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PREFACE

This discussion paper presents a summary of the results of research that
has been of interest to me for a considerable portion of my academic career.
When I embarked on my graduate geography education in 1970, at Indiana
University of Pennsylvania, I was impressed by two items that were topical at
that time, namely Dacey’s "Geometry of central place theory" (1265) and Marble
and Anderson’s Von Thuenen simulation computer program (in 1970 the computer
code was available through the Gecgraphy Program Exchange housed at Michigan
State University; a subsequent publication descriking this work was released
by the Association of American Geographers in 1972). One of the first goals I
set for my career in those days was to create a computer version of central
place theory that was comparable in fundamental ways with what Marble and
Anderson had produced for agricultural land use theory; in part this present
publication fulfills that aspiration. The contents of this document are a
natural extension of my Economic Geography (1986) article.

Throughout my graduate education I had been keenly interested in
interfaces between geography and mathematics, in part because my Bachelor of
Science degree is in mathematics. Dr. Robert Thomas, now of Michigan State
University, and Dr. John Stephens, now of the University of Miami, sparked my
attraction to this specialized field of inquiry during the last two years of
my undergraduate education. Dr. ILeslie Curry further cultivated this
curiosity of mine while I undertoock my doctoral studies at the University of
Toronto. Because of this interest, I continued to study both pure and
(mostly) applied mathematics, as well as theoretical and (mostly) applied
statistics, during my graduate tenures at Indiana University of Pennsylvania,
the University of Toronto, and the Pennsylvania State University. In many
ways the contents of this monograph typify the geography/mathematics
interface, and in a number of ways represent the application of skills whose
attainment is a culmination of my hybrid education. This research project has
drawn extensively on my background in and knowledge of numerical analysis,
computer programming, calculus, applied statistics, and urban geography.

The final encouragement for taking another step in this research
endeavor came in the form of a grant from the SUNY/Buffalo Office of Teaching
Effectiveness; this grant provided funding for development of the PC computer
program, whose code is present here in Appendix A. The PC programming was
done in cooperation with Darren Griffith; this Jjoint wventure was a fringe
benefit of our enrolling together in the evening continuing education RASIC
programming sequence taught at Kenmore East High School (Tonawanda, New York)
during 1983-86. A PC demonstration of the computer program described here
will be presented at the 1989 annual meeting of the Association of American
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Geographers, in Baltimore. I am sincerely appreciative of the research
opportunity given to me through the funding provided by SUNY/Buffalo.

Because external funding supported the development of this computer
program, I consider the Version 2 code to be in the public domain; hence, a
free digital copy of it may be obtained by sending a blank, formatted high
density diskette to me. Since the code appearing in Appendix A is printed
directly from an ASCII version of the BASIC source code, it should be free of
typing errors; but users may find securing a digital copy more convenient, and
certainly such a copy would help eliminate any typing errors that may be
introduced by re—keying the code.

A Word of Caution

The computer code appearing in Appendix A was devised for IBM-compatible
PCs. Version 1 was developed on an IBM-PC and IBM-AT using BASICA, whereas
Version 2 is an updated, debugged and modified wvariant of Version 1, composed
using a NEC PowerMate 386 PC with GW-BASIC. Programming results have been
verified using FORTRAN and the IMSL 10.0 library on a mainframe DEC VAX. One
of the major drawbacks uncovered in this developmental progression has to do
with rounding error problems; these complications arise from the utilization
of different computer algorithms, of different programming languages, and of
different hardware. Those numerical algorithms whose performance consistently
appeared to be most efficient were selected for implementation here; perhaps
more powerful ones can be found in IMSL subroutines, but they did not always
perform well on the PC. BASIC carries fewer significant digits that does
especially double precision FORTRAN, yielding a rounding error inconsistency
problem when results from both are compared; for the most part, the large
volumes of output inspected were identically the same. And, NEC employs words
having more bits than do those found on the aforementioned IBM PCs;
unfortunately this apparently spurious precision tends to confuse the BASIC
computer language. So, the convergence criteria introduced in the computer
code have been Jjudiciously calibrated in order to minimize rounding error
calamities (see lines 3030, 3330, and 3740); this disagreement between the
mainframe FORTRAN and the PC BASIC codes renders noticeable but probably
acceptable rounding errors. Successful implementation of the source code
appearing in Appendix A may require additional modifications of these
convergence criteria, particularly when other IBM-compatible machines are
employed; one prudent way of improving upon the convergence tests performed in
the computer program would be to convert each number being tested to a
percentage of its corresponding target value, rather than using an absolute
value (as 1s done here) .

Daniel A. Griffith

January 11, 1989
Syracuse, New York
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1.0. INTRODUCTION

The principal objective of this monograph is to present a description of
and source PC computer code for, together with its affiliated salient
geographic theory and mathematical underpinnings, a program that simulates K =
3 Christaller central place structures using a constant elasticity of
substitution consumption function. Primarily this program is designed to
serve pedagogic purposes. Tt furnishes a wvehicle for operationalizing a
particular type of central place structure in experimental Social Science
classrcom envirconments. The philosophy behind it is similar to that for the
spatial autocorrelation simulation game reported on in Griffith (1987), the
Von Thuenen agricultural land use computer simulation program reported on by
Marble and Anderson (1972), and the location-allocation game reported on by
Rushton (1975). This present effort builds upon classroom and professional
educational experiences of the author, in terms of the aforementioned spatial
autccorrelation simulation game, as well as spatial diffusion and industrial
location games [see Griffith (1982, 1984)]. It also builds upon the author’s
knowledge and research experiences in the fields of quantitative urban and
economic geography .

This program, suited for either introductory or advanced economic or
urban gecgraphy courses, focuses on exploration of selected parameters of the
ideal K = 3 Christaller central place structure. It exploits fundamental
concepts of central place theory, and uses a deterministically oriented
approach rather than the more traditional inductive statistical perspective
underlying mich of the research summarized in textbooks. One aim is to allow
students to alter parameters of a central place system, and then view graphic
and tabular results attributable to these changes, without experiencing the
tedium of massive calculations. The program is organized in such a way that
students can execute selected contrived examples whose results already are
known; these examples also facilitate implementation testing. Students are
able to vary single or multiple parameters of the prcblem, too, permitting a
study of how certain changes manifest themselves within the context of a
theoretical central place structure. Hierarchical classification criteria may
be changed, demand elasticities may or may not vary and can take on a wide
range of non—negative values, the uniform transport cost may be set at any
positive level, assorted fixed costs and variable costs may be introduced,
again within a rich range of non-negative possibilities, and the number of
commodities can be altered. Past experience with these types of simulation
exercises suggests that students gain more insight inte, and better comprehend
mathematical spatial theory when it is presented in a simulation format. In
addition, flexibilities embraced by this program should promote a deeper
understanding of central place theory, permit an inspecticon of the impact of



relaxing assumptions of central place theory, and help achieve a better
comprehension of the complex role distance plays in the space-economy.

The BASIC computer programming language was selected for composition
purposes here because it is widely available on PCs, whose presence has
proliferated in educational institutions during the past decade.



2.0. BACKGROUND

Mathematical analyses associated with central place theory are replete
in the geography literature. Dacey (1965) has sketched properties of the
resulting geometric map patterns. Hudson (1967) has discussed number theory
properties of central place nestings that, treating Christaller’s K values as
though they were prime numbers, allow many Loeschian structures to be
interpreted within the context of the three Christallerian organizing
principles (i. e., marketing, transportation, and administration). Marshall
(1975, 1977) and Tinkler (1978) have refined this mathematical analysis, again
within the context of number theory, in variocus ways. Alac et al. (1977) have
produced a systematic mathematical treatment of abstract central place theory.
Mulligan (1981, 1982) has addressed the spatial econcmics of central place
theory. BAnd, Gahitte (1987) has criticized Dacey’s earlier work, claiming to
prove that Dacey failed to build a mathematical central place system, and
proposing a new method of construction of the Loeschian landscape. This paper
builds upon these sundry traditions.

2.1. Results for the linear consumption function

Much of the background literature to date focuses on linear demand
functions [see Greenhut and Hwang (1979), Mulligan (1981, 1982)]; one
exception is Griffith (1986). Although the research described in this
monograph is concerned with non-linear (specifically negative exponential)
demand functions, its predecessors merit some attention in order to establish
an historical perspective.

2.1.1. Important attributes of spatial demand

Throughout this monograph the standard assumptions of central place
theory, such as an isotropic surface, a uniform distribution of consumers,
identical demand functions, and completely rational behavior, will be made.
Further, for the sake of simplicity the linear demand function posited will be
of the form [after Greenhut and Hwang (1970) ]

D = A-Npw+td , (2.1)

where D = the actual density of demand for a given commodity,

A = the maximum density of demand for a given commodity,



Prp = the per unit free-on-board price of a given commedity,
t = the transport rate,

8 = the distance separating some specified consumer and a central
place, and

n = the elasticity of demand parameter.
If demand is inelastic, then m = 0; otherwise m > 0.

Given Equation (2.1), three features of spatial demand can be addressed,
namely the ideal range of a commodity, the threshold of a commodity, and the
real range of a commodity [see Griffith (1986) for a somewhat detailed
discussion of these concepts within the present context]. The notion of an
ideal range of a commodity, which Saey (1973) points out is the basis of a
Christallerian landscape, refers to the distance from a central place at which
demand falls to zero, or

0 =3 — NPy — td)
8= (A - Mpy,)/(t) . (2.2)

Because the surface involved is isotropic, this range creates a circle,
centered on the central place, whose radius is given by 6 of Equation (2.2).

The threshold of a commodity is some distance 8, that defines a circle
circumscribing the minimum demand necessary for a central place to survive,
which Saey (1973) points out is the basis of a Loeschian landscape. Moreover,
since the area of this circle is m.?, for a uniform spatial distribution of
demand the problem reduces to one of finding & such that excess profits are
Z&ro, Or

(“5*2) (pfoh - Cv) - G = 0 r

where ¢, = the per unit variable costs for a given commodity, and

c; = the fixed costs for a given commodity that are to be covered

during a specified time period.

The concept of a circular threshold holds only when spatial competition is
absent.

When spatial competition is present, the ideal range of a commodity takes
on meaning. Because a hexagonal market area results from spatial competition,
the threshold demand demarcated by the foregoing circle now must be captured
by a hexagonal market area. Superimposing this hexagon on the corresponding
circle results in the six corners of the hexagon extending beyond the
circumference of this circle, and the sides of this hexagon cutting off six
segments of this circle (see Diagram 1). Each circle segment that extends
beyond the perimeter of the hexagon is equal in area to each corner segment of
the hexagon that extends beyond the perimeter of the circle. Dimensions of
these two geometric figures can be determined by equating their respective



DIAGREM 1. A hexagon superimposed upon a circle of equal area.



areas. In other words,

3b’cos (n/6) /[2*sin(@/6)] = m* ,

where b = the length of each side of the hexagon, and

the radius of the circle.

I
Solving for b yields
b = 2/ (33T = 1l r

Accordingly, the distance to the midpoint of any side of the hexagon is
[n/ (2*3¥%)1¥? = 0.95 r . Hence the real range of a commodity, or the maximum
distance a consumer is willing to travel when competiticon is present, must be
at least a distance of b. This conclusion implies that the following
relationship must prevail for gpatial competition situations:

threshold distance < real range < ideal range .

Clearly the threshold and range can never coincide in a competitive geographic
landscape.

The area of a circle that is transferred to the corners of its
superimposed hexagon is not considerable, though. For each of the six circle
segments this area is defined as

2 [m*sin™[ (2%3Y2 - ) / (2*%3Y%)1/90 - sin{m*sin™[ (2*3"* - @)/ (2%3"%)1/90}]/2
= (1L.7*10") nr*

One salient drawback affiliated with the planar perspective employed in
this section is that it overlooks the possibility of elastic demand. As soon
as m of Equation (2.1) becomes positive, even though the spatial distribution
of customers is uniform, the spatial distribution of demand varies over the
isotropic surface. This variation requires the addition of a third dimension,
representing demand, to the analysis, and then working with wvolumes rather
than simply areas.

2.1.2. The case of inelastic demand

The simplest case to consider is the counterpart to the foregoing planar
analysis. Suppose m = 0 in Eguation (2.1). Then the demand measured on a
third axis, say z, that is orthogonal to the (x,y) planar surface, would equal
A everywhere. Thus, the spatial distribution of demand is uniform. The only
non-trivial solutions here occur in the presence of spatial competition.

Total demand in a market area is represented by a parallelepiped having a
hexagonal base. The volume of this solid is 3*3Y%"A/2. Accordingly, the
threshold hexagonal market area 1s determined by solving the following
equation:

(B B =8 = &=0 . (2.3)



The real range for this commodity in question is cbtained by solving Equation
(2.3) for b, yielding

b = ({2%c/[3*3"A(ps - &) 117

Consequently, total threshold demand is defined as 3*c./ (P, — C), and the
spacing of higher order centers is defined as 2*c./[3YA(py, - <)]. Since
consumers are perfectly raticnal, and t is constant over the surface, these
consumers necessarily are distance minimizers. This particular feature forces
P £O be fixed across the set of central places, and at a minimum.

2.1.3. The case of elastic demand

In the presence of competition the resulting solid becomes quite complex
in form. Consider the case of Just two central places that are in
competition. Then thelr cones overlap, resulting in a truncated cone of the
type appearing in Diagram 2. In order to determine the amount of demand lost
through this competition, a polar coordinate system must be employed. Because
Pwor M and t are spatially invariant in the spatial economic landscape, the
market boundary will be a straight line.

From an aerial viewpoint, in which the (x,y)-axis system is rotated so
that the market boundary in question is perpendicular to the x—-axis, this
boundary line will have the polar coordinates equation

X = r*cosd , (2.4)
where ® 1s constant, and 8 is the angle between the x-axis and the circle
radius that intersects the line described by Equation (2.4) at the
circumference of the circle. For a circle radius of A,/ nt),

x = 3YA/(Ont) = r*cosd , and so
r = 37/ (Ont*cosh)

Therefore, the quantity of demand lost by each central place due to
comoetition is given by

/6 A/ (nt)
1o A

0 334,/ (2nt*cos8)

2 S, - Mtd) S A =

{3r — 3%2[8 - 3*1n(3) ] 1A%/ (4872

Furthermore, if the length of the market boundary is A/ (nt), and complete
conmpetition is present over the planar surface so that regular hexagonal
market areas result, then the total demand captured by a single central place
is defined as

n/6 3B,/ (2nt*cose)
12 | J S(A, - Mtd) 8 d = 3YZ[8 - 3*In(3) 1A’/ (BtD)
0 0



DIAGRAM 2. Truncation of overlapping demand cones
as a result of spatial competition.



Suppose that a threshold exists at a hexagon radius §, where demand has
fallen to A,. Now the solid is a cone that has had six cuts made through its
sides, at 120° angles to one another, setting on top of a parallelepiped
having a hexagonal base (see Diagram 3). The volume of this solid is the sum
of its two component solid parts, namely

3¥2[8 - 3*1n(3)] (&, — A,)°/ (Bt?) + 3*3Y2 (7, - B,)°A,/ (2n'EH)

The corresponding free-on-board price for a given A, can be obtained from the
following fourth-degree polynomial:

{(3"2[8 = 3*In(3)] (A — NP — A,)°/ (87 +

3*32 (A = MNPy — Az)zAz/ (2712112) 1 (pfob ~ ) = Be=0

GE
Piw — {[3(A-D1) +1¢}Pw + {[3@A-13)%+ 3@ - A)ne,]l /M 1P
{[@A-2)°+3@-A)ne]/MTIPw +
o, (A - B)*/M + 8c /{3 (8 - 3*In(3)]} = 0 . (2.5)

The four roots of this equation may be extracted numerically, with the root
that equals p., satisfying the inequality

¢, <R < (A -A)/Mm

At most two of the four roots will satisfy this inequality, since at least two
of them will be imaginary. If the remaining two are real, the one closest to
¢, should be equated with pg,, since this value will permit the demand in
question to be maximized. The fourth root may permit the size of a market
area to be maximized, but the accompanying price would be higher. Cases in
which all four roots are imaginary pertain to commodities whose cost structure
is such that it is infeasible to supply them in the given spatial economic
landscape.

When multiple commodities are present, and are divided into bundles in
accordance with their temporal frequency of demand, for the lowest level of
the central place hierarchy Equation (2.5) must be solved for each commodity,
with A, = 0 in order to maximize the corresponding market area. That
commodity having the shortest range, defined by (& - mpg,)/Mt), 1is the
marginal commodity. Accordingly, it establishes a value for A, that must be
used for all other commodities at this hierarchical level. This new value of
A, then can be substituted into Equation (2.5), and prices generated for all
commedities in a given bundle.

If a K=3 central place hierarchy is being constructed, then the spacing
between central places is given by 3(A - nMpg,)/ (Mt), where p., is the price of
the marginal commodity at the lowest level of the hierarchy. The spacing at
the second-lowest level [Beavon (1977)] will be 3[3Y*(A - mp.,) 1/ (t) . Setting
this latter value equal to A,, and solving for py,, will yield prices at this
second hierarchical level. In this second instance, if A, = 0 then a



DIAGRAM 3. A truncated demand cone,
sitting on a hexagonal base solid,
resulting from demand spatial competition
in a central place system.
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Loeschian type of system can be generated that may well differ from one of the
three Christallerian landscapes. Marshall (1975) has demonstrated that a
Loeschian number always will be produced. In addition, with this second
scheme each hierarchical level would have a marginal commodity. If a
Christallerian landscape is desired, though, this constraint could lead to
either the presence of excess profits, or the failure for provision of some
commodities (demand going unsatisfied), depending upon the values of the roots
of Equation (2.5). It is unlikely that, as is contended by Greenhut and his
co—authors (1973, 1975, 1979), hexagons would be replaced by pentagons, or any
other type of higher—order alphagons.

2.2. Results for the CES consumption function

Griffith (1986) presents the mathematical and spatial theoretical
overview for using a constant elasticity of substitution (CES) consumption
function in order to represent demand in the space-economy. To summarize
(since anything more would be superfluous), historically the problem of
negative demand has been encountered in constructing spatial demand cones when
using linear demand functions, like those discussed in Section 2.1. The CES
demand function avoids this problem; the single most seriocus trade-off is a
dramatic increase in complexity of the mathematics involved, primarily due to
the non-linear nature of all equation reformulations for characterizing the
central place system. Further, a feedback mechanism is introduced between
price and demand, analogous to what was done in Section 2.1. For the purposes
of this paper, only the case of competition will be addressed, either with
elastic or inelastic demand; Griffith’s discussion of non-competitive
situations is irrelevant to this present work.

One noteworthy error has been uncovered in Table 1 of Griffith (1986)
during the course of the research reported on here. For Good #1, the margin
of consumption should be 97.17 rather than the reported value of 183.96; this
former wvalue is the true minimum non-negative root of the polynomial in
question. This mistake makes little difference to Griffith’s discussion, but
is noted here because of the discrepancy it introduces into Table 1 of Section
B,

Section 3.0 presents a detailed, step-by-step presentation of the
derivation of mathematical findings summarized in Griffith (1986).

2.3. The K = 3 central place structure map

The simplest Christallerian central place structure is nested, based
upon the marketing principle (the need for central places to be as near as
possible to the customers they serve), and has a nesting value of 3. The
adaption of his scheme here involves a four-tier hierarchy, consisting of
hamlets (Level 4), villages (Level 3), towns (Level 2), and cities (Level 1).
Excess profits are set equal to zero [see Equation (5.1) of Section 5.0; this
condition could be changed without great difficultyl]. The minimum non-
negative threshold wvalue for the lowest level appearing in a particular
problem determines the spacing of centers. The map that 1is graphically
displayed on a cathode-ray tube (CRT) constitutes a half-hexagon market area

11



for the city lewvel, and is composed of 22 central places; it is based upon the
map appearing in Griffith (1976), which is reproduced here in a modified form
in Diagram 4. Examples of the computer version of this map are presented in
the sample output appearing in Section 5.2. Both the original and the
modified maps depict the egqual spacing of central places having the lowest
level of specialization (referred to here as villages), the hexagonally shaped
hinterlands, the central location of a more specialized village for every ring
of six hamlets located at each corner of its hexagonal trade area, the equal
spacing of villages, and the trade area of a village being three times larger
than that of a hamlet. Once the basic commodity at Ievel 4 is identified,
distance between centers at a given level is set equal to 3Y* times the
distance between the centers immediately below them in the hierarchy. Since a
hexagonal radius is equivalent to the distance between a given pair of central
places and the perpendicular bisector of a straight line connecting these
competitors (the hexagonal market areas may be demarcated by constructing
Thiessen polygons), the reported spacing distances equal twice the radius
distances appearing in the corresponding table.

The accompanying tabular ocutput defines the total number of commodities
provided, the pricing of these commodities, the types of commodities provided,
and the levels of specialization and size of trade areas served. Students can
obtain a copy of a table or a map by printing the screen, and shculd transfer
their graphical results to a more comprehensive central place landscape map
provided by their instructor.

12



* city —— city trading area 243%312 1

m town — town trading area 2%3 Tmin
o village ——— village trading are: Q32 g
o hamlet - hamlet trading area 2% Toin

portion shown on CRT

DIAGRAM 4. Central Place Structure Map
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3.0. MATHEMATICAL AND NUMERICAL
SOLUTIONS TO COMPONENTS OF
THE. K = 3 CENTRAL PLACE STRUCTURE
PROBLEM

Analytical and approximate solutions to the central place equations will
be discussed in this section; analytical solutions were derived with the aid
of Beyer (1978) and Bois (1961). Because non-linear equations are being dealt
with, the possibility of multiple solutions for any given problem frequently
exists. In addition, since single egquations often contain two unknowns,
namely price and radius, unique solutions usually are elusive. Basic
principles will be invoked here in order to circumvent these complications.
Fach of these principles relates to the profit equation,

Demand* (p;,, = C,) — ¢ = 0 , (3.1)

where demand will be cast as a function of free-on-board price, p., (hereafter
to be denoted p), ¢, denctes variable cost, and c, denotes fixed cost.

The first principle, alluded to in Sections 2.1 and 2.2, conjectures
that a useful single commodity spatial equilibrium exists when p = rt, the
threshold hexagon radius, r, times the transport cost, t. Accordingly, each
non-nested radius can be determined by setting price equal to the product rt.
This principle is consistent with the result based upon a linear demand
function, for which the margin of consumption is r = p/t. It is further
reinforced by the general solution reported in this section for m = 2, where p
= rt is a critical point beyond which one solution holds, and prior to which
another solution holds; at p = rt yet a third, and very simple, solution
holds. This critical point is far less conspicuous but also is uncovered for
n = 1 and n =3, when the partial derivative with respect to r is calculated;
this certainly is one of the conditions for establishing an equilibrium.

The second principle has to do with the notion of maximum packing of
hexagons on a planar surface. Because the Christallerian market principle
maintains that central places should be as close as possible to consumers, the
smallest radius of the lowest order commedity seems most appropriate to select
from a multiple roots solution. This radius, called r,, then can be used to
generate the central place spacings at each hierarchy level. Since multiple
solutions almost always exist for Equation (3.1), for the demand term is a
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higher order function of price, then the smallest non—negative radius should
be selected for nesting purposes; moreover, larger radii solutions still allow
the equation to be equal to zero, but result in a lower density of hexagonal
market areas. In addition, since each entrepreneur wants to maximize demand,
the equation holds for multiple solutions only because increases in price are
offset by decreases in demand. With regard to this situation, then, if a
higher price and larger radius are selected (remembering that in spatial
equilibrium p = rt), then an incentive exists for competing entrepreneurs to
enter a central place and offer the same commodity at the lower price, without
sacrificing normal profit.

The third principle pertains to profit. Intuitively speaking, Equation
(3.1) should be nearly satisfied if price equals variable cost. So, the
search for a feasible root (i. e., a positive real rather than a negative or
complex number) for either radius or price respectively is restricted to one
that is as close as possible to, but exceeding, variable cost divided by
transport cost, or variable cost. Again, while other real roots may exist for
this equation, the affiliated price would be higher, the accompanying demand
would be lower, and hence an incentive would exist for competitors to enter
the market.

3.1. Determining the margins of consumption and affiliated demand

For a given commodity, the margin of consumption is defined here, for a
competitive hexagonal tessellation, as the hexagon radius at which p = rt.
Calculating this radius becomes a function of forcing the excess profits to
zero for the prevailing elasticity of demand associated with the commodity in
question. These calculations are characterized by various cases. The first
case 1s for inelastic demand, and may ke summarized as follows, where demand
is denoted by D:

ch 6 r/cosO 1'5(6 r/cos
123 S P+tdH° BB = 12A T o dd b

D —_
0 0 0 0
/6 n{ 6
= 122 | (1/2) (r/cosB)? d® = 6A r?/cos’® dP
0 0

/6
GAY? 1? 1/cos’® d®
0

/6
6AY* tand | = GAr/3? = 2+3%Ar"
0

Equation (3.1) beccmes
2x3V v (rt — ) - . = 0

¥ - (o/t)Y - c/@2*3Yar) = 0
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The relevant radius for this equation is, from the general solution to cubic
equations [see Uspensky (1948)]

r = [-[- c/(@2*3"At) - 2¢°/ 27 1/2 +
{[- o/ (2x3At) - 2¢2/ 27E)17/4 + [- ¢/ B 1P/271y7°]™" +
[-[- ./ (2%3"Aat) - 2¢ /(279 1/2 -
{[- c/ (2¥37At) - 2¢2/ (27t)1%/4 + [- ¢/ (3t) 1*/27}2]™"
This radius is guaranteed to be real and positive; the first term in each cube
root always is positive (a negative times a negative), the quantity whose
square root is calculated always is positive [the squared expression contains
a positive version of —¢°/(27°t°)], and the square root expression always is
less than the term that precedes it.
The second case is where 11 = 1, and may be summarized as follows:
th/ 6 r/cosf
12A |

O (p+td™ dd B
0 0

11:{6 r/cosd
= 12a I (1/t) 8/(r + & dd do

0 0
_ ch6 r/cosb
= A2 (1/t) [0 — r 1In(r + &) ] | do
0 0

/6
= (12a/t) f [r/cos® - r In(r + r/cosB) - 0 + r In(r)] A6
0

/6
= (12Ar/t) _( [1/cosB - In(l + cosB) + 1n(cosB)] dd

0
= (12Ar/t) {In[tan(n/3)] - 1In(l) - @/6)In(1 + 3“*/2) + (n/6)1n(3"%/2) +
/6
| O[tan® - tan(0/2)] dB} = (12ar/t) (0.1738034)
0

Ecquation (3.1) becomes
(12ar/t) (0.1738034) (xrt - c,) - ¢ = 0
r - (¢/t)r - ¢/[12A(0.1738034)] = O

The relevant radius for this equation is, from the general solution to
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quadratic equations
r = [c/t + {(c,/t)? + c./[3B(0.1738034)1}"%]/2
Clearly a non-negative radius always exists for this case.

The third case is where 1 = 2, and may be summarized as follows:

nfG r/cosb
D = 12A | S (p+td2 BB
0 0

n‘fG r/cosO
123 | (1/t%) &/ (r + 8)> b B

0 0

TEfG r/cosB
= 12A (1/8) [/ + 1) + In(r + &1 | ab

0 0

/6
= (123/t%) 1} [r/(r/cos® + r) + In(r/cos® + r) — 1 — In(r)] dO
0

/6
= (12a/tH) Tj [cosB/ (1 + cosB) + In(l + cosB) — In{cosB) - 1] 4O
0

/6 /6 /6
= (122/tH){[0 - tan(®/2)] | - Oln(cosB) | + OIn(l + cosB) | +
0 0 0
/6
| B[tan(0/2) - tanB] d® - w/6}
0
= (122/tH) {m/6 - tan(mw/12) - (®@/6)1n(3Y%/2) + (®/6)1n(l + 3Y%/2) — /6 +
/6
| O[tan(6/2) - tanB] dO} = (12A/t?) (0.1075536)
0
Ecquation (3.1) becomes
(12A/t%) (0.1075536) (xt ~e) - ¢ = 0

The relevant radius for this eguation is
r = g/t + cit/[12A(0.1073556)]
Again a non—negative radius always exists.

The fourth case covers all other values of M (¢ 0, 1, 2), and may be
summarized as follows:
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ﬂf6 r/cosf
D = 12A J & (p+td™M D dd
0 0

nfG r/cosf
128 I S (rt +tH™ B B

0 0
/6 r/cosB
= 12n | | (1/tY &/ (r + &)™ &b do
0 0
nf6 r/cosB
= 12Aa 1/t (@ + )™/ (M+2) —-rx+&™/(n+ 11 | d0
0 0

6
= {12thH ﬁ/ [(r/cosb + )™/ (2 - M) - r(r/cos® + r)™/(1 - M) -
0

) rYE-mn +cir™M/1-n] B
/6
= 2128/ ] ] @+ 1/cos®)?/ (2 - M) - (1 + 1l/cos®)/ (1 -1 +
0
[-(L-m + C-MmMI/QL-ME-m]} 6
/6

= 128/ W10 ] @+ Lcos®)P/ (2 -m) A0 -
0

/6
f (1 + 1/cos®)™/ (1L - M) &B + w/[6(1 -M{(2 -1}
0

The two right-hand-side integrals contained in this last step must be solved
in general using numerical integration methods, which will be discussed
briefly in the next section; special cases can be solved analytically, though.
Three of these particular cases will be treated here, because they represent
the final three integral elasticity of demand parameter values employed in
this study. Hence, Case IVa is for m = 3, and may be characterized as
follows:

/6 /6
[128/ (r£)1{ | - cosB/(1 + cosB) d® + | cos’®/[2(L + cosB)?] d® +
0 0

=
Il

n/12}
/6
[123/ (rt?) ] {tan(/12) - ®/6 + (1/2)[ ] 1/(1 + cos)? db -
0

Il

/6 T/6
| 17 + cosB) d® + | cosB/(1 + cosB) d®] + m/12)
0 0

[(122/ (rt?) 1) {tan(w/12) - ®/12 + (1/2) [(1/2)tan(n/12) + (1/6)tan’(n/12) -

tan(m/12) - tan(m/12) + ®w/6]}
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[128/ (rt?) ] (1/2) [(1/2)tan (n/12) + (1/6)tan’ (1/12)]

[6A/ (rt®) ] (0.1371809)

Equation (3.1) becomes
[6A/ (rt’)1(0.1371809) (xt - ¢) - ¢ = O

[t - (1/v)e,] - ct°/[6A(0.1371809)1 = O
The relevant radius for this equation is

r = ¢/{t - ct/[6A(0.1371809)]}

This radius is positive when ct?/A < 0.8230854.

Case IVb is for 1 = 4, and may be characterized as follows:
/6 /6
D = [128/(tY)1{ ] - cos®/[2(1 + cos®)?] d® + | cos9/[3(1 + cosh)’] dO +
0 0

m/36}

[122/ (£*t%) 1) { (1/3) (1/4) [ (2/3)tan® (n/12) - (1/5)tan’ (m/12) - 5tan(w/12) +

/2] - (1/2) [-(3/2)tan(m/12) + (1/2) (1/3)tan’ (1/12) + ®/6] + m/36}

[122/ (r’t%) ] [-7/72 — (1/60)tar’ (m/12) - (1/36)tan’(m/12) + (1/3)tan(w/12)]
= [12a/ (r’t%)1(0.0451258)

Equation (3.1) becomes

[128/ (¥*t") ] (0.0451258) (rt - ¢,) - ¢ = 0

¥ - [12a/(t’c,)](0.0451258)r + [1l2Ac,/(t’c,)](0.0451258) = O

The relevant radius for this equation is, from the general solution to
quadratic equations

r = [12A(0.0451258)/ (t%c,) + {[12A(0.0451258) /(t’c,)1* —
4[12Ac,/ (t'c.) ] (0.0451258) }**] /2
One should note that (a) not all roots are guaranteed to be real (i. e., the
discriminant may be negative), and, as mentioned in the introduction to this
section, (b) r should be chosen such that MIN: (r - ¢/t)?, subject to r 2
et

Finally, Case IVc is for M = 5, and may be characterized in the
following way:
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D = T[128/ (rs‘ts)]{nfes— cos®/[3(1 + cosH)®] b + th6 cos®/[4(1 + cos®)'] dB +
° ° n/72}
= [122/(£t%) 1) { (1/4) (1/8) [16m/12 - 15tan(n/12) + (11/3)tan’(m/12) -
(21/5)tar’ (n/12) + (1/7)tan’ (0/12)]1 - (1/3) (1/4) [(2/3)tan’ (/12) -
(1/5)tan’ (n/12) - Stan(mw/12) + ®/2] + T/72}
= [128/(£%) 1 [m/72 + (1/224)tan’ (n/12) - (11/96)tan’ (m/12) +
(17/288) tan’® (m/12) - (5/96)tan(n/12)]1 = [12A/(rt’)] (0.0306553)
Equation (3.1) becomes
[122/ (r’t%) ] (0.0306553) (rt - ¢) - ¢ = 0
r - [12A/(t'c)](0.0306553)r + [12Ac,/(tc)](0.0306553) = O

The relevant radius for this equation is, from the general solution to cubic
equations

r = [12A(0.0306553)/ (t'c,) {- ¢/ (2t) + [’/ (4t") -
12A(0.0306553) / (27t%c,) 1V 1% +
[12A(0.0306553) / (t'c,) {- </ (2t) - [/ (4t%) -
122(0.0306553) / (27t'c;) 142117
Here one should note that (a) at least one root is guaranteed to be real, and
again (b) r should be chosen such that MIN: (r - ¢/t)?, subject to r 2 ¢/t,
in order to maximize hexagon packing of the surface.
As an aside, from the theory of equations [see Uspensky (1948)], which
has been used here to determine the relevant roots for integral elasticity of
demand parameter values, one can determine whether or not roots x, X, and X

have desirable characteristics by studying three properties they display for
cubic equations of the form

¥ + a + bx + ¢ = 0 ,
namely
(1 x + % + % = a ,
{2) #*% ¥ m¥m +a*sm = b , and
(3) x*x*x, = cC

A further auxiliary consideration has to do with restrictions needed for the
fixed and variable production costs. If both ¢, = 0 and ¢, = 0, then the
solution to the equation
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M (12a/t") *integral*(rt -~ ¢) - ¢ = 0

is r = 0, which makes no sense in the space-economy; hence either fixed or
variable cost must be positive. If ¢, =0, then r = ¢/t. If ¢, = 0, then the
numerical integration and root extraction methods to be discussed in the
succeeding section still must be resorted to.

3.2. Numerical methods for integration and root extraction

The numerical methods resorted to in this project were selected after a
careful review of Press et al. (1986), Sedgewick (1983), and Kchn (1987). The
extended Simpson’s Rule, a composite integration approximation formula
obtained by adding twice the formula for the rectangle method to the formula
for the trapezoid method, and then dividing this sum by three, was decided
upon; in both of these cases height is measured at the midpoint of each sub-
interval (leading to quadrature formulae). This formula is exactly equivalent
to a piecewise interpolation obtained from connected parabolic segments
passing through successive, non-overlapping pairs of sub-intervals covering
the limits of integration; there need to be an even number of these sub-
intervals. It is one of the most heavily used of the existing formulae
employed for numerical integration, and virtually always uses a uniform sub-
interval, or step, size for partitioning the interval over which integration
is to occur.

The smaller the step size, and thus the more base points used between
the integration limits, the smaller the error tends to be that is attributable
to plecewise approximation. But, increasing the number of sub-intervals
increases the magnitude of round-off error. At some point, then, accumulated
round-off error exceeds approximation error and actually makes the calculated
integral value less accurate. In this problem, the limits of integration are
0 and T/6. The best agreement between selected analytical results and their
corresponding numerical approximations with BASIC subroutines using this rule
occur when the number of sub-intervals is set at 20. Consequently, Simpson’s
Rule has been written here as

/6
f yv(@) d® = {[n/(6*20)]1/3}{y(0) + y(n/6) +
0
19 9
2 Y y(ri/120) + 2 X yImi + 1)/1201}) .
i=1 i=0

This rule has been used in Section 3.1 to determine numerical integration
results for the Case IV situations in which there are non-integral elasticity
of demand parameter values. Its step size has been calibrated for this
project using the integral parameter values found in Cases I, II, III, IVa,
IVvb, and IVc. One also should consult Section 5.0 to inspect relevant
contrived test data set verifications.

In all cases of p = rt, the versions of Equation (3.1) are polynomials
in the radius variable r. The single relevant root of each of these
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polynomials has been obtained with a modified form of the regula fulsi method.
This root extraction technique is an iterative procedure, and is based upon
linear interpolation between two previous approximations to the root being
converged upon. For some polynomial equation f£(x) = 0, this method’s formula
may be stated as

X, = X - e =~ SE R FIE.) —ElE ] - (3.2)

This particular numerical technique allows one to restrict attention to a
specific interval known to contain the root [here that interval is (c/t,c/t
+ &, € > 0] for the radius, and allows the root to be calculated to within
some prespecified degree of accuracy. The straight line joining the endpoints
of the interval in question is called a secant; the slope of this secant is
[f(x.) - £(x.)1/(x,, - ¥,,). Since the equation f(x) must equal zero at its
root, the relative change in f(x) at this root becomes f(x_). The ratio of
this change in f(x) to this secant slope is the right-hand term of Equation
(3.2). The search using this technique begins with r = c¢,/t, and continues as
long as the left-hand side of Equation (3.1) continues to converge upon zero.
If the iterative value of r, causes Equation (3.1) to begin to move away from
zero, then the previous value r,, 1s returned to, and the increment is
modified by dividing it by 10. The algorithm is terminated after several
sequential modifications occur, resulting in a predetermined level of
accuracy .

3.3. Price calculations and demand calculations for nested structures

Recalling that the mathematical problem here involves one equation,
which specifies that price and demand values must lead to zero excess profits,
in two unknowns, namely the hexagon radius and price, obtaining solutions
requires that one of these two unknowns be fixed. In Section 3.1, price was
fixed by setting it equal to rt. Once the real radii for all commodities are
calculated, if they exist, using this constraint, then the nesting radius can
be fixed and commodity prices calculated. Moreover, p # rt, except for that
commodity positioned at the lowest level of the hierarchy and having the
smallest radius. All other radii are written as functions of this single
marginal commodity, and then prices are determined. Either the radius is
equated with this minimum radius, if a commodity is positioned at the same
hierarchical 1level, or some appropriate multiplicative factor times this
minimum radius, if a commodity is positioned at a higher hierarchical level
(see Sections 2.3 and 5.0).

Once more various cases must be considered. First, Case V is forn =
0, and may be summarized as follows:

ch6 r/coso
0 = 121 f O (p + td° dd
0 0

Il

nfG r/cos0 /6
122 i 0dd dd = 12a 7} (1/2) (r/cosB)? 3B
0 0 0
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‘Ef 6 n{ 6
6B /cos’® d® = 6Ar’ 1/cos’® dB
0 0

/6
A tan® | = 6ArY/3Y? = 2x3YAr
0

Equation (3.1) becomes
23"’ (p-¢) - ¢ = 0

The solution to this linear equation is

p = ¢ + cf(2x3"°ar)
Case VI is where M = 1, and may be summarized as follows:
nf6 r/cosb
D = O (p+td™ B B
0 0
/6 r/cosb
= 128 | 8/t - (/tH) Inp +86)1 | B
0 0
m/6
-~ (12a/t) | [r/cos® - (p/t) ln(p + rt/cosh) + (p/t) In(p)] A
0
n:f6 /6
= (12A/t) {r 1/cos® d® + (p/t) | 1n[l + rt/(p*cos®)] dO}
0 0

/6
= (124/t) {r*1n[tan(m/3)] + (p/L) { ln(p*cose + rt) do}
0

Applylng the extended Simpson’s Rule outlined in Section 3.2. to the integral
appearing in the second term of this last result yields

nf6 In[l + rt/(p*cosB)] d® = [(m/120)/3]1{1n(1 + rt/p) +
? In[l + 2rt/ (3Yp)] +
2 1% In{l + rt/[p*cos(mi/120)]1} +
i=1 5
2 ;;0 In[1 + rt/{p*cos[m(2i + 1)/1201}]}

Because p is embedded in this numerical mtegratlon, demand must be calculated
for each value of the price root that is obtained for Equation (3.1). 1In
other words, at each demand approxunatlon iteration numerical root extraction
is undertaken, with convergence occurring when demand converges.
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The seventh case is for M = 2, and may be summarized as follows:

/6 r/cosO
123 f J

0o = d (p+td™* dd A
0 0
TCJ/6 r/cos0
= 127 p/[t2 @t + p) + (1/t") 1n( + tO)1 | d@
0 0

/6
(12a/t%) ? [p/ (rt/cos® + p) + In(rt/cosd + p) - 1 - In(p)] dO
0

/6
(12a/t%) [ { {1/11 + (rt/p)secd] + In(rt + p*cosB) - 1n(cosO)} db
0
- (®/6)[1 + 1In(p)]]

/6 6
(128/t%) {m/6 - rt ? 1/(rt + p*cosB) 4B + 7/ In(rt + p*cosB) db
0 0

+ (-0.02461715) - (@®/6)([1 + 1n(p)]1}
/6 /6
= (12a/t) [- rt | 1/(rt + p*cosB) dO + ( 1n(rt + p*cosO) db
0 0
+ (-0.02461715) - (n/6)1n{p)]

This last form of the solution has three particular instances that need to be
considered, namely

Il
Il

n16
1, then 1/ (rt + p*cosf) 4O
0

if rt/p tan (/12)

/6
if rt/p > 1, then f 1/ (rt + p*cosB) dO

0
(2/1(rt)? - P 1Y% tan™{ [ (rt - p)/ (rt + p)]7*tan(n/12)} ,
and
/6
if rt/p < 1, then | 1/(ct + p*cos®) B =
0

(1/1p° - @)1} n{[(t + p)/ (et - P12 +
tan(m/12) }/{[ (rt + p)/(rt - p)1*? - tan(w/12)}]
Again iterative root extraction is embedded in iterative demand approximation,

in order to obtain a solution to Equation (3.1), except for the case of p =
rt, which is not relevant here (see Section 3.1).
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The eighth, and final, case is form # 0, 1, 2, and may be summarized
as follows:

7t/6 r/cosd

D = 12a | ] d (p+td™M dd B
0 0
nJ/G r/cosf
= 12a ; {@t + p)™/[(M+2)£7] - p@t + p)™/ [(M+1)t*]} I0 do

/6
= (12a/t%) E {[1/(2 - M) [1/ (rt/cos® + p)"*] -
[p/ (1L = M 11/ (rt/cosd + P = [1/(2 - M1 L/pP™) +

[p/(1 - m1E/p ™) 8
1?6
= (128/t){[1/(2 - M) ] 1/ (rt/cosB + p)™ df +
0

nj/6
[p/ (1 -] 1/ (rt/cos® + p)"™ @@ +
0
M/6) (L +M+2-Mm/[2-n1-np )
/6

= (@M @2a/t) {11/ -m]1 | 1/[1 + rt/ (p*cosh) 1™ o +
0
/6
/M -11 | 1/[1 + rt/ (p*cosh) 1" O + w/[6M - 2) M - 1)1}
0

Aoplying the extended Simpson’s Rule to the integrals appearing in the second
and third terms of this last result yields

/6
,{ 1/[(1 + rt/ (p*cos®) 1™ d

0
[(/120) /31 [ (1 + ct/P)®™ + [1 + 2rt/ (3Yp) 1" +
19
2 {1 + rt/[p*cos (mi/120) 1 " +
i=1
2 Y {1 + rt/{p*cos[m(2i + 1)/120]}™M]
it )
and
/6
| 1/1@ + rt/ (prcosh) 1™ 0
0

[(/120) /31 [ (1 + rt/P)™™ + [1 + 2rt/(3Yp) 1" +

19
2 XY {1+ rt/[p*cos(®i/120)]1}™" +
i=1
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9
2 ¥ {1 + rt/{p*cos[m(2i + 1)/120]}*"]
i=0

Again iterative root extraction is embedded in iterative demand approximation,
in order to obtain a solution to Equation (3.1).

Insights into properties of these price roots can be achieved through

mathematical analysis of Equation (3.1). Ietting (where "integral™ refers to
the appropriate integration result for D from above)

Z = rM(12a/t") *integral*(rt - ¢,) -
0Z/0r = Ty = [(2 -M/(3 -M)lc/t
Fz/or* = 2 -MIB-M/2 -n1lt/c) ¢ (12a/t") *integral

ifo<n<2, n # 1, 2, then
odz/or > 0 = r

pti1 1S @ Minimum

[(2 - M)/ (3 - N 1P"(128/t?) *integral*c"/M - 3) - ¢ > 0 =
no real roots exist.
ifm > 3, then
FZ/0r* < 0 = Ty 1S @ maximum
[(2 - M /(3 - M1*"(128/t7) *integral*c /(M - 3) - ¢ < 0 =

no real roots exist.

Next, letting

7z = (128/t") *integral*r - cr'° - ¢, (128/t") *integral
0Z/0r" = Tou. = {12A%integral/[(M - 2)et™] /Y
&7/ ()2 =

(B -M/M - 2)2[M - 2)ct"™) / (12a*integral) ]~ /¢ " V12a*integral /£
F2/0(r™)? > 0 = Iyym iS a minimum
[M - 2)ct™/ (12Aa%integral) ] ™2/®" M - 3)¢; - ¢12A*integral/t" < 0
= at least one real root always exists.

As an aside, if c; = 0, then p = ¢, for all values of r. If ¢, = 0, then

the numerical integration and root extraction methods still must be resorted
Lo
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4.0. A MULTINOMIAL LOGIT
CLASSIFICATION MCODEL
FOR DETERMINING CENTRAL PLACE
HIERARCHICAL ILEVELS FOR COMMCDITIES

Cne of the problems faced when dealing with the simulation of central
place structures is how to relate a partlcular good to a specific hierarchical
level. In this paper each good is characterized by three prominent
attributes, namely its variable cost component (c,), its fixed cost component
(c;), and its elasticity of demand parameter (n). These three variables have
been used in the formulation of a classification function for determining
which of four hierarchical levels any given good should be allocated to; the
central place system employed here is restricted to four hierarchy levels. A
multinomial logit model formulation was selected because it yields a set of
four probabllltles for each good; the level having the highest probability is
the one a good is allocated to here. Two data sets have been analyzed in
order to establish estimates for the parameters of this model [the interested
reader should consult Anas (1982) and/or Domencich and McFadden (1975) to
review methods of estimating parameters of a multinomial logit model]. The
first data set comes from the hypothetical data presented in Griffith (1986),
and the second is compiled from empirical observations that are in keeping
with the results summarized in Yeates and Garner (1980). The function
embedded in the algorithm is based upon a pooling of these two data sets. 1In
part this pooling is permissible because all data are transformed to their
z—score counterparts.

4.1. The hypothetical data used by Griffith

CGriffith (1986) employed artificial data that he felt reflected the
relative attributes of goods that are grouped into bundles in accordance with
central place hierarchical levels. In this case the elasticity parameters
selected for each level were constant; this lack of variation eliminated any
within-groups variation. To alleviate the statistical analysis problems
arising from this lack of variation, the elasticity of demand parameters had a
stochastic error term added to them for individual commodities; this error
term was drawn from a population that is normally distributed, has a mean of
0.0, and has a variance of 0.0001. Not surprisingly, then, the resulting data
are indistinguishable from the original data. These modified data are as
follows:
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level Cy Ce n level o8 Cr n

4 7 400  4.25001 3 20 1600 4.00001
4 2 900  4.24998 3 12z 1800 4.00001
4 7 500 4.25000 3 2 400 4.00001
4 10 100 4.25001 3 20 1400 3.99999
4 2 500 4.25000 3 16 1200 4.00000
4 10 300 4.25000 3 8 1000  3.99999
4 9 1000 4.25000 2 45 1500  3.50002
4 8 500 4.24999 2 9 1500  3.50001
4 7 900  4.25001 2 81 2100 3.50000
4 8 300 4.24999 1 312 3600 27500
4 9 900  4.25000 15 208 1600  2.75000
4 8 100 4.24999

The sample statistics for these variables, regardless of hierarchical level,
are as follows:

variable mean standard deviation
e. 35.6522 74.4731
&, 1047.8261 799.9260
n 3.9565 0.4563

A priori probabilities were calculated from the relative frequency of goods
associated with each hierarchical level. Hence these probabilities are

hierarchical level 1 2 3 4
a prior probability 0.0870 0.1304 0.2609 0.5217

Because inferences are not going to be drawn from these data, a test of
homogeneity of within—groups covariance matrices was not conducted. The
resulting multinomial logit model in this instance vyielded posterior
prcbabilities in which the probability of being classified into the correct
hierarchical class always was 1.0. Thus, a perfect classification result was
obtained here.

4.2. FEmpirical data for Snohomish County, Washington

Empirical data were collected in accordance with central place hierarchy
results summarized in Yeates and Garner (1980). The 1977 Census of Service
Industries, the 1977 Census of Retail Trade, and Tables 7.1 (p. 154) and 7.4
(p. 160) of Yeates and Garner rendered the following data:

level commodity threshold sales (1000s) # establishments
4 gas service station 196 53748847 146523
auto supplies 488 12389968 36807
drinking places 282 6901388 70886
eating places 276 54405754 237728
grocery 254 143937637 126635
hardware 431 5695140 19351
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level commodity threshold sales (1000s)  # establishments

4 bulk fuel 419 9761902 14655
barber 386 432915 11539
beauty 480 3392412 74549

3 furniture 546 19344276 53413
appliances 385 4519502 12242
radio, tv,music* 385 7704611 26087
variety store 549 ©948314 14152
drug store 458 23057288 47169
building materials 598 26804291 33985
funeral home 1214 2651966 15106
physicians 380 26948835 136164
dentists 426 9528655 82739

2 auto/new 398 121883263 30793
auto/used* 398 5186357 13287
women’ s clothing* 590 13163828 44374
men’ s clothing* 590 6838807 20643
shoes* 590 5517220 24450
Jewelry 827 5010477 19670
florist 729 2177051 20092
bakery* 610 2140723 15949
liquor store* 610 12190536 35144
motel 430 75778837 26711
cleaners/laundry 754 6326263 46549
self-service laundry 1307 844916 12446

il hotel 846 9837126 10443
shoe repair 896 150081 3112
department store 1083 76209452 8807

* denotes an estimate from Table 7.1, Yeates and Garner (1980)

The County and City Data Book reported that in 1960 the population density of
Snchomish County was 172199/2098 perscons per sdquare mile. The national
Consumer Price Index value at the end of 1977 was 186.1, and in September of
1987 was 344.4; the difference between these two figures was used here to
inflate the figures appearing above to estimated current deollar amcunts. The
1979 FTC Quarterly Financial Report for Manufacturing, Mining and Trade
Corporations reported that the aggregate proportion of depreciation equaled
1976/173722, while the aggregate proportion of operating costs equaled
163943/173722, for the economy as a whole. These figures have been used to
approximate fixed cost and variable cost terms. The 1978 Survey of Current
Business, reported that profit in the retail sector was 24%. This figure was
used to modify the variable cost estimate. All figures were prorated to daily
values per threshold unit.

First the fixed cost term for each commodity was calculated as follows:

c; = (1976/173722)*sales* (1.0 + 1.583)/[ (# establishments)*365] ,
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where the first fraction equals the national proportion of depreciation, 1.583
is the increase in the CPI between 1977 and 1987, and 365 is the number of
days in a calendar year. Then the variable cost term for each commodity was
calculated as follows:

c, = sales*(1.0 + 1.583)*(1.0 - 1976/173722 -
0.24) /[ (# establishments)*threshold*365] ,

where 0.24 refers to the rate of profit in the retail sector. Next, the
elasticity of demand parameter was estimated in a sequence of steps. Since
"self-service laundry" had the largest threshold value (i. e., 1307), its
elasticity of demand was set equal to 0.0. This restriction allowed the
demand ecuation to be solved for r:

(2x3Y2) % (172199/2098) *r¥* = 1307 ,
r = 2.1440 miles ,

where 172199/2098 is the density of demand. Since "gas service station" had
the lowest threshold value (i. e., 196), its elasticity of demand was set
equal to 5.0. A transport rate of 0.225 was used in calibrating its demand
equation, in accordance with the current viewpoint held by the IRS regarding
cost of travel by car. Since r has been determined in the preceding step,
then the demand equation can be solved for the price variable p:

n/6 r/cosh
12*(172199/2098) | | S +td B = 196 ,
0 0

p = 1.1554

These two end-point estimates then were used to calibrate all intermediate
commodity elasticity of demand values. Essentially the question addressed
asked what the elasticity of demand for a given commodity would be if its
price was equal to that for the commodity with the lowest threshold, while its
margin of consumption was equal to that for the commodity with the largest
threshold; although this perspective is a very narrow one, which ignores
nesting constraints, among other considerations, it does allow relative
elasticity parameter estimates to be determined. The ensuing calibrations
produced the following empirical data set:

level  commodity e Ce n
4 gas service station 9.9152 29.528 5.0000
4 auto supplies 3.6544 27.096 2.5330
4 drinking places 1.8290 7.837 4.0000
4 eating places 4.3929 18.422 4.0580
4 grocery 23,7073 91.492 4.2850
4 hardware 3.6176 23.690 2.8610
4 bulk fuel 8.4223 53.618 2.9360
4 barber 0.5149 3.020 3.1540
4 beauty 0.5023 3.663 2.5760
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level  commodity &, Ce n
3 furniture 3.5141 29.153 2.2380
3 appliances 5.0801 29707 3.1610
3 radio, tv,music 4.0641 23773 3.1610
3 variety store 4.7379 39.521 2.2230
3 drug store 5.6543 39.347 2.7000
3 building materials 6.9873 ©3.486 2.0000
3 funeral home 0.7661 14.131 0.1856
3 physicians 2.7592 15,931 3.1960
3 dentists 1.4322 9.270 2.8920
2 auto/new 52.6872 318.607 3.0730
2 auto/used 5.1958 31.419 3.0730
2 women’ s clothing 2.6638 23.879 2.0350
2 men’s clothing 2.9748 26.667 2.0350
2 shoes 2.0262 18.164 2.0350
2 Jewelry 1.6318 20.504 1.1613
2 florist 0.7874 8.722 1.4860
2 bakery 1.1657 10.804 1.9480
2 liquor store 3.0126 27.921 1.9480
2 motel 34.9531 228.361 2.8670
2 cleaners/laundry 0.9549 10.940 1.3990
2 self-service laundry 0.2752 5.464 0.0000
1 hotel 5.8989 75.824 1.1031
1 shoe repair 0.2852 3.882 0.9562
L department store 42.7188 702.935 0.4740

The sample statistics for these variables, regardless of hierarchical level,
are as follows:

variable mean standard deviation
1) 7.5389 12.4909
o 61.7209 131.7887
n 2.3865 115277

A priori probabilities were calculated from the relative frequency of goods
associated with each hierarchical level. Hence these probabilities are

hierarchical level i 2 3 4
a prior probability 0.0909 0.3636 0.2727 0.2727

Because inferences are not going to be drawn from these data, a test of
homogeneity of within-groups covariance matrices was not done. The resulting
multinomial logit model in this instance yielded the following posterior
probabilities:
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Actual Classified b 2 = 4
Level Commodity into TLevel
4 gas service station 4 0.0000 0.0033 0.0429 0.9538
4 auto supplies 3 * 0.0018 0.3042 0.4513 0.2427
4 drinking places 4 0.0000 0.0140 0.1384 0.8476
4 eating places 4 0.0000 0.0170 0.1384 0.8446
4 grocery 4 0.0000 0.1281 0.1697 0.7022
4 hardware 3 * 0.0008 0.1942 0.4211 0.383¢
4 bulk fuel 3 * 0.0009 0.2503 0.3975 0.3513
4 barber 4 0.0003 0.0871 0.3485 0.5641
4 beauty 3 * 0.0012 0.2376 0.4667 0.2945
3 furniture 3 0.0035 0.4099 0.4389 0.1477
3 appliances 4 * 0.0004 0.1333 0.3598 0.5065
3 radio, tv,misic 4 * 0.0003 0.1212 0.3577 0.5208
3 variety store 2 % 0.0042 0.4358 0.4248 0.1352
3 drug store 3 0.0014 0.2805 0.4320 0.2861
3 building materials 2 * 0.0090 0.5451 0.3679 0.0780
3 funeral home 2 % 0.0512 0.8558 0.0918 0.0012
3 physicians 4 * 0.0003 0.1000 0.3449 0.5548
3 dentists 4 * 0.0006 0.1551 0.4167 0.4276
2 auto/new 2 0.0017 0.94% 0.0387 0.0101
2 auto/used 4 * 0.0005 0.1570 0.3799 0.4627
2 women’ s clothing 2 0.0049 0.4704 0.4204 0.1043
2 men’ s clothing 7 0.0051 0.4750 0.4172 0.1028
2 shoes 2 0.0045 0.4608 0.4271 0.1076
s Jewelry 2 0.0185 0.7217 0.2447 0.0152
2 florist 2 0.009¢ 0.6328 0.3232 0.0344
2 bakery 2 0.0048 0.4803 0.4210 0.0940
2 liquor store 2 0.0061 0.5062 0.4017 0.0860
2 motel 2 0.0038 0.8089 0.1389 0.0483
2 cleaners/laundry 2 0.0113 0.6594 0.3015 0.0278
2 self-service laundry 2 0.0509 0.8750 0.0734 0.0007
1 hotel 2 * 0.0528 0.7236 0.2123 0.0114
s shoe repair 2 & 0.0177 0.7655 0.2074 0.0094
1 department store 1 1.0000 0.0000 0.0000 0.0000

* denotes a misclassified commodity

A summary of the affiliated discriminant analysis classification for these
data is as follows:

From Ievel To: 1 z 3 4 Total
1 1) 2 0 0 3
2 0 1.1 0 1 12
3 0 3 2 4 &
4 0 0 4 5 9
Total 1 16 6 10 33
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This classification table illustrates that (a) roughly 58% of the commodities
are classified correctly into their corresponding hierarchical levels, and
that (b) 39% of the commodities are misclassified into an adjacent
hierarchical level. Overall, then, this classification function appears to be
reasonable.

4.3. Results for the pooled data set

The two preceding data sets then were merged in order to establish a
multinomial logit function for commodity classification purposes. The sample
statistics for these wvariables, regardless of hierarchical level, are as
follows:

variable mean standard deviation
&, 19.0854 50.0404
o8 466.7286 711.1160
n 3.0313 1.2099

These sample statistics are used in the algorithm to convert input data to
Z—SCores. These standardized scores allow only the relative wvalues of
commodity attributes to be considered when classifying commodities into
hierarchical levels. In the case of the joint data set, these z-scores are as
follows:

Data
Set Commodity Level C, Cr 1
Snohomish 1 4 -0.18326 -0.61481 1 6272
County 2 4 -0.30837 -0.61823 -0.4119
3 4 -0.34485 —-0.64531 0.8006
4 4 -0.29361 -0.63043 0.8486
5 - 0.09236 <. 5276 1.0362
6 4 -0.30911 -0.62302 -0.1408
7 4 ~0..21309 -0..58098 -0.0788
8 4 —0 37111 -, 65203 0.1014
) 4 0 7136 -0.65118 —0.3763
10 3 —-0.31117 —0.61534 -0.6551
Tl 3 -0.27988 —-0.61454 0.1072
12 3 -0.30018 -0.62290 0.1072
13 3 -0.28672 -0.60076 -0.6681
14 3 -0.26841 -0.60100 =, 2738
15 3 =0, 24177 -0.56706 —-0.8524
16 d —-0.36609 —-0.63646 =2.3520
17 3 -0.32626 =. 63353 0.1361
18 3 “.35278 -0.64330 -0.1151
1.9 2 0.67149 -0.20829 0.0345
20 2 027751 -0.61215 0.0345
2. e, -0.32817 -=0.62275 -0.8235
22 2 -0.32195 -0.61883 -0.8235
23 2 -0.34091 -0.63079 -0.8235
24 2 -0.34879 -0.62750 -1.5456
25 2 —-0.36566 -0.64407 =1 =272



Data

Set Commodity Level <, Ce |
Snohomish 26 2 -0.35810 -0.64114 -0.8954
County 27 2 0,521 20 -0.61707 —-0.8954
28 2 0.31710 =0.33520 —0:1358
29 2 -0.36232 -0.64095 ~1 53491
30 2 =0 37590 -0.64865 -2.5054
31 1 =0.26352 -0.54971 =1:5937
32 1 -0.37570 -0.65087 17151
33 1 0.47229 0.33216 =2 1137
Griffith 34 4 -0.24151 -0.09384 1.0073
35 4 -0.34143 0.60928 1.0073
36 4 —-0.24151 0.04679 1.0073
37 4 -0.18156 =0.51571 1.0073
38 4 -0.34143 0.04679 1.0073
35 4 -0.18156 -0.23446 1.0073
40 4 -0.20155 0.74991 1.0073
41 4 =0, 22153 0.04679 1.0073
42 4 -0.24151 0.60928 1.0073
43 4 -0.22153 —-0.23446 1.0073
44 4 —-0.20155 0.60928 1.0073
45 4 ~. 22153 ~0. 51571 1.0073
46 3 0.01828 1:59365 0.8006
47 3 -0.14159 1.87490 0.8006
48 3 -0.34143 -0.09384 0.8006
49 3 0.01828 1.31240 0.8006
50 3 -0.06166 1.03116 0.8006
5l 3 ~(.22153 0.74991 0.8006
52 2 0.51787 1.45303 0.3874
53 2 -0.20155 1.45303 0.3874
54 2 1.23729 2.29677 0.3874
55 1 5.85357 4.40613 =0 .2325
56 1 3.77524 1.59365 —0.2325

A priori probabilities were calculated from the relative frequency of goods
associated with each hierarchical level. Hence these probabilities are

hierarchical level 1 2 3 4
a prior probability 0.0893 0.2679 0.2679 0.3750

Because inferences are not going to be drawn from these data, a test of
homogeneity of within—groups covariance matrices was not conducted. The
pooled covariance matrix C is as follows:

Variable z (c,) z (Ce) z (M)
280,) 0.67283893 0.56314922 0.27452309
G 0.56314922 0.93394799 0.46484397
z (n) 0.27452309 0.46484397 0.58025381

The multinomial logit equation defines probabilities, using this covariance
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matrix, as follows:
P (hierarchy level jlz,) = expl-(z, — 2,)'C'(z; - 2)/2 -

k=4
In{prior) 1/ & expl-ia, — 2)C &, ~ 8572 - Infprior)] - (4.1)
k=1

where prior; denotes the aforementioned prior probabilities of being assigned
to hierarchy level j. The form of this multinomial logit equation requires
the covariance matrix be inverted; in this example the inverted matrix is as
follows:

Variable e ) Z{t5) z(m)
z (c,) 3.00140 —1.83447 0.04961
z (Cy) -1.83447 2.90199 -1.45690
z(m) 0.04961 -1.45690 2.86704

The exponentiation argument for each of the posterior probability values is as
follows:

TLevel 1 2 3 4
1 4 .83173156 12.06559897 18.53581071 27.42483294
2 14.26274888 2.63458165 3.86701519 7.98239605
3 20.73296062 3.86701519 2.63458165 4.23108266
4 30.29490599 8.65531919 4.90400580 1.96165851

And, the individual hierarchy level means for each variable are as follows:

Ievel i 2 3 4

z (C,) 1.89238 -0.05722 -0.23086 -0.24479
z () 1.02627 -0.10964 0.06219 -0.21046
z (m) =1.17750 -0.65622 0.01581 0.73779

The resulting multinomial logit model in this instance yielded the following
posterior probabilities:

Actual Classified Wl 2 3 4

Level Commodity into Level a
4 1 4 0.0000 0.0004 0.0118 0.9878
4 2 3 *® 0.0002 0.3789 0.4086 0.2123
= 3 = 0.0000 0.0101 0.0849 0.9051
4 - L 0.0000 0.0087 0.0763 0.9149
4 5 4 0.0000 0.0057 0.0494 0.9448
4 6 4 0.0000 0.2256 0.382% 0.3915
4 7 4 0.0000 0.2113 0.3656 0.4231
& 8 4 0.0000 0.1139 0.3056 0.5806
< 9 3 * 0.0001 0.3429 0.4148 0.2422
3 10 Z 0.0005 0.5198 0.3739 0.1058
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Actual Classified 1 2 3 4
Level Commodity into Level i - - B
3 11 4 * 0.0000 0.1217 0.3046 0.5737
3 12 4 * 0.0000 0.1195 0.3044 0.5761
3 13 2 % 0.0006 0.5329 0.3673 0.0993
3 14 3 0.0001 0.3070 0.4024 0.2905
3 15 2 % 0.0014 0.6375 0.3099 0.0512
3 16 2 * 0.1101 0.8517 0.0379 0.0002
3 17 4 * 0.0000 0.1071 0.2930 0.5999
3 18 4 * 0.0000 0.2051 0.3774 0.4174
2 19 4 % 0.0017 0.3189 0.3083 0.3711
2 20 4 * 0.0000 0.14%96 0.3310 0.5193
2 21 2 0.0009 0.6035 0.3330 0.0626
2 22 2 0.0009 0.6050 0.3320 0.0621
2 23 2 0.0008 0.6005 0.3352 0.0635
2 24 2 0.0100 0.8435 0.1420 0.0045
2 25 2 0.0038 0.7756 0.2077 0.0130
2 26 2 0.0010 0.6309 0.3173 0.0509
2 034 2 0.0012 0.6393 0.3109 0.0486
2 28 2 0.0008 0.3552 0.3508 0.2933
2 29 2 0.0049 0.7967 0.1886 0.0099
2 30 2 0.1606 0.8111 0.0283 0.0001
1 31 2 % 0.0168 0.8573 0.1228 0.0031
1 32 2 % 0.0154 0.8690 0.1131 0.0024
1 33 1 0.6899 0.3014 0.0087 0.0000
4 34 4 0.0000 0.0126 0.1257 0.8618
4 35 4 0.0000 0.0354 0.3422 0.6224
4 36 4 0.0000 0.0159 0.1559 0.8282
4 37 4 0.0000 0.0060 0.0613 0.9327
4 38 4 0.0000 00153 0.1626 0.8221
4 39 4 0.0000 0.0100 0.0978 0.8922
4 40 4 0.0000 0.0450 0.3806 0.5744
4 41 4 0.0000 0.0161 0.1546 0.8293
4 42 4 0.0000 0.0370 0.3308 0.6321
4 43 4 0.0000 0.0092 0.09%9 0.8905
4 44 4 0.0000 0.0377 0.3263 0.6360
4 45 4 0.0000 0.0059 0.0625 0.9316
3 46 3 0.0000 0.1578 0.6914 0.1508
3 47 3 0.0000 0.1579 0.7513 0.0908
3 48 4 * 0.0000 0.0258 0.1980 0.7763
3 49 3 0.0000 0.1372 0.6322 0.2299
3 50 ) 0.0000 0.1099 0.5624 0.3277
3 51 3 0.0000 0.0797 0.4850 0.4354
2 52 3 * 0.0008 0.3698 0.5569 0.0724
2 53 3 * 0.0000 0.2545 0.6831 0.0623
2 54 2 0.0273 0.5505 0.4059 0.0163
1 55 1 1.0000 0.0000 0.0000 0.0000
1 56 1 0.9997 0.0003 0.0000 0.0000

* denotes a misclassified commodity

A summary of the affiliated discriminant analysis classification for these
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data is as follows:

From Ievel To: 1 p 3 4 Total
1 3 2 0 0 5
2 0 11 2 2 15
3 0 L 6 5 15
4 0 0 2 19 21
Total £ 17 10 26 56

This classification table illustrates that (a) roughly 70% of the commodities
are classified correctly into their corresponding hierarchical levels, and
that (b) 27% of the commodities are misclassified into an adjacent
hierarchical level. Overall, then, this classification function appears to be
reasonable.

4.4, Data dimensions for hierarchical classification

The preceding results present at least one interesting puzzle that needs
to be solved at this point. While the simulated data produce a perfect
classification function, whereas the empirical data produce a reasonably good
classification function, the sizeable differences in sample means and
variances for the three variables in question here between these two data sets
are marked. Nevertheless, the pooled data set continues to yield quite good
classification results. An important question asks “along which discriminant
function dimensions do the hierarchical levels differ most conspicuously?"
One answer to this question is given by the normalized eigenvectors of the
product of the inverse of the within-levels SSCP matrix multiplied by the
between-levels SSCP matrix, which yield an orthogonal partitioning of total
variance. The importance of each of these dimensions is indicated by their
assoclated eigenvalues. For the three data sets analyzed here, these
eigenfunctions are as follows:

Data set Variable DF1 DE2 DE3
Griffith &, 0.0000 0.8201 0.:2237
& 0.0000 -0 .2882 0.6563
n -1.0000 0.4943 0.7206

A 2.5631*10° 5.2823 0.0628

% 100.00 0.00 0.00
Snohomish e, 0.2475 -0.6138 0.9455
County G, 0.1911 0.7485 -0.3036
n -0.9499 0.25%1 0. LB
A 1.3281 0.3171 0.0290

% 79.33 18.94 1.73
Joint G, -0.3775 0.7700 -0.4118
& =0::3235 -0.5101 0.9079
n 0.8677 0.3833 0.0785
A 2.2850 0.2539 0.0237

% 89.17 9.91 0.92

37



These eigenfunction results demonstrate that only one pronounced conspicuous
discriminatory dimension is latent in each of these data sets; the first
dimension accounts for an overwhelming percentage of the variance
(respectively, 100%, 79.33%, and 89.17%). Because the pattern of signs is
arbitrary, by a multiplicative factor of -1, all three data sets exhibit the
same loading pattern for this first dimension, which refers to the elasticity
of demand parameter. For the simulated data set this dimension is purely the
elasticity of demand parameter, since the other two variables have loading
coefficients of 0.0 on it; the empirical and joint data sets are not as pure,
since each of the remaining two variables has a low (but not zero) loading on
it. The remaining two dimensions isolate fixed cost and variable cost
impacts, which are inversely related in terms of the second discriminant
dimension in this rotated variable space. But, so little wvariance is
accounted for by the second dimension (respectively 0.0%, 18.94%, and 9.91%),
while virtually no variance is accounted for by the third dimension
(respectively 0.0%, 1.73%, and .92%), that these two variables will tend not
to be effective discriminators between hierarchical levels. Consequently, the
classification results tend to be consistent across the three data sets
because in all three cases a commodity is allocated to a hierarchical level
almost strictly in accordance with its elasticity of demand parameter.
Inspection of the sample statistics from the simulated and empirical data sets
for this parameter alone reveal that the means and variances are not
dramatically different. However, they are significantly different (F = 6.3816
for the variance ratios, and t = 7.07 for the difference of means) .
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5.0. RESULTS FOR CONTRIVED TEST DATA SETS

Twenty-six test data sets have been employed here in an attempt to
subject the algorithm to a comprehensive evaluation. All results have been
verified by replicating them using the IMSL subroutine package as well as
implementing the numerical approximations in FORTRAN code on a mainframe VAX.
Output from each of these contrived data sets will be described here; each
file is available with the digital version of the source code.

Table 1 and Figure 1 present results for the data used in Griffith
(1986) ; again, one should note the correction to this earlier finding (Good #1
has a non-nested radius of 97.17, not the mistakenly reported radius of
183.26). The data for this example are housed in an ASCII file entitled
PAPER. Whereas in Griffith (1986) the hierarchy levels for commcdities were
prespecified, here the hierarchical levels are determined by the discriminant
function allocation mechanism embedded in the algorithm; this change has
resulted in Good #15 being classified as a Level 4 rather than ILevel 3
commodity, and Goods #19 and #20 being classified as a Level 3 rather than
Level 2 commodity. Because of the re-classification of some of the
commodities, the radius wvalue upon which the central place hierarchy is
generated becomes 20.63 (for Good #15), rather than 21.09 (for Good #5).
Because of constraints placed on the system by nesting, one should note {(not
surprisingly) that nested demand is always less than or equal to non-nested
demand, when supplying a commodity is feasible; infeasibility is denoted in
the table by an asterisk, and represents equation solutions that are strictly
complex numbers (none of the roots of the equation in question are real
numbers) . This change in the spacing of central places has resulted in
changes in the prices at which an equilibrium occurs (e. g., Good #2 now sells
for 2.24, rather than 2.01); one should note, too, that a computer program
coding error was uncovered in the price equations used in Griffith (1986).
For these data only three commodities would be sold in the central place
system (#2, #5, and #15), all central places would occur at the village level,
and nearest neighbor villages would be spaced 41.26 units apart (twice the
distance of the radius, which is measured to the perpendicular bisector of a
straight line connecting nearest neighbor locations).

Table 2 and Figure 2 present results for a data set that has been
constructed in a way that ensures all commodities are offered, and all
hierarchical levels are present. This end was attained by lowering the
transport cost and revising the elasticity of demand parameters used in
Griffith’s data set. The data for this example are embedded in the computer
program. Now the marginal commodity becomes Good #5, which is classified into
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the lowest hierarchical level and has the smallest non-nested radius. In this
situation most commodities are sold by setting their prices equal to their
respective variable costs; the few exceptions to this tendency have prices
slightly above their corresponding wvariable costs. Nested demand varies
considerably, with very sizeable amounts being achieved in the upper levels of
the hierarchy. The spacing of centers at progressively higher hierarchical
levels is equal to 2*(200.09) = 400.1875, 2%3?%(200.09) = 693.1451,
2%3% (200.09) = 1200.563, and 2*3*?*(200.09) = 2079.435. One should be able to
easily trace the hexagonal market areas on the map; they are very conspicuous.

Tables 3-9 and their affiliated Figures 3-9 present results for a
sequence of data sets in which a single elasticity of demand value is shared
by all commodities in each set. The program allows this parameter to take on
values between 0 and 5, which seems to be a reasonable range since values
beyond 5 tend to eliminate virtually all possibilities of obtaining feasible
solutions; closed form solutions exist to certain integration problems for
integer values of the elasticity parameter, allowing the algorithm to reduce
execution time for these cases. The sequence of six data sets uses the
elasticity parameter values of 0, 1, 2, 3, 4.25, and 5; the data for these
examples are housed in ASCII files entitled NUO, NUl, NUZ, NU3, NU4.25, and
NU5. When all commodities have a parameter value of zero (inelastic demand),
all commodities are offered at either hierarchical Ievels 1 or 2, price
becomes equal to variable cost, and central place spacings are relatively
small. This scenario changes very little when demand becomes more sensitive
or responsive to changes in price, and hence elasticity is increased by
raising the parameter value to unity. Fewer commodities are classified into
hierarchical Level 1, and some prices begin to slightly exceed the affiliated
variable costs. Spacing distances are incremented by an almost negligible
amount. An additional increase in the elasticity of demand parameter value,
to 2, further reinforces the pattern of change occurring between the values of
0 and 1; yet again fewer commodities are classified into hierarchical Ievel 1,
more commodity prices slightly exceed their corresponding variable costs, and
central place spacings are scarcely incremented. But, now a commodity becomes
infeasible in the nested hierarchical central place system, even though it is
feasible in a non—nested system (e. g., a Loeschian system). A further
increase in the elasticity parameter value, to 3, creates considerable
differentiation in the results. Commodities now are classified into all four
hierarchical levels, the offering of more commodities becomes infeasible
within the nested system, and several commodities begin to deviate noticeably
from their respective variable costs (e. g., Good #19 has a price of 49.06 and
a variable cost of 45). Central places are spaced further apart, by a
considerable amount, too. Incrementing the elasticity parameter to a value of
4 begins the elimination of upper hierarchical levels; ILevel 2 disappears when
commodities are allocated to levels. Now a goodly number of commodities no
longer can be offered; in many instances, supplying them would be infeasible
even in a non-nested system. The spacing of the lowest lewel of central
places decreases dramatically, because a new marginal commodity has emerged;
this is a facet of the restructuring of the commodities-to-hierarchical levels
allocation in the commodities feasibility state space. These tendencies are
further reinforced as the elasticity parameter value is increased to 4.25, and
then to 5; the basic non—nested radius increases from 20.63 to 20.85, and then
to 22.47, while more commodities are allccated to Level 4, and more
commodities attain the status of being infeasible.
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Table 8 and Figure 8 have a non-integer elasticity parameter, in order
to test the numerical integration approximations routines in the computer
code. Tables 10-11 and their accompanying Figures 10-11 expand upon this
theme, for the special cases of zero fixed cost and zero variable cost. The
data for these examples are housed respectively in ASCII files entitled
NUO4.25 and NU4.250. If the fixed cost becomes zero, then as the constraint
equation

Demand*(p - ¢,) — 0 = 0 {5.1)

suggests, price (recall that this actually is pg,) will exactly equal variable
cost. Removing wvariation in fixed cost from the hierarchical level
classification function yields a further reduction in the differentiation of
commodities by level. The offering of all commodities becomes feasible in a
non-nested system, whereas those commodities having a high variable cost
cannot be offered in a nested system. The marginal commodity radius exactly
equals c¢,/t, and is noticeably smaller than when fixed costs are non-zero. In
contrast, if the variable cost becomes zero, although the offering of most
commodities remains feasible in a non-nested system, most commodities cannot
be offered in a nested system. A less homogeneous classification of
commodities to hierarchical levels is obtained as wvariation attributable to
variable cost is removed from the hierarchical level classification function.
The spacing between neighboring central places positioned at the same level of
the hierarchy substantially increases. Not surprisingly, prices far exceed
variable costs. And, non-nested demand is reduced by a noticeable order of
magnitude.

Tables 12-26 coupled with Figures 12-26 present results for a sequence
of data set that has been constructed in a way that ensures only pre-selected
combinations (in fact, all possible combinations, of which there are 2! - 1)
of hierarchical levels are present. The data for these examples are housed in
ASCII files entitled 1, 2, 3, 4, 1&2, 1&3, 1&4, 283, 284, 3&4, 1&2&3, 1&2&4,
1&3&4, 2&3&4, and 1&2&3&4; they were judiciously selected from the embedded
data set (but now letting t = 0.1) in order to guarantee the presence of the
pre-selected levels that are indicated in their corresponding file names. The
only real variations in tabular output across this set of results is
attributable to the nesting of levels. In other words, Table 12 has unique
nested results, Tables 13 and 16 have common Ievel 2 nested results, Tables
14, 17, 19 and 22 have common Level 3 nested results, and Tables 15, 18, 20,
21, 23, 24, 25 and 26 have common Level 4 results. The maps accompanying
these groupings of results illustrate impacts made upon a central place
structure by the addition of another hierarchical level. Within each group
the spacing of central places at the lowest hierarchical level remains
constant across the combinations involved. Prices and nested demand remain
constant, too, since the basic radius for nesting goes unaltered. A
comparison of results for upper levels of the hierarchy reveals that prices
tend to remain unchanged when lower levels materialize, while nested demand
displays considerable variation (e. g., Level 1, Tables 12, 16, 17 and 18).

These test data sets suggest a number of potential experiments that

students can undertake. For instance, given a certain cost structure,
identifying what sort of central place system would unfold (which hierarchical
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levels would exist, which commodities would be economically feasible, what
prices would be attached to commodities, what demand would materialize, how

central places would be spaced). Or, given a certain set of fixed costs and
variable costs, identifying structural shifts in the central place system as
demand becomes increasingly/decreasingly elastic. Or, given a set of

commodities whose offerings would be infeasible, identifying the necessary
shifts in costs structures that would allow the commodities to be supplied.
Or, what are the marginal effects on the central place hierarchy of a given
commodity. Moreover, there is a richness of themes that can be explored in an
experimental manner with this computer program. Furthermore, the industrious
and creative instructor could modify the algorithm’/s code in order to address
other themes, such as the minimum magnitude of excess profits necessary to
ensure the offering of a given economically infeasible commodity when excess
profits are zero.
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Table 1
(Econcomic Geography Paper) File PAPER (L = .1, A = 500)

L C, &, Nu non-nested non-nested nested nested price
radius demand radius demand

4 7 400 4.25 9713 1472 20.63 * *

4 2 900 4.25 22.21 4076.04 20.63 3789.15 2.24
4 7 500 4.25 ® * 20.63 & *

4 10 100 4.25 108.75 114.26 20.63 * *

4 2 500 4.25 21.09 4577.27 20.63 4497.03 2.11
4 10 300 4.25 & ® 20.63 * ®

4 9 1000 4.25 X & 20.63 7 *

4 8 500 4.25 * * 20.63 & 2

4 7 900 4.25 * * 20.63 5 2

4 8 300 4.25 103.47 127.79 20.63 * *

4 Y 900 4.25 * A 20.63 % *

4 8 100 4.25 85.03 198.76 20.63 & &3

3 20 1600 4 * * 25.73 * *

3 A2 1800 4 & A 35.73 * *

4 2 400 4 20.63 6362.59 20.63 6369.31 2.06
3 20 1400 4 * * 35.73 i 2l

3 16 1200 4 * * 35.73 * *

3 8 1000 4 & & 35.73 * *

3 45 1500, 3.5 733.05 52.99 35.73 2 *

3 9 1500 3.5 105.44 971.42 35.73 x *

2 81 2100 3.5 o * 61.89 i *

1 312 3600 2.75 31759.03 609.9 107.19 % *

1 208 1600 2.75 2099.22 832.59 107.19 * *

Figure 1
Central Place Structure Map
The distance between hamlets is: 41.25733 e — hamlet
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Table 2

Embedded Example (t = .01, A = 500)

L G, €, Nu non—nested non-nested nested nested price

radius demand radius demand
4 7 400 4.25 701.3 30661.71 200.09 8810151 7. 05
4 2 900 4.25 200.17 514891.3 200.09 514751.7 2
4 T 500 4.25 701.63 30629.49 200.09 8257.42 7.06
4 10 100 4 1000.38 2705519 200.09 4147.65 10.02
4 b 500 4 200.09 676253 200.02 677092.4 2
4 10 300 4 1001.13 27014.67 200.09 4075.87 10.07
3 9 1000 3.5 900.81 123018.8 346.57  42948.67 9.02
4 8 500. 3.5 800.34 146896.4 200.09 27647.22 8.02
3 7 900 3.5 700.5 179394.7 346.57 86607.32 7.01
3 8 300 2275 800.03 965263.1 346.57 342240.2 8
3 9 900 2.75 900.1 883602.6 346.57 264114.6 9
3 8 100, 2.75 800.01 965281.7 346.57 342293.6 8
2 20 1600 2 2000.02 6453216 600.28 1077366 20
2 42 1800 2 1200.03 6453216 600.28 2441402 12
2 2 400 2 200.01 6453216 600.28 2.084653E+07 2
2 20 1400 2 2000.02 6453216 600.28 1077396 20
2 16 1200 2 1600.02 6453216 600.28 1554574 16
2 8 1000 2 800.02 6453216 600.28 4404456 8
1 45 1500 0 4500 3.507403E+10  1039.72 1.872368E+09 45
1 9 1500 0 900 1.402962E+09  1039.72 1.872368E+09 9
1 81 2100 0 8100 1.136398E+11  1039.72 1.872368E+09 81
1 312 3600 0 31199.99 1.686046E+12 1039.72 1.872368E+09 312
1 208 1600 0 2080 7.493546E+11  1039.72 1.872368E+09 208

Figure 2

Central Place Structure Map

* ° ° @ ° e o*
L ] # L] L ] # L ]
[ ] ® # ° o
% ° o *

The distance between cities: 2079.435 @ - city
The distance between towns: 1200.563 * — town
The distance between villages: 693.1451 # - village
The distance between hamlets: 400.1875 e — hamlet
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Table 3
File NUO (£t = .1, A = 500)

r
£
£3

Nu

non-nested non-nested nested

nested price

radius demand radius demand
2 7 400 O 70 8487164 20.01 693220.3 7
2 2 900 0 20.01 693719.3 20.01L 693220.3 2
2 7 500 O 70 8487189 20.01 693220.3 7
2 10 100 O 100 1.732052E+07 20.01 693220.3 10
2 2 500 0 20.01 693320 20.01 693220.3 2
2 10 300 O 100 1.732056E+07 20.01 693220.3 10
2 9 1000 0 90 1.402983E+07 20.01 693220.3 9
2 8 500 0 80 1.108525E+07 20.01 693220.3 8
2 7 900 0 70 8487308 20.01 693220.3 7
2 8 300 O 80 1.10852E+07 20.01 693220.3 8
2 9 900 0 90 1.402981E+07 20.01 693220.3 9
2 8 100 O 80 1.108515E+07 20.01 6893220.3 8
1 20 1600 O 200 6.928218E+07 34.65 2079661 20
1 12 1800 0 120 2.494183E+07 34.65 2079661 12
2 2 400 O 20.01 693220.2 20.01 693220.3 2
1 20 1400 O 200 6.928216E+07 34.65 2079661 20
1 16 1200 O 160 4.434064E+07 34.65 2079661 16
2 8 1000 0 80 1.108537E+07 20.01 693220.3 8
1 45 1500 0 450 3.507404E+08 34.65 2079661 45
1, 9 1500 O 90 1.402994E+07 34.65 2079661 9
1 81 2100 0 810 1.136399E+09 34.65 2079661 81
1 312 3600 O 3120 1.686048E+10 34.65 2079661 31.2
1 208 1600 0 2080 7.493543E+09 34.65 2079661 208

Figure 3

Central Place Structure Map

* * ES @ x * ES
* * * * * *
* ) * * *
* * * *

The distance between cities: 69.30203 @ — city
The distance between towns: 40.01154 * — town
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Table 4

File NU1 (£t = .1, A = 500)
L € Ce Nu non-nested non-nested nested nested price

radius demand radius demand
2 7 400 1 70.01 730031.4 20.02 82841.82 o
2 2 900 1 20.04 209013.1 20.02 208609.9 2
2 7 500 1 70.01 730045.8 20.02 82829.96 7.01
2 10 100 1 100 1042830 20.02 60973.78 10
Z 2 500 1 20.02 208813.8 20.02 208733.4 2
2 10 300 1 100 1042850 20.02 60956.49 10
2 9 1000 1 90.01 938649.4 20.02 66774.47 9.01
2 8 500 1 80.01 834318.8 20.02  73966.78 8.01
2 7 900 1 70.01 730102.8 20.02 82781.56 7.01
2 8 300 1 80 834293.8 20.02  73987.96 8
2 9 900 1 90.01 938638.4 20.02 66783.28 901
Z 8 100 1 80 834268.9 20.02 74009.65 8
2 20 1600 1 200.01 2085721 20.02  32370.22 20.05
2 12 1800 1 120.01 1251534 20.02 51721.6 12.03
2 2 400 1 2002 208763.9 20.02 208764.4 2
2 20 1400 1 200.01 2085711 20.02 32380.24 20.04
2 16 1200 1 160.01 1668588 20.02  39847.63 16.03
2 8 1000 1 80.01 834381.3 20.02  73913.48 8.01
1 45 1500 1 450 4692725 34.67 43892.85 45.03
2 9 1500 1 90.01999 938704.9 20.02 66726.46 9.02
1 81 2100 1 810 8446871 34.67 24937.42 81.08
1T 312 3600 1 3120 3.253601E+07 34.67 6635.16 312.54
1 208 1600 1 2080 2.169067E+07 34.67 9893.76  208.16

Figure 4

Central Place Structure Map

* * * @ * x
* * * * *
* * * *
x * * *

The distance between cities: 69.34841 @ - city
The distance between towns: 40.03832 * — town

46



File NU2 (£t = .1, A = 500)

Table 5

L C, Ce Nu non-nested non-nested nested nested price

radius demand radius demand
2 7 400 2 70.06 64532.16 20.06 9875.191 7.04
2 2 900 2 20.14 64532.16 20.06  64213.67 2.01
2 7 500 2 70.08 64532.16 20.06 9850.981 7.05
2 10 100 2 100.02 64532.16 20.06 5370.97 10.02
2 2 500 2 20.08 64532.16 20.06 64475.18 2.01
2 10 300 2 100.05 64532.16 20.06 5335.48 10.06
2 9 1000 2 90.15 64532.16 20.06 6286.66 9.16
2 8 500 2 80.08 64532.16 20.06 7838.5 8.06
2 7 900 2 70.14 64532.16 20.06 9753.99 7.09
2 8 300 2 80.05 64532.16 20.06 7881.62 8.04
2 9 900 2 90.14 64532.16 20.06 6306.29 9.14
2 8 100 2 80.02 64532.16 20.06 7924.74 8.01
2 20 1600 2 200.25 64532.16 20.06 1369.81 21.17
2 Iz 1800 2 120.28 064532.16 20.06 3619.67 12:5
2 2 400 2 20.06 64532.16 20.06  64284.75 2.01
2 20 1400 2 200.22 64532.16 20.06 1389.48 21.01
2 16 1200 2 160.19 64532.16 20.06 2165.77 16.55
& 8 1000 2 80..15 64532.16 20.06 7730.28 8.13
2 45 1500 2 450.23 64532.16 20.06 254.9 50.88
2 9 1500 2 90.23001 64532.16 20.06 6187.98 9.24
1 81 2100 2 810.33 64532.16 34,75 247.49 89.49
1 312 3600 2 3120.56 64532.16 34.75 * *
1 208 1600 2 2080.25 64532.16 34.75 30.08 261.2

Figure 5

Central Place Structure Map

] ES * @ * *
* * * * *
* * * *
* * *

The distance between cities: ©69.49675 @ - city
The distance between towns: 40.12397 * — town
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File NU3 (t = .1, A = 500)

Table 6

L £, Ce Nu non-nested non-nested nested nested price
radius demand radius demand
3 7 400 3 70.69 5822.04 138.9 10138.83 7.04
3 2 900 3 20.45 20127.14 138.9 60145.18 2.01
3 7 500 3 70.86 5807.75 138.9 10115.13 7.05
4 10 100 3 100.24 4105.43 80.19 3257.19 10.03
3 2 500 3 20.25 20327.14 138.9 60394.11 2.01
3 10 300 3 100.73 4085.43 138.9 5466.53 10.05
3 9 1000 3 92.24 4461.59 138.9 6468.3 9.15
3 8 500 3 80.98001 5081.78 138.9 8071.14 8.06
3 7 900 3 7L.57 5750.61 138.9 10020.04 7.09
3 8 300 3 80.59 5106.78 138.9 8114.12 8.04
3 9 900 3 92.01 44727 138.9 0488.23 9.14
4 8 100 3 80.19 5131.78 80.19 5131.79 8.02
3 20 1600 3 208.09 1977.71 138.9 1214.47 27 32
3 12 1800 3 125.49 3279.52 138.9 3642.25 12.49
3 2 400 3 20,2 20377.14 138.9 60456.28 2.01
3 20 1400 3 207.04 1987.71 138.9 1238.03 21.13
3 16 1200 3 164.81 2497.14 138.9 2072.45 16.58
3 8 1000 3 81.99 5019.28 138.9 7963.1 8.13
2 45 1500 3 467.02 881.21 240.58 369.47 49.06
3 9 1500 3 93.4 4406.03 138.9 6368.09 9.24
2 81 2100 3 853.55 482.15 240.58 * *
1 312 3600 3 3419.09 120.37 416.7 * *
1 208 1600 3 2164.14 190.16 416.7 * *
Figure 6
Central Place Structure Map
* ® ° * ° ® *
# ° ° # °
o L] # L] L ]
* ® ° *
The distance between towns: 481.1692 * — town
The distance between villages: 277.8032 # - village
The distance between hamlets: 160.3897 e — hamlet
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Table 7

File NU4 (t = .1, A = 500)

L G E: Nu non-nested non-nested nested nested price
radius demand radius demand
4 7 400 4 #9229 430.69 20.63 ok *
4 2 900 4 21.54 5834.16 20.63 5613.0L 2.16
4 7 500 4 82.6 396.85 20.63 i ®
4 10 100 4 103.99 250.36 20.63 3 *
4 2 500 4 20.8 6258.88 20.63 6224.08 2.08
4 10 300 4 114.54 206.39 20.63 * *
> 9 1000 4 & & 35.713 * *
4 8 500 4 97.58999 284.32 20.63 C %
4 7 900 4 110.83 220.42 20.63 * %
4 8 300 4 88.72 343.97 20.63 o *
4 9 900 4 & A 20.63 & *
4 8 100 4 82.51 397.66 20.63 * i
1 20 1600 4 & 2 35.73 &S o
3 dF 1800 4 * & 35.73 ol #
4 2 400 4 20.63 6362.59 20.63 369,31 2.06
3 20 1400 4 £ . 35.73 2 7
3 18 1200 4 * * 35.13 ® =
3 8 1000 4 % * 35473 * K
3 45 1500 4 = * 35.73 & *
2 9 1500 4 * . 3h.13 i *
3 &1 2100 4 ® el 35.773 * *
1 312 3600 4 % X 107.18 A X
1 208 1600 4 - i 102..19 3 e
Figure 7

Central Place Structure Map

The distance between hamlets is:

41.25733
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Table 8
File NU4.25 (£t = .1, A = 500)

L. €, Ce Nu non-nested non-nested nested nested price
radius demand radius demand

4 o 400 4.25 97.17 147.2 20.85 * *

4 2 900 4.25 22.21 4076.04 20.85 3831.46 2.23
4 7 500 4.25 x % 20.85 * *

4 10 100 4.25 108.75 114.26 20.85 * *

4 2 500 4.25 21.09 4577.27 20.85 4535.88 2l
4 10 300 4.25 * * 20.85 * *

4 9 1000 4.25 % * 20.85 % *

4 8 500 4.25 * * 20.85 2 *

4 7 900 4.25 x * 20.85 * *

4 8 300 4.25 103.47 127.79 20.85 & *

4 9 900 4.25 * 7 20.85 * *

4 8 100 4.25 85.03 198.76 20.85 * *

3 20 1600 4.25 i * 36.12 * *

3 12 1800 4.25 * * 36.12 * *

4 2 400 4.25 20.85 4697.03 20.85 4697.02 2.08
3 20 1400 4.25 % x 36.12 * *

3 16 1200 4.25 * % 36.12 * *

4 8 1000 4.25 i % 20.85 * %

3 45 1500 4.25 * x 36.12 * *

3 9 1500 4.25 * * 36.12 * *

3 81 2100 4.25 s * 36.12 * *

1 312 3600 4.25 * = 108.35 * *

1 208 1600 4.25 * * 108.35 ¥ *

Figure 8
Central Place Structure Map
The distance between hamlets is: 41.70317 e — hamlet
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File NU5 (t = .1, A = 500)

Table 9

L G, G Nu non-nested non-nested nested nested price
radius demand radius demand
4 7 400 5 * * 22.47 * *
4 2 900 5 * * 22.47 * *
4 7 500 5 E * 22.47 * *
4 10 100 5 * * 22 .47 * *
4 2 500 5] 23.55 1408.11 22.47 1341.49 237
4 10 300 5 * * 22.47 * *
4 9 1000 5 * * 22.47 * *
4 8 500 5 * * 22.47 * *
4 7 500 5 * * 22.47 * *
4 8 300 5 e * 22.47 * *
4 9 900 5 * * 22.47 * *
4 8 100 5 * # 22.47 * *
4 20 1600 5 * * 22 47 * *
3 &2 1800 5 * * 38.91 * *
4 2 400 5 22.47 1622.13 22.47 1630.27 2.25
4 20 1400 5 * * 22.47 * *
4 16 1200 5 = * 22.47 * *
4 8 1000 5 * * 22.477 * *
4 45 1500 5 * * 22.47 * *
4 9 1500 5 * * 22 .47 * *
3 81 2100 5 * E 38,91 ) *
1 312 3600 5 * * 116.74 * *
1 208 1600 5 * * 116.74 * *
Figure 9
Central Place Structure Map
The distance between hamlets is: 44.93177 e — hamlet
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Table 10
File NU0425 (t = .1, A = 500)

=
n
R,

Nu non-nested non-nested nested nested price
radius demand radius demand

4 7 0 4.25 70 307.9 20 85.13 1
4 2 0 4.25 20 5159.04 20 5159.04 2
4 7 0 4.25 70 307.9 20 85.13 7
4 10 0 4.25 100 138 20 228 10
4 2 0 4.25 20 5159.04 20 5159.04 2
4 10 0 4.25 100 138 20 22.8 10
4 9 0 4.25 90 174.92 20 33.84 9
4 8 0 4.25 80 228 20 52.33 8
4 7 0 4.25 70 307.9 20 85.13 7
4 8 0 4.25 80 228 20 52.33 8
4 9 0 4.25 90 174.92 20 33.84 9
4 8 0 4.25 80 228 20 52.33 8
4 20 0 4.25 200 29.01 20 1.54 20
4 12 0 4.25 120 91.56 20 11.4 12
4 2 0 4.25 20 5159.04 20 5159.04 2
4 20 0 4.25 200 29.01 20 1.54 20
4 16 0 4.25 160 47.93 20 3.73 16
4 8 0 4.25 80 228 20 52,33 8
4 45 g 4.25 450 4.68 20 .06 45
4 9 0 4.25 90 174.92 20 33.84 9
4 81 0 4.25 810 1.25 20 * *
1 312 0 4.25 3120 .06 103.92 * *
4 208 0 4.25 2080 .15 20 * *
Figure 10
Central Place Structure Map
The distance between hamlets is: 40 e — hamlet
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Table

11

File NU4250 (t = .1, A = 500)

T G 5 Nu non—nested non-nested nested nested price
radius demand radius demand
4 0 400 4.25 269.32 14.85 129.39 * *
4 0 900 4.25 140.77 63.93 129.39 x *
4 0 500 4.25 225.29 22.19 129.38 * *
4 0 100 4.25 816.41 1.22 129.39 * x
4 0 500 4.25 225.29 22,19 129.39 * *
4 0 300 4.25 339.01 8.850001 129.39 * *
4 0 1000 4.25 129.39 77.28 129.39 77.28 12.94
4 0 500 4.25 225.29 22.19 129,39 * *
4 0 900 4.25 140.77 63.93 129.39 * *
4 0 300 4.25 339.01 8.850001 129.39 * *
4 0 900 4.25 140.77 63.93 12939 * *
4 0 100 4.25 816.41 1.22 129.39 * *
3 0 1600 4.25 88.83999 180.1 224.11 * *
3 0 1800 4.25 80.85 222.63 224.11 * *
4 0 400 4.25 269.32 14.85 129.39 % %*
3 0 1400 4.25 98.86 141.62 224 .11 * *
3 0 1200 4.25 111.83 107.3 224,11 * *
4 0 1000 4.25 129.39 77.28 129.39 77.28 12.94
3 0 1500 4.25 93.55 160.34 224.11 * *
3 0 1500 4.25 93.55 160.34 224.11 * *
3 0 2100 4.25 71.47 293.82 224.11 * *
3 0 3600 4.25 46.44 775.24 224.11 * *
3 0 1600 4.25 88.83999 180.1 224.11 * *
Figqure 11
Central Place Structure Map
The distance between hamlets is: 258.785 = — hamlet
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Table 12
File 1 (£ = .1, A = 500)

i G G Nu non-nested non-nested nested nested price
radius demand radius demand

1 45 1500 O 450 3.507404E+08 450 3.507404E+08 45

Figure 12

Central Place Structure Map

@ @ @ @ @ @ @

@ @ @ @ @ @
@ @ @ @ @
@ @ @ @
The distance between cities is: 900.0001 @ - city
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Table 13
File 2 (t = .1, A = 500)

95

Ce Nu non-nested non-nested nested nested price
radius demand radius Gemand
100 1 20 208614.1 20 208614.5 2
Figure 13
Central Place Structure Map
* * * * * *
* * * * *
* * * * *
* * * *
The distance between towns is: 40.00959 * — town



Table 14
File 3 (t = .1, A = 500)

56

G Nu non-nested non-nested nested nested price
radius demand radius demand
900 3.5 75.63 1599.19 75.63 1599.19 7.56
Figure 14
Central Place Structure Map
¥ ¥ # # ¥ #
# # # # #
# # # # #
# # # #
The distance between villages is: 151.2557 # - village



Table 15
File 4 (£t = .1, A = 500)

57

e Nu non-nested non-nested nested nested price
radius demand radius Jemand
400 4 79.29 430.69 79.29 431.31 7.93
Figure 15
Central Place Structure Map
The distance between hamlets is: 158.5747 * — hamlet



Table 16
File 1&2 (t = .1, A = 500)

58

L, G C. Nu non-nested non—nested nested nested price
radius demand radius demand
1 45 1500 O 450 3.507404E+08 34.65 2079457 45
2 2 100 il 20 208614.1 20 208614.5 2
Figure 16
Central Place Structure Map
* * * @ * * *
* * * * *
* * * * *
* * * *
The distance between cities: 69.29864 @ - city
The distance between towns: 40.00959 * — town



Table 17
File 1&3 (£ = .1, A = 500)

59

L O e Nu non-nested non-nested nested nested price
radius demand radius demand
1 45 1500 O 450 3.507404E+08 226.88 8.91593E+07 45
3 7 900 3.5 75.63 1599.19 75.63 1599.19 7.56
Figure 17
Central Place Structure Map
¥ ¥ ¥ @ ¥ ¥ #
# # # # #
# # # # #
# # # #
The distance between cities: 453.7672 @ - city
The distance between villages: 151.2557 # — village



Table 18
File 1&4 (£t = .1, A = 500)

L & G Nu non-nested non-nested nested nested price
radius demand radius demand
1 45 1500 0 450 3.507404E+08 411.99 2.939898E+08 45
4 7 400 4 79.29 430.69 79.29 431.31 793
Figure 18

Central Place Structure Map

° ° ° @ ° ® °

The distance between cities: 823.9783 @ — ¢ity
The distance between hamlets: 158.5747 e — hamlet
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Table 19
File 2&3 (£t = .1, A = 500)

&, G Nu non-nested non-nested nested nested price
radius demand radius demand
2 100 1 20 208614.1 130.99 3021341 2
7 900 3.5 75.63 1599.19 75.63 1599.19 7.56
Figure 19
Central Place Structure Map
¥ ¥ % #
# ¥# # # #
# # # # #
s # #
The distance between towns: 261.9826 * — town
# - village

The distance between villages: 151.2557
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Table 20
File 2&4 (t = .1, A = 500)

62

@, Ce Nu non-nested non-nested nested nested price
radius demand radius demand
2 100 1 20 208614.1 237.86 6205788 2
ol 400 4 79.29 430.69 431.31 7.93
Figure 20
Central Place Structure Map
® ® ® *x ° e *
* ® °
The distance between towns: 475.7241 * — town
The distance between hamlets: 158.5747 ¢ — hamlet



File 384 (t = .1, A = 500)

Table 21

63

€, Gy Nu non-nested non-nested nested price
radius demand demand
7 900 3.5 75.63 1599.19 2555.64 Y35
7 400 4 79.29 430.69 431.31 1.93
Figure 21
Central Place Structure Map
# ° ° # ° °
° # ° ®
L] L] # L] L
= °
The distance between villages: 274.6595 # — village
The distance between hamlets: 158.5747 e — hamlet



Table 22
File 1&2&3 (t = .1, A = 500)

L g & Nu non-nested non-nested nested nested price
radius demand radius demand
1 45 1500 0 450 3.507404E+08 226.88 B8.91593FE+07 45
2 2 100 1 20 208614.1 130.99 3021341 2
3 7 900 3.5 75.63 1599.19 75.63 1599.19 1.56
Figure 22
Central Place Structure Map
S # ¥ @ ¥ # S
# # # # # #
# # # # #
* I # *
The distance between cities: 453.7672 @ — ity
The distance between towns: 261.9826 * — town
The distance between villages: 151.2557 # - village
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Table 23
File 1&2&4 (t = .1, A = 500)

L. @ Cs Nu non-nested non-nested nested nested price
radius demand radius demand
1 45 1500 0 450 3.507404E+08 411.99 2.939898E+08 45
2 2 100 1 20 208614.1 237.86 6205788 2
4 7 400 4 79.29 430.69 79.29 431.31 7.93
Figure 23
Central Place Structure Map
* e ) @ ® ® *
* ® e )
The distance between cities: 823.9783 @ — city
The distance between towns: 475.7241 * — town
The distance between hamlets: 158.5747 e — hamlet
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Table 24

File 1&3&4 (£t = .1, A = 500)

L ¢ C: Nu non-nested non-nested nested nested price
radius demand radius demand
1 45 1500 0 450 3.507404E+08 411.99 2.939898E+08 45
3 7 900 3.5 1503 1599.19 137.33 2555.64 735
4 i 400 4 79.29 430.69 79.29 431.31 7.93
Figure 24
Central Place Structure Map
# ® ° @ ° ® #
o # -] L] # L]
L] [ ] # L] L]
# . . #
The distance between cities: 823.9783 @ - city
The distance between villages: 274.6595 # - village
The distance between hamlets: 158.5747 e — hamlet
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Table 25
File 2&3&4 (t = .1, A = 500)

L & C, Nu non-nested non-nested nested nested price
radius demand radius demand
2 2 100 1 20 208614.1 237.86 6205788 2
3 i 900 3.5 75.63 1599.19 137.33 2555.64 7.35
4 7 400 4 79.29 430.69 79.29 431.31 7.93
Figure 25
Central Place Structure Map
* ° Y * ) ° *
e # ® ® # °
° L] # e ®
* ° ° *

The distance between towns: 475.7241 * - town
The distance between villages: 274.6595 # - village
The distance between hamlets: 158.5747 ¢ — hamlet
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Table 26
File 1&2&364 (t = .1, A = 500)

L € G Nu non-nested non-nested nested nested price
radius demand radius demand
1 45 1500 0 450 3.507402E+08 411.99 2.939898E+08 45
2 2 100 1 20 208614.1 237.86 6205788 2
3 7 900 3.5 7563 1599.19 137.33 2555.64 7.35
4 %) 400 4 79.29 430.69 79.29 431.31 7:83
Figure 26
Central Place Structure Map
* ° ° @ ° ® *
b # L * # ®
-] L # L) L ]
* e ™ *

The distance between cities : 823.9783 @ - city
The distance between towns: 475.7241 * — fown
The distance between villages: 274.6595 # — village
The distance between hamlets: 158.5747 e — hamlet
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6.0. ABOUT THE ALGORITHM

The algorithm is presented here in Appendix A. It is not a streamlined
version, having some redundancies in sections of the code. In order to
minimize running time, the special cases of integer elasticity of demand
parameter values have been included; while the numerical approximation code
could easily handle these six special cases, too, reducing the size of the
source code, execution time for these parameter values would be significantly
increased. Duplicate code exists, too, for the calculations of certain
individual non-nested commodity radii before and after nesting occurs; this
duplication has been included in order to best handle rounding error problems
that were encountered during the development of the algorithm. And, in
general "spaghetti" programming characterizes the code structure, mostly
because initially a few selected sections were composed [development began
with a reproduction of the results presented in Griffith (1986)], and then
these sections were sequentially augmented by supplemental components as the
complete program unfolded. Moreover, the concatenation of sections of code
reflects the history and evolution of WVersion 1.0 of the algorithm’s
development. Certainly the structure of this code could be optimized, in
order to enhance program efficiency. But, we were not overly concerned with
this aspect of the program; rather, we wanted to make the program easy to read
and easy to debug. One should realize that, regardless of its programming
sloppiness, Version 2.0 presented here is known to work.

6.1. Summary and description

Brief comments included within the algorithm itself help to explain what
various sections of computer code accomplish. A somewhat more thorough
description and explanation of these lines of code should aid in achieving a
deeper and more thorough understanding of the algorithm and its organization.

Lines 60-170 furnish a general description of the program. Lines 190-
490 provide a set of reference definitions for the basic variables employed in
the algorithm. Lines 40 and 5050-5460 generate the printing on a CRT of
acknowledgements (this is the first observed CRT output). Lines 500-610
establish dimensions of working arrays for the algorithm. Lines 620-660
define the K = 3 spacing multiplier factors, g (1=1,2,3,4), for the four
possible hierarchical levels (see Section 5.0). Lines 670-1320, 4970-5040,
and 8260-8780 yield queries on a CRT [this is the second (and optionally the
third or fourth) observed CRT output] soliciting a specification of initial
conditions and problem parameter values, as well as they initialize working
arrays. Lines 1330-1430 create a CRT notification (this is the fifth possible
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observed CRT output) that data processing is taking place, together with a
caution concerning one potential inconsistency that may arise, due to rounding
error, and hence may become conspicuous in tabular results. Lines 1440-1650
calculate discriminant function analysis multinomial logit probabilities as
defined by Equation (4.1). Lines 1660-1770 use the probabilities calculated
in Lines 1440-1650 to allocate commodities to hierarchical levels, based on
the criterion that a commodity is allocated to that level having the maximum
classification probability. Lines 1800-1840 generate a printing of the
caption for tabular output on a CRT (this is part of the fifth possible
observed CRT output). Lines 1850-2750 and 7680-8250 calculate the non-nested
commedity threshold radii, and then select the minimum radius from that set of
commodities that have been classified into the lowest existing hierarchical
level. Lines 2751-3990 calculate the nested radius, demand, and price for
each commodity. Lines 3995-4550 and 7680-8250 re-calculate the non-nested
radius and demand for certain commodities. Lines 4570-4810 generate a
printing of selected parameter values, and non-nested and nested results for a
commodity on a CRT (this is part of the sixth possible cbserved CRT output) .
Lines 4820-4830 ask the user whether or not the printing of a CRT map is
desired. Lines 4850-4950 permit the user to select either the undertaking of
an additional program execution, or the termination of the program execution.
Lines 4840 and 5470-7090 generate a printing of a map of the central place
structure on a CRT, together with the relevant spacing distances and a map
legend (this is the seventh possible observed CRT output). Lines 7100-7280
and 7425-7660 house the embedded exanple test data set. Lines 72%0-7420 house
the default discriminant function analysis parameter values, extracted with a
SAS analysis of the pooled data set presented and described in Section 4.3.
Lines 8530-8780 permit alternative discriminant function parameter values,
which would replace the default values, to be introduced into a problem. Line
8790 allows a new input data file to be constructed by the user for employment
in a problem. Lines 8800-8940 enable any of the 26 test data sets (see
Section 5.0) housed on the diskette to be retrieved for employment in a
problem. Finally, Lines 8950-9000 define the default density of demand and
transport cost parameter values.

Solutions for the different classes of values of the elasticity of
demand parameter are given in the following lines of computer code, for the
equilibrium case of p = rt (determining the threshold polygon distance radius
for a single commodity, without a constraint of hierarchical nesting) and r =
q*r,;, (determining results for the nested radius based upon r,:

n Non-nested Solution Code Lines Nested Solution Code Lines
0 2020-2070 2870-2980
1 2090-2100 3020-3280
2 2130-2140 3320-3660
E 2170-2180; 4030-4080 3710-3990
4 2210-2270; 4110-4180 3710-3980
5 2300-2540; 4210-4450 3710-39%90
decimal 7700-8250 3710-3290

Equation (5.1) translates into an n-th order polynomial in terms of radius for
the non-nested solutions. When n = 0, Equation (5.1) is of degree 3, and the
radius selected is the smallest non-negative real root of this equation, if
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one exists. When n = 1, Equation (5.1) is of degree 2, and the radius
selected is the cne associated with the positive discriminant of the quadratic
equation solution, if this discriminant is not negative (thus yielding a
complex number) . When n = 2, Equation (5.1) is of degree 1, and the radius is
opbtained by sclving the resulting linear equation. When n = 3, Equation (5.1)
again is of degree 1, and the radius is obtained by solving the resulting
linear equation, if this solution is non-negative. When m = 4, Equation (5.1)
is of degree 2, and the radius selected is the one closest to but exceeding
c,/t, if one exists. When m = 5, Equation (5.1) is of degree 3, and the
radius selected is the smallest non-negative real root of this equation; such
a root is guaranteed to exist. No relatively simple solution exists when m is
not an integer.

Equation (5.1) translates into an n-th order polynomial in terms of
price for the nested solutions, since the radius 1is set equal to the
hierarchical level distance multiplier factors (q) times the pre-determined
global minimum (r,). When n = 0, Eguation (5.1) is of degree 1, and the
price is obtained by solving the resulting linear equation. Otherwise, demand
must be determined with the aid of numerical integration, and then appropriate
polynomial roots must be determined with the aid of numerical root extraction.

Redundancies are apparent in the above tabular results. For n = 3, 4,
and 5, a second set of computer codes is accessed for calculating non-nested
radii and the affiliated non-nested demand after the corresponding nested
values have been calculated. These very same values are calculated in the
respective earlier lines of code.

Restrictions are imposed upon user-inputed parameter values, to (a) help
ensure the existence of at least some feasible solutions, (b) prevent the
introduction of nonsensical or physically meaningless values, and (c) prevent
problems of an unmanageable or unreasonable size from being pursued. In Line
840, the number of commodities, dencted by CN in the algorithm, is constrained
such that 1 < CN < 19. In Line 990, each commodity is constrained to have a
distinct numerical name. In Line 1020, the wvariable cost, ¢,, is constrained
such that 0 € ¢, £ 312. In Line 1070, the fixed cost, ¢, is constrained such
that 0 < ¢ < 3600. In Line 1120, the fixed and wvariable costs are
constrained such that they cannot concomitantly ke equal to zero; at least one
of these two cost parameters must be positive. In Line 1130 the elasticity of
demand parameter, m, 1s constrained such that 0 < m £ 5. In Line 1240 the
density of demand, A, is constrained such that A > 0. 2And, in Line 1280, the
transport rate, t, is constrained such that t > 0.

Numerical methods are relied upon heavily in order to derive the
necessary solutions to a given problem; both numerical integration and
numerical root extraction procedures have been implemented in the algorithm.
In order to expedite numerical integration calculations, those special cases
of p = rt for which solutions are known in advance were calculated
analytically (see Section 3.1) as well as using the IMSL 10.0 subroutine
DTWODQ, which renders double-precision results, and iteratively computes a
two—dimensional integral using a globally adaptive utilized Gauss—Kronrod
rules [based upon Piessen, et al. (1983)]. The results for these special
cases are as follows:
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n Numerical Integration Solution Relevant Lines of Code
0 1/3%* 2910-2920, 2980

1 0.1738034 2100, 3060, 3170

2 0.1075536 2140, 3360, 3560

3 0.1371809/2 2180, 4060, 4070

4 0.0451258 2220-2250, 4120-4150
5 0.0306553 2310, 2330-2340, 2590,

2610, 4220, 4240-4250,
4440, 4490, 4510

When external numerical integration was not possible, Simpson’s rule (see
Section 3.2) was used to devise code for internal numerical integration
purposes [see Press, et al. (1986), and Kohn (1987)]. The best agreement
between IMSL 10.0 numerical integration results and those cbtained from the
algorithm presented here were achieved by dividing the circle into 240
intervals, each being 1.5° in size. Individual numerical integration
subroutines occur in the following sets of lines: 7700-7830 (non-integer
values of n, p = rt, non-nested solution), 3070-3190 m = 1, r = g*r,,, hested
solution), 3330-3570 (m = 2, r = qg*r,,, nested solution), and 3750-3870 (m =
0, 1, 2, r = gq*r,,, nested solution).

Numerical root extraction is achieved with a modified form of the regula
Jalsi method [see Section 3.2; see Press, et al. (1986), and Kohn (1987)]. A
particular root of the equation is being sought, namely one that is larger
than but as close as possible to ¢,/t when p = rt, and one that is larger than
but as close as possible to ¢, when the radius is a nesting function of r,.
Individual numerical root extraction subroutines occur in the following sets
of lines: 7860-8250 (non-integer values of m, p = rt, non-nested solution),
3210-3280 M = 1, r = gq*r,, nested solution), 3580-3660 M = 2, r = q*r,.,
nested solution), and 3910-3980 (M= 0, 1, 2, r = g*r,, nested solution).
Numerous results were verified with the IMSL 10.0 subroutine DZPCRC, which
renders double-precision results, and iteratively finds the roots of a
polynomial with real coefficients using Laguerre’s method [based upon Smith
(1967)1].

Although this program allows one to input various parameter values that
then will override the embedded default values, checks have not been performed
on this algorithm with regard to an evaluation of necessary properties of
potential inputed data; there literally are an infinite number of combinations
of input data that could be considered, making such a task impossible to
complete. In keeping with this drawback, standard deviations are not tested
to ensure that they are positive, the covariance matrix is not tested to
ensure that it is symmetric, and means, standard deviations, and covariances
are not tested to ensure that their accompanying classification scheme
sensibly maps onto a four-tier hierarchy. Furthermore, it is conceivable that
acceptable sets of values exist from which computer calculation errors could
result; however, presumably this is not the case. Consegquently, one should be
careful when changing the nature and degree of the variable relationships;
caution should be exercised, for those default values selected and included in
this algorithm are based upon theoretical experience and empirical evidence
(see Section 4.0).
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6.2. Directions for Algorithm Execution

Execution of this algorithm, entitled CENTRALP.BAS on its source
diskette, involves inserting the source diskette into an IBM—compatible PC,
after the system has been booted, accessing either BASICA or GWBASIC
(whichever is available), and then typing the following sequence of commands:

BASTCA <enter> OR GWBASIC <enter>
LOAD "CENTRAIP.RAS" <enter>
RUN <enter>

An exact specification of the first of these three preceding lines of
instruction may well vary, in accordance with the way in which a given PC’s
disk space is partitioned. Now the algorithm is executing in interactive
mode, and a sequence of CRT screens will appear, systematically leading the
user through the problem at hand.

The first screen image is the acknowledgement, noting the wversion of,
the date of creation of, the funding scurce for development of, and credits
for the architects who developed this algorithm, and appears as follows:

Math/debugging consultation by Daniel A. Griffith

A

D Created May 14, 1988.
Da Version 2

Dar

Darr

Darre

Darren Funded by:

Darren G

Darren Gr SUNY/Buffalo Office of Teaching Effectiveness
Darren Gri

Darren Grif

Darren Griff
Darren Griffi
Darren Griffit
Darren Griffith

Program.

This screen will appear for a few moments, and then automatically be cleared
from the CRT.

The second screen image solicits information about the data set to be
used in a problem. It appears as follows:
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Do you want to:

1) Use the example data file contained in the program?

2) Enter your own data?

3) Use a data file available on the disk?
(NOTE: smaller integral values of nu reduce the run time.)
If the user selects Option #1, then the next CRT image to appear will be the
fifth screen. If the user selects Option #2, then the next CRT image to
appear will be a sequence of screens that will be referred to here as the
third screen. And, if the user selects Option #3, then the next CRT image to
appear will be the fourth screen.

The third CRT image actually is a sequence of separate set of screens

posing questions with which the user is queried about data to be entered.
Screen 3a states

Enter the number of commodities (between 1 and 19):

Screen 3b presents four successive questions about each commodity, and states,
as each question is answered,

Enter commodity number:

Enter the variable cost (between 0 and 312):

Enter the fixed cost (between 0 and 3600):

Enter the elasticity of demand (between 0 and 5):

A new screen presenting these four questions appears for each commodity to be
studied. Next, Screen 3c sequentially solicits the density of demand and
transport cost data, stating

Enter the density:

Enter the transport rate:

Screen 3d asks about changing the parameters of the discriminant function, and
states

Do you want to specify means and standard deviations of variables, matrix of z-score group means, and
inverse z-score covariance matrix? (y/n)
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If new function parameter values are to be inserted into the problem, then
Screen 3e requests the mean and standard deviation for each of the three
variables (variable cost, fixed cost, and elasticity of demand), stating

Input means and standard deviations of variables. (#,4#)

This query is followed by Screen 3f, which solicits the variable means for the
four hierarchical levels, and states

Input twelve z-score group means.

Finally, Screen 3g asks for the inverse poocled within-groups covariance matrix
for the discriminant function, stating

Input inverse z-score covariance matrix.
In the form: #,#,#

#o##

¥4, #

Screens 3e-3g should be avoided by all but the most knowledgeable program
users.

The fourth screen image provides a user with the option of retrieving a
file from the source diskette; there are 25 possibilities from which to
choose. Screen 4 appears as follows:

NUO NU1 NU2 NU3 NU4 NUS

1 2 3 4 1&2 1&3
1l&d 2&3 284 364 1&2&3 1&3&4
28384 16284 1&2&3&4 PAPER NU425 NU0425
NU4250

Files named 'NU’ have the test data, with all commodities having
the specified nu value given in the filename.

File *NU0425’ has all cf values of zero, and file ’NU4250’ has all
cv values of zero.

File *PAPER’ has the original ’Economic Geography’ article data.
Files named * & & & ' have those levels given in the filename
appearing on the map.

Which file?

The appearance of Screens 3 and 4 is determined by which option is
selected from Screen 2. Regardless of whether or not either of these two
screens has appeared, the next CRT image is Screen 5, which has the following
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display:

Density =
Transport rate =

PROCESSING; PLEASE WATIT!

THE NON-NESTED AND NESTED DEMANDS MAY NOT BE EQUAL BECAUSE THE FIRST WAS DONE
BY EXTERNAL NUMERTICAL INTEGRATION ON A VAX AND THE SECOND BY INTERNAL NUMERICAL
INTEGRATION IN BASIC

Screen 6 exhibits the tabular results. Informaticn about each commodity
being studied in the problem is printed in the table. The format of this
table is as follows:

LCr Cf Nu non-nested non-nested nested nested price
radius demand radius demand

Do you want a map? ('y’ or 'n’)?

Examples of this particular type of tabular output can be found in Tables 1-
26, in Section 5.0.

A positive response to the question posed on Screen 6, regarding whether
or not a map is desired, renders Screen 7. This CRT image is a central place
structure, showing the locations of places positioned at different levels of
the urban hierarchy, and the spacing of central places at each hierarchical
level. Examples of this output can be found in Figures 1-26, in Section 5.0.
This map and legend are follcwed by the prompt

76



<<< Press ‘r’ to run, or any other key tec end. >>>

Typing 'r’ results in another execution of the algorithm, beginning with
Screen 1. Typing any other key yields Screen 8, causing to materialize on the
CRT

Thank you; have a nice day!

With this final CRT image, the algorithm execution is completed.
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7.0. CONCLUDING COMMENTS

In conclusion, the primary aim of this monograph has been to outline
facets of a set of PC-BASIC computer code that simulates and constructs
central place networks. This program focuses on the exploration of selected
parameters of the ideal K = 3 Christaller network. Various numerical examples
are presented in Section 5.0 which exemplify this goal. Although the
potential short-term benefits of this exercise were intended to be and
probably will be pedagogic in nature, long-term theoretical benefits may well
accrue from it.

Much of the literature to date has focused on the geometric patterns of
market areas that are manifestations of spatial competition. Results reported
here complement the literature on geometric patterns, especially by allowing
specific prices and inter-central place distances to be calculated. The
algorithm presented here furnishes a vehicle for more comprehensive numerical
explorations of such identified and unidentified geometric patterns.
Conspicuocus drawbacks to this algorithm include the assumptions of uniform fob
pricing and transport rates, and an infinite planar surface. Modification of
each of these assumptions, in turn, should provide fertile themes for
subsequent theoretical research efforts, using this algorithm as a blueprint
for accompanying numerical work. A considerable literature exists on the
geometric patterns of market areas for which pg, and t vary over a spatial
economic landscape. Hypercircles, rather than straight lines, describe market
boundaries [see Boots (1980), Hyson and Hyson (1950)]. Hence, if the boundary
between two central places follows a hyperbolic curve, for instance, then
Equation (2.2) needs to be rewritten accordingly, in order to determine the
domain of integration. Similarly, a bounded surface may be dealt with by
permitting demand at the periphery to be inadequately satisfied. In addition,
the outer hexagons will become partly circular along that portion of their
respective perimeters facing the regional borders. As a result, some market
areas will have three sides of a hexagon, and some will have four sides of a
hexagon. Because this lack of complete truncation will cause the quantity
demanded of an item to change, either p, will need to vary amongst central
places, or excess profits will necessarily need to emerge. In this former
situation, the aforementioned market area literature should furnish
information regarding the geometric distortions that would result. In this
latter situation, monopoly economic rents would provide an incentive to
develop peripheral areas. Nevertheless, while demand cone boundaries would
coincide for all commodities in a given bundle, when spatial competition
prevails, different demand cone boundaries would characterize the periphery.
Clearly, the boundary value problem takes on an interesting dimension within
this context.
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Two additional shortcomings that modifications to this algorithm could
reflect upon are the static nature of classical central place systems, and the
partial equilibrium nature of the solution achieved here. Integrating the
construction technique outlined in this monograph with dynamic formulations
should prove rewarding. As for a general equilibrium solution, if a budget
constraint is imposed upon households, ¢, is varied in accordance with
delivery costs from factories to the individual retail outlets (a la Weberian
industrial location theory), and factories are competing for resources, then a
system of equations could be composed from which a general equilibrium
solution would be forthcoming. The algebraic, calculus, and numerical
analysis details furnished in Section 3.0 should be sufficient to support this
line of work.

Within the context of classical theory, this algorithm could be modified
so that optionally K = 4 and K = 7 structures are simulated. Or, any type of
Loeschian structure could be generated by removing the sometimes severe
restriction to commodity provision imposed by nesting, and introducing an
identification of underlying convolutions of Christallerian systems [see Dacey
(1964), Hudson (1967)]. In keeping with this theme, the conjecture of a
spatial equilibrium when p = rt, for the constant elasticity of demand
consumption function, merits thorough scrutiny. Empirically, additional data
sets should be analyzed for comparative purposes, so that the discriminant
function analysis results reported in Section 4.0 can be either fortified or
revised.

Two technical tasks could be pursued here, too. First, the algorithm’s
computer code needs to be optimized. This would be a straight—forward, but
tedious although probably not excessively time consuming, job to undertake.
The documentation provided in Section 6.0 should be sufficient in detail to
facilitate a timely and successful completion of this job. Second, the
graphics need to be enhanced, especially in terms of the inclusion of color
options and output; this enhancement would restrict the adaptability of this
algorithm, however, because of the current absence of many high-resolution
multiple-color CRTs in university classrooms and teaching laboratories (this
situation should change as prices drop) .

Since the prominent impetus for completing the research summarized in
this monograph was educational in nature, certainly worthwhile and interesting
research should be undertaken concerning how effective the algorithm presented
here is in conveying a better, more comprehensive, and more insightful
understanding of central place theory and concepts. Classroom evaluation of
the algorithm, especially as a supplement to lecture and textbook materials,
is warranted. Well tested experiments need to be formulated and evaluated.
Displays presented in Section 6.0 need to be altered in order to maximize the
user-friendly qualities.

Consequently, the simulation algorithm presented in this monograph is
one of a number of possible experimental tools that can be used when teaching
introductory courses on economic or urban geography, or when engaging in
numerically intensive theoretical research concerning central place theory.
Hopefully it will augment those simulation models presently in use, and in
doing so further enrich the discipline of geography and geographical analysis.
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20
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40
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70
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140

150
160
170
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180
200
210
220
230
240
250
260
270
280
290
300

310
320
330

APPENDIX A:
BASIC COMPUTER CODE
FOR IEBM COMPATIBLE PCs

KEY CFF
MIN = 1000000000%
VERSION = 2

GOSUB 5050 ' Introduction.
4

T e

N mw w N

B T T T T T T R

This program has been created by
Darren L. Griffith
&
Daniel A. Griffith

This program will construct a k = 3 Christaller central place structure
for a given set of commodities, and determine the corresponding demand,
prices, market areas, and hierarchy levels.

A constant elasticity of demand consumption function is employed.

A test data set is included for implementation diagnostic checking.

Test data files are available for diagnostic checks.

List of variables :

number of commodities )

commodity matrix )

variable cost )

fixed cost )

elasticity of demand parameter mi)
mean of: variable cost

—
e

MCE fixed cost

MED elasticity of demand )

SDCV ( standard deviation of: variable cost

SDCI fixed cost

SDED elasticity of demand
7N ( z — score of: variable cost

ZCE fixed cost

ZED elasticity of demand )
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1ing arrays.

5)
(25)
{28)
(25)
(25)

3)
(25)
4)
93

( arrays to hold the
values put intc hierarchical level groups
1, 2, 3, and 4,
respectively )
( multinomial probability term
calculated through z - scores )
( counters of numbers of commodities in each

hierarchical group )

3.141593 )

e T

variables for calculating al, a2 )
variables for calculating k )

density of demand )

value of a complex number formula )
variables for calculating formuala )
maltiplicative factor for min and rmin )

( hierarchical level means of each variable )

‘or the hierarchical level geographic spacings (on the map) .

(3)

SOR (3)

n data, and initial input and setup error checking.

’ Initializing the variables with default values.

ng user for initial conditions information.

o want to:"

1) Use the example data file contained in the program?"
2) Inter your own data?"
3) Use a data file available on the disk?"

T

:  smaller integral values of nu reduce the run time.)"

AND OT <> 2 AND OT <> 3 THEN 730

'HEN GOSUB 7110

: GOTO 1340

" End of keyboard input;
7110 reads in the example



FWMIHMMHA .

820 IF OT = 3 THEN GOSUB 8790 : GOTO 1340 ' End of keyboard input;
8790 reads in a file from
disk.
830 CLS
840 PRINT "Enter the numbcr of commcedities (between 1 and 19): ';
850 INPUT CN
860 IF CN >= 1 AND CN <= 19 THEN 890
870 PRINT "Between 1 and 19"
880 GOTO 850
890 7
500 CLS
910 GOSUB 4960 ' Initializing the commodity matrix with default values.
920 FOR T = 1 TO CN
930 PRINT "Enter commodity number: “;
940 INPUT CC
950 IF CC <= 19 AND CC >= 1 THEN 980
960 PRINT "Between 1 and 19, please."
970 GOTO 930
980 IF CM (CC,1) = 0 THEN 1010
990 PRINT "That number has already been taken."”

1000 GOTO 930

1010 CM (CC,1) =CC

1020 PRINT "Enter the variable cost (between 0 and 312): ";
1030 INPUT CM(CC, 2) ' cv

1040 IF CM (CC,2) <= 312 BND CM (CC,2) >=0 THEN 1070

1050 PRINT "Between 0 and 312, please."

1060 GOTO 1030

1070 PRINT "Enter the fixed cost (between 0 and 3600) : ";
1080 TNPUT CM(CC, 3) ' ef

1090 IF CM (CC,3) <= 3600 AND CM (CC,3) >= 0 THEN 1120
1100 PRINT "Between 0 & 3600, please."

1110 GOTO 1080

1120 IF CM(CC,2) = 0 AND CM(CC,3) = 0 THEN PRINT "Both cannot equal zero.
Please re—-cnter" : GOTO 1080

1130 PRINT "Enter the elasticity of demand (between 0 and 5): "
1140 INPUT CM(CC,4) !

1150 Z=CM (CC,4)

1160 I 2 == 0 AND 4 <= 5 TIIEN 1190

1170 PRINT "Between 0 and 5, please.™

1180 GOTO 1140

1190 CLS

1200 NEXT

1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310

CLS

INPUT "Enter the density: ";A
IF A > 0 THEN 1260

PRINT "The density must be > 0."
GOTO 1220

INPUT “"Enter the transpeort rate: ";T

IF T > 0 THEN 1300

PRINT "The transport rate must be > 0."
GOTC 1260

CLS

INPUT "Do you want to specify means and standard deviations of variables,

86



R
I

. |

| S ==2hilIS R
matrix of Z — sgore group means, and inverse z — score covariance matrlix?
(y/n) ", YNS
1320 IF YNS = "g™ OR ¥NS = "Y' THEN GOSUB  B530
1330 CLS

1340 LOCATE 12,29

1350 PRINT "PROCESSING; PLEASE WALT!!

1360 FOR NOTE = 1 TO 10

1370 LOCATE 20,1

1380 PRINT "ThE nCOn—NeStEd AnD nEsTeD DeMaNdS mAy NoT Be EqUal, bEcAuUSE tHe

FiRsT wAs DoNe By ExTeRnAl NuMeRiCal, InTeGCrAtIoN oN a Vax ahNd ThE SeColNd By

TnTeRnAl NuMeRiCal, TnTeGrAtToN iN BagiC."

1390 LOCATE 20,1

1400 PRINT "tHe NoN-—nEsTeD aNd NeSthEd dEmAnDs Ma¥ nOt bE eQuil BeCalse ThE

fIrsSt Was dJdonk bY eXtiErNal nUmErIcAl iNtEgRaTiOn On A vAx AnD tHe sEcOnD hy

iNtErNal, nUmErlcAl iNtEgRaTiOn In bAsIic!"

1410 NEXT

1420 LOCATE 20,1

1430 PRINT "THE NON-NESTED AND NESTED DEMANDS MAY NOT BE EQUAL BECAUSE  THE

FIRST WAS DONE BY EXTERNAL NUMERICAL INTEGRATICN ON A VAX AND THE SECCND BY

INTERNAL | NUMERTCAIL: TNTEGRATION IN BASIC."

1440 *

1450 ' Grouping based upon the attributes of the commodities; the hierarchical
classification of commodities is conducted using a multinomial logit
model .

1460 1

1470 G1L = 1 : G2 =1 |2 G3 = 1|2 6G4 =1

1480 FOR| BN 1NEOE 25

1490 IF €M (I,1) = 0 THEN 1770

1500 7 Caleculating z - scores for the 3llvariables based upon the sample data.

1510 Z (&) (CM (I, 3) MEBAN (2)) / SDV(2)

1520 Z (1) (CM(T,2) — MEAN(L}) / SDV(1)

1530 Z(3) = (CM(L,4) — MEAN(3)) / SDV(3)

1540 ' Calculating the probability of hierarchical level membership using the
multinomial logit model, the matrix of hierarchical level group
means and the covariance matrix for the 3 variables.

1550 SUMT = 0

1560 FOR K = [0 5y 4

1570 SUM(K) = 0

1580 FOR ID = 1 TO 3

1590 FOR JD = 1 TO 3

1600 SUM(K) | = | SUM(K) +| |(7 (ID) - HBAR(ID,K)) * €OV (TD,Jm)| * (Z(ID) |~
HBAR (JD, K) )

1610 NEXT

1620 NEXT

1630 SHMEDN S SERTN (IR | (SUMIKY 2] | B0 MIEROBS(EGN / 2}

1640 SUMT = SUMT + SUM(K)

1650  NEXT

1660 ' Qlassification aof a commedity into &a|hierarchical level group on the
basis of the largest probability.

1670 IF SUMT = O THEN SUMT = |1

1680 BIG = =2890031

1690 FOR ID = 1 TO 4
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1700 PHAT (ID) = SUM (ID)} / SUMT

1710 IF PHAT (ID) < BIG THEN 1740
1720 BIG = PHAT(ID)

1430 CM(I,5) = ID

1740 NEXT

1750 BB = CM(I,5)

1760 IF BB = 1 THEN G1 = Gl + 1 ELSE TF BB = 2 THEN G2 = G2 + 1 ELSE IF BB

=3 THEN G3 =G3 + 1 ELSE G4 = G4 + 1

1770 NEXT

1790 7

1800 * Printing the caption for the commodity table,

1810 CLS

1820 PRINT "L"™ TAR(3) "Cv" TAR(7) "CE£" TAB(12) "Nu" TAB(17) "non-nested"

TAB (29) "non—nested" TAB(44) "nested" TAB(58) "nested" TAR(71) “"price"

1830 PRINT TAB(17) "radius" TAB(29) "demand" TAB(44) "radius" TAB(58) "demand!

1840 PRINT

) |

1850 '

1860 ' Calculating the individual commodity thresholds and their global

minirmim.

1880 TOP=0

1890 GR = 1 " Picking the highest hierarchical level number with at least
one conmmodity in it.

1900 IF G2z > 1 THEN GREAT = G2 : GR = 2

1910 TF G3 > 1 THEN GREAT = G3 : GR = 3

1920 TF G4 > 1 THEN GREAT = G4 : GR = 4

1930 FOR I = CN TO 1 STEP - 1

1940 ’ PRINT I,CM(I,2),CM(I,3),R

1950 N = (M(I,4)

1960 IF CM (I,5) <> GR THEN 2750

1970 IF CM(I,3) <> 0 THEN 2010

1980 R=0CM(I,2) / T

1990 GOTC 2670

2010 IF N <> 0 THEN 2080

2015 *

2020 ' Finding the smallest real radius, if one exists, for nu = 0.

2030 Q=-1* {(M(T,3) / (2 *S0R (3) *A*T)) — (2 * WM (T: 2y"3y A

(27 * T~3)

2040 P=-1*CM (I,2)"2 / (3 * T"2)

2050 B=(-1*Q /2 -50R (02 / 4+ p"3/ 27)"(1/3)

2060 FISH= (-1 *Q / 2+ 50R ( Q™2 / 4 +P*3 / 27))~(1/3)

2070 R =FISH + B + CM(L,2) / (3 * T)

2080 IF N <> 1 THEN 2120

2085

2090 ' Finding the smallest real radius, if one exists, for nu = 1.

2100 R= (CM(I,2) / T+ SQR ((CM(I,2) / TV"2 + CM(L,3) / (3 * A *

.1738034))) / 2
2120 IF N <> 2 THEN 2160

2125 *
2130 ' Finding the smallest real radius, if one exists, for nu = 2.
2140 R= (CM(I,3) *T) / (12 * A * _1075536) + (M (I,2) / T
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2160 IF N <> 3 THEN 2200

2165 *

2170 ' Finding the smallest real radius, if one exists, for nu = 3.

2180 R=CM(L,2) / (T — (CM(I,3) * T°3) / (6 * A * ,137180%9))

2200 IF N <> 4 THEN 2290

2205 1

2210 F Finding the smallest real radius, if one exists, for nu = 4; the
soluticn is from the "Theory of Equations."

2220 SQ = (12 * A/ (T"3 * (M(ZL,3)) * .0451258)"2 — 4 * (12 * A *
CM(I,2) / (T™4 * CM (I,3))) * .0451258

2230 TF (3 * A * 0451258 / (T"2 * CM(T,3))) < CM(T,2) THEN R = 1000000!
: GOTC 2290

2240 RL = (12 * A / (T"3 * CM(IL,3)) * .0451258 + SQR (5Q)) / 2

2250 R2 = (12 * A / (T"3 * CM(T,3)) * .0451258 - SOR (SQ)) / 2

2260 IF R1 > CM(I,2) AND Rl < R2 THEN R = Rl ELSE R = R2

2270 IF CM(I1,2) = 0 THEN R = (T"(N - 1) * D / CM(I,3)) ™~ (1/3)

2290 IF N <> 5 THEN 2560

72295 T

2300 7 Finding the smallest real radius, if one exists, for nu = 5; the
scolution is from the "Theory of Equations.™

2310 IF (27 * CM(TI,2)"2 — 48 * A* 0306553 / (T2 * CM(I,3))) > 0 THEN
2590

2320 PI = 3.14159265#

2330 E=-1*12 *2A / (T4 * (M (I,3)) * .0306553

2340 Q=12 * A * CM(L,2) / (T"5 * CM (I,3)) * .0306553

2350 DELTA = -1 * E * SQR ( -1 * 4 * E - 27 * ( CM(L,2) / T)"2)

2360 PHI = ATN (-1 * DELTA / (Q * SQR (27))) * (180 / PI)

2370 IF PHI < 0 THEN PHI = PHI + 360

2380 IF PHI < 90 THEN THETA = PHI + 90 ELSE IF PHI < 180 THEN THETA = PHI

ELSE IF PHI < 270 THEN THETA = PHI - 90 ELSE THETA = PHI + 180

2390 Y1 =2 % SQ0R (-1 * K / 3) * (COS (THETA / 3 * (PT / 180))

2400 Y2 =2 *¥* S0R (-1 * E / 3) * COS ((THETA / 3 + 120) * (PI / 180))
2410 Y3 =2 % S0R (-1 *E / 3) * COS ((THETA / 3 + 240) * (PI / 180))
2420 TEMP = CM(I,2) / T

2430 TOP = 0

2440 IF Y1 >= TEMP THEN TOP = TOP + 1 : STACK(TOP) = Y1

2450 IF Y2 >= TEMP THEN TOP = TOP + 1 : STACK(TOP) = Y2

2460 IF Y3 >= TEMP THEN TOP = TOP + 1 : STACK(TOP) = Y3

2470 TEMP = STACK (TOP)

2480 IF STACK (TOP) < TEMP THEN TEMP = STACK (TCP)

2490 TOP = TOP - 1

2500 IF TOP <> 0 THEN 2480

2510 R=TEMP

2520 IF R < 0 THEN R = 1000000!

2540 IF CM(T,2) = 0 THEN R = (T"(N - 1) * D / QM(I,3)) ~ (1/4)

2560 IF N <> INT({N) THEN GOSUB 7670 ' Determining if nu is an integer.
2570 GOTO 2650

2575 7

2580 ’ The solution is from the "Theory of Ecuations."

2590 TERM1 = (12 * A * 0306553 / (T"5 * CM(L,3))) * (-1 * CM(L,2) / 2 + SOR
(CM(T,2)"2 / 4 — 12 * A * 0306553 / (27 * CM(L,3) * T"°2)})

2600 MULT = SGN (TERM1)

2610 TERMZ = (12 * A * _0306553 / (T"5 * CM(T,3))) * (M(I,2) / 2 + SCR
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(CM{T e R R | (1306553 EEERN (1, 3) * T72)))

2620 MULT2 = SGN (TERM2)

2630 R = MULT * ((MULT * TERM1) ~ (1/3)) — MULTZ * ((MULTZ * TERMZ) ~ (1/3))

2640 IF R/ < 0 THEN R = 1000000!

2650 1

2660 ' Picking the minimum radius for the lowest hierarchical level.

2670 TCP = TOP| + 1

2680 STACKZ2 (TOP) = R

2690 IF STACKZ|(TOP) < MIN AND STACKZ (TOP) > (0 THEN MIN = STACKZ (TOP)

2700 TOP = TOP| — 1

2710 RMIN = MIN

2120 §

2750 NEXT

2751 ' Calculating the radius, demand, and price for a given minimum radius
(rmin) .

2155

2760 ' Calculating nested hierarchical distances based upon the minimum

radius.

2770 FOR I = 1|TO CN

2780 EMIN = MIN * RM(CM(I,5) + (4 — GR))

2790 N = QM(L,4)

2800 IF CM(T,3) <> 0 THEN 2830

2810 Ri= @M 27 (T

2820 P = CM(I,2)

2830 MULT = SOR (3) * SQR ((GR — CM(I,5))"2)

2840 TF MULT =|0 THEN MULT = 1

2850 IF N <> 0| THEN 3010

2855 1

2860 ' Finding| radius, price, and demand for nu = 0 and the minimum radius.

2870 IF CM(I,3) = 0 THEN 2940

2880 Q= +1* (CM(L,3) / (2 * 80R (3) *A*T)) — (2*CM (I,2)"3) /
(27 *|Pedy

2900 B SR MY 2 S (3 e

2910 B=+1*0Q / 2 - (1/(6%T))*SCR(CM(T, 3) /A) *SOR (3*CM(I,3)/ (4*n) +
2*CM (L, 2) ~3/ (3¥SOR(3) *T"2) )

2911 B = SGN( ) % (ABS (B)) " (1/3)

2920 FISH = (-1 * Q / 2 + (1/(6%T))*SOR(CM (T, 3) /A) *SOR (3*CM (I, 3) / (4*n) +
2*CM(I,2) ~3/ (3 *SQR(B)*T"Z)))"(I/B)

2930 R = FISH + B & CM(I,2) / &+ T)

2940 D=2 = SQR (3) * A * R™2

2950 IF CM(I,2) = 0 THEN R = CM(ZL,3) / (T"(1L - N) * D)

2960 DA = 2 % SQR,(B) * A * RMIN™2

2970 IF CM(I,3) = 0 THEN 3010

2980 P = CM(L,2) + CM(I,3) / (2 * SQR(3) * A * RMIN"2)

3010 IF N <> 1 THEN 3300

3013 7

3016 ' Finding radius, price, and demand for nu = 1 and the minimum radius;
the sollution uses numerical root extraction.

3020 IF CM(I,3) = 0 THEN 3170

3030 DIF = 0001

3040 @aLr = 0

3050 IF CM(I,2) <> O THEN P = CM(I,2)} ELSE P =

3060 RI= [ CM(T,2) / T + SQR ({CM(T.2) / T)"2 + CM(T,3) / (3 » A*
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.1738034))) / 2

3070
3080
3090
3100
=y,
3120
3130
3140
3150
3160
310
3180
3190
LOG (B) =

SuMf = 0

FOR J =1 TO 19

SUM# = SUMEF + LOG (P * COS (PI * J / 120) + RMIN * T)
NEXT

SuM2# = 0

FOR J = 1 TO 18 STEP 2

SUMZ# = SUMZ2# + LOG (P * COS (PI * J / 120) + RMIN * T)
NEXT

SUM# = 2 * SUM#

SUM2# = SUM2# * 2

D=12 * A *R /T * 1738034

IF CM(I,2) = 0 THEN R = 51850!

D2# =12 * A / T * (RMIN * LOG (TAN (PT / 3))
P/ T* 2.461715E-02 —= P / T * (PI / 120 / 3)

+ 1L0OG (P * SQR (3) / 2 + RMIN * T) + SUMH# + SUM2H))

3200
3210
3220
3230
3240
3250
3260
3270
3280

TF CM(I,3) = 0 THEN 3300

PIAGH = P

P# = CM(I,3) / D2# + CM(I,2)

P = CSNG (P4#)

IF D2# < .00001 THEN P = -1

IF P < 0 THEN 3070

IF ecU — |25 THEN BIF = BIF * 10 : ¢y =
Genl— Call R

IF ABS (PLAGH — P#) >= DIF THEN 3070

3300 IF N <> 2 THEN 3690

3308 *

3310 ’/ Finding radius, price, and demand for nu = 2 and the minimim radius;

the
3320
3330
3340
3350
3360
S
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
S50
2520
(P — RMIN
TAN (PI /
2530

solution uses numerical root extraction.
IF CM(I,3) = 0 THEN 3560

DIF = .0001
cou = 0
P =CM(I,2)

R= (CM(I,3) *T) / (12 * A * ,1075536) + M (I,2) / T
IF (M(1,2) =0 THENR =T*(N - 1) * D / CM(ZI,3)

B2 = iB

SUMHF = 0 : SUM2H# = O

FOR J =1 TO 19

SUM# = SUMf + LOG (P * COS (PL * J / 120) + RMIN * T)
NEXT

SUM2# = 0

FOR J =1 TO 19 STEP 2

SUMZE = SUM2# + 1OG (P * COS (PT * J / 120) + RMIN * T)
NEXT

SUM# = 2 * SUM#

SUMZH# = SUMZH# * 2

IF RMIN * T / P <> 1 THEN 3510

TERM = TAN (PI / 12)
IF RMIN * T / P >= 1 THEN 3530
TERM = 1 / SOR (P2 — (RMIN * T)*2) * LOG ((SCR ((P + RMIN * T)

* T)) + TAN (PI / 12))} / (SCR ((P + RMIN * T) / (P — RMIN * T)) -
L2y
IF RMIN * T / P <= 1 THEN 3550

9L

RGBT A
* (LOG (P + RMIN * T)

/



3540 TERM = 2 / SQOR ((RMIN * T)"2 - P"2) * ATN (SOR ((RMIN * T - By /
(RMIN * T + P)) * TAN (PTI / 12))

3850
3560 D=12 * A ¢ T2 % 1075506
3570 D2# = (12 * A / T"2) * (-1 * RMIN * T * TERM + (PT / 120 / 3) * (1LOG

(P +RMIN * T) + LOG (P * SOR (3) / 2 + RMIN * T) + SUM§ + SUM2#) +
2.461715E-02 - (PL / 6) * LOG (P))

3580 IF CM(I,3) = 0 THEN 3690

3590 PLAGH = P

3600 P# = CM(I,3) / D2% + CM(T, 2)

3610 P = CSNG (P#)

3620 IF D24 < .00001 THEN P = -1

3630 IF P < 0 THEN 3670

3640 IF COU = 25 THEN DIF = DIF * 10 : COU = 0
3650 COU = COU + 1

3660 IF ABS (PLAG# — P#) >= DIF THEN 3390

3670 7

3680 ’ Finding radius, price, and demand for nu = 3, 4, 5, or non—-integer
values, with the minimum radius; the solution uses numerical

integration and nmumerical root extraction.

3690 TF N=0CRN=1 ORN = 2 THEN 4570

3700 GOTO 4010

3710 ILC=0

3720 P = CM(T,2)

3730 IF CM(I,2) = 0 THEN P = R * T
3735 P =P

3740 DIFF = .001

3750 SUML = 0 : SUM2 = 0

3760 FOR U =1 TO 19

3770 SUML = SUML + (1 + RMIN * T |/ (P * CO8 (PT * U / 120))) *~ (2 - N)
3780 TF (U + 1) / 2=1INT ((U+ 1) / 2) THEN SUM2 = SUM2 + (1 + RMIN * T
/ (P *COS (PI * U / 120))) ~ (2 - N)

3790 NEXT

3800 TERML =PI / 120 / 3 * ((L + RMIN * T / P) ~ (2 - N) + (1 + 2 =
RMIN * T / (SQR(3) * P)) ~ (2 —N) + SUML * 2 + 2 * SUM2)

3810 SUMlL =0 : SUM2 = 0

3820 FORU =1 TO 19

3830 SUML = SUML + (1 + RMIN %/ | (P * CEBNRPL* U / 120))) ~ (1L - N)
3840 IF (U+1) /2=1INT ((U+ 1) / 2) THEN SUM2 = SUM2 + (1 + RMIN * T
/ (P *COS (PI * U/ 120))) ~ (1 - N)

3850 NEXT

3860 TERM2 =PI /120 / 3 * ((L+RMIN * T / P) ~ (L -N) + (1L + 2 *
RMIN * T / (SOR(3) * P)) ~ (1 — N) + SUML * 2 + 2 * SUM2)

3870 D2f =P "~ (2-N) *12 * A / T*2* (1 / (2 -N) * TERML + 1 / (N -

1) *TERMZ2 + PT / 6 * (1 / ((2 - N) * (1 - N))))
3880 IF D2# > DIFF THEN 3910

3800 P = -1

3200 GOTO 3990

3910 EQ¥ = D24 * (P — CM(I,2)) - CM(I,3)
3920 IF ABS (EQ#) < DIFF THEN 3990

3930 P# = CM(I,3) / D2# + CM(I,2)
3940 P = CSNG (P#)

3950 IF P < DIFF THEN 3890
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3960 IIC = IIC + 1

3970 IF IIC > 10 THEN DIFF = DIFF * 10: IIC = 0

3980 GOTO 3750

3990 GOTO 4570

3995

4000 f Finding radius, price, and demand.

4010 IF N <> INT (N) THEN GOSUB 7670 ' For decimal nu values.
4020 '

4030 '’ Finding radius, price, and demand for nu = 3; unconstrained solution.
4040 IF N <> 3 THEN 4100

4050 IF CM(TI,3) = 0 THEN 4070

4060 R =CM(I,2) / (T - (CM(I,3) * T*3) / (6 * A * ,1371809))
4070 D=6*A/ (R* T"3) * 1371809

4080 IF CM(I,2) = 0 THEN R = SQR (T*(N - 1) * D / CM(T,3))
4085

4090 ' Finding radius, price, and demand for nu = 4; unconstrained soluticn.
4100 IF N <> 4 THEN 4200
4110 IF CM(I,3) = 0 THEN 4170

4120 SQ = (12 * A / (T"3 * CM(I,3)) * .0451258)"2 - 4 * (12 * A * CM(IL,2)
/ (T4 * CM (I,3))) * .0451258

4130 IF (3 * A * .0451258 / (T"2 * CM(I,3))) < CM(I,2) THEN R = 1000000
GOTO 4170

4140 Rl = (12 *A / (T*3 * CM(T,3)) * .0451258 + SQOR (SQ)) / 2

4150 R2 = (12 * A / (T3 * CM(I,3)) * .0451258 - SQR (SQ)) / 2

4160 IF R1 > CM(I,2) BND R1 < R2 THEN R = R]l EISE R = R2

4170 D=12 * A / (T"4 * R*2) * .0451258

4180 IF CM(I,2) = 0 THENR = (T(N - 1) * D / CM(I,3)) ~ (1/3)

4185

4190 ’ Finding radius, price, and demand for nu = 5; unconstrained soluticn;
solution using numerical integration and numerical root extraction.

4200 IF N <> 5 THEN 4550

4210 IF CM(I,3) = 0 THEN 4440

4220 IF (27 * CM(L,2)"2 - 48 * px 0306553 / (T"2 * CM(I,3))) > 0 THEN
4490

4230 PI = 3.14159265#

4240 E=-1*12*A / (T*4 * CM (I,3)) * .0306553

4250 Q=12 * A * (M(1,2) / (T"5 * CM (I,3)) * .0306553

4260 DELTA = -1 * E * SQR ( -1 * 4 * E - 27 * ( CM(L,2) / T)"2)

4270 PHI = ATN (-1 * DELTA / (Q * SQR (27))) * (180 / PI)

4280 IF PHT < 0 THEN PHI = PHI + 360

4290 IF PHI < 90 THEN THETA = PHI + 90 ELSE IF PHI < 180 THEN THETA = PHT

ELSE IF PHI < 270 THEN THETA = PHI - %0 ELSE THETA = PHI + 180

4300 YI1=2*SQR (-1 *E / 3) * COS (THETA / 3 * (PI / 180))

4310 Y2=2*80R (-1 *E / 3) * COS ((THETA / 3 + 120) * (PI / 180))
4320 Y3=2*350R (-1 *E / 3) * COS ((THETA / 3 + 240) * (PI / 180))
4330 TEMP = CM(I,2) / T

4340 TP = 0

4350 IF Y1 >= TEMP THEN TOP = TOP + 1 : STACK(TCOP) = Y1

4360 IF Y2 >= TEMP THEN TOP = TCP + 1 : STACK(TCP) = Y2

4370 IF Y3 >= TEMP THEN TOP = TOP + 1 : STACK(TOP) = Y3

4380 TEMP = STACK (TOP)

4390 IF STACK (TOP) < TEMP THEN TEMP = STACK (TOP)

4400 TOR = TOR — 1
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4410 IF TOP <> (0 THEN 4390

4420 R=TEMP

4430 IF R < 0 THEN R = 1000000!

4440 D=12 * A / (T"5 * R*3) * ,0306553

4450 IF CM(I,2) = 0 THEN R = (T*(N - 1) * D / CM(I,3)) ~ (1/4)
4470 GOTO 4550

4480

4490 TERML = (12 * A * _0306553 / (T~5 * CM(I,3))) * (-1 * CM(TI,2) / 2 + SOR
(CM(I,2)"2 / 4 — 12 * A * _0306553 / (27 * CM(I,3) * T*2)))

4500 MULT = SGN(TERM1)

4510 TERMZ = (12 * A * .0306553 / (T~5 * CM(I,3))) * (CM(I,2) / 2 + SOR
(CM(I,2)"2 / 4 =12 * A * 0306553 / (27 * CM(I,3) * T"2)))

4520 MULTZ = SGN(TERM2)

4530 R = MULT * ((MULT * TERM1) ~ (1/3)) - MULT2 * ((MULTI2 * TERM2) ~ (1/3))
4540 IF R < 0 THEN R = 1000000!

4550 GOTO 3710

4570 1

4580 ' Printing a line of the table.

4600 D3 = D2#

4610 PRINT RIGHTS (STRS (CM(I,5)),1) TAB(2) STRS (CM(I,2)) TAB(6) STRS (CM(I,3))
TAB(11) STRS (INT (CM(I,4) * 100 + .5) / 100) TAB(16)

4620 IF R = 51850! THEN PRINT " arb" TAB(28) " *"y 1 GOTO 4640

4630 IF R = 1000000! THEN PRINT " A" TAB(28) " *#"; ELSE PRINT INT(R *
100 + .5) / 100 TABR(28) INT(D * 100 + .5)/ 100;

4640 TF RMIN <> 1E+09 AND RMIN <> 1000000! THEN PRINT TAB(43) INT (RMIN * 100

+ .5) / 100; ELSE PRINT TAB(43) " L

4650 IF D3 <.01 THEN P = -1

4660 IF P < 0 THEN PRINT TAB(57) " *t TAB(70) " *v

4670 IF P >= 0 THEN PRINT TAB(57) STR$ (INT (D3 * 100 + .5) / 100) TAB(70) INT
(P * 100 + .5} ¢/ 100 : LIEN(EM({L,5)) = 1

4680 IF PUTZ > 18 THEN PRINT

4690 PUTZ = PUTZ + 1

4700 IF PUTZ < 19 THEN 4810 ELSE IF PUTZ > 19 THEN 4760

4710 LOCATE 23,18

4720 PRINT "<<< Press any key to continue. >>>"

4730 CRRAS = INKEYS

4740 IF CARAS = "" THEN 4730

4750 LOCATE 23,18 : PRINT " L

4760 LOCATE 1,1

4770 PRINT "L" TAB(3) "Cv" TAB(7) "Cf" TAB(12) "Nu" TAR(17) "non-nested"
TAB(29) "non—nested" TAB(44) '"nested" TAB(58) "nested" TAB(71) “price"
4780 PRINT TAB(17) "radius" TAB(29) "demand" TAB(44) “"radius ";" demand

r

4790 PRINT

4800 LOCATE 23,1

4810 NEXT I

4820 INPUT "Do you want a map? (’'y’ or 'n’)";YN$

4830 IF ¥YN$ = "n" OR YNS$ = "N" THEN 4850 ELSE IF YNS <> "y" AND YNS <> "y"
THEN 4820 " Mapping.

4840 GOSUB 5480

4850 LOCATE 23,1
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4860 PRINT " <<< Press ‘r' to run, or any other key to end. >>>"

4870 CARAS = INKEYS

4880 IF CARAS = "" THEN 4870

4890 CLS

4900 IF CARAS = "r" OR CARAS$ = "R" THEN RUN
4910 LOCATE 11,26

4920 PRINT "Thank you; have a nice day!"
4930 LOCATE 22,1 -

4940 KEY ON

4950 END

4960 '

4970 ' Initializing the commodity matrix.
4990 FOR T = 1 TO 25

5000 FOR I =1 TO 5

5010 ™ (T,I) =0

5020 NEXT

5030 NEXT

5040 RETURN

5050 f

5060 ' Introduction.

5080 CLS

5090 PRINT : PRINT

5100 PRINT "A"

5110 PRINT

5120 CARAS = "Darren Griffith"
5130 FOR GO = 1 TO 15

5140 PRINT LEFTS (CARAS,00)

5150 NEXT

5160 PRINT

5170 PRINT “Program."

5180 G2$ = "Math/debugging consultation by Daniel A. Griffith."
5190 LOCATE 1,1

5200 FOR I=1 TO 52

5210 PRINT MIDS (G2$,I,1);

5220 FOR CARA = 1 TO 25

5230 NEXT

5240 NEXT

5250 LOCATE 5,35

5260 PRINT "Created May 14, 1988."
5270 LOCATE 6,35

5280 PRINT "Version";VERSION

5290 Qg = 35

5300 LOCATE 10,35

5310 PRINT "Funded by: "

5320 FUNS = "SUNY/Buffalo"

5330 FOR L. = 1 TO 12

5340 IF Q / 2 = INT(Q / 2) THENP = 2 EISEP =1
5350 FOR W = 78 TO Q STEP —P

5360 LOCATE 12,W

5370 PRINT MIDS (FUNS,L,1)

5380 IOCATIE 12,W + P

5380 PRINT " "
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5400 NEXT

5410 0 =Q + 1

5420 NEXT

5430 LOCATE 12,48

5440 PRINT "Office of Teaching Effectiveness."
5450 FOR Q0 = 1 TO 1500 : NEXT

5460 RETURN

5470 '

5480 " Mapping of central place structures.
5500 CLS

5510 IF LINN(1l) = 0 THEN Gl = 0
5520 IF LINN(2) = 0 THEN G2 = 0
5530 IF LINN(3) = 0 THEN G3 = 0
5540 IF LINN(4) = 0 THEN G4 = 0
5550 GSUM=0

5560 IF Gl > 1 THEN GSUM = GSUM + 1
5570 IF G2 > 1 THEN GSUM = GSUM + 1
5580 IF G3 > 1 THEN GSUM = GSUM + 1
5590 IF G4 > 1 THEN GSUM = GSUM + 1
5600 *

5610 f Setting values of central place map locations.
5630 CITYS = ""

5640 TOWNS nu

5650 VILLS
5660 HAMS = ""

5670 IF GSUM <> 4 THEN 5740
5680 CITYS = "@"

5690 TOWNS = "*"

5700 VILL$ ll#lf

5710 HAMS = w. "

5720 GOTO 6250

5730 *

5740 IF GSUM <> 3 THEN 5970
5750 IF G1 > 1 THEN 5800

I

mun

o

5760 CITYS = "=

5770 TOWNS = "*"

5780 VILLS = "#"

5790 HAMS = "."

5800 IF G2 > 1 THEN 5850
5810 CITYS$ = "@"

5820 TOWNS = "#"

5830 VILLS = "#"

5840 HAMS = "."

5850 IF G3 > 1 THEN 5200
5860 CITYS = "@"

5870 TOWNS = "*"

5880 VILLS = "."

5890 HAMS = "."

5900 IF G4 > 1 THEN 5950
5910 CITYS = "@"

5920 TOWNS = "*"

5930 VILLS = "#"

5940 HAMS = "#"
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5850 *

5960 GOTO 6250

5970 IF GSUM <> 2 THEN 6190
5980 IF Gl <= 1 THEN 6030

5990 CITYS = "@"
6000 TOWNS = "@"
6010 VILLS = "@"

6020 ms — Wxn

6030 IF G2 <= 1 THEN 6080

6040 IF Gl <= 1 THEN CITYS = "*"

6050 TOWNS = "*"

6060 VILLS = "*v

6070 HAMS = "xv

6080 IF G3 <= 1 THEN 6130

6090 IF Gl <=1 AND G2 <= 1 THEN CITY$ = "§"
6100 IF G2 <= 1 THEN TOWNS = "#"

6110 VILLs o H#u

6120 HAMS = "#"

6130 IF G4 <= 1 THEN 6170

6140 IF G3 <= 1 AND G2 <= 1 THEN TOWNS = " "
6150 IF G3 <= 1 THEN VILLS = " "

6160 HAMS$ = "."

6170 '

6180 GOTO 6250

6190 IF GSUM <> 1 THEN 6250

6200 IF G4 > 1 THEN THINGS = "." ELSE IF G3 > 1 THEN THINGS = "#" ELSE IF G2 >
1 THEN THINGS = "*" ELSE THINGS = "@"

6210 CITYS$S = THINGS

6220 TOWNS = THINGS

6230 VILLS = THINGS

6240 HAMS = THINGS
6250 ' End of IF statement.
6260 LOCATE 1,40
6270 PRINT CITYS
6280 LOCATE 1,1
6290 PRINT TOWNS
6300 LOCATE 1,79
6310 PRINT TOWNS
6320 LOCATE 16,16
6330 PRINT TOWNS
6340 LOCATE 16, 62
6350 PRINT TOWNS
6360 LOCATE 6,19
6370 PRINT VILLS
6380 LOCATE 11,40
6390 PRINT VILLS
6400 LOCATE 6, 60
6410 PRINT VILLS
6420 LOCATE 1,13
6430 PRINT HAMS
6440 LOCATE 1,26
6450 PRINT HAMS
6460 LOCATE 1,53 ’ Printing the map.
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6470
6480
6490
6500
6510
6520
6530
6540
6550
6560
6570
6580
6590
6600
6610
6620
6630
6640
6650
6660
6670
6680
6690
6700

PRINT HAMS
IOCATE 1,66
PRINT HAMS
LOCATE 6,6
PRINT HAMS
IOCATE 6,33
PRINT HAMS
LOCATE 6,46
PRINT HAMS
LOCATE 6,74
PRINT HAMS
IOCATE 11,12
PRINT HAMS
IOCATE 11,25
PRINT HAMS
LOCATE 11,54
PRINT HAMS
LOCATE 11,67
PRINT HAMS
LOCATE 16,33
PRINT HAMS
IOCATE 16,46
PRINT HAMS
PRINT

6710
6720
6730
6740
6750
6760
6770
6780
6790
6800
6810
6820
6830
6840
6850
6860
6870
6880
6890
6900
6910
6920
6930
6940
6950
6960
6970

IF GSUM = 1 THEN 6980
IF Gl <= 1 THEN 6740

PRINT "The distance between cities: "; 2 * RM (1 + (4-GR)) * MIN

IF G2 <= 1 THEN 6760

PRINT "The distance between towns: ";

IF G3 <= 1 THEN 6780

2*RM (2 + (4 - GR)) * MIN

PRINT "The distance between villages: “; 2 * RM (3 + (4 - GR)) * MIN

IF G4 <= 1 THEN 6800

PRINT "The distance between hamlets: "; 2 * RM (4 + (4 - GR)) * MIN

10 = 19
IF Gl <= 1 THEN 6850
LOCATE LO, 60
PRINT ll@ll’." —— City"
IC=10+1
IF G2 <= 1 THEN 6890
LOCATE 1O, 60
I0O=10 +1
PRINT "* — town"
IF G3 <= 1 THEN 6930
LOCATE 1O, 60
PRINT "# - village"
IO=1I0+1
IF G4 <= 1 THEN 6960
LOCATE LO, 60
PRINT ". — hamlet"
RETURN
r
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6980 CLASSS(4) = "hamlets"

6990 CLASSS (3) = "villages"™

7000 CLASSS (2) "towns"

7010 CLASSS (1) "ocities"

7020 IF G4 > 1 THEN CLASS 4 FISE IF G3 > 1 THEN CILASS = 3 EISE IF G2 > 1
THEN CLASS = 2 ELSE CLASS 1

7030 PRINT "The distance between ";CLASSS$ (CLASS) ;" is: ";

7040 PRINT 2 * MIN

7050 GOTO 6800

7060

7070 LOCATE 20,60

7080 PRINT THINGS;" - ";CLASSS (CLASS)
7090 GOTO 6960

7100 CLS

7110 7

7120 ' Input example file.

7140 GOSUB 4960

7150 CN = 23

7160 FOR CO1L = 1 TO CN

7170 M (C01,1) = col

7180 FOR C02 =2 TO 5

7190 READ NUMBER

7200 CM (C01,C02) = NUMBER
7210  NEXT

7220 NEXT

7230 CLS

7240 PRINT "Density: 500"

7250 PRINT "Transport rate: .01"

7260 A = 500
7270 T = .01
7280 RETURN
1290

7300 7 <<<<<<<K<K<KL Covariance matrix for variables by levels data.
SEOSSOOOS>>>

7320 DATA 3.00140, -1.83447, .04961

7330 DATA -1.83447, 2.90199, -1.45690

7340 DATA  .04961, -1.4569, 2.86704

1350

7360 ' <<<<<<K<<<<K<LKK Prior probabilities data. >>>>353535555555>
7370 DATA .08929, .26786, .26786, .375

7380 #

7390 ' << Matrix of variable means by levels data.
SESOESOOOBBOOD>

7400 DATA 1.89238, -.05722, -.23086, -.24479

7410 DATA 1.02627, -.10964, .06219, -.21046

7420 DATA -1.17750, -.65622, .01581, vt ¥ 19

7425 7

7430 7 <<<LLLLLLLLLLLLLLLLKLKKKL Example data., >>eoe0e355555555 5555555
7440 DATA 7,400,4.25,4

7450 DATA 2,900,4.25,4

7460 DATA 7,500,4.25,4

7470 DATA 10,100,4,4

7480 DATA 2,500,4,4
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7490 DATA 10,300,4,
7500 DATA 9,1000, 3.
7510 DATA 8,500,3.5
7520 DATA 7,900, 3.
7530 DATA 8,300,2
7540 DATA 9,900,2
7550 DATA 8,100,2.
7560 DATA 20,1600,
7570 DATA 12,1800,
7580 DATA 2,400,2,
7590 DATA 20,1400,
7600 DATA 16,1200,
7610 DATA 8,1000,2,
7620 DATA 45,1500,0,
7630 DATA 9,1500,0,2
7640 DATA 81,2100,0,
7650 DATA 312,3600,0
7660 DATA 208,1600,0
7670 7
7680 ' Finding radius, demand, and price for non-integer nu values;
unconstrained solution; solution using numerical integration and
numerical root extraction.

1
it

SRTNN WWw

7690 '

7700 DELTA = 120

7710 SUMA = 0

7720 SUMB = 0

7730 FOR ML = 1 TO 19

7740 SUMA = SUMA + (1 +1 / COS (PI * ML / DELTA)) ~ (2 - N)
7750 SUMB = SUMB + (1 +1 / COS (PI * ML / DELTA)) ~ (1 - N)
7760 NEXT

7770 SUMAZ = 0

7780 SUMBZ = 0

7790 FOR ML, = 1 TO 19 STEP 2

7800 SUMAZ = SUMA2 + (1 + 1 / COS (PI * ML / DELTA)) ~ (2 — N)
7810 SUMB2 = SUMB2 + (1 + 1 / COS (PI * ML / DELTA)) ~ (1 - N)
7820 NEXT

7830 D=(12*A /T"2) * PI/ (6* (2-N) * (1 -N)) + (PT / 360) * ((2 ~

(2-N) + (L +2/S0R(3)) " (2-N) +2 % (SUMA + SUMA2)) / (2 -N) + (2 ~ (1

- N) + (1 +2 / SOR(3)) ~ (1 - N) + 2 * (SUMB + SUMB2)) / (N - 1)))

7840 IF CM(I,2) =0 THENR= (D * T ~ (3 - N) / CM(I,3)) ~ (1 / (N-3)) : GOTO
8240

7850 IF CM(I,3) = 0 THEN 8240

7860 ML, = I

7870  ICOUNT = 0

7880 IF (2 < N AND N < 3) THEN 7920

7890 TEST = (€2 - N) 7 (3 -M)) » (2 <) *D > ¢MML,2) » (3 =1M))

/ N - 3) - ML, 3)

7900 IF TEST < 0 AND N > 3 THEN 8200

7910 IF TEST > 0 AND N < 2 THEN 8200

7920 R1 = .001

7930 R2 = (M (ML, 2)

7940 R3=R2 - (RZ2 -Rl) * (R2 "~ (N-2) -R2 *D / CM(ML,3) + D * CM(ML,2) /
)

/R2 "~ N-2)-RL" (N-1) - (D/ (M,3)) * (R2 - Rl))
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7950 IF (ABS (R3 - R2) < .0001) THEN 8020
7960 IF R3 > 0 THEN 7990

7970 R3 = 1000000!
7980 GOTO 8230
7990 Bl = R2

8000 RZ = R3

8010 GOTO 7940
8020 R3=R3 /T
8030 RINC = 1

8040 R =

8050 TEST = 0

8060 TESTLAG = TEST

8070 TEST = ((R * T) ~ (2 — N)) *D * (R*T-CM (ML,2)) — CM (ML,3)
8080 ICOUNT = ICOUNT + 1

8090 IF ICOUNT > 500 THEN 8240

8100 IF ABS (TEST) < .01 THEN 8240

8110 IF ABS (TESTIAG / TEST - 1) < .000001 THEN 8240
8120 IF RINC < .000001 THEN 8240

8130 IF TEST > 0 THEN 8160

8140 R = R + RINC

8150 GOTC 8060

8160 R = R - RINC

8170 RINC = RINC / 10

8180 R = R + RINC

8190 GOTO 8060

8200 R = 1000000!

8210 R3 = 1000000!

8220 GOTC 8240

8230 R = R3

8240 D= ((R* T) ~ (2 -N)) *D
8250 RETURN

8260 '

8270 ' Initializing variables (from line 700).
8290 FOR CARA = 1 TO 3
8300 FORF =1 TO 3

8310 READ DA

8320 COvV (CARA,F) = DA
8330 NEXT

8340 NEXT

8350 FOR CARA. = 1 TO 4
8360 READ DA

8370 PROB (CARA) = DA
8380 LINN(CARA) = 0
8390 NEXT

8400 FOR CARA = 1 TO 3
8410 FORF =1 TO 4
8420 READ DA

8430 HBAR (CARA,F) = DA
8440  NEXT

8450 NEXT

8460 MEAN(2) = 466.728

8470 MEAN(1) = 19.0854

8480 MEAN(3) = 3.03131
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8490
8500
8510
8520
8530
8540
8550
8560
8570
8580
8590
8600
8610
8620
8630
8640
8650
8660
8670
8680
8690
8700
8710
8720
8730
8740
8750
8760
8770
8780
8785
8790
8800
8820
8830
8840

8845
8846
8850

8860
8870
8880
8890
8900
8910
8920
8930
8940

Sbv(2) = 711.116

SDV (1) = 50.0404

SDV(3) = 1.20989

RETURN

r

! Inputing data (from line 1310).
RA=1

CLS

FOR COUN = 1 TO 3

PRINT "Input mean and standard deviation of variable ";COUN;"™ (#,4)"
INPUT MEAN (COUN) , SDV (COUN)

NEXT

CLS

PRINT "Input twelve z-score group means."

FOR CIF = 1 TO 4

FOR CL =1 TO 3

INPUT HRAR (CL,CLF)

NEXT

NEXT

CLS

PRINT "Input inverse z-score covariance matrix."
PRINT "In the form: #,#,#"

PRINT " # 4, 4"

PRINT ™ #’ #, #n

FOR CA =1 TO 3

RA =1

INPUT COV (CA,RA) ,COV(CA,RA + 1),COV(CA,RA + 2)
NEXT

CLS

RETURN

r

! To add a data file name it " (any name) . n

f Read in data from disk.

CLS

FIIES "*x_ "

PRINT "Files named 'NU’ have the test data, with all commodities having
the specified nu value given in the filename."

PRINT "File ’'NU0425’ has all cf values of zero, and file ’NU4250’ has all
cv values of zero."

PRINT "File 'PAPER’ has the original ’Economic Geography’ article data."

PRINT "Files named ’_& & & ’ have those levels given in the filename
appearing on the map."
INPUT "Which file";FILES
OPEN "i", #1,FILES
INPUT# 1,CN
FOR ELF = 1 TO CN
CM(ELF, 1) = ELF
INPUT# 1,CM(ELF,2)
INPUT# 1,CM(ELF, 3)
INPUT# 1,CM(ELF, 4)
NEXT

8950 A = 500
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8960 T = .1

8970 CLS

8980 PRINT "Density = 500."

8990 PRINT “Transport rate = .1."
9000 RETURN
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addition to the archival material, this monograph also contains Arlinghaus’s solutions to broader theoretical
questions-was Barr’s choice of a tetrahedron unique within his initial constraints, and, within the set of
Platonic solids?

2. Sandra L. Arlinghaus. Down the Mail Tubes: the Pressured Postal Era, 1853-198., 1986.

The history of the pneumatic post, in Europe and in the United States, is examined for the lessons it
might offer to the technological scenes of the late twentieth century. As Sylvia L. Thrupp, Alice Freeman
Palmer Professor Emeritus of History, The University of Michigan, commented in her review of this work
“Such brief comment does far less than justice to the intelligence and the stimulating quality of the author’s
writing, or to the breadth of her reading. The detail of her accounts of the interest of American private
enterprise, in New York and other large cities on this continent, in pushing for construction of large tubes in
systems to be leased to the government, brings out contrast between American and European views of how
the new technology should be managed. This and many other sections of the monograph will set readers on
new tracks of thought.”

3. Sandra L. Arlinghaus. Essays on Mathematical Geography, 1986.

A collection of essays intended to show the range of power in applying pure mathematics to human
systems. There are two types of essay: those which employ traditional mathematical proof, and those which
do not. As mathematical proof may itself be regarded as art, the former style of essay might represent
“traditional” art, and the latter, “surrealist” art. Essay titles are: “The well-tempered map projection,”
“Antipodal graphs,” “Analogue clocks,” “Steirer transformations,” “Concavity and urban settlement pat-
terns,” “Measuring the vertical city,” “Fad and permanence in human systems,” “Topological exploration in
geography,” “A space for thought,” and “Chaos in human systems~the Heine-Borel Theorem.”

4. Robert F. Austin, 4 Historical Gazeticer of Southeast Asia, 1986.

Dr. Austin’s Gazetteer draws geographic coordinates of Southeast Asian place-names together with
references to these place-names as they have appeared in historical and literary documents. This book
1s of obvious use to historians and to historical geographers specializing in Southeast Asia. At a deeper
level, it might serve as a valuable source in establishing place-name linkages which have remained previously
unnoticed, in documents describing trade or other communications connections, because of variation in
place-name nomenclature.

5. Sandra L. Arlinghaus, Essays on Mathematical Geography-II, 1987.

Written in the same format as IMaGe Monograph #3, that seeks to use “pure” mathematics in real-world
settings, this volume contains the following material: “Frontispiece—the Atlantic Drainage Tree,” “Getting
a Handel on Water-Graphs,” “Terror in Transit: A Graph Theoretic Approach to the Passive Defense of
Urban Networks,” “Terrae Antipodum,” “Urban Inversion,” “Fractals: Constructions, Speculations, and
Concepts,” “Solar Woks,” “A Pneumatic Postal Plan: The Chambered Interchange and ZIPPR Code,”
“Endpiece.”



6. Pierre Hanjoul, Hubert Beguin, and Jean-Claude Thill, Theoretical Market Areas Under Euclidean
Distance, 1988. (English language text; Abstracts written in French and in English.)

Though already initiated by Rau in 1841, the economic theory of the shape of two-dimensional market
areas has long remained concerned with a representation of transportation costs as linear in distance. In
the general gravity model, to which the theory also applies, this corresponds to a decreasing exponential
function of distance deterrence. Other transportation cost and distance deterrence functions also appear in
the literature, however. They have not always been considered from the viewpoint of the shape of the market
areas they generate, and their disparity asks the question whether other types of functions would not be
worth being investigated. There is thus a need for a general theory of market areas: the present work aims
at filling this gap, in the case of a duopoly competing inside the Euclidean plane endowed with Euclidean
distance.

(Bien qu’ébauchée par Rau dés 1841, la théorie économique de la forme des aires de marché planaires
s’est longtemps contentée de 'hypothése de cofits de transport proportionnels & la distance. Dans le modéle
gravitaire généralisé, auquel on peut étendre cette théorie, ceci correspond au choix d’une exponentielle
décroissante comme fonction de dissuasion de la distance. D’autres fonctions de cofit de transport ou de
dissuasion de la distance apparaissent cependant dans la littérature. La forme des aires de marché quelles
engendrent n’a pas toujours été étudiée ; par ailleurs, leur variété ameéne a se demander si d’autres fonctions
encore ne meriteraient pas d’étre examinées. Il paraiAt donc utile de disposer d’une théorie générale des aires
de marché : ce a quoil s’attache ce travail en cas de duopole, dans le cadre du plan euclidien muni d’une
distance euclidienne.)

7. Keith J. Tinkler, Editor, Nystuen—Dacey Nodal Analysis, 1988.

Professor Tinkler’s volume displays the use of this graph theoretical tool in geography, from the original
Nystuen—Dacey article, to a bibliography of uses, to original uses by Tinkler. Some reprinted material
is included, but by far the larger part is of previously unpublished material. (Unless otherwise noted, all
items lisied below are previously unpublished,) Contents:  ‘Foreward’ ” by Nystuen, 1988; “Preface” by
Tinkler, 1988; “Statistics for Nystuen—Dacey Nodal Analysis,” by Tinkler, 1979; Review of Nodal Analysis
literature by Tinkler (pre-1979, reprinted with permission; post—1979, new as of 1988); FORTRAN program
listing for Nodal Analysis by Tinkler; “A graph theory interpretation of nodal regions” by John D. Nystuen
and Michael F. Dacey, reprinted with permission, 1961; Nystuen—Dacey data concerning telephone flows
in Washington and Missouri, 1958, 1959 with comment by Nystuen, 1988; “The expected distribution of
nodality in random (p, q) graphs and multigraphs,” by Tinkler, 1976.

8. James W. Fonseca, The Urban Rank—size Hierarchy: A Mathematical Inierpretation, 1989.

The urban rank-size hierarchy can be characterized as an equiangular spiral of the form r = aef COba
An equiangular spiral can also be constructed from a Fibonacci sequence. The urban rank-size hierarchy is
thus shown to mirror the properties derived from Fibonacci characteristics such as rank-additive properties.
A new method of structuring the urban rank-size hierarchy is explored which essentially parallels that of the
traditional rank-size hierarchy below rank 11. Above rank 11 this method may help explain the frequently
noted concavity of the rank-size distribution at the upper levels. The research suggests that the simple
rank-size rule with the exponent equal to 1 is not merely a special case, but rather a theoretically justified
norm against which deviant cases may be measured. The spiral distribution model allows conceptualization
of a new view of the urban rank-size hierarchy in which the three largest cities share functions in a Fibonacci
hierarchy.

9. Sandra L. Arlinghaus, An Atlas of Steiner Networks, 1989.

A Steiner network is a tree of minimum total length joining a prescribed, finite, number of locations;
often new locations are introduced into the prescribed set to determine the minimum tree. This Atlas explains
the mathematical detail behind the Steiner construction for prescribed sets of n locations and displays the
steps, visually, in a series of Figures. The proof of the Steiner consiruction is by mathematical induction, and
enough steps in the early part of the induction are displayed completely that the reader who is well-trained
in BEuclidean geometry, and familiar with concepts from graph theory and elementary number theory, should
be able to replicate the constructions for full as well as for degenerate Steiner trees.



10. Daniel A. Griffith, Simulating K = 3 Christaller Ceniral Place Structures: An Algorithm Using A
Constant Elasticity of Substitution Consumption Function, 1989.

An algorithm is presented that uses BASICA or GWBASIC on IBM compatible machines. This algo-
rithm simulates Christaller K = 3 central place structures, for a four—level hierarchy. It is based upon earlier
published work by the author. A description of the spatial theory, mathematics, and sample output runs
appears in the monograph. A digital version is available from the author, free of charge, upon request; this
request must be accompanied by a 5.5-inch formatted diskette. This algorithm has been developed for use
in Social Science classroom laboratory situations, and is designed to (a) cultivate a deeper understanding of
central place theory, (b) allow parameters of a central place system to be altered and then graphic and tab-
ular results attributable to these changes viewed, without experiencing the tedium of massive calculations,
and (c) help promote a better comprehension of the complex role distance plays in the space—economy. The
algorithm also should facilitate intensive numerical research on central place structures; it is expected that
even the sample simulation results will reveal interesting insights into abstract central place theory.

The background spatial theory concerns demand and competition in the space—economy; both linear
and non-linear spatial demand functions are discussed. The mathematics is concerned with {(a) integration of
non-linear spatial demand cones on a continuous demand surface, using a constant elasticity of substitution
censumption function, (b) solving for roots of polynomials, (c) numerical approximations to integration and
root extraction, and (d) multinomial discriminant function classification of commodities into central place
hierarchy levels. Sample output is presented for contrived data sets, constructed from artificial and empirical
information, with the wide range of all possible central place structures being generated. These examples
should facilitate implementation testing. Students are able to vary single or multiple parameters of the
problem, permitting a study of how certain changes manifest themselves within the context of a theoretical
central place structure. Hierarchical classification criteria may be changed, demand elasticities may or may
not vary and can take on a wide range of non-negative values, the uniform transport cost may be set at
any positive level, assorted fixed costs and variable costs may be introduced, again within a rich range of
non-negative possibilities, and the number of commodities can be altered. Directions for algorithm execution
are summarized. An ASCII version of the algorithm, written directly from GWBASIC, is included in an
appendix; hence, it is free of typing errors.

11. Sandra L. Arlinghaus and John D. Nystuen, Environmental Effects on Bus Durability, 1990.

This monograph draws on the authors’ previous publications on “Climatic” and “Terrain® effects on
bus durability. Material on these two topics is selected, and reprinted, from three published papers that
appeared in the Transportation Research Record and in the Geographical Review. New material concerning
“congestion” effects is examined at the national level, to determine “dense,” “intermediate,” and “sparse”
classes of congestion, and at the local level of congestion in Ann Arbor (as suggestive of how one might use
local data). This material is drawn together in a single volume, along with a summary of the consequences of
all three effects simultaneously, in order to suggest direction for more highly automated studies that should
follow naturally with the release of the 1990 U. S. Census data.

12. Daniel A. Griffith, Editor. Spatial Statistics: Past, Present, and Future, 1990.

Proceedings of a Symposium of the same name held at Syracuse University in Summer, 1989. Content
includes a Preface by Griffith and the following papers:

Brian Ripley, “Gibbsian interaction models”;
J. Keith Ord, “Statistical methods for point pattern data”;
Luc Anselin, “What is special about spatial data”;
Robert P. Haining, “Models in human geography:
problems in specifying, estimating, and validating models for spatial data”;
R. J. Martin, “The role of spatial statistics in geographic modelling”;
Daniel Wartenberg, “Exploratory spatial analyses: outliers, leverage points, and infiuence functions”;
J. H. P. Paelinck, “Some new estimators in spatial econometrics”;
Daniel A. Griffith, “A numerical simplification for estimating parameters of spatial autoregressive models”;
Kanti V. Mardia “Maximum likelihood estimation for spatial models”;
Ashish Sen, “Distribution of spatial correlation statistics”;



Sylvia Richardson, “Some remarks on the testing of association between spatial processes”:

Grahan: J. G. Upton, “Information from regional data”;
Patrick Doreian, “Network autocorrelation models: problems and prospects.”
Each chapter is preceded by an “Editor’s Preface” and followed by a Discussion and, in some cases, by

an author’s Rejoinder to the Discussion.



		sarhaus@umich.edu
	2005-07-17T13:07:16-0400
	Sandra Lach Arlinghaus, IMaGe Founding Director
	IMaGe
	Document is certified




