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Abstract
Signal processing algorithms for guided wave pulse echo-based structural
health monitoring (SHM) must be capable of isolating individual reflections
from defects in the structure, if any, which could be overlapping and
multimodal. In addition, they should be able to estimate the time–frequency
centers, the modes and individual energies of the reflections, which would be
used to locate and characterize defects. Finally, they should be
computationally efficient and amenable to automated processing. This work
addresses these issues with a new algorithm employing chirplet matching
pursuits followed by a mode correlation check for single point sensors. Its
theoretical advantages over conventional time–frequency representations for
SHM are elaborated. Results from numerical simulations and experiments in
isotropic plate structures are presented, which show the capability of the
proposed algorithm. Finally, the issue of in-plane triangulation is discussed
and experimental work done to explore this issue is presented.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

1.1. Motivation

In recent years, there has been an emerging need for damage
prognosis systems in aerospace structures. Such systems
would automatically provide the user with near-real-time
information about the structure’s condition and its ability to
continue service. In addition, they should also be able to give
estimates of the remaining service life, thereby allowing repairs
to be scheduled accordingly. Their importance has particularly
come to the fore in the light of aerospace accidents such as
the Aloha Airlines fuselage separation [1], the disintegration
of the Space Shuttle Columbia during re-entry [2] and, more
recently, the Chalk’s Ocean Airways crash [3]. While both the
aircraft incidents involved aging aircraft with fatigue-induced

1 Author to whom any correspondence should be addressed.

damage, the Space Shuttle disaster was due to its inability to
detect damage to the wing by falling debris. In all cases,
the presence of damage prognosis systems could have saved
several lives. Apart from the obvious life safety benefits, the
monetary and labor savings benefits of such systems would be
very significant. More details on the motivational drivers for
damage prognosis in civil, mechanical and aerospace structures
can be found in Farrar et al [4], where it is aptly described as a
‘grand challenge’ engineering problem for the 21st century.

1.2. Structural health monitoring and guided wave
approaches

Structural health monitoring (SHM) is the diagnostic part that
directly supports the damage prognosis. It usually consists of a
structurally integrated network of transducers and processors
that use a tested algorithm on the acquired data from the
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(a) (b)

Figure 1. Dispersion curves for Lamb modes in an isotropic aluminum plate structure: (a) phase velocity and (b) group velocity. The circles
mark the excitation center frequency for the FEM simulations in section 1.3.

transducers to evaluate the structure’s condition. The SHM
component would decide whether damage is present in the
structure and, if so, furnish information about its location,
severity and type. This would enable the damage prognosis
system to make an intelligent estimate about the service
potential of the structure. Among various technologies under
investigation for SHM, there are guided wave (GW)-based
approaches. These essentially involve exciting the structure
with high frequency stress waves and processing the difference
in structural response with respect to a baseline signal for the
pristine condition using a tested algorithm to detect damage
and characterize it, if present. Details on the basics of GW
SHM and a brief comparison with other SHM methods are
presented in another work by the authors [5]. The idea of GW
SHM derives from GW non-destructive testing (NDT), which
is now a well-established industrial technology. However, GW
testing for SHM and NDT differs in two key aspects. The
first one is that the mass and space penalty associated with
transducers for NDT make them unsuitable for permanently
mounting onto aerospace structures. Therefore, typically
surface-bonded/embedded piezoelectric wafer transducers are
used. The other significant difference is that the signal
processing and inference about the presence of damage and
its characteristics should be done automatically in near-real-
time by a processor and not by a technician’s judgment
during offline maintenance as in NDT. This present paper
addresses the signal processing aspect of GW SHM. In
particular, drawbacks of conventional approaches to this aspect
are highlighted and a new approach that overcomes these is
presented and validated.

GWs can be defined as stress waves forced to follow
a path defined by the material boundaries of the structure.
For example, when a beam is excited at high frequency,
stress waves travel in the beam along its axis away from the
excitation source, i.e. the beam ‘guides’ the waves along its
axis. Typical aerospace structures are composed of several
beam, plate and shell substructures, each of which can act as
waveguides, thereby making them attractive application areas
for GW SHM. Typically, more than one mode is possible
in a waveguide at any frequency. Furthermore, each mode
has a unique dispersion curve, which represents the relation
between phase velocity (denoted cp) and frequency. In

isotropic plate structures at any excitation frequency, at least
two modes are possible (see figure 1(a)). Another important
characteristic is the group velocity (denoted cg, see figure 1(b)),
defined as the derivative of the angular frequency with respect
to the wavenumber. For an isotropic medium, it gives a
very good approximation to the speed of the peak of the
modulation envelope of a narrow frequency bandwidth pulse.
This approximation improves in accuracy as the pulse moves
further away from the source or if the GW mode becomes
less dispersive. Further details on the fundamentals of GW
propagation can be found in textbooks such as the ones by
Miklowitz [6] or Graff [7].

1.3. Issues in GW signal processing for SHM

Signal processing is a crucial aspect in any GW-based SHM
algorithm. The objective is to extract information from the
sensed signal to decide if damage has developed in the structure
and, if so, characterize it in terms of location. Information
about damage type and severity is also desirable from the signal
for further prognosis. However, classifying and quantifying
damage usually requires some pattern recognition algorithm
which uses the output from the signal processing. The present
work addresses signal processing, but not pattern recognition.
To assess the issues involved in signal processing for GW
SHM, results from a couple of illustrative finite element
method (FEM) simulations are presented in this section.
Consider a 2D aluminum plate structure, modeled using a
finite element mesh of 2D plane strain elements as shown in
figure 2(a) (the structure is infinitely wide normal to the plane
of the paper). In the first simulation, a notch is present. It is
0.5 mm deep and 0.25 mm across, at a distance of 7.5 cm from
the plate center. There are surface-bonded thin piezoelectric
wafer actuators on each free surface at the center. The actuators
are modeled as causing shear traction along their free edges,
which has been found to be an effective model in previous work
by the authors [8]. The actuators are excited symmetrically
with a 2.5-cycle Hann-windowed sinusoidal toneburst with
center frequency of 275 kHz. This frequency is highlighted
in figure 1. Even though only the S0 mode is excited in this
case, when it interacts with a defect, all possible modes are
scattered from the defect. At 275 kHz, three GW modes (the
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Figure 2. (a) 2D plate structure with one notch; (b) 2D plate structure with two notches; (c) surface axial strain waveform at the center for the
structure in (b); (d) surface axial strain at the center for the structure in (a).

Lamb modes highlighted in figure 1 and the SH-modes) are
possible in a 1 mm aluminum plate. Due to the 2D nature of
the simulation, SH modes are not possible, and are therefore
not considered. Thus, the two possible modes that can be
reflected and transmitted from the defects are the A0 and S0

Lamb modes. The surface axial strain wave at the center of
the plate from the FEM analysis, done using ABAQUS [9], is
shown in figure 2(d). The first wave packet is the actuation
pulse, which is followed by the S0 mode reflection from the
notch. Subsequently, the slower A0 mode reflection from
the notch is received and finally the S0 reflection from the
boundary reaches the center of the structure. In this case, the
presence and location of the notch was known beforehand,
but in SHM, one has to estimate this information given the
signal. The signal processing algorithm must decide what
mode each reflected wave packet corresponds to, what the
center frequency of the packet is (though the center frequency
of excitation is known, the defect may be sensitive to higher
or lower frequencies and therefore the center frequency of the
reflection can change), and what the precise time of arrival
is. Once the mode and the time–frequency center of the
wave packet are known, the location of the defect can be
estimated, knowing the group velocity for that mode. Now
consider a similar structure as before (figure 2(b)), with the
main difference being that there are two notches. In this
case, as before, in the surface strain waveform at the center
(figure 2(c)), one can see the actuation pulse, followed by
the S0 mode reflection from the notch closer to the center
and the S0 mode boundary reflection. However, in this case,
the A0 mode reflection from the notch closer to the center
overlaps with the S0 mode reflection from the notch closer to
the free end. Therefore, the signal processing algorithm should
also be able to separate overlapping multimodal reflections.

In addition, for SHM, since the signals are to be processed
continuously in near-real-time, it is highly desirable to have
a computationally efficient algorithm. Finally, the algorithm
must be robust to noise.

1.4. Objective of this work

First, conventional solutions to the problem of GW signal
processing for SHM are described and their shortcomings are
highlighted. A new algorithm for GW signal processing for
single point sensors using chirplet matching pursuits and mode
correlation is then proposed and described in detail. The
algorithm is designed for pulse-echo-based methodologies. Its
ability to overcome the problems associated with conventional
solutions for GW SHM is demonstrated using FEM and
experimental results in isotropic plate structures. At the
end, damage triangulation with multiple transducers in
isotropic plate structures using this algorithm is discussed and
demonstrated with experimental results.

2. Conventional approaches to GW signal processing

Conventional solutions to the problem of GW signal processing
adapted from NDT are usually in the form of some
time–frequency representation (TFR). Unlike the well-known
Fourier transform, which provides ‘global’ information about
the frequency content and is thereby suited for signals with
stationary frequency content (meaning their frequency content
does not change with time), TFRs yield the ‘local’ frequency
content and are better suited for non-stationary-frequency
signals. The simplest example of a TFR is the short time
Fourier transform (STFT), in which the signal is divided into a
number of small overlapping pieces in the time domain, each
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Figure 3. WVD of two linear modulated chirps.

piece is multiplied in time using a fixed modulation window
and the Fourier transform is used on the resulting signal. Thus,
the STFT, S(t, ω), of a signal, s(t), and the corresponding
time–frequency energy distribution, E(t, ω), obtained from it
(called the spectrogram) are [10]

S(t, ω) = 1

2π

∫ ∞

−∞
s(τ)h(τ − t)e−iωτ dτ

E(t, ω) = |S(t, ω)|2
(1)

where h(t) is the modulation window. Thus, an image is
obtained for each point of the time–frequency plane (t , ω).
This TFR can be implemented quickly using the fast Fourier
transform (FFT) for digital signals. Another important TFR is
the Wigner–Ville distribution (WVD), which is defined as [10]

W (t, ω) = 1

2π

∫ ∞

−∞
s
(

t + τ

2

)
s∗

(
t − τ

2

)
e−iωτ dτ (2)

where ∗ indicates the complex conjugate. An advantage
of the WVD is that it can exactly localize sinusoids, Dirac
impulses and linear chirps. However, for other signals it always
has additional interference terms. Figure 3 illustrates this
point using the WVD of a signal composed of two Gaussian
modulated linear chirps. The interference terms can be reduced
by using a smoothing filter f (t, ω) in the time–frequency
plane. This yields the generic smoothed WVD [10]:

SW (t, ω) =
∫ ∞

−∞

∫ ∞

−∞
f (t − τ, ω − �)W (τ,�) dτ d�.

(3)
In fact, it can be shown [10] that the spectrogram and
energy distribution from all commonly used TFRs such as
the scalogram (which derives from the wavelet transform),
the Hilbert Huang spectrum, and others can be represented
in the form of equation (3). The disadvantage of smoothed
WVDs is that they no longer can exactly localize linear chirps,
sinusoids and Dirac impulses. One always compromises
between the interference terms and time–frequency resolution.
Further discussion on TFRs can be found in the books by
Cohen [10] and Mallat [11]. For GW signal processing,
researchers typically use some smoothed WVD followed by
post-processing on the images. This isolates GW packets

Figure 4. Spectrogram of signal in figure 2(d).

and locates their time–frequency centers, spread in the time–
frequency plane and total energy. Finally, their modes are
classified using the time–frequency ‘ridges’ of the reflections
(these are the loci of the frequency centers for each time
instant within each reflection). For example, Prosser et al
[12] used the pseudo-WVD to process GW signals for material
characterization of composites. Niethammer et al [13]
reviewed four different time–frequency energy distributions to
gauge their effectiveness in analyzing GW signals, namely,
the reassigned spectrogram, the reassigned scalogram, the
smoothed WVD and the Hilbert spectrum. Reassignment
is a post-processing technique for improving resolution and
decreasing spread in TFRs. While each technique was found to
have its strengths and weaknesses, the reassigned spectrogram
emerged as the best candidate for resolving multiple, closely
spaced GW modes in terms of time and frequency. Kuttig et al
[14] and Hong et al [15] used new TFRs based on different
versions of the chirplet transform which has additional degrees
of freedom (time shear and frequency shear) compared to the
STFT. It enables superior resolution compared to conventional
TFRs, but this comes at the cost of greater computational
complexity. The above works were all mainly concerned with
material characterization or offline NDT. Among works that
have used TFRs for GW SHM, Sohn et al [16] and Lemistre
and Balageas [17] used scalograms while Ihn and Chang [18]
used spectrograms. Quek et al [19] and Salvino et al [20] used
the Hilbert–Huang transform to process GW signals in plate
structures for SHM.

As an illustrative example, the spectrogram for the signal
in figure 2(b) over the excited bandwidth is shown in figure 4
(the modulation window used was identical to that for the
excitation signal). The spectrogram is plotted on a decibel
scale (logarithmic) with the peak value over the image as
reference. For this simple example, the STFT seems capable
of isolating the individual reflections, identifying their time–
frequency centers and classifying their modes using the time–
frequency ridges, which are highlighted with white lines in
each reflection. However, as is shown in section 5, these
are, in general, incapable of resolving overlapping multimodal
reflections. Superior TFRs that might be capable of resolving
such overlapped signals typically have a high computational
cost associated with them. Another drawback of smoothed
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WVDs is difficult automated post-processing. In addition,
these are more suited for broadband signals, while in GW
SHM, usually narrow-band signals are used, in order to
minimize signal spreading due to dispersion.

Another approach that has been tried for GW signal
processing is the use of multi-element sensor arrays, such as in
the work by Alleyne and Cawley [21] and El Youbi et al [22].
In this approach, the information about the spatial variation of
the data over the sensing area of the array is used to decide the
mode of each reflection. That is, a multi-dimensional Fourier
transform is applied to the signals involving both time and
spatial transformations. However, a large number of closely
spaced transducers to avoid aliasing and sophisticated multi-
channel data capture and processing hardware are needed to
implement this approach for GW SHM.

3. Chirplet matching pursuits

The matching pursuits approach to signal processing is a rel-
atively new concept introduced by Mallat and Zhang [23].
Qian and Chen [24] developed a similar algorithm indepen-
dently around the same time. This ‘greedy’ algorithm itera-
tively projects the signal onto a large and redundant dictionary
of waveforms and chooses a waveform from that dictionary
that is best adapted to approximate part of the waveform. To
understand this algorithm, consider a complex valued signal
f1(t) that belongs to the Hilbert space L2(R), where R is the
set of real numbers. Suppose this space is an inner product
space with the inner product 〈· , ·〉. Then, the following hold:

‖ f1‖ =
∫ ∞

−∞
| f1(t)|2 dt < ∞

〈 f1, f2〉 =
∫ ∞

−∞
f1(t) f ∗

2 (t) dt

(4)

where f2(t) also belongs to L2(R). The property of finiteness
of the 2-norm, defined by the first expression in equation (4),
also holds for f2(t). A dictionary D of all possible expected
wave structures, or ‘atoms’, is used, i.e. D = {ki}, where
ki ∈ L2(R) and ‖ki‖ = 1. The 2-norm is also used as a metric
of signal energy in this work. Then, the matching pursuit
algorithm decomposes a signal f (t) ∈ L2(R) into m atoms
in the following iterative way (with R0 f = f ):

(a) Choose the best atom in D:

kim = arg max
ki ∈D

∣∣〈Rm−1 f, ki

〉∣∣ . (5)

(b) Compute the new residual after subtracting the component
along the best atom chosen in (a):

Rm f = Rm−1 f − 〈
Rm−1 f, kim

〉
kim . (6)

Thus, it decomposes the signal into a linear expansion
of waveforms chosen to match best the signal structure.
Noise, in general, is uniformly distributed over the time–
frequency plane. Since the matching pursuit algorithm looks
for concentrated energy chunks in the time–frequency plane,
it is inherently robust to noise. Due to this approach,
which is distinct from conventional TFRs, the time–frequency
centers, the spread in the time–frequency plane and the

Figure 5. A stationary Gaussian atom and its WVD.

energy of the individual reflections are readily known, and
no post-processing needs to be done on the output. It
becomes much easier to automate this process in comparison to
algorithms using conventional time–frequency representations.
In those solutions, to automate the process, image processing
algorithms would have to be used subsequent to the generation
of the time–frequency plot to isolate the individual reflections.

In the original paper on matching pursuits [23], an efficient
algorithm using a Gaussian modulated time–frequency atoms
dictionary is described. This dictionary consists of the atoms:

k(l,u,ω)(t) = 1√
l
g

(
t − u

l

)
exp (iω (t − u))

with g(t) = 21/4 exp
(−π t2

)
(7)

where u is the time center of the atom and ω is the angular
frequency center of the atom. Also, l is the scale of the
atom, which is a metric representing the dilation along the
time axis of the Gaussian window g(t). It is indicative of
the atom’s time–frequency spread. These have stationary
time–frequency behavior, i.e. the frequency at which the peak
energy occurs for each time instant does not change with
time, as would be seen in a WVD-like plot (see figure 5).
Once the decomposition is done, it is possible to construct
a time–frequency plot of the constituent atoms without the
interference terms obtained using the conventional WVD.
Thus, the resolution possible from such an approach is always
superior to that from conventional smoothed WVDs. In
addition, the use of Gaussian windows ensures that the atoms
are optimal in terms of having minimal product for the root-
mean-squared (RMS) pulse time width and RMS frequency
bandwidth [25]. The matching pursuit algorithm with this
dictionary has been explored by some researchers for GW
signal analysis [26, 27]. However, the implicit assumption
in these works is that the signals are unimodal and non-
dispersive. The atoms in this dictionary are ill-suited for
analyzing dispersive signals, which have non-stationary time–
frequency behavior. Furthermore, these atoms would not help
in GW mode classification, since different modes with the
same energy at the same time–frequency center would yield
similar atoms.

More recently, Gribonval [28] introduced a computation-
ally efficient algorithm for matching pursuits using a dictionary
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Figure 6. A Gaussian chirplet and its WVD.

consisting of Gaussian modulated chirplet atoms. That is, the
dictionary comprises of atoms of the form:

k(l,u,ω,c)(t)

= 1√
l
g

(
t − u

l

)
exp

[
i
(
ω (t − u) + c

2
(t − u)2

)]
(8)

where c is the chirp rate of the atom. These have linear time–
frequency behavior (see figure 6). Once the GW signal is
decomposed into chirplets, the additional parameter, i.e. the
chirp rate, can be used to identify the modes of the individual
reflections. This algorithm is even more computationally
efficient than the spectrogram. The computational time to
decompose an N -point signal into M atoms is just O (M N ),
whereas the complexity involved in generating the signal’s
spectrogram, not including post-processing, is O (N 2 log2 N).
Thus, the chirplet matching pursuit seems a very attractive
option for GW signal processing. In the next section, a detailed
outline of the overall algorithm proposed using the chirplet
matching pursuits approach is presented.

4. Proposed algorithm for isotropic plate structures

4.1. Database creation

This algorithm is designed for GW SHM in isotropic plate
structures using the pulse–echo method. That is, the structure
has a central actuator excited with a high frequency pulse and
a collocated sensor receiving the GW echo pulses from the
defects, if any, and the boundaries. This presumes that a set
of baseline signals is available corresponding to the pristine
condition for the structure. For this algorithm, initially a
database of the chirplet chirp rates for the possible modes
over the range of feasible time–frequency centers must be
generated. The frequency centers are limited to the bandwidth
excited in the structure, while the time centers are limited to
the period between the end of the excitation signal and the
time taken for the slowest mode from the boundary to reach
the sensor. For this, it suffices to calculate these values for
each mode at discrete points in the feasible region of the time–
frequency plane. Then, use bilinear interpolation if values for
other points are needed. It should be mentioned that in this
work the scale l of the chirplet atoms in the dictionary was kept
fixed. The chosen value of l , say l0, was such that the spread of

the atom in the time domain was slightly larger than that of the
excitation signal (20–30% larger by rule of thumb; however,
for very dispersive signals, this might need to be further
increased). To generate the database, waveforms for each mode
at the discrete time–frequency points are generated assuming
the defect is a point-scatterer emitting circular crested waves.
These waveforms represent the expected response of the
piezoelectric wafer sensor collocated with the actuator. As
discussed in earlier work by the authors [8], the response of
a surface-bonded piezoelectric wafer is proportional to the
average in-plane extensional strain over its surface area (this
assumes that the sensor is thin and compliant enough to not
affect the GW incident on it). For the FEM simulations, the
waveforms represent the surface displacement along the plate
thickness direction at the center of the plate. To do this,
for each mode, the radial distance of the defect needs to be
calculated. The phase velocity and group velocity curves for
the isotropic plate structure are assumed known. Suppose
the S0 mode was excited predominantly (or purely) and the
excitation frequency is low enough so that the higher Lamb
modes are not possible. Since a narrow bandwidth pulse is
used, the group velocity can be used as the speed of pulse
propagation to get defect location estimates. Therefore, the
radial distance estimates for the possible modes at the time–
angular frequency center (t0, ω0) are

rS0 = (t0 − te/2) · cgS0
(ω0)

2

rA0 = (t0 − te/2) · cgS0
(ω0) · cgA0

(ω0)(
cgS0

(ω0) + cgA0
(ω0)

)
(9)

where te is the time span of the excitation signal and cg (ω0) is
the group velocity of a particular mode at angular frequency
ω0. Furthermore, a minor correction term equal to half
the actuator size along the direction of propagation is added
to these estimates. This is because, for surface-bonded
piezoelectric actuators, the GWs originate from the edge of the
transducer, and not its center [8]. Next, the wavenumbers for
each mode are calculated over the excited angular frequency
range:

ξS0(ω) = ω

cpS0
(ω)

ξA0(ω) = ω

cpA0
(ω)

. (10)

It is assumed that, after the GW excited by the actuator hits
the defect, the defect becomes a point-source emitting circular
crested waves axisymmetrically. The spatial variation of the
piezoelectric sensor response is therefore described by the
Hankel function of order zero [8]. Since this wave is reflected
from the defect back towards the collocated actuator/sensor, it
is an incoming wave. Therefore, if time dependence is of the
form eiωt , then the Hankel function of the first kind represents
the incoming wave. For the case of symmetric mode reflection,
the entire distance 2rS0 is traversed as symmetric mode (since
it was assumed that the S0 mode was predominantly excited).
For the case of antisymmetric mode reflection, half the total
distance 2rA0 (from the actuator to the defect) was traveled
as S0 mode, whereas the second half was traveled as the
A0 mode. Therefore, the harmonic surface strain response
waveforms Y (ω) for the two cases are (ignoring constants of
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proportionality, since only the shape is of interest)

YS0(ω) = H (1)
0 (ξS0 · rS0) · H (1)

0 (ξS0 · rS0)

YA0(ω) = H (1)
0 (ξS0 · rA0) · H (1)

0 (ξA0 · rA0).
(11)

Here the effect of the piezosensor response being proportional
to the average strain over its surface area is neglected for
simplicity. For the 2D FEM simulations, the incoming wave
is given by the complex exponential function with positive
exponent:

YS0 = eiξS0rS0 · eiξS0rS0 = ei(ξS02rS0 ) YA0 = ei(ξS0rA0 +ξA0 rA0 ).

(12)
The chirplet matching pursuit scheme uses a database of
Gaussian atoms. Therefore, to recover the time domain
waveform y(t) for a band-limited burst considering the
frequency bandwidth and Gaussian modulation, the following
equations are used:

yS0(t) =
∫ ω0+�ω/2

ω0−�ω/2
g(l0(ω − ω0)) · (H (1)

0 (ξS0rS0))
2eiωt dω

yA0(t) =
∫ ω0+�ω/2

ω0−�ω/2
g (l0(ω − ω0)) · H (1)

0 (ξS0rA0)

× H (1)
0 (ξA0rA0)e

iωt dω

(13)

where �ω is the angular frequency bandwidth and g( ) is
the Gaussian window vector centered at angular frequency
ω and with the chosen scale l0. A similar equation holds
for the 2D FEM simulations. Of course, in practice, this is
implemented in the discrete (digital) domain. The inverse fast
Fourier transform can be used for efficient computation.

It should be noted that, in this work, SH modes were not
considered for the following reasons:

(a) In the FEM simulations, the elements were 2D, i.e. out-
of-plane displacements are not possible by design. Thus,
SH modes are not possible.

(b) In the performed experiments, surface-bonded piezoelec-
tric wafer transducers are used as sensors, which are al-
most entirely insensitive to shear waves. This is because
they only sense the average in-plane surface extensional
strain and not shear strain, as mentioned before.

Once these waveforms are generated, the chirplet
matching algorithm is applied to them (restricting the scale of
the dictionary chirplets to l0) and the chirp rates corresponding
to each mode at each point of the time–frequency grid are
obtained. The chirplet matching pursuit was implemented
using LastWave 2.0 [29], which is freeware. Thus, one has the
database required to use the proposed algorithm for GW signal
processing, which is described next.

4.2. Processing the signal for damage detection and
characterization

The signal processing procedure consists of the following
steps:

(i) The chirplet matching pursuit algorithm is applied to the
difference between the test signal and the signal for the
undamaged state. A dictionary of chirplets with fixed scale

s0 as discussed in section 4.1 is used. The algorithm is run
until the last atom extracted has energy above a certain
percentage of the first and most energetic extracted atom.
In this work, this percentage was chosen to be 10%. In the
authors’ experience, atoms below this threshold tend to
correspond to approximation errors. This yields the time–
frequency centers (t0, f0), the chirp rates (c) and the signal
energies of the constituent atoms.

(ii) Atoms with frequency centers outside the excited
bandwidth are neglected.

(iii) The most energetic atom in the time span not
corresponding to the excitation signal or boundary
reflections is examined. If it has energy above a certain
threshold, the structure is judged damaged. There is no
hard and fast rule to decide the value of this threshold,
which is a critical parameter. The decision is dependent
on the energy in the signal difference corresponding
to the excitation time interval. In practice, no signal
generator will be able to reproduce an excitation signal
with 100% accuracy, and there is always some difference
in the excitation signal as seen by the collocated sensor.
In this work, the threshold was set to be 50% of the
energy in the excitation signal difference. This might
need to be lowered for structures with stronger damping
characteristics. In addition, for the final SHM system, this
threshold must also take into account false positive/false
negative probabilities and risk assessment, which are
highly application-dependent. Due to the impossibility
of perfect reproduction of the excitation signal, there is a
small blind zone in the vicinity of the collocated actuator–
sensor pair. This is associated with the sensor being unable
to distinguish the small-amplitude GW reflections from
defects that might be very close to the actuator from the
strong first transmitted pulse from the actuator.

(iv) Next, mode correlation is done using the atom’s chirp rate.
It is compared with that of the possible modes for the
same time–frequency center in the database. The mode is
identified as the one that minimizes the absolute value of
the difference between the atom’s chirp rate and the chirp
rate for each mode at the same time–frequency center.

(v) Knowing the mode and time–frequency center of each
atom, the defect’s radial location relative to the transducer
is known. The defect can then be characterized by using
the frequency center, the energy in the reflection from
the defect, and the relative modal contributions from the
defect. This information can be used to infer what the
defect type is in conjunction with an artificial neural
network trained using prior experimental data or some
modeling studies.

5. Demonstration of the algorithm’s capabilities

5.1. FEM simulations

In section 1.3, it was seen that the STFT was capable
of isolating the individual reflections and identifying their
modes for the simple case of the GW signal in figure 2(d).
Now consider the more complex signal in figure 2(c), with
overlapping multimodal reflections. The portion of the signal
between the end of the excitation signal and the start of
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(a)

(b) (c)

Figure 7. (a) Portion of signal in figure 2(c) with overlapping multimodal reflections and corrupted with artificial noise; (b) spectrogram of
the signal in (a); (c) interference-free WVD of constituent chirplet atoms for the signal in (a).

Table 1. Simulated notch damage in FEM simulation (key: cA0 ≡ chirp rate from database assuming A0 mode reflection; cS0 ≡ chirp rate
from database assuming S0 mode reflection; Mode ≡ identified mode from mode correlation step; r actual ≡ actual radial location of notch;
r from new algo. ≡ estimate of radial location of notch from proposed algorithm; r from spect. ≡ estimate of radial location of notch from
spectrogram).

Chirplet t0 fo c Signal energy cA0 cS0 r actual r from r from
no. (μs) (kHz) (kHz μs−1) (2-norm) (kHz μs−1) (kHz μs−1) Mode (cm) new algo. (cm) spect. (cm)

1 41.6 245.9 −13 1.4 × 10−14 −12.5 0.6 A0 6.0 6.4 6.5
2 38.4 319.6 34 3.7 × 10−15 −10.2 0.5 S0 10.0 9.4 NA
3 25.6 280.8 7.4 1.8 × 10−15 −7.9 0.3 S0 6.0 5.9 6.3

the boundary reflection, after artificial corruption with white
Gaussian noise (of amplitude 5% of the peak value in the
signal), is shown in figure 7(a). The spectrogram for this
signal (again, using a modulation window identical to that in
the excitation signal) is shown in figure 7(b), on a decibel scale
relative to the peak value in the image. The spectrogram cannot
separate the overlapping multimodal reflections from the two
notches, which are smeared together in the spectrogram. The
time–frequency plot from the chirplet decomposition using
the matching pursuit algorithm is shown in figure 7(c), also
on a decibel scale. The power of this approach is evident
from this figure, where clearly the individual overlapping
reflections from the two notches are resolved. In addition, as
highlighted in table 1, the modes of the individual reflections
are correctly identified and the axial locations of the notches
are identified with a maximum deviation of 0.6 cm, or 6% of
the distance from the transducer. For the two reflections that
the spectrogram could isolate, the errors for radial estimates

are greater than that from the proposed algorithm. Thus, the
proposed algorithm shows superior resolution compared to the
spectrogram.

5.2. Experimental results

In order to verify the proposed algorithm’s potential
capabilities, experiments were conducted with a 1 mm thick
aluminum plate structure, the schematic of which is shown
in figure 8(a). The 1 mm thick aircraft-grade aluminum
alloy plate was supported on two support struts on two
edges and the other two edges were free. Surface-bonded
PZT-5A piezoceramic transducers were used. The actuators
were excited symmetrically with a 2.5-cycle Hann-windowed
sinusoidal toneburst of center frequency 175 kHz, thereby
predominantly exciting the S0 mode. After baseline signals
were recorded for the pristine condition, artificial ‘damage’
sites in the form of C-clamps were introduced (see figure 8(b)).
The C-clamps act as local scatterers of GWs incident on them
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Figure 8. (a) Schematic of experimental set-up; (b) photograph of experimental set-up.

over their contact area, causing incident GWs to be scattered
from them. Damage in the structure, such as cracks, dents
or impact damage, would also have a similar effect on GWs
incident on it. The difference signal between the pristine
and ‘damaged’ cases is shown in figure 9(a). Again, in this
case, the spectrogram is incapable of resolving the overlapping
S0 mode reflections from the two clamps (figure 9(b)). On
the other hand, the proposed algorithm showed its superior
resolution in this case too. The chirplet matching pursuit step
was able to resolve the overlapping S0 mode reflections as
well as the S0 and A0 mode reflections from the boundary
(figure 9(c)). The mode correlation step correctly identified the
modes, thereby allowing accurate radial location estimates of
the clamps, as seen in table 2 (errors in location: C1—0.3 cm;
C2—0.9 cm). The spectrogram’s estimated location (for the
reflection from the clamp that it could localize) has the same
error as the proposed algorithm. When using the relative modal
contributions to characterize the defect, one must bear in mind
that a finite-dimensional piezoceramic sensor has different
sensitivities to different wavelengths of the GW sensed [8]. As
a first-order approximation, it might suffice to normalize the
energy of each reflection to the sensitivity of the sensor to the
wavelength corresponding to the center frequency for the GW
mode of the reflection.

It should be noted that the best accuracy in radial location
estimation was in the FEM simulation with the S0 mode
reflection from N1 (error: 0.1 cm). There are two reasons
for this: (i) the reflection was isolated (i.e. not overlapping
with another reflection) and (ii) the notch was very thin axially
(0.025 cm), and hence the ‘point-scatterer’ defect model was
realistic. In the experiment, the clamp had a contact diameter
of 1 cm, weakening this assumption, as reflected in the location
errors. Furthermore, the error tends to be worse for the
weaker reflection in overlapping reflections, as one would
naturally expect. Another error source is the uncertainty in
material properties, which affects wavespeeds. Despite these
errors, which are minor, the advantages of the new algorithm
over conventional approaches to GW signal processing can
be clearly seen with these results. However, it should be
pointed out that testing was restricted to the fundamental GW
modes in this work. At higher frequencies, in the presence
of higher GW modes, the use of linear chirplets may not

suffice. Quadratic or higher-order chirplets might need to be
employed, such as in the work by Hong et al [30]. In that
work, the matching pursuit approach was used with quadratic
chirp functions for GW signal processing. However, this
will increase the computational complexity of the algorithm
compared to that for linear chirplets. In addition, in that work,
sensing was restricted to one mode there (by controlling the
number of coil turns in the magnetostrictive GW sensor used)
and mode classification was not addressed. It should be noted
that, in this work, the two modes had different dispersion
characteristics over the excited frequency bandwidth. If the
two modes are similar to each other in terms of variation of
wavespeed with frequency, the chirp rates for the two modes
may be very close to each other. The algorithm presented here
may not be able to distinguish the modes. Until this point, only
radial location of defects relative to a transducer pair has been
discussed. In the next section, triangulation using multiple
transducers in isotropic plates is discussed.

6. Triangulation in isotropic plate structures

In order to pinpoint the in-plane location of a defect in an
isotropic plate structure and characterize it, one needs the radial
locations of the defect relative to at least three pairs of central
collocated piezoelectric transducers. It is highly desirable
to use circular or ring-shaped transducer wafers, so that
there is no directional selectivity or preference. In addition,
care must be taken to use as thin piezoelectric wafers as
possible to minimize the extraneous reflections caused by the
increased local stiffness of the structure where the transducer
is bonded. The proposed algorithm needs to be repeated
for the signals obtained using each collocated actuator/sensor
pair. If there are multiple mode reflections observed from the
defect, the average radial location obtained from the modes
can be used. One can then draw three circles of radii equal
to the radial locations thus found about the centers of the
corresponding actuator/sensor pairs. The intersection of the
three circles would yield the location of the defect. This is
illustrated in figure 10(a). In addition, as before, the relative
modal contributions, the frequency center and individual modal
energies can be as input parameters for a pattern recognition
algorithm used to classify the defect and quantify its severity.
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(a)

(b) (c)

Figure 9. (a) Difference signal between pristine and ‘damaged’ states; (b) spectrogram of the signal in (a); (c) interference-free WVD of
constituent chirplet atoms for the signal in (a).

Table 2. Experimental results of isotropic plate with simulated damage (key: cA0 ≡ chirp rate from database assuming A0 mode reflection;
cS0 ≡ chirp rate from database assuming S0 mode reflection; Mode ≡ identified mode from mode correlation step; r actual ≡ actual radial
location of clamp; r from new algo.≡ estimate of radial location of clamp from proposed algorithm; r from spect. ≡ estimate of radial
location of clamp from spectrogram; Bndry ≡ boundary reflection; Exctn signal ≡ difference in excitation signal).

Chirplet t0 fo c Signal energy cA0 cS0 r actual r from r from
no. (μs) (kHz) (kHz μs−1) (2-norm) (kHz μs−1) (kHz μs−1) Mode (cm) new algo. (cm) spect. (cm)

1 67.2 221.5 7.8 7.3 × 10−3 −5.11 0.14 S0 Bndry Bndry Bndry
2 38.4 190.9 1.7 2.9 × 10−3 −4.55 0.07 S0 8.2 8.5 8.5
3 14.4 234.2 7.7 1.9 × 10−3 −1.79 0.01 Exctn signal
4 62.4 208.3 0.0 1.8 × 10−3 −5.17 0.13 S0 Bndry Bndry Bndry
5 100.8 166.1 −7.6 9.4 × 10−4 −4.63 0.33 A0 Bndry Bndry Bndry
6 48.0 208.3 0.0 9.2 × 10−4 −4.76 0.09 S0 10.2 11.1 NA

If, however, one is mainly interested in locating the defect
and not in characterizing it, an easier approach can be adopted.
Instead of using three collocated piezoelectric actuator/sensor
pairs, it suffices to use three circular piezoelectric wafer
transducers, and while one is excited, the others can be used
as sensors. However, in this approach, one must ensure that
the elements are sensitive only to one mode when used as
sensors. Then, the chirplet matching pursuit step is used to
find the time-of-flight from the actuator to the defect and back
to one of the sensors as well as the frequency center of the
pulse. This yields the distance traveled by the pulse, say d
(since only one group velocity is possible). The locus of all
possible locations of the defect is an ellipse with the actuator
and the sensor as its foci and d as the major axis. By exciting
each actuator in turn and using the others as sensors, three

such ellipses can be drawn and the defect is located at their
intersection. This concept was proven experimentally using a
3.15 mm thick aluminum 5052 alloy plate instrumented with
three surface-bonded piezoelectric discs of diameter 1.3 cm
each and thickness 0.23 mm each. The excitation signal
used was a 2.5-cycle Hann windowed sinusoidal toneburst
with center frequency 210 kHz. At this frequency and in its
vicinity, the A0 mode wavelength nearly equals the transducer
diameter. Therefore, as proved in an earlier modeling paper
by the authors [8], the transducers are insensitive to A0 modes
when used as sensors, and only the S0 mode needs to be
considered. The results from this experiment are shown in
figure 10(b). A through-hole of diameter 5 mm was drilled
into the plate as shown to check if its location could be found
using this approach. While one expects the three ellipses to
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(b)(a)

Figure 10. (a) Approach for locating and characterizing defects in the plane of plate structures using multimodal signals; (b) experimental
results for in-plane defect location in plate structures using unimodal GW signals.

intersect at one point, due to experimental imperfections, they
come close to intersecting each other at a single point but do
not quite do so, resulting in a triangular error box. This gives
a crude estimate of the defect size. The center of the error
box was 0.5 cm away from the center of the drilled hole. It
should be noted that in this simplified approach, it is crucial
to restrict the sensing to one mode. If more than one mode is
possible, the locus of all points of the defect given the time-
of-flight and center frequency from one transducer to another
is not necessarily an ellipse. Since one cannot be sure about
how much of the time was spent traveling as one mode and
how much as another, the locus would, in general, be an
intricate shape and this shape would need to be recalculated
for different times of flight, thereby making the algorithm
computationally intensive. This ellipse triangulation technique
has been discussed in the open literature (e.g. Kehlenbach and
Das [31]), but the case of multimodal signals has not received
much attention.

7. Summary and future directions

This paper presented a new approach for GW signal processing
using chirplet matching pursuits and mode correlation. The
algorithm is designed for processing GW signals obtained
in pulse–echo tests for SHM. Its theoretical advantages
over conventional algorithms for GW SHM were discussed:
better resolution and lack of interference terms (enables it
to separate overlapping multimodal reflections), robustness
to noise, computational efficiency (in this aspect, it is even
superior to the spectrogram), and ease-to-automate post-
processing, as needed for SHM. Its prowess was demonstrated
using numerical and experimental results, where the proposed
algorithm was able to separate overlapping, multimodal
reflections and estimate radial locations of defects with a
maximum deviation of 0.9 cm for a damage site 10.2 cm away.
The resolution of the algorithm was shown to be superior or
equal to that using a spectrogram. In-plane triangulation for
isotropic plate structures using multimodal signals and ellipse
triangulation using unimodal GW signals were discussed.
The latter was experimentally demonstrated to triangulate a
drilled hole within one diameter of it in an aluminum alloy
plate. Future work will focus on experimental validation
of an extension of the algorithm for composite structures.
In addition, detailed models for GW scattering from defects

will be examined to move beyond using the ‘point-scatterer’
assumption used for defects in this work.
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