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Chapter
3


Number Theory Background

Primes and
Divisibility

     Even in
ancient
times, people were fascinated by the idea of divisibility.  This
book
is interested primarily
in positive integers, just as Euclid was.

Definition
3.1.  A positive integer
a is said to be a divisor of
another positive integer b if
b=ac for some
positive
integer c.  (If a is a divisor of
b, we write
a|b
and say "a divides
b," or "b
is a multiple of a").

Definition
3.2.  If an integer
p>1 has only 1 and p as divisors,
it is called prime (for example 2, 3, 4, 7, and 11
are primes).

Two elementary facts help illuminate
the
place of primes among the integers.  First, if p1,
p2, ..., pn are
primes, then N=1+p1p2...pn
is
not divisible by any of  p1, p2,
..., pn (the remainder when N is divided by
any
pi
is 1).  Thus either N is prime or N
has a prime divisor other than the pi.  Thus,

Theorem
3.3. (Euclid).  There are infinitely many primes.

Also, if n>1 is not prime
(such
an integer is called composite),
n must have a prime divisor  
, since it

must have a divisor  
(n = ab implies a 
or b 
), and that divisor is either prime a or has a prime

divisor  
.  Thus, one can determine if a number  
is prime by eliminating all multiples of the primes 


. This method is known as the Sieve
of Eratosthenes (Figure 3.1).

 

For
example,
all primes < 169=132 can be determined by crossing out
the
multiples of 2, 3, 4, 7,
and 11.  Indeed, given that every even
integer
> 2 is composite (since divisible by 2) and every
integer >5 is
composite
(since divisible by 5), one need only consider integers with last digit
1, 3,
7, or 9 and cross out the multiples of 3, 7, and 11.  That
process
is illustrated in the animated
Figure 3.1.

http://www-personal.umich.edu/~copyrght/image/books/Spatial%20Synthesis2/bibliography.html#niv_60
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Figure 3.1.  Animated Sieve
of Eratosthenes.  Primes are sifted out that are less than 169 = 132
.  Thus, only
multiples of 2, 3, 5, 7, and 11 need be
eliminated. 
The animation shows the successive elimination of these
multiples to
reveal
the set of all primes less than 169.  Click here
to see a movie in which the reader can
control the animation rate in
order
to study pattern.

The primes are the building blocks of
the
integers, since every positive integer can be written uniquely as a
product
of primes (Fundamental Theorem of
Arithmetic).  This uniqueness extends only to the primes
involved
and how many times they are involved; for example, the fact that 12 =
2·2·3
=2·3·2 = 3·2·2 does not
violate uniqueness. 
By convention, we say that 1 is a product of no primes.  It is the
desire for unique

http://www-personal.umich.edu/%7Ecopyrght/image/books/Spatial%20Synthesis/aniprimes168crop.mov
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factorization that led to the avoidance of 1 as a
prime;
obviously, 1 can be included in a factorization of a
number as often as
desired.

Take a side
trip
to an application that employs a strategy that is abstractly similar to
the method of
Eratosthenes.  It does so, however, in the urban
setting
of downtown Ann Arbor, Michigan.

The Euclidean
Algorithm

     Almost as
important
as knowing what divisors an integer has is knowing what divisors it
shares
with other
integers.  For this allows the consideration of
equations
relating one integer to another.

Definition
3.4. Let a, b be two positive integers. 
The
greatest common divisor (a,
b) of these two integers is
the
largest positive integer d such that
d|a and d|b.

For
example
(12, 16) = 4 since 4|12 4|16, and no greater divisor of 12 (6, 12 are
possibilities)
is a
divisor of 16.

The greatest common divisor is useful in
reducing
fractions to lowest terms, since if a/b is a fraction
[a/(a,b)]/[b/(a,b)]
is in lowest terms.

For
example,
12/16 = [12/4]/[16/4] = ¾.

Definition
3.5.  The above definition can be extended to any integer
as
follows

1. if a and b are
integers,
neither of which is equal to 0, then (a, b) = (|a|,
|b|)

2.  if a 
0, then (a, 0) = |a| ((0,0) is not defined).

If the prime factorizations of a
and b are readily available, it is easy to find (a, b).

For
example,
if a = 360 = 23 · 32 · 5 and b = 756 = 22
· 33 ·
7, then (a,b) = 22 · 32 =36, since the
highest
power of 2 which
is a factor of (a,
b) is the lowest power of 2 in
the factorizations of a and
b (i.e. the 22
in b).

Unfortunately, it is not always obvious
what
the prime factorizations of
a and b are when the problem
of
finding (a, b) occurs.  A method that is
relatively
quick and always successful is called the Euclidean
Algorithm.  It depends on some easy properties of
divisibility,
familiar from grade school arithmetic and high
school algebra.

Suppose a and b are
positive
integers, a > b.  Then there are integers q
(quotient)
and r (remainder) such
that a = bq + r
and
0  r <  b
(these were first encountered when learning long division in the fourth
grade).

For
example,
756 = 360(2) + 36; in fourth grade terms, if we want to computer
756/360,
the
quotient is 2, the remainder 36.

This division algorithm is closely related
to the idea of greatest common divisor, as the following mini-
theorem
demonstrates.

Mini-Theorem
3.6.  Suppose a,
b,
r are positive integers
with a = bq + r, 0 < r < b
<
a. 
Then (a,b) = (b,
r).

Proof:  It is only necessary to show
that a, b,
r share exactly the same divisors, since
then they certainly have
the same GREATEST common divisor.

1. First, suppose n|a
and n|b, say
a = nx and b = ny. 
Then r = a - bq = nx - nyq = n(x
- yq), so n|r.

2. Suppose n|b and n|r,
say b =
ny and r = nz.  Then a
= bq + r =
nyq + nz = n(yq +
z),
so n|a.

http://www-personal.umich.edu/~copyrght/image/books/Spatial%20Synthesis2/chapter6.html
http://www-personal.umich.edu/~copyrght/image/books/Spatial%20Synthesis2/bibliography.html#niv_60
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Mini-Fact
3.7.  If a = bq, then (a,b) =
b.

These two small facts are all we need
to
prove the famous

Euclidean
Algorithm 3.8.  Suppose
a,
b are positive integers
with a > b.  Suppose further that

 

a = bq0
+ r1              
                   
                   
        0< r1 < b

b = r1q1
+ r2                                                             
0< r2 < r1

r1 = r2q2
+ r3                                                            
0< r3 < r2

...
rn-1 = rnqn
+
rn+1                                                      
0< rn+1 < rn

rn = rn+1qn+1


Then (a, b) = rn+1,
the last non-zero remainder in the process.

Proof: 
First note that the process defined above is a finite one, since each
remainder
is smaller than the
previous one, with the result that eventually, the
integer remainder must become 0.  (Computer
scientists
might be interested in Lamé's
Theorem, which proves that this process can take at most 5n
steps, where
n is
the number of decimal digits in b.)

By the mini-fact, (rn,
rn+1)
= rn+1.  But, by the mini-theorem, (a, b)
= (b, r1) = (r1,
r2)
= ... = (rn-1,
rn) = (rn,
rn+1). 
Therefore, (a,
b) = rn+1.

For
example,

756 =
360(2)
+ 36

360 = 36(10)

so that (756, 360)
=
36

It is always possible to express (a,
b)
as ma + nb for some integers m and n. 
That this is true can be seen
from the Euclidean Algorithm as follows:

(a, b) = rn+1
= rn-1 - rnqn =
rn-1 - (rn-2 - rn-1qn-1)qn
= ... .

That is, one can work backwards through
the equations until (a,
b) is expressed in terms of a
and b.  But the
computations appear quite difficult, and
it
appears that all the quotients and remainders are needed.  But the
computation can be done more easily if each remainder is expressed in
terms
of a and b as the Euclidean
Algorithm is carried
out. 
Note that

    
a
= 1(a) + 0(b)

     b
= 0(a)
+ 1(b)

Then since

    
r1
=
a -
bq0,

      a
= 1(a) + 0(b)

 -q0b
=
-q0(a) - q0(1)(b)

Subtracting

http://www-personal.umich.edu/~copyrght/image/books/Spatial%20Synthesis2/bibliography.html#ros_83
http://www-personal.umich.edu/~copyrght/image/books/Spatial%20Synthesis2/bibliography.html#nak
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r1
= a - q0b
= 1a - q0b

This process can be continued for each
remainder.

In fact, the a and b
can
be left understood and only their coefficients kept track of.  A
detailed
example
follows.

Example. 
Find d = (6888, 792), and find m, n such that 6888m + 792n = d.

 

First
computation  6888 = 792(8) + 552.

Notice

6888 =
1(6888) +
0(792)

  792
= 0(6888)
+ 1(792)

  552
= 6888 - 8(792) = [1 - 8(0)]6888 + [0 - 8(1)]
(792) = 1(6888) - 8(792)

so we retain the following
information

                                       
6888    1      0

                                         
792    0      1

 6888 = 792(8) +
552    
552    1     -8

noting that 1 - 8(0) = 1 and 0 -
8(1) = -8
so row 3 above is obtained by
subtracting 8(row 2) from row 1.

Second
computation  792 = 552(1) + 240.

Notice

240 = 792
- 2(552)

      
= [0 - 1(1)]6888 + [1 - 1(-8)](792) = -1(6888) +
9(792)

so we retain
the following
information

                                          
6888     1     0

                                            
792     0     1

 6888
= 792(8)
+ 552       
552    
1    -8

 792
= 552(1)
+ 240         
240   
-1     9

noting row 4 = row 2 - 1(row 3)
since 1 is
the quotient in the second
computation.

Full computation

                                         
6888    
1    
0

                                            
792     0     1

6888 =
792(8) +
552        
552    
1    -8

792 =
552(1) +
240          
240    -1     9

552 =
240(2) +
72             
72      3    -26

240 =
72(3) +
24               
24    -10    87

  72
= 24(3)
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In each
case, an arbitrary row is obtained by subtracting the quotient
times the row above
from the row two rows above.

The result: 
(6888, 792) = 24, 24 = -10(6888) + 87(792).

This example is illustrated in the
animation
in Figure 3.2.

 

Figure 3.2.  Animation of
Euclidean
Algorithm application.  Click here
to see a movie in which the reader can
control the animation rate in
order
to study pattern.

The procedure of this section will be
of
great significance in solving congruences in the next section.

Number-theoretic
congruence

     One of the most
powerful tools of number theory is the notion of congruence, which
partitions
the integers
into finite sets of related integers.

Definition
3.9.  Two integers
x and y are said to be congruent
modulo m (a positive integer) if m is a divisor of
x
- y.  This is written x y
(mod m).

The most common place the everyday
world
uses congruence, albeit not consciously, is in telling time.  Any
time y a multiple of 12 hours after a time x is called
by
the same time as x.

For example, 60
hours
after 3 o'clock, it is once more 3 o'clock, since 60 + 3  
3 modulo 12.

Indeed, it is quite common to use a set
of small representatives of all the possibilities modulo m.  In
telling
time, 1, 2, ..., 12 are used for all possibilities.  Military time
uses 0, 1, ..., 23 for the hours in a day modulo
24.   
Mathematicians usually use 0, 1, ..., m-1 when they want
representatives
for the classes of numbers
which are congruent modulo m, for
the
following reason.

Theorem
3.10.  If a = mb + r, 0  r
< n, then a r
(mod m).

Proof: a
- r = mb, so m is a divisor of a -
r. 
Thus the natural representative of a number modulo m is its
remainder
when divided by m.

http://www-personal.umich.edu/%7Ecopyrght/image/books/Spatial%20Synthesis/anifigure3_2crop.mov
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In fact, any set of m integers,
none of which is congruent to any of the others modulo m, is
called
a complete
residue system modulo m.  No doubt this name
comes
from thinking of remainders as residues (what's left
over) after
division
by m.  It is easy to create an addition and multiplication
for these residues.

Theorem
3.11.  Suppose x y
(mod
m) and s t
(mod
m).  Then x + s y
+
t (mod m) and xs yt
(mod m).

Proof: 
Suppose
x - y = am and s - t = bm. 
Then (x + s) - (y + t) = (x - y)
+ (s - t) = am + bm = (a + b)m. 
So x
+ s y
+ t
(mod m).  Also xs - yt = (xs - xt)
+ (xt - yt) = x(s -
t) + (x -
y)t 
= xbm + amt = m(xb + at) 
So xs yt
(mod m).

Telling time is
an
obvious example of the addition part of this theorem.  For
instance,
5 hours after 9 o'clock
comes 2 o'clock, since 9 + 5  
2 (mod 12).

Linear congruences

     The first type
of equation to investigate is the linear congruence ax  
b (mod m).  One needed fact is an
easy consequence of the
Euclidean
Algorithm.

Lemma
3.12.  If a |
bc and (a, b) =1,
then a | c.

Proof: 
Suppose bc =
ax.  Because (a, b) = 1,
there are integers m,
n such that 1 = ma + nb. 
Then c = cma +
cnb = cma + nax = a(cm
+ nx).  Thus
a | c.

This allows proof of a limited
cancellation
theorem.  In ordinary algebra, if ax = ay, then x
= y.  Such a
general theorem is impossible for congruences.

For example,
6(4)  
6(2) mod 12, but 4 is not congruent to 2 mod 12.

However, if (a,
m)
=
1, cancellation is still possible.

Theorem
3.13.  If ax 
(mod m) and (a, m) = 1, then x y
(mod m).

Proof: 
Since
ax ay (mod m),
a(x
- y)   0
(mod m). 
Thus m | a(x - y).  But, since (a,
m)
= 1, Lemma 3.12
assures m | (x - y). 
Therefore,
x y
(mod m).

This enables a
complete
analysis of ax b
(mod
m)
if (a, m) = 1.

Theorem
3.14.  Suppose (a, m)
= 1.  Then

a) ax 
1 (mod m) has a unique solution x t
(mod m)

b)  ax b
(mod m) has a unique solution x tb
(mod m).

Proof:

a) 
Since (a, m) = 1, there are integers s, t
such
that ms + at = 1, so at - 1 = ms. 
Therefore
at 
1
(mod m).  This is the only solution, since by Theorem
3.13 at  ay
(mod
m) implies x y
(mod m).

b)  To solve
ax b
(mod m), multiply through by this number t. 
Therefore
t(ax)  tb
mod m.  Since
ta 
1 (mod m), this gives x tb
mod m.  As before, this solution is unique.

The solution of ax 
1 (mod m) is sometimes called the inverse a-1
of a modulo m, analogous to the fact that
a-1
= 1/a is the multiplicative inverse of a in ordinary
arithmetic. 
Of course, a natural question arises:  what
happens if (a,
m)  
1.  There are two cases:  (a, m) | b
and
(a, m)  b.

Theorem
3.15.  Suppose d = (a,
m)  b. 
Then ax b (mod m)
has no solution.
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Proof: 
If ax b (mod m),
then ax - b = my for some integer
y. 
Thus b = ax - my.  But since
d | a
and d | m,
this means d | b, contrary
to the
theorem's hypothesis.  (Note:  a = ds,
m=
dt
means b = dsn - dty = d(sx -
ty).)

Theorem
3.16. Suppose d = (a, m)
| b.  Then ax b
(mod m) has a unique solution modulo m | d and d
solutions modulo m.

Proof:  Let
b
= dr, a = ds, m = dt. 
Then ax b
(mod m) is and only if ax - b = my for
some
integer y. 
Substituting for a, b, cdsx
- ds = dty.  Canceling xs - r = ty
or sx r (mod t). 
By Theorem 3.14, this has a
unique solution
modulo t = m/d.  Call this solution A
(so sA r (mod
t)
).  Then, A, A + t, ...,
A + (d-1)t
are the
d solutions (modulo m).  Note that these
are
all congruent modulo t but incongruent modulo
m, and notice
that since sA - r = tB for some
B

s(A+kt)
-r = t(B+sk), k=0, 1, ..., d-1

ds(A+kt)-dr
= dt(B+sk),
k=0, 1, ..., d-1

a(A+kt)-b
= m(B+sk),
k=0, 1, ..., d-1

a(A+kt)  b
(mod m), k=0, 1, ..., d-1

Fermat's Little
Theorem
and Euler's Theorem
 
The ability to
solve
congruences leads to some interesting results.

Theorem
3.17  (Fermat's Little Theorem)  Suppose p is
a
prime, (a,
p) = 1.  Then a p -11 1
(mod p).

Proof: 
Consider the integers a, 2a, 3a, ..., (p-1)a. 
These p-1 integers are all incongruent mod p, since by
Theorem
3.13 sa  ta
(mod p) implies s t
(mod p).  Since none of them is divisible by p (by
Lemma
3.12, if p
| ka, then p | k, which is
false). 
Thus these p - 1 integers are congruent to the integers 1, 2,
...,
p-1
in some
order.  Therefore, a(2a)...(p-1)a 
1(2)...(p-1) (mod p).  By Theorem
3.13, cancellation of 2(3)...(p-1) gives a p

-11 1
(mod p).

Fermat's Little
Theorem
can be used to perform some amazing computations.  For example, it
can be used
to compute the remainder when 32460 is divided
by
113, certainly a computation unlikely by direct
computation.  But
Theorem
3.17 assures 31121 1
(mod 113).  Simple division gives 2460 = 112(13) + 4. 
Therefore
32460 = 3 112(13)+4 = (3112)13
341 341 81
mod 113.  So the remainder when 32460 is divided by
113
is 81.

The situation of Theorem 
3.17 can be generalized.

Definition
3.18.  Let m be a positive integer.  A
complete
reduced residue system modulo m is the set of
numbers obtained
from
a complete residue system by removing all the integers which have a
factor
in
common with m.

For example, the
integers 1, 2, ..., p-1 are a reduced residue system modulo a
prime
p. 
Also, the integers 1,
3, 7, 11, 13, 17, 19 for a reduced residue system
modulo 20.

Definition
3.19.  The Euler  -
function (phi-function) (m)
(or, phi(m) in subscripts or superscripts) is the
number of
integers
in a complete reduced residue system modulo m.

For example  (p)
= p-1,  (20) = 8.

The Euler  
- function has been studied extensively.  The interested reader
should
consult any of the
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numerous number theory texts listed in the
references.
Fermat's
Little Theorem can be generalized as
follows:

Theorem
3.20.(Euler's Theorem)  Suppose (a,
m) = 1. 
Then aphi(m)1 1
(mod m).

Proof: 
Let 1, x2, x3, ..., xphi(m)
be a reduced residue system modulo m.  As in Theorem
3.17, a, a2, ...,
axphi(m)
are all incongruent modulo m; also, since each has no factor in
common with m, they form a
complete reduced residue system and
are
congruent to 1, x2, ..., xphi(m)
in some order.  Therefore a(ax2) ...
(axphi(m))  x2x3...xphi(m)
mod m, so by cancellation aphi(m)1 1
(mod m).

Again, by way of
example, it is easy to compute the remainder when 138059 is
divided by 20.  By Euler's
Theorem, 13phi(20) = 1381 
133 (mod 20).  But 132 = 169  
9 (mod 20).  Therefore 133 = 132(13)  9(13)
117 17(mod
20).  Thus the remainder is 17.

Wilson's
Theorem and Quadratic Residues

Definition
3.21.  Let m be a positive
integer,
(a, m) = 1;  a is said to be a quadratic
residue
modulo m if the
congruence x21 a
(mod
m) has a solution.

A great deal of
discussion
about quadratic residues centers on prime moduli.  The case p
= 2 is not very
interesting, since a is a quadratic residue if
and
only if a  1
(mod 2). 
So odd primes are of the most interest.

Theorem
3.22.  Let p be an odd
prime. 
Then the congruence x 21 a
(mod p) has either 0 or 2 solutions
modulo p.

Proof: 
If s 21 a
(mod
p),
then (-s) 21 a(mod
p),
and since p is odd, s and -s
are incongruent (mod
p). 
(s  -s
(mod p)
implies 2s 0 (mod
p).) 
Thus, if there is one solution, there are two solutions.  If t
is
another solution,
then t 21 a s
2
(mod p).  Then t 2 -
s
21 0
(mod
p), so (t - s)(t + s)  
0 (mod p).  Thus p is a divisor of either
t -
s
or t + s, so either t s
(mod p) or t 
-s (mod p).  So there are no other solutions.

A surprising
consequence
of this simple fact is

Theorem
3.23 (Wilson's Theorem)  If p
is a prime, then (p - 1)!  
-1 (mod
p).

Proof: 
If p = 2, this just says 1  
-1 (mod 2), which is true.  If p is an odd prime, the
congruence
x
21 
1
(mod
p) has the two solutions x 
1 (mod p) and x 
-1   p - 1
(mod
p). 
If a is an integer between 2 and p -
2, then the
congruence
ax 
1 (mod p) has a unique solution by Theorem 3.14,
and that solution is not
congruent to a modulo p, or a would
satisfy
a21 1
(mod
p), not possible by Theorem 3.22. 
Thus the integers
2, ..., (p - 2) can be grouped into (p-3)/2
pairs (ai, ai

-1), 1 
i   (p-3)/2 such
that
for each i, (ai, ai
-1)  
1 (mod

p).  Thus the product (p-1)!  
1(p-1)(ai, ai
-1)...(ak,
ak

-1)  
p -1   -1 (mod
p),
where k = (p-3)/2.

Quadratic
Residues and Euler's Criterion

Suppose p
is an odd prime.  Clearly 1 2, 2 2, ..., ((p
-1)/2)
2
are all quadratic residues.  Further, if 1  
x,y   (p
-1)/2,
then x 2 and y 2 are incongruent
modulo
p, since x 21 y
2
(mod p) implies (x-y)(x+y)  
0(mod
p); but
then either p|(x-y) and x
=
y
or p|(x+y), which is impossible since 2  
x+y   p -1. 
So there are (p -1)/2
quadratic residues accounted for. 
But

(-1) 2,
(-2) 2, ..., (-(p -1)/2) 2 give the
same numbers
as 1 2, 2 2, ..., ((p -1)/2) 2;
so since -(p -1)/2, ..., -1, 1, ...,
(p-1)/2 is a
complete
reduced residue system modulo p, there are exactly (p -1)/2
quadratic residues mod p
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and hence there are (p -1)/2
quadratic
non-residues modulo p.

Definition
3.24  Legendre symbol.  The
symbol
(a/p), called the Legendre symbol, is defined by (a/p) =

1 if a
is a quadratic residue mod p

(-1) if a
is not a quadratic residue mod
p.

Some number
theorists
write (0/p)=0.  Clearly 0 21 0
(mod
p), but quadratic residues are defined to be
relatively prime
to the modulus.

Now suppose a
is a quadratic residue.   Then there is an x with x2
= a.  But by Fermat's Little
Theorem
xp -11

1(mod
p),
so
a(p-1)/2 = x21 1(mod
p). 
On the other hand, suppose a is not a quadratic residue. 
Then,
if (r,
p)=1, the equation
rx a(mod
p) has a unique solution s(mod p) by Theorem
3.14, and s is not congruent to
r(mod p)
(otherwise
a would be a quadratic residue).  Thus the elements of the set 1,
2, ..., p -1 can be
grouped into (p -1)/2 pairs, where
the
product of each pair is  a(mod
p). 
Thus a(p-1)/21 1(2)...(p
-1) 
-1 by
Wilson's Theorem.  Thus we have
proved

Theorem
3.25  Euler's Criterion  (a/p)  
a(p-1)/2 (mod p)

This enables one
to prove some interesting facts about quadratic residues

Theorem
3.26

a) 
(a2/p) =1

b) (a/p)=(b/p)
if
a b (mod p)

c) ((ab)/p)
= (a/p)(b/p)

d) (-1/p)=(-1)(p-1)/2

Proof:

a) and b) are
obvious,
d) is a restatement of
Euler's Criterion for
a
= 1, and c) follows since (ab)(p-1)/2 =
a(p-1)/2b(p-1)/2

So -1 is a
quadratic
residue of primes p 1
(mod 4), since then (p-1)/2 is even but not of primes p 3
(mod 4),
since then (p-1)/2 is odd.  The product of
quadratic
residues is a quadratic residue, but so is the product of
quadratic
non-residues. 
The product of a residue and a non-residue is a non-residue.

For example, if p
= 7, the quadratic residues are congruent to 12, 22,
32 (mod 7); that is congruent to 1, 2, 4. 
Note that -1
is not a residue.  Since 2 and 4 are residues, so is 2(4) 1(mod
7).  Since 3 and 6 are non-
residues, 3(6) 4(mod
7) is a residue.  But 4(6) 5(mod
7), the product of a residue and a non-residue, is a
non-residue.

Similarly, for p
= 13 the residues are 1, 3, 4, 9, 10, 12 and the non-residues are 2, 5,
6, 7, 8, 11; -1 12 (mod
13)
is a residue, 4(9) 10
(mod 13)
is a residue, 5(6) 4(mod
13)
is a residue, and 4(7) 2(mod
13) is a non-
residue.

For p=11,
the residues are 1, 3, 4, 5, 9; the non-residues 2, 6, 7, 8, 10.

Quadratic
Reciprocity

The most famous
theorem
relating quadratic residues, the Law
of Quadratic Reciprocity, was first proved by
Gauss.

http://www-personal.umich.edu/~copyrght/image/books/Spatial%20Synthesis2/bibliography.html#ros_83
http://www-personal.umich.edu/~copyrght/image/books/Spatial%20Synthesis2/bibliography.html#gau_76
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Theorem
3.27.  Gauss's Law of Quadratic Reciprocity.

If p, q
are odd primes (p/q)(q/p) = (-1)((p-1)/2)((q-1)/2)
=
(-1)((p-1)(q-1))/4

This theorem has
been proved many times in many ways.  An example illustrates its
power. 
There are many
proofs available on the Internet.  Take a look at
the
linked
paper to see one contemporary strategy. 
Compare the proof of
Wilson's
Theorem in the linked material to the proof of Wilson's Theorem above
in
order to gain insight into the strategy in the linked paper. 
Then,
consider the example below and then the
proof of the Quadratic
Reciprocity
law that appears in that link. (Click here,
if the link at the beginning of this
paragraph fails).

(p/3)(3/p)
= (-1)(p-1)(3-1)/4 = (-1)(p-1)/2 =
(-1/p)

Therefore, (p/3)(3/p)(3/p)
= (-1/p)(3/p) = (-3/p)

Therefore (p/3)
= (-3/p)

But (p/3)
= (1/p)=1 if p 1
(mod 3) and (p/3) = (2/3) = -1.  Thus -3 is a quadratic
residue
of the primes p 1
(mod
3) but not of the primes p 2
(mod 3).
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Find the GCD of 6888 and 792

6888 1 O
792 0 1
6888 = 792(8) + 552 552 1 -8




