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1. Introduction

The last few years have seen progress in our understanding of corrections to the entropy

of black holes in string theory, both at the microscopic and macroscopic levels. On the

supergravity side, this has meant studying the effect of higher derivative terms in the

action [1 – 4]. 4D extremal black holes have a near horizon AdS2 × S2 geometry, with

moduli fixed by the attractor mechanism [5]. By using the corrected attractor solution and

the general Wald entropy formula [6], it is possible to successfully match an infinite series

of corrections to the Bekenstein-Hawking area law with the corresponding microscopic

degeneracy of states [1 – 3, 7 – 12]. For reviews see [13 – 15].

However, on closer inspection this success actually seems quite mysterious, since only a

selected subset of terms in the supergravity action are being used. Namely, one incorporates

the supersymmetric completion of certain R2 terms (as can be captured by corrections

to the generalized prepotential), but neglects various R4 and higher order terms, even

though these a priori contribute at the order one is working. There is at present no 4D

understanding of why these terms can be neglected.

Greater control is achieved by realizing that these black holes admit near horizon

AdS3 × S2 geometries [3]. To relate an AdS2 × S2 geometry to AdS3 × S2, one interprets

one of the 4D gauge fields as coming from a Kaluza-Klein circle [16]. An AdS3 ×S2 region

then appears provided that there is vanishing Kaluza-Klein monopole charge (p0 = 0).

Alternatively, one can study these black holes in the context of 5D supergravity.
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By using the extra symmetries inherent in the 5D near horizon description, one finds

that the corrected entropy formula is governed by the coefficients of the Chern-Simons

terms in the supergravity action. In this way it is possible to bypass the need to find

the full set of higher derivative terms, or to find the explicit values of the near horizon

moduli. The key observation is that the entropy formula is controlled by the values of the

left and right moving central charges of the associated 1 + 1 dimensional CFT, and due to

supersymmetry these are completely determined by gauge and gravitational anomalies.

To verify this picture explicitly, and to find the corrected black hole geometry, one

needs to work with the full 5D susy invariant four derivative action, corresponding to

the supersymmetric completion of the four derivative Chern-Simons terms. This action

appeared recently in [17]. In this paper we find the near horizon AdS3 × S2 geometry by

analyzing the BPS conditions and the equations of motion coming from this action. To

do this, it is most efficient to employ the “c-extremization” procedure developed in [3] (or

the closely related “entropy-function” developed in [4]). The strategy is to write down

a c-function whose critical points correspond to the solutions of the equations of motion.

Furthermore, the value of the c-function at a critical point is equal to the average of the

left and right moving central charges of the associated CFT. We will show that the result

is in precise agreement with the values inferred from the supersymmetry/anomaly based

argument, and thereby verify that the entropy is indeed controlled by the Chern-Simons

terms. More generally, this same logic leads to the conclusion that there are no further

corrections to the central charges from additional higher derivative terms (i.e. more than

four derivatives), since we have already taken into account the full set of terms related by

supersymmetry to the Chern-Simons terms.

Since this procedure also yields the values of the fixed 5D moduli, we can compare

with the known results for the 4D moduli. Writing out the details of the reduction from

5D to 4D we find full agreement.

This article is organized as follows. In section 2 we review c-extremization. In section

3 we illustrate the procedure for the leading order action. In section 4 we analyze the

supersymmetry conditions in an off-shell form that applies also when higher derivatives are

taken into account. In section 5 we carry out the c-extremization procedure on the full

action including all terms that are related to the Chern-Simons term by supersymmetry.

We find results that are consistent with the supersymmetry conditions from section 4 and

moreover find a central charge that agrees with the one previously found using supersym-

metry and anomalies. In section 6 we compare our results with those found for black holes

in four dimensions and find complete agreement.

2. Review of c-extremization

The problem of finding an AdS3×S2 solution1 to a general higher derivative action can be

reduced to the problem of extremizing a single function of the scale sizes and moduli [3].

Furthermore, the value of this function at its critical point is (after suitable normalization)

1Or more generally an AdSp × Sq solution
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equal to the average of the left and right moving central charges of the asymptotic conformal

symmetry group of the theory. In this section we review how this works.

We look for a solution respecting all AdS3 × S2 isometries. Besides constant scalar

fields, we can also have two-form fields proportional to the volume form on S2. More

generally, we could also have three-form fields proportional to the AdS3 volume form;

these will not make any appearance in this paper, but we note that they would necessitate

a modification of some of the following formulas.

Let the action for the theory be of the form

S =
1

4π2

∫

d5x
√

gL + SCS + Sbndy , (2.1)

with G5 = π
4 . Our trial solution takes the form

ds2 = ℓ2
Ads2

AdS + ℓ2
SdΩ2

2

F I =
pI

2
ǫ2

v = V ǫ2

φa = constant . (2.2)

Here F I denote two-form fields strengths with magnetic charges pI ; v denotes addi-

tional two-form field(s); and φa denote physical and auxiliary scalar fields. ǫ2 is the volume

form on the unit S2. We normalize the F I such that the charges pI are integer quantized.

Since all covariant derivatives are assumed to vanish, the equations of motion following

from (2.1), evaluated on the trial solution (2.2), reduce to extremizing the function
√

gL
as a function of ℓA, ℓS , V and φa. Equivalently, we can extremise the c-function, defined as

c = −6ℓ3
Aℓ2

SL . (2.3)

When extremizing, we hold fixed the quantized charges pI , so that all free parame-

ters are determined in terms of the pI (or else are undetermined). This is the attractor

mechanism, fixing the geometry and moduli in terms of the charges.

The choice of normalization in (2.3) is motivated as follows. The theory on AdS3 has

a boundary stress tensor [18] whose trace anomaly is [19]

T i
i = − c

12
R(2) , (2.4)

where R(2) is the scalar curvature of the conformal boundary metric. The prefactor in (2.3)

was chosen such that the c-function evaluated at its critical point is equal to the c appearing

in (ā). In a theory with equal left and right moving central charges, c is the central charge.

More generally, the trace anomaly is related to the average:

c = 1
2(cL + cR) . (2.5)

Given the central charges, evaluation of the Euclidean black hole action leads to the

general formula for the black hole entropy s:

s = 2π

√

cL

6

(

L0 −
cL

24

)

+ 2π

√

cR

6

(

L̃0 −
cR

24

)

. (2.6)
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Since this expression takes the same form as Cardy’s formula it is convenient for

comparison with microscopic results. Here, however, it is just a statement about the on-

shell supergravity action. In fact, for cL = cR (2.6) agrees with Wald’s entropy formula

independently of the microscopic theory [20, 3]2.

We will be working with five dimensional supergravity coupled to vector multiplets,

which can be thought of as arising from M-theory compactified on CY3. The charges pI

then correspond to M5-branes wrapping 4-cycles in CY3. The central charges are known

to be [22, 23]

cL = 6p3 + 1
2c2 · p , cR = 6p3 + c2 · p , (2.7)

with

p3 =
1

6
cIJKpIpJpK , (2.8)

where cIJK are the triple intersection numbers of the CY3, and c2I are the expansion

coefficients of the second Chern class. This then gives the following prediction for the

extremal value of the c-function

c = 6p3 +
3

4
c2 · p . (2.9)

This is the result we wish to verify from the explicit higher derivative action.

3. Two derivative analysis

3.1 Five dimensional off-shell supergravity

Following [17] (see [24, 25] for earlier work) we consider superconformal gravity in five

dimensions. The local form of the theory is off-shell, meaning that the auxiliary fields in

the multiplets are not integrated out. At two-derivative order the bosonic terms in the

Lagrangian are3

1

2
L0 = ∂aAα

i ∂aAi
α + A2

(

1

8
D − 3

16
R − 1

4
v2

)

+ N
(

1

4
D +

1

8
R +

3

2
v2

)

+ NIv
abF I

ab

+NIJ

(

1

8
F I

abF
Jab +

1

4
∂aM

I∂aMJ

)

+
1

48
e−1cIJKAI

aF
J
bcF

K
de ǫabcde . (3.1)

We are taking into account the bosonic fields of two distinct super multiplets: the

Weyl multiplet, contains the vielbein e a
µ , the two-form auxiliary field vab, and a scalar

auxiliary field D; the vector multiplets enumerated by index I = 1 . . . nV , each containing

a one-form gauge field AI and scalar M I , with F I = dAI . Although we will not discuss

gauge fixing in detail, it is useful to include a term for the hyper multiplet which contains

the Weyl scalar Aα
i . The index i = 1, 2 refers to SU(2) doublets and α = 1, . . . 2r refers to

2Theories with cL 6= cR have gravitational Chern-Simons terms that violate diffeomorphism invariance

so Wald’s formula does not apply. [21] generalizes Wald’s formula to this case and shows that agreement

with (2.6) is maintained.
3We have omitted fields in the multiplets associated with gauged supergravity or that can be turned off

by gauge fixing conformal symmetries. With respect to [17] we have switched the sign in the kinetic term

for the scalars MI and the sign of the Ricci scalar (Rhere = −Rthere).
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the USp(2r). The hyper is used to gauge fix the dilatational symmetry and we choose a

gauge that satisfies

A2 = −2 , ∂aAi
α = 0 . (3.2)

The functions on the scalar manifold are defined by

N =
1

6
cIJKM IMJMK , NI = ∂IN =

1

2
cIJKMJMK , NIJ = cIJKMK . (3.3)

The auxiliary field D appears linearly in (3.1), which means that it acts as a Lagrange

multiplier. The resulting constraint determines N , which can be thought of as the volume

of the compactification manifold. Given that we chose A2 = −2, solving the equation of

motion for D implies N = 1. So, at the level of the two derivative action the scalars are

described using real special geometry. For a pedagogical introduction see [26].

We can eliminate the auxiliary fields vab and D by solving their equations of motion.

This gives

L0 = −N
[

− R + GIJ∂aM
I∂aMJ +

1

2
GIJF I

abF
Jab − e−1

24N cIJKAI
aF

J
bcF

K
de ǫabcde

]

, (3.4)

with

GIJ = −1

2
∂I∂J (lnN ) =

1

2

(NINJ

N 2
− NIJ

N

)

. (3.5)

This is the familiar two derivative Lagrangian in five dimensional supergravity. For

our purposes, we will not use (3.4) and instead work with (3.1).

3.2 c-extremization

We now determine, at the two-derivative order, the near horizon AdS3 × S2 geometry

corresponding to a black string in five dimensions, which we will refer to as the “black

string attractor”. The near horizon configuration is given by (2.2) and the central charge

as defined in (2.3) is

c = −6ℓ3
Aℓ2

SL0 , (3.6)

with L0 given by (3.1) evaluated on the trial solution (2.2). For this configuration, we will

have some simplifications. The Chern-Simons term in (3.1) vanishes and derivatives of the

scalars M I are zero. The Ricci scalar is

R = − 6

ℓ2
A

+
2

ℓ2
S

. (3.7)

By symmetry, we know that the scalars M I are proportional to the charges pI , so we write

M I = mpI , with m a constant to be determined. The c-function then becomes,

c = −12ℓ3
Aℓ2

S

(

1

4
(p3m3 − 1)D − 1

4
(p3m3 + 3)

(

3

ℓ2
A

− 1

ℓ2
S

)

+
1

ℓ4
S

(

(3p3m3 + 1)V 2 + 3p3m2V
)

+
3p3

ℓ4
S

m

8

)

, (3.8)
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with p3 given by equation (2.8). Extremizing (3.8) with respect to D imposes m3 = p−3

and the equation for V gives

V = −3

8
p . (3.9)

The extremization of (3.8) with respect to the radii ℓA and ℓS results in

ℓA = 2ℓS , ℓA = p . (3.10)

Finally, by extremizing the c-function with respect to m we find D = 12p−2. Summa-

rizing, our result for the parameters of the solution is

M I =
pI

p
, ℓA = 2ℓS = p , D =

12

p2
, V = −3p

8
. (3.11)

Inserting (3.11) in (3.8), the central charge for the black string in the two derivative theory

is

c = 6p3 = cIJKpIpJpK . (3.12)

The value of c agrees with the expectation (2.9) to the leading order in charges. The

new feature is verifying that c-extremization off-shell (i.e. keeping auxiliary fields) is con-

sistent.

4. Susy variations

We would like to determine corrections to the attractor solution from the higher derivative

terms in the action. A strong constraint comes from the fact that the attractor solution

exhibits maximal supersymmetry. Furthermore, in the off-shell formulation the supersym-

metry transformations are independent of the detailed form of the action (i.e. they are the

same for the two and four derivative actions). With this in mind, we now analyze the

constraints from supersymmetry.

The supersymmetry variations are

δψi
µ = Dµεi +

1

2
vabγµabε

i − γµηi ,

δχi = Dεi − 2γcγabεiDavbc − 2γaεiǫabcdev
bcvde + 4γ · vηi ,

δΩIi = −1

4
γ · F Iεi − 1

2
γa∂aM

Iεi − M Iηi ,

δζα = γa∂aAα
j εj − γ · vεjAα

j + 3Aα
j ηj . (4.1)

The first two transformations come from the fermions in the Weyl multiplet, the

gravitino ψi
µ and an auxiliary Majorana spinor χi. From the vector multiplets we have

the gaugino ΩI
i and the hyper multiplet contributes with ζα. We are using the notation

γ · v = γabv
ab.
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4.1 Supersymmetry constraints for the black string attractor

The supersymmetry transformations (4.1) simplify dramatically when evaluated on our

trial background (2.2). The attractor has maximal supersymmetry, meaning all variations

must vanish. In our background this reduces to solving

δψi
µ = Dµεi +

1

2
vabγµabε

i − γµηi = 0 ,

δχ = Dεi + 4γ · vηi = 0 ,

δΩIi = −1

4
γ · F Iεi − M Iηi = 0 ,

δζα = (−γ · vεj + 3ηj)Aα
j = 0 . (4.2)

From the gaugino variation it is clear that the scalars M I are proportional to the

charges pI , so we can write M I = mpI , where the constant of proportionality m will be

determined by the remaining equations. The last equation in (4.2) gives

ηi =
1

3
γ · vεi . (4.3)

Inserting (4.3) in (4.2) we get for the gravitino variation

(

Dµ +
1

2
vabγµab −

1

3
vabγµγab

)

εi = 0 , (4.4)

and for the auxiliary field and gaugino

(

D +
4

3
(γ · v)2

)

εi = 0 ,

(

−1

4
γ · F I − m

3
pIγ · v

)

εi = 0 . (4.5)

Solving (4.5) on the ansatz (2.2), we find

mV = −3

8
, D =

16

3

V 2

ℓ4
S

. (4.6)

Finally, from the gravitino variation (4.4)4 we get a relation between the radii, ℓA and

ℓS , and the auxiliary field V

ℓA = 2ℓS , V = −3

8
ℓA . (4.7)

The relations between the moduli shown in equations (4.6) and (4.7) hold indepen-

dently of the action. Since the supersymmetry variations are exact off-shell, these results

will not change for higher derivatives theories.

It is important to note that supersymmetry does not fully determine the values of

the moduli and as presented here, one of the fields is unconstrained. This should be

expected, since there are gauge symmetries unrelated to supersymmetry transformations

4See [27, 28] and references therein for details on manipulation of the gravitino variation.
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that we have not imposed . For example, in the leading order theory described by (3.1), the

scalars are described using real special geometry, where the volume N is fixed. This comes

about from fixing the superconformal theory to Poincare supergravity using the equation

of motion for D, and is not related to the fact that the theory is supersymmetric. When

higher derivatives terms are included in the theory, one should similarly expect to use at

least one equation of motion from the off-shell theory to specify the solution completely.

Without loss of generality, we will take the AdS3 radius as the undetermined modulus,

and so we can summarize our results as

ℓS =
1

2
ℓA , m =

1

ℓA
, V = −3

8
ℓA , D =

12

ℓ2
A

. (4.8)

Comparing with the two derivative c-extremization, we can see that (4.8) agrees

with (3.11). The piece of information that is missing from the supersymmetry constraints

is the relation between ℓA and the charges pI . At the level of the two derivative theory,

this is simply ℓA = p. As we will show in the next section, when higher derivatives are

taken into account, the AdS3 radius will be modified and the value of the corrected moduli

will be determined by our procedure.

5. c-extremization including higher derivatives

We are now ready to discuss higher derivative corrections to the central charge. As men-

tioned in the introduction, we want to verify that the Chern-Simons term controls the

corrections to the central charge. From anomaly arguments, this term is given by

√
gLCS = − c2I

48 · 2AI ∧ Tr(R ∧ R) =
c2I

24 · 16ǫabcdeA
IaRbcfgRde

fg . (5.1)

The Chern-Simons term by itself is not supersymmetric and therefore extra terms

should be included. The four derivative supersymmetric completion of (5.1) was computed

in [17], and the relevant terms for our discussion are

L1 =
c2I

24

(

1

16
e−1ǫabcdeA

IaCbcfgCde
fg +

1

8
M ICabcdCabcd +

1

12
M ID2 +

1

6
F IabvabD

−1

3
M ICabcdv

abvcd − 1

2
F IabCabcdv

cd +
8

3
M IvabD̂bD̂cv

ac

+
4

3
M ID̂avbcD̂avbc +

4

3
M ID̂avbcD̂bvca −

2

3
e−1M Iǫabcdev

abvcdD̂fvef

+
2

3
e−1F Iabǫabcdev

cf D̂fvde + e−1F Iabǫabcdev
c
f D̂dvef

−4

3
F Iabvacv

cdvdb −
1

3
F Iabvabv

2 + 4M Ivabv
bcvcdv

da − M I(vabv
ab)2

)

, (5.2)

with Cabcd the Weyl tensor defined as

Cab
cd = Rab

cd +
1

6
Rδ

[a
[cδ

b]
d] −

4

3
δ
[a
[cR

b]
d] . (5.3)
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The double covariant derivative of vab has curvature contributions5 given by

vabD̂bD̂cv
ac = vabDbDcv

ac +
2

3
vacvcbR

b
a +

1

12
vabv

abR . (5.4)

5.1 Central charge and moduli corrections

Using the c-extremization procedure explained in section 2, we will find the corrected

central charge and moduli in the higher derivative theory for the 5D black string. Including

the four derivative Lagrangian, the central charge becomes

c = −6ℓ3
Aℓ2

S(L0 + L1) , (5.5)

where L0 and L1 are given by (3.1) and (5.2) evaluated in the AdS3 × S2 background.

Using (2.2) and the attractor value for the moduli M I = mpI , the supersymmetric four

derivative contributions to the central charge are

L1 =
c2 · p
24

[

m

4

(

1

ℓ2
A

− 1

ℓ2
S

)2

+
2

3

V 3

ℓ8
S

+ 4m
V 4

ℓ8
S

+ m
D2

12
+

D

6

V

ℓ4
S

−2

3
m

V 2

ℓ4
S

(

3

ℓ2
A

+
5

ℓ2
S

)

+
1

2

V

ℓ4
S

(

1

ℓ2
A

− 1

ℓ2
S

)]

. (5.6)

On our trial background D̂avbc = 0. The two derivative contribution to (5.5) is still

given by (3.8).

According to c-extremization we should now extremize with respect to all parameters.

It would be extremely difficult to do this were it not for the guidance provided by the

supersymmetry analysis in the previous section. For example, the variation of (5.5) with

respect to m gives

3p3m2

4

(

D − 3

ℓ2
A

+
1

ℓ2
S

)

+
3p3

ℓ4
S

(

3m2V 2 + 2mV +
1

8

)

+

+
c2 · p
48

[

1

4

(

1

ℓ2
A

− 1

ℓ2
S

)2

+ 4
V 4

ℓ8
S

+
D2

12
− 2

3

V 2

ℓ4
S

(

3

ℓ2
A

+
5

ℓ2
S

)

]

= 0 . (5.7)

It is easy to verify that the moduli given in (4.8) do indeed satisfy this equation.

Before proceeding with the remaining extremization conditions, recall that the BPS

conditions (4.2) leave one modulus undetermined. The missing information about the

attractor can be simply obtained from the c-extremization procedure. The simplest is to

consider the equation for the auxiliary field D

∂c

∂D
= 0 ⇒ p3m3 = 1 − 1

72
c2 · p

(

mD +
V

ℓ4
S

)

. (5.8)

Using (4.8) and solving for the AdS3 radius (ℓA) we find

ℓ3
A = p3 +

1

12
c2 · p . (5.9)

5The sign difference with respect to [17] is coming from the difference in curvature convention.
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The solution is now fully specified. At this point it is straightforward to vary the

c-function (5.5) also with respect to V , ℓA, ℓS and show that the resulting equations are

satisfied by (4.8) and (5.9). All in all we have found a solution that extremizes the c-

function and shown that this solution is supersymmetric. Since we proceeded somewhat

indirectly, we have not excluded the existence of other solutions with the same charge

configuration but no supersymmetry.

Evaluating the c-function for our solution we find the corrected central charge

c = 6p3 +
3

4
c2 · p . (5.10)

This is precisely the result (2.9) that was predicted from supersymmetry and anomalies.

It is worth noting that the simple form of this result comes about in a rather nontrivial

way in the present procedure. The radius of curvature ℓA (5.9) is a nontrivial function of

the charges and it enters in the denominator of the Lagrangian (5.6). It is only due to

intricate cancellations that the final result (5.10) becomes a linear function of the charges

pI . That this works out correctly provides a rather stringent consistency check on the

entire framework.

5.2 Small black holes

One of the benefits of considering higher derivative corrections is that we can find smooth

solutions in cases where the two-derivative action would yield a naked singularity. These

are so-called “small black holes” [8, 9]. In particular, if we choose charges pI such that

p3 = 0 but c2 · p 6= 0, then the two-derivatives formulas (3.11) become singular, while the

four derivative formulas given in this section are well behaved. We can further check that

the full action expanded around the small black hole solution exhibits no obvious patholo-

gies. On the other hand, since some of the moduli M I now vanish, some of the internal

compactification cycles are becoming small, and so one should be alert to potentially large

corrections from non-perturbative effects not included here. See [9] for more discussion.

6. Comparison between 5D and 4D attractor formulas

So far we have focussed on the AdS3 × S2 attractor geometry near an effective string in

five dimensions. Most recent works on higher curvature corrections are in the context of

black holes in four dimensions and their AdS2 × S2 near horizon attractor geometry. It

is instructive to work out the detailed comparison between the four and five dimensional

perspective in view of the higher derivative corrections. This is achieved by wrapping the

string on a circle and dimensionally reducing. In terms of black hole entropy counting,

a recent discussion of the relation between the AdS3 and AdS2 viewpoints can be found

in [29].

A good starting point is the AdS3 geometry written in Poincare coordinates as

ds2
3 =

ℓ2
A

y2
(dw+dw− + dy2) . (6.1)

– 10 –
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Introducing the coordinates [30]

w+ =
1

2πTL
e2πTL(x5+t) ,

w− = x5 − t − ℓ4
AπTL

U2
,

y =
ℓ2
A

U
eπTL(x5+t) , (6.2)

the line element becomes

ds2
3 =

U2

ℓ2
A

(dx2
5 − dt2) + ℓ2

A

dU2

U2
+ π2ℓ2

AT 2
L(dx5 + dt)2 . (6.3)

Wrapping the string on a circle corresponds to imposing the periodicity condition

x5 ≡ x5 +2πR, which amounts to identifications on the AdS3 space that change the causal

structure to that of a black hole [31]. This is clearest if we introduce the Schwarzschild-type

coordinates

ρ2 = (π2ℓ2
AT 2

L +
U2

ℓ2
A

)R2 ,

x5 = Rφ ,

τ =
ℓA

R
t . (6.4)

Then the line element becomes

ds2
BTZ = −N2dτ2 + N−2dρ2 + ρ2(dφ + Nφdτ)2 , (6.5)

where

N =
ρ

ℓA
− π2ℓAT 2

LR2

ρ
,

Nφ =
π2ℓAT 2

LR2

ρ2
. (6.6)

We are interested in the direct product of the three dimensional geometry just intro-

duced and an additional S2. Kaluza-Klein reduction on x5 takes us from 5D to 4D. The

compactification yields a 4D dilaton with near horizon value

e−2Φ = ρhor = πℓATLR . (6.7)

So far we have just reviewed a standard construction. The issue we wish to emphasize

is that these considerations are purely geometric and thus hold regardless of the details of

the action. The corrections due to higher curvature terms enter only through the relation

between parameters in the geometry and the underlying microscopic parameters. For

example, we found earlier that the AdS3 radius is

ℓA = pR , (6.8)
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where

p3
R =

1

6

(

cIJKpIpJpK +
1

2
c2 · p

)

. (6.9)

We also found the attractor values of the 5D scalars as

XI =
pI

pR
. (6.10)

Note that the corrections again appear through pR.

We are also interested in the thermodynamics for a black string excited to level |q0|.
The corrected formula for the entropy is

S = 2π

√

cL|q0|
6

= 2π
√

p3
L|q0| , (6.11)

where the corrections enter through

p3
L =

1

6

(

cIJKpIpJpK + c2 · p
)

. (6.12)

The energy of the excitations is EL = |q0|/R and so the first law of thermodynamics

gives the temperature

TL =
1

πR

√

|q0|
p3

L

. (6.13)

We see again that it is the combination pL that appears in the thermodynamics.

We next consider the corrections of some less obvious quantities. For example, the

precise value for the 4D dilaton (6.7) is

e−2Φ = pR

√

|q0|
p3

L

. (6.14)

The string frame radius of the very near horizon AdS2 close to the 4D black hole is inherited

from the AdS3 [32] and so its value is simply ℓA. The AdS2 radius in 4D Einstein frame is

therefore

R2
0 = e−2Φℓ2

A = p3
R

√

|q0|
p3

L

. (6.15)

This expression agrees with the result previously found directly in four dimensions (for a

good review see [13] 6).

We can also determine the 4D scalars. We are considering the simple situation with

qI 6=0 = 0 and p0 = 0, where there are no M2-branes wrapping the 2-cycles of the CY,

nor any magnetic charge of the Kaluza-Klein gauge field from reduction along x5. In this

case the 4D scalars other than the dilaton g(0) are purely imaginary.7 Combining the 5D

6The AdS2 radius is the 4D central charge so R2

0 = |Z|2. Combining (6.16) and (6.17) in [13] gives

our (6.15) after notation has been adapted.
7M2-brane charges qI are easily incorporated, as they correspond to Wilson lines for the gauge fields:

wI ∼ 1

R
AI

5 ∼ cIJqJ , with cIJ being the inverse of cIJKpK .
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scalars (6.10) with the dilaton we find [33]

zI = ie−2ΦXI = ipI

√

|q0|
p3

L

. (6.16)

This expression also agrees with results previously found directly in four dimensions8. Note

that in 4D the pL introduced in (6.12) controls both the scalars and the thermodynamics.

From the 5D point of view the charge q0 corresponds to AdS3 angular momentum. In

a two-derivative theory the angular momentum can be read off from the metric via

j =
ρ2
hor

4G3ℓA
. (6.17)

Applying this formula to the corrected metric yields (in our units G3 = 1
4ℓ2

A

)

j =
p3

R

p3
L

|q0| . (6.18)

The mismatch between j and q0 is due to the fact that the expressions for conserved

quantities as surface integrals themselves receive corrections from the higher derivative

terms. It would be instructive to derive these corrected expressions, as was done in [34] for

the gravitational Chern-Simons term.

In this section we have focussed on extremal black holes with TL 6= 0 and TR = 0.

However, one of the nice features of the AdS3 framework is that our 5D results easily extend

to the non-extremal case TL,R 6= 0. The 5D attractor formulas are unchanged, and the

general entropy formula is given in (2.6). So higher derivative corrections to the entropy

are under control even for these non-BPS, non-extremal black holes [3].

Another feature of the 5D setup is that we can make contact with higher derivative

corrections to black rings [35]. Black rings have a near horizon AdS3 × S2 region of the

same type as studied here. Therefore our results for the corrected attractor geometry will

also apply to the near horizon region of black rings. In particular, it should be possible to

find explicit solutions for “small black rings”.
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