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Abstrhact

Though already initiated by Rau in 1841, the economic theory of the shape of two-
dimensional market areas has long remained concerned with a representation of trans-
portation costs as linear in distance. In the general gravity model, to which the
theory also applies, this corresponds to a decreasing exponential function of distan-
ce deterrence. Other transportation cost and distance deterrence functions also ap-
pear in the literature, however, They have not always been considered from the view-
point of the shape of the market areas they generate, and their disparity asks the
question whether other types of functions would not be worth being investigated.
There is thus a meed for a general theory of market areas : the present work aims at
filling this gap, in the case of a duopoly competing inside the Euclidean plane endo-

wed with Euclidean distance.
Résumé

Bien qu'ébauchée par Rau dés 1841, la théorie économique de la forme des aires de
marché planaires s'est longtemps contentée de 1'hypothése de cofits de transport pro-
portionnels & la distance. Dans le modéle gravitaire généralisé, auquel on peut
étendre cette théorie, ceci éorreSpond au choix d'une exponentielle décrocissante

comme fonction de dissuasion de la distance. D'autres fonctions de cofit de trans-

port ou de dissuasion de la distance apparaissent cependant dans la littérature.

La forme des aires de marché qu'elles engendrent n'a pas toujours été étudiée ; par
ailleurs, leur variété améne 3 se demander si d'autres fonctions encore ne mériteraient
pas d'8tre examinées. Il parait donc utile de disposer d'une théorie générale des
aires de marché : ce 3 quoi s'attache ce travail en cas de duopole, dans le cadre du

plan euclidien muni d'une distance euclidienne.
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1. Intrnoduction

In acentral place system, space can generally be partitioned into urban market
areas. The market area of a centre is the area where the influence of that centre
is greater than (dominant with respect to) that of any other one. The model defi-
ning the mode of spatial urban influence is usually also suitable for determining
the theoretical market area of every centre in a given system. A number of papers
are devoted to market areas in the context of central place theory ; see e.g. Alao
et al. (1977), Mulligan (1981). A theoretical paper by Webber (1974) relates popu-
lation density with market areas (extension, town spacing). Geographers like
Illeris (1967), Berry and Lamb (1974), Huff and Lutz (1979), have often delineated
theoretical market areas by means of a gravity modef of urban influence ; they com-
monly represent the gravitational deterrence of distance by a decreasing power func—
tion, and the indifference line between two centres is then circular, as shown by
Tuominen (1949) and Godlund (1956). But the spatial flows, independently of market
areas, are also modelled by means of other deterrence functions. Allen and Sanglier
(1981) employ a decreasing power function, not of the distance alone but of the

delivered price. And all the spatial (nteraction modefs use a decreasing exponential

function of distance.

The economic theony of the shape of manket anreas, regarding the deterministic pro-
blem of a consumer making his choice between two places where a commodity is sold

at two different mill prices, has reached a higher development. The transportation
costs being proportional to distance, the indifference line is known to be a branch
of a hyperbola if the transportation rates are the same for both centres but the
f.o.b. prices differ. It is a circle if the f.o.b. prices are equal but the trans-
portation rates differ ; and in the general case, it is a particular quartic curve,
the Cartesian oval. This results from a long series of rediscoveries and develop-
ments described by Shieh (1985), Robine (1985), and also partially by Ponsard (1983).
As background, the main names are those of Rau (1841), Launhardt (1882}, Cheysson
(1887), Fetter (1924), Palander (1935), Schmeider (1935), and Hyson and Hyson (1950).
Quadratic transportation costs have been studied too and give rise to a straight in-

difference line ; see Aurenhammer (1983).

There is clearly room for some research in both fields. The implications on the
shape of market areas of the assumptions of Allen and Sanglier (1981) and of the spa-

tial interaction model do not seem to have been examined yet. And there is no clear



reason to ignore other possible transportation cost or deterrence functions than
those presently used. But why should we bother, after all, about a general theory

of market areas ? It seems so easy to draw conclusions from the study of the clas-
sical cases mentioned above, at least when the transportation rates are the same for
both centres. The market area of the less attractive centre is obviously convex.

It is finite when the transportation cost function is strictly concave : we shall

see indeed that the case studied by Tuominen and by Godlund is equivalent in terms

of the economic theory of market areas to the choice of a logarithmic transportation
cost function, which is strictly concave. One property, perhaps, may hurt the common
sense : when transportation costs are quadratic in distance, the less attractive
centre may not belong to its own market area. Would it be because the relation of
costs to distance is strictly convex ? Intuition gives here the right answer.

But all the other properties we have suggested are falge ... This was precisely the
starting point of our research : noticing that some properties of market areas were
not necessarily the same with concave as with convex transportation costs. We then
tried to detect those properties through simulation, with a power transportation cost
function. This immediately showed that the linear case was a threshold, but that the
quadratic case was another ome. Something else than the coucavity or convexity of

the transportation cost function was thus at work. What could it be ?

This work is organized as follows. In Section 2 we detail the gravitational and
deterministic models of consumer behaviour to which we have alluded above, and see how
the market areas they generate fit into a unique model precised in Section 3. Sec-
tions 4 to 11 study various properties of those areas, and are extended by a study of
Descartes' ovals in Section 13 and by Section 12 which describes the effect of a rela-
xation of the very slight assumptions made in Sectiom 3. We refer the reader wanting
to get a condensed overall view of our main results concerning the shape of market
areas to a communication of ours [Hanjoul et al. (1986)]. The quantitative aspects
‘are summarized in Hanjoul and Thill (1986 and 1987), in the context of demand analy-
sis and equilibrium theory. Although we consider two centres only, it is possible to
draw some conclusions about any number of centres. Denote indeed by ij the area whe-
re the influence of centre j is greater than that of k. If C is the set of all cen-
tres, the market area Zj is the intersection of the areas ij, for all k € C. The
boundary of Zj is consequently made of pieces of boundaries of market areas defined

by couples of centres, and our statements obtain for each of those pieces separately.



Note about the figunes

The figures representing market areas are inserted in rectangular frames. The
left edge of those frames is a part of the y-axis, and centre j is thus symmetric
of centre k with regard to that edge ; unless otherwise mentioned, either implicitly
(centre j appearing together with centre k) or explicitly (Fig. 10.3b). The hori-
zontal stroke in the lower left corner of the frame is the distance unit ; if a num-
ber is written above it, however, the stroke represents the distance unit multi-

plied by that number.



2. Modelling consumens' behaviouwr

2.1. The ghavity model

Consider two wurban centres j and k and any place i in the geographical space.
A first mathematical model used to represent the interaction between places
and which can help to define market areas is the gravity model whose general

form may be written [ Sheppard (1978)] :

t.. =Km G(A.) F(5,. (1
1] 1 ] lJ)

where tij is the amount of interaction between j and i due to the relative
influence exerted by j on 1i; m, is a function of the attributes of place 1ij;
G(Aj) is a function of the attractivity Aj of centre j; F(&ij) is a decrea-
sing function of the distance Bij between 1 and j; K is a proportionality fac-

tor. All these functions are assumed to be continuous and strictly positive.

As we are considering two centres only, the market area Zk of centre k is
the set of places where the influence of k is stronger than that of j, i.e.,

where ti = tij' Equation (1) shows that such is the case when

k

F(s,) / F(Bij) = G(AJ-) /G- (2)

If we define an increasing function h of distance and an index Q of compa-

rative attractivity as follows

h(s) = - £n F (&) (3)
Q = 4n [G(Aj)/G(Ak)] ;

then (2) becomes
h(&ij) = h(éik) = Q (4)

which describes market area Zk as the set of places i where the proximity of

k wrt. that of j (i.e., k with respect to that of j) surpasses or equals the

advantage of j in terms of attractivity.



The introduction of function h simplifies the statements, as will be seen
throughout the paper. That function, which enables us to write F (8) in the more

~h(§)

familiar form e may (but not necessarily) be interpreted as a transportation
cost, or as a perceived disutility associated with distance deterrence. The first
interpretation is of course wrong in the model of Allen and Sanglier (1981). And
when the deterrence function is the more frequent power function G-B, it is impos-
sible to consider h (§), here equal to B fn &, as a transportation cost : h (8) is
indeed < 0 when 6 < 1. Anyway, the sign of h (§) does not matter : inequality (4)
shows that we may add any constant number to function h without modifying the mar-
ket areas,so that the positivity of h (§) cannot bring any useful information. *°

What is really important is the difference between h (§) and the value of h at some

reference distance : e.g. h (0).

Several related interaction issues are reducible to inequality (4). Once submit-
ted to a logarithmic transformation, the linear interaction formula of Isard (1960,
p. 512) is not different from that of Sheppard. Also, as noted by Beckmann (1971
and 1972), if we want to determine from Sheppard's model the area where the safes
hatdlo tik/tij of centre k is at least equal to some value 0, or equivalently where its
market share tik/(tik + tij) is at least equal to o/(1+0), we are back again to ine-
quality (4) : the constant Q must simply be increased by £n 0. In this interpretation
the demarcation line described by h (Gij) - h (Gik) = Q is called an 4{scshare Line.
The constrained interaction models [see e.g. Wilson (1970)] are similarly amenable
to ours, as they are described by equality (1) with K replaced by the product EiBjK :
Ei = 1 if the model is not consumption-constrained, and Bj = 1 if it is not produc-
tion-constrained. The constant Q has thus to be increased by f£n (Bj/Bk) if the pro-
ductions tj and t, are known a priori. Two interesting properties emerge in that case.

First, a change in the deterrence function or in the set of consumers implies a change

in Q as
B =t /KG (A) Z.E.m. F (8. )
o c c i'ii ic

Second, if additional centres appear, and if the model is simultaneously consumption-
constrained, Q is also modified because the coefficients BC are then interrelated
through the coefficients Ei’ for which a similar equality holds. A fourth issue is

that of the area where the interaction difference Lo ~ tij is greater than some gi-

k
ven value D. That area is defined by



. 10 .
G(Ak) F (6ik) -G (Aj) F (6ij) 2 D/K m, .

It will appear from Section 2.2 that this area can be studied by means of our
model if m, is the same for all 1. Section 2.2 will also show how to treat pro-
blems in which the delivered price, not the distance, is the argument of the deter-
rence function ; or in which distance is affected by a coefficient depending on the
firm considered. In particular, in the model of Allen and Sanglier (1981), the

equation of the indifference line becomes in the most complex case

B 1/B
(pj * o aij) / (p +x, 8,) =16 (Aj)/G (a)]

which clearly describes a Cartesian oval,'a circle, or one branch of a hyperbola.

2.2, A deteruministic Anternaction model

In a 1976 paper, Beckmann assumes that the utility uij’ for a possible consumer

located at a place i, of interacting with a centre j is expressed by :

uij = Y(Aj) - n(Gij)

where Aj is the attractivity of centre j; functions vy and n are of course in-
creasing wrt. their argument. The consumer consequently chooses to interact

with centre j rather than with centre k ( = tik = 0) when uij>>u. and vice

ik’

versa; when u,. = U, s We may assume that it interacts equally with both cen-

i]
tres,i.e. tij = tik' If we limit ourselves to that deterministic model, a place

i belongs to the market area Z

K of centre k iff. (if and only if) uig < U i.e.,

n(6;) = MBI BYA Y - YA, (5)

which is again equivalent to (4) if we adapt as follows the definitions of h
and Q :

h=n

Q= Y(AJ) . Y(A‘k)'



T

Assuming all the consumers to be similar, we get the same inequality (5)

when Zk is defined as the area where Ui T uij Zeg : we just have to increase

Q bye; when Z, is the set where u, Zg, the transformation that is stu-

k T
died hereafter allows again to use (5). On the other hand, notice that the
model is related to the gravity one : after introducing it, Beckmann adds

stochastic terms to uij and Uy and shows that it is so possible to derive

the consumption-constrained gravity model under a few assumptions and appro-

Ximations.

In particular, when u.lj

where r is a constant transportation rate), the demarcation line is now the

== By < rﬁij (where P is the mill price at j, and

set of points where the delivered prices relative to both centres are equal.
As such, it has received the name of {s0stant from Schilling (1925). That
problem has been studied by Rau (1841) and his successors. They generally
also allow, however, the transportation rate r to depend on the centre with
which interaction occurs;i.e., they write rj and T instead of r. 1In other
words, the accessibilities to the two centres are different. When Py = Pys

i.e,when the f.o.b. price is uniform, the inequality of market area Zk becomes

=
B § Ogy w2, [t

which has been known since the Greek mathematician Apollonius of Perga (% 180 BC)
to represent either a disk containing k if I, > rj, or the exterior ofan open

disk containing j if = >r As that inequality of Z, may be written

k*

In 5ij ~ In éik = fn (rk/rj),

we are back again to our own model, although h is not here a transportation cost

any more.

When p. # P} and rj * r the common boundary of the two market areas isa cuartic
]

k’
curve called Cartesian oval in honour of Descartes (1637) who first discovered
the family of such curves as a solution to a problem in optics. This caseis also
amenable to our model. The inequality of market area Zk is now indeed

. — =i pr, 4
rj §13 Tk 851 Pp ~ Py

if we define the ratio



that inequality may be rewritten

= i
rj (K + ‘Sij') rk(K + 6lk)

If K 20, this is equivalent to
In(K + 6i? - fn(K + 6ik)> £n (rk/rj),

and the properties of market areas can be studied through our model. Interes-—

tingly, K 20 means that the cheapest centre is also the most accessi-

ble one, and thus indubitably the most attractive. The complete amenability
of that case to our model might be viewed as resulting from the joint effect

of the differences in accessibilities and prices.

At the opposite, things become more difficult when K<O0, i.e., when the chea-
pest centre is the least accessible one. To apply our model, we have mow to

distinguish between four regions of the plane :

2= K< 6L,
1) 513 K élk

way as when K = 0.

Here the inequality of Zk can be treated in the same

=K=8,,. i i i %
2) 6ik< K 6¥] That region is obviously a part of Zk
3) .S - K< §,.. That region is a part of Z,.
13 1] J
4) Gijg - K= %k.' The inequality of Zk can here be given the following form:

[- £n(- K - <5.lj)]— [- &n (- K - 51 )] = £n (rj/rk)

k

and can again be studied by means of our model.

For this fourth situation to happen, it is necessary to have 6jk< - 2 K, which
means that the middle of the segment [ jk] belongs to the market area of the most
expensive centre. This never occurs in our model : see Prop. 4.3. It is thus
important to understand that although Descartes'ovals can be described by our
model, their properties differ, when K < 0, from those of the market

areas appearing in the genuine model. We shall resume this point in



13

Section 13. Of course, the more general problem where Zk is defined by

r. c(8..) = r

: i3 Kk c(é

> =
ik) P = Pys

where c is some increasing function of distance, can be similarly studied.
: 2 < ; ; : :

In particular, when c(8) = &, the demarcation linme is straight if rj = I

see Section 5.5, Prop. 4.7c and 4.7e.

or cirecular if r. Frt, :
] k
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3. Delimitation of the problem and definitions

Given some increasing real function h, our problem is to describe the two

following market areas :

Zj - i h(dij) - h(§,)<Q}

(6)

z, = (i3 B(8;) - h(5;)>Q )

where 6ij and Gi are the Eucfidean distances between i and j and between

k
i and k, respectively; Q is the attractivity {ndex, and we shall refer to |Q|

as to the absofufe attractivity index in our Conclusion.

The issue, a purely geometrical one, is clearly akin to the once fashionable
studies about curves as recollected in the treatises of Salmon (1879)or Gomes
Texeira (1908). However,our approach is rather different. In particular, tho-
se authors do not seem to have paid much attention to questions conside-
red in our Sections 6 and 8 (see eg. the rash discussion about inflexion

points in Salmon, item 204).

From now on we suppose that function h is continuous on ] 0, +*[, right—conti-

nuous lato sensu at 0, i.e.,

h(0) = lim h(3$),

6+0

>
and strictly increasing, to ensure that Zk and Zj are closed sets and that Zjm Zk
is l-dimensional when # ¢ (see Section 12).

We shall refer to function h as to the Transportation cost function, although
it is seen from Section 2 that this is not its only possible interpretation.
The index Q is related with the atfractivities of the two centres; without
loss of generality, we assume that the attractivity of centre j is greater than

that of centre k, i.e.,

Q > 0.

As area Zk is then obviously smaller than Zj, it seems most of the time conve-

nient to focus on the properties of Z, without mentioning the complementary ones

k
of Zj' On the other hand, some properties are easier to encunce in reference to

Zj n Zk’ which is the common boundary of Zj and Zk and whose definition writes
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Fig. 3.1. The systems of rectangular and polar cocrdinates.
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Zj nz, =1i; h(ﬁij) - h(s,) =Ql. (7

To make the writing more concise, some compact notation is used. Index i
instead of Gi.,

k
aik; h(éj) and h(6k) are simplified into hj and hk’ and similarly for the

is dropped when this entails no confusion, so we write 6j, 8

derivatives of h. Also, we set
= ‘hi{6..) = (8.
thy = RS - B(S;),

usually shortened into Ah and called the transportation cost difference.

In order to be able to describe accurately the position of any point wrt.
the centres, we assimilate the plane to R%2 . The point (0,0), called o, is
the middle of the segment [ jk]. The centres themselves are j = (-6Ok, 0) and
= (6ok’

are referred to as vertical lines when parallel to the y-axis, horizomntal

0), with the exception of Proposition 4.6.a. The straight lines

lines when parallel to the x-axis, and oblique lines otherwise. We also at-
tach to any point p of the plane a system of polar coordinates (Gp, wp), the

angle ¢5 (abbreviation forq%i) being defined as in Fig. 3.1.

Last, to avoid any confusion with a negative power, we denote the inverse

relation of any function or relation £ by £~.



4. Elementary propenties of market areas

A first question, which is not related to the particular .space and distance
considered, is whether it is possible to deduce the transportation cost func-
tion from the knowledge of the market areas. Obviously that identification can
usually not be complete, as the range of distances concerned by the equation
of Zjn 2y (from which that identification should be carried on) is generally
not [ 0, + * [ but

I = [min §, , max &l

i€ z,0zZ EE.N L
J k ]

(The determination of that interval is made in Corollary 6.2). On the other
hand it is obvious from (4) that replacing h(8) by uh(é) +2 has no effect

2ither on Ah or on market areas if W> 0 and Q is replaced by uQ. In parti-
cular, constant fixed transportation costs bear no influence on market areasjthey

do determine, however, which market areas j and k belong to (see Section 12.2).

But function h may be transformed more deeply without altering the market
areas. Let us indeed denote by Zj and Zk (respectively E& and Ek) the market

areas associated with a trangportation cost function h (resp.h) and a value Q

(resp. §) of the attractivity comnstant. The general property is then (we set
W*=IN-{0}):

(4.1) (a) 1§ h and h are nelated as follows fon all &> 0 <

h(s)

%[hm + £(h(8))]  (8)

whene § 48 a constant on perdlodic function with period Q/n for some

ne€IN*, then = 2y and 7. = 2.
) 1

(b) 142, = 2, and 'Ej. - 2., then h and h are nelated by (8) fon every 6
0f the interval 1 and fon some function £ having the properties
mentioned 4n (a).



18 .

The equality between market areas in item (a) is equivalent to the equality

which itself derives from the fact that

of the boundaries,i.e.ﬁjFTZk = Zjﬂ Zys

the two following sets

A= {(5., 5k), hj-hk = Q}
A = {(GJ, ak); hJ—hk = Q}

(where no subscript '"i' is implied this time) are equal; the set of the coordi-

nates (Gj, ﬁk) of points of er\Zk (resp. Ej 0 Ek) is the subset of A (resp. &)

satisfying the triangular inequalities

(D

The inclusion A C A is obvious : if (6j, Gk)E.A, then hj-—hk = Q so that

f(hj) = f(hk) and Ej;E = Q. As to the fact that E;S A, take now some (Sj, A=

k
A and let sj' =k (h, + Q; then (6., 6 )€ A. As ACA, we have also

e d i By oy
5:, e ’ u = != -~ - . i -
( 3 ﬁk) A, which implies that GJ h " [Q + h(ﬁk)] SJ Hence (GJ, &)

k

(aj', 6,) €A and AC A : Q.E.D.
Now for item (b). For every point i of erjzk’

h, - h = h. - h =Q;
3 hk Q and hJ hk Q ; so that

i.e.,of er12k, we have

On the range of distances to j and k concerned with z.rwzk, 1o, OO
[ min {Gk; i€ erWZk } , max {63; i€ zjf\zk}[ (the interval is open on the
right because the upper bound may be +=), we thus see that the function f
defined by £ [h(S)] = h(8)/Q - T(6)/Q must be either constant or periodical
with period Q/n for some n€ W% On the range H of h(S) corresponding to the
above-mentioned range of §,we have indeed f£(£) = £(£ + Q) for any EEH.

(We could also say, equivalently, that £ is periodical with period Q/n, with

nEMN*U{4=1).. Hence the statement.
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Prop. 4.1. shows that the identification of the . transpertation cost func-

tion (which identification should probably be carried out by means of Fourier's

i .
or Lagrange's transforms) does not produce a unique result unless some

assumptions are made. What such assumptions should be is a problem we have

left out of the field of our investigation, but we may point out the fact
that the requirement that function h should be concave would not suffice
the expressions {n(8) + sin [0.5 £n(8)] and - (6+l)_l - sin [ 0.5 (6+1)_IL e.g.,

are concave and increasing wrt.S.

Let us illustrate Prop. 4.1 by a striking example. The function h . defined by
h(é) = 52 + sin 62 is continuous and strictly increasing; so we may call it a
transportation cost function. It is known (see Prop. 4.7c) that when the
transportation cost is given by 62 the demarcation line Zjﬂ Zk is vertical.
Consequently, function h also yields a vertical demarcation line when

Q=2nn, for all n € N ; see Fig. 4,1.
The following proposition is also obvious from (4) :

(4.2) Manket areas ZJ. and Z, are symmetnic with respect to the x-axis R * {0}.

The properties of Z  and Zj above the axis of X consequently characterize

k
the whole market areas. This point will be used throughout the paper. It
is also worth noticing that the distances ﬁj and 5k constitute a system of
coordinates of R X R, in the sense that to every point imn R X R cor-
responds exactly one couple (éj, 6k) and that every such couple is associa-

ted with one point at most in IR X R, . Those coordinates are called dipofax;
see Jones (1979).

(4.3) Market anrea Z, L8 stnictly included in the pant of the plane at the
rlght of the y-axis {0} x R and has no point on that y - axis ;i.e
Z‘(z (- IR"; xIR .

This derives from (6), where Q>0 entails 6j3>6k in Zk' The property
implies TIR_ x IR(:Zj,which says that any point i is more

influenced by j than by k when both Aj > Ak(i.e.,Q:> 0) and 6j‘§6k (i.e.,

Cgt ]

i € R_ x R), if we refer to the gravity model of Section 2.1.

(4.4) Let £ be a point moving on Zj Nz, The distances from L to all the

points of [ fRT Ancrease on decrease simultaneously.
The proof is as follows. First, Gj and 6k increase or decrease simulta-

neously since &, = h“lh(@k) + QJ]; h and h"are indeedstrictly increasing functions.
]
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Fig. 4.1. Market areas generated by the t.c.f.

62+ sin 62 when 'Sjk'—" 096 and Q=n7, for

indicaled values of n.




Second, take any point p€ [jk] . The following relations hold :
§2 =62 .+ 82 + 28, & cos@
J ip P S 1P P P
62 = 82 + 82 - 28 8§ cosq .
k kp P kp p “p

Eliminating colep makes 6; appear as an increasing function of both 6§
and Gi; hence the property.

The next two propositions deal with the influence of two basic data of
the problem : the attractivity constant Q and the distance 5j between the

k

two centres. They show that the market area Zk of the less attractive centre
shrinks when the difference in attractiveness between the centres increases

or when the distance between them decreases.

(4.5) Market anea 2|(2 5 a strongly decreasing function of Q.

The meaning of 'strongly decreasing' is as follows. Suppose that Zé and Zj
are the market areas corresponding to another value Q' of the attractivity
constant. The property (see Fig. 4.2.) signifies that

Q' Kig® Z E4' - Zj.

k k

Otherwise  said, if parameter Q decreases, any point in Zk remains in Zi
(as Ah # Q = Ah > Q'), and the points of the previous boundary Zj n Zk cannot
remain on the new boundary (as Ah = Q=Ah > Q'). This is immediately unders—

tandable from (7) which shows that the boundaries erﬁz corresponding to

k
various values of the attractivity constant Q are As0-0h Lines of the plane.

Proposition 4.5 may be particularized to some interesting points of Zk.
For instance, if we call X and Xp the abscissae of the extreme right (if
any) and left points r and £ of Zkr‘(H{X{O}), Xp 4 a sthdletly Lncreasding
and X, a stnictly decneasing function of Q.

(4.6) (a) Tf k 48 4ixed and {4 f 4+ allowed to move on the X-axis at
the Left of k, then Z,, 48 a sthongly increasing function of 8 ips
(b) Whatever the way the positions of the centres vary, the measuwre IZ&I
0f area 7, 44 a stnictly Lncreasing function of djh when lzhl L5
neithern 0 norn +oo
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Fig. 4.2. Market areas generated by the power t.c.f. § 2 when Sjk = 10, 0O being as indicated.




. 23

Subproposition(b) is straightforwardly derived from (a), as the change of Z

k
for a variation of the location of centres j and k may always be studied through some
appropriate variable coordinate system. As to point (a) : consider the market areas
for a given value 2 L of the distance between centres. We have thus j = (-L,0) and

k = (L,0). Let now j move toward the left, without modifying the system of axes.
Point k remains equal to (L,0), whereas j has become. (-L!0) with L' > L. Consequent-
ly, for all points of the half-plane R, * R, the distance to j and thus the trans-—
k c R, ¥R

portation cost difference Ah have strictly increased. In particular, as Z
so that Z < Z' - 23. Notice that Prop.

(Prop. 4.3), we have (Ah)' > Ah 2 Q on Zk’ « e
4.6a may be particularized in the same way as Prop- 4.5 : x, %5 a strictly decrea
sing and z, (if v exists) a strictly increasing function of Sjk if, k remaining fized,
J ie allowed to move at the left ¢f k .on the x—axis.

The next proposition lists cases where Z is known to have a simple shape with

well-established properties ; 'coth' stands ?or hyperbolic cotangent. The deter-
rence function F (8), if we refer to the gravity model, then takes one of the forms
S_B, exp (-B8), exp (-BS?), (K + 6)—6, (K + SZ)HB. As said in our introduction, the
first case has already been solved in this context ; the two sequent ones, in the

economic theory of market areas. Remember that B may be replaced by 1 (Prop. 4.1).

(4.7) (a) 1§ h = £n, 2, 46 an ApoflLonian disk rnefative to points § and k ;
) I§ h = ., Zh L8 the convex area Limited by the rnight branch of a
hypernbola with foci § and k ;
() T h = .2, 2, is the hatf-plane X >0/28 4, ;

(d) If h = £n [Kk+ .) forn some K > O,Z’2 L4 convex, bounded, more ex-
Zended An the dirnection of x than in that of y, and the
indifgerence Line 48 a Cantesian oval ; _

(e) 14 h = £n (K + .2) for some K > 0,2, L6 a disk  with centre

[, coth (9/2),0] and radius [Gjh’ / l4sh? (0/2)) - K}I/z.

All those properties are easily proved. As to (a), the inequality of Z may be

written Gj/Sk < eQ, which Apollénios (T 180BC)has shown to describe a disk ihe
centre of which lies on the x—axis at the right of k. Point (b) is obvious since
the indifference line is described by éj-ﬁk = Q which clearly represents the right
branch of a hyperbola. As regards point (c), which would have already been exa-
mined by Laguerre (+ 1886) , 6j and ék can be expressed as functions of x and y,

as follows :



§.2 = (x+d )2 + y2
] ok (10)
2 = = 2 2
8, lr=9:0% 'y
from which appears the well-known Euclidean relation
2 - 2 = .
6J. 8, 2 x Sjk (11
As the inequality concerning Zk becomes sz = 6k2 Z Q,the proof of this item is com-

plete. It has already been shown in Section 2.2 that the indifference line is a

Cartesian oval in point (d). The properties of Z will be established in Section 13,

k

where they correspond to the case rj < - The last item (e) is a consequence of

Sections 2.2 and 5.5. The inequality concerning Z may in that case be written suc-

k
cessively as

In (K + éjz) - fn (K + §,2) > q

K+ 68,2 >el (R+82),
] k

+

i.e., because of (10)
et~ 1) (52 + i 8,0 - ¥+ D) 2x 6+ 2= D K<0

(&% % 1376e® —~ 10 = ceth (G750,

or, if we set A

2 2 = 2 =
y2 o % 2 A% 60k + 60k + K S0

yroe x = A8 )t S8 7 02 - ) —k=46 2 e -2 -k
Items(a), (d), and (e) call for two remarks. First : should we specify K = 0
instead of K > 0, item (a) would be a particular case of (d) and of (e). The centre -
independent of K - and radius mentioned in (e) are also valid for (a) if we substi-
tute Q/2 by Q. Second : in (a) and (e), we know the radii of the disk, thus their

superficies too. As far as we know, and apart from the approximate results of
Section 11, this is the only case where such an analytic expression of the measure

IZkl is available.

This proposition provides us with a set of instances of the general properties we
shall discover. Let us thus have a closer look at their main apparent features. In
items (a), (b), and (d),function h is concave, which is empirically appealing.

In item (b) it is linear, i.e., concave and convex at the same time. 1In those three

cases, centre k lies in Zg. In item (¢), function h is strictly convex. It is more
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complex in (e) : it is here strictly convex on [0, v K] and concave beyond ; the
marginal cost or disutility grows with distance in short trips, but decreases when
the trip length exceeds V K ; also, h' (0) = 0. The centre of Z, then lies at the
right of k. In both cases (c) and (e), k may belong to its own market area or not.

In item (d), and also somehow in (b), Z, is more extended in the direction defined by

k
j and k than in the perpendicularone (Fig. 13.3b). 1In all items, Z 1is a convex set.

k
Item (d) corresponds to the model of Allen and Sanglier (1981) in the particular
case of identical mill prices and transportation rates but different attractivities ;
see Section 2.1. Item (e) may result from a generalization of that model tc quadra-
tic transportation costs. Those two particular transportation costs functions are

depicted in Fig. 4.3.
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Fig.4.3a. Thetec.f. 1.31n(K + 8), which generates Cartesian ovals as indifference lines.

The value of K is here 1.

1 = JK

Fig.4.3b.The t.c.f. 0.651In(K + 62J, which generates circles as indifference lines. The.
inflexion point of the function occurs when & = YK. The number K is here equal

to 1.



5. Varniation of the transporntation cost difgerence along specific cwrves

In this section we review how the transportation cost difference Ah varies
along some curves of the plane . The next sections 6 and 8 make use of those'mi-
croscopic' results to produce more elaborate statements, yet in their simple

form they already yield immediate information about Zj and Z, in the following

k
way. Suppose that a point i belongs to Zk' If point i moves (thus creating

a curve) so as to increase Ah, it obviously does not leave Zk since Ah remains

k
Zj). When Ah decreases, point i intuitively moves outward relatively to Zj

larger than Q : intuitively, it moves inward relatively to Z, (or away from

or toward Zj' Mutatis mutandis, a similar property holds when 1 € Zj'

Figure 5.1 illustrates some points of this section by indicating, on curves

of the appropriate type, the direction in which Ah increases.

From now on,the statements may implicitly suppose the derivability of
function h. They remain valid, however, when h is detrdvable almost every-
whene,i.e.,derivable except perhaps at a denumerable set {6n ; n é N} of
values of its argument, with Gn < 5n+1 ¥n € N. The derivative h' (§) is then
to be replaced by the subgrnadient or generalized derivative 3n(8) of h, i.e.,
the interval between the left and right derivatives of h at §. The partial
derivatives mentioned in the propositions are to be understood similarly as

intervals. Fig. 8.3 and its discussion in Section 8.3 give an instance of that

enlarged applicability of the statements.
5.1. Move afong c.incles centred on a point of [fR]  (Fig. 5.1 a)

(5.1) For any point p € [ jR] , (Mh/awp}{i <0 on (RxR,)-{p}.

p
If we move above the x-axis (i.e.,inside R xR, ) on a circle centred on p
(i.e., with constant Gp) so as to increase wp, it is obvious that Gk increases
strictly and 6j decreases strictly when » € ]jk [ . When p = j (resp. k), Gj
(resp. 6k) remains constant while dk increases (resp. 5j decreases) strictly.

As a consequence, Ah decreases strictly in every case.
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Y

(a) any h (b) concave h (c) convex h

[see also (e]] [see also (d)]

!
A
|
|
j - s k B it - o e
(d) convex h o exp fe) convex hoV+-
[for concave hcaxp, see [see aisc (c) and (d}]

glzo {b) and (e}]

Fig. 5.1. Direction of increase of the transportation cost difference for
several typical curves. (In d, the circle is Apollonian
wrt. the centres j and k).
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5.2. Radial move from centrne k on fnom the middle of [ fk ] (Fig. 5.1b,5.1¢,5.2)

(5.2) (a) 14 function h is concave, then (aﬁh/aﬂh)w < 0 on (R, xR )-{k};

k
(b) 1§ function h 4is convex, then {E!Ah/a{so)(IJ =0 on (R _x R)-{o}.
(4]
As to (a), we have indeed (Fig. 5.2a)
2 & &2 2 -
Gj 5k *+ Sjk + Zij 6k cos @ ;
hence,
BGJ ﬁk + 6jk cos ©
(=) = = cos V¥
E!Gk By
wk ]
and consequently
@ = 1 _ v _ ot o
(aﬁk)m hj cos hk = hj hk hj (1= cos ¥)

k

< 0 if h is concave and if <5j >'5k (ie., 1 € R _x R)

To prove (b) we start from those equalities (Fig.5.2b)

82 = 82 + g2 + ¢ § cos @
o} [o) 0

] k 3k o
2 = 22 4+ 2 -
61{ 60 601{ ij 60 cos @,
which entail
BGJ 60 + 601{ cos tpo
( 75 ) = 3 = cos V.
[o] lDG ]
Bﬁk 60 - (Sk cos (DO
( 55 ) = 3 = cos dlk ;
oY k
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Fig. §5.2. Broof of Prop. 5.2.
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Because of symmetry (Prop. 4.2), it is enough considering i € Rf_— {0}, so we

have 0 < lbj < % and wj <Y, =< w, and we may write

k
34h = ey
@gg;) o, hj cos wj hk cos wk

= 1 st - [ - ]
h (cos wj cos Ibk) + (hj hk) cos le

-

= 0 1f h 1s convex -

5.3.Move along straight Lines parallel to [ fk]1 (Fig. 3.1 5°5.17a,b,c)

(5.3) (a) (aAh/ax]y > 0 in the stnip [O'Gofz]"R‘
(b) 14 function h 45 convex, Zthen (aAh/ax)g >0 on RxRE ;
(e) 1§ function h Ls concave.[ resp. convex ], then (aAh/ax]y <0

[resp. = 0']-on the x-axis on the night of k, Le. on ]Goh’+m [ x{0}.

According to (10), we know that

Bﬁj X+r5ok
GEy - &y, T
(ﬁ) = X—ﬁok = cOos (p
X 'y Bk k
and thus
(—a%:l)y = hl"i cos (pj - hl'c cos @, . (13)

As we are on R, X R, we have cos tpj > 0. Subproposition (a) then holds

s K
- S
because lpk 5

and in the ones that follow , h' (&) #¥0 V¥§ > 0 when h is globally concave or

and cos @ <0 on [0, 50}:] X R (notice that, in this proof

globally convex, since h is strictly increasing). Subproposition (b) may be
i ‘ v 2 J "
proved for instance in this way : on IRi , to which we may restrict the study

(Prop. 4.2), wj < @ so (10) implies

lc;



aAh - ot ' s
GE@T)y cos wj (hj hk) + hk (cos ¢3 cos mk)

> 0 if h is convex, as cos wj > 0.

As to (e), wj =g, = 0 on the set under study, so that (aAh/Bx)y reduces to

h! = hé . When h is convex, (BAh/Bx)y is consequently = 0 in accordance
J

with (b), and < 0 when h 1is concave.

5.4. Cnossing between indifference Lines

In this subsection we make a comparison of the market areas induced by two
different transportation cost functions, h and h. As both are strictly

increasing and thus injective functioms, it is possible to define a function

T = heh” , i.e.,

T [h(8) 1 = h(s), V& = 0. (14)

Function T translates one type of transportation cost into the other.

The variation of T is expressed by its derivative wrt. H(S), 3 By
T'[h(8) ] =h'(8) / R'(&) (15)

and its concavity or convexity may be determined for instance from

™ [ReeyT = B [ BTO - BUE (16)

~

h'2(5) h'(s) h'(8)

This 1leads to the following interpretation. An increasing marginal trans-
portation cost (h convex) is represented by an increasing slope h' ; if h'
rises less (more) in percentage than h' everywhere, then T' increases (de-
creases) and T is convex (concave). A decreasing marginal transportation
cost (h concave), which is more realistic, is represented by a decreasing
slope h' ; if E'goes down faster (slower) in percentage than h' everywhere,
then T' increases (decreases) and T is convex (concave). Consequently, when
h is concave or convex, the concavity of T can represent two situations : (1)

one in which the transportation cost function h is convex with a slope h' in-
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creasing slower than h' in rercentage (H 'more convex' than h) ; (2) one in
which the transportation cost function h is concave with a slope h' decreasing
faster than h' in percentage (h 'less concave' than h). Similarly the convexity
of T may arise from a transportation cost function h more convex than h or

less concave than h.

The next general proposition shows a decrease (increase) in Ah when mo-

ving away from k along the boundary Ej nz

Kk and when T is concave (convex)

(5.4) 14 h(s) 45 a concave [resp. convex] expression o4 his) , i.e., if

h?/ﬁ’ i85 a decreasing [resp. an increasing | gunction, then (aah/ask)h_é 0
Ah
[ nesp. = 0].

Of course, saying that h(§) is a concave or convex expression of h(§) is just
another way, maybe less abstract, to express that T is concave or convex. To

come to this conclusion, we made three simplifications

1° according to Proposition 4.4, ﬁk may be replaced by Gj in that sentence,

or by GP, for any p € [jk 1; 2° when T is 4fnictly concave or convex,

the inequality holds strictly too ; 3° in order to determine the sign of
(3Ah/86, ) >~ at some point i, it is enough to know that T is concave, or convex,

k’ A ¥
on the interval ]hk,hj [ ; or, still less than that, to compare T'(ﬁj) to

T'(hk). Those remarks are also valid for Propositiomn 5.5.

To prove Prop. 5.4, we consider the infiniteésimal variatioms of Ah and

Ah :
o T - 1
dAh hj de hk dék
- _ ~, =,
dAh hj déj hk dék .

If the infinitesimal move of point i occurs inside Zj n Zk, Ah is constant

and dAh = O here above. The differential déj may thus be eliminated, and we

find :
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a8y, 90 A Ej =
' !
= b, i
hj hé
= Eﬁ [T'(Ej) - T'(E#) ] because of (15).

The property follows immediately.

Proposition 5.4 may be used to make a comparison between the market

areas derived from a family of transportation cost functions. Take the

case of h(8) = Sa, for instance. For E(S) = Ga, we have T [K(G) ] = 5

(66)3/3. Suppose a > a; T is then a concave function. If i is a point on

Zj n Zk and we move on the curve Ej n Ek passing through i, Prop. 5.4 and

4.4 show that We remain inZj when Weé MOVe gyay from [ jk ], or in Zk when We

Kk is constrained to pass

through some fixed point i, Proposition 5.4 may tell us about the influence

move towards [jk ]. Otherwise said, when Zj‘ﬂ Z

on Zj n Zk of the choice of a transportation cost function. Fig. 5.3 j1lus~
trates this for h(§) = §2.

We may also combine Propositions 4.7 and 5.4 (see Fig. 5.1b,c,d,e)

(5.5) (a) [Appolonian cireles relative to j and k : %k (8) = In 8]
When heexp 45 concave [resp. convex ], then (aah/aék] 0
[resp.=0];

(b) [ Hyperbolae with foct j and k : nis) = & 1. When h 45 concave

[ nesp. convex] , then (Bﬂh/aahlé'*ﬁk <0[resp. =20 1;
5|

<
Gj./afa

(c) [Vertical lines : h(8) = §2 1. When heV. is concave [ nesp. con-
vex ], then {aAh/ay)x <0 [hesp.>0] on Rx R.
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1.5

£ sl

Fig.5.3. Market boundaries generated by the power

tef. 6% for indicated values of a when Bj £
1.75, Qbeing chosen so as to let the indifference

line pass through the point (1.625S, 1.375).



(See the note that follows Propositions 5.4). This is a straight applica-
tion of Prop. 5.4, except for one detail : in (c) we have taken equality (11)
into account, as well as the fact that y and Gk increase simultaneously on
any vertical line above the x-axis. Notice also that Prop. 5.3c may be
viewed as an application of Prop. 5.5b, as [aok’ +o [x R 1is the right-hand

branch of the degenerate hyperbola with equation éj - Gk = ij.

As to the concavity or convexity of heexp and hev., they are immedia-

tely known in some important cases :

(5.6) (a) When h 4is convex, on when h(s) = s vs = 0 with a > 0,
then heexp L5 convex ;
(b) When h is concave, on when h(s) = 6% vs > 0 with 0 <a<2,
then hev. is concave ;
(c) When h(s) = 6% vs = 0 with 2< a, then heV/, is convex.

a : : ;
Except for h(8) = &, the proof is that any increasing convex [Tresp.
concave | function of a convex [ resp. concave ] function is convex [resp. con-

cave ] . Reciprocally, we have too

(5.7) (a) When heexp 44 concave, h L5 concave ;
(b) When hev. 4s convex, h {s convex.

5.5. Tangency between Andifference Lines and specific curves

We have already pointed out that (Gj,G ) constitutes a system of coordinates
of the half-plane R x R_. More generally, the same is true for (hj,hk) if h
is any strictly increasing function ; we additionally require h to be continuous.

~

Representing the market areas in a system of axes where hj and hk replace x
and y will learn us some of their properties ; see the example where h(§) = 82
in Fig. 5.4.1In this respect the present work is related to the general study of

map transformations of geographic space made by Tobler (1961).
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Not all ordered pairs (6j,6k) [ and hence (ij,ﬁk)] can exist in the plane used

so far (no subscript 'i' is here implicit in writing 5j, hj’ etc.). Otherwise

said, the value of y corresponding to (éj,ﬁk) may be imaginary, whereas x is
always real according to (11) ; y is computed from the formula
2
62 + 82 (82 - .62)
y2 e Ak J K (17)

7] ok ?
2 4 ij

derived from (10) and (l11). We are thus led to define the set R(E) of 'feasi-
ble' pairs (Ej, E#),i.e.,corresponding to points of our Euclidean plane ; R (h)
is simply the set of such pairs that verify the triangular inequalities (9)

i 3 ) o - ol (__
R (h) { (hj,hk), 6j+ ak = 5jk and iaj ak | 5jk 1.

The boundary of R (E) is the set of the coordinates (Es, E?) of the x-axis

R i = - = 5. -6. = 8. =
x {0}, as the three equations Gj + 6k ij, 6j 6k éjk and Gk GJ 5Jk res

pectively describe the interval [jk] and the straight half-lines [éok,+ o [ x{0}

and ] = o,- 60 ] x {0}. We also set

k

and do similary for Z* (E). Let us call Xy the function which associates

every pair (x,y) of RZ with the corresponding couple (hj,hk).

We have of course

s = 7% (h) M T
= < z,> =z ® AR @

£ * (h > =7
¥ < Iy (W &

and similarly for Zj'

The set Z* (E) n Z* (ﬁ), the intersection of which with R(h) is XE“QZ. N Z£>,
] k ]

is the graph of the relation

h, =(h o h™)[(h o h“)(hj) - Q]
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2 -
Eill:
52 (§ (k)
ik 1% 20 X2
1. —
Ol 3
3 -
o 1 62 sj?-

Fig.5.43. The setR (.2 of couples (5}2, Bkz ) corresponding to paints of the upper half-plane IR x IR, .
The da‘ltm:‘i curve is the image of the indifference line corresponding to the value 0.5 of

the distande exponent a in Fig. 5.3.
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=iy i
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ey | e o ‘
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‘4 s 1A : 2 Z2( .7 )
o —— ‘er 3 ”"' &
E ~ ' —i
~ —
0 ~_ -
2 2 _
0 = 2
ajk( 1) 51-1- sj

Fig.5.4b. The market areas as seen through the coordinates ( sz ; 63) when the tcf. is 6 _4,

the parameters Q and Sjk being both equal to 1.



and its slope is strictly positive as h and h are strictly increasing functions.
As to Z§ (E) and Zﬁ (E), their situation with regard to their common boundary is
easily found ; see the example of Fig.5.4b. Let us indeed start from some pair
(gj’ h ) of Z*(u) n Z* (h) and diminish h (and thus h )} while keeping h (and
hk) constant : Ah decreases, so that we are now inside Zj (h) Cousequently, Z;(h)
is on the left- of Z*(h) n Z* (h) and above it, whereas Z* (h) is under Zj (h) N
Z* (h) and on its rlght

Let us now take some point 1 € Zj M Z.  and draw the h-tangent Ti(h) at i to

k

Zj N Z, si.e., the curve tangent to Zjﬂ Z at i and having an equation of the form

k

Its image X“ < T (E) > is the intersection of R with the tangent T*(g) to
Zj (h) n Z* (h) at the corresponding pair (h h ), which tangent has the same
equation as T, (h) Hence it is clear that Tl (h) will lie completely inside

Zj if the set Z* (h) is convex, or inside Z if Zj (h) is convex. In order to

k
determine if ZE (h) or Zj (h) is convex, we have simply to compute the second
derivative of hk wrt-hj on Zg (h) N ZE (h). The equation of that set may be

written as

(e k™) (B) = (heB” ) (b) = Q ;

from which, with obvious notation,

~

D~" ! B - I 1 =
(heh” )} dh, - (beh” ) dhy

= ah (hoh" )!
b = el 8

9h. Ah heh™ )

J ¢ )k

So we get the second derivative :
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- N - _ (hPEA )5
heh~ )" (heh~ )! - (heh”~ )! (heh™ )" ——
o (PR 0 A 9 = QR R g ]
s E
B hj Ah (hnh* )]:;é
hoh~ )!2 hoh~ )" hoh™ )"
IR T T L O
°~~ 1 °~» 12 DN- 12
(heh )k (heh )j (heh )k
hah™~) 12 1 . 1 ,
L N?L_[(_Tf_) . (—17—) ]
(heh” ). (heh” )" . (heh" )",
k h|
(heh™ )!2 =, _ 2
- =] e h~ b = (-—-oh“)']
(heh™ )} h' h'

As a consequence, the second derivative (BZEL i aﬁ%) is 2 0 (resp. < 0) when
- s Ah
the function (h'/h')e h™ 1is concave (resp. convex).

For any i € ZJ N Z  we denote by D* (h) the set of pairs (hJ b ) defined by

k
the inequality hk < o h + [ and the boundary of which is T*(h), and we set D (h)

Xﬁ < DI (h) > . When Zk is bounded we call DEI (h) the set of pairs(h.,hk) descri-
bed by a similar inequality and the boundary of which is the straight line defined

by xa(ﬁ) and xh(r), and we set D (h) = % < DEr (E) > . The mathematical deve-

lopment of (32 Ek/ahi) made here above then yields these general properties.
Ah

(5.8) 14 (h'/h') o h-is concave [ resp. convex'], then D, (k) €2, [ nesp.
2, €D, (k) ] for any L € 7, NZ, ; and, 4§ moneover 7, is bounded,

Z, € vij (R) Lnesp. Doy (h) €.
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0f course, the concavity or convexity of (E'/h')U h~ means the conca-
vity or convexity of the expression h'(§)/h'(8) wrt.h (8). As to the values of
o and T for Di(g) and Ti(g)’ they are ‘easily found :

oh hi . &'
g = —:k') - L
1] 1
ahj Ah hk hJ
(18)
el B B
c = (= R
h

Concerning the h-tangent Ti(h), the property could be expressed in a way more
alike to the other propositioms of this section : if (E'/h')x:gk is convex
[ resp. concave] , then Ah is quasi-concave [ resp. quasi-convex ] on Ti(ﬁ) for

any i € Zj N Zk and reaches its maximum [ resp. minimum ] at 1i.

In two cases at least,Prop. 5.8 yields interesting results. When h is

defined as h (8) =68 ,i.e.when E-is the identity function lm_ , the associated
+

curves Ti(1]R ) are CGCartesian ovals. 1f for instance h (8) is given by 5a,i.e.,
+

if h = .a, a > 0, we have E'(S)/ h'(8) = Gl_a/a, so that the ovals are contai-

ned in Zk when 0<a<1 and in Zj when a 2 1 ; but the interest is here mainly
theoretical. The second case occurs when h = .2. It is then found that the
curves Ti(.z) are circles centred on the axis of x. Their equation

may indeed be written successively as follows
B . )
5k uéj + C
yo -8 Yie e [y® 4+ (w68 IR ] * &

Byt = ambay 0 52 =

l1-o 1-a

%2

(= = Sok Lr o2 4 y2- 42 #

1 - o (1 —a)? 1l -«
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which shows that Ti(-z) is the c¢ircle of centre [, ©F % af 7 (1 ==}, D ]

and passing through point i. We shall come back to that result in Sections

6.4 and 8.5.

If we compare Prop. 5.8 to the preceding omes of this Section 5, we see
that it is closely related to Prop. 5.4, which considers the first derivative

of ﬁ'(é) / h' (§) wrt. h (8), whereas Prop. 5.8 uses its second derivative.

This is not surprising as Prop. 5.4 can be easily derived from {18) by compa-
ring the E—slopes a of Zj n Zk and Eﬁ n E?, the second of which is equal to 1.
For both propositions the most interesting case is when h (8) = 82, as will
appear in the next sections. The function +. / (h's V. ) consequently appears

as particularly important in the study of the shape of market areas.

On the other hand,Prop. 5.8 differs from all the preceding ones of this
section in that its conditions are not additive. For those statements indeed,
if the conditions are verified for.a set of transportation cost functions,
they remain so for any positive-coefficient linear combination of those func—

tions. However Prop. 5.8 is partially additive. We have indeed the following

LEMMA 5.1.14 § and g are two concave functions, then thein parallel associa-
Lion § 1 g, degined as
1
4 1 g = T3
.
t g

A5 concave provided that § + g > 0.

We have borrowed the concept from the domain of electricity, where that
formula describes the parallel association of two impedances. Computing the

second derivative (f / g)" suffices for the proof

fzg" + f1|g2 _ (f'g - fg|)2
(f Jg)" = A e
(f + g)2 (f + g)3

The result does not depend, of course, on the differentiability of the functionms.
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As tge parallel association of functions g'/h&, with v € {1, ... n},

is h'/ T h; » we have because of the associativity of '// ' :
v=1

~ ~

(5.9) If (h'/h)e h™is concave for any v € {1, ...n} and 4if h 45 a positi-
ve-coefpiclent Linear combination of those transporntation cost functions
h, ,v € {1,... n}, then (R'/h') o R is also concave.

A last remark. The discussion made in Section 2 about Descartes' ovals
can be extended to the curves Ti (f). These are boundaries of market areas
corresponding to the transportation cost fumction £n [h (8) + B/ (x -1)] and
to the value -fn o of the constant Q, when T < 0 and.a € ]J0,1 [ ; the case
where o =1 and L 20 is impossible, since Ti (R) would then lie at the left
of the y-axis. When that condition is not met, the present theory meverthe-
less provides a way to study the properties of the .curves Ti (R) ; see Section
2.2, The same is true, of course, for the boundaries Tﬂr (R) of the areas

Dy, (h).
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€. Remarnkable bounds and asymptfotic behavioun : spatial extemsion

The market areas that appear for given values of Q and 6jk and a given

e oY

means of a compass, when function h is easily invertible, using the formu-

function h can be studied by simulation. We may draw the curve Zj Nz

la 6j =h [ Q+h (Gk) ] for instance. We may also compute Ah at every
point of a grid, and then compare Ah to Q in order to see if the point belongs
to Z, or to Zj’ or both. We have implemented those methods on a computer
to check our theoretical results and choose values of the parameters that
should produce patterns of market areas in which the features we want to empha-

size clearly appear.

Such an approach is insufficient, however, to predict the modification
of the market areas induced by a change in function h. A purpose of the pre-
sent paper is precisely to show that apparently similar transportation cost
functions may produce definitely different patterns of market areas. The ana-
lytical approach is then necessary to master the properties of our model,

through the knowledge of the family of functions associated with each of them.

Another aspect of simulation is its double spatial limitation : in exten-
s40on and precision. We cannot study the influence of the centres over an infi-
nite area, neither can we decide if all the points of the area under study
are more influenced by the one centre or the other. And the wider that inves-
tigation area, the smaller the density of the points considered. One may be
satisfied with such a limited approach if it corresponds to the real spatial
extension of the problem and to the spatial dispersion of the data. One may
also wonder if a change in the scale of the study is likely to bring a
change in the &Pparent properties. With both points of view in mind, we shall use
the analytical approach in a way complementary to simulation :i.e.,we shall
study the properties of the market areas up to the infinitely great and up to
the infinitesimal. That distinction grosso modo marks the separation bet-

ween Sections 6 and 8.
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The present Section 6 is dedicated to the spatial extension of market
areas. Essentially, the problem is of finding simple sets containing Zk or

contained in it, thereby constituting upper and lower bounds on Z We begin

K
by comparing it with the elementary sets ¢, {k}, and {j}, and by asking the
question whether Zk is bounded, i.e., whether it is possible to encompass it

with some circle. That is the matter of subsections 6.1, 6.2, and 6.3,

Thereafter in subsections 6.4, 6.5, and 6.7,-we exploit the results of
Section 5 in order to find eircles, hyperbolas, or vertical lines, de-—

limitating Z, more or less precisely. The 2im is at becoming able to decide whe-

k

ther some characteristic regions are contaimed in Z, or in Zj, or contain Z

k’
k’

k

leaning only on the knowledge of some points or pieces of Zk, Zj
and on some hypotheses about the transportation cost functions. Of course

s or Z. N Z
i

the particular shapes of those bounds also yield some properties of the

shape of the market areas themselves.

Hyperbolic and vertical bounds are particularly interestimg when Zk is

not bounded. The subsections 6.6, 6.8 and 6.9 complete the information about
this case. A first characteristic of the market areas is then the pair of
symmetric directions taken by the demarcation line when the distance to the

centres becomes infinite, and how those directions vary with Q and ﬁjk.

Then a question arises whether there are some points of the plamne for which

the acute angle formed by those directions contains Zk or 1s contained in it ;

this leads us to the classical study of the possible straight asymptotes of

the curve Zj n z which also learns us if there is some distance above which

k’ _
Zj N Z, is mearly linear. We have in fact to distinguish between a £imitfing

line and an asympioidc one. The distance between the former and
Zj n Zk tends towards zero when the distance to the centers tends towards
infinity. The 1latter is a limiting line which is not crossed any more by

Zj n Zk beyond some distance to the centres; an asymptote is a straight
asymptotic line. This distinction between limiting and asymptotic lines is

only used to express our lack of knowledge regarding some cases. Our investiga-
tion also allows us t© know if the boundaries of the hyperbolic and vertical

when those bounds may thus be considered

bounds are asymptotes of Zj n Zk’

as tight.



46
6.1: Emptiness of market area Z,

(6.1) (a) Zh F o Zh n [50k’ + o[ x {0} F¢ ;
(b) T4 h is concave, then : Zh¢¢¢> szZk;

(¢) 1§ h is convex, then : Zfz * ¢ @ Z[z A5 unbounded.
The proposition sLLL holds Lif 'Zh’ 45 neplaced everywhere by 'Zh - Zj'..

We give the proof concerning Zk only ; the one regarding Zk = Z._.J is similar.
The second implication (¥) of item (a) is quite plain. The first ome (=)
relies on Prop. 5.1 : if Zk contains some point i , then it also contains the
intersection point i' of the circle passing through i and centred on k

4o [ x .
K’ [ x{0}

with that part of the x-axis which lies at the right of k,i.e.,[rS0
Accordingly, the study about the emptiness of Zk may be restricted to that

set. As we have there 6j =x + 60k and Gk = x =6 the derivative of Ah wrt.x

ok’
is

y=0 j k

which expression is negative when h is concave and positive when h is convex.
In the former case, Ah is decreasing wrt.x. Consequently if point i lies
in Zk at the right of k on the x-axis,i.e.,if i € Zk N [éok’ +o [x {0}, then
[ki] C Zk since Ah 2 Q defines Zk : so a fortiori k € Zk. In the latter case,
n
k [Gok’

Ah is increasing wrt.x, so that i € Z 4o [ x {0} entails [x, += [x {0}
K is unbounded. The implications '=' of items (b) and (c) being

c Zk, and Z

obvious, the proof is complete.

Whether the conditioms 'k € Zk' or 'Zk is unbounded' are met is easy to check.

is
k
never empty when h (§) = €n (8), for we have then Ahk = 4+ : when h (6§) = & ,

The first one is equivalent to Ahk 2 Q. This means in particular that Z

on the contrary,zk vanishes when éjk < Q. Let us now study the second condition.
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6.2 .. Boundedness of manket area ZI2

A set E is bounded iff. its diameter is finite ; in other words, iff. it

is contained in some disk. Market area Zj is of course unbounded as
R xR C Zj . As to the boundedness conditions on Z,, they are related to
the limiting value of Ah when point i moves towards infinity, since 'Ah = Q'

defines Z . This is the philosophy of the next Prop. 6.2. That result empha-

sizes the importance of the ratio GJ /Q ; this will be confirmed in Section

10.2 bysthe studyof the dicentral approximation of market areas when h(é)-mG

From now on we shall denote by h'(+=)the limiting value lim h'(S), if any.
§ oo

(6.2) (a) Zh Ls unbounded < Z, " [5Dk, +o [ x {0} 44 wnbounded ;

(b) 1§ ?{k h' (+=) > Q, then Zh_zj A5 unbounded ;
< Q, then 2!2 A4 bounded ;

(e) 14 %k,h' (+o) = Q and h is conecave [resp. strnictly concave ]
Zk [ nesp. Zf2 - Zj ] 44 unbounded ;

(@ I %k h' (+«) = Q and h 4is convex, then the next equivalences

hotd §on some 6% =0 :

zh A4 unbounded

¢2$¢;

k
< h 45 Linean on [ 6%, += [ and nonfinean
on [ 6%*, += [ for any 8** €] 0,86*% [

*® I is the strhaight half-Line [ . + &%, += [x {0};

ok
(e) 14 éfh K' (+=) = Q and h is strictly convex, I, 45 emply and thus

bounded.

The proof of item (a) is similar to that of Prop. 6.1 a. As to item (b),[ Fig.
6.1],the limiting value of Ahwhen point i moves towards infinity along the x—axis in
the positive direction is given by ij h'(+w). This is obvious from the mean-

value theorem, which states that for any i on the half-axis [6ok’ +eo [ x {0}
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(a) concave h (b)convex h

ex_:_h(f)):ﬁ\s“/_ﬁ_lﬁo}{:B ex.:h(ﬁ):Zﬁ-Vh-@)@Ok:Z

Fig. 6.1. Evolution of the transportation cost difference with

x along the x—axis.
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we have Ah = h' (8) (63. -8 = h' (§) 6J.k for some § € ] ak,aj [. According-
ly, when ﬂjk h' ( +») > Q there is some §> 0 for which we must have Ah =
h (5k i ij) - h (Gk) >Q, V 5k = E', as h and Ah are continuous functions.

The straight half-line [ﬁok + E, +eo [ x {0} is consequently included in z, - Zj
which is thus unbounded. The proof .of” the boundedness of Zk when ij h' (+=)

< Q is similar. As to point (c), function h being comcave, h' (8) = h'(+=) ;

so, for any i € [Bok’ +o [x {0}, we have Ah = h' (§) §.. = h' (+=) ij = Q.

, Jk
The whole straight half-line [ﬁok, +o [ x {0} is then a part of Zk' When func-
tion h is strictly concave, we have Ah > Q on the set [5ok’ +o [ x {0} which
is consequently included in Zk = Zj. Item (e) directly derives from item (d).

We now come to the chain of equivalences listed in (d). The first one,
'Zk is unbounded * Zk # ¢', has already been proved : see Prop. 6.1 c. Here

follow the other ones, in which 'Zk is unbounded' is accordingly replaced by

1 =t T
Zk ¢

i) 7, #¢ ¢ h 48 Linearn beyond some &*. (Due to the continuity of h, the as-

sertions 36* : h is linear on [&%, +~ [' and '36*:h is linear on [ &*, += [ and non-

linear on [ §**,+[ V&** €] 0,8%[' are equivalent). (=) As Z_ # ¢,some point i'

k
on [GOk,+Do [ x{0} belongs to Zk (Prop. 6.1a) ; so Ahi,;rQ. As Ah is an increa-

sing function of x on [§ 4+ [ x{0} (see Prop. 5.3c), we have also

ok’
Ah. < h'(+m)6jk =.Q. Consequently Ahi, = Ahi = Q for every i € [xi.,+m[x{0};

i'e"h(éjk +§) - h(ﬁ)'= Q Vv 62=5kf. As h i1s convex, this implies the linearity

of h for § = TR (%) If h is ~linear for & = §%¥, Ah is constant on
[Gok + &%, 4+ [x{0} and its value there is ij h'(+») = Q. That straight half-
line is then necessarily in Zk’ and Zk *¢.
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ii) h 48 Linean fon & = &* and nonlinearn on [ §%* ,+e [V §*%% € ]0,8% [« Zh =

[6ok + &%, +o [x {0}, (®) The linearity of h for § > &* implies the constancy

of Ah on [éok + §*,+40 [ x {0}, and its value is there ij h' (+=) = Q ; so

that this set is in Zk (in 2. N Zj, more precisely). Furthermore, all the

k

points that do not belong to that half-line lie outside Zk. Consider first a

point i of the x-axis between k and (60k4-6*,0), the origin of the half-line ;

Le.,i € [k(s_, + 6%,0) [. Then the convexity of h implies

= - L3 — * = 1 o2 =
Ah = h (Sjk + 6 h(§ ) < h(6jk + 6%) = h(s*) = h' (+=) ij Q,

i)

the inequality being strict because of the nonlinearity of h on [, , += [.

k,
So i ¢ Zk' Second take i € [60k, +o [ x {0}. According to the proof of Prop.
6.1 a, Ah < Ahi. for some i' € [6ok’ 4+ [ x {0}; as we have just seen that Ahf

< Q, we have Ah < Q, and i ¢ Z, - (=) . As Ah 1is continuous, the fact that Z

k
is a straight half-line entails that Zk = Zj n Zk. That is to say, Ah = Q on Zk :
or h (6jk + 8) —h (8) =QV & =2°6*%, Being a convex function, h must then
be linear on [&8* , += [. And if it were also 1li-

near on [ 6**, 4o [ with 0 < §%* < §*, Ah should be constant on [60k + &F* | o [
which should then be a part of Zk ; whereas it is not so. This completes the

proof. Q.E.D.

Let us see how those statements apply when h (8) =% v§ = 0, with a > 0
(Fig.5.3). If 0 <a <1, we have h' (+*) = 0 ; according to Prop. 6.2 b, Zy

is then bounded. If a > 1, h' (+x) = 4= Zk is unbounded (notice however that

the shape of Z 1is not the same for 1 < a < 2 as for a > 2). Last, when a = 1,

k
h' ( +w) = 1. 1In this case, if &§. > Q, Zk is unbounded ; while Zk =¢ if

jk

6jk < Q (see Prop. 6.lc). If Sjk = Q, we may refer to Prop. 6.2 ¢ as well as

to Prop. 6.2d, as h is now linear. Both indicate that Zk is unbounded, but

Prop. 6.2d tells us moreover that Z, degenerates into the straight half-line

[& +o [ x {0}.

k
ok’

An example of a more complex case is given by the transportation cost

function h (8) =6+ £né (Fig. 6.2 ), Here market area Zk is bounded (and
nonempty) when Q >-6jk and unbounded when Q < ij.
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Fig. 6.2. Market areas generated by the t.e.f. §+ In & when Ejk = 1, for indicated

values of Q. Yhen Q = 1, the indifference line has no straight limiting line ;

when Q < 1, it has two oblique ones crossing at thepoint (-Q /v 1 - Q2,0).
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6.3. Position of centres nelatively fo manket areas

This section is related with the two preceding ones 6.1 and 6.2, as well as
with Sections 8.1 and 8.2, in that the field of study can be reduced to the
x-axis ; and more precisely, as appears from the next proposition, to the half-
line [6Ok, +o [x {0}. As to centre j, we already know from Prop. 4.3 that it

belongs to its own market area ; this is not necessarily true for centre k :

see Fig, 3.3.

(6.3) (a) Centre k € Zfz L44. £ € 1ok ];

() I4 h 4is concave and 2, #9¢ , then k€ 2y
(c) When h 4is convex and nonbinear, then | h‘(dij.h) - h (0), h'{+=) ijz [
4 not emply and, if.Q belongs to that interval, k ¢ Zk * ¢,

According to Prop. 5.3a, we have indeed Ah < Ahk for any i € Jok [.
Consequently if k ¢ Zk,i.e.,if Ahk < Q, then Ah<Q and Jok ] N Z, = ¢
so £ € Jok]. If k € Zk,] ok] N Zk # -¢- : and as £ € Rt x {0} (Prop. 4.3),
we see that £ € J] ok]. Item (a) is thus proved. Item (b) rrevets Prop.
6.1b. As to item (¢), it is obvious that k ¢ Zk iff. Ahk< Q, and that Zy Eall)

if Q <6, h'(+=) (Prop. 6.lc and 6.2b). The only problem is to prove that

Ahk < Gjikh' (+=), As Ah is increasing wrt. x on,[Gok, +o [x {0} because h is
convex (Prop. 5.3b), and as we have seen that 6jk h' (+~) is the limiting value
of Ah on the right of the x—gxis, we should have Ahk = ij h' (4=) only if Ah
were constant on [Gok, +o [x {0}. But this would mean that h (§ + éjk)— h(s) = Q
V8§20 ; as h is convex, this would entail the linearity of that same function.

Item (c) is so verified ab absurdo.

6.4 .Cincublan bounds

The main result is here the one that follows from Prop. 5.8. For any
. n

1 £ ZJ Zk
determined according to Prop. 5.8 (if ¢« # 1) when h =

of the x-axis, Ci is the disk tangent to Zj M Z. at i and the centre of which

, we call Ci the disk the centre and radius of which have been

2, When i is not a point

k
lies on the x-axis. On the other hand we define C (il, iz) as the disk centred
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on il and the circle -of which passes through i,. In particular when

Zk'is bounded C [ ( £ + r)/2, K‘], which is equal to C[(£+ r)/2,r ], is the
disk of which [£€r ] is a diameter. 1In the next proposition, for simplicity's
sake, we have not repeated that the properties of the function v. / (h'eV.) are
those of &/h'(8) wrt. to 62.

(6.4) (a) When V. / (h'eV. ) 4is concave,
(i) 4§ Z, 4s bounded, Z, C C[ (L + #)/2,n] ;

(11} A4 V. [ (h'eV)) 45 stnictly increasing, CL E'Z
and zh = ) Gles
EL0Z, i
4 k

p VAEZ 0T,

(iii) Vv / (h' o /T ) is not stnictly decneasing ;

(b) When V. / (h' V. ) is convex ,

(i) 4 2, 4s bounded, C[(£+x )/2,n] €1

fZ’
(i1) 4§ VAR'eV. ) 4s stnictly increasing, 1, C C., VAE ;M 2
and Zh === N C/(: ;
&.EZj n Zh
ity £ FF hited] & éWc,te,y dQC}LQﬂA/{:ﬂg, C,{_ < Zj-, VYA E Zj n Zk;
and 7. = v Cs »
,LEZj N Zk

Prop. 6.4 is a mere application of Prop. 5.8 . The only problem is to know
whether Di(.z) and Dﬂr('z) correspond to Ci and C[ (L + r)/2,r ] or to the respec-
tive closures of their exteriors ('exterior' is in this case equivalent to 'com-
plementary area'). As to Dﬂr (.2), we have Dﬂr (.2 =Cc[(L+1) /2, r] in any
case, as Dzr (.2) N R is obviously finite (see Fig. 5.4b) and must thus be equal
tox SCl(+1)/2,x] >

We have now to see whether Di(.z) is equal to Ci or to the closure of its

exterior. As 6& < 6§ + [ is equivalent (when a # 1) to
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l + a
(@=-1 [ =x=-8,7

2 2 > 2 -
- °ye ] Sok a-1 &
the problem boils down to knowing whether ¢ <1 or a > 1. Equality (18)
shows that o < | when h' (8) / h' (8) is strictly increasing wrt. §2 (or 68),
and that o > 1 when it is strictly decreasing. The proof of Prop. 6.4 is

then immediate.

In particular, the case where §/h'(8) would be concave and strictly de-
creasing wrt. 82 is_impossible,_for it would leéd;,tuzﬁ,ngiJ However, &/h'(§)
may have that property when § is in a vicinity of [5k,sj ]. The inclusion then
makes sense in a vicinity of point i : there is some vicinity V of i(i.e., a set
including some open set containing i) for which Zjﬁ\IE Ciﬁ V. This is what hap-
pens in Fig. 8.1b if 6k < 3 §*/5. Similar remarks can be made for a&ll the
items of Prop. 6.4. Also, relatively to any particular point i of Zj n Zk’ the
condition that 6/ h' (8) should be strictly increasing or decreasing may be re-
placed by the local ome that o« < 1 or ¢« > 1. A final note : when a = 1, the
area Gﬁ < aé? + ¢ degenerates into the half-plane [x, += [x {0}; it should
not be difficult for the reader to foresee what ensues when &/h'(8) 1s concave

or convex wrt. 62,

Prop. 6.4 has the interesting consequence that we are able to get infor-
mation about the smallest disk circumscribed to Zk and about a largest disk

inscribed in Zk' Let us denote by s (a Aummit) a point maximizing the ordi-

nate y on Zk’ if any ; and by s' its orthogonal projection on the x-axis.

(6.5) (a) 14 V. / (h'eV/.) 4is concave,

(1) 4f Zj, 4 bounded, C [ (L + n)/2,n ) is the smallest disk
containing Z, ;

(11) 4§ a summit & exists and V2/ (R' e V.) is strictly increasing,
C (8',8) 44 a Largest disk contained in Zh ;

() I4 Y./ (h'°V/. ) is convex,
(1) A4 Zfz is bounded, C [ (£+r)/2,n 148 a Rargest disk contained
Ain Zh :



(i) 4§ V. / (h' = V) is strnictly Lncheasing, a wiique summil 4
exists and C (s',5) £s the smallest disk containing 7.

The proof, being obvious, is omitted.

The bounds recorded in Prop. 6.4 are £{ght in the sense that, for Prop.
6.4a eg., Ci is the largest disk contained in Zk and the circle of
which passes through i ; etc. This is guaranteed by the symmetry of Z, wrt.
the x-axis. Let us detail the case of item (a) for instance. If point i

is not on the x-axis, a disk- contdained in Z tangent to Zj N Z at i but

k’ k
larger than C, would have its centre lying in z, on the normal to Zj n zZ, at i
(ie., on the straight line joining i to the centre of Ci)’ but farther from i
than the centre of Ci ; and so it would encompass the symmetric of i wrt. to
the x-axis, and contain points of Zj = Zk : a contradiction.
For continuity reasons, this remains true when i is on the x-axis. More

generally, anyway, it is obvious that
(6.6) 1§ point L Lies on the x-axis, C/é i85 the osculating disk 2o Zj, Nz, at Ay

i.e., the disk the circle of which is locally most alike to Zj n Zk at i ;
the radius of C, is then the #radius of curwvature of Zj nz, at i. This may
be useful when drawing Zj n Zk'
We now give two other circular bounds on Zk' They are necessarily less
precise than the above-mentioned ones, but the conditions for their application
are different from those of Prop. 6.4. We denote by Ai the Apollonian area re-
lative to points j and k and the circle of which passes through a point i ;
the area Af is described by the inequality 6j/6k = ﬁi'jlai'k' When i EIRiX R,
A, is a disk ; it is the closure of the exterior of a disk when i € R*x R.

The abcissa of the centre of the disk is

§% + &2 §2 + 62
X, =6, = . B (19)
6% - §2 2 x

j k
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When Z, is empty, we set C (k,r) = C (k,£) = Ar = A, = ¢,

g2

(6.7) (a) 14 Zh 44 bounded, Zk | (R, %) ;

® Ifk €z, C(kECl,;

h?
{e) C(f,0) C zj,.

(6.8) (a) If heexp .is convex, Le. {f h (8) is a convex
expression of In &, then

(1) 44 1, 44 bounded, 7, C A ;

(i1) 4f k€ 2, A,CZ, ;

£

(b) If h cexp 48 concave, ie. 4§ h (8) 44 a concave
exphession of n §, then Zf2 E_A£ and, 44 Zh 44 bounded, An E_Zh.

Those properties obviously derive from Prop. 5.1 and 5.5a, and from the

fact that when Zk is not empty centre k either belongs to Z_ or to Jof [ (Prop.

6.3a). Also, regarding Prop. 6.8b, we know from Prop. 5.7akthat the concavity

of h cexp entails the concavity of h itself ; which in turn implies that k € Zk
if Zk # ¢ (Prop. 6.3b). Here is for instance a proof of Prop. 6.7c. For every
p € [j£'], the circle centred on j and passing through £ is in Z, according

to Prop. 5.1. As C (3,8) is the union of all such circles, we hgve final-

Iy € (§,8) & zj.

Prop. 6.4 and 6.5 show that the maximal distance between any two points of
Zk,i.e.,its diameter ¢ » may be equal to the length Lx of the projection of Zy
upon the x-axis or to the length Ly of its projection upon the y-axis. From
another point of view, the ratio Ly/Lx may be <l or >l, which means that Z, is
somehow directed as the sepmeilt [ jk | or perpendicular to it. When k € Zk’
Prop. 6.7b and 6.8 may be used to produce additional information about the

ratios L /L and ¢ /L , Notice that L_ and L. are < ® , so that L /L <& /L > 1.
y X k' Tx X v vy 'x "k 'x

k



« 57

COROLLARY 6.1 When L 70,
(@) 46 V. / (h' oV ) is concave and strictly increasing, then
Lx = By and Lg/Lx < ] when Ly is finite ;
(b) A6 V. [ (k' VT ) is convex and strictly increasing,
Ly = ¢, and 1< Ly/Lx ;
(c) 4§ kR €1, » L'y/f.x s Wil X8

Af moreover h o exp is convex,

(d) Lf heexp is concave and Ly = 8,p
_ a2 9 & ;
1~ 82, [12<L, TL <e, /L <2

Items (a) and (b) derive from Prop. 6.5 . As to item.
(c), if k € Zk’ we have Gkr Q_Lx;and LX € E: implies that Zk is bounded and
that Zk CC (k,r), so that &, < 2 § (the inclusion is strict as k # r

k kr
see Prop. 5.1 ; and k is # r because k = r would imply Z_ = C (k,k) = {k} and

k

LX = 0). Whenheexp is convex, Zk < Ar, so that @k is not larger than the

diameter of Ar’ which is X, = ng/xr. As that expression is increasing wrt.

X and as k € Zk implies that x_ < 6ok + L_, the proof of (c) is completed.

X
o 1 C = - 2 1 =
When h exp 1s concave, Ar - Zk and Ly X éok / X . The hypothesis LX
8 i implies that the smallest possible value of x_1s L_. Hence the lower bound

on Ly/Lx' On the other hand h is now concave (Prop. 5.7a) and Z. is not empty

k
since LX > 0 ; so item (c) yields the upper bound on cIJk/Lx (the specification
Lx < += is useless because it follows from the concavity of h ®exp that h'(+=)

= 0, from which we know that Zy is bounded : see Prop. 6.2b).

A second consequence of Prop. 6.7 concerns the points £ and r (see also

Prop. 4.4)

COROLLARY 6.2 Point £ is the point of Zj. N7, closest to [k 1; 4if 7, 45 boun-
ded, point n is the point of Zj Nz, fanthest grom [ fk 1.

Let us now have a look at two examples of application of all those proper-—
: : 3 : ; a :
ties. Take first the monomial transportation cost function : 8%, with a > 0.

Here &§/h'(8) is equal to Gz_a/a, or (62)l—a/2/a, so that, for every i € zj n Zk’



Ci c Zk if a € ] 0,2 ] and CiC:Zj ifa> 2: The abscissa of the centre
e. ‘of €., 45
i i
2= 2-
55 a . 6k a
Be gl —5 2-a (24
i 6. = §
] k

The similarity betweerd (19) and (20) is not casual, as fn (8) is a kind of

limit of 6% when a 2 0 ; see Section 10. On the other hand , h(6)’”5a==exp (a £n &
is convex wrt. 4£n 6; if a'< 1, in particular, we thus have AgCZ CA

The second example is h (§) = - 6_3, with a>0. In opposition with the

previous one, 6/h'(8) is now (52)1+a/2

/a so that for every i € Zj N Zk we
have Zk c Ci' The ratio Ly/LK is consequently now in the range J1,2 [,
instead of ]0,1 [. As to heexp, it is now concave, as h (8) = — exp (-a £n §);

C C i
so that Ar __Zk < Aﬂ

6.5, - Hypernbolic bounds
We define the two following hyperbolic areas :

= 108, — = i = o B
H, {i ,GJ 8, 5J£ 8,p and BJ GJ£ }

= * 5 — ]

H,= {856, -8, > o/b'()]}.
From now on weimplicitly assume, when necessary, that h' (+=) € R, U {+x}.
To reach a full understanding of the proposition that follows, it is neces-
sary to notice that those areas may in some cases degenerate into obvious

bounds, making the proposition useless.

When £ € ] ok ], the boundary of Hﬁ is a branch of a hyperbola (degenera-

ting into [ & +o [ x {0} if k = £) with foci j and k ; the specification

>
5j = sz inothe definition of Hﬁ_is superfluous because £ is then the closest
point of the branch to:centre j (Corollary 6.2). But it may happen (Prop.6.3a and
c) that k € ]of [ ; in that case H£ degenerates into [Xﬂ’ +o [ x {0}, and the
specification Gj = 6jﬂ is now necessary. The information yielded by Prop. 6.9b

about H£ is nothing but a particular case of Prop. 8.3b when those cases of

degeneracy occur.
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= 4w

The definition of H_ shows that it degenerates into R xR if h'(+w)
It obviously also degenerates into the straight half-line [§ e [x {0} when Q =
o
h' (+=) ﬁjk’ and becomes empty when Q > h' (+m)6.k.
J

(6.9) (a) 14§ h 4is concave, H,SZ, CH,;

(®) 14 h 48 convex, HF,E,ZQE H .

The proof concerning Hﬁ directly derives from Prop. 5.5b. As to H_, the

mean-value theorem tells us that hj_hk = h' (8) (éj - Gk) for some ¢ €] 6k,6.[.
If h is concave for instance we have h' (8) 2 h' (+») so that h. - hk =

5 - H ' (4o - = i 1 = = i
h' (+9) (5j 5k) : hence h' (+=) (§j ; Sk) = Q implies hj hk >’Q,J..e.,Hoa cz

K
The argument is similar when h is convex.

Let us study how Prop. 6.9 can be used for thé monomial transportation

cost function. The bound H 1is here completely useless : when a € ]0,I1[

degenerates into ¢ ; when a =

3 Lt
1, it is equal to Zk ; and when a>1, it degene-

rates into R+'X R . The bound Hﬂ is effective when a € J0,1[. When a = 2,

although HK is not necessarily degenerate, it is less tight than the bound V£

studied in the next section. It is only when a € 11,2 [ that the inclusion

of HK in Zk provides some original information if £ € Jok [ .

The bounds HK and Hco

function h (8) is a positive-coefficient linear combination of § with expressions

are of special interest if the transportation cost

like 62 (with a €]0,1[) ,or £n &§,0r —G*a(with a > 0).The transportatiqn cost func-—

tion is then concave and H_ E_Zk € Hy, and neither of the bounds is a priori
degenerate.

On the other hand, an illustration of Prop. 6.9b is given by h (8) =
§ = ¥6+K with .k 2 1/4 : then Hp C Zk C H, , with no a priori degeneracy
of the bounds.

A question which we have not raised so far is whether the boundary of H_

is a limiting curve of Zj n Zk. As that boundary of H_ = has itself two straight

asymptotes, the problem boils down to the determination of whether those straight
asymptotes are limiting curves of Zj n Zk ; we shall come back to this issue

in Sections 6.8 and 6.10.
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6.6. Asymptotic direction

Suppose that Zk is not bounded and let a point i move towards infinity on
Z. N Zk above the x—axis. If the angle wi' under which i i1s seen from

] : i

some fixed point i' of the plane tends towards some limit that we denote by

© , the angle ©., must tend towards the same limit for any point i" of the plane.We
e i

call that angle @ _ the asymptotic direction of Zj n Zk' When ¢ exists it is
easily seen (Fig. 6.3) that

1i . - = §.
im (6J 6k) 6Jk cos @
6y, ™ =
i €. M
i s ‘Zk

As that limit is also equal to Q /h'(+®) (see the proof of Prop. 6.6), we

finally get

cos = ——9% | (21)
h' (4= ) (Sjk

Conversely, when Zk is unbounded and h' (4=)  exists, Zj N Zk has the asympto-

tic direction given by (21).

It can be seen in particular that the boundary of H, (Section 6.3) has
the same asymptotic direction as Z. N Zk. Another interesting point is that
the property 0 < cos ¢ < 1 (as @ € [0, 7/2]) is perfectly coherent with the
conditions of unboundedness of Zk ; see Prop. 6.27 Formula (21) is also in
accordance with Prop. 4.5 : as Z, is a decreasing function of the attractivi-

k
ty constant Q, so must be the angle ¢_.

6.7  Ventical bounds and vertical Limiting Lines

Assuming that h" (+*) exists lato sensu, we define the following vertical half-

planes
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Of those two sets, the only ome that may degenerate is Vs This happens when
h" (+=) = 0 and when h" (4=) = +w ; in the first case, we have V_=¢; in the
second one, V_ = R ,x R . Notice that h" (4<) >0, as will appear from the
proof of Prop. 6.10.

(6.10)Ca) 14 A" (+=) #* 0, the boundany of V, 48 a Limiting Line of Zj NZ,;
(b)) If h" (+=) = 0, Zj N Zh has no verntical Limiting Line ;

(c) 1§ heV/. s concave, V_ € Z, €V

(d) If hoV. 4s convex, Uﬂ cz,c v,

(e) 1§ hev. is concave or convex and h" (+=) #* 0, on L4 A" (+o } = +e,

the boundany of V_ is asymptotic o Zjiﬁ Zp.

The proof relies again on the mean-value theorem, now applied to the

function h ¥, . From this and from equality (8) we deduce that

h'(8)

= h (V) = h-(V82) = (heVD)' (82) (82 - 62) = -

Ah = h ( ﬁJ) h-( Sk) (hov.)' (8%) (6j 6k) 3 xﬁjk (22)

for some & € ] Gk, 6j [. As h" (4=) is supposed to exist lato sensu, we have

according to de 1'Hospital's rule, even if h'(+ew) # 4w,

h'(§)
§

lim = h" (+=),

§—r+oo

Consequently, h" (4+=) 2 0 as amnounced, and (22) entails that, if h" (+«) > 0,

x_ = lim AR - IR (23)
lsk —+ 4o h (+m) ij
&
i¢g ZJ Zk

As h" (+=) > 0 implies that h' (4x) = 4= | Z is unbounded and the limit (23)

k
makes sense. Hence the first item. Conversely if there is a wvertical li-

miting line, Z, is unbounded and we may use (23), which shows that h" (+=)#0.

This proves item (b) by contraposition.
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As to the third item : the inclusion of Zk in Vﬂ is a mere application

of Prop. 5.5¢ ; and as he v, is concave, we have

hevD)' (82) =B 5 oy/Tyr gy & RIG=)
24 2.

so that if i € V_s then Ah = h" (+«) x ij 2 (Q because of (22), and
i1 E Zk. The argument is similar for item (d). And item (e) obviously results
from items (c) and (d), from the proof of item (a), and from Prop. 4.3.

In the case of the monomial transportation cost function Ga, Prop. 6.10
shows that Zj N Zk has no vertical limiting curve when a € []1, 2 [, and that

the axis of y is the straight asymptote of Z, N Z when a>2 (see Fig. 5.3). When
J

k

the transportation cost is for instance a positive-coefficient linear combination of
— : - a . :

62 ‘with expressions like fn § or §° with a € 10,2 [, we face a more complex si-

tuation where the vertical asymptote is mnot the y-axis.

6.8. Oblique Limiting Lines

Suppose now that Q € ] 5jk h' (+=), += [, so that Zk is unbounded and Zj N Zk
has a non-vertical and non-horizontal asymptotic direction e € {0, %}.

We construct a new system of axes by rotating the present system clockwise with
an angle 7/2 - Q. The new abscissa x' is related thus to the old coordinates

x' = x sin@_ - y cos CHE (24)

As the x'-axis is perpendicular to the asymptotic direction, the existence of
a limiting straight line of Zj N Zk is equivalent to that of the limit of x'

when point i moves towards infinity along Zj n Z In the system of polar coor-

K
dinates (50,¢5) associated with point o, we have x = 60 cos @ and y = 60 sin © 3

hence x' may be rewritten

i . .
x' =8 cos ¥ sin - sin cos ©
" ( e 9 . )

2 2ol 2.2 2 2 P 2
cos (.p S1n (D s1in ‘.p Ccos (p cos (p cos (.D

(=]

0 c¢os @o sin ©_ + sin wo cos @ 60 5osin (wo + wg)

2~ a2 2
P4 60 cos® @

8, ‘sin(wo + 9,)
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K’ in short

We now express x and 65 as functions of Gk and the difference 6.-8
J
8¢ - &2)/ 28, 2= (62 + 82)/2 - 82 is yi
( : k)/ 3k and 62 (GJ + ék)/Z 82+ this yields

A8, As x =

_ A8
X = 55 (26k + AS)
ik
62 = 82+ 5 a5+ 0?5
0 k k 2 ok
so that
(a8)2 2
csk (6k + AS) [—= cosc @ ]+ C
5. 2 “
x' = 2k
6§ sin (9, + @)
where
L 2
c =88 _ [ BT _ 52 eos? g
2
éﬁjk 2

As AS €] 0, 5jk [, C is bounded above and C/q) tends towards 0 when 6k =+ 4o,

Let us now consider the difference (Ad/ﬁjk - cos ¥ ). According to the mean-

value theorem, Ah = h'(8) A§ = Q for some § € ]6k’ Sj [; taking also (21) into

account, we have

AS Q 1 1
T ~ Cos @ = [+ = s ]
5jk ij h'(8) h' (+=)
Let us now set f (1/8) = 1/h'(6) , so that, using again the mean-value theorem,

we find for some E > 8

B cosg, =<1 [f (D) - £ (0) ]=%}:.%.f‘(l/:§)

Q 52 h" (8)

12 o
5jk § h . (8)

(26)

The abscissa x' may consequently be rewritten as

ol 12 %
, Gk (Gk + AS8) (A8 /ij + cos ¢;) Q 8¢ h" (8)/ ajk & h (&) + C

X =

§, sin (LDO + Q)
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so that we get, noticing that A5/5jk =+ cos (o, When Gk - 4o 3

_ 2Q cos @_ 82 52 " (3)
x = lim x' = lim
B o h'2 (+e) 8, sin (20) § > 4w 5 6,
k
i€Z.Nz i N
i P 1€Zj ZIS

As Gk/6 and ékjﬁo tend towards 1, we finally have, given (21)

cotg @
x = —— 1lim [82 n" (§) ] . 27)
h' (+=)  §>4e

8 =

That formula can be used for instance when the transportation cost h (§)
is a positive-coefficient linear combination of § with £n 8§, or with functions
of the type -5"% with a > 0. 1In such a case Zj n Zk has two oblique limiting
lines, which pass through point © iff, fn 6 is not one of the functions compo-—

sing the linear combination ; see Fig. 6.2 and 6.4,

We may also combine what we know about hyperbolic bounds with (27) ; this

yields

(6.11) When h' (+=) € ] Q'/éﬂz, +e [, the hal§-hyperbola 6j -8, =2 [h! (+e)

A8 a Limiting curve of Zj N7, iff. Lim 82 K" (8) = 0. If moreover
—>co

6 2
(a) h 48 concave on convex, that halg-hypenbola is asymptotic to Zj, nZ, ;

(b) h is convex, the oblique Lines | yl=x tg ¢ are asymptoies of Zj N Zfz'

When h (6) = § —6_u, for instance, Zj n Zk has two oblique asymptotes
y=xtg¢ and y = -x tg @ ; see Fip.6:4. Prop. 6.11 also trivially applies,
of course, when h (§) = §.

6.9. Horizontal Limiting Lines

Replacing Gj by Gk + A§ in the expression (17) of y2, we get

2 2
B8 gp 1~ A800 L g2 g L ABBE 5 g
§ 52 = §2
k jk ik

¥ = 82 #
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If ijﬁ Z, has a horizontal asymptotic direction , ie. if p =0, (21) implies
§.

ik h' (+=) ; setting £ (1/62) = 1/h'(8), we then derive similarly to
(26) that, for some & € ] 6k, Gj [ and some & > & » we have when point i €Z.N Z

that Q =
K :

A8 __ 83 RB" (8) h' (4w)

1 - —s

85k 2 62 n'2 (5)

(29)

If we let 8y tend toward infinity, h' (§) tends toward h' (+=), AS — Sjk
(as ¢ = 0), and Gk / 8§ > 1. The limiting value of y? is consequently

y2 = lim y¢ = — 1lim [83 h" (8) 1 / h' (+=).(30)
(Sk—>+oo §reo
i n
1€Zj Zk

According to that formula, when the limit of &3 h" (8) is> 0, y2 should
be strictly negative : the conclusion is that Zk must be bounded in such a
case. This is again coherent with Prop. 6 .2 d, as the strict positivity of

that limit entails the strict convexity of function h beyond some value § of

its argument.

When y_ = 0, the horizontal limiting line, here reduced to the x-axis,

is of course an symptote of Zj n Zk 3

(6.12) When Q = h' (+=) th and h 45 concave, the x-axis is asymptotic to

2.0 Z, iff. £im &3h"(8) = 0.
- R G+

Applying those results for instance to transportation costs h (6) that
are positive—coefficient linear combinations of & with functioms of the type
-8 2 with a = 1 shows that the indifference line Zj N Zk is then endowed, at
the threshold value ﬁjk h' (+») of the attractivity constant Q, with a hori-
zontal limiting line which is the x—axis unless one of those functions is -1/6 ;
see the examples of Fig.6.2 and €.5. When Q < 6jk h' (+=), we have seen that
there are two oblique limiting lines with such transportation cost functions.

This is an illustration of the following property, which is obvious if one com-
pares (27) and (30)
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Fig. 6.4. Market areas generated by the tc.f. §- (6+0.1 )‘4 when ij = 6, for indicated values
of Q. The x-axis is the horizontal asymptote of the indifference line when Q = 6 ; the

superficies of 2, is then finile, however. When Q < 6, the half-hyperbola BJ- -6, =0is

k

asymptotic to the indifference line and contained in Zk'

D -gs /

1

1.05

Fig. 6.5 . Market areas when the t. c.f.is 6- 1.5 /6 and Sjk' 1, for indicated values of Q.
When Q@ = 1, the indifference line has two horizontal limiting lines; when § <1, it

is asymptotic to the half — hyperbola Sj - Sk = Q, which is contained in Zk :
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(6:13) I Z n -z, has one honizontal Limiting Line on two when Q = § . r h' (+=),
then Lt has when e 5 h' (+e) fwo oblique Limiting Lines passing Jth&ough
point o

On the contrary, whem h (§) = § + £n (8) for instance, there is no hori-
zontal limiting line if Q = ij h' (+=), but there are two oblique ones if
Q< 6jk h' (+=), Those oblique lines do not cross at o but at some point of
-thé-x-axis on the left of o ; h is indeed concave, so that x' < 0 : see for-
mula (27) -and Fig. 6.2.

If we now include in the linear combinations considered above functions
S . - : i S
of the type 8" with 0 < a < 1, there is neither oblique nor horizontal limiting

line any more.

Notice also that formulae (27) and (30) and Prop. 6.11, 6.12, and 6.13
trivially apply when h (8) = §, as Zk then shrinks to the straight half-line
[5ok’ +o [x {0} when Q = 6jk’ and has two oblique asymptotes passing through o
when Q < éjk'

The knowledge thus acquired of the shape of market areas at the threshold
value ij h' (+=) of Q, which marks the 1limit under which Zk is unbounded and
above which it is bounded, allows because of Prop. 4.5 to predict some features
of the market areas when Q is close to 6jk h' (+<). This is particularly per-

ceptible in the case of Fig. 6.4.
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7. Valalion of y with x along the indifference Line

This section provides information about the sfope of the boundary line Zj N Zk'
It establishes the formulae of the first and second derivatives of vy wrt. x on

the demarcation line Zj N Zk. The second derivative will be used in the proof

of Prop. 8.6 to show the convexity of market area Zk in some cases. The first
derivative leads of course to the second one, and also to some properties which
we shall mention although they may be seen as corollaries of subsequent ones of

Section 8.

A simple way to arrive at the expression of the first derivative is to comsi-

der ayz/ax, as 9v98x = 2y 3y/dx. The first equality of (10) yields

-2 b
ay a &y

EECIT —

0x dx

(31)

- 2 (x —Gok).

On Zj m Zk’ we have

; ' 2 - 1 VAR
(ho\/.')j daj (h '\/._)k dsZ = 03

given (11), this may be rewritten

o ' 2
(h ~\/.')j (d62 + 2 8,

o o ' 2 o
ik dx) - (h \/T)k de2 0,

from which

2 1
( 282 ) 264 (5 \/T)j
S— = - . (32)
9% Ah (h o \/.')k - (b e V0!
So we deduce from (31) and (32) that
Byz) (ho Vo) + (h ox[)'j
(_ =2 6 = % 2(33)

9X Ah (h o \/—-—)1:- - (h o \/._):Ii o

The first consequence is that we are now able to compute the first of the

derivatives we are looking for



(34)

That formula immediately leads to the following properties :
(7.1) On RZ,

(a) When h ° . 48 convex, (3y/ox) <0 ;

(b) When h ° /. is concave but h is convex, (3y/ox) s =0

(c) When h ° ~0 4s eoncave, (dy/8x),, = 0 if x < S,p

Prop. 6.10 now appears as a consequence of Prop. 7.1, as far as the vertical
bound Vg is concerned. Prop. 7.1 itself may be derived from Prop. 8.3. But
here its proof relies directly on (34), from which item (a) is obvious; when
h o V. is concave, the sign of (By/BX)Ah is the sign of
(h « \C}ﬁ (5ok - %) + (h o VC}& (Sok + x), which expression yields item (c)and may
be written [ for (h o VC)' (82) = h' (&) / 26] as (hi cos wj - h
vielding item (b) (see the proof of Prop. 5.3).

. cos mk) 12,

Let us now tackle the second derivative. Considering again y2 before y, we

see that
322 _ l [_I_ 32y2 _ (-a_z)?_ ] ) (35)
ax2 y L2 9x? ax

All we have yet to do is to find an expression of (Bzyzlaxz)ﬂh.

To simplify, we set h = h o +/. and Zh's= hg + hé. We already know (Bﬁi / Bx)ﬂh
from (32}; a similar argument shows that (36? g ax)Ah=—26_k hH{/A h'., We then
]

compute from (33)
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2 5 8 26 ! 2§ &' 26 k! b T
y) =20-1 + 2% panvny dk ko pe Gk Jyepege 3k J ge kK
3x2/bh (AR )? i ko LI I A
2
%5k
=2[-1+ [h", h'  (AR' = zh") + &" hB', (AR' +Zh'
e i My ) gy ( N1
za?k
= 2[- 1 +_.]___ (:ﬁ" h:t?' —.'h",h"z )}
262 "h'2 n'Z h n",
wd e | oAb & ( k - iV
1y3 T 2 U
(an') By i /
Noticing that B"/L%Z = (= 1/h')" = —= 2 [v/./(h'e v/)]"', and defining
g = V./ (h'e \/.—), we finally deduce from (34) that
. 4 82, RI® B9 A h
52 2 Zh
(az>=L(Jk k] R N i

, %
%2 Ah ¥ (ah')3 y? ant °

)11
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8. The standpoint of mathematical Lopology : spatial stnucituree

The properties listed in this section are usually introduced in the mathe-
matical field of general topology. Spinedness, however, seems a concept of
our own, but we include it here because of its resemblance to starshapedness.
Also, we have thought it interesting to mention visibility as another point

of view on starshapedness.

Mark that only two of the properties deserve the name of ftopofogical ones :
these are arewise-connectedness and simple connectedness. A property is topo-

logical iff. it is maintained through any homeomorphism ; see eg. Lipschutz
(1965).

8.1. Arcmise-connectedness

A set E is anrewise connected,i.e.,unipartite, iff. any two points of E can be
joined by a path(ie.,acontinuous application of [0,1] into the plane) contai-
ned in E. Otherwise said, E is all of a piece (but can have holes : see Sec-
tion 8.2). A maximal arcwise connected subset of a set E (be E unipartite or
not) is an arcwise connected component of E. The arcwise connected components

of E constitute a partition of E.

(8.1)(a) Zj 48 arcwise connected ;

(b) The unipantite components of 2y, N [8pp, +=[ x {0} are thg intersec-
tions of the unipartite components of Z, with [8,p, *= [ x {0}, o
equivalently the circuban profections of the unipartite components of
Zfa around f on {60.!2, +o [ x {0} ;

(e) le2 has no mone than one unbounded arcwise connected component ;

(d) 1§ h 4s concave on convex, Zh L5 arcwdise connected.
The items (b), (c), and (d) nemain thue 4if ' Zh—Zf’ neplaces 'Z,".

Item (d) applies for instance to the monomial transportation cost function
8% . Z, 1s then arcwise connected anyway. Conversely, Fig. 8.la displays a
case where h is first concave, then convex. It can be shown, using Prop. 8.l1b,

that Z, may then be bipartite as occurs here.



2

;9

Fig. B.1a. Market areas produced by a t.c.f. first Fig. 8.1b. ‘Market areas produced by a tc.f. first

concave, then convex : convex, then concave :

S 1/3%
h(&)=(6-3.1) ,.Sjk"—' 1.B, indicated values of Q. h(&=(5-4.8) ’Bjk= % 6, indicated values of Q.
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The proofs of Prop. 8.la and b rely upon Prop. 5.1. This one entails that
any point of Zj either is in the half-plane R_ x R or can be joined to it
by an arc I' of a circle centred on any Dpoint p € [jol, with I' < Zj'

Any two points of Zj may consequently be joined together by a -path contai-

ned in Zj’ and item (a) is proved ; see Fig. 8.2a.

Let us now come to the other items, for which we give the proof concerning
Zk only. As to item (b) : of course, we mean by circular projection of a
point i around k the intersection point of the circle centred on k and

passing through i with the half-axis [§ +o [ x {0}. Let us denote that

ok’
point by y(i). The first step is to prove that, C being a unipartite com-

ponent of Zk’ we have vy <C> =C N [ﬁok’ +o [ x {0}. The argument is straight
as y <C> € CN [5Ok, 4o [ x {0} (from Prop. 5.1) and obviously

CO[8 s+ x {0} =y<CnN[§_, +=[x {0} >Cy<C>.

k!
(0f course, we have also Z, N [60

4o x {0} = vy <Z, >, and this will ease our

k k? k

notation).

The second step is to show that when a set C is a unipartite component of
Zk’ then ¥ <C> 1is a unipartite component of y <Z >, ie. a maximal unipartite

subset of ¥y <Zk>. First, let us examine why y <C> is unipartite. Consider

indeed two points il and 12 of y <C> . According to Prop. 5.1, y <C> C C ;
s0 il and 12 may be linked by a path P C C. But Prop. 5.1 again shows that
Y <P>, which is obviously a path between i, and i,, is contained in y <C>.

1 2!
So v <C> 1is unipartite. Were it not maximal, vy <C> would be strictly in-

s T [ x {0}. We could thus find

a point i' € vy <Z >, not contained in y <C> but linkable to it by some path P'

cluded in a broader unipartite subset of [ 3§

included in y <Z,>. Being outside y <C>, i' would also be outside C, as y <C>=

k
cnNils +o [x {0} ; P'being included in Z C would not be a maximal unipar—

ok’ k?
tite component of Zk : a contradiction. (To be exhaustive we ought also to prove

that 1f C' is a unipartite component of y < Z >, then C' = y < C > for some uni-

k

partite component C of Z but this is rather obvious).

k ;
Item (c) directly derives from item (b) : as a subset of a straight half-
> must have no more than one unipartite component. As we know

k
from Prop. 6.2a the equivalence 'C bounded ¢ y <C> bounded', the proof 1s

line, y <Z

complete.
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(a)Zj is arcwise connected (b)Z. is arcwise connected when

h is concave or convex

Fig. 8.2. Arcwise-commectedness.
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Item (d) also is a mere application of item (b). We have seen (cf. the
proof of Prop. 6.1 b and c¢) that Ah is a monotonic function of x on

[sok’ +#° [x {0} when h is concave or convex. Consequently, if il and i2

belong to vy <Z >, we have for any i € [i1 i

N

2 1%

Ah 2 min { Ah. , Ah. } = Q
X 5

so that [ i1 12 ] S« <z,>. Soy <Z> and zZ, are unipartite; see Fig. 8.2b.

8.2. Simple connectedness

A set E is sdmply connected iff. every closed path of E is homotopic to the
constant path,i.e.,is contractable to a point. In R?, that means the impos-
sibility of drawing in E a path that would surround a point of IR? - E.
Otherwise said, E has no hole, it has no Emmenthal-like structure. Some au-
thors additionally require that E should be arcwise connected, but when the
above definition is used E may independently be arcwise or simply conmected.

The two properties are related, however
LEMMA 8.1 1§ R?- E is arcwise connected and unbounded, E 44 simply connected.

Indeed, were E not simply connected, it would be possible to draw in E a
path around some i € R?2 - E. If R2- E is arcwise connected, it should con-

sequently be bounded. Concerning market areas, we get the following proper-

ties :

(8.2) (a) Zf2 L5 sdmply connected ;

(b) Zj [ resp. Zj - Zh] L6 sdmply connected L44. 2fz - ZJ, [ nesp. Zfa]
L5 unbounded and arcwise connected ;

(c) 14 h 4is convex, on i Q < h' (+=) 6jk‘and h is concave, Zj 18
sdmply connected.
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We give the proofs about the simple connectedness of Zk

that concerning Zj - ZR is perfectly similar. Item (a) is a consequence of

and Zj only ;

Lemma 8.1, as Zj -2 is arcwise connected (same argument as

with Prop. 8.la) and of course unbounded. The implication (=) of item (b)

k
not unipartite. 1In the first case, it is possible to surround Z, - Zj with

is identical to Lemma 8.1. As to (=) : suppose that Z_ - Zj is bounded or
k
a path included in Zj , and Zj is not simply connected. In the second
one, (Zk = Zj) M R, x {0} is not unipartite (Prop. 8.1b). So we can find
on R x {0} two pointsiI and iz of Zk = Zj separated by a point i' € Zj 5
with X, < ki . According to Prop. 5.1, the circle passing through
i' and lcentr%d on any point p of [ jo ] is then contained in Zj ; as it sur-
rounds il € Z, -~ Zj’ market area Zj is not simply connected. Finally, item (c¢)

is derived from Prop. 8.2b, 8.1d, and 6.2b.

Simple connectivity thus appears as another viewpoint on boundedness and

arcwise-connectedness. It is easily seen, in particular, that Zj is not

simply connected when h = ,% with 0 < a < 1, provided that Z, - Zj ¢,
but that Zj is simply connected when a 2> 1.
As to the distinction between Z, and Z, - Z. or between Z, and Z, - Z_,
k k J 3 h| k

notice that if a set E is simply connected, then its interior is also simply
connected, as the suppression of the points of the boundary of E cannot make
possible to draw mew paths inside E. That is why we did not mention in

item (a) that Zk - Zj is simply connected. But Zj = Zk may be simply connected
without Zj possessing the same property. If we lower the attractivity cons-

tant Q in the example of Fig.Bfla,‘the two unipartite'ﬁqmyongnts zl and Z2 will

k k
grow. When Q = 1.458, Zi and Zi will share a unique point lying on the
x-axis ; so that there will be in fact one unipartite component Zi u Zﬁ for

Z., instead of two, Zl - Z. and 272 - Z., for Z, - Z.. 1In that case Z. - Z
k k 3 k ] j J

k k
is simply connected while Zj is not. But the distimction is of course more

mathematical than geographical ---.



8.3.. Spinedness

Let us set this definition : a set E is 4pined by a straight line D iff.
for every i € E, the segment [ii'] is a subset of E, i' being the ortho-

gonal projection of i on D. It then follows from Prop. 5.2 and 5.3 that :

(8.3) (a) The part of Z, Lying at the Left of k, ALe. Zy [0,8,,1 %R,
{5 spined by the strhaight Line perpendicular o [ k] and pas-
sing through k, Le. {6, } x R

(b) I4 h 48 convex, Zj A5 spined by the y-axis ;
(e) 1§ h o V. 48 concave, 2, &s spined by Zhe x-axis ;

(d) T§ h o V. is convex, Zj is spined by the x-axis.

The property of spinedness is not independent of the onmes studied so far.
In particular, it is easily seen that if a set E C R2 is spined by a straight
line D, then E is simply conmected and, if R? - E is moreover contained in one

of the two half-planes delimited by D, R%? - E is also simply connected.

According to that it is possible to give, for instance, a new proof of the
simple connectedness of Zj and Zk when function h is convex. Noticing that
Prop. 8.3 may be extended to the interior of the concerned areas, and using

Prop. 8.3b, we can indeed build those two logical chains
h convex = Zj spined = Zj simply connected ;

h convex = Zj - Zk spined by the y—axis

z, & R, xR

= Zk simply connected.

The property is also related to arcwise-connectedness : when h is convex
. . - a .
and h ° Y. 1is convex or concave, (as is the case if h = .~ with a = 1) Prop.

8.3b, ¢, and d entail that any two points ijand i, of Zk (resp. Zj) may be

2
linked by a Manhattan-like path contained in Zk (resp. Zj).
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Last, Prop. 8.3b also gives a straightforward proof that when h is convex,
Zk F ¢ iff, Zk is unbounded (Prop. 6.lc).

: 4 ; a
In the case of the monomial transportation cost function .%, Prop. 8.3 en-

tails that Zk is spined by the x-axis when a € ] 0, 21; and that Zj is spined
by the y-axis when a = 1, and by the x-axis when a > 2. On the contrary, in the
two examples of Fig. 8.1 neither Zk nor Zj‘are spined by the axes of x or y 3
item (a) is the only one that can be used (if we do not consider separately the

properties of the unipartite components of Z. , as far as Fig. 8.la is concerned).

k!

Fig.8.3 shows possible shapes of market areas when function h is made of
linear pieces . 1In Fig. 8.3a, h is concave ; in Fig. 8.3%,-it is convex.
Though surprising, those shapes are coherent with Prop. 8.3. 1In the first
case h is concave but not convex : no wonder if Zy is not spined by the
y-axis. 1In the second case,neither Zj nor Zk are spined by the x-axis ;

and indeed he v. is neither convex nor concave.
8.4.Stanshapedness and visibility

A set E is sfarshaped wrt. a point p iff., for any i € E, the segment [ip] is
contained in E. It is starshaped wrt. to a set S iff. it is starshaped wrt.

to every p € S.

(8.4) (a) 1If function h is concave, Zk 45 sTarshaped wnt, b ;

(b) If function h is convex, Zj L8 stanshaped wit. R_x {0}, the
nonpositive pant o4 the x-axis.

The proof is straightforward. Item (a) is just another formulation of Prop.5.2a.
Similarly, Prop. 5.2b yields that Zj is” starshaped wrt. o when h is convex,

and item b is obtained by combining this with Prop. 8.3b.

As was the case for spinedness, starshapedness pours a new light on prece-

ding properties. It is immediately seen that if a set E is starshaped wrt.
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7

Fig.B8.3b. h(8) = max {26,656 + 10}, ﬁjkz 5,
Fig.B.3a. h(B)=min{5,0.26+1.2,0.16+2},
. indicated values of Q. Notice that whenQ =6,
‘Sjic = 3.6, indicated values of Q. Notice the

2 has a one—dimensicnal tail ending at k.
infinite 1-dimensional tail of kahen 0=0.36 k @

and the finite cne when Q =0. 72 .
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a point p, E is arcwise comnected, as {il, i2} CE= [i1 pl Yip i2] CE.
The set E is also simply connected : otherwise some point i € RZ -E would
be surrounded by a closed pathT C E ; calling i' an intersection point of T
with the straight half-line originating in i and the prolongation of which
passes through p, we should have [pi'] C E and hence i € E, a contradiction.
If moreover E is unbounded, R? - E is simply connected because of Lemma 8.1.
The propositions 8.1d (when function h is concave) and 8.2c may consequently
be considered as deriving from Prop. 8.4. The Propositions 6.1b and 6.lc
about the possible emptiness of market area Z, are also corollaries of Prop.
8.4.

k

Prop. 8.4 can be illustrated by most of the examples given so far. See in

particular Fig. 5.3, 8.1 and 8.3.

A concept very close to starshapedness is that of visibility, introduced by
Goldman (1963) in the field of convex programming and by Hurter et al. (1975)
in location theory. Adapting slightly their definitions, we say that a set
E is entinely visible from a point p iff., for all i € E, no other point
of E is on the segment ]ip ],i.e ]ip ]N E = ¢. It is entirely visible
from a set S iff. it is entirely visible from every p € S, So we have con—

cerning the border Zj n Zk a proposition parallel to Prop. 8.4

8.5 (a) 1§ h is stnictly concave [ resp. strnictly convex 1 , Zj N7, 48 enti-
nely visible grom k[ nresp. R_x {0} ] ;

(b) 1§ h 48 concave [ nesp. convex ] , (Z, N Zp 4=18,,, t= [x {01
A8 entinely visible from k [ resp. R_x {0} 1.

The restriction expressed in item (b) correspoﬁds to the possibility for
Z. 0 Zk to have a nondenumerable intersection with the straight half-line
]sok’ +o [ x {0} (see eg. Prop. 6.2d).

A remarkable case occurs when the -~ tyc.f.is linear : h (&) - §. That func-—
tion being concave and convex, both items of Prop. 8.4 (or 8.5) can be applied.
As a consequence, uwhen h (8) =68, each market area is starshaped wrt. its

centre. That property obtains whatever the number of centres ; see Fig. ClA.



8.5. Convexity

This mathematical concept corresponds to the intuitive idea of a round
shape. A set E is convex iff., for any two points i] and i2 of E, the
segment [i1i2] is in E. The set E is sfnictly convex iff. Vi],i2 E E,

the open segment ]iliz[ is in the interior of E,i.e., E minus its boundary.

In other words, E is convex iff. it is starshaped wrt. itself. A convex

set E is thus arcwise and simply comnected ; it is also spined by any straight
line containing a diameter of E, a diameter being understood here as a

segment [1'i"] for which i' and i" belong to E and maximize the distance
Gi'i" on E. Convexity is thus a strong property. It is then perhaps not
surprising that our results in this matter lack the polarization observed in
the preceding statements between the concavity and convexity of h or of some
derived function ; the items (c) and (d) of Prop. 8.6 even concern only narti-

cular classes of tramsportation cost functions.

8.6 (a) Except when Zj = B2, Zj L5 convex A44- Zj N2, is a straight Line

parallel to the y-axis ; Zj 48 never stnictly convex when I; + R ;

(b) 1§ Zhe function v. [/(h'sV/. | is convex and strnictly increasing,
Zfz L5 stnlctly convex ;

(c) When h = .%, (4) if 0<a<], Z, 44 stnictly convex ;

n

(LL) 4§ a = 2, Zk 45 convex, but not stnictly ;
(L) 44 1 <a<2ona>1, Zh L5 not convex.
n (K+ %) with a=1 on 2, 2, 46 stnietly convex.

(d) When h

Item (a) is obvious as R_x RC Zj. Item (b) is a direct consequence
of Prop. 6.4b; or of formula (36) as we have here Ag' = 0 and Ah' < 0.
Item (c) is proved by using (36) to show that when h =.% with 0 <a < 1,
('Bzy/axz)Ab is < 0 on 3:2 and finite unless y = 0. As those computations

are heavy, the reader is referred to Appendix 1. When a =1, Zj n Zy is a

branch of a hyperbola, and Zk is consequently strictly convex. When a > 1,

we know from (21) that ¢;==w/2 : exactly as in item (a) regarding Zj, this
implies, if Zk K

is true only if a = 2, and as Zk # ¢ if a>1 (because h' (+x) = += : see

is convex and not empty, that Zj N Z, is vertical. As this



Prop. 6.lc and 6.2b), the proof of this item is complete. Item (d,-derives from
item (b) whena = 2, and from Prop. 13.7a (see Section 2.2).

Still about items (c,i) and (d), two facts are
worth noticing. The first one is that the function v. / (h'eV. ) is here

concave and strictly increasing : item (b) cannot be used to prove item (c);and

indeed, as shown in Fig. 5.3 and 13.3b, Z, is characterized by I_.y/Lx < 1 in accor-

k
dance with Corollary 6.la. The second fact is that the convexity of Zk does not

here derive from the possible concavity of Ah seen as a function of (x,y) :
Prop. 8.6c entails that Ah is quasi-concave wrt. (x,y); it is not concave,
however. To show this it is enough considering the evolution of Ah along
the positive part of the x-axis, for instance : Ah is convex and increasing

wrt. x on [ok ], then convex and decreasing on [60 +o [ x {0}.

K’
We already know that item (a) is illustrated by h = .2 ; and we have seen

how Prop. 4.1 can then be used to find all the transportation cost functions

for which Zj n Zk is vertical. Item (b) applies for instance to the unboun-

ded unipartite component Zi of market area Zk in Fig. 8.la,as it can be com-

puted that the required condition is verified inside the range of distances

to j and k that concerns ZI; we have thus also here L /Lx > 1. Item (b) also ap-

k y
plies when h = -. 2 with a > 0, and when h = £n (K + §2) with K > 0.

Notice, conversely, that we have met situationms where function h is concave but
where Zk is obviously not convex : see Fig. 8.3a and 6.4. In the first case, the
nonconvexity of Zk is clearly related with the nonderivability of h at some gi-
ven distance. In the second, however, function h is perfectly smooth. On the
other hand, when h is partially convex and concave, Zk may be convex, as indi-
cated by Prop. 6.2d (Fig. 4.3b), or not ; see Fig. 4.1 and 8.1. All this shows

that the convexity of Zk is absolutely independent of the concavity of func-

tion h.



9. Propernties of the measunes of Zh and of the extra ternitory of centre §

We deal here with quantitative propenties of market areas. We have already
seen in Section 4 that the measure lzkl'is a decreasing function of the at-
tractivity constant Q. The mathematical developments of Section 5.2 make it
easy to refine our knowledge, and we so settle that|Zk|is most of the time
convex wrt. Q. The question was asked to us in relation with a paper of
Jaskold-Gabscewicz and Thisse (1985) about the theory of the equilibrium.
in"location and price of non-cooperative firms. It has indeed an economic
significance when Q is simply the difference Pk ~ Pj between the f.o.b. priées
Proposed at the two centres, if a continuum of identical and inélastic—demand
customers is spread over the plane; |Zk| is then proportional to the total
demand addressed to centre k.

When the transportation cost function h is convex, IZkI is very simply re-—
lated to Q. If Q = 6jk h'(+2), IZk|‘= 0 as Z, is then either empty or redu-
ced to a straight. half-line (Prop. 6.lc, 6.2b, 6.2d). If Q <zsjk h' (+=),

the angle ¢, is > 0 according to (21), so that TZkI = + *°, But the method used
here above to study YZkI may now also be applied to .IZj N R, * IR,
which can be finite when the axis of y is the vertical asymptote of the demar-
cation line Zj N Zk. The area Zj n IR, x IR has an obvious interpretation : it is

the extra territory gained by centre j on centre k due to the difference bet-
ween their attractivities. We find here a result remarkably symmetrical of
the preceding one : we establish a sufficient and seemingly not very restric-
ti§e condition for IZj n R, X R|, i.e.,IIR+ xR - Zkl’ to be a concave func-

tion of Q.

We have said that IZj AR, X R| may be finite : the proof and conditions
are given in section 9.1. We also treat there the similar problem that exists
for |Zkl when h is concave and Q takes the threshold value ij h'(+=), If
the x—axis is an asymptote of Zj n Zk as may then happen, we shall see —sur-
prisingly encugh- that |Zk1 may still be finite despite its endless tail, be-

fore suddenly jumping to infinity when Q becomes less than 5jk h' (+=);seeFig.9.1.

It could also seem interesting to possess more information than Prop. 4.5

about the dependence of those areas on the distance 6jk between the centres.

When h = £n-or £n (.?+ K) with K>G, [ZkT is obviously convex in §ﬂ£; see Prop.
4¢7e. But what about other cases ? '
An approximate answer will be given in Section 1l when the transportation cost

function is .2.
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9.1. Finiteness

Let us begin with Zj n IR, x IR. We have already mentioned that the mean-
value theorem allows to write, if i€ Zj n Zk, that 566}6k, éj[ for which
hro(8%) (ag - &) = Q;i.e.,given (11),

h(s? =
(:S)Zxéjk qQ - (37)

Consequently, if h' is invertible ,i.e.,if b is strictly concave or strictly

convex, we deduce from (10) the inequalities

BT (Q/2x8,,)-G48 ) < v < 17 (Q/2 B =t s (28)

In particular, when h is strictly convex, we know from Prop. 7.1 that y is

a decreasing function of X above the x-axis; ZjFWZ must then have a vertical

k
. If we also require that h" (+ee) = +w

asymptote X = X then x,= 0 (see Section

(=]

6.7) and thermeasure_qf er1]R+ x IR, the part of Zj at the right of the y-axis,

may be computed, if (x,y) €z, N z, N R}, as
2,0 R, AR |=2[ Ly dx . (39)
As the inequalities (38) imply that

L = — == = M (Q/2x6..
v h'T(Q/2x 5jk) X ‘Sok <y <+vh (Q/2x6jk),

I er1ﬂl+ x TRl <+ iff. Hﬂ‘(Q[2x6jk)fhis integrable between 0 and X To deal
with that last issue we use Cauchy's criterion. Obviously that integrability
obtains if one has for some K > 0 and some €'> 0, for every x between 0 and

some X

— '
VAT (Q/2x65)) <K x b+

-l+er

Setting &= Kx and e= ¢ ' /(l-e'), and remembering that h'(§2)= h'(8)/26,one

easily finds that the inequality is equivalent to

B'G) 5 _ @

2 *E
et
As the values of X, €', and x are left free, this is the same as requiring that,

8

for some >0,
el A0, 5. g,

+e
52

lim

Gt
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Similarly, a sufficient condition for the integral to be infinite is that
[R¥™ (Q/Zxéjk)]lﬁ*;?K-x'l- Developing that inequality and applying de 1'Hos-
pital's rule to both results, -and noticing that we only need in fact the in-
tegrability of v near the y-axis so that Prop. 6.10e dispenses us with re-

quiring the convexity of he v ., we finally get
(9.1) When h" (+w) = +=,

(a) 4§ Lim [h(8) /837 €1>0 fon some >0, 12,0 IR xRI< 4= 5

§ =+
(b) 44 Lim [h(8) /83 ] < +o, |zj.ﬂ R,x Rl = +=,
7+ e
In the particular case of the transportation cost function .2, that proposition

indicates that !zj MR xIRI< +o iff, a> 3. (see Fig. 5.3).

Let us come now to the measure IZkl , when the y—axis is the asymptote of
AN Zk' We assume that h is concave; h o v/. is thus strictly concave
(as h'>0), so that y is a function of x if i € Zj'W Zka IR+2 (see Prop. 5.5c)

and we may write
40

le|= 2 o dx
£
It then appears from the expression (28) of y* that IZkI < 40 iff,
61( (1 -4 Gléjk)m may be integrated on[x,, +=<[, asAd tends in the present case

towards 6., when 6,+ +». Using again Cauchy's criterion, we see that iZk|<:+m if

ik k
ﬁk\'" 1 — —,G——a‘i. K x iy
jk
beyond some wvalue x of x and for some strictly positive K and €. If we now set
£ (1/6l+ E') = 1/h'(§), we derive,similarly to (26) and (29), that for some

GE]ﬁk, 6j[ and some 8> 6
a6 §5+2e’ W"(¥)h' (+w)

L e = — .
1 LyZ2pti a2
85k (u+2e') & h'=(¥)

Cauchy's condition may comnsequently be written as

v

sz ¥s+2e’ 4 2+ze'hn(g) K2 (4+2e")h"2(8)
= — "
Eilvw 28" h' (+=)
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When Gk + 4o, 6k/6 + l; moreover here, as y>0, x/§>1. As the values of K and
x are left free, the condition :is reduced as follows; Cauchy's non-integrability

condition is similarly treated -

-(9.2) w."LQ,Vl Q :6:!’;2 hl [+m),

(a) Af Lim [ 65FE Q" (8)] >~ forsome >0, [zk]<+w :
§ - 4o :

(B) 4§ Lim [85h"(8)1<0, 42yl = +e=,

§ > 4o

In item (a), we have taken into account the fact that the mentioned condition

entails that when & ++~, &3 h" (8)+0 [ see (30) and Prop. 6.12].

If we apply this to tramsportation costs of the form §-b§ 2 (a,b >0) when
Q= Sjk’ we find that IZk[is finite iff. a>3. The exponent 3 plays thus here
the same threshold role as in Prop. 9.1. As iZkI is a continuous function of
Q as long as that measure remains finite (because the hypothesis of the strict
monotonicity of function h implies that h is not constant on any disk with
strictly positive radius; see Sectiom 12.3),it appears that when a>3, pothing

in the behaviour of erl, if Q decreases towards § lets us foresee the sudden

jk?

explosion of IZkIto infinity when Q goes past &, ; see Fig. 6.4. and 9.1.

jk

9.2 TDependence on atthactivity

We already know from Prop. 4.5 that the measure le| must be a strictly decrea-
sing function of the attractivity constant Q. But we can go further. According
to Prop. 8.4a, when h is concave, Zk is starshaped wrt. centre k; the measure
|Zk|may thus be computed as

=175 20, Q)
Iz =17 520, O do,

where Ek is the distance between k and the point of Zk most remote from k in

the direction ¥, 5 this point belongs to ij1zk.
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h' (o0) Sjk 0 h' (o0) sjk
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Fig. 9.1. The superficies Izkl is decreasing and often convex wrt. Q;

it may be finite or not when Q = h’ (00) Bjk :

o

N
AN
/ N

Fig. 10.1. The function & In ¢ and the other functions used to establish the relation between

a
Zh and the dependence of Ah on the distance exponent a when h = S.
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The distance ﬁk is of course strictly decreasing wrt. Q : this is shown
by Prop. 4.5. Consequently, when the angle P, is fixed, Ek is convex wrt. Q
iff. Ah is convex wrt. 6 . The concavity of §. wrt. Q can be studied in the

k k

same way. The formulas of (3.4h/3.6. ) and (86./86. ) . established in Section
k7P iRy
5.2 yield :

32Ah \ 38, 2 328,
(=), "D G,
2 : ‘ 2
" H8 S Bop 1

2 - s 2
(B 6j ) 3 5j (6k4-6jk cos wk) cosd: sin“ ¥

5.2 8

2
Tl 3 j

Hence,

It is then easy to find a condition ensuring the convexity wrt. Q of Ek, and

consequently the strict convexity wrt. Q of Skz and %Zklz

(9.3) 14 h 4s concave and h' is convex ., thl L8 stndetly decreasing and Athic-
Ly convex wit, Q when 12,1 L8 not 0 on +ee.

The two conditions are verified for many functions among which ¢% and -§ ¢
(with a>0), £n &, atg 6, etc. It should be noticed that h' cannot be concave
when h is concave and increasing : which explains why h' is then often convex.
It is also convex on[0,&] if h(§) = sign (&=6%) lG-é*Ia with a>!, as in
Fig. 8.la, so that the property even holds for the bounded component of Zk in
that example. On the contrary, Prop. 9.3 does not apply if function h is
concave and piecewise linear, as in the example of Fig. 8.3a.

When function h is convex, Zk is now starshaped wrt.©, and we have

= (V232
Z, N R, x m| = J5"s @, , @) 4%
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where ED is defined as the maximal distance between © and a point of Zj in
the direction U According to Prop. 4.5 , that distance is strictly increa-
sing wrt. Q; so that when the angIE(pois fixed, E% is concave (resp. convex )
wrt. Q iff. Ah is convex (resp. concave) wrt.dﬁ. Computing the first two deri-

vatives of Ah wrt.ﬁg by means of the formulae of Section 5.2, we find

9Ah. ' ) cos @ ) cos ¢
( ) “u, (1+ ok o - hﬁ a - ok O 3
362 J $ 8

2 § . cos @ o § ., cos @ o
(3 Ah . ) SRt o+ k oy % h; (1- ok oy
3(52)2 J 8 8
o” ¢ 0 o
‘ o
. l.h Gokcos mo . l. ﬁ' 60k cos wo
2 3 63 2 k 63
o o
8 Z 2,
= (" - h") (1 + ok CO5°® )
] k
] 52
o]
60% cos wo " "
~ ‘h” _1’ ] h" _h! "
+ -—Egg—————-(4 ; 60 lj + 4 K 60 k)
o

Let us now consider the disk C (j,£). On the circle of that disk, the ratio
50/ Gj is minimal at the point which minimizes 60 ; i.e., at point £. The
Apollonian circles (relative to the points j and o) corresponding to values of
60/6j lower than Goﬂ/ﬁjﬂ are thus contained in C(j,£). Since C (j,4) < Zj
(Prop. 6.7¢), this implies that, on Zj n Zk’
L. Hence, if we denote by € the ratio 603/ Sok,and if we assume that h is con-

vex .[so that A"(§) = 0],

the ratio Go/éj is also minimal at

4h". 62 -h', =240".6.2 e2/(e +1)2 -0",,
Jo ] J 3] ]

As § < 6, on Z, N Z , we have there § /6, > 6 /6. > e/( € + 1), so that the
k | ] k o 'k o J

inequality here above holds too if we replace 'j' by 'k'.
J

Noticing now that

(e V7" (6% = [ho ()2/3](e?) =118 -(a/2-Dh ' (§?)

g2a=2 2

a?
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we see that 4 h ”j 602 - h'j and 4 h”k 602 = hi are >» 0 if the function he?yVT
is convex, where the index a is given by the equality a/2 - 1 = (e + 1)?/ 4g?,

Interestingly, that convexity also implies the convexity of h if a = 2., It is

then easy to state what follows :

(9.4) If the transporntation cost gunction h L& tudce differentiable and if,
fon some a > 2.5, the functions (h o V)" and h o AT ane convex on R,
then the measure | Z; N R, x R| of the extha tewritory of centre f,

k|
when Fo, L5 stailctly concave wit. Q on the rnange

[h(s_ (1 +e) -h (5 I1-¢e), =L,

whene

1
VI(a-2)=-1

One point does not immediately appear from the discussion above : the reason why
the concavity is As&iicf. Suppose indeed that it is not ; i.e., thatle n ]R+X]RI
is linear wrt. Q on some range of Q. Under the conditions of Prop. 9.4, the deri-
vative [BzAh/a(Goz)z]Lp is > 0; on that range of Q, it must thus be equivalent to
zero. The proof of Prog. 9.4 shows that h must then be equal to zero (instead of
being only = 0) for all 6% on the corresponding range of § 2; otherwise we should
have at least the strict inequality 4 h "kéoz— h‘k > 0 and the above -

mentioned derivative would be > 0. But it is easily seen that h" is equivalent to
zero if and only if h (8) = 6 (remember that constants and coefficients may be

dropped in the study of function h). That case being £forbidden by Prop. 9.1b,

the proof is coﬁplete.

As could be expected, €, as given by Prop. 9.4, is a decreasing function of a :
the higher the value of a, the wider the range of Q on which we are sure that the
measure of the extra territory of j is concave wrt.Q.It is also worth noticing
that, under the conditions of Prop. 9.4, 502 and consequently 60 are strictly
concave functions of Q when the angle @, is fixed.

When h =.a', the conditions on (h © V. ) and h ° ®V. boil down to a<a'>4 ;
this value 4 of the exponent of the t.c.f. is remarkably close to the threshold

value 3 indicated by Prop. 9.1. The first of the two remarks just made showing
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that the index a is best chosen equal to a', Prop. 9.4 thus sounds in this case
When h = % with a > 4, the measure of the extra tewitony of centre § is sthictly
concave wit. Q on the range ... etc. On the other hand, when a = 4 < aty

Prop. 9.4 yields € = 1 ; this lets appeaf, as a corollary, that, when h = T
with a > 4, the measure of the extra Tevditony of § 48 strictly concave wit,

Q Lf Q 48 Large enough for k Zo belong Zo Zj'

Not surprisingly, more accurate statements may still be found, at least in some

particular cases. When h (8) =8 , it appears that

2 2 _ 2

( 9<Ah i 2(360 Gok ) Gokcos @ .
242 3
B((So ) %o 6o

Consequently, 1/ V3 is here a better value of € than the value 1 proposed by
Prop. 9.4.

The present section 9.2 is extended in the sections 11.1 and particularly 11.2

through some approximate properties,
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10. Dependence of the market arneas on the exponent a when h(s) = &%

This issue is particularly interesting because it makes us feel how delicate the
problems involving distance units can be. We shall meet again such a diffi-
culty in section 11.1, where it will appear that the limit of the area Zk when
h(6) = 6% and the ratio Q/a is kept constant Wwhile g 2 0, depends on the dis-
tance unit. We shall now see that the evolution of the market areas when a
varies and Q remains unchanged also differs if 6jk
generally depends on the ratioc between Sjk and the distance unit.

> 1 and if ij < 1, and more

We have already discussed in sections 5.4 the evolution of market areas when
the exponent a varies, if one point of the plane is supposed to belong anyway to
the demarcation line. 1In the present section, as in Prop. 11.2, the spatial
parameter that is kept invariable is the transportation cost associated with

the distance unit, as h (1) = 1 Vva.

The influence of the distance unit immediately appears if we try to know for
which values of the exponent a of the transportation cost function market area
2k is empty. A detailed study of all the possible rankings of the three num-
bers ajk’ Q, and 1 -the distance unit- yields the results that follow. From
now on we denote by Zk [a] and Zj [a] the market areas corresponding to the

value a of the distance exponent. Together with the threshold values of a are

indicated the corresponding areas Zk [a] . Of course, we know that Zk + ¢
when a > 1 ; and that when a < 1, Zk #+ ¢ iff. 6?k 2 Q (Prop. 6.1 b).

(10.1) When h = . with a >0,
(a) 44 Q < min {1, aﬂa}, 2, *¢ ; Limo Z, [a] = {k} ;
-
(b) 44 1 < @< 8 ik 1, #¢ iff. a > a*, where a* = £n Q/dn S ik €10,70;
Z, [a*] = {k} ;

(e) 4§ 1<Q= ‘Sﬂz’ L, # ¢ iff. a= 1 ; 2, [1]=18,,,+= [x {0};

(d) if 1< 64 <Q, 2, #¢ iff. a>1; Lim I, [a]l =6 ;

a;?

[e) 4f 6jk <Q<1T1, Z,#¢ iff. a>1 on 0 <a<a*, where a* =

In Q/fn 6jh

€10,1[; £imZ, [al =2, [a*] = {R}; £im Z, (a] = ¢
k k k
3 Azt
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In the first four cases, Z,_ becomes nonempty above a threshold value of

k
the distance exponent. In item d, Zk is unbounded as soon as a > 1, but
becomes infinitely remote if a 2 1; that is why Zk [1]= lim Zk [a] =9¢.
’ azl
‘ b= ;
The fifth item is completely different : Z first grows, starting from the

k
limiting area {k}; it shrinks again te {k} when a = a*, vanishes when a*<a < |

and reappears when.a > ] ; see Fig. 10.3b. TItem b is illustrated by Fig. 10.3a.

That last case shows that the evolution of Zk wrt. a is not necessarily
obvious. To study it in gemeral, we introduce a definition. Let us consider
that Zk [a] = Zj [a] =¢ if a < 0. We set that Zk

sthongly increasing) wrt. a at a iff. 3y > 0 for which,¥e € 10,n 1,

is Lncreasing (resp.

z, la—e] C 2, [a] (resp. C 2, [a] - z, [a]) and z, [a] €z, [a+ c] (resp.

E_Zk [; +”E];“'Zj [Z + g£]). We define in the same manner the (strong)

decreasingness of Zk wrt. a at a. It is easy to verify that when such a pro-

perty holds at all a € R, we find the global notion ef (strong} increa-

singness or decreasingness defined in Section 4.

It can be shown, concerning Prop. 10.1, that Zk is strongly increasing wrt.
the exponent a at its threshold values in items b, ¢, and d. In item a also,
unless Q = ij = 1 : in that case Zk is increasing wrt. a at 0 but not stromngly;
Zk cannot indeed be stromgly mONOtonic yrt., a at any value of a, for centre k

then belongs to Zj NZ Va>0. In item e, Z, 1s strongly increasing wrt. a

k
at 0 and 1, but strongly decreasing at a*.

k

How can we now determine, given any value of the distance exponent, whether
Zk is increasing, or decreasing, wrt. a 7 A first important property has al-
ready been found as an illustration of Prop. 5.4. We have seen there that if
h=.andh=.2 4 0B ﬁgf aék)Ah > 0 iff. a>a. Consequently, if a point i of
Zj [a] N Zk [a] belongs to Zk [a + €] Ve € [0,n] , then all the points of

Zj [a]l N Zk [a] that are farther from [ jk] than point i are in
Zk [a + ] - Zj [a+¢],Ve€]l0,n]. Conversely, if point i € Zj [a + €]

¥ e €[0,n], we have zj [alnz [a]lnNC (ki) C Zj[a+E]—Zk[a+€], Ve€lO,ml.

Thus we have to determine, at least at some chosen points of Zj n Zk’ if
Ah is locally increasing or decreasing wrt.a. The natural way is then to examine

the derivative 3Ah / B8a :
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In particular, we have :
(10.2) When h = 2 and a > 0,
(a) L4 5j£a £n 6j£ = shﬂa £n S Zh 48 Ancreasing wit.a ;

(b) i4 a <1 and aj.,f tns, < sm“ En 8, 2, 46 decreasing wit. a.

in

14 the inequalities hold stnictly, the properties of Z, are stnong.

We can get a better view of the issue if we get deeper into the analysis of
3sh/%a. Let us set f£(£) = & £n £ ; 3Ah/3%a may be written [f(G?)F-f(Gi)]/a.
That function f is <0 on[0,l] , 20 o0on[]l, += [, strictly decreasing on [0,1/e],
strictly increasing on [1/e, += [, and convex. From that short description we

may already state that (see Fig. 10.1)

-I/a
2
5] e

éj < e V2 o amisa<o.

or 5J.>1=>aAh/aa>0;

But it i1s easy to go further. We have indeed :
LEMMA 11.1V £ £, such that 0 < £, <&,

(@ g +g, =1 =, dng, - g >0;

() & + 5, < 2/e=E, fng, - & g <O .

IE £ = lfe, item a is obvious as f is strictly increasing on [1/e, += [.

If now £, < 1/e, we have £, In & < ~ E_ as f is convex and as 1im £ fn £ = 0
1 1 1 1

20
and(1/e)fn (1/e) = - 1/e. On the other hand, we have £ fn £ = £ - 1 for any &
(and so for 52) because f is convex and because f' (1) = 1. The summation of those

two inequalities yields 52 £n 52 - & 4£n El > gz +g] - 1 ; hence the result.
1

As to item (b) : developing f around its minimizer l/e yields
Efn Em=—=14 (E~1/s)2 /2 E

where E’is between 1/e and £. For any two values of E symmetric wrt. 1/e, the
one at the left of 1/e comsequently corresponds to a higher value of § £n &,
because I/E is higher. As f is decreasing on [0,1/e ] and increasing on

[1/e, += [, it is then clear that whatever £,
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0.1 0.1

Fig.10.2a. ke E_and [ N {0} = R = 8.Those properties Fig.10.2b. ke E_and [ N {0} « R = #.Those properties

: -1/ . -1/ 1/
eccur iff, (Dag¢1and & L $2e aor (i) a2z and ocour iff. a<1and 2e ¢ Bjk 5 (27e) 2

i
T.4a
ﬁij(Z.fe) _Here a=0.9 and Sjk=D.6. Here a=0.9 andﬁjk= DEB.
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(818

Fig. 10 2c. E=#& and dah/Bas D atk.Those Fig.10.2d. kgE ,TN{0} « R =24, and Dah/Das D

1/a
properties occur iff. (iDas 1 and (2/e) < Sjks' 1 at k. Those properties occur iff. (i) 1 <a< 1/In 2

= . 1/a -1/ "
nr(ii)lsaclz"‘anandZE”a <6jki1. and (2/e) <15J-k129 . or (iiJa>» 1/In2

1/a
Here a = 0.5 and Bjk= 0.85. and (27e) < Ejki 1. Here a =2 and Bjk= 0.93.
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Fig. 10.2e. kEE+ and E =[ =g Those properties
any occur only if (1 <¢a¢1/in2and
1/a -1/a "

1$5jk£(1-1fe) +e or (i) a2 1/ 2 and

-1/ 1/a =17a
S g 5.k<(1-1fe) +e ;

J
Here a=2" and ij= 1.32.
Another disposition, withE_=g#T and k EE+ ;

seems theoretically predictible under those conditions,

but we could not detect any instance of it.
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1/e - 51 =t = 1/e, we shall have f (52) w (51) < 0. 8o item (b) is proved.

2

Summarizing all those results, we have

(10.3) When h = .“with a> 0 and i € R&x R,

(a) if 8, > e L 5‘} + 8y =1, ash/sa> 0 ;

(b) if ajf + 5; < 2/e, 3ah/3a < 0.
So the change of Ah wrt. a appears related with the value of Ih. Let us
denote by E_ and E_, respectively, the sets of points of R _x R satisfying
the conditions of items a and b. It is then clear that E_C
{ 1 € R, x R; 9Ah/da <0 } C R, x R - E_. The threshold relations between

ij and a at which E_ or R, xR -E vanishes will be studied in Prop. 10.6.

Another important though obvious property is that

(10.4) The areas E_, R xR -E, and {£ € R, x R; 3ah/3a < 0 } are bounded.
The inclusion of Zk into the area 3Ah/3a < 0 is thus possible only if a < 1.

Some minor and easily proved properties help us to understand the examples of Fig.
10.2. When a < 1, E_ and R, xR = E+ are starshaped wrt. k. When a = 1,

E_ and R, * R - E, are convex, and E_ is starshaped wrt.o . The set 8Ah/3a = 0
is composed of the y-axis and of a path I' that either has 2 points of the

y-axis as extremities ; or meets it at o or mnowhere and is a loop ; or is empty.
The curve T meets the yvaxis where E_ and E, meet each other.

When the attractivity comstant Q and the distance exponent a are given, Prop.
10.3 allows us to determine ranges' of values of‘the intercentral distance 6jk for
which Zk is strongly increasing or decreasing wrt. a. We know from Prop. 10.2
that if (Bﬂh/aa)i=£ > 0, then Zk is strongly increasing wrt. a. Suppose that £
is at the right of centre k, the exponent a being > 1. The conditions of item
a in Prop. 10.3 may be expressed as : 6k£ = e_l/a or 6¥§ = [(1—Q)/2]1/a -
equivalently : (6ok + E_I/a, 0) € Zj Or(éok + [ (1-Q)/2] a, 0) € Zj. If we use
the last form of the conditions, we have to specify that a>1: if a were < 1,
their meaning would be reversed. We have also to notice that if Q =1, the

conditions are satisfied in their initial form. Finally, they may be rewritten :

Q =] ij + " Ha L

or

Q0 >0 6 +1 a-/217%1% - a2

and we get so the second inequality of the first item of the next proposition.
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12

Fig.10.3a.Evolution of kar{. a whenh = .a: Bjk =4 ,0Q = %, indicated values of a.
According to Prop. 10.64, Zk is strongly increasing in a for all values

of a, as Bjkz 2.
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0.01

Fig. 10.3b.

Evolution of kart. awhen h=? and & ik <Q <2/e, as anillustration of Prop. 10.1e and

Prop. 105 : & i =037, 0Q=D0.5, indicated values of a. Market area Zk is nonemtpty
iff. a either is > 1 or belongs 10 an interval which is approximately JO, 0.6971[. If il canbe

proved that each of the sets of values of a(0 < a < 1) where Zkis respectively increasing and

decreasing wrt. a is an intervyal, a recursive calculation based on Prop. 10.2 and on its proof
shows that Zk should be increasing wrt. a iff. a is -inside an interval 1# ]0,0.4251], and
decreasing wri.aiff.a 2 2" where a' # 0.4562. Less accurate (thus smaller) intervals can be

more easily computed on basis of Prop. 10.5. Notice that Zkis very small compared to |jk]

and that the left edge of the figure is not the y-axis.
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The other items are obtained similarly. 1In item b , we have added the condi-

. a
tion 8., 2 Q to ensure that Z

ik K be nonempty.

Notice also that explicit conditions on Q instead of ij
sidering only the conditions 6k£ = l/e or Gjr < I/e - so the first of the two

can be derived by con-

inequalities here above - or by approximating more complex conditions like the
second of those two inmequations. We have not mentioned such conditioms on Q
because they are necessarily less tight than those of Prop. 10.5, and because a

number of ways could be explored to find such conditioms.

(10.5) When h = .% and a > 0,

@ 4§ 9> 1, 00 4§ L) by > min {(%)”%(%—Q}”a, (Q+_21’/a+e“”“},
orn (i) a>1 and 6_“2 < max {(%2) Lia_ (]E—Ql 1/:1,
(Q+_£}T/a _ e-l/a ),

then Z,, 46 stnongly Lincreasing wit. a [and nonempty in (L) and (id])];

(b) if Q< 2/e,a€]0,][,and 5p € [ol/a {_;_+ %?/a 2 (_é_ _ %)I/a}

(which intenval is not empity),

then Z, 4is strnongly decreasing wit. a and nonempiy.

It appears from item a that for amy values of Q and a, there are values of ajk
for which Zk is. strongly increasing wrt.a and nonemptyj;and from item b, that there
are values of ij for which Zk is strongly decreasing wrt. a and nonempty,providad

that @< 2/e and 0 <a<1 .Similarly,we may try to eliminate Q from the conditions and
K and a for which Zk is strongly increasing wrt.a

and nonempty whatever Q, or for some values of Q, and what the values of 6jk

for which Zk is strongly decreasing wrt. a and nonempty for some values of Q

see if there are values of éj

are

(certainly not for all : see Prop. 10.3a). Rather than to elaborate on Prop.

10.5, it is easier to use Prop. 10.3 directly. Here are the results

(10.6) When h = % and a >0,

la) 4§ a <1 and 6, > 1, on if a> 1 and 8 > TRTRL

then Z}2 48 sthongly increasing wit. a ;
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(b) 44 a <1 and ija = Ze_l/a, on 4§ ¢ > 1, then fon some values of the
attractivity constant Q manket area Z b is nonempty and strnongly
Ancreasing wit., a ;

(¢) 44 a <1 and ‘th < [2/@]”“, then fon some values of the attrac-
tlvity constant Q marnket area Zh is nonempty and sthongly decrea-
én{:ﬂg wit, a;

(d) i a > 1, then Z!z is not decnreasing wil.a'.

Let us now see the proof. The minimum of Eh is necessarily to be found on the
x-axis. Take indeed any point 1 of the plane ; if we denote by i' its ortho-

gonal projection on the x-axis, we have 6ji' < §., and 6ki' < 8 so that

k!

Zhi' =< Ih. Moreover, if point i is on the x-axis at the right of centre k, we have

o < ; < e
dkk 0 Gk and ij 6j : so that th IZh. Every minimizer of Ih on R, x R

must thus belong to the segment [ok] . On that set, we have

aZh a-1

_ 1
( T = a (Gj 8

"
Vs
ajy = 0 .

= 0

When a < 1, we so have (BEh/Bx)a _ ; the minimum of Zh is found at centre k
,y=

y=0
and is 6§k . The items a and ¢ of Prop. 10.6 are then simply derived by comparison
of that value with the numbers 1 and 2/e quoted in Prop. 10.3. More precisely, re-
garding item c, the condition ensures that 3Ah/8a < 0 in a wvicinity of centre k, and
in particular at pointsof the x-axis on the right of k. Those points are the points
r for some values of Q, and Prop. 10.2b may be applied to them. As to item b : the
existence of points of Jok] for which 3Ah/%a > 0 (and thus allowing to use Prop.
10.2a) is guaranteed by Prop. 10.3 if 8y = é-]/a for some i € Jok ],or if Ih = 1

for some i € [ok ]. As the maximum of Zh on [ok ] 1is now at o, those conditions

reduce to : 5ok = e—]/a or 260k = 1 ; the second one, being stronger,is elimina-
ted.

When a > 1, ( QEhfax)a ol >0. The minimum of Ih now occurs at o and is 2 5:k 5
,y =
comparing it with 2/e yields item b. But the proof of item a is different. We have
2 -1/a, .
e )sl—e.,

to assign ij to such a range as to ensure that the sets Ck (

: =] s . ; T
1i sik < e /a }, and {i; th <1 } have an empty intersection. This is the case

: 3 a -1/a
if the second set itself is empty, 1e- if 26 . =1, or ﬁjk > 2x2 . Suppose
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now that the set is not empty. The intersection is still empty iff.

E*l/a

the point p or (& -
00 1/

,0), where the half-line ]-w, 6o Ix {0} crosses
the boundary of Ck(e_ a), verifies the inequality th = 1 and is on the right of
point o. It is clear indeed that if th <1, the intersection sought for contains
points at the right of p and is not empty ; conversely, if Ehp = 1, then Ih = 1

on the circle centred on j and passing through p. As that circle en-

compasses o which belongs to { i; Th < 1 } if that set is not empty (as Th is

now minimum at o), and as {i ; Th <1 } is convex (as Ih is now a convex function
of i), we have {i; th<1 } C E(j, p). As a(j,p) NG (k, p) = ¢, the proof is near-
ly complete -we have yet to express that p is on the right of o and that th = 1.

This yields
~1/a
e <
: Gok

(ij - e—l/a)a + 1/e = 1

or equivilently

-1/a
=
Sjk 2e
§. = (1-1/e)1/2 4 l/a
jk

The first inequality is implied by the second one and may thus be cancelled. Mo—

reover as (.)1/3 is here a concave function, we have
: 1/a
(1- i)lfa + (L)l/a 1 - 1:+ i -1/
e e < E €.y e pllE
2 2

so that the other sufficient condition for C(k,p) M { i; ZIh <1 } to be empty,i.e.,

-1/a ; : c
6jk = 2x2 , also dlsappear?. The proof of item a is thus complete.

Last, item d derives from the inexistence of point r when a > 1 and from

the boundedness of the area where 3Ah/%a < 0 (Prop. 10.4).

The results of this section will be completed in the next ome by approximate
ways to compute ]Zk] and ,Zj NR xR |, and in particular by an approximate

formula of |Zk] when a € 10,1[ (see Prop. 11.8).
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11. Some Limiting phoperties of market areas

In this section we have grouped together two types of limiting results. The
first one concerns parametrized families of transportation cost functioms. The
problem is here to find the limits the market areas tend toward when the parame-
ter tends toward values at which the function looses some of the properties defi-
ning a transportation cost function. The job is not done, of course, for any
family of transportation cost functioms ; we have chosen to examine what happens
when h(§) = Sa (with a > 0), if the distance exponent a tends towards 0 or +=.
However, the method could be applied to other functioms, particularly to

-5~ % (a > 0).

The second type of results is obtained by letting the intercentral distance Sjk
tend toward 0. A similar way is successfully followed in electricity to assess
the resulting field of two spatially close charges q and —q : this constitutes the
theory of dipoles. Our study shows that the quantity ij/Q, already pointed out
in section 6.2, is determining and comparable with the dipolar moment q 6jk of
electricity. This is why we call ij/Q a dicentral moment. The approach is valid
for any transportation cost function ; and such are some of the statements obtained.
But here again the main results are found when we restrict the study to the func-

tion h (§) = &%.

The section is thus focused on the monomial function 6%. The reason for this
lies not only in its nice mathematical properties. We are also naturally led
through this whole paper to deepen our knowledge of that family of tranmsportation
cost functions because two of the three 'classical' functioms (see Prop. 4.7)
namely § and 62, belong to that family. Moreover, section 11.1 shows that the

third classical function, £n 8, is somehow another member of the family.

The interest taken in the study of limiting properties is based, of course, on
the hope that they will still hold, more or less, in situations close to the Li=
miting ones. In both subsections 11.1 and 11.2, the appreciation of the suita-

bility of the limits of Z, as approximations of Zye brings us back to the issue

k
of the distance unit, already met in section 10.
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11.1 Extrheme shapes of marnket areas when h = ;a

Call Zk (i') the market area of centre k corresponding to the value of the attrac-

tivity constant Q for which a point i' € Zj N Zk ;i.e = Ahi" Denote by

o

-]

C (i", i') the interior of the disk C (1", i') ;i.e.,C (i", i") =

{i ; di" < 6i" i'}' "Then we have ’

(11.1) 1§ the thansportation costs are represented by h=.% with a > 0, then :

lim Zk iy = Ai,

a 0

—
>

L]
lim z (') = R, x R - C (j,i")

+

a > o

To simplify the statements we have not considered what happens at the boundary
Zj n Zy- With a stricter conception, the limit of Z, when a = += for instance
would be the area

R x R - {i; sj < 5ji. or (sj = 5ji' and 8 > aki.)}.

Similar remarks hold for Prop. 11.2 and 11.4.

Let us see the proof. The set Zk (1') corresponds to the inequality

a_.a, .a _ .a
5j 8 5ji, aki. 2 (40)

: . 1 2 1
if we divide both members by the exponent a, we see, using de 1'Hospital's

rule, that when a30, Z, (i') tends to be defined by

£n (Sj/ﬁk) = {n Céji./ﬁki,).

The proof of the first item 1s then obvious.

For the second item, we first consider a point i of Bf x R=-C (j,i'). The

largest of the four distances 6j, 6k’ Sji" and Gki' is then Gj. Dividing
(40) by Gj yields
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” N S B Ba® = : il 8%,
L= (8,169 > (85500 8% = (841/65)

All those three ratios being < 1, it is clear that point i1 must belong to Zk
when a becomes large enough. Dividing (40) by 6ji' similarly shows that every

point of C (j,i') must belong to Zj when a becomes large enddgh.

The limiting shapes obtained in Prop. 11.] can be derived in another
© 3
perspective. Denote by A (p) the area 6j/6k = p, and by Cj-(L) the inte-
rior of the disk of radius L, centred on j. A proof similar to that of

Prop. 11.1 shows the following :

(11.2) 1§ the transportation cost function is % with a > 0, then, » and L
being strnictly positive constants,

]

lim Z, = ACed) ,

k

a 3 0

Q/a = A

H
B
=]
™
i
s
X
b
I
s
~~
£
g

Interestingly, as we shall have the opportunity to recall in sectiom 11.2,
the first limit cannot be used as an approximation of Zk when the exponent a be-
comes close to zero. One might think indeed in that case, in view of Prop. 11.2,
that Zk should be well approximated by the Apollonian disk A(eq/a). The pro-

blem is that this disk 1is modified if we change the distance unit, as

(11.3) The disks A (QQ/CL) and Cj. (Q”a} are respectively Lnstable and stable
under a change in the distance unit.

Such a change means indeed that the new distances are v, where § represents
the previous distances and v is > 0. 1In order to keep the market areas unaltered,

we have then to replace Q by v? Q : hence the inequality (U(Sj)a = (u6k)a = UaQ
a
k k a

i : a

is equivalent to 6j -6
: . . -a a ,

at its value but the transportation cost function becomes v (.)° instead of .%;

# Q and still describes Z More exactly, Q remains
however, as we have pointed out in Prop. 4.1, this is mathematically equivalent to

‘ ; ; a Fopd ; a
keeping the old transportation cost function .° and modifying Q into uv=Q.
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Unfortunately the Inequality Gj/ék > 22 ig then transformed into
Uﬁj/uﬁk = ean/a: instead of A(eq/aj, we find the disk A(euaqia). Using A(eQ/a)
as an approximation of Zk would thus make little sense, unless the distance unit
were optimized according to some criterion. Anyway, Prop. 6.8 already contains

much information about the relations between market areas and Apollonian disks.

©
The difficulty disappears for the area Cj (

a Q)I/a

Ql/a) its inequality Gj = Ql/a

becomes uﬁj 2 (v , and remains thus unchanged. 1In this respect we may use
o

Ql/a

R4 x R - Cj (

) as an approximation of Zk for large values of the distance ex-
ponent. More precisely, we have here a lower bound on Zk, as 6? = Bi =Q=

52
3

centred on j and contained in Zj is C (j,¥),as shown by Prop. 6.7 ; and is itself

2 Q. This is certainly not the best bound of the type : the largest disk

outperformed by the osculating disk Cﬂ when a = 2 (Prop. 6.6 and 7.1). Never-

1/a

theless, the measure | Cj (Q )y n R, x R | provides us with a quickly computed

lower bound on IZj NR,x R |

le(Ql/a) N'R, x R|=max {0, QZ/a acos (5ok/Ql/a)—60k Qzla—égk}.

This allows us also to give a tentative answer to the question asked in Section

9 about the dependence of IZj NER xR | on the intercentral distance éjk.

When Cj(QI/a) n Iq_x R # ¢, ie. when Gok < Qlla, we have :
221c. @/% NnRr. x RI 5.
( J 1 § ik _ > 0.
2 Jo2/a - §2
¥y Q Q?/ Ok

So | C. (Qlla) N R, X R | is convex wrt. which will also be the case for the

6.
] ik’
dicentral approximation used in section 11.2, As to the dependence on @, we find

when Q > sz :

32 lc, (QI/a)ﬂB+><RI 2Q
( d ) = —I[@-2a) acos (& , /Q
2 ok

3Q2 8 @

1/a 1/a

) + cotg acos (ﬁok/ Q Y1,

which resembles Prop. 9.4 : there is some threshold value of Q, say Qt(a), such that

1 . : ;
Q, (a) > sz and that |Cj(Q /a) AR, x R | is convex wrt. Q if Q < Q_ (a). But it
is also strictly concave wrt. Q if Q > Qt (a), and Qt (2) is increasing wrt. a ;

Regarding the
1/a A

those two properties cannot be deduced from Prop. 9.4 regarding Zk'
dependence of le N R, x R|! on a (see Section 10), it is clear that |Cj(Q

R, x R | is increasing or decreasing in a according as Q is <1 or > 1.
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We have left aside the problem of the accuracy of those bounds or approximations.

They must certainly not be used, however,when a € 2, as the shape of Z

posite to that of R _x R- Cj (Ql/a) e

K is then op-

; and the measure le(Q )y N X, R | has
nothing to do with IZj M R, _x R| when a < 3, as this one is infinite according to
Prop. 9.1. Remember also that formula (38) can be used to produce bounds on | Z, |

k
and |Z, "R, x R|.
j +

In view of Prop. 11.1, the properties discovered for the transportation cost
: a i ; 3 .
function .” become very clear as linking in a continuous manner the four pivot cases

az 0, a=1, a=2, and a =~ +», Market area Zk is convex and Ly/Lx < 1, when

ag 0 as well as when a e 1 ; when a 2 L, Zk clearly opens itself towards the right,
rejecting point r to infinity. The demarcation line Zj n Zk has a vertical asymp-

tote parallel to the y-axis when a = 2 : it is Zj N Zk itself ; but it has also such

an asymptote, rejected to infinity, when a 2 1. The line Zj n Zk turns its conve-

xity at point £ to the left when a = 1 ; this is also true when a = 2 —in which
case it is also turned to the right, like lim (Z. N Zk). In projective geometry,

: 5 e T g o
parallel lines meet at infinity ; so thatawemmay consider that the y-axis is a

k

lim (Zj N Zk). And the properties of the disk C; defined in section 6.4
arte

are obvious : Ci 1s equal to Zk when a 2

shows that Ci 1s included in Zk, not in Zj ; when a = 2, Ci is equal to Zk ; when

kind of an asymptote of Zj M Z when a = 2 ; and it is also an asymptote of

0 ; when a = 1, the orientation of ijﬁzk

a g 2, to Zj ; and finally, when a = +w, Ci is either R_x R or C (j,i), the

union of which two sets constitutes Zj, precisely.

It may seem interesting to relate the present study to Section 10, in order to

have more information about the shape of Zk when a 2 0 and Q is maintained at some

fixed Value.‘ One could hope that Zk would tend towards the Apollomian disk
ae¥?y if a 2 0, when Z_~ {k} if a3 O,i.e.,when 0 <1 (see Prop. 10.1). 1In
some way this is true, of course, as the limit of A(eQ/a) is then {k} too. But if
we ask for instance whether the ratio [Zk A A{eQ/aﬂ/| A(eQ/a)meich is a measure
of the #nelative difference between Zk and A(eQ a), tends towards O in any case,
the answer is : mo. If it were true, the center c of A(eQ/a) would indeed belong

to Zk if the distance exponent a were small enough. Now, the abscissa of ¢ is

eZQ/a + ]

) & - W®& g
c ok *

2Q/a _ 1
e

so that it belongs to'zk-Zj TR,
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(ezq

2
-/ Q> Y -y s, 17
jk
if the inequality is reversed, ¢ € Z. - Zk. If we let a tend toward 0, the right-
hand member tends toward e2Q_ Consequently, if (ezQ - 1/qQ > ezQ, c € - Zj for

Z
o e ... 2Q of
all positive values of a smaller than some a > 0 ; if (e - 1)/ qg<e

»

c € Zj - Zk ¥ a €10,a]. Those conditions are respectively equivalent to Q < Q¥
and to Q > Q*, where Q* =~ 0.796812. It is thus not true that Zk would tend toward

A(eQ#a) vhatever Q when a o 0O and Q < 1. Of course this does not mean that more
positive statements cannot be found, but we have not thought it useful to carry

on with the investigation.

11.2 Dicentrnal approximation

We have already used the mean—value theorem to show that Ah = 2 x §. h'(gz)

jk

for some § € ]Sk,éj [. As the distance 60 is also between Gk and Bj’ and as

| Gj =" | < ﬁjk’ it seems reasonable to try 6, as an approximation of §. This

amounts to approximating Z. by the area

k
Iy 62> 0)=(i : i ' @ >q/s.
%k {i; 1"¥ o0 and 2 x 5jk h (60) Q}={i ; 1i#*o0 and h (60) cosQ_ Q/ij},

and similarly for Z. ,point o belonging now to #.; see Fig. l11.l1. The approximate
market area Zj is thus an increasing function of the ratio Sjk/Q.

Another way to introduce ER is to consider some strictly positive number p
and to let Q and ij tend toward zero simultameously while keeping the ratio

Sjk/Q equal to py. The distances §jand §, then tend toward 60, and so does E.

k
Calling Ek (u) the set

%k(u) = {i; i%¥#0 and 2 x h'(ﬁg) = 1/ul={i; 1i#o0 and h'(éo)costgjé Ll ¥
we consequently have :

(11.4) If§ u 48 some stnictly positive constant , 1lim Z = ZR(U)'
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05

1.5

Fig. 11.1a. Dicentral approximation of Fig. 5.3

with the same values of Q, Gik ,and a.




N

Fig. 11.1b.Dicentral approximation of Fig. 10.3a ; i.e., when h = .a, K =4/3, and for indicated
values of a. The result is here a bit disappointing : but, as the dicentral
approximation is obtained by letting Bjktend toward zero, it is clear that the

sufficient conditions of Prop. 10.6a cannot be met by the approximation.
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In particular when h = .2 the inequality of ER(U) is a % 62_2 = 1/u or

a 63_1 cos mo 2 1/u. A change in the distance unit (cf. section 11.1) trans-

- ¥ . : a-1 a ¥
forms the inequality of zk (ij/Q),l.e.,%k, into a(uao) = v Q/uﬁjk, which
defines the same area although the dicentral moment itself has become

Ul-a Sjk/Q. More generally :

(11.5) The area -Zh is stable unden a change in the distance unit Lf the transpor-
zation cost function h is % on -(.)"% with a>0, o £n (.).

From the viewpoint which has led us in section 1.l to eliminate the disk

£ 1/a

Q/a ; _
A(e™ ") and to accept R x R-C, (Q'7), that statement justifies the use of

J .
Ek as an approximation of Zk in the mentioned cases. The precision of the ap-
proximation will not be examined here, but could be approached by means of inequa-

lity (38).

We speak here about an approximation, not a lower or upper bound. When

h (8) = £n 6, for instance, Z is an Apollonian disk ; we then have x£=60kth (0/2)

and x_ = Sok/ th (Q/2), wherek'th' is the hyperbolic tangent. On the other hand,
%li{o} is a disk centred on the x—axis, and its circle passes through o and
through r' = (ij/Q,O). As X1 < x_, none of the two disks can contain the

other : Zk A (%k U {o})¥# ¢. When Q is high enough, we even have Xr.‘<x£.,amdzk ﬁgkfé.

The interest of replacing Zk by Ek is that the properties of %k are easier to
study than those of Zk’ whereas theyv should not differ much in view of Prop. 11.4.
As %k (n) is obtained by letting j and k tend towards o, the propositions concerning
centre k are to be modified accordingly. So we have in particular : If h is concave,
then : Ek (u) ¥ ¢ ¥ o belongs to the boundary of Zk (1). Another difference,
here from Prop. 8.6c, is that when h (§) = &, %k (y) is comvex but not strictly,

as zﬁ e (M %k (¢) degenerates in two straight open half-lines origirccing in o.

Two quantities at least are easy to compute with the dicentral approximation.

Here is the first omne :

(11.6) 1§ h o V. is stnictly concave on stnictly convex and £ € -Zj. (w) N2, () nR2
Zthen

y =V (ho/.)r~  (1/2xu) - x2.
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The second quantity is E} (qg, Q) (see section 9.2), here the distance Q)from o
to the point of Ej (w)y n %k () in the direction given by the angle @ . We ob-
viously have-% @%, Q) =h'" (1/u cos Q)), if h' is invertible. Hence we also have

a possible way to approximate the measures |Zk| or | Zj nR,* R :

(11.7) 1§ h &8 strnictly concave, | %, (u) | 48 given by Ioﬂfz{ h'*(1/u cosl%)]zdt%;
Af h 4s stnictly convex, that integral is | %j (u) "R xR

When h (§) = £n &, that formula leadsto IZkF = véﬁk / 402, which we may compare
with the measure of the area of the Apollonian disk Zk:lzk|= ﬂﬁ?k/45h2 G, where
'sh' is the hyperbolic sinus.In this case | Zki clearly works as an approximation
of | Zkl. If we now apply Prop. 11.7 when h (8) = Ga, we find that the integral
of Prop. 11.7 is

Jr'“-/ 2’

2/(1-a)
0 &% %

(a u cos ug)

When the exponent 2/(l-a) of the integrand is integer, the integral can he compu-

ted analytically ; a similar result also holds when h (§) = —6_3, and we find :

(11.8) (a) When h (8) = s%with a>0, L4 4on some p € N

; . » 9 = 2 (2p) !
(1) a= (p-1)/ p, then | Z (u]l = (au)P 7 1Zp) I .
) R 2 22P+I pl?
Zp,p2
e N B} 2p+1 2°Pp!
(L) a = (2p-1) / (2p+1), then] thgll = (ap)<rt pr+ T

(b) When h (8) = -1/8, | Z, (u]] = .
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So we ware in possession of an approximation of Izk|_ when h = .? if a = 172,
2/3, 3/4 ... or if a = 1/3, 3/5, 5/7 ... (Fig. 11.2). The formulas are proved
in Appendix 2,

It would certainly be interesting to deepen the study of the behaviour of

I%k (p)l wrt. a and p on the basis of Prop. 11.7 and 11.8 and to compare it

with the results of Section 10.

Another remarkable property :

(11.9) When h' 45 a continuous function on h=IR.- the atreas %h{u) and %.‘a (u')
are homothetic wat. o fon any u ,u' € R* iff. h (8) has the foam 8% on -57%
with a >0, on £n §.

The proof is in Appendix 3. In those cases, the 4hapes of %k (u) and %j (u) are
thus independent of the wvalue of p. When point i is a summit of Ek (1) or anm in-
flexion point of %j ) N % (u), the angle @ is consequently independent of the
dicentral moment u. This allows us to give a simple characterization of such
points, whereas it would be difficult, if not impossible, in the case of the
market areas themselves. Either by direct calculation or by taking the limit of

formulas met in section 7, we find when h (§) = g™

a-1 + tg? @,

G -
ax Ah (2-a) tg @,
(a=1) (tg? ©_ - a+l)
322 o
£ 2) i 2 3
X AR (2-a) 60 sin® @
The proof is in Appendix 4. Hence we easily deduce :

(11.10) When h (§) = &% :
(i) 4i440<a<1 :Z—h (u) has a unique summit s, and,tgtpo/_,’:ﬂ—a;

(id) 44 1 <a##12: J_—j- (w) N2 (u) N R2 has a unigque inglexion point &,

and %g @, = Va-T.

The unicity of the inflexion point is particularly interesting for we have fai-
led so far, regarding Zj N Zk, to prove it as well as to find any example with

more than one inflexion point.
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i 1.1 1.03 1.022 1.01
EXOV
.-‘,‘-
0.01 '
7
Q0 NRIEE "
0 1 #
Fig. 11.2a : for values of the dicentral moment smaller than | or close to 1 ;
3 25 2 1.5 1.4
£
12,001
1
O 3
0 1 ]

Fig. 11.2b: for values of the dicentral moment larger than 1.

Fig.11.2.Dependence of the superficies of the dicentral approximation of Zkon the distance exponent

a when the t.c.f.is 62, The approximate curves here above respect Prop. 11.8 and the
facis -which can be deduced from Prop. 11.7- that | Ek(D) | =0, that 2| Ek(u) | /pa—>0

when 230, and that |2 (W | = uz"(‘“")izkml. As confirmed by Prop. 11.7,
wheni?hlzk(u)l > 0ifpe! and >o0ifpu>1,
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To end this section, let us reexamine the dependence of the superficies of

%k on Q and 6jk' The convexity or concavity of the integral of Prop. 11.7 wrt. Q is

. ; =2 3 ; .
now directly related to that of the function h'"", As the first two derivatives of

h'"2 are
WA () 1= 2
h" ()
and thus
" ol n : 3 1 " 2
@2y [wr ()] = 2Lh (6; §h'™ (8] _ _86° (' ovI" (8%) ;
hn (6) h"3(6)

it is clear that when h is concave, h'~2is convex iffh'e/. is convex. The conditions

that h should be concave and h' convex which appear in Prop. 9.3 are thus sufficient for

)

h'“ to be a convex function. The relation with Prop. 9.4 is more difficult to appre-

ciate. If h is the power function Fand if we let ij

we reach the conclusion that |%j n Ia_ X R is concave in Q on the range [0, = [ for

tend toward zero in Prop. 9.4,

all a # 4. The direct application of Prop. 11.7 shows, however, that it is true for
all a > 3, as the function h' o V. is then convex iff. 0 < a <1 or a = 3 (but the va-
lue 3 isexcluded by Prop. 9.1b). This is probably an indication that a better state-

ment than Prop. 9.4 could be found.

As to the dependence of the integral of Prop. 11.7 on ij, we similarly have

2 § h'? (§)
" (6)

[h~2¢1/.) 1" [1/0' (8) ] = -

and thus 2

on'> (8) [h' (&) h" (6) + 2 6 h"” (8) = & h'(8) h'" (8)]

[h'2¢1/.) 1"[1/m' (8)] = 3
n3 (8)

It seems difficult to derive any simple law from the latter expression, but it is good
to write it down. Who knows ? Nevertheless we may, instead of looking for general

statements, examine a particular transportation cost function. When h is the power

function Sa, we have h"z (1/8) = (a£)2/(1-a), which expression is convex in £ for
all a > 0, except when a = 1. The measure |%k| is thus convex in ij if 0 < a < 1,
and I%j n ]R+ x IR l is also convex:hlﬁjk if a > 3 (see Prop. 9.1b). The complemen-

tarity observed between Prop. 9.3 and 9.4 thus disappears in the case of Sjk'
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12. Relaxation of the assumpiions about ihe transporntation cost function h

Three assumptions have been made about h since the beginning of this paper :

that h should be increasing, without any plateau (i.e., anv maximal open inter-
val on which h is constant), and continuous. From a mathematical standpoint

those limitations are a bit frustrating. This is also true for the geographer.
The possibility of finding more pleasant to make a short trip than to stay at
home, for instance, would deny the first of those properties. The comparison with
the Manhattan.distance case, on the other hand, rises this question : is it impos—
sible for the demarcation line to degenerate into a demarcation area ? The answer
is that it is indeed possible under some conditions when function h possesses
plateaux. This seems a reason good enough to put that hypothesis under study.
Finally, it will be seen that the release of the continuity assumption is com-
plementary of that latter point, and so finds here its place. Of course, the
present section does not aim at building a detailed theory, but rather at delinea-
ting the issues through some examples. Only the degeneracy of the demarcation

line will be studied formally.
12.1 Incheasingneds

As we now assume that h is not increasing, let us first consider the opposite

case,i.e.,when h is strictly decreasing. As the inequality of Z may be writ-

k
ten

(-h) = ¢-h) > q,

the market areas are symmetric wrt. the y-axis of what they would be if the
so-called transportation cost function were -h instead of h. If h (8)

is equal to -8 for instance, the market area Z is the part of the plane at

k
the left of the left bramch of a hyperbola having j and k as foci. Generally

speaking, as the function ~h is strictly increasing, all the preceding sections
can be used mutatis mutandis to describe the case of a continuous and strictly

decreasing function h.
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4
h(&)

Fig. 12.1a. A nonmonotonic t.c.f. : max {- &, & - 1.5}
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06
0.1

0.1

Fig.12.1b. Market areas generated by the t.c.f.
max {- 8, 6§ =15} when ij= 1, for indicated

yalues of Q.
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When function h is increasing on some intervals and decreasing on others,
we may expect the pattern of market areas to be intermediate between the two
genuine cases studied so far. Let us illustrate this by a little example.
Suppose that the consumers find it more pleasant to make a short trip, up to
a distance &*, than to stay at home if they can. More precisely, let us as-

sume that, V6,
h(8) = max {- &, & - &% }.

Consequently, h (0) = 0; then the perceived disutility h (8) decreases and is
minimal when & = 6*/2; thereafter it increases again and, when & becomes > &%,
displacement is considered less useful than not moving. The following results
are not difficult to derive under that hypothesis; see Fig. 12.1. If Q > éjk’
everybody goes to centre j : Z, = ¢ = If §*¥& 6jk and Q < 6jk- §*, Z, is not
empty but is just as it would be if h (§) were simply defined as 6. If 6* < 26jk

and lajk -6 | < Q= ﬁjk’ Zk is the hyperbolic area Gj - 6k 2 (, minus the
ellipse ﬁj + 8 < Q +6*, Now if Q < min {6jk, &F = ajk} -which implies that

&* >’6jk—, market area Z, is bipartite, its two unipartite subsets being separa-

k

ted by the y—axis. The subset Zi of Zk at the right of that axis is as Zk in the

preceding case, whereas the subset Zi of Zk at the left of that axis is the inter-

section of the hyperbolic area §, - Gj 2 Q (which is symmetric of the previous omne)

k
and the ellipse Gj + 6k < 6 - Q.

Particularly interesting are the facts that we have then both k € Zj and j € Zk,

and that Zk is not arcwise conmected. This is an illustration of a general proper-

ty that only relies on the assumption that h is a function,i.e., that to every

distance § corresponds exactly one value h (8)

(12.1) 1§ the trhansportation cost nelation h {5 a function and 4§ a point
(x, y) € Zh, then (-x,y) ¢ Zfz ‘

The proof is immediate : Ah = =Ah

(x,y)

, so that

(-%,y)

(x,y) € 2, = Ah(x’y) = Q*’Ah(_x,y) S-Q = (=x,y) € 2.

In particular, Prop. 12.1 implies that the y-axis is contained in the symmetric

difference Zj A Z, , and that the pair {j,k} is not contained in z, -
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h(§&) 1

Fig. 12.2a. A noncontinuous t.c.f. : h(8) is & when 6 <0.8,and 6§ + 0.2 when § 20.8.
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12.2  Continuity

The simplest discontinuity happens when h is not continuous at 0 lato sensu

(see Section 3). The only points where this may have some effect are the cen-—

tres j and k, as we have there 6j = 0 and Gk = 0, respectively. Two situations

may be found, according to whether h (0) is strictly larger than lim h (8) or
=0

strictly smaller. The first one could model for instance a situation similar

to that used as an example in the preceding section 12.1 ; the second one may

express the presence of indivisibilities in transportation. ( In both cases the

discontinuity of h when &=0 may possibly result from the fact that the centres

are described as dimensionless points for mathematical convenience, so that h (0)

might represent the average transportation cost inside a centre).

We may compare the market areas with what they become when function h is re-

placed by h*, defined as h*(§) = h (8§)if 8 > 0 and h* (0) = 1im h (&), if that

e

limit exists. When h (0) > h*(0), as Ahk < Ah;'(ie. Ahj > Ah?) we cam see

that k € Zk = k. € Zz and that j € Zj = j € Z*, the converses being not neces-
sarily true. Even if h* is concave and strictly increasing it may so happen that
k € Zj and j € Zk' When h (0) < b*(0), similarly, k € ZE == k€ Zk and j EZ? =
j € Zj: indivisibilities in transportation reinforce the belonging of the cen-
tres to their own market area. If h* is strictly increasing, we consequently

have that j € Zj; if moreover h* is concave, k € Z, -but Prop. 6.3b applies here

k
directly to function h, because h is concave on R, and because the proof of

Prop. 6.3b does not require the continuity of h (nor its strict monotonicity).

When function h has a discontinuity elsewhere than at 0, the shape of the
market areas may be modified. Such a discontinuity seems likely to happen eg.
if some technical constraint obliges to shift from a transportation mode to a
more expensive one beyond some threshold distance. Let us study the following
example : h (§) = 8 if 6§ < 6%, and h (8) = 6 + b if 6 = &% (Fig.12.2). 1Instead
of describing only the indifference line Zj n Zk’ we shall consider the common
boundary of Zj and Z, > which includis Zj~h Z,. It can easily be seen that this
boundary is the indifferense line Zj n Zk’ where function h is replaced by the
following binary relation h :

va#a*:a:ﬁg « t =nh(§) ,

~

§* h & < £ E[8%, 6*+b].
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hes) 4

Fig. 12.3a. A t.c.f. with one plateau : min {6, max{1.4, 5 -0.3}}.
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0 0.35

l
Fig. 12.3b. Market areas generated by the t.c.f
min {§, max{1.4,8 -0.3}} when Bjk= 1, for
indicated values of Q. Two-dimensional subsets

appear in the indifference zone if O = 0. The market
area of centre k is partly one-dimensional if Q =0.7,

and completeiy ifQ = 1.
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Suppose that point £, the point of Z; N Z, closest to j and k, is such that

k

5jﬂ,< §*. Starting from that point we move inside Ej N Z_ above the x-axis so
as to 1increase Gj and &, . At the beginning, Ej n Zy coincides with the hyper-—

k
bola Gj = dk = Q. When Gj reaches &%, Gj stops increasing, contrarily to 5k'
This means that we are now progressing anticlockwise on a circle of radius
§* and centred on j. Thereafter we have again to increase Sj; if 6k has not yet

reached &%, as in Fig. 12.2b (Q = 0'4)’6k increases too and we are on the hyperbola

5j - Sk =Q - b. Then ék reaches &% and stops, whereas Gj still increases : we
are on a circle centred on k, with radius 6*. Finally 6j and 6, increase

simultaneously again and we are back to the first hyperbola.

Although this has not been discussed, as being of minor interest, Fig.12.2b makes
a distinction betwen Ej N Ek and Zj n Zy - Of course nothing special would have
happened if Gkﬂ had been = §&* : Zj n Zk would have been equal to the hyperbola
Sj - 6k= Q. It can be deduced from the triangular inequations (9) that the discon-
tinuity affects the market areas iff. b < 6jk < 28*% + b. This is perhaps the
first point to retain from this example : discontinuities do not necessarily modify
the shape of market areas. The second one is that their possible effect, if

function h is increasing, is to produce excrescences on market area Zk.
12.3 Absence of plateaux

Let us first consider an example where function h has a single plateau (Fig.l12.3) :

h (8§) =6 if & < 5(1)
=S S ORI ¢
= 6(1) + & —6(2) if & = 6(2) 5

A reasoning similar to that hold in Section 12.2 shows that the presence of a
plateau has somevwhat the effect of carving market area Zk if function h is in-
creasing. The cleft may be deep enough to cut off a piece of Zk' Also, the
plateau does not necessarily bear an effect on Zk' In this particular problem

it could be shown that the phenomenon appears iff. Q < min {Sjk, 6(1),

§ ..} or 8. - 28

* 8y T S5k ik 2)

& £ B .
1 s

We now come to the issue of the possible total or partial degeneracy of
Zj N Zk into an area. Such an areal degeneracy means that some vicinity of
some point i' of Zj N Zk is contained in Zj N Z . Comsequently it must be

k
possible to let Gj vary in a vicinity of Gji' while keeping Gk constant, without
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Fig.12.4 a and b. If the t.c.f. presents two plateaux, the indifference zone may be

partly two-dimensional when Q = 0 and when Q is equal the difference Q% between the

values taken by the t.c.f. on the plateaux. That property is studied here in the coordinates

(5j » 8,) for the case depicted in Fig. 12.4c.
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i
g

| 1

Fig.12.4c. Market areas generated by the t.c.f.
min {6 ,max {0.7,6 - 0.1}, max {1, 6 -0 .5}},
which has two plateaux ; Bjk = 1, indicated

values of Q. The indifference zone is partly

two-dimensional when Q = 0 and whenQ =0.3.
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modifying Ah. This means that h is constant in that vicinity of Gji,. Simi-

larly h must be constant in a vicinity of § Function h thus has at least

ki'®
two plateaux if Q ¥0, or one if Q = 0.

Suppose mow conversely that h possesses at least two plateaux ]6(1), 6(2)[
and ] 6(3), 6(4) [ , h being higher on the second plateau than on the first one
(we allow here h to be discontinuous, non-increasing or even not to be a function).
This will entail an areal degeneracy of Zj n Zk iff. two conditions are
verified : 1° that Q be precisely equal to the difference in h between the two pla-
teaux ; and 2° that there be some Sk in ] 6(]), 6(2) [ and some Sj in
] 6(3), 6(4) [ verifying the strict triangular inequalities corresponding to (9).
Eliminating Sk and Sj,or considering the issue in the coordinates (Gj,é )} and
expressing that the rectangle ]5(3), 6(4) [ x ] 6(1), 6(2) [ is not completely con-
tained in one of the three regions I, II and III (see Fig.l2.4a), we find what fol-

lows

(12.2) The Ainterior [Zj n Zh)" 04 the indifference zone 4o not emply

if§. the transportation cosi nelation h possesses at Least

two plateaux ]6 ‘5(2) [ and ] 6(5), 6(4] [ and these inequa-

(1)’
Lities ane satisfdied s

(1) (4) ik
6(3) - 5(2) < 5Jk
6(2) + 6(4) > ng

The zone Zj. A 2y then contains the ?2-dimensional set of points

[C; (6(4))_ Cj(sl-g:'} ]ﬂ [Cf:, (6{2]) - Cf?. (6{]}) ]-

0f course, such a degeneracy essentially means a discontinuity in the

evolution of Zj and Zk wrt.Q, as Z. is decreasing wrt. Q whatever the properties

k
" of h. Fig.12.4 displays a case of partial areal degeneracy of Zj n Zk, when h

is the identity function with insertion of two plateaux.

Even with such a simple function the set Zj n Zk may become wholly 2-dimensional
in three ways (Fig.l12.5 ); the reason for this immediately appears if we look at
the problem through the coordinates (éj,ﬁk) (Fig.12.6 ). This result can be ge-

neralized as follows
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Fig. 12.5. If the t.c.f. is endowed with two plaieaux, the indifference zone may have in
three different ways a two-dimensional arcwise connected component when
Q is equal to the difference between the values taken by the t.c.f. on the two
plateaux. The indifference zone may also have two-dimensional subsets when

0 = 0, but is then necessarily arcwise connected.

| |

Fig. 12.5a.  Market areas generated by the t.c.f. Fig. 12.5b.  Market areas generated by the t.c.f.
max { min {§,0.1}, min{6§~0.5,0.7}, &-0.95} max { min {6, 0.2}, min{6-0.15,03 }, 6-1.3}
if 84,71, for indicated values of 0. When Q0 =05, if ﬁjk=1 , for indicated values of Q. ‘whenQ=0.1,

the indifference zone has a crescent-shaped arcwise the indifference zone has a crown-shaped arcwise

connected compeonent. connected component.
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Fig.12.5c. Market areas generated by the t.c.f.
max { min {6,0.2}, min {6 -0.15, 0.6},6- 0.8}
if Bjk=‘| , for indicated values of Q. WhenQ =04,

the indifference zone has an arcwise connected

component which is a crescent with a hole.
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Fig. 12.6. The indifference zones of Fig. 12.5 as they appear in coordinates (SJ- ;6.0

L ) /
& 4 # 06 /

jk

Siinhnn
355 24etels

SR

Fig. 12.6a. The indifference zones of Fig. 12.5a as seen through coordinates (Gj,Sk ).

% T g 0?1/ 4

S

Fig.12.6b. The indifference zones of Fig. 12.5b as seen through coordinates (Ej,Bk).
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Fig. 13.1. Three Cartesian ovals seen through coordinates (8 ; ,‘ﬁkJ. The transportation rate
rJ. is equal to 2, and Sjk =1,

(a)rk=1,0=0.5;(bjrk=1.2,0=2.4;(c) ro=21,0=18
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(12.3) When the transporntation cost nelation h is an increasing
function having at Least two plateaux | 811)» 912 I and 1 837 5(4]]'&1!'1
5(2) < 6[3), Zhe area

[CJ:'{‘SM)) _ Cj-l-é(g-)” npce, {5(”) - Cp (6”]] ]

i8 a 2-dimensional arcwise connected component of the demarcation area

Zj n.Z& A4 6[4) - 6(2) & 6_{!?. and one of those conditions is satisfied :

(1) 8 -8 > 8. and & -8 8

& ;
(3) (1) jk (3) (2) gk 2

or (i1) 6(3) + 5(1) < 6jk F

14 (L) holds, that component L8 a crescent ;

Af (LL) holds and 811y > 0,4t encompasses an arcwise connected circular compo-
nent of Z,, and 45 eitner a crescent with a holfe on a alng according as



135
13. Descantes'ovals

As we have shown in Section 2.2, the study of Descartes'ovals has its place in

the present work. We shall not use, however, the transformations that allow us to
fit them into our model. We shall rather examine them directly and briefly

from various points of view adopted in Sectioms 5, 6 and 8. The arguments are
given in a condensed style, as they more or less repeat developments already

met in those sections. We also seize this opportunity to come back to the

proofs of some properties in a different but equally valid perspective.

13.1 Dipolar and squaned dipolar coordinates

Let us look at Fig.l13.lwhich displays in the dipolar coordinates (Gj, 6k) some
instances of Cartesian ovals. Each of those ovals is the limit between an

area Zk, defined by the inequality

(where rj #* rk), and the corresponding area Zj. Reasoning as we have done in

Sections 5.5. and 6.4, we see these four properties appear :

(13.1) Zj. and Zfa ane arcwise connected and, when bounded, simply connected.
(13.7) Zj is bounded < zfa 45 not bounded ¢ ILJ. > ny, s and zfa A (&&/nj-) ;
(13.3) (a) Zj L4 not empily ;

() Z, is empty L84-2 > )Lj 5jh ({e. k €& Zh) and z‘Lj. < .
(13.4) (a) j €7,

(b) k€ Zk L44.Q < ij 63,.& ; R € Zh +¢ if4. > sz.éj.h and n_{))Lh ;

(c) oEZk = Q<nj, 50[3 and J‘Lj->flh.

Those properties are obvious once it has been noticed that the slope of the

l_ - straight line Zj Nz

R is the ratio rj/rk in the coordinates (Gj,ék) :

k
except for the second part of Prop. 13.2, which is simply deduced from the

definition of Zk and from the fact that Q > 0.
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This dipolar representation allows a first classification of Descartes'
ovals into four types :

i o s Z. 1 -Z. 3 15k
(1) 9 < rj ﬁjk and rJ T ZJ is bounded, k € Zk ZJ ; and o € ZJ iff

> = :
Q (rj rk) Gok )

(i) o= rjﬁ. and r. < ¥, @ Zk is bounded, k € Z

jk 35 T TZys0 € Ly

k

1il Zr.6. and r. > r., : Z. is bounded k] C2
(iii) Q 1%k : k : ou » [ik] :

i = r. 8, : : =¢ .
(iv) Q T %k and T, < r, L ¢

Consider now the coordinates (6?, ﬁi) (Fig. 13.2). As the equation of Zj Nz
may be written

62 = (r2 62 + Q2 - 2Qr. v82)/r?
K v o Q QJ 3)/1(’

we see that 5& is a strictly convex function of 6? on that curve, the slope of

which is, wrt. (6%, ﬁi)

2
( Bﬁk ) } I‘j dk
362 8
1)

Ah Tk

As we have mentioned in Section 6.4, the disk Ci at any point i € Zj nz,

then contains Zj when that ratio is > 1, or is contained in Zk when it is < 1.

Market area Zj is bounded, of course, in the first case ; conversely Zk is boun-
ded iff. the slope (3 62 / 3 sﬁ) is <1 for any i of Z; N Z
is >1 at the point of Zj Nz

AR K Also, if that slope

i closest to centres j and k and that we shall call

£, then it is >1 too at any other point of Zj N Zk. Consequently, the situation

where Z. C C, Vi€ Z. N Z  and that where C. C Z Vi€ Z. N Z_ are easily charac-
] 1 i k 1 k ] k

terized

(13.5) (a) I4 g < ny, then C,C Z,, Vi€ Zs 07y 3
) 14 nj. > ny, and Q> {}Liﬂlh.] 5ﬂz [ Le. A{fnj./fnh] Nz, =9,o0n A4 as > ny, and

Q< [ij, = ] ‘ija[ ie. (0, 6., Y3 ) € zj., which point 45 the summit

of the equilateral triangle having [ k] as basis i.e., Alr /n,l0 201,
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2 § 2
62 j
Fig. 13 .2a. The Cartesian ovals of Fig. 13.1, now seen through coordinates (sz , 6 i 2

ik

Fig. 13.2b. The same figure with another scale. The cause of the nonconvexity of Zj
in (b) can be clearly seen : the slope of the oval in those coordinates is

< 1 at its intersection with the (real) x-axis, and becomes > 1 farther.
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Item (a) is obvious, as Prop. 13.2 tells us that Zk is bounded iff. rj < Tpe
As to item (b), we have to make a distinction between two cases : Q > rj 6jk
(or k € Zk) and Q < rj ij (k ¢ Zj). Point £ can indeed be determined by

: A ; " _ v ]
the equation of Zj Zk and by the equality Gjﬂ Skﬂ 6. 1in the first case or

jk
., + & = i, 1 . iti . > .
5L Kl 6Jk in the second The condition rJ 6kﬂ Ty 6}2 soc becomes
< = . ~
qQ > ij (rj + rk) or Q ij (rj rk), respectively ; hence the result.

The conditions Q < (rj - rk) ij and A (rj/rk) n Zj = ¢ are equivalent because
the value of Ah at the point p of the boundary of that Apollonian ‘disk which
; : e . - <
also belongs to [jk ] is (rj rk) ij. Consequently, 1if (rj rk) ij Q,
then p € A (r./x,) NZ., F¥¢. If (r. -r §.,>Q, then p € Z. ; as is the
PEA (/) NI, 2; = B 8,50 pEZy;asy
point of A (rj/rk) closest to j, the circle of A (rj/rk) ~on which
Ah = Sj(r§ - ri)/rj- does mot intersect Zj ; and as j € Zj - A (rj/rk) [Prop.13.4]
and k € A (rj/rk), none of the sets Z. and A (rj/rk) contains the other : we
have thus Z. N A (r_/rk) = ¢. The equivalence between 'Q > éjk(rj + rk)' and
'A(rj/rk) n Zk =¢" is similar.
As we have seen in Section 6.4, Prop. 13.5 has remarkable consequences. In par-

. . 3 < > i % . i = .+ §.
ticular : if T r, ., we have L Ly ; if T r, and if Q (rJ rk) oy

< (r. -1r.) §.., Z. is convex and its projections L_. and L_. on the axes of x
] k® ik’ ] i X] i
and y are such that L_, < L_, (see Fig. 13.3a).
X] ¥l
When we face the situation where rj > T

K and (rj - rk) 5jk < Q <(rj+rk)6jk,

it is easy to prove that Z. is not spinmed by the x-axis
by considering the intersection of Z, with vertical lines,i.e., straight lines

with slope 1 in the coordinates (6%, 5&). Although Zj is thus mnot convex, some-—

thing remains of Prop. 13.5. If we define the X-hull of any set E as

x-hull (E) = {1 ; 31i"€ E : 1€ {i‘wx(i') 11,

where m (i') is the orthogonal projection of i' on the x-axis, the coordinates

X
(6%, Si) show that, whatever the value of Q,

(13.6) Fon any L being at the same time on the boundaries o4 Zj and of L4
x-hutl, we have, Lf C, exists at L and o, > n,, x-hull (Z.lc'Cf.
L k| k g <

It is then clear that, when rj > T the %=hull of Zj is convex even if Zj is not,
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Fig. 12.3a. The Cartesian ovals (a)and(b)of Fig. 13.1

and 13.2. Both enclose the corresponding market

areas Zj , which are more extended in the y- than in

the x-direction.
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Fig. 13.3b. The Cartesian oval (¢) of Fig. 13.1and 13.2. It encloses market area ¢ K’
which is more extended in the x- than in the y-direction.

The same market areas appear with the t.c.f. In(5§+18) if Q = In 1.0S.
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and that the ratio Lyj/ij’ which is the same for Zj and its x-=hull, remains > l.

13.2 Convexity and stanshapedness

We are already able to deduce from Prop. 8.6b and from the discussion about
Prop. 13.5 the conditions under which Zj is convex when r. > T We now

venture into the study of the convexity of Zk when T >'rj (Fig. 13.4). It is
perfectly possible, in the case of Descartes' ovals, to express |y| as a func-
tion of x. But that expression and its first and second derivatives are so
intricate that it seems preferable to follow another and certainly more ins-
tructive way.

is

Considering Z "

in the coordinates (82, 62) shows that, r, being > r,, Z
k ] k k j
spined by the x—-axis. As it is also symmetric wrt. that axis, its convexity

is thus equivalent to that of Z N R,*x R, above the x-axis. That last

property might result from the Eoncavity of Ah wrt. (x,y) above the x-axis.
That concavity obtains if, for any point v of the x—axis and on any half-line
originating in v, we have Bzﬂh./aﬁi < 0. Because of its continuity, Ah is then
also concave wrt. x on all horizontal lines. Generalizing the method used

for the study of radial variations of Ah centred on the points k and o in
Sections 5.2 and 9, we define for any point v of the x—-axis and any point i of

the plane the two angles

v |

ij = | P ™ wj | | it
by =lo,—o | =]xiv].
Whatever the position of v, this implies that (BGJ./BGV)Lp = cos wjv and that
v
(Béklaﬁv)mv = cos ¥, . Hence
3Ah _ _
( Y ) = rj‘cos wjv T, cOos wkv " (41)
,v(pv

. . . s 2 = gl 2 2
Like in Section 9.2, we have (3 6j/86 V)wv sin ¢jv/6j and (3 ak/aav)mv
sin? wkv /Gk. On the other hand, the following trigonometric relatioms hold :
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3
2 2
Al rjsjv/rkakv)

.-.....-—--'_._.-.._..'.

Fig. 13.4a. A point ¥ for which sh is concave over DMZ ,for any straight half-line D

kl

e 0 : 3 3
originating in v. The area A’ is the disk A( rksjr /r}.Skr D

r.=1,r

; =15.6,=2,x =27, 0=12.

A(rj frk)

- b s o — ——

i 5 B

i

Fig. 13.4b. A point v for which ah is quasi-concave on any straight half-line D

originating in v. Here X,= 0.42; the other data are as in Fig. 13 .4a.

Fig.13.4. Proof of Prop. 13.7a : Zkis convex when r-j <ry-
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sin . sin @ sin ¥ sin @
- Y . W kv . a5

6jv 6j Gkv Gk

We consequently obtain that

(azah> rj sin? w'v T, sin? wkv
I B SR .
2
BSV @, Gj Gk
§2 r, &2
. o J Iv k "kv ) gin? wv . (43)
3 3
Sj ék

3
2 2 . g . . 2 2 ; .
So that (3 Ah/BSV)wv is < 0 inside A(Vrj 6jv/rk5kv)’ and = 0. outside.
In particular, v itself lies in that area if it belongs to A (rj/rk), which

contains Rq_x R as Ij < -

It is thus clear that we cannot require Ah to be concave everywhere above the
x—axis. But is it possible that Ah be concave over Zk at least ? It appears
from the coordinates (Sj, Gk) that the smallest Apollonian disk  containing
Zk is Ar’ ie. A(Sjr/ﬁkr), r being the rlghtmostaelement of Zk on the x-axis.

So we just have to manage to include A_ into A(Vr.82 [x 82 ) ;: this is the
T j jv Tkkv

; $ Sy e B2 Jw B2 . Sm LEEw bu ovaside d (Ve B8 TolBX . ubd
case iff. (Gjr/akr) rjﬁj [E. 8 ie. iff.v is outside A (/rkﬁjr/rjskr), which

v "k kv’
is an Apollonian disk , as T, >-rj and S.r >-6kr. So that we cannot have Ah
concave oOver Zk : when v 1s 1nside A ( rk Gjr/rj ékr)’ we must find something else.

Before coming to this, notice an important peint : r itself obviously lies

outside the disk , so that Zk is starshaped wrt. r.

We have so far considered only the second derivative of Ah wrt. 6k; let us
return to the first one. According to (41), a sufficient condition for it
<
% and ll)kv ]
m/2. The second condition is satisfied iff. i is outside the disk

< 0 i < = ie. < 4.
to be 0 is that cos wjv cos wkv and cos wkv 0, 1e ka wJ

Cl[(v + k)/2,k] ('outside'meaning of course: 'in R? minus the interior of').

When v belongs to [ jk ], the first condition is equivalent to sin wkv <

sin wjv’ for we have here wjv + wkv < 7 ; (42) shows that it is also equivalent
< ’ . . . .

to Gjlﬁk Sjvlékv,l.e.,l is outside A . As C [ (v + k)/2,k] isC A because

v € [jk] , we are left with this : (E).'_\.h/?EHSV)Lp is < 0 outside Av' Let us now
v
restrict the study to [ jk] N A(rj/rk), which includes [ ok] We have just seen that
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3
. . . / 2 2 2 2 <
v is outside A(rj/rk) 1EE. v i€ A [ rjajv/rkékv)’ where (3 Ah/aﬁv)wv 0.
If that last area contains itself Av’ outside which (aah/aav)w <0, Tt aE

clear that Ah will be quasi-concave wrt. Sv on any direction vwv ; 1f we
start from v, Ah will indeed be first concave, then decreasing. This will
thus be the case if Sjv/ﬁkv-P 3?;5?;7;;35; ; which boils down to 6jv/6kv P
rj/rk, ie. again to : v € A(rj/rk). So we see that Ah is quasi-concave wrt.é?v
on all the half-lines originating at v, if v € [jk] N A (rj/rk). In parti-
cular, as [ok] is a part of that segment, Zk is starshaped wrt. k and wrt. £.

The starshapedness of Z wrt. £ and r entails that it is starshaped wrt.[ £r].

Suppose indeed that 1 beloﬁgs to Zk; then [£i] C Zk ; and, due to the starsha-
pedness wrt. r, the whole triangle formed by i, £, and r, is a part of Zk.
This fills the last gap in our demonstration. Let us summarize the essence

of our information. Calling w the extreme left point of A (Jrkﬁgr/rjﬁﬁr)’

we have seen that, v being a point of the x-axis and D being any half-line

above the x-axis,originating at v :

- if v is at the left of w or at the right of r, Ah is concave wrt. Gv
3

n Jr . 52 2 s N .

on the range D N A ( rjsjv/rkékv)’ that includes D Zk,

- if v € [wl] , Ah is quasi-concave wrt. Gv on D ;

- if v € [Lr] , Z, is starshaped wrt. GV.

k

So that if il and 12 belong to Zk

x—axis with the straight line (iliz) has anyway some property that shows that
1.1 (2=
[4,5,1 £ &

for continuity reasons. The area Zk r1]Ri is thus convex ; and so is Zk itself,

n Ei , the intersection point v of the
-unless (iliz) is horizontal, but that inclusion remains true
as it is symmetric wrt. the x—axis and spined by it. The transportation cost
difference Ah is comsequently quasi-concave on the area where it is = O,i.e.,
on the Apollonian disk A (rk/rj). Furthermore, it results from our study of

(Bzﬁhfaég)@ that Ah cannot remain constant on any straight segment, except

perhaps when sin g, = 0. But it is easily deduced from the formula

w‘ = T lad 6 = T CcOos
=/ 4 =68 0 k P

that Ah is not constant on any segment of the x—axis, mnor of any horizontal
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line. Market area Z, is thus strictly convex [ Fig. 13.3b ]. Here is now the

k
proposition :

(13.7) (a) Manrket area Z’2 A8 convex A44. )Lj- < Ay, s

(b) Manket area ZJ, i convex L. ij. > n, ana @ = M.Jf*’ n‘,a} 6ﬂ2

[ £e. A(nj./nhl c Zj Ty
on 1 > ny, and Q < (n}—nfa) Sk [ie. (C,8,, V3 ) € 1,,4e.

A (nj./th [ Zhl ,

(c) Market area Z, (resp. Zj.) 48 convex L4f. stnictly convex,

As we have seen with Prop. 13.6,some interesting properties of Z. remain
valid even when Zj is not convex. In the next propositiom, we recail the
implications of Prop. 13.6 concerning convexity, and we add to this a pro-
perty of starshapedness which nicely completes Prop. 13.7b. Remember that the
'

econvex hull of a set E is the smallest convex set containing E. We denote by r

the extreme left point of Zj on the x-axis.

(13.8) When nj. -2 s

(a) the x-hull of market area Zj is its convex hull ;
(b) maxket area Z; is stanshaped wit. [£'2]- A br /)

The first item is obvious, and we give the proof of the second only. If £
is at the right of A(rj/rk), the property trivially holds because this entails

(Prop. 13.7b) that Zj is conveX,i,e., starshaped wrt. any of its points. Let us

' the extreme left

now assume that £ is at the left of A(rj/rk),and denote by w
point of A(rj/rk); it is clear that w' €] ok[fTZj. It can be shown, by a proof
similar to the part of that of Prop.l13.7a that concerns [ jk],that 4h is here quasi-
convex wrt. 6v on any straight half-line originating at any v € [ jw']. In parti-
cu}ar, Zj is thus starshaped wrt. the points of [j£] N[jw'] , ie. of [j£]

- A (rj/rk).

]
We still have to examine the left extremity of [r'Z£]-A (rj/rk), ies TV
"As r' is at the left of j;” we have wjr' < wkr' for any point 1 of the plane ;

according to (41), (Bﬂh/aév)(p is thus # 0 provided that wjr' < 7/2, ie. that
v
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©
igc[("+3)/2,j]. If a point i belongs to Zj, this entails that
[ir'] - C[ (" + 3) / 2,7 ] C Zj. But it clearly appears in the coordinates

(Gj,ﬁk) that the Apollonian disk determined by r' is a part of Zj. As it
contains C [ (' + j)/2,7] , the whole segment [ir'] is in Zj, which is thus
starshaped wrt. r'. Zj is consequently starshaped wrt. [r'w'l N [r'£] , and

the proof is complete.
13.3°  Dependence of +the measurnes of market areas on attractivity

The preceding results make it easy to extend Section 9 to.Descartes' ovals.
First, equality (43) shows indeed that (BZAh/BGIZC)LD > 0 (or = 0 on the x—axis)

and that (eﬂAh/aéﬁ)(p < 0 (= 0 on the x-axis). sEcond, Z. is starshaped wrt.

2 k
k when Ty < Iy (Prdp. 13.7a) and Zj is starshaped wrt. j when T, < r

(Prop. 13.8b) : as.Z

k

i is obviously strongly decreasing wrt. Q, this entails that,

with the definitions introduced inm Section 9, 6k

when rj < P and 35 is striectly increasing wrt. Q when rj > Ty - The combi-

nation of the two results implies that E£ 1s convex wrt. @ when r, < rk’ as is §&.

is strictly decreasing wrt. Q

when r. > r . Hence,
] k

(13.9) (a) When iy <, | Zh] , A4 # 0, is a stnictly decreasing and strnictly

convex function of Q ;

(b)  When " > 1y, | Zj | 44 a strnictly increasing and stnictly

convex punction of Q.

13.4  Negative values o4 the attractivity Lindex

Contrary to all the previous sections, Ah, when defined as in Section 13.1,
is not symmetric with regard-to the y-axis. 1In particular when Q = 0, the in-
difference line is not the y-axis but the circle of the set A (rk/rj).

It thus becomes interesting to view the implications of our statements for all
values of the attractivity index Q, be they positive or negative. Clearly,

k k
Q < 0. It is thus possible to express all statements in terms of the situa-

the properties of Zk when rj < r, and Q > 0 are those of Zj when rj > r, and

tion where r. > r,.
] k
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In this perspective, illustrated. in Fig. 13.5, Prop. 13.2 means that the
market area of the less accessible centre (here j) is always bounded. Prop. 13.7
indicates that the same market area is nonconvex if and only if Q is in the
open interval ](rj - rk) sjk’(rj + rk) Bjk[’ and that it is strictly convex when
convex (the empty set, to which Zj is equal when Q <,—rk 6jk’
vex). According to Prop. 13.9, its superficies is an increasing and convex

is strictly con-

function of Q, and this property is strict when‘Q}—“rk G2 i.e., when Zj is mot

K’
empty. As to the market area Zk of the other centre, it is always unbounded,
nonconvex (unless Q < = T, 6jk’ when Z, is the whole planme) and its superficies is

infinite. Prop. 13.5a and 13.6 also imply that the Cartesian oval is more extended
in the x- than in the y-direction when Q < 0, and conversely when Q > 0 ;ywhen Q=0,
it is equally extended in both directions, as being the Apollonian circle

6j/6k = rk/rj.
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88

Fig. 13.53. Whenr > rk_, the Cartesian oval encloses
Zj whatever the value of Q.

Herer.=1,r = 1.2, Fig. 12.5b.The same as Fig.13.5a, with another scale.
and ij= 4, The area Zj is convex iff. Qz12.8,8.8[

‘When Q = 6.8, the oval passes through k, where it

has an angulous point.
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Conclusion

This work has gathered a harvest of positive results. Two new cases where
the indifference line is a well-known curve have been added to the three omes
found so far in the literature. Properties that could be expected on the ba-
sis of those three classical cases have been proved to hold. Among others :
when the so-called transportation cost function is concave, the market area of
the less attractive centre is starshaped with regard to that centre and spined
by the straight line joining the two centres. When the transportation cost
function is convex, on the contrary, that market area may not contain its own

centre, but the area of the more attractive centre is starshaped with respect

to the middle of the segment joining the centres, and spined by the mediatrix

©f that segment, Whatever the transportation cost function, the measure of the
smaller market area is a decreasing function of the absolute attractivity index
|Q| and an increasing one of the distance between centres. That area is convex
when a concave power transportation cost function is considered (whether 53, with
0<a <1, or - S_a, with a > 0). The indifference zone is one-dimensional when

the transportation cost function is strictly increasing. Etc.

Our study also shows the limits of the classical cases. Some strictly con-
cave transportation cost functions may for instance generate two infinite mar-
ket areas. Moreover, it happens that the measure of one of these areas then
remains finite. The convexity of the market area of the less attractive centre
is exceptional when the transportation cost function is convex, and is far from
being a rule when the transportation cost function is concave. A purely concave
or purely convex transportation cost function vields market areas that are all
of a piece, but this does not necessarily remain true in mixed cases. Besides
concavity or convexity, other hidden features of the transportation cost function
also appear in fact to determine the qualitative and quantitative properties of
market areas. The limit of the derivative of the transportation cost function when
distance grows toward infinity, as well as the signs of the first and second deri-
vatives of the function v./h'e/.(where h is the transportation cost function), e.g.,
are particularly significant. Those features of the transportation cost function
are usually not immediately detectable, and their interpretation is not obvious.
It would be vain, however, to try to explain them in terms of consumer behaviour
only. If the Manhattan distance (cf. infra) was considered together with the
same models of consumer behaviour, the market areas would be affected, and some de-
termining properties of the transportation cost function could be different.

Those properties thus mainly concern the nature of space.
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But this work should not be seen as a chamber of horrors.. Aléhough we now
better know the limits of the validity of old and new properties, some general.
trends appear through our exact and approximate statements. It is intuitively
satisfying to observe that market .areas tend to be functions of the ratio of
the attractivity index to the distance between centres. The smaller market area
is usually more extended in the direction defined by the two centres than in the
perpendicular one. When the transportation cost function is concave, the measure
of the smaller market area seems generally convex in the absolute attractivity
index and in the distance between centres. When the transportation cost function
is convex, the measure of the extra territory appears to be conversely concave

in the absolute attractivity index, but convex in the distance between centres.

Market areas =-or Voronoi diagrams, Thiessen polygons, Dirichlet domains - thus
appear fertile in properties. The present research might be extended in many ways.
Extending such works as those of Boots (1980) and Aurenhammer (1983), one might
reinvestigate the shape of market areas when there are more than two centres
(Fig. €.1) ; in addition to what we have said in our introduction, some particu-
lar results are likely to appear. On the other hand, the use of a Euclidean dis-
tance is rather restrictive. Other ones could be tried, like the well-known
£ - and block norms [see e.g. Thisse et al. (1984) ].Market areas under Manhattan
d?stance, in particular, clearly exhibit some characteristics that are mnot reduci-—
ble to the present exposition : we have already mentioned that the indifference
zone may then be partially two-dimensional when the transportation cost fumction
is linear, as shown by Lee (1980). It could also be interesting, perhaps, to
consider a kind of Euclidean distance varying continuously from point to point ;
i.e., a transfer cost function as used by Puu (1979). Other models of consumer

behaviour could also be assumed.

It is not necessary, however, to get entangled in too general problems for
meeting unsolved issues. Some of the questions we have raised have only received
partial or approximate answers, and might be studied further. Nevertheless, we
hope that the precise mathematical tools our work provides will clarify the theo-

ry of market areas and ease the way for future researchers.
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(b)Yh(8)=In(d)

(c) h(8)=058%7 (d) h(d)=0.12562
*10 *10
92 .2
.4 -4
°s °s
°s CENTRE AND MEASURE -OF G (A) e :

Fig. C.1. Market areas when there are more than two centres. As z
consequence of Prop. 8.6, the areas in a, b, and c are
convex iff. they are surrounded by merket areas of more
attractive centres. In d, market areas must always be
convex. In & yeach market area must always be starshaped
wrt. its centre. In d, a market area does not necessarily
contain its centre, but it certainly does if surrounded

by market areas of less attractive centres.
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Appendix 1 : I, is convex when h = G and a €10, 11

Let £ =-T h'/ph', p =.aj/ak, and A = cgk/ai. Then (34) rewrites :
(32) _ B 2 = ca§ -85 ) [ 28y i 85y Ex=(p2-1) 1 e
ax’/ Ah v 2y
On the other hand, from (10), we have :
y = [2(5§k a% + agk 82 + s% 82)= a; -8 - 5§k 1 /4 a?k
= 5; [2 (Ap2 + A + p2)=p"% = 1 =221/ 46§k
= 5§k [522 + 2% (p2 + 1) = (p2 = 1D2 1/ 4x2 . (45)

Combining both results we obtain :

Le @2 o g 482 62D 12
x4k —2242) (p2+1)=(p2-1)?

, (g2 -1 +20p2(-E) * 1+ E]
-22 + 22(p2 + 1) = (02 - 1)?

Section 7 and particularly formula (36) have shown that y (32y / axz)Ah is the
difference between (azyzlaxz)ﬁh/Z + 1 and that quantity ; and that

2 o2 462 fu2h'Zpp!
i (E——‘Y—) + 1 = Az whereig = - L3 : (46)
2  3x% Ak . (ah "y 3

Hence ,

- A2p = A [20 (p2+1)-E2+1] + [£(p2-1)2+2p%(1-E)+2+2¢]
ax? Ah -2+ 2) (p2 + 1) - (p%2 - 1?2

When h = .a, we have :

2-a 2-a ELa
g = p______“']_ and ¢ = (2-a) p (p 1) .
p2-a - 1 (p%3 ~ 1)?

Introducing this in the expression of y (32y/3x2) , here above, we find that



157 .

2 2-2a
" ¥ __ 20 T (,p) 47)
9x? Ah (2=a=1)3 [ =22 + 2x(p2+1)-(p2-1)?]

where
T (x,0) = =x2(2-2) (p®-1) + 2 [ (4-a)p?+(2-a)¢" *3=(4-a)n2-(2-a) ]+ C

and where C is an expression of p (and of a, but a is here a constant number),

iﬁdependent of M : (3 C/ 3x) 0 = 0, From the fact that éj > 8 on'Bﬁ:ﬁ R and

from (45), it is clear that (azy/aXZ)Ah and T(A,p) have the sams sign at every
point i of R:z. When p is fixed, point i is on an Apollonian circle.
The minimum of A on that curve occurs when Gk is maximum, ie. when A =
(Gj - Gk)z/ Gi = (p-1)2 ; conversely, A is maximum when X = (5j+6k)2/6i = (p + 1)2.
We have thus to study T on the range [ ( p~- 1)2, (p+ 1)2]of A. Now, at the begin-

ning of that interval we compute that :

(aTé;,p))p [ est¥2.0 § = & B,

where

E(p) =- 0278 = (2ma) p' %+ (2-a) p + L.
Let us compute the derivative E' :
E' (0) = (2-a) [1-0'™® - (1-a) 972 1,

which 1s < 0 ¥Yp > 1, as a €] 0,1 [. As E (1) = 0, we thus have E (p) <O,
Vp > 1 : which means that (BT/B)\)p is < 0 when A = (p-1)2. But T (X,p)
itself is concave wrt. A; (aT/al}p is thus < 0 for any A = (p - 1)2. Now, when
r 32
fixed value of p becomes close to the x-axis ; (44) then shows that

(p - 1)2, the point i on the Apollonian -circle determined by the still

| ( 3y/ Bx)Ah ['=+ 4= [ it is clear that £>1, for h is here strictly concave ;
so that EA = (p2 = 1) # 0 in (41) when X = p2 = 1], whereas we see from (46)
that 1 + (32y2/ axz)Ah /2 remains finite. Consequently, y (azy/sz)Ah and a
fortiori (azylaxz)Ah tend towards —~ : (45) and (47) then entail that

T[(p-1)2,p ] <0 . As we have proved above that (BTIBA)D‘(O when A = (p-1)2 ,
we thus conclude that T (A,p) < 0, and that (Bzyfaxz)ﬁh < 0. Which in turn im-

plies the convexity of Zk'
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Appendéx 2.Formulae of the measwrte Of the dicentral approximation when h =

The only problem that remains is to integrate cos 2/ {1~a) © wrt. @ over
[0, w/2 ]. We have the following equality :
d : n-1 n n-2 . D
vo € R-{1} t 36 (sin @ cos ¥)= cos ¢ - (n-1) cos . sinc ©

=n cosn(D— (n—-1) cosn_2 Q.

ﬂlz

Let us denote by I (n) the integral f = @ dp . It is then clear that,if n>1:

i . n-1 /2 . n-l
I (n) = = [ sin @ cos ) ]0 e I (n-2)
= E:l I (n-2)
n = (48)
Consequently, we find these two formulae :
2p _,2
vo €N : T () =LUBL g1 ope 1) s B -
gEEs ple (2p+1)!

Those formulae are verified indeed when p = 0 ; and if we substitute p by p+1,

we find, according to (48),

I (2p+2) = 2p+1] 1(2p) = (2p+2) (2p+1) I(2p) = T(2p+2)!

i 4 (p+1)? 22P*3 (141)12
and
2p+2
2 P 12
2p+3y= 2222 1ope1) = A@DE 1 (2pe1) = 2 (pr ) ?
2p+3 (2p+3) (2p+2) (2p + 3!

The formulae thus hold for any p € N . The remainder of the proof of Prop. 11.9

is obvious.

Appendix 3. Proog of Prop. 11.10 : Homotheticity 04 dicentral approximations

If we exclude the case of point o, which always belongs to the closure of

’5 (nyn % (1) , the homotheticity between &, (u) N Z—(U) and & (') N %—(u )

T

for any M ,u' > 0 means that ,if 6 can be etermlned, ie. if is 1nvert1b1e 3

8 (@ ,m) 5 (@ _,u")
Vou,u' >0 : Vo €[0,m/2] : = - 2 . e
ECED JCRD
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Vou,p' >0:V @ €[0,m1/2 1: h'"~(1/pcos@)n'*(1/u")=h'"(1/w)h'"(1/u'cos®).
That condition is satisfied when h = £n, or h =.% with 1# a > 0, or h=-.2
with a > 0. The problem is now to show that when h is derivable on Ri and
h'*is a continuous function, onfy those kinds of functions satisfy (49). Now,

one may easily verify that (49) is equivalent to :

Y E1.85 >0 1 B (&) B'(ED) = BTT(E ) R'T(D).
Consequently, for any o« € N,

b2 =[w]°‘.

(50)
B ICLY h'" (1)

it is then possible to extend that result, successively, to the situations where :
@ 1s a negative integer (o € Z_), o is rational (¢ € @), or o« is real (¢ € R)

(this last point is by comstructing a sequence of rational numbers converging

toward o).

As (5C) can also be written

fn {h'“ o exp (a £n £) — [h"o exp ({n E) I,
h' (1) h'*(1)

we see that the function £n [h'"s exp / h'"(1) ] is linear (on R¢ ), so that, for

some K € R¥* ,

YE> ga o] Bl eeEp WE), . g
B'" (1)

Hence we derive :

VE>O : h'“(E) = h'~ (1) &

VE>0: 6 =h'"" (D[ h" (&) ]K
- 1/K
h' (8) =[&/ h'"™ (1) ]
h(8) =—F— [n'~)) VR @ED/E ek # -,
K+ 1
h (8) = h' (1) &n 6 + B if K & =],
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As h'~(1) represents a distance and is thus >0, h (8) either assumes the
form b fn §+B , where b > 0, or b §% + B where a and b bear the same sign .

The proposition also trivially holding when h (§) = 6 , the proof is complete.

Appendix 4. Varniation of y with x along Zj. (W) n Z, () when h = e

- . -1
As we have in this case aﬁz Cog 2 = 1/u, and as x = 50 cos Q and

y = 60 sin @ s we easily compute the following derivatives, successively :

350 ) —60 tg [po
atpo 1 - a
5 350 ' - 60 sin @ (2-a)
— = ~—— cOos (po - 50 sin Lpo =
Bwo B(DO 1 - a
08 8§ cos @[ (1-a)- tg?u@ ]
o= B sin ngO + 60 cos LDO = 2 S 2
BLDO BLDO ] — a
2 = =
ay D% 8- (79
3% ax / 30, (2-a) tg @
azy _ 1 ) d tg (._Do . Bzy
. :
3 x BX/BLPO d o 3 tgw ox
- 2 =
) 1 a 1 . tg® @, a+ 1
- 2 = 2 " 2
60 sing (2-a) cos“@ (2-a) tg @,

(1-a) (a-l-tg? @)

-

a2 LI
(2-a) §, sin® @
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List of main symbols

A(p)
c(i,p)
C; (R)
coth

D. (£)

Dﬁr (£)

=

@ = o=

Af stands for f(éj) - £ (5k)

symmetric difference : E1 A E, = (E1 - EZ) U (E2 - E.)
Lf stands for £ (Gj) + £ (Gk)
E ° : interior of area E

|E| : superficies of area E
E* (f) : set of coordinates [f (éj), f (ék)] of area E

f~: inverse relation of function or relation £

f <E>={f (i) : 1 € E}

attractivity of p, if p is a centre
or the Apollonian area &8./8, = 6_./ &
g Ik PJ/ pk
Apollonian area ﬁj/Gk;zp
disk whose circle is Ti(.z)
disk of centre i and whose circle passes through point p
disk of centre i and radius R
hyperbolic cotangent, i.e., [ exp (.) + exp (-.)] /
[ exp (.) - exp(-.)]
area which appears to be under T, (f) in the coordinates
[ £ (Sj), f (Sk) ]_
area which appears to be under Tﬂr (f) in the coordinates
[ £ (aj), £(5) 1

~1/a or £ 6% =1 (when h = T

a)'

area where Sk = e

area where I 8° < 2/e (when h = .
deterrence function of distance
function expressing the relation of the 'mass' of a centre to
its attractivity

various functions

or the function v./ (h', V.)

(so-called) transportation cost function

function expressing the relation of h (8) to & 1 deeey b oo V.
leftmost point of Zk on the x—axis

Neperian logarithm

length of the projection of the indifference line on the x-axis

'mass' of site 1

First
occurence

p. 16
108
69
93
21
37
16
37

55
52
52
102
23
40

40

98
98

70

69
21

56
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(£)

]

sh
th

ik

T. ()
1

Kr(f)

[u ST o
~ o~

f =

. Y62

set of all nomnegative integers

index of comparative attractivity

rightmost point of Zk on the x-axis

set of all real numbers

set of coordinates [ f(Gj), £ (Gk)] of.the points above the
X=-axis

rate of transportation to centre k

hyperbolic sinus, i.e., the function [exp (.) - exp(-.)]/2
hyperbolic tangent, i.e., [exp(.) - exp(=.)] / [exp(.) + exp(-.)]
amount of interaction between sites i and k

total interaction of all sites with k

curve appearing in the coordinates [f (5j), £ (5k)] as the
tangent to the indifference line passing throught point i

curve appearing in the coordinates [f(ﬁj),f (Gk)} as the straight
line joining points £ and T

market area of centre k

dicentral approximation of the market area of centre k

k/Q

asymptotic direction of the indifference line

dicentral moment ; i.e., the ratio 6j

diameter of market area Zk

function relating the points of the plane to their coordinates
[ £ (6j), £ (Gk)]

identity function defined on the set E

17

21
16
37

11
23
112

34

43

109

109

60

56

37

41
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1. Sandra L. Arlinghaus and John D. Nystuen. Mathematical Geography and Global Art: the Mathe-
matics of David Barr’s “Four Corners Project,” 1986.

This monograph contains Nystuen’s calculations, actually used by Barr to position his abstract tetrahe-
dral sculpture within the earth. Placement of the sculpture vertices in Easter Island, South Africa, Greenland,
and Indonesia was chronicled in film by The Archives of American Art for The Smithsonian Institution. In
addition to the archival material, this monograph also contains Arlinghaus’s sclutions to broader theoretical
questions—was Barr’s choice of a tetrahedron unique within his initial constraints, and, within the set of
Platonic solids?

2. Sandra L. Arlinghaus. Down the Mail Tubes: the Pressured Poslal Era, 1853-1954, 1986.

The history of the pneumatic post, in Europe and in the United States, is examined for the lessons it
might offer to the technological scenes of the late twentieth century. As Sylvia L. Thrupp, Alice Freeman
Palmer Professor Emeritus of History, The University of Michigan, commented in her review of this work
“Such brief comment does far less than justice to the intelligence and the stimulating quality of the author’s
writing, or to the breadth of her reading. The detail of her accounts of the interest of American private
enterprise, in New York and other large cities on this continent, in pushing for construction of large tubes in
systems to be leased to the government, brings out contrast between American and European views of how
the new technology should be managed. This and many other sections of the monograph will set readers on
new tracks of thought.”

3. Sandra L. Arlinghaus. Fssays on Mathemetical Geography, 1986.

A collection of essays intended to show the range of power in applying pure mathematics to human
systems. There are two types of essay: those which employ traditional mathematical proof, and those which
do not. As mathematical proof may itself be regarded as art, the former style of essay might represent
“traditional” art, and the latter, “surrealist” art. Essay titles are: “The well-tempered map projection,”
“Antipodal graphs,” “Analogue clocks,” “Steiner transformations,” “Concavity and urban settlement pat-
terns,” “Measuring the vertical city,” “Fad and permanence in human systems,” “Topological exploration in

geography,” “A space for thought,” and “Chaos in human systems—the Heine-Borel Theorem.”

4. Robert F. Austin, 4 Historical Gazetteer of Southeast Asia, 1986.

Dr. Austin’s Gazetteer draws geographic coordinates of Southeast Asian place-names together with
references to these place-names as they have appeared in historical and literary documents. This book
is of obvious use to historians and to historical geographers specializing in Southeast Asia. At a deeper
level, it might serve as a valuable source in establishing place-name linkages which have remained previously
unnoticed, in documents describing trade or other communications connections, because of variation in
place-name nomenclature.

5. Sandra L. Arlinghaus, Essays on Mathematical Geography-II, 1987.

Written in the same format as IMaGe Monograph #3, that seeks to use “pure” mathematics in real-world
settings, this volume contains the following material: “Frontispiece-the Atlantic Drainage Tree,” “Getting
a Handel on Water-Graphs,” “Terror in Transit: A Graph Theoretic Approach to the Passive Defense of
Urban Networks,” “Terrae Antipodum,” “Urban Inversion,” “Fractals: Constructions, Speculations, and
Concepts,” “Solar Woks,” “A Pneumatic Postal Plan: The Chambered Interchange and ZIPPR Code,”
“Endpiece.”
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Distance, 1988. (English language text; Abstracts written in French and in English.)

Though already initiated by Rau in 1841, the economic theory of the shape of two-dimensional market
areas has long remained concerned with a representation of transportation costs as linear in distance. In
the general gravity model, to which the theory also applies, this corresponds to a decreasing exponential
function of distance deterrence. Other transportation cost and distance deterrence functions also appear in
the literature, however. They have not always been considered from the viewpoint of the shape of the market
areas they generate, and their disparity asks the question whether other types of functions would not be
worth being investigated. There is thus a need for a general theory of market areas: the present work aims
at filling this gap, in the case of a duopoly competing inside the Euclidean plane endowed with Euclidean
distance.

(Bien gu’ébauchée par Rau dés 1841, la théorie économigue de la forme des aires de marché planaires
s’est longtemps contentée de I’hypothese de coiits de transport proportionnels a la distance. Dans le modele
gravitaire généralisé, auquel on peut étendre cette théorie, ceci correspond au choix d’une exponentielle
décroissante comme fonction de dissuasion de la distance. D’autres fonctions de coit de transport ou de
dissuasion de la distance apparaissent cependant dans la littérature. La forme des aires de marché gu’elles
engendrent n’a pas toujours été étudiée ; par ailleurs, leur variété ameéne a se demander si d’autres fonctions
encore ne mériteraient pas d’étre examinées. 1l parait donc utile de disposer d’une théorie générale des aires
de marché : ce a quol s'attache ce travail en cas de duopole, dans le cadre du plan euclidien muni d'une
distance euclidienne.)

7. Keith J. Tinkler, Editor, Nysiuen—Dacey Nodal Analysis, 1988.

Professor Tinkler’s volume displays the use of this graph theoretical tool in geography, from the original
Nystuen—Dacey article, to a bibliography of uses, to original uses by Tinkler. Some reprinted material
is included, but by far the larger part is of previously unpublished material. (Unless otherwise noted, all
items listed below are previously unpublished.) Contents: “ ‘Foreward’ ¥ by Nystuen, 1988; “Preface” by
Tinkler, 1988; “Statistics for Nystuen—Dacey Nodal Analysis,” by Tinkler, 1979; Review of Nodal Analysis
literature by Tinkler (pre-1979, reprinted with permission; post—1979, new as of 1988); FORTRAN program
listing for Nodal Analysis by Tinkler; “A graph theory interpretation of nodal regions” by John D. Nystuen
and Michael F. Dacey, reprinted with permission, 1961; Nystuen—Dacey data concerning telephone flows
in Washington and Missouri, 1958, 1959 with comment by Nystuen, 1988; “The expected distribution of
nodality in random (p, q) graphs and multigraphs,” by Tinkler, 1976.

8. James W. Fonseca, The Urban Rank-size Hierarchy: A Mathemalical Interpreiation, 1989.

The urban rank-size hierarchy can be characterized as an equiangular spiral of the form r = el coter

Arn equiangular spiral can also be constructed from a Fibonacei sequence. The urban rank-size hierarchy is
thus shown to mirror the properties derived from Fibonacci characteristics such as rank—additive properties.
A new method of structuring the urban rank-size hierarchy is explored which essentially parallels that of the
traditional rank-size hierarchy below rank 11. Above rank 11 this method may help explain the frequently
noted concavity of the rank-size distribution at the upper levels. The research suggests that the simple
rank-size rule with the exponent equal to 1 is not merely a special case, but rather a theoretically justified
norm against which deviant cases may be measured. The spiral distribution model allows conceptualization
of a new view of the urban rank—size hierarchy in which the three largsst cities share functions in a Fibonacci
hierarchy.

9. Sandra L. Arlinghaus, An Atlas of Steiner Networks, 1989.

A Steiner network is a tree of minimum total length joining a prescribed, finite, number of locations;
often new locations are introduced into the prescribed set to determine the minimum tree. This Atlas explains
the mathematical detail behind the Steiner construction for prescribed sets of n locations and displays the
steps, visually, in a series of Figures. The proof of the Steiner construction is by mathematical induction, and
enough steps in the early part of the induction are displayed completely that the reader who is well-trained
in Euclidean geometry, and familiar with concepts from graph theory and elementary number theory, should
be able to replicate the constructions for full as well as for degenerate Steiner trees.



10. Daniel A. Griffith, Simulating K = 3 Christaller Ceniral Place Struciures: An Algorithm Using A
Constani Elasticity of Subslitution Consumnplion Funciion, 1989.

An algorithm is presented that uses BASICA or GWBASIC on IBM compatible machines. This algo-
rithm simulates Christaller K = 3 central place structures, for a four-level hierarchy. It is based upon earlier
published work by the author. A description of the spatial theory, mathematics, and sample output runs
appears in the monograph. A digital version is available from the author, free of charge, upon request; this
request must be accompanied by a 5.5-inch formatted diskette. This algorithm has been developed for use
in Social Science classroom laboratory situations, and is designed to (a} cultivate a deeper understanding of
central place theory, (b) allow parameters of a central place system to be altered and then graphic and tab-
ular results attributable to these changes viewed, without experiencing the tedium of massive calculations,
and (c) help promote a better comprehension of the complex role distance plays in the space—economy. The
algorithm also should facilitate intensive numerical research on central place structures; it is expecied that
even the sample simulation results will reveal interesting insights into abstract central place theory.

The background spatial theory concerns demand and competition in the space-economy; both linear
and non-linear spatial demand functions are discussed. The mathematics is concerned with (a) integration of
non-linear spatial demand cones on a continuous demand surface, using a constant elasticity of substitution
consumption function, (b) solving for roots of polynomials, (c¢) numerical approximations to integration and
root extraction, and (d) multinomial discriminant function classification of commodities into central place
hierarchy levels. Sample output is presented for contrived data sets, constructed from artificial and empirical
information, with the wide range of all possible central place structures being generated. These examples
should facilitate implementation testing. Students are able to vary single or multiple parameters of the
problem, permitting a study of how certain changes manifest themselves within the context of a theoretical
central place structure. Hierarchical classification criteria may be changed, demand elasticities may or may
not vary and can take on a wide range of non—negative values, the uniform transport cost may be set at
any positive level, assorted fixed costs and variable costs may be introduced, again within a rich range of
non-negative possibilities, and the number of commodities can be altered. Directions for algorithm execution
are summarized. An ASCII version of the algorithm, written directly from GWBASIC, is included in an
appendix; hence, it is free of typing errors.

11. Sandra L. Arlinghaus and John D. Nystuen, Environmental Effects on Bus Durability, 1990.

This monograph draws on the authors’ previous publications on “Climatic” and “Terrain” effects on
bus durability. Material on these two topics is selected, and reprinted, from three published papers that
appeared in the Transportation Research Record and in the Geographical Review. New material concerning
“congestion” effects is examined at the national level, to determine “dense,” “intermediate,” and “sparse”
classes of congestion, and at the local level of congestion in Ann Arbor (as suggestive of how one might use
local data). This material is drawn together in a single volume, along with a summary of the consequences of
all three effects simultaneously, in order to suggest direction for more highly automated studies that should
follow naturally with the release of the 1990 U. S. Census data.

12. Daniel A. Griffith, Editor. Spatial Siatistics: Past, Present, and Future, 1990.

Proceedings of a Symposium of the same name held at Syracuse University in Summer, 1089. Content
includes a Preface by Griffith and the following papers:
Brian Ripley, “Gibbsian interaction models”;
J. Keith Ord, “Statistical methods for point pattern data”;
Luc Anselin, “What is special about spatial data”;
Robert P. Haining, “Models in human geography:
problems in specifying, estimating, and validating models for spatial data”;
R. J. Martin, “The role of spatial statistics in geographic modelling”;
Daniel Wartenberg, “Exploratory spatial analyses: outliers, leverage points, and influence functions”;
J. H. P. Paelinck, “Some new estimators in spatial econometrics”;
Daniel A. Griffith, “A numerical simplification for estimating parameters of spatial autoregressive models”;
Kanti V. Mardia “Maximum likelihood estimation for spatial models”;
Ashish Sen, “Distribution of spatial correlation statistics”;



Sylvia Richardson, “Some remarks on the testing of association between spatial processes”;

Graham J. G. Upton, “Information from regional data”;
Pairick Doreian, “Network autocorrelation models: problems and prospects.”
Each chapter is preceded by an “Editor’s Preface” and followed by a Discussion and, in some cases, by

an author’s Rejoinder to the Discussion.
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IMaGe Monographs are produced on demand from camera-ready copy, supplied by the
author. Guidelines for authors, and a statemeni of IMaGe review policy appear on a different
flier. Price structure is negotiated with Michigan Document Services, Inc., on a regular
basis, reflecting changing costs in producing books. Fluctuations might be up or down—up,
for example, if equipment maintenance costs rise; down, for example, if the factory location
is moved to a cheaper site. Because IMaGe is responsive to the concerns of Acquisitions
Departments in university libraries, it has established the following guidelines concerning the
frequency of publication of monographs.

1. No cingle book shall be of a length forcing its cost to exceed $20.00, exclusive of postage
and handling.

2. No more than six books shall be issued in & calendar year. If a single monograph
number is of a length requiring more than ene book for publication, then each of those books
counts as one of the six. Therefore, the maximum amount of a basic annual subscription is
$120.00.

3. Libraries should specify, at the time the order is placed, the preferred mode of shipping;
if left unspecified, books will be shipped via Fourth Class mail, or Library Rate (whatever
applies), in the continental United States, and via Air Mail (using a mail cocmpany to ascertain
the the cheapest mode of transmission) to overseas and foreign libraries.
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MICMG DISCUSSION PAPERS, JOHN D. NYSTUEN, EDITOR

The collected work of the Michigan Interuniversity Community of Mathematical Geogra-
phers is reprinted in a single essay format (as they were originally reproduced). Royalties from
sales will be deposited in the “MICMG” fund for the development of projects in mathematical
geography, administered by IMaGe, and disposed of by Nystuen, in collaboration with IMaGe.

Consider ordering one number as reading suppiementary to texts in an upper division
course. The dates or original release and titles of the individual numbers are listed below.

1. Arthur Getis, Temporal land use pattern analysis the use of nearest neighbor and
gquadrat methods. July, 1963.

2. Marc Anderson, A working bibliography of mathematical geography. September, 1963.
3. Williamn Bunge, Patterns of location. February, 1964.
4. Michael F. Dacey, Imperfections in the uniform plane. June, 1964.

5. Robert S. Yuill, A simulation study of barrier effects in spatial diffusion problems.
April, 1965,

6. William Warntz, A note on surfaces and paths and applications te geographical prob-
lems. May, 1965.

7. Stig Nordbeck, The law of allometric growth. June, 1965.

8. Waldo R. Tobler, Numerical map generalization; and Notes on the analysis of geo-
graphical distributions. ‘

9. Peter R. Gould, On mental maps. September, 1966.

10. John D. Nystuen, Effects of boundary shape and the concept of local convexity;
Julian Perkal, On the length of empirical curves; and, Julian Perkal, An attempt at objective
generalization. December, 1966.

11. E. Casetti and R. K. Semple, A method for the stepwise separation of spatial trends.
April, 1968.

12. W. Bunge, R. Guyot, A. Karlin, R. Martin, W. Pattison, W. Tobler, S. Toulmin, and
‘W. Warntz, The philosophy of maps. June, 1968.
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