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1. Introduction

One of the achievements of string/M theory is the microscopic explanation for the

Bekenstein-Hawking entropy for a class of four-dimensional supersymmetric black holes [1,

2]. The microscopic counting predicts subleading corrections to the entropy, which can also

be calculated from the macroscopic point of view, i.e. from stringy modifications to the

Einstein-Hilbert Lagrangian [3]. Comparison of the two approaches has proven to be very

fruitful, e.g. it has led to the relation to the partition function of topological strings [4].

Beginning in ref. [5], it has been also generalized to non-supersymmetric extremal black

holes using the fact that the near-horizon geometry has enhanced symmetry. The analysis

has also been extended to rotating black holes [6].

There is a richer set of supersymmetric black objects in five dimensions, including black

rings [7], on which we focus. The entropy is still given by the area law macroscopically to

leading order, and it can be understood microscopically using a D-brane construction [8, 9].
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The understanding of higher-derivative corrections remains more elusive [10 – 12]. One

reason for this is that the supersymmetric higher-derivative terms were not known until

quite recently [13]. Even with this supersymmetric higher-derivative action, it has been

quite difficult to construct the black ring solution embedded in the asymptotically flat

spacetime, and it is preferable if we can only study the near horizon geometry. Then the

problem is to find the charges carried by the black ring from its data at the near-horizon

region.

The usual approach taken in the literature so far is to consider the dimensional reduc-

tion along a circle down to four dimensions, and to study the charges there [12, 14 – 16].

Then, the attractor mechanism fixes the scalar vacuum expectation values (vevs) and the

metric at the horizon by the electric and magnetic charges [17, 18]. Conversely, the mag-

netic charge can be measured by the flux, and the electric charge can be found by taking the

variation of the Lagrangian by the gauge potential. In this way, the entropy as a function

of charges can be obtained from the analysis of the near-horizon region alone [5, 6]. Never-

theless, it has not been clarified how to reconcile the competing proposals [8, 9, 19 – 21] of

the mapping between the four- and five-dimensional charges of the black rings embedded

in the asymptotically flat spacetime.

Thus we believe it worthwhile to revisit the identification of the charges directly in

five dimensions, with local five-dimensional Lorentz symmetry intact. It poses two related

problems because of the presence of the Chern-Simons interaction in the Lagrangian. One

is that, in the presence of the Chern-Simons interaction, the equation of motion of the

gauge field is given by

d ⋆ F = F ∧ F, (1.1)

which means that the topological density of the gauge field itself becomes the source of

electric charge. To put it differently, the attractor mechanism for the black rings [22]

determines the scalar vevs at the near-horizon region via the magnetic dipole charges only,

and the information about the electric charges seems to be lost. Then the electric charge

of a black ring seems to be diffusely distributed throughout the spacetime. Eq.(1.1) can

be rewritten in the form

d(⋆F − A ∧ F ) = 0, (1.2)

then
∫

Σ(∗F −A ∧ F ) is independent of Σ. This integral is called the Page charge. Similar

analysis can be done for angular momenta, and Suryanarayana and Wapler [23] obtained

a nice formula for them using the Noether charge of Wald.

There is a second problem remaining for black rings, which stems from the fact that

A is not a well-defined one-form there because of the presence of the magnetic dipole. It

makes
∫

Σ(⋆F−A∧F ) ill-defined, because in the integral all the forms are to be well-defined.

The same can be said for the angular momenta. The aim of this paper is then to show how

this second problem can be overcome, and to see how the near-horizon region of a black

ring encodes its charges measured at the asymptotic infinity.

In section 2, we use elementary methods to convert the integral at the asymptotic

infinity to the one at the horizon. We apply our formalism to the supersymmetric black

ring and check that it correctly reproduces known values for the conserved charges. We
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will show how the gauge non-invariance of
∫

A ∧ F can be solved by using two coordinate

patches and a compensating term along the boundary of the patches. Then in section 3

we will see that our viewpoint helps in identifying the relation of the charges under the

Kaluza-Klein reduction along S1. We will see that the change in the charges under a large

gauge transformation in five dimensions maps to the Witten effect on dyons [24] in four

dimensions. Proposals in the literature [8, 9, 19 – 21] will be found equivalent under the

transformation. We conclude with a summary in section 4. In appendix A the geometry

of the concentric rings is briefly reviewed.

2. Near-horizon data and conserved charges

To emphasize essential physical ideas, we discuss the problem first for the minimal super-

gravity in five dimensions. Later in this section we will apply the technique to the case

with vector multiplets. The bosonic part of the Lagrangian of the minimal supergravity

theory is

S =
1

8πG

∫
(

1

2
⋆ R − F ∧ ⋆F − 4

3
√

3
A ∧ F ∧ F

)

. (2.1)

Our metric is mostly plus, and Rµν is defined to be positive for spheres. We define the

Hodge star operator for an n-form as

⋆ (dxµ0 ∧ · · · ∧ dxµn−1) =

√−g

(5 − n)!
ǫµ0···µn−1

µn···µ4
dxµn ∧ · · · ∧ dxµ4 . (2.2)

with the Levi-Civita symbol ǫ01234 = +1 and ǫ01234 = −1 defined in local Lorentz coordi-

nates. The equations of motion are

Rµν = −1

3
gµνFρσF ρσ + 2FµρFν

ρ, (2.3)

d ⋆ F = − 2√
3
F ∧ F. (2.4)

2.1 Electric charges

From the equation of motion of the gauge field (2.4), we see that F ∧ F is the electric

current for the charge
∫

⋆F . Thus, the charge is distributed diffusely in the spacetime as

was emphasized e.g. in [25]. However, the equation (2.4) can also be cast in the form

d

(

⋆F +
2√
3
A ∧ F

)

= 0. (2.5)

At the asymptotic infinity, A ∧ F decays sufficiently rapidly, so that we have
∫

∞
⋆F =

∫

∞

(

⋆F +
2√
3
A ∧ F

)

=

∫

Σ

(

⋆F +
2√
3
A ∧ F

)

, (2.6)

where the subscript ∞ indicates that the integral is taken at S3 at the asymptotic infinity,

and Σ is an arbitrary three-cycle surrounding the black object. Thus we can think of the

electric charge as the integral of the quantity inside the bracket, which is called the Page

charge.
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Figure 1: Coordinate patches used to define
∫

C
A ∧ F consistently without ambiguity.

One problem about the Page charge is that, even in the case where A is a globally

defined one-form, it changes its value under a large gauge transformation. It is completely

analogous to the fact that
∫

C
A for an uncontractible circle C is only defined up to an

integral multiple of 2π under a large gauge transformation. Indeed, let us parametrize C

by 0 ≤ θ ≤ 2π and we perform a gauge transformation by g(θ) ∈ U(1), i.e. we change

A to A + i−1g−1dg. Such a continuous g(θ) can be written as g(θ) = exp(iφ(θ)). Then
∫

C
A changes by

∫

C
dφ(θ) = φ(2π) − φ(0), which can jump by a multiple of 2π. Thus,

∫

C
A is invariant under a small gauge transformation φ(0) = φ(2π) but is not under a large

gauge transformation φ(0) 6= φ(2π). Exactly the same analysis can be done for
∫

Σ A ∧ F ,

and it changes under a large gauge transformation along C if Σ contains intersecting

one-cycle C and two-cycle S and
∫

S
F 6= 0. However, this non-invariance under a large

gauge transformation poses no problem if Σ is at the asymptotic infinity of the flat space,

because we usually demand that A should decay sufficiently rapidly there, which removes

the freedom to do a large gauge transformation.

These facts are well-known, and have been utilized previously e.g. in [14]. It is the

manifestation of the fact that there are several notions of electric charges in the presence of

Chern-Simons interactions, as clearly discussed by Marolf in ref. [26]. One is the Maxwell

charge which is gauge-invariant but not conserved, and another is the charge which is

conserved but not gauge-invariant. In our case
∫

⋆F is the Maxwell charge and
∫

(⋆F +

(2/
√

3)A ∧ F ) is the Page charge. Yet another notion of the charge is the quantity which

generates the symmetry in the Hamiltonian framework, which can be constructed using

Noether’s theorem and its generalization by the work of Wald and collaborators [27 – 30].

The charge thus constructed is called the Noether charge, and in our case it agrees with

the Page charge.

Unfortunately, the manipulation above cannot be directly applied to the black rings

with dipole charges. It is because A is not a globally well-defined one-form, and the integrals

are not even well-defined. The way out is to generalize the definition of
∫

C
A ∧ F to the

case A is a U(1) gauge field defined using two coordinate patches, so that

∫

B

F ∧ F =
“

∫

∂B

A ∧ F
”

(2.7)

holds. Then the manipulation (2.6) makes sense. The essential idea is to introduce a term
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localized in the boundary of the patches which compensates the gauge variation. Copsey

and Horowitz [31] used similar subtlety associated to the gauge transformation between

patches to study how the magnetic dipole enters in the first law of the black rings.

Let us assume the whole spacetime is covered by two coordinate patches, S and T , see

figure 1. We denote the boundary of two regions by D = ∂S = −∂T . The gauge field A

is represented as well-defined one-forms AS and AT on the patches S and T , respectively.

These two are related by a gauge transformation, AS = AT + β with dβ = 0 on the

boundary D. Suppose the region B has the boundary C = ∂B. Then we have

∫

B

F ∧ F =

∫

B∩S

F ∧ F +

∫

B∩T

F ∧ F (2.8)

=

∫

C∩S+D∩B

AS ∧ F +

∫

C∩T−D∩B

AT ∧ F (2.9)

=

(
∫

C∩S

AS ∧ F +

∫

C∩T

AT ∧ F

)

+

∫

D∩B

(AS ∧ F − AT ∧ F ) (2.10)

=

(∫

C∩S

AS ∧ F +

∫

C∩T

AT ∧ F

)

+

∫

C∩D

AS ∧ β. (2.11)

Now we define the symbol
∫

M
A ∧ F for a three-cycle M to mean

“
∫

M

A ∧ F
” ≡

∫

M∩S

AS ∧ F +

∫

M∩T

AT ∧ F +

∫

D∩M

AS ∧ β, (2.12)

then the relation (2.7) holds as is. The important point here is that we need a term
∫

D∩M
AS ∧ β which compensates the gauge variation localized at the boundary of the

coordinate patches.

One immediate concern might be the gauge invariance of the definition (2.12), but it is

guaranteed for C = ∂B from the very fact the relation (2.7) holds. It is because its left hand

side is obviously gauge invariant. For illustration, consider the case ∂B = C1 − C2. The

Page charges measured at C1, C2 themselves are affected by a large gauge transformation,

but their difference is not. When one takes C1 as the asymptotic infinity, it is conventional

to set the gauge potential to be zero there, thus fixing the gauge freedom. Then the Page

charge at the cycle C2 is defined without ambiguity.

In the following, we drop the quotation marks around the generalized integral “
∫

A ∧
F ”. We believe it does not cause any confusion.

2.2 Angular momenta

The technique similar to the one we used for electric charges can be applied to the angu-

lar momenta, and we can obtain a formula which expresses them by the integral at the

horizon. There is a general formalism, developed by Lee and Wald [27], which constructs

the appropriate integrand from a given arbitrary generally-covariant Lagrangian, and the

expression for the angular momenta was obtained in [23, 32]. Instead, here we will con-

struct a suitable quantity in a more down-to-earth and direct method. We will see that

the integrand contains the gauge field A without the exterior derivative, and that it is
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ill-defined in the presence of magnetic dipole. We will use the technique developed in the

last section to make it well-defined.

Firstly, the angular momentum corresponding to the axial Killing vector ξ can be

measured at the asymptotic infinity by Komar’s formula

Jξ = − 1

16πG

∫

∞
⋆∇ξ, (2.13)

where ∇ξ is an abbreviation for the two-form ∇µξνdxµ ∧ dxν = dξ. Using the Killing

identity, the divergence of the integrand is given by

d ⋆ ∇ξ = 2 ⋆ Rµνξ
µdxν , (2.14)

which vanishes in the pure gravity. Thus, the angular momentum of a black object of the

pure gravity theory can be measured by
∫

S
⋆∇ξ for any surface S which surrounds the

object.

Let us analyze our case, where the equations of motion are given by (2.3) and (2.4).

We need to introduce some notations: £ξ denotes the Lie derivative along the vector field

ξ, ιξω denotes the interior product of a vector ξ to a differential form ω, i.e. the contraction

of the index of ξ to the first index of ω. Then £ξ = dιξ + ιξd when it acts on the forms.

For a vector ξ and a one-form A, we abbreviate ιξA as (ξ · A).

We will take the gauge where gauge potentials are invariant under the axial isometry

£ξA = 0. It can be achieved by averaging over the orbit of the isometry ξ. We furthermore

assume that every chain or cycle we use is invariant under the isometry ξ, then any term

of the form ιξ(· · · ) vanishes upon integration on such a chain or cycle.

Under these assumptions, the difference of the integral of ⋆∇ξ at the asymptotic infinity

and at C is evaluated with the help of the Einstein equation (2.3) to be

∫

∞
⋆∇ξ −

∫

C

⋆∇ξ = 2

∫

B

⋆Rµνξµdxν = 4

∫

B

(ιξF ) ∧ ⋆F (2.15)

where B is a hypersurface connecting the asymptotic infinity and C. We dropped the term
∫

ιξ(⋆F
2) because it vanishes upon integration.

The right hand side can be partially-integrated using the following relations: one is

d [⋆(ξ · A)F ] = −(ιξF ) ∧ ⋆F − (ξ · A)
2√
3
F ∧ F (2.16)

and another is

d [(ξ · A)A ∧ F ] = (ξ · A)F ∧ F − (ιξF ) ∧ A ∧ F (2.17)

=
3

2
(ξ · A)F ∧ F − 1

2
ιξ(A ∧ F ∧ F ) (2.18)

of which the last term vanishes upon integration. Thus we have

dXξ [A] = −(ιξF ) ∧ ⋆F (2.19)

– 6 –



J
H
E
P
1
2
(
2
0
0
7
)
0
5
7

modulo the term of the form ιξ(· · · ), where

Xξ [A] ≡ ⋆(ξ · A)F +
4

3
√

3
(ξ · A)A ∧ F. (2.20)

Xξ [A] is not a globally well-defined form. Thus, to perform the partial integration of the

right hand side of (2.19), compensating terms along the boundary of the coordinate patches

need to be introduced, just as we did in the previous section in the analysis of the Page

charge.

Let S and T be two coordinate patches, D = ∂S = −∂T be their common boundary,

and AS = AT + β as before. Let us call the correction term Yξ[β,AS ] and we define

∫

M

Xξ[A] ≡
∫

M∩S

Xξ[AS ] +

∫

M∩T

Xξ[AT ] +

∫

M∩D

Yξ[β,AT ]. (2.21)

We demand that it satisfies
∫

∂B

Xξ[A] =

∫

B

(ιξF ) ∧ ⋆F. (2.22)

Then Y [β,A] should solve

dYξ[β,AT ] = Xξ[AS ] − Xξ[AT ]. (2.23)

The right hand side is automatically closed since dXξ[A] is gauge invariant. Thus the

equation above should have a solution if there is no cohomological obstruction. Indeed,

substituting (2.20) in the above equation, we get

Yξ[β,AT ] = (ξ · β)Z − 2

3
√

3

[

2(ξ · β)β ∧ AT + (ξ · AT )β ∧ AT

]

(2.24)

modulo ιξ(· · · ), where dZ should satisfy

dZ = ⋆F +
2√
3
AT ∧ F, (2.25)

the right hand side of which is closed using the equation of motion (2.4). Unfortunately

there seems to be no general way to write Z as a functional of A and β. We need to choose

Z by hand for each on-shell configuration. With these preparation, we can finally integrate

the right hand side of (2.15) partially and conclude that

∫

C

(⋆∇ξ + 4Xξ [A]) . (2.26)

is independent under continuous deformation of C.

Taking C to be the 3-sphere at the asymptotic infinity, the terms X[A] vanish too

fast to contribute to the integral. Then, the integral above is proportional to the Komar

integral at the asymptotic infinity. Thus we arrive at the formula

Jξ = − 1

16πG

∫

Σ

(

⋆∇ξ + 4 ⋆ (ξ · A)F +
16

3
√

3
(ξ · A)A ∧ F

)

, (2.27)
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where Σ is any surface enclosing the black object. The right hand side is precisely the

Noether charge of Wald as constructed in [23, 32].

The contribution
∫

⋆∇ξ to the angular momentum is gauge invariant but is not con-

served. It is expected, since the matter energy-momentum tensor carries the angular mo-

mentum. The rest of the terms in (2.27) was obtained by the partial integral of the

contribution from the matter energy-momentum tensor, and can also be obtained by con-

structing the Noether charge. The price we paid is that it is now not invariant under a

gauge transformation.

2.3 Example 1: the black ring

Let us check our formulae against known examples. First we consider the celebrated

supersymmetric black ring in five dimensions [7].

2.3.1 Geometry

It has been known [33] that any supersymmetric solution of the minimal supergravity in

the asymptotically flat R
1,4 can be written in the form

ds2 = −f2(dt + ω)2 + f−1ds2(R4) (2.28)

where f and ω is a function and a one-form on R
4, respectively. For the supersymmetric

black ring [7], we use a coordinate system adopted for a ring of radius R in the R
4 given

by

ds2(R4) =
R2

(x − y)2

[

dx2

1 − x2
+ (1 − x2)dφ2

1 +
dy2

y2 − 1
+ (y2 − 1)dφ2

2

]

(2.29)

with the ranges −1 ≤ x ≤ 1, −∞ < y ≤ −1 and 0 ≤ φ1,2 < 2π.1 φ1, φ2 were denoted by

φ,ψ in ref. [7].

The solution for the single black ring is parametrized by the radius R in the base R
4

above, and two extra parameter q and Q. More details can be found in appendix A. q

controls the magnetic dipole through S2 surrounding the ring,

1

2π

∫

S2

F =

√
3

2
q. (2.30)

Conserved charges measured at the asymptotic infinity are as follows:

Q =
1

4πG

∫

∞
⋆F =

√
3π

2G
Q, (2.31)

J1 = − 1

16πG

∫

∞
⋆∇ξ1 =

π

8G
q(3Q − q2), (2.32)

J2 = − 1

16πG

∫

∞
⋆∇ξ2 =

π

8G
q(6R2 + 3Q − q2) (2.33)

where ξ1, ξ2 are the vector fields ∂φ1
, ∂φ2

respectively.

1We fix the orientations so that
R

Σ
dx∧ dφ1 ∧ dφ2 > 0 and

R

S2 dx∧ dφ1 < 0 for S2 surrounding the ring.
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There is a magnetic flux through S2 surrounding the ring, so we need to introduce two

patches S, T . We choose S to cover the region x < 1 − ǫ and T to cover 1 − ǫ < x < 1,

with infinitesimal ǫ. The boundary D is at x = ǫ and parametrized by 0 ≤ φ1, φ2 < 2π.

We choose the gauge transformation between the two patches to be

AT = AS +

√
3

2
qdφ1 (2.34)

which is chosen to make AT smooth at the origin of R
4.

The horizon is located at y → −∞ and has the topology S1 ×S2. The gauge potential

near the horizon is

AS = −
√

3

4

(

q +
Q

q

)

dψ −
√

3

4
q(x + 1)dχ, (2.35)

while the geometry near the horizon is given as

ds2 = 2dvdr +
4ℓ

q
rdvdψ + ℓ2dψ2 +

q2

4
(dθ2 + sin2 θdχ2) (2.36)

where r = r(y) is chosen so that r → 0 corresponds to y → −∞, v is a combination of t

and y, x = cos θ, ψ = φ2 + C1/r + C0 for suitably chosen C0,1, χ = φ1 − φ2, and

ℓ2 = 3

(

(Q − q2)2

4q2
− R2

)

. (2.37)

It is a direct product of an extremal Bañados-Teitelboim-Zanelli (BTZ) black hole with

horizon length 2πℓ and curvature radius q and of a round two-sphere with radius q/2.

ℓ is a more physical quantity characterizing the ring than R is, so it is preferable to

express J2, (2.33), using ℓ in the form

J2 =
π

8G
q

[

−2ℓ2 +
3Q2

2q2
− q2

2

]

. (2.38)

Our objective is to reproduce the conserved charges, (2.31), (2.32) and (2.38), purely from

the near-horizon data, (2.35) and (2.36).

2.3.2 Electric charge

We use the formula (2.6) to get the electric charge. Using the form of the gauge field near

the horizon (2.34) and (2.35), we obtain

Q =
1

4πG

2√
3

∫

Σ
A ∧ F

=
1

4πG

2√
3

(
∫

S∩Σ
AS ∧ F +

∫

D∩Σ
AS ∧ β

)

=

√
3π

2G

(

Q + q2

2
+

Q − q2

2

)

=

√
3π

2G
Q, (2.39)
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which correctly reproduces the charge measured at the asymptotic infinity. Vanishing of
∫

Σ ⋆F at the horizon means that all the Maxwell charge of the system is carried outside of

the horizon in the form of
∫

F ∧ F , while all of the Page charge is still inside the horizon.

One important fact behind the gauge invariance of the calculation above is that the

integral
∫

AS along the ψ′ direction is not just defined mod integer, but is well-defined as a

real number. It is because the circle along ψ, which is not contractible in the near-horizon

region, becomes contractible in the full geometry.

2.3.3 Angular momenta

The integral of the right hand side of (2.25) can be made arbitrarily small by choosing

very small ǫ, so that we can forget the complication coming from the choice of Z. Then

for ξ1 = ∂φ1
= ∂χ, we have

J1 =
1

16πG

[

−
∫

−1<x<1−ǫ

16

3
√

3
(ξ · AS)AS ∧ F +

∫

x=1−ǫ

16

3
√

3
(ξ · β)β ∧ AT

]

=
1

16πG

16

3
√

3
(2π)2

(√
3

2

)3
[

1

4
(q3 + qQ) +

1

2
(−q3 + qQ)

]

=
π

8G
q(3Q − q2), (2.40)

reproducing (2.32).

For ξψ = ∂ψ = ∂φ1
+ ∂φ2

, we have a contribution from
∫

⋆∇ξψ = 4π2qℓ2. Adding

contribution from X[A], we obtain

Jψ =
π

8G

(

−2qℓ2 − q3

2
+ 3qQ +

3Q2

2q

)

(2.41)

which matches with J1 + J2, see (2.32) and (2.38).

The second and the third terms in the expression above are obtained by the partial

integration of the contribution from the angular part of the energy-momentum tensor of

the gauge field. In this sense, a part of the angular momentum is carried outside of the

horizon and the part proportional to ℓ2 is carried inside the horizon. However, the Noether

charge of the black ring resides purely inside of the horizon.

2.4 Example 2: concentric black rings

The concentric black-ring solution constructed in ref. [34] is a superposition of the single

black ring we discussed in the last subsection. We focus on the case where all the rings lie on

a plane in the base R
4. For the superposition of N rings, the full geometry is parametrized

by 3N parameters qi, Qi and Ri, (i = 1, . . . , N). qi is the dipole charge and Ri is the radius

in the base R
4 of the i-th ring. For more details, see appendix A. We order the rings so

that R1 < R2 < · · · < RN . The conserved charges measured at infinity are known to be

Q =

√
3π

2G

[

N
∑

i=1

(

Qi − q2
i

)

+ s2

]

, (2.42)
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J1 =
π

8G



2s3 + 3s

N
∑

j=1

(Qj − q2
j )



 , (2.43)

J2 =
π

8G



2s3 + 3s
N

∑

j=1

(Qj − q2
j ) + 6

N
∑

i=1

qiR
2
i



 (2.44)

where s is an abbreviation for the sum of the magnetic charges, i.e. s =
∑N

i=1 qi. Our aim

is to reproduce these results from the near-horizon data.

The near-horizon metric of i-th ring has the form (2.36) with q, Q, R replaced with qi,

Qi and Ri, respectively. The horizon radius ℓi is given by

ℓ2
i = 3

(

(Qi − q2
i )

2

4qi
− R2

i

)

. (2.45)

Since each ring has a magnetic dipole charge, we introduce coordinate patches S and

Ti so that the gauge field is non-singular in each patch. Let Ti be the patch covering the

region between (i − 1)-th and i-th ring and S be a patch covering the outer region. More

precisely, we introduce the ring coordinate (2.29) for each of the ring, and choose S to

cover −1 + ǫ < xi < 1 − ǫ for each ring while Ti to cover 1 − ǫ < xi < 1 for the i-th ring

and −1 < xi−1 < −1+ ǫ for the (i− 1)-th ring. Then, near the i-th horizon the gauge field

on S is given by

AS = −
√

3

4





(

Qi

qi
− qi + 2s

)

dψ +



qi(1 + x) + 2

N
∑

j=i+1

qj



 dχ



 . (2.46)

Its ψ component is determined in appendix A, while the coefficient for dχ is determined

so that the field strength is reproduced, the gauge field is non-singular except for x = ±1

for the 1st to (N − 1)-th rings and non-singular except for x = −1 for the N -th ring. The

gauge field on Ti is given by

ATi
= AS +

√
3

2

N
∑

j=i

qjdφ1. (2.47)

The electric charge is given by using (2.6) and βi = AS − ATi
= −

√
3

2

∑N
j=i qjdφ1 as

Q =
1

4πG

2√
3

N
∑

i=1

∫

Σi∩S

AS ∧ F +
1

4πG

2√
3

N
∑

i=1

(

∫

Σi∩∂S

AS ∧ βi +

∫

Σi−1∩∂S

AS ∧ βi

)

=

√
3π

4G

N
∑

i=1

[(

Qi − q2
i

)

+ 2sqi

]

+

√
3π

4G

N
∑

i=1

(

Qi − q2
i

)

=

√
3π

2G

[

N
∑

i=1

(

Qi − q2
i

)

+ s2

]

. (2.48)

This correctly reproduces the known result (2.42).
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Let us move onto the evaluation of the angular momenta. Note that for certain con-

figurations of charges, the concentric black rings develop singularities on the rotation axes.

While the condition for the absence of singularities has not been known fully, it was pointed

out in ref. [34] that there is no singularity on the rotation axes if all

Λi =
Qi − q2

i

qi
(2.49)

are equal. We will show that we can obtain the correct angular momenta if this condition

is satisfied.

The angular momentum associated with ξ1 = ∂φ1
= ∂χ is given by

J1 = − 1

16πG

16

3
√

3

N
∑

i=1

∫

Σi∩S

(ξ1 · AS)AS ∧ F

− 1

16πG

16

3
√

3

N
∑

i=1

(

∫

Σi∩∂Ti

+

∫

Σi−1∩∂Ti

)

(ξ1 · βi)βi ∧ ATi
. (2.50)

After summing up terms, we have

J1 =
π

8G



2s3 + 6

N
∑

i=1

(Qi − q2
i )

N
∑

j=i+1

qj + 3

N
∑

i=1

(qi(Qi − q2
i ))



 . (2.51)

If the condition (2.49) is satisfied, J1 computed above matches (2.43) and we have

J1 → π

8G

[

2s3 + 3Λis
2
]

. (2.52)

Finally, let us consider the angular momentum associated with ξψ = ∂ψ = ∂φ1
+ ∂φ2

.

In addition to (2.50) with ξ1 being replaced by ξψ, here we have to consider two more

contributions. Namely,

− 1

16πG

N
∑

i=1

∫

Σi

⋆∇ξψ − 1

16πG

8

3
√

3

N
∑

i=1

(

∫

Σi∩∂Ti

+

∫

Σi−1∩∂Ti

)

(ξψ · ATi
)βi ∧ ATi

. (2.53)

It is easy to check that the sum of each term is given by

Jψ =
π

8G

[

6

N
∑

i=1

qiR
2
i + 4s3 + 6s

N
∑

i=1

(Qi − q2
i )

]

. (2.54)

When evaluated under the condition (2.49), this gives

Jψ → π

8G

[

6

N
∑

i=1

qiR
2
i + 4s3 + 6Λis

2

]

(2.55)

and agrees with Jψ given as the sum of (2.43) and (2.44).
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2.5 Generalization

It is straightforward to generalize the techniques we developed so far to the supergravity

theory with n of U(1) vector fields AI , (I = 1, . . . , n). There are (n − 1) vector multiplets

because the gravity multiplet also contains the graviphoton field which is a vector field. The

scalars in the vector multiplet are denoted by M I , which are constrained by the condition

N ≡ cIJKM IMJMK = 1. (2.56)

cIJK is a set of constants. The action for the boson fields is given by

S =
1

16πG

∫

[

⋆R − aIJdM I ∧ ⋆dMJ − aIJF I ∧ ⋆F J − cIJKAI ∧ F J ∧ FK
]

(2.57)

where R is the Ricci scalar, and

aIJ = −1

2
(NIJ −NINJ) . (2.58)

In the last expression, NI = ∂N/∂M I and NIJ = ∂2N/∂M I∂MJ . This is the low-energy

action of M-theory compactified on a Calabi-Yau manifold M with n = h1,1(M), and

6cIJK =

∫

ωI ∧ ωJ ∧ ωK (2.59)

is the triple intersection of integrally-quantized two-forms ωI on M . The action for the

minimal supergavity (2.1) is obtained by setting n = 1, c111 = (2/
√

3)3, and a11 = 2.

As for the calculation of the electric charges, one only needs to put the indices I, J,K

to the vector fields and the result is

QI =
1

8πG

∫ [

⋆aIJF J +
3

2
cIJKAJ ∧ FK

]

. (2.60)

As for the angular momenta, there is extra terms coming from the energy-momentum

tensor of the scalar fields in the right hand side of (2.15). Its contribution to the angular

momenta vanishes upon integration, so that the result is

Jξ = − 1

16πG

∫

[

⋆∇ξ + 2 ⋆ aIJ(ξ · AI)F J + 2cIJK(ξ · AI)AJ ∧ FK
]

. (2.61)

For a more complicated Lagrangian, e.g. with charged hypermultiplets and/or with

higher-derivative corrections, it is easier to utilize the general framework set up by Wald,

than to find the partial integral in (2.15) by inspection. The charge constructed by this

technique has an important property [27] that it acts as the Hamiltonian for the corre-

sponding local symmetry in the Hamiltonian formulation of the theory, and it reproduces

the Page charge and the angular momenta (2.61). Consequently, the charge as the genera-

tor of the symmetry is not the gauge-invariant Maxwell charge, but the Page charge which

depends on a large gauge transformation.

The integrands in the expressions above are not well-defined as differential forms when

there are magnetic fluxes, thus it needs to be defined appropriately as we did in the previous
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sections. Generically, we would like to rewrite the integral of a gauge invariant form ω on

a region B to the integral of ω(1) satisfying

dω(1) = ω (2.62)

on its boundary ∂B. The problem is that ω(1) may depend on the gauge. On two patches

S and T , it is represented by differential forms ωS
(1) and ωT

(1) respectively. Since ω is gauge-

invariant, we have dωS
(1) = dωT

(1). Thus, if we take a sufficiently small coordinate patch, we

can choose ω
(S,T )
(2) such that

dω
(S,T )
(2) = ωS

(1) − ωT
(1). (2.63)

Then one defines the integral of ω(1) on C = ∂B via

∫

C

ω(1) ≡
∫

C∩S

ωS
(1) +

∫

C∩T

ωT
(1) +

∫

C∩D

ωS,T
(2) , (2.64)

where D = ∂S = −∂T . The equations (2.62), (2.63) are the so-called descent relation which

is important in the understanding of the anomaly. It will be interesting to generalize our

analysis to the case where there are more than two patches and multiple overlaps among

them. Presumably we need to include higher descendants ω
(S1,...,Sn)
(n) as the correction term

at the boundary of n patches S1, . . . , Sn in the definition of the integral (2.64).

3. Relation to four-dimensional charges

We have seen how the near-horizon data of the black rings encode the charges measured at

the asymptotic infinity. We can also consider rings in the Taub-NUT space [19 – 21] instead

in the five-dimensional Minkowski space. Then the theory can also be thought of as a theory

in four dimensions, via the Kaluza-Klein reduction along S1 of the Taub-NUT space. It

has been established [35] that supersymmetric solutions for five dimensional supergravity

nicely reduces to supersymmetric solutions for the corresponding four dimensional theory.

In four dimensions, there are no problems in defining the charges, because the equations

of motion and Bianchi identities yield the relations

dF I = 0, dGI = d(⋆(g−2
IJ )F J + θIJF J) = 0 (3.1)

where (g−2)IJ are the inverse coupling constants and θIJ are the theta angles. The electric

and magnetic charges can be readily obtained by integrating GI and F I over the horizon.

Then it is natural to expect that our formulae for the charges will yield the four-dimensional

ones after the Kaluza-Klein reduction. One apparent problem is that the Page charges

changes under a large gauge transformation, whereas the four-dimensional charges are

seemingly well-defined as is. We will see that a large gauge transformation corresponds to

the Witten effect on dyons in four-dimensions.
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3.1 Mapping of the fields

First let us recall the well-known mapping of the fields in four and five dimensions. The

details can be found e.g. in [11, 12, 15, 16]. When we reduce a five-dimensional N = 2 su-

pergravity with n vector fields along S1, it results in a four-dimensional N = 2 supergravity

with (n + 1) vector fields. The metrics in respective dimensions are related by

ds2
5d = e2ρ(dψ − A0)2 + e−ρds2

4d, (3.2)

where we take the periodicity of ψ to be 2π so that eρ is the five-dimensional radius of the

Kaluza-Klein circle. The factor in front of the four-dimensional metric is so chosen that

the four-dimensional Einstein-Hilbert term is canonical.

The gauge fields in four and five dimensions are related by

AI
5d = aI(dψ − A0) + AI

4d (3.3)

where I = 1, . . . , n. It is chosen so that a gauge transformation of A0 do not affect AI
4d.

We need to introduce coordinate patches when there is a flux for AI
5d. We demand that

gauge transformations used between patches should not depend on ψ so that aI are globally

well-defined scalar fields.

Then, by the reduction of the five-dimensional action (2.57), the action of four-

dimensional gauge fields is determined to be2

L = −
[

1

2
e3ρ + eρaIJaIaJ

]

F 0 ∧ ⋆F 0 − cIJKaIaJaKF 0 ∧ F 0

+2eρaIJaIF 0 ∧ ⋆F J + 3cIJKaIaJF 0 ∧ FK

−eρaIJF I ∧ ⋆F J − 3cIJKaIF J ∧ FK . (3.4)

Partial integrations are necessary to bring the naive Kaluza-Klein reduction to the form

above. The resulting Lagrangian above follows from the prepotential

F (X) =
cIJKXIXJXK

X0
, (3.5)

if one defines special coordinates zI = XI/X0 by

zI = aI + ieρM I . (3.6)

This relation can be checked without the detailed Kaluza-Klein reduction. Indeed, the ratio

of aI and M I in (3.6) can be fixed by inspecting the mass squared of a hypermultiplet, and

the fact aI should enter in zI linearly with unit coefficient is fixed by the monodromy.

2We take the following conventions in four dimensions: The orientations in four and five dimensions are

related such that
R

5d
dx0

∧ dx1
∧ dx2

∧ dx3
∧ dψ = 2π

R

4d
dx0

∧ dx1
∧ dx2

∧ dx3. The Levi-Civita symbol in

four dimensions is defined by ǫ0123 = +1 and ǫ0123 = −1 in local Lorentz coordinates.
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3.2 Mapping of the charges

In many references including ref. [12, 16, 23], the charge of the black object in five di-

mensions is defined to be the charges in four dimensions after the dimensional reduction

determined from the Lagrangian (3.4). It was motivated partly because the analysis of

the charge in five dimensions was subtle due to the presence of the Chern-Simons in-

teraction, whereas we studied how we can obtain the formula for the charges which has

five-dimensional general covariance in section 2. Now let us compare the charges thus

defined in four- and five- dimensions.

Firstly, the magnetic charge

q0 =
1

2π

∫

C

F 0 (3.7)

in four dimensions counts the number of the Kaluza-Klein monopole inside C. It is also

called the nut charge. The other magnetic charges in four dimensions

qI =
1

2π

∫

C

F I (3.8)

come directly from the dipole charges in five dimensions, as long as the surface C does

not enclose the nut. When C does contain a nut, the Kaluza-Klein circle is non-trivially

fibered over C. Thus, the surface C cannot be lifted to five dimensions. We will come back

to this problem in section 3.5.

The formulae for the electric charges follow from the Lagrangian:

QI =
1

2π

∫

[

⋆2eρaIJ(F J − aJF 0) + 6cIJKaJFK − 3cIJKaJaKF 0
]

, (3.9)

Q0 =
1

2π

∫

[

⋆e3ρF 0 − ⋆2eρaIJaI(F J − aJF 0) + 2cIJKaIaJaKF 0 − 3cIJKaIaJFK
]

.

(3.10)

It is easy to verify that the five-dimensional Page charges (2.60) and the Noether

charge Jψ (2.61) for the isometry ∂ψ along the Kaluza-Klein circle are related to the four-

dimensional electric charges via

QI = −4G

π
QI , Q0 = −4G

π
Jψ. (3.11)

An important point in the calculation is that the compensating term on the boundary of

the coordinate patches vanishes, since aI and F J
4d are globally well-defined.

Thus we see that the four-dimensional charges are not the reduction of the gauge-

invariant Maxwell charges
∫

⋆F or that of the gauge-invariant “Maxwell-like” part of the

angular momentum,
∫

⋆∇ξ. They are rather the reduction of the Page or the Noether

charges, which change under a large gauge transformation.

3.3 Reduction and the attractor

In the literature, the attractor equation is often analyzed after the reduction to four dimen-

sions [12, 15, 16], while the five-dimensional attractor mechanism for the black rings in [22]
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only determines the scalar vacuum expectation values via the magnetic dipoles. As we saw

in the previous sections, the electric charges at the asymptotic infinity are encoded by the

Wilson lines along the horizon. We show that how these five-dimensional consideration

reproduces the known attractor solution [36, 37] in four-dimensions.

The five-dimensional metric is characterized by the magnetic charges qI through the

horizon, and the physical radius of the horizon ℓ = eρ there. From the attractor mechanism

for the black rings [22], the near-horizon geometry is of the form AdS3 × S2, and the

curvature radii are q and q/2 in each factor, where q3 = cIJKqIqJqK . The scalar vevs are

fixed to be proportional to the magnetic dipoles, i.e. M I = qI/q.

For the calculation of electric charges the Wilson lines aI along the horizon are also

important. Then we can evaluate the Page charges and angular momenta on the horizon

to obtain

QI = 6cIJKaJqK , Q0 = qℓ2 − 3cIJKaIaJqK . (3.12)

We can solve the equations above for ℓ and aI so that we have the formula for the four-

dimensional special coordinates zI in terms of the charges. The result is

zI = aI + ieρM I =
1

6
DIJQI + i

√

Q̂0

D
qI (3.13)

where

DIJ = cIJKqK , DIJDJK = δI
K (3.14)

and

D = q3 = cIJKqIqJqK , Q̂0 = qℓ2 = Q0 +
1

12
DIJQIQJ . (3.15)

It is the well-known solution of the attractor equation in four-dimensions with q0 = 0 [36,

37].

Thus, the combination of the attractor mechanism in five dimensions and the technique

of Page charges yield the attractor mechanism in four dimensions. The point is that

the Wilson lines aI along the horizon of the black string carry the information of its

electric charges. Conversely, the Wilson line at the horizon is determined by the electric

charge. The horizon length is also determined by the angular momentum. In this sense,

the attractor mechanism for the black rings also fixes all the relevant near-horizon data by

means of the charges, angular momenta and dipoles.

3.4 Gauge dependence and monodromy

Let us now come back to the question of the variation of the Page charges under large

gauge transformations. The problem is that the integral
∫

C
A ∧ F depends on the shift

A → A + β for dβ = 0 if C has a non-contractible loop ℓ and
∫

ℓ
β 6= 0. In the spacetime

which asymptotes to R
4,1, the large gauge transformation can be fixed by demanding that

the gauge potential vanishes at the asymptotic infinity.

In the present case of reduction to four dimensions, however, the gauge potential along

the Kaluza-Klein circle is one of the moduli and is not a thing to be fixed. More precisely, if
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the ψ direction is non-contractible, a large gauge transformation associated to the Kaluza-

Klein circle corresponds to a shift aI → aI + tI where tI are integers. In four-dimensional

language it is the shift

zI → zI + tI , (3.16)

and the gauge variation of the Page charge translates to the variation of the electric charge

under the transformation (3.16). It is precisely the Witten effect on dyons [24] if one recalls

the fact that the dynamical theta angles of the theory depends on zI . In the terminology

of N = 2 supergravity and special geometry, it is called the monodromy transformation

associated to the shift (3.16), which acts symplectically on the charges (qI , QI) and on the

projective special coordinates (XI , FI)

For the M-theory compactification on the product of S1 and a Calabi-Yau, electric

charges QI and qI correspond to the number of M2-branes and M5-branes wrapping two-

cycles ΠI and four-cycles ΣI , respectively. The relation (2.59) translates to 6cIJK =

#(ΣI ∩ ΣJ ∩ ΣK) in this language. The gauge fields AI arise from the Kaluza-Klein

reduction of the M-theory three-form C on ΠI . Thus, the results above imply that the

M2-brane charges transform non-trivially in the presence of M5-branes under large gauge

transformations of the C-field.

It might sound novel, but it can be clearly seen from the point of view of Type IIA

string theory on the Calabi-Yau. Consider a soliton without D6-brane charge. There, the

D2-brane charge QI of the soliton is induced by the world-volume gauge field F on the D4

brane wrapped on a four-cycle Σ = qIΣI through the Chern-Simons coupling

∫

Σ
(F + B) ∧ C (3.17)

where B is the NSNS two-form and C is the RR three-form. In this description, aI is given

by
∫

ΠI B. The induced brane charge in the presence of the non-zero B-field is an intricate

problem in itself, but the end result is that the large gauge transformation B → B+ω with
∫

ΠI ω = tI changes the D2-brane charge of the system by 6cIJKqItJ . It will be interesting

to derive the same effect from the worldvolume Lagrangian [38] of the M5 brane, which

is subtle because the worldvolume tensor field is self-dual. The change in the M2-brane

charge induce a change in the Kaluza-Klein momentum carried by the zero-mode on the

black strings wrapped on S1, so that Q0 also changes [2]. The point is that the momentum

carried by non-zero modes, Q̂0 defined in (3.15), is a monodromy-invariant quantity.

Before leaving this section, it is worth noticing that if an M2-brane has the worldvolume

V , it enters in the equation of motion for G = dC in the following way:

d ⋆ G + G ∧ G = δV (3.18)

where δV is the delta function supported on V . Thus, the quantized M2-brane charge is

not the source of the Maxwell charge. It is rather the source of the Page charge. Essentially

the same argument in five dimensions, using the specific decomposition (2.28), was made

in ref. [39].
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3.5 Monodromy and Taub-NUT

If we use the Taub-NUT space in the dimensional reduction, in other words if there is a

Kaluza-Klein monopole in the system, the Kaluza-Klein circle shrinks at the nut of the

monopole. As the circle is now contractible, one might think that one can no longer do a

large gauge transformation and that it is natural to choose aI = 0 at the nut. Neverthe-

less, from a four-dimensional standpoint the monodromy transformation should be always

possible. How can these two points of view be reconciled?

Firstly, the fact that the five-dimensional spacetime is smooth at the nut only requires

that the gauge field strength is zero there and that the integral of the gauge potential is

an integer. There should be a patch around the nut in the five-dimensional spacetime in

which AI should be smooth, but it is not the patch connected to the asymptotic region of

the Taub-NUT space where aI is defined.

A similar problem was studied in ref. [40]. There, it was shown how the winding

number can still be conserved in the background with the nut, where the circle on which

strings are wound degenerates. A crucial role is played by the normalizable self-dual two-

form ω localized at the nut, which gives the worldvolume gauge field A of the D6-brane

realized as the M-theory Kaluza-Klein monopole via C = A ∧ ω. It should enter in the

worldvolume Lagrangian in the combination dA + B, and the large gauge transformation

affects the contribution from B.

Indeed, the Kaluza-Klein ansatz of the gauge fields (3.3), one can make the combined

shift

aI → aI + tI , AI
4d → AI

4d + tIA0 (3.19)

without changing the five-dimensional gauge field strengths. Therefore, the magnetic

charge also transforms as

qI → qI + tIq0. (3.20)

The action of the transformation (3.16) on the electric charges then becomes

QI → QI + 6cIJKtJqK + 3cIJKtJ tKq0, (3.21)

Q0 → Q0 − QIt
I − 3cIJKtItJqK − cIJKtItJtKq0, (3.22)

which is exactly how the projective coordinates

X0, XI , FI = 3cIJKXJXK/X0, F0 = −cIJKXIXJXK/(X0)2. (3.23)

get transformed by the monodromy aI → aI + tI . It was already noted in ref. [21] that

the same symmetry acts on the functions which characterize the supersymmetric solution

on the Taub-NUT, (V,KI , LI ,M) in their notation. The point is that it modifies the

five-dimensional Page charges, and hence the four-dimensional charges.

If we neglect quantum corrections coming from instantons wrapping the Kaluza-Klein

circle, it is allowed to do the monodromy transformation zI → zI + tI even with continuous

parameters tI . It maps a solution of the equations of motion to another, and the electric

charges in four-dimensions depends continuously on the vevs for the moduli aI at the

asymptotic infinity. The issue concerning the stability of the solitons can be safely ignored.
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In the analyses in refs. [19 – 21], their proposals for the identification of four-dimensional

electric charges QI and of five-dimensional ones QI were different from one another. The

source of the discrepancy in the identification is now clear after our long discussion. It can

be readily checked that the differing proposals for the identification can be connected by

the monodromy transformation with tI = 1
2qI . Namely, the charges in the five-dimensional

language are transformed as

4G

π
QI → 4G

π
QI − 3cIJKqJqK , Jψ → Jψ − Jφ (3.24)

for Q0 ≫ q3 limit.3 Thus they are equivalent under a large gauge transformation.

The analysis above also answers the question raised in section 3.2 how the dipole

charges in five dimensions are related in the magnetic charges in four dimensions in the

presence of the nut. It is instructive to consider the case of a black ring in the Taub-NUT

space. From a five-dimensional viewpoint, the dipole charge is not a conserved quantity

measurable at the asymptotic infinity. Correspondingly, the surface of the Dirac string

necessary to define the gauge potential can be chosen to fill the disc inside the black ring

only, and not to extend to the asymptotic infinity. It was what we did in section 2.3.1 in

defining the coordinate patches. However, the gauge transformation required to achieve

it necessarily depends on the ψ coordinate, which is the direction along the Kaluza-Klein

circle. Hence it is not allowed if one carries out the reduction to four dimensions. In this

case, the Dirac string emanating from the black ring necessarily extends all the way to the

spatial infinity, thus making the magnetic charge measurable at the asymptotic infinity. A

related point is that dipole charges enter in the first law of black objects because of the

existence of two patches [31].4 It is easier to understand it after the reduction because now

it is a conserved quantity measurable at the asymptotic infinity.

As a final example to illustrate the subtlety in the identification of the four- and five-

dimensional charges, let us consider a two-centered Taub-NUT space with centers x1 and

x2. There is an S2 between two centers, and one can introduce a self-dual magnetic fluxes

qI through it. Although the Chern-Simons interactions put some constraint on the allowed

qI , there is a supersymmetric solution of this form [44]. In this configuration, the Wilson

lines aI at x1 and x2 necessarily differ by the amount proportional to the flux, and one

cannot simultaneously make them zero. An important consequence is that the magnetic

charges F I
4d of the nuts at x2 and x2 necessarily differ, in spite of the fact that the geometry

and the gauge fields in five dimensions are completely symmetric under the exchange of x1

and x2.

4. Summary

In this paper, we have first clarified how the near-horizon data of black objects encode the

3We noticed that a small discrepancy proportional to cIJKqIqJqK remains, which is related to the zero-

point energy of the conformal field theory of the black string. Its effect on the entropy is subleading in the

large Q0 limit.
4The authors of [31] used the approach to the first law developed in [41]. There is another understanding

of appearance of the dipole charges in the first law [42] if one follows the approach in [43].
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conserved charges measured at asymptotic infinity. Namely, the existence of the Chern-

Simons coupling means that F ∧ F is a source of electric charges, thus it was necessary to

perform the partial integration once to rewrite the asymptotic electric charge by the integral

of A ∧ F over the horizon. Since F has magnetic flux through the horizon, A ∧ F cannot

be naively defined, and we showed how to treat it consistently. Likewise, we obtained the

formula for the angular momenta using the near-horizon data.

Then, we saw how our formula for the charges in five dimensions is related to the four-

dimensional formula under Kaluza-Klein reduction. We studied how the ambiguity coming

from large gauge transformations in five dimensions corresponds to the Witten effect and

the associated monodromy transformation in four dimensions.

It is now straightforward to obtain the correction to the entropy of the black rings,

since we now have the supersymmetric higher-derivative action [13], the near-horizon geom-

etry [45 – 47], and also the formulation developed in this paper to obtain conserved charges

from the near-horizon data alone. It would be interesting to see if it matches with the

microscopic calculation.
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A. Geometry of concentric black rings

Any supersymmetric solution in the asymptotically flat R
1,4 is known to be of the form [33]

ds2 = −f2(dt + ω)2 + f−1ds2(R4) (A.1)

where f and ω is a function and a one-form on R
4, respectively. We parametrize the base

R
4 in the Gibbons-Hawking coordinate system

ds2(R4) = H[dr2 + r2(dθ2 + sin2 θdχ2)] + H−1(2dψ + cos θdχ)2 (A.2)

where (r, θ, φ) parametrize a flat R
3, the periodicity of ψ is 2π and H = 1/r. Our notation

mostly follows the one in ref. [34], with the change ψthere = 2ψhere. The quantities f , ω

and the gauge field F = dA are determined by three functions K, L and M on the flat R
3.

The relations we need are

f−1 = H−1K2 + L, ι∂ψ
ω = 2H−2K3 + 3H−1KL + 2M, (A.3)

F =

√
3

2
d[f(dt + ω)] − 1√

3
G+, ι∂ψ

G+ = −3d(H−1K) (A.4)
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where G+ = f(dω + ⋆dω)/2 is a self-dual two-form on R
4.

To construct the concentric black ring solutions, we take N points xi, (i = 1, . . . , N)

at r = R2
i /4, θ = π on R

3. The orbit of xi along the coordinate ψ is a ring of radius Ri

embedded in R
4. We choose functions K, L and M by

K = −1

2

N
∑

i=1

qihi, L = 1 +
1

4

N
∑

i=1

(Qi − q2
i )hi, M =

3

4

N
∑

i=1

qi(1 − |xi|hi) (A.5)

where hi(x) = 1/|x − xi| are harmonic functions on R
3. For the case with a single ring,

conversion to the ring coordinate used in (2.29) can be achieved via

φ1 = ψ + χ/2, φ2 = ψ − χ/2 (A.6)

and
R

√

y2 − 1

x − y
= 2

√
r sin

θ

2
,

R
√

1 − x2

x − y
= 2

√
r cos

θ

2
. (A.7)

The behavior of ω and F at the asymptotic infinity, and the near-horizon metric (2.36)

are well-known and are not repeated here. The reader is referred to the original article

ref. [34]. The gauge potential near the horizon can be obtained by the combination of (A.3)

and (A.4). First we have

ι∂ψ
F =

√
3

2
(−dι∂ψ

)[f(dt + ω)] +
√

3d(KH−1). (A.8)

which can be integrated by inspection. Hence the ψ component of the gauge field is given

by

ι∂ψ
A =

√
3

[

H−1KL/2 + M

H−1K2 + L
+ c

]

(A.9)

for some constant c. By demanding ιψA → 0 as r → ∞, we obtain

c = −1

2

N
∑

i=1

qi. (A.10)

Thus, we have

ι∂ψ
A = −

√
3

4

(

Qi − q2
i

qi
+ 2

N
∑

i=1

qi

)

. (A.11)

near the i-th horizon. The χ component of the gauge field is fixed by the magnetic dipole

through the horizon.
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