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Chapter 5 

Binary Quadratic Forms and the Löschian Diophantine Equation
One proof of Gauss's Law of Reciprocity, using contemporary techniques was linked to at the end of the previous
chapter.  There are also numerous classical proofs, some of which rest on the Chinese Remainder Theorem (link to
one of them). Because such proofs often assume that the reader already knows the Chinese Remainder Theorem, and
because it has been our experience that readers often do not know this theorem, we present it here in detail.

The Chinese Remainder Theorem

At the time the greatest common divisor was defined, it would have been possible to define a related number, the least
common multiple.

Definition 5.1.  Suppose a and b are two positive integers.  The least common multiple [a, b] is the smallest positive
integer which is a multiple of both a and b.  The relationship between them is illustrated in the following lemma.

Lemma 5.2.  Let a and b be two positive integers.  Then

a)  (a, b) [a, b] = ab 
b)  If d | a and d | b, then d | (a, b) 
c)  If a | m and b | m, then ab | m.

Proof:

a)  Consider the prime factorizations of a, b.  Let

a = p1
a1p2

a2...pk
ak 

b = p1
b1p2

b2...pk
bk

(in this case, some exponents may be 0; a prime is included in the list if it is a divisor of either a or b).

Then

(a, b) = p1
c1...pk

ck where ci = min {ai, bi) 
[a, b] = p1

d1...pk
dk where di = max (ai, bi)

Since ai + bi= ci + di for each i, (a, b) [a, b] = ab.

b)  There are integers s, t such that (a, b) = as + bt.  If a = dx, b = dy, (a, b) = d(xs) + d(yt) = d(xs + yt).  So
d | (a, b).

c)  Let m = [a, b]q + r, 0 r<[a, b].  As in b), since a | m and a | [a, b], a | r.  Similarly b | r.  Since r < [a, b],
this contradicts the fact that [a, b] is the LEAST common multiple of a and b.  So r = 0.  If (a, b) = 1, [a, b] =
ab by part a), so ab | m.

The least common multiple is used in arithmetic to add fractions, where it is called the least common denominator.  For
example, since [15, 21] = 15(21)/(15,21) = 15(21)/3 = 105

4/15 + 5/21 = (4/15)((21/3)/(21/3)) + (5/21)((21/3)/(21/3)) = (4(7) + 5(5))/105 = 53/105.

The least common multiple arises when it is desired to solve several congruences (with different moduli)
simultaneously.  The process below appears to have been known in first century China.  Hence it has come to be
known as the Chinese Remainder Theorem. 
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Theorem 5.3.  The Chinese Remainder Theorem  
Let m1, m2, ..., mr be positive integers such that (mi, mj) = 1 if i j.  Let a1, ..., ar be any integers.  Then
the system of congruences

x a1 (mod m1) 
x a2 (mod m2) 
.... 
x ar (mod mr)

has a common solution of x, and if x, y are two such solutions x y(mod m=m1m2...mr). 

Proof: 
For each j, let kj = m / mj.  Thus (kj, mj) = 1, since mj has no factors in common with any mi if i j. 
Thus there is an integer bj with kjbj1 1(mod mj).  Also, if i j kjbj1 0(mod mi).  Let x = Skjbjaj 1  j  r. 
Then, for each i, x kibiai1 ai (mod mi).  Further, if x and y are two solutions x y(mod mi).  Thus mi |
(x - y) for each i.  By Lemma 5.2c) m | (x - y).  So x y(mod m).

Here is a classic example.  A man has a basket of eggs.  He doesn't know how many eggs there are,
but when he counts them by twos, there is one left over.  Similarly, when he counts by threes or fives,
there is one remaining.  When he counts by sevens, there are two left over.  What is the least number
of eggs he could have in his basket?  If x is the number of eggs, the system of congruences is

x 1(mod 2) 
x 1(mod 3) 
x 1(mod 5) 
x 2(mod 7)

So m=210, k1=105, k2=70, k3=42, k=30.  To find b1, b2, b3, b4 solve 

105b11 1(mod 2) or b11 1(mod 2) 
  70b21 1(mod 3) or b21 1(mod 3) 
  42b31 1(mod 5) or 2b31 1(mod 5) 
  30b41 1(mod 7) or 2b41 1(mod 7)

One set of solution is b1=1, b2=1, b3=3, b4=4.  Thus x=105(1)(1)+70(1)(1)+42(3)(1)+30(4)(1)=541.  The
smallest positive integer congruent to 541(mod 210) is 121.  Thus the least number of eggs the man
has is 121. 

While computations such as those of the above example are fascinating, the theoretical consequences are more
important.

Theorem 5.4.  Suppose (m1, m2) = 1.  Then the equation f(x) 0(mod m=m1m2) has a solution if and only if both f(x)
0(mod m1), and f(x) 0(mod m2) have solutions (here f(x) is a polynomial with integer coefficients).

Remark:  In fact if f(x) 0(mod m1) has n1 solutions and f(x) 0(mod m2) has n2 solutions, then f(x) 0(mod m) has n1n2
solutions.  See Niven, Zuckerman, and Montgomery, Theorem 2.20, for a proof.  In the book, the theorem will be used
to see if x21  a has solutions for certain composite moduli.
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Proof:  If f(x) 0(mod m), then for some integer k, f(x) km=km1m2.  Thus f(x) 0(mod m1) and f(x) 0(mod m2).  On the
other hand, suppose f(x) 0(mod m1) and f(x) 0(mod m2) both have solutions.  Suppose f(a1) 0(mod m1) and f(a2)
(mod m2).  By the Chinese Remainder Theorem, there is an integer x (mod m), x a1(mod m1) and x a2(mod m2). 
Then f(x) f(a1) 0(mod m1) and f(x) f(a2) 0(mod m2).  Thus m1 | f(x), m2 | f(x).  Thus since (m1, m2) 1, by Lemma
5.2 m=m1m2 | f(x), so f(x) 0(mod m).

The Chinese Remainder Theorem can also be used to help calculate the value of Euler's -function.

Theorem 5.5.

a)  If p is a prime, (pn) = pn - pn-1 
b)  If (m1, m2) = 1, (m1, m2) = (m1) (m2).

Proof:

a)  Suppose p is a prime.  Then, consider the complete residue system 1, 2, ..., pn.  The only integers in this
list NOT relatively prime to p are p1, 2p, ..., (pn-1)p.  Thus (pn) = pn - pn-1. 
b)  The goal is to establish a one-to-one correspondence between integers a in the set {1, 2, ..., m} which
are relatively prime to m and pairs of integers (a1, a2), where

a1 is in {1, 2, ..., m1}, relatively prime to m1 
a2 is in {1, 2, ..., m2}, relatively prime to m2.

First, suppose (a, m) = 1.  Then (a, m1) = 1 and (a, m2) = 1.  Let ai be the remainder when a is divided by
mi, i = 1, 2.  Second, suppose a1, a2 are as above.  Then the Chinese Remainder Theorem assures there is
a unique a in {1, 2, ..., m} with a a1(mod m1) and a a2(mod m2).  Since (a, m1) = 1 and (a, m2) = 1, it
follows that (a, m1m2) = 1.  Thus, since this one-to-one correspondence exists, f(m) = f(m1) f(m2).

For example, since (4) = 4 - 2 = 2 and (5) = 4, (20) = 8.  Since (8) = 8 - 4 = 4 and (9) = 9 - 3 = 6, (72) =
4(6) = 24.  One of the pairings of part b) of the theorem is of (1, 2), where (1, 8) = 1 and (2, 9) = 1 with 65, a number
relatively prime to 72 with 65 1(mod 8) and 65 2(mod 9).  This is the solution of the system

x 1(mod 8) 
x 2(mod 9)

determined by the Chinese Remainder Theorem (k1=9, k2=8; b1=1, b2=8) since x 9(1)(1) + 8(8)(2)=137 65(mod 72).

Binary Quadratic Forms

In order to find which integers are of the form x2 + xy + y2 for integers x, y (as desired by Loeb and Dacey), it is first
necessary to study binary quadratic forms in general.

Definition 5.6.

a)  A function f(x, y) = ax2 + bxy +cy2 is called a binary quadratic form.  If n = f(x0, y0) for some integers x0,
y0, then the form f represents n properly if (x0, y0) = 1, improperly if (x0, y0) 1. 
b)  The points (x, y) where x, y are integers are called lattice points. 
c)  The discriminant d of a quadratic form is d = b2 - 4ac. 
d)  A form is called

positive definite if it takes on only positive values when (x, y) (0, 0). 
negative definite if it takes on only negative values when (x, y) (0, 0). 
semidefinite if it takes on only non-negative values or non-positive values.

http://www-personal.umich.edu/~copyrght/image/books/Spatial%20Synthesis2/bibliography.html#loe_76
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Theorem 5.7.

a) d 0 or 1 (mod 4) 
b)  A form with d = 0 is semidefinite but not definite.  A form with positive discriminant is indefinite.  A form
with negative discriminant is definite (positive if a>0, negative if a<0)

Theorem 5.8.  Let M =  [m11m12; m21, m22].  Let [u; v] = M[x; y], that is u = m11x + m12y, v = m21x + m12y.  Then this
transformation is a permutation of the lattice points in the plane if and only if det M = +/- 1.

Definition 5.9.  Two quadratic forms f(x, y) = ax2 + bxy + cy2 and g(x, y) = Ax2 + Bxy + Cy2 are said to be equivalent if
there is a matrix M of determinant 1, M = [m11, m12; m21, m22], such that g(x, y) = f(m11x + m12y, m21x + m22y).

Theorem 5.8 suggests that matrices of determinant -1 could have been allowed in Definition 5.9.  Indeed, some
number theory texts allow this.  Still others use the term "properly equivalent" if det M = 1, "improperly equivalent" if det
M = -1.  Niven, Zuckerman, and Montgomery use the approach of Definition 5.9.

Theorem 5.9.

a)  Equivalence of forms partitions the set of quadratic forms into sets of forms all of which are equivalent to
each other. 
b)  Equivalent forms represent the same integers n, and represent the same integers properly. 
c)  Equivalent forms have the same discriminant.

Definition 5.10.  Let f be a binary quadratic form whose discriminant is not a perfect square; f is called reduced if  -|a| <
b  |a| < |c| or if 0 b  |a| = |c|.

Theorem 5.11.  If d is not a perfect square, each equivalence class of binary quadratic forms of discriminant d contains
at least one reduced form.

Theorem 5.12.  Suppose f is a reduced positive definite quadratic form of discriminant d.  The 0 < a  (-d/3)0.5 .

Corollary 5.13.  There is only one reduced form with discriminant -3. 
 

Proof:  By Theorem 5.12 a = 1; b = 0 is impossible since d b2 (mod 4).  Therefore, Definition 5.10 assures
b = 1, c = 1.

Theorem 5.14.  Let n and d be given integers with n 0.  There is a binary quadratic form of discriminant d which
represents n properly if and only if x21 d(mod 4|n|) has a solution.

Corollary 5.15.  Suppose d  0 or 1 (mod 4).  If p is an odd prime, there is a binary quadratic form of discriminant which
represents p if and only if (d/p) = 1.

Application to Löschian Numbers

Definition 5.16. A positive integer n is called Löschian if there are integers x and y such that n = x2 + xy + y2.

Since there is only one reduced form of discriminant -3, namely x2 + xy + y2, and since if n is representable by a form
of discriminant -3 if and only if it is representable by an equivalent reduced form, Theorem 5.14 assures that n is
properly representable by x2 + xy + y2 if and only if x21  -3 (mod 4n) or x2 + 3  0(mod 4n) has a solution.

By Theorem 5.4, x2 +3  0 (mod 4n) has a solution if and only if x2 +3  0 (mod pi
ai) has a solution for every i.

1)  If p | n and p  1 (mod 3), then by quadratic reciprocity (-3/p) = (p/3) = 1 and also (-3/pn) = (pn/3) = (p/3)n
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= 1, so x2 +3  0(mod pn) has a solution for every n. 
2)  However suppose p 2(mod 3).  Then (-3/p) = 1, and so x2 +3  0(mod p) has no solution.  But x2 +3
0(mod pn) implies pn | (x2 +3) which in turn implies that p | (x2 +3), which is impossible. 
3)  Of course x2 +3 0(mod 3) has a solution (x = 0) but x2 +3 0(mod 3n) has no solution for n>1 since 9|
(x2 +3) implies 3|x2 implies 3|x, say x=3a; but then x2 +3 = 3(3a2 + 1) 3 (mod 9), a contradiction.

Thus N is properly representable by x2 + xy + y2 if and only if N = 3appb, where every p 1(mod 3) and a =0 or 1.  Of
course if N = x2 + xy + y2 , c2N = (cx)2 + (cx)(cy) + (cy)2 so the square of any properly representable integer is
improperly representable.  Thus an integer N is Löschian if and only if N = 3appbpq2g where every p 1(mod 3), every
q  2(mod 3).  Of course, sometimes, it is not necessary to find the prime factorization of N to see if it is Löschian. 
Since always x2 + xy + y21  0 or 1 (mod 3) [try the nine cases x a, y b (mod 3); if a = b, x2 + xy + y21  0(mod 3);
otherwise x2 + xy + y21  1(mod 3) ].

So if N 2(mod 3), N is non-Löschian.

For example, N=32759 is non-Löschian (it is not immediately obvious that N = 17(41)(47).

Similarly, suppose N = pnM, where (M, p) = 1, p 0, 1 (mod p).  If M 2(mod 3), N is non-Löschian, since the sum of
the exponents of the primes 2(mod 3) in the prime factorization of M must be odd.

For example, N = 8073 = 33(299), and 299 2 (mod 3).  So 8073 is non-Löschian.  In fact, 8073 = 33(13)(23).

In summary, 
Theorem 5.17.  Let N be a positive integer.  Then

a)  N is properly representable as x2 + xy + y2 for integers x, y if and only if N = 3aM, where a = 0,1 and
every prime factor of M is  1(mod 3). 
b)  N is Löschian if N = 3aMT2, where every prime factor of M is  1(mod 3) and every prime factor of T is 

 2(mod 3). 
c)  N is non-Löschian if N 2(mod 3) 
d)  N is non-Löschian if N = pnM, (M, p) = 1, M 2(mod 3).

Löschian numbers:  examples of Theorem usage 
     In this chapter, we have proved a theorem that lets anyone determine exactly which numbers are Löschian and
which numbers are not Löschian.  The formal mechanics of proof drew on a variety of earlier theorems and on facts
from number theory.  The creative effort involved the recasting of Marshall's earlier work in a form that would lead to
the desired conclusion of a sufficient condition.  Readers wishing to examine the history of this development are
referred to articles published by Marshall (1975), S. Arlinghaus (1985), and S. Arlinghaus and W. Arlinghaus (1989). 
So that one might see how the results of Theorem 5.17 can be implemented, we offer several examples below.

K =  175 is Löschian, since K = 52 x 7.
K = 125 = 53 is not Löschian
K = 245 = 5 x 72 is not Löschian
K = 85 is not Löschian, even though 85 is congruent to 1(mod 3), since K = 5 x 17, and both 5 and 17 are
congruent to 2(mod 3)
K = 49 is Löschian as 49 may be generated using the Diophantine equation on either the ordered pair (0, 7) or on
(3, 5):  representation is not unique.

Theorem 5.17 offers an easy way to check whether a given number is Löschian.  It does not give the geometric
characterization of the associated hierarchy.  For that characterization, the reader then needs to return to the material
in Chapter 4 and the Fundamental Theorem offered there. 

Institute of Mathematical Geography.  Copyright, 2005, held by authors. 
Spatial Synthesis:  Centrality and Hierarchy, Volume I, Book 1. 
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