Chapter 1

Classical Central Place Hierarchies: A Real World View
CAUTION: This particular link to a file with Java applets may cause a browser crash depending on various configurations

eHighlights of this Chapter

Animated central place hierarchies: global view and sequence of local views
Virtual reality representation of sample point hierarchies (requires Cosmo Player or Cortona)
The evidence of historical maps cast in the current technological setting
Circular regions surrounding lattice points

 packing" of the plane by circles.

Two close packings of the plane with circles of identical radius are shown in Figure 1.1: one with circles centered on a square lattice and the other with circles centered on a triangular lattice

Figure 1.1 left, right. Animation shows square and triangular lattices in the plane and associated close packings with circles of identical radius. (Source of base image, no longer present at the cited

 across the plane, one imagines naturally that the close packing of circles on the triangular lattice is denser than is the close packing of circles on the square lattice.

Red Area=area of parallelogram with two one-third circles and two one-sixth circular sectors

subtracted out $=$ area of

 parallelogram with one ful circular area subtracted out.
Area of parallelogram: $x \sqrt{3}$

Since $\sqrt{3}<2$, the area of the parallelogram is less than the area of the square and the result

Figure 1.2. There is less interstitial area between circles within the parallelogram than there is between circles within the square. (Source of base image, no longer present at the cited

 the one based on the triangular lattice. In 1940, Fejes-Toth proved that that same packing is not only the densest lattice packing of the plane but is also the densest of all possible plane packings

 Fejes-Toth's extension of it. The reader interested in probing this topic further is referred to the references. Interpretation of the simple triangular grid has range sufficient to fill this volume and more

Basic assumptions

- The backdrop of land supports uniform population density
- There is a maximum distance that residents can easily penetrate into the tributary area (often called "maximum range").
- There is slow, steady population growth
- Village residents who move, as a result of growth (or for other reasons), attempt to remain in close contact with their previous location (to maintain social or other networks).

 might suppose further growth and an entire hierarchy of populated places.

Figure 1.3. A triangular lattice of dots with animated locations for competing locations entering and vanishing from the picture.
Such a view of growth leads to another set of assumptions (after Christaller)

- The underlying market is spread evenly across an abstract geographic plane
- The underlying, discrete population is evenly spread
- There is a set of central place activities which reflects willingness to travel.

 activities and service would be willing to travel 30 miles to a regional mall that offers all the goods and services of the smaller mall plus additional ones. These ideas are further elaborated in the following four points.
- The population of each location is a function of the number of goods and services it offers.
- The central place system is a closed system
- Each central place offers all goods and services offered by lower order places plus added ones: the number of central places in the system is therefore, in some sense, optimal
- Communication within the central place system is perfect
 particular; in interpreting these ideas, however, we present the characterization of August Lösch, in working from the small to the large, as a synthesis of conceptual material.

Marketing principle: $K=3$

 and services. To get a view of a large scatter of dots, arranged according to this idea, consider the linked virtual reality model. Use the Viewpoints to see an overview and a closeup; drive through it on your own

 dots.

 entire red hexagon surrounded by six copies of $1 / 3$ of a red hexagon.

Figure 1.5.
Back to Chapter $2 \mathrm{~K}=3$ reference.

Transportation principle: $K=4$

 here. To get a view of a large scatter of dots, arranged according to this idea, consider the linked virtual reality model. Use the Viewpoints to see an overview and a closeup; drive through it on your own

Figure 1.6. $K=4$: Marketing. Distance measurement between adjacent competing new centers, A and A^{\prime} is 2 units, in this case (assuming a distance of 1 unit between adjacent red dots).

Figure 1.7a. $K=4$ hierarchy showing three layers of a nested hierarchy of hexagons of various sizes oriented with respect to one another according to the distance principle illustrated in Figure 1.6.

Figure 1.7b. Each blue hexagon contains the equivalent of four red hexagons: one entire red hexagon surrounded by six copies of $1 / 2$ of a red hexagon.

Figure 1.7.

Eack to Chapter $2 K=4$ reference
Administrative principle: $K=7$

 your own.

Figure 1.8. $K=7$: Marketing. Distance measurement between adjacent competing new centers, A and A^{\prime} is $\sqrt{7}$ (assuming a distance of 1 unit between adjacent red dots).

 a constant of the hierarchy.

Figure 1.9b. Each blue hexagon contains the equivalent of seven red hexagons: one entire red hexagon surrounded by six copies equivalent to a single red hexagon. Each of the perimeter red hexagons is composed of 11/12 of a single red hexagonal cell plus $1 / 12$ of an adjacent red cell: in an underfit/overfit pattern.

Figure 1.9c. Each green hexagon contains the equivalent of seven blue hexagons one entire blue hexagon surrounded by six copies equivalent to a single blue hexagon. Each of the perimeter blue hexagons is composed of $11 / 12$ of a single blue hexagonal cell plus $1 / 12$ of an adjacent blue cell: in an underfit/overfit pattern.

Figure 1.9d. The green hexagons contain the equivalent of 7^{1} blue hexagons and 7^{2} red hexagons.

Figure 1.9.

Figure 1.9.
Back to Chapter $2 K=7$ reference.
A tiled view of each hierarchy: mechanics of construction

 is equivalent to the geographical search for bench marks in the field (physical or human) against which to view mapped, spatial structure.

Virtual reality central place skylines

 and $K=7$.

 thus, it is worth the effort now to load the plug-in and to practice virtual navigation in a simple landscape.
\square

Figure 1.10. $K=3, K=4$, and $K=7$ hierarchies animated as viewed from the "entry" viewpoint of associated virtual reality models.

Figure 1.11. $K=3, K=4$, and $K=7$ hierarchies animated as viewed from the "overview" viewpoint of associated virtual reality models.

Figure 1.12. $K=3, K=4$, and $K=7$ hierarchies animated as viewed from the "close up" viewpoint of associated virtual reality models.

Mapplets

 hierarchical form. One might speculate about real-world forces that pull on mathematical form: the form endures.

Figure 1.13. $K=3$ Mapplet

Figure 1.14.K=4 Mapplet
Figure 1.15. $K=7$ Mapplet
 maps of the central place geometry of the plane, coupled with mapplets showing animated hierarchical pattern alone, suggest another sort of three dimensional view of central place geometry.

Central place hierarchies as Thiessen polygons

 hardware and software capability). Figures 1.4-1.9 were created using ArcView GIS (v. 3.2, ESRI). The method for creating GIS-generated central place landscapes employed the following steps:

- obtain as a base map a triangular lattice shape file; such a file may be created in ArcView using EdTools extension to precisely translate a point.
ensure that each record in the underlying database has a unique code entered in "number" format (using the "add record number" feature of Animal Movement extension, if need be).
 of the distribution of red dots using Home Range extension
 Alternately, employ the same strategy using Home Range extension and calculate Dirichlet regions.
- The result will appear as a set of small hexagons surrounding the dots, as in the red layers in Figures 1.4-1.9.
 depending on how the broader spacing pattern is selected.
 can be captured electronically. Indeed, central place studies done by hand can be checked and planning documents from the past can be recast as central place geometries

Christaller and settlements in Central Europe

 planning in Eastern Europe:

 was used as the basis of Nazi settlement planning in Eastern Europe. As a result this gentle and kindly man was shunned politically by both East and West after World War II, even as he was being accorded belated recognition for his pioneering contributions to theoretical geography."

 to read. The map in Figure 1.16 is based directly on material from one of these sources.

 together. To see an even larger version of this map (on which place names can be read easily), click here; the attached file is over 5 MB in size: scroll both horizontally and vertically to see the linked map.

Figure 1.16. Walter Christaller's view of central places in Eastern Germany, 1941. Click on the map above to see a larger image.
 (Source: Struktur und Gestaltung der Zentralen Orte
Marktbereiche, K. F. Koehler Verlag, Leipzig, 1941).

Digitize the original map.

 dots in Figure 1.17 show an animated view of the seven levels of urban areas entering the system: from largest to smallest.

Figure 1.17. The central places of Figure 1.16 entered into a Geographic Information System.

 layers represented as a single layer as a scatter of yellow dots. These yellow dots are then analyzed using Thiessen polygons to create a cellular mesh that appears quite local in nature.

Figure 1.18. Thiessen polygons form a cellular mesh based on the two most rural layers of the hierarchy from map 1.16.
Figure 1.19 shows a sample overlay of the local cellular mesh on the original Christaller map.

Figure 1.19. Overlay showing cellular mesh superimposed on Christaller map. Posen is the large city located near the middle/left.
 1.16.

Figure 1.20. Thiessen-generated mesh for each of the five layers of largest urban places in the legend of the Christaller map.
Figure 1.21 shows a closeup comparing each of these layers to the actual map. Note the underfit/overfit pattern at the most global level (as with fractal generators for $K=7$)

Figure 1.21. Each of the layers of Figure 1.20 overlain on the Christaller map. Posen is located left/central.

 shown in Christaller's map, as a Mapplet (Figure 1.23), the hierarchical pattern becomes clear in yet another visual manner.

Figure 1.23.

 extend into new theoretical and practical realms

```
Mstule ormathemaical Geoorrahhy. Copyright, 2005, held by authors
Spaita Synnesis.C Centraity and Hierarchy, Volume l, Book 1.
sandra Lach Arringhaus and William Charles Arringhaus
```

