s rules.
In this sense, coupled quantum dots can be regarded as
artificial molecules [5]. Depending on the tunnel coupling

strengths, electron distribution, and shell structure, the
dots can form both ionic- and covalent-like bonds. Mani-
festations of these molecular states in double-dot struc-
tures were observed by numerous groups [6]. The idea of
using the charge degrees of freedom in double-dot systems
as a qubit has been proposed theoretically [7] and imple-
mented experimentally [8].
Recent achievements in nanotechnology facilitate the

precise control of the number of electrons in quantum dots
and the tunnel energy splittings, by tuning the voltages
applied to the gates [9]. Measuring the current through
a quantum point contact in the vicinity of the structure
allows the determination of the exact charge locations [10].
Moreover, structures with three coupled quantum dots
have been recently fabricated and characterized [11,12]
with the potential to easily increase the number of dots,
as needed.
Based on these developments, we propose to employ the

electron redistribution in coupled quantum dot systems
for chemical reaction modelling. The number of electrons
in the first and second quantum dot shells are 2 and
4, respectively. Accordingly, a quantum dot with one
electron can be considered as an artificial hydrogen atom
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(one electron vacancy in the outer shell) and a quantum
dot containing four electrons can be viewed as an artificial
oxygen atom (two electron vacancies in the outer shell).
Consequently, the coupling of these three dots (which can
be easily controlled by changing the gates’ potentials) can
model the covalent molecular bond formation between
the four-electron dot and each of the one-electron dots.
This would represent the hydrogen oxidation reaction,
with the formation of an artificial water molecule.
Increasing the number of dots would allow the modelling
of more complicated reactions. Moreover, such artificial
chemical reactions can be done under conditions (such
as the presence of an external magnetic field) not readily
accessible in all real molecules. Furthermore, the speed of
the reactions could be easily varied in a very wide range.
In quantum chemistry, calculations of chemical reactions
usually employ the molecular Hamiltonian written in the
second-quantized form [3],

H =
∑
pq

〈p|H0|q〉 a†paq −
1

2

∑
pqrs

〈pq|Ve|rs〉 a†pa†qaras. (1)

Here a†p(ap) are Fermi operators responsible for a creation
(annihilation) of an electron in a single-particle orbital
|p〉, |pq〉= |p〉⊗ |q〉 is a two-electron state, H0 is a
single-particle Hamiltonian consisting of kinetic and
nuclear attraction operators, and Ve is a term related to
the electron-electron repulsion. The system of coupled
quantum dots is characterized by a similar Hamiltonian.
In the first step of the modelling, each single-particle
atomic orbital of the molecules should be mapped into a
single-particle orbital of the quantum dot system. Only
the active states participating in the reaction must be
selected. Afterwards we have to carefully choose control
parameters for the dots (gate voltages, barriers heights,
distances between dots, magnetic fields, etc.) with the aim
of mapping the energy spectrum of the real molecules to
the spectrum of the dots (with a fixed scale coefficient).
The possibility to do this efficiently is supported by
recent experiments [12] where four quantum states of
three dissimilar semiconductor quantum dots were tuned
in resonance to form multiple quadruple points on the
stability diagram, thus demonstrating the fine tunability
that quantum dot structures can achieve. Therefore, even
though, contrary to three-dimensional atoms, the dots
are quasi–two-dimensional objects, we believe that the
proposed approach can qualitatively and sometimes quan-
titatively describe the outcome of real chemical reactions.
The Hamiltonian of the system under study can be

separated into two parts

H(t) =H0+λ(t)V (2)

where H0 describes the invariant part and λ(t)V is
responsible for the reaction. The time dependence
of the parameter λ(t) can be chosen specifically for
various reaction regimes. For small λ̇≡ dλ/dt we have
an adiabatic evolution, with the system following its

ground state during the reaction. For extremely large
λ̇, the system’s state remains unchanged; and for the
intermediate case, several Landau-Zener transitions may
occur at the avoided crossing points, with various states
being populated after the reaction. It should be noted
that even the “slow” evolution mentioned above must be
faster than the decoherence time for the coupled quantum
dots system, which is about 1 ns according to ref. [8]. In
contrast to adiabatic quantum computing [13,14], where
the aim is to keep the system either at or near its ground
state, here we focus on a completely different issue: how
to control the population of desirable (not necessarily
ground) states by changing the speed of evolution and the
shape of λ(t). Harnessing the constructive features of the
Landau-Zener effect allows us to travel more effectively
in the whole Hilbert space, not only near its bottom
part. From this point of view, the proposed approach can
be considered as a step towards a better control of the
quantum-mechanical state of the system, which is one of
the broad objectives of quantum information processing.
The evolution of the instantaneous energy levels
En(λ) and eigenfunctions |n〉 of the Hamiltonian (2)
can be exactly mapped [14] on the classical Hamiltonian
dynamics of a 1D gas of fictitious particles (Pechukas
gas [15]), with positions xn(λ) =En(λ) and momenta
vn(λ) = Vnn(λ). The “particle repulsion” is determined
by the additional set of variables, the “angular moments”
lmn(λ) = [Em(λ)−En(λ)]Vmn(λ):
d

dλ
xm = vm,

d

dλ
vm = 2

∑
m �=n

|lmn|2
(xm−xn)3 ,

d

dλ
lmn =

∑
k �=m,n

lmklkn

(
1

(xm−xk)2 −
1

(xk −xn)2
)
.

(3)

Note that all the matrix elements in eq. (3) are taken
between the instantaneous eigenstates of the Hamil-
tonian (2). The probabilities of the Landau-Zener
transitions between states m↔ n is given by

pm,n = exp

(
− (∆

m,n
min )

3

4π�lmn|λ̇|

)
, (4)

where ∆m,nmin is the minimal separation of levels at avoided
crossing. We chose to use the Pechukas gas approach
because of its potential scalability for systems with a large
number of elements [14].
Here, we examine the simplest possible chemical reac-

tion: the scattering of a hydrogen atom from a hydrogen
molecule (H+H2→H2+H), see fig. 1. Even though
this reaction was performed and theoretically described
for nearly a century, some details (not understandable
without accurate modelling at the quantum level) were
observed recently [16] (where the slightly different
reaction, H+D2→HD+D, was studied). Although the
reaction was dominated by a direct recoil mechanism
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Fig. 1: (Color online) Schematic diagram of the H2+H→
H+H2 reaction showing the bonds (upper panel) and the
electron redistribution in the coupled quantum dot system
(lower panel).

(when the incident hydrogen atom recoils along its
original path after removing a deuterium atom to form a
HD molecule), a second slower reaction mechanism occurs
with a time delay of 25 fs. One of the possible explana-
tions of such time delay is the formation of a metastable
“quasi-bound” quantum state decaying into the reaction
products. Such a system, with three nuclei and three
electrons, can be mapped onto the triple-quantum-dot
system with the Hamiltonian

H =H3D +HC +Htun, (5)

where

H3D =
∑
S=1,2

(EASNAS +EBSNBS +ECSNC1S) ,

HC = UANA1NA2+UBNB1NB2+UCNC1NC2

+UABNANB +UBCNBNC +UACNANC ,

Htun = −
∑
S=1,2

(
∆ABa

†
ASaBS +∆BCa

†
BSaCS

+∆ACa
†
ASaCS +h.c.

)
, (6)

S = 1(2) for spin-up(-down) electrons, A,B,C are the
dot indices and NA,B,C are the total populations of the
corresponding dots. The Hamiltonian, eqs. (5), (6), has
20 eigenfunctions and eigenvalues for the three-electron
case, which can be determined from the solution of the
corresponding Schrödinger equation for specific values
of the system parameters. It should be noted that these
parameters can be controlled by the gates’ voltages
applied to the triple-dot system. We will use the following
pulse sequence: in the first stage, the desired initial state
is formed; in the second stage, an extremely fast restoring
pulse is used to return the gates into their initial conditions
while simultaneously preserving the system state; finally,
in the third stage, the desired final state is obtained.
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Fig. 2: (Color online) Energies of the three-electron states in the
triple-dot structure vs. the parameter λ representing different
gate voltages. Inset: magnified region with several avoided level
crossings.

To better link to experiments, we choose the intradot
Coulomb energies UA =UB =UC = 2meV, the interdot
Coulomb energies UAB =UBC =UAC = 0.2meV, and the
tunnel matrix elements ∆AB =∆BC =∆AC = 0.05meV.
We also introduce a small Zeeman energy E1−E2 =
0.003meV for all three dots, to lift the spin degeneracy.
The dot energies before reaction (λ= 0) are chosen as
EB =EC =EA+0.5EP with EP = 2.2meV. In this case,
the ground state for the Hamiltonian, eq. (5), is given by

Ψ1(λ= 0) =

√
2

3
a†A1a

†
B2a

†
C2|0〉

−
√
1

3

a†B1a
†
C2+ a

†
B2a

†
C1√

2
× a†A2|0〉, (7)

i.e., it is a superposition of the state a†A1a
†
B2a

†
C2|0〉, where

a single electron is located in each dot (no bonds, with a
probability 2/3), and the state, a spin-triplet T0, formed
in the dots B and C, plus one electron located on the
dot A (with a probability 1/3). It should be noted that
the real chemical bond is formed by the spin-singlet state
only. The first excited state is the spin-singlet formed in
the dots B and C, plus one electron located in dot A

Ψ2(λ= 0) =
a†C2a

†
B1− a†C1a†B2√
2

× a†A2|0〉. (8)

In the first stage, it is necessary to form an initial state,
the spin singlet, describing a chemical bond between dots
A and B (see fig. 1). We can do it starting at λ= 0
from the ground state (7) and proceeding to the excited
state Ψ7(λ= 0.5). We start with examining the response
of the system to the sweep V =EP (NC −NB) where λ is
changed linearly from 0 to 0.5 with various speed. The
variations of the state energies with λ are shown in fig. 2.
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Fig. 3: (Color online) Level populations at the end of the
parametric evolution of the Hamiltonian (2) when starting from
the ground (main panel) and the first excited (inset) states for
different reaction speeds (in units of meV/�): λ̇= 10−3 (blue
diamonds), 10−2 (red crosses in the main panel), 7.5 · 10−2 (red
crosses in the inset), 10−1 (black circles in the main panel),
1 (black circles in the inset). The dashed lines connecting the
symbols are added as a guide to the eye.

Several avoided level crossings can be clearly seen in this
figure, and in the inset magnifying the region with many
possible Landau-Zener transitions. The reaction products
are shown in fig. 3 for various speeds of change. In the main
panel, the initial state is the ground one; while in the inset
we start from the first excited state. At low speeds only
the states near the ground state can be occupied at the
end of the evolution (adiabatic sweep). When λ̇ increases,
certain states can be populated while most other states are
almost empty. This subset of occupied states is controlled
by the sequence of the avoided crossings and is unique for
a chosen parametric evolution (i.e., a chosen H0 and V ).
Thus, one can simulate a desirable chemical/nuclear reac-
tion by changingH0 and/or V , i.e., by changing the device
architecture and gate structure, as well as by occupy-
ing certain initial states. However, for chemical reactions
with complicated potential energy surfaces the possible
outcomes are numerous, and we can adjust the function
λ(t) to follow a specific reaction pathway. Even for a fixed
pathway, a variation of the speed λ̇ allows us to switch
with a definite probability between the output states (i.e.,
output products). In particular, it is evident from fig. 3
that at the relatively fast sweep with almost 0.9 probabil-
ity the final state of our reaction becomes

Ψ7(λ= 0.5) =
a†A2a

†
B1− a†A1a†B2√
2

× a†C2|0〉, (9)

which is the spin-singlet in the dots A and B, plus one
electron located in dot C. It should be noted that this is

2 4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

1.0

Selective sweeping
with λλλλ1=0.3 and λλλλ2=0.325

Selective sweeping
with λλλλ1=0.2 and λλλλ2=0.225

O
cc

u
p

at
io

n
P

ro
b

ab
ili

ty

Level number

Fig. 4: (Color online) Occupation of states at the end of the
parametric evolution when the step-like signal λ(t), described
in the text, is applied with λ1 = 0.2, λ2 = 0.225 (red crosses)
and λ1 = 0.3, λ2 = 0.325 (blue circles). Note that output prod-
ucts corresponding to red crosses were found for almost all
values of λ1 and λ2, while output products shown by blue
circles are unique and can be achieved only for a specific values
of λ1 and λ2.

essentially the same state as Ψ2(λ= 0), besides a change
of the dot numeration.
In the second stage, we apply a very fast pulse,
Vrestore = 0.5EP (NA+NB)−EPNC , to restore the initial
gate potentials corresponding to the value λ= 0. After
this pulse, the state of the system remains unchanged
and the initial state of the reaction H+H2→H2+H is
formed, as shown on the left side of fig. 1.
In the third stage, we apply a pulse V ′ =EP (NB −NA),

changing λ from 0 to 0.5, to achieve the configuration
shown on the right side of fig. 1, However, this state,

Ψ′7(λ= 0.5) =
a†C2a

†
A1− a†A2a†C1√
2

× a†B2|0〉, (10)

can only be achieved with small probability P = 0.1, even
after a fast enough sweep (see inset of fig. 3). To overcome
this, we apply the following selective sweep, using a step-
like signal, λ(t) = λ̇1t for 0<λ1 <λ<λ2 and λ(t) = λ̇2t
overwise, with λ̇1� λ̇2. In this case, we can activate
Landau-Zener transitions at avoided crossings within a
desirable interval λ1 <λ<λ2. Based on this technique we
can mainly achieve a unique output quantum state (or
product) 10 as shown in fig. 4 for λ1 = 0.3 and λ2 = 0.325
(blue online circles). It is evident that the desired final
state has a sufficiently large probability P = 0.6. However,
this large probability cannot be reached without carefully
choosing λ1 and λ2. Indeed, the red online crosses in fig. 4
show the standard final occupation probability.
In summary, we propose to model chemical reactions

via electron redistributions between coupled semiconduc-
tor quantum dots. As an example, the simplest chemical
reaction, H+H2→H2+H is examined here with the three
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nuclei and three electrons being simulated by the three-
electron states in the triple-dot structure. We achieve the
following bond redistribution between the three dots after
the following procedure: i) starting from the ground state
of the three-dot system which contains (with P = 1/3) a
spin-triplet of the electron pair B ==C, a fast adiabatic
sweep is used to obtain the spin-singlet state for electrons
between dots A and B (A==B covalent bonding) with
P = 0.9; ii) applying a sharp restoring pulse we return
to the initial Hamiltonian, without changing the state of
the system; iii) we apply a selective adiabatic sweep to
the dots B and A and transfer the bond to the covalent
coupling between dots C and A, C ==A (with P = 0.1
with fast, but not selective sweep, and with P = 0.6 with
a slow but selective sweep), which is described by the
spin-singlet state of the electron pair which is shared
by the dots A and C. In stages i) and ii), the initial
state (left side of fig. 1) is formed and in the stage iii)
it is transferred to the final state (right side of fig. 1). It
should be emphasized that the final state is obtained with
non-unit probability, indicating possible different reaction
outcomes, as it is the case with real experiments [16].
Complex chemical reactions are usually characterized by
a sophisticated potential energy surface. A fraction of this
surface, containing a targeted simulation pathway, can be
mapped (after rescaling) into the energy landscape of a
quantum dot structure. Then, a fine-tuning of the func-
tion λ(t) can direct the artificial reaction along a certain
chosen pathway on the potential energy surface, with a
distribution of the possible outcomes which reflects the
results of real chemical transformations. We believe that
the direct emulation of chemical reactions with quantum
electronic devices provides a new way in analogous quan-
tum information processing which complements standard
schemes of quantum state control and manipulation.
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