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THE WELL-TEMPERED MAP PROJECTION*
"For there is a music wherever there is a harmony, order or proportion;
and thus far we may maintain the music of the spheres; for those
well ordered motions, and regular paces, though they give
no sound unto the ear, yet to the understanding they
strike a note most full of harmony."

Sir Thomas Browne, 1605-1682.

INTRODUCTION

Non-Euclidean geometries have served, most notably in application, to
characterize abstract relationships underlying theoretical structure in
physics; Hermann Minkowski's specialization of affine gecometry resulted in
the "space-time" geometry used in special relativity theory [Einstein, 1961,
pp. 57, 122]1. The geometer H. S. M. Coxeter identifies a geometric
" 'genealogy' [in which] each geometry (save the first) is derived from its

parent by some kind of specialization.

PROJECTIVE
ELLIPTIC AFFINE HYPERBOLIC

EUCLIDEAN MINKOWSKIAN"

[Coxeter, 1965, p. 19]. Use of the Minkowskian metric is also of current

concern to cognitive mappers who see advantages in employing it to represent
more realistically the shape of perceived spaces in mental maps  [Golledge and
Hubert, 1982; Muller, 1984]. This paper, however, works within the broadest

non-Euclidean geometry in Coxeter's hierarchy: projective geometry.



Genefally, the transformational approach to using mathematics to explore
geographic and cartographic relationships, as in the work of Waldo Tobler
[Tobler, 1961, 1962, 1963], follows the direction taken by Felix Klein using the
notion of a mathematical transformation to uncover global structure. Specifically,
the Polish cartographer-geodesist, Franciszek Biernacki, understood the
suitabiility of employing the transformational projective approach to analyzing
various classes of map projections as he commented that "The problem of projective
representation is the concern of a mathematical discipline--projective geometry."
Unfortunately, however, he stopped short of execution [Biernacki, 1965, p. 297].
This article does align, through a sequence of theorems, perspective map
projections with fundamental projective geometric concepts. The process of forming
this theory presents opportunities for othersto employ the full spectrum of
theorems from projective geometry, which dates (as a systematic discipline) from
the seventeenth century.

All non-Euclidean geometries treat the notion of infinity in a manner
different from that of the Euclidean approach. Thus, while rigorous axiomatic
development for these geometries is available in the mathematical literature,
it is difficult for us to visualize these theorems in our Euclidean-trained
minds; therefore, it will be useful, where possible, to interpret non-Euclidean
relations in terms of abstract models that are easier to visualize. This
essay will introduce a mathematically structured set of concepts from projective
geometry and will apply them to perspective map projections, where the notion
of infinity is the same as the projective geometric view of infinity. It will
prove those projective geometry theorems that either are not easily available
or that emphasize the differing view of infinity. The reader will be referred

to appropriate literature for the proofs of others. The main result, the



Harmonic Map Projection Theorem (Theorem 7), will show how to use one of the
fundamentai transformations of projective geometry, that of harmonic conjugacy,
to obtain one perspective map projection from another, totally within the plane
of projection and without reverting to the sphere. It will thereby prove that
the entire set of perspective projections may be derived in the projective

plane from the subset of projections with centers of projection contained within
the sphere of projection; it will reduce an unbounded set of possibilities to a
bounded set. At a broader level, this alignment will suggest the advantages

to be gained from applying this highly symmetric geometry, that does not distinguish
the ordinary from the infinite, to real-world situations that exhibit some sort
of symmetry in underlying relations and that embrace the concept of infinity as
part of an attainable system of fundamental wvalues.

NON-EUCLIDEAN CONCEPTS

Inversive gecmetry

Suppose that a circle of radius r and center O has been drawn in the
Euclidean plane (Figure 1). Draw a ray OP emanating from O, and designate as P!
the point on OP such that |OP| X JOP'| = r2. The points P and P' are called
inverses with respect to this circle of inversion; for, if r=1 and IOP| = x, then
|OP'|=l/x so that appropriate distances are reciprocals or multiplicative
"inverses." The mathematical transformation indicated by this procedure has the
effect of sending, simultaneously, points inside the circle to points outside
the circle, points outside the circle to points inside the circle, and points
on the circle to themselves. Thus the disc inside the circle is turned inside-
out to cover the entire unbounded set outside the circle, while, at the same time,
the disc is filled, with no overlap, by the entire collection of points outside
the circle. The circle itself remains fixed under this transformation of inversion.

Only the inverse of the center of the circle is unclear.
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Definition 1 [Coxeter, 1961, pp. 78, 84].

In a fixed circle of radius r and center O, in the Euclidean plane, suppose
that P is an arbitrary point, P # 0. Then the point P' on the ray OP is the
inverse of P with respect to the circle if and only if |OP| b IOP'] = r2. 1E
the Euclidean plane is extended by joining to it a peint O', at infinity, to

be used as the inverse of O, then this extended plane is called the inversive

plane.

Thus any line passing through O contains alsoc the point 0O'; this line
inverts to itself although the only points fixed by inversion are the ones on
the circle of inversion. (As a three-dimensional analogue, the intersections
of meridians at antipodal "poles™ on a sphere corresponds to the notion of rays
emanating from O containing 0'.) Any line not passing through O has ends at O'
and so inverts to a circle passing through O. Abstractly the plane may be
completely inverted; alternafely, this transformation is called reflection in a
circle. For a point P close to a mirror on the fixed circle reflects to P' which
appears to be not far back in the mirror, while a point P closer to O reflects
to a more distant position in the mirror [Lyndon, 1985]. The following
cons%ruction will permit easy determination of inverses, given a point "P.

Construction 1 [Coxeter, 1961, p. 78].

To construct the inverse of a point P within a circle G, first construct the
perpendicular to OP at P (Figure 2). Let T denote an intersection point of this
perpendicular with G. Construct a tangent to G at T. The intersection point P’
of this tangent with OP is the inverse of P with respect to G (of radius r) since
AOPT = AOTP'. For then |OT|/|oP| = |op'|/|OT|, and since |oT| = r,
|OP| X |OP'] = r2 as required by Definition 1. This construction reverses step

for step if P is outside G.



The material above describes the basis of a geometry that exists in a space
formed by extending the Euclidean plane by one extra point at infinity. It seems
natural to ask next what happens if the Euclidean plane is extended by more than
one point at infinity.

Projective geometry

The well-known example of parallel railroad tracks converging at the visual
horizon, that is often used as a starting point in expanding the spatial aware-
ness of elementary students, makes a convenient beginning for visualization in
the projeétive plane. For, the possibility that parallel lines "meet" at infinity
suggests the following extension of the Euclidean plane. Suppose that all lines
parallel to a given line m meet at «(m); suppose that all lines parallel to n
(not parallel to m) meet at «(n)#w(m). The line joining =(m) to «(n) will be
composed of an infinite number of other points that may be viewed as intersection
points of other families of parallel lines. These points at infinity will be
referred to as "ideal" points, and the line consisting of all ideal points as the
"ideal" line. When points and the line at infinity are not distinguished from
Euclidean points and lines, the geometry of this Euclidean plane extended by
the ideal line is the two-dimensional geometry of the projective plane.

It is a geometry that possesses a remarkable degree of symmetry; it may be
studied from a coordinatized (analytic) approach or from a coordinate—free
(synthetic) approach. Since selection of coordinates tends to introduce bias
toward one coordinate scheme or another, and since such bias may be reflected in
application, it is preferable to function in the synthetic, transformational,
approach which reveals more clearly the power of the fundamental abstract ideas
[Mac Lane, 1982]1. The hallmark of synthetic projective proofs is mathematical
elegance; proofs of theorems may appear "simple" once they are discovered,

because they are clear. They are not, however, easy to find.



The extent of symmetry present in the projective plane may be measured
abstractly by constructing a lexicographic model by which to interpret the
following "metaprinciple" which is a principle about the entire set of theorems

that can be proven in the projective plane.

Meta-principle--The Principle of Duality [Coxeter, 1974, p. 4].

"In the projective plane, in which ideal points and the ideal line are
indistinguishable from other points and lines, every true statement about points

and lines may be replaced by a corresponding true statement about lines and points."

Thus thé entire geometry possesses a bilateral symmetry folded along an axis that
provides for interchanging "point" concepts with "line" concepts. For example,
since the statement "two points join to determine a line" is true, it follows by
duality that "two lines meet to determine a point" is also true in the projective
plane, but is certainly not true for parallel lines in the Euclidean plane.

All that is needed to translate a true theorem to its projective dual is the

appropriate dictionary, an abridged version of which is given below.

Term Dual term
Point Line

Join Meet
Collinear Concurrent
Quadrangle Quadrilateral
Center Axis

For a more complete discussion see Coxeter, Projective Geometry; only terms used

in the subseguent development have been included in this partial listing. An
implication of this principle is that if a particular geographic map may
legitimately be characterized in the projective plane, its dual may immediately

be derived from it.



Definition 2 (dual words noted in parentheses) [Coxeter, 1974, pp. 10-12].
A perspectivity is a transformation in the projective plane that relates
one set of collinear (concurrent) points (lines) to another through a center

(axis) O (o) that joins (meets) each of the points (lines).

For example, in Figure 3, the set of points A, B, C is sent by perspectivity

=IO

through O to the set of points A', B', C'. This is denoted ARC DEBYEY ¢

The following theorem, Desargues's two triangle theorem is frequently
taken aé an axiom of projective geometry, since proofs of it in two-dimensions
generally rely on three-dimensional arguments. This theorem is due to Girard
Desargues, a seventeenth century French architect, who together with the physicist
Johannes Kepler, seized the significance of the point at infinity thereby moving
this non-Euclidean geometry awayrfrom its descriptive origins in the fine arts
toward a more rigorous abstract developemnt [Coxeter, 1974, pp. 2-3].
Theorem 1 (Desargues's Two Triangle Theorem) [Coxeter, 1974, pp. 18-19].

If two triangles PQR and P'Q'R' are such that PP', QQ', RR' are concurrent
at O, then the points of intersection, L, M, N, given as PQ - P'Q'" = L,
QR « Q'R' = M, and RP « R'P' = N (where "-" denotes intersection of lines) are

collinear (Figure 4).

This remarkable theorem, useful in proving many other theorems, is stated here
without proof. 1In addition to theorems about triangles, there are many theorems
about quadrangles that rest on Desargues's theorem. Theorem 2 below is typical
of this sort of theorem.
Definition 3 (Dual words in parentheses). [Coxeter, 1974, p. 7].

A quadrangle (quaarilateral) in the projective plane is composed of four
points (lines) P,Q,R,S (p,q,r,s) and their joins (meets) PQ, RS, PS, SQ, QR, RP

(p°q, r*s, p*s, s*q, g°r, r°p) (Figure 5). The remaining meets (joins), A,B,C



(a,b,c) are called the diagonal points (lines) of the quadrangle (gquadrilateral).
(This is not true in the Euclidean plane for guadrangles with a pair of
parallel sides.)
Definition 4 [Coxeter, 1974, p. 20].

If a line g cuts across a guadrangle, not through one of the vertices P,Q,
R, or S, it will generally contain six intersection points, one from each side of
the gquadrangle. This set of intersection points is called a quadrangular set;
in Figure 6 the points A,B,C,D,E,F form a gquadrangular set denoted (&D) (BE) (CF)

where notational pairings reflect opposition in sides of the guadrangle.

Construction 2 [Coxeter, 1974, P 21].

Any five collinear points, A,B,C,D,E on a line g may be viewed as belonging
to a guadrangular set from which a sixth, F, may be constructed (Figure 7).
To do so, draw.a triangle QRS so that QS passes through B, RS paSses through C,
and RQ passes through D (the choice of these lines is arbitrary as long as they are

not concurrent). Construct P = AS - ER, so that F = g - PQ.

Theorem 2 [Coxeter, 1974, pp. 21-22].

"BEach point of a quadrangular set is uniquely determined by the remaining
points."
The formal proof of this theorem rests on Desargues's theorem and its converse.
Experimentation with the construction shown in Figure 7 displays the
plausibility of this theoren.

Quadrangular sets generally contain six points: however, they may contain
as few as four points if the line g passes through two of the diagonal points.

This particular specialization leads to the following definition.
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Definition 5 [Coxeter, 1974, p. 22].

"A harmonic set of four collinear points is the special case of a
quadrangular set when g joins two diagonal points of the quadrangle." (Figure
8). This is denoted (AA) (BB) (CF) and F (or C) is called the harmonic conjugate
of C (or F) with respect to A and B.

Construction 3 (due to Philippe de La Hire, 1640-1718) [Coxeter, 1960, p. 18].

Any three collinear points A,B, and C on a line g may be viewed as belonging
to a harmonic set from which the fourth may be constructed (Figure 8). To do so,
draw a triangle QRS so that QS passes through B, RS passes through C and RQ
passes through A. Again, construct P = AS - BR so that F = AB - PQ. Theorem

2 ensures uniqueness of the construction.

Harmonic conjugates are critical to the development of projective geometry
because they guarantee that there are at least four points on every line. It
will be useful to have properties about harmonic conjugates; first, it will be
noted that harmonic conjugates are invariant under perspectivity, and second, it
will be proved that the notion of harmonic conjugacy can be expressed in a metric
form. Further it will be of interest to note that La Hire not only is credited
with Construction 3, but also that he developed perspective projections from
centers of projection in a variety of positions [Steers, 1962].

Theorem 3 [Coxeter, 1974, pp. 28-29].
0
If ABCF A A'B'C'F' and if F is the harmonic conjugate of C with respect to

A and B, then F' is the harmonic conjugate of C' with respect to A' and B'.

Theorem 4 (metric representation for the harmonic relation)
Given four collinear points 2, A', Al, Az. They form a harmonic set,
Tl + s v = v
(ARn) (a'A )(A1A2) if and only if (AAl)/(AlA ) (AAE)/(A Az).

[Coxeter, 1961, pp. 242, 88-89, exercises).
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Proof:
A) Suppose (AAl)/(AlA') = (AAz)/(A'AZ) (Figure 9).
Let P be any point not on AA' so that the internal and external bisectors

of <APA' meet AA' in A; and A,. Locate E and F on AP so that A'E| |a;P and

A'F|[A2P- Since interior and exterior angle bisectors are perpendicular,

<A1PA2 = 90° as are the remaining angles of the parallelogram containing this

angle. Therefore (FPA') and (A'PE) are isosceles triangles with vertex angles
at P, so that FP = A'P = PE.
Since AAAlP = ABA'E it follows that (AAl)/(AlA') = (AP)/ (PE) and since

ABA'F = AAAZP it follows that (AAZ)/(AZA‘) = (AP)/(FP). Thus, since PE = FP,

(AAl)/(AlA') = (AA2)/(A2A') as in Figure 9.

It remains to show that A, A', Al, A2 form an harmconic set. To do so, we

show that they form a quadrangular set on a line passing through two diagonal
points of a quadrangle. To this end, label as E' the point on A'P that produces
AE" | |A_P.

1,

Then reflection in A2P transforms AZA into A2E' since A2 lies on the axis

of the reflection and since AE' l_AzP with A and E' equidistant from A P on opposite

2

sides. The point A' lies on AA2 and the point A' is transformed to the point E

by reflection through A2P. Thus E lies on AZE'.

Therefore AZ is the harmonic conjugate of Al with respect to A and A' as
these form a quadrangular set, derived from the guadrangle with vertices E', P,
E, oc(AlP), on a line passing through diagonal points A and A'.

B) Suppose Al and A2 are harmonic conjugates with respect to A and A'.
Use the projective construction of Construction 3 to find the harmonic

conjugate of A, with respect to A and A' (shown below the line in Figure 10).

A2

Let P be any point on the circle of diameter A1A2 so that <A1PA2 = 90°.

Label, respectively, E (E') as the intersection point of the line through A', (a)
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parallel to AlP, with AP (A'P). Label F as the intersection point of the line
through A', parallel to A2P, with AP. The parallelogram with two vertices at

A' and P must be a rectangle since <A1PA2 = 90° (Figure 10). Now the configur-
ation above the line in Figure 10 is identical to that in Part A of this proof.
Since A2 is the harmonic conjugate of Al with respect to A and A', the points
BEY . E; A2 are collinear by the unigueness of the harmonic construction given in
Theorem 2.

Thus this harmonic set, determined projectively, is the same as the set
determined affinely (with the "infinite" quadrangle) in which the ratio in which
Ay and A2 separate A and A' is such that (AAl)/(AlA') = (AAz}/(A’AZ). Q.E.D.

Corollary 1 [Coxeter, 1961, p. 89].

The circle with diameter A_A_ from Part B of Theorem 4 inverts A to A'

172
(the "circle of Apollonius').
Proof: (Figure 10)
Since <A1PA2 = 90° as in Theorem 4, P lies on a circle of diameter AlAz; call

its center O and its radius r. To show that A and A' are inverses, we need, by
2
Definition 1, to show that |a0| x |a'o| = r°. since (a,2)/(3,2') = (BA,)/(2'A,)

by Theorem 4, and since (A;A)/(A)A") = (|a0] - r)/(r - |a'0]) and (an,)/ (a'a,)

A'0]
2

= (|AO| + r)/(|A'O[ + r) it follows from cross-multiplying, that ]AO|-

.

+ r|ao| - r|ao]| - % = r|zo| - r|ato| + £© - |aro|-|ao| or |no|.|ato| = r

as desired. Q.E.D.

One example of an harmonic set comes from music theory: the positioning of
musically harmonic triads may be expressed in terms of length of string plucked
[Coxeter, 1974, p. 23, exercise 6]. If a stretched string is fixed at point O,

and if it plays C at a distance 15 units away from O, then it plays E when stopped



-14-

FIGURE 10
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three units back from C and it plays G when stopped 5 five units back from C. The
three notes G, E, C form, musically, a major triad, and projectively, G and C are
harmenic conjugates with respect to O and E. For, by Theorem 4, 2/3=(GE)/ (EC)
=(GO)/(CO)=lO)15, demonstrating metrical, as well as musical, harmony. Another
example will appear below, and what will emerge is that the infinite set of
perspective projections, with center of projection within the sphere of projection,
has as harmonic conjugates perspective projections, with center outside that
sphere, forming a closed system of map projections in the projective plane.

AN APPLICATION TO MAPS

Perspective map projections use a center C of perspectivity to send points
on the sphere to poin£s in the plane. The position of C within the sphere produces
various maps in the plane; if C is located at the center of the sphere the
corresponding map projection is gnomonic, if C is on the sphere the corresponding
map projection is stereographic, and if C is at infinity the corresponding map
projection is orthographic. The center C could also be located at any of an
infinite number of other points; without loss of abstract generality, the following
material shows how to determine coordinates for a projected point P' (¢',)') in
the plane from a point P(¢$,)A) on the sphere projected from an arbitrary position
for C along tha ray ON emanating from the center of the sphere O and passing
through a pole, N. (Rotation matrices make corresponding alignments for positions
of C tilted from the vertical.)
Definition 6.

Suppose C lies on ON inside the sphere of projection. The parallel centered
on C will be called the bounding parallel on the sphere; it serves as an upper
bound for the set of points that can be projected from C into the tangent plane.

Its latitude will be denoted 8.



o o

Suppose C lies on ON outside the sphere. The parallel at which the sphere
is tangent to the ruled surface (cylinder or cone) formed by rays emanating from
C, used to project points on the sphere into the tangent plane,will be called the
parallel of contact. 1Its latitude on the sphere will be denoted 6 and its
projection in the plane will serve as an outer possibility for the boundary of
a map in the tangent plane projected from C.

Lemma 1

The notions of bounding parallel and parallel of contact coincide at N.

That is, if C = N then 6 = 8.
Proof:

By the first part of Definition 6, as C approaches N from within the sphere,
the corresponding sequencé of bounding parallels is a set of parallels, of
decreasing radius, centered on N. Passing to the one-seded limit shows that when
C=N, 0 =n/2.

By the second part of Definition 6, as C approaches N from outside the sphere,
the corresponding sequence of parallels of contact is a set of parallels, of
decreasing radius, centered on N. Passing to the one-sided limit shows that when
C=N, 6-=mun/2.

The two one-sided limits exist and are equal; thus, the notions of bounding
parallel and parallel of contact extend to the point N, where they are identical.

Q.E.D.

Thus we split the set of available positions along the ray at N into intervals
[0, N), {N}, (M,»] (where a bracket indicates that the endpoint is included
and a parenthesis indicates that it is omitted). Then, arguments from spherical
trigonometry may be employed to prove, using the ideas of Lemma 1, formulas and
their arithmetic (rather than their geometric) inverses for projecting the sphere

to the plane (and back) [Deetz and Adams, 1931; Snyder, 1981].
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Theorem 5

A point P(¢,)), with latitude ¢ and longitude A, on a sphere of radius r
is projected through C to a point P'(¢',A') in the tangent plane such that
a) when C e [O,N),

i} A = Ay

ii) the latitude 6 of the parallel on the sphere whose image bounds the

projection in the tangent plane is 6 = sin_l(|CO|/r),
iii) ¢' is determined at the intersection of a meridian of iongitude A' with
a parallel centered on S in the tangent plane of radius |P'Sl
= (rcos¢ (1+sind))/ (sind + sin¢). The minus sign applies if P is in the
southern hemisphere, and the plus sign if it is in the northern hemisphere;
b) when C & (N,«],
i) Ar =i,
ii) the latitude 6 of the parallel of contact of the cone with the sphere,
whose image bounds the map in tﬁe tangent plane, is 6 = sin-l(r/]CO]),

iii) ¢' is determined at the intersection of a meridian of longitude A' with
a parallel centered on S in the tangent plane of radius ]P’SI
= (rcos¢ (1 + sinﬁ))/(l * sin@sin§3. The minus sign applies if P is in
the southern hemisphere, and the plus sign if it is in the northern
hemisphere;

) if € = N,
i) A = A,

ii) ¢' is determined at the intersection of a meridian of longitude A' in
the téngent plane with a projected parallel centered on S of radius
|P‘S| = (2rcos¢)/(1 + sin¢). The minus sign applies if P is in the
southern hemisphere, and the plus sign if it is in the northern

hemisphere.
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Corollary 2

For any set of arbitrarily chosen centers of projection {CO, Cl,...,C }

[e]

on ON, and for a point P fixed on a sphere, the images of P in the tangent plane,

{PO', Pl‘,...,Pm'} are collinear and the line containing them passes through S.
P
n 1 ] T 3

In fact, COCl...C00 A PG Pl --.P ' (Figure 11).

Corollary 3

With respect to a single center of perspectivity C, & = 8 if and only
if C = N.
Proof:

5} this follows from Theorem 5.c.

a) If C = N then 8
b) If 8 =6 then C = N.

If § = 0 it follows that sin® = sinf. But sing = |CO[/r by Theorem 5a
and sing = r/ICOI by Theorem 5b. So [CO|/r = r/lCOI, and since both values are

positive, r = |CO|. The only value C for which r = |co| is ¢ = N. 0Q.E.D.

Thus if C # N, the only way in which it is possible to obtain 0 = § is to
use a second center of perspectivity. &nd, for the bounding parallel to be the
same as the parallel of contact, one center, Cl, must lie in [0, N) and the
other, C2, in (N, «]. The theorem below will link the classes [0, N) and (N, «]
by characterizing those positions for Cl andC2 where 6 = 0 in terms of inversive
geometry.

Theorem 6 {(Linkage Theorem)

Suppose that Cl e [0, N) and C2 £ (N, =], and that the bounding parallel
associlated with projection from C1 is the same as the parallel of contact
associated with projection from C2. Then
a) the points Cl and C2 are inverses with respect to any great circle G through N.

b) the plane containing the great circle G, together with the point at « along

ON, is the inversive plane.
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Proof:

a) To show that Cl and C2 are inverses with respect to G requires (according to

s 2
Definition 1) that lOCll x f002| = r . From Theorem 5a, |OC1| = rsinf and from
Theorem 5b, |0C2| = r/sinf. Since 6 = 0 from the hypotheses and Theorem 5c,
i ; : 2 1
it follows that [OC1| X |OC2| = rsinb % r/sin® = r" as required.

b} By Construction 1, if P = O a perpendicular to ON intersecting G at T leads
to a line tangent to G at T that is parallel to ON. This tangent intersects
ON at O', the inverse of 0, which is the point . Q0.E.D.
Corollary 4 (Uniqueness)
The linkage between the intervals [0, N) and (N, =] given in Theorem 6 is
the only one which may be made through the transformation of inversion.
Proof : -
If Cl and C2 are such that associated bounding and contact parallels are not
identical, then 8 # E} and linkage in the style of Theorem 6 is not possible,
by Corollary 3.
Corollary 5
The linkage in Theorem & provides a 1-1 correspondence of the set [0, =] onto
itself in which [0, N) corresponds to (N, «]; (N, «] corresponds to [0, N); and,
{N} corresponds to itself--it is invariant under the correspondence.
Proof:
This follows from Theorem 6, Corollary 4, and Construction 1.
Corollary 6
The centers of gnomconic and orthographic projection are inverses with respect
to G, a great circle on the sphere of projection.
Proof:

This follows directly from Theorem 2, since O and » are inverses.
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Since the behavior of centers of perspectivity both within and between
classes on either side of N has been determined, as well as at N, the character-
ization of the centers of perspective projections in terms of inversive geometry
is complete. Beyond this, it seems natural to ask, what sorts of geometric
relationships link points in the tangent plane that have been projected from
inverse centers of projection.

Theorem 7 (Harmonic Map Projection Theorem)

Suppose a point P on the sphere is projected from inverse centers of
projection, C and C', to points PC and PC‘ in the plane tangent to the sphere
at the Soﬁth Pole, S. Suppose fhe stereographic image of P, projected from the
North Pole N, is denoted P Then (SS)(PNPN)(PCPC,); P. and P, are harmonic
conjugates with respect to PN and S in the tangent plane (Figure 12).

Proof:

Let C be a point in [0, N) and C' its inverse in (N, =]. Let P be an arbi-
trary point on the sphere chosen so that projection from all of C; N €' is
well-defined.

Now the points C and C' are harmonic conjugates with respect to N and S.

For |eN| = r - |co|, |e'N] = |c'o| - ¢, |cs| = |co| + x, |c's| = r + |cro| so

that (lCNl)/(]C'NI) = (|CS|)/(]C'S|) from which, it follows, by Theorem 4 and

Corollary 1, that C and C' are harmonic conjugates with respect to N and S.
P

By Definition 2 and Corollary 2, we have SCNC' I SPCPNPC" Thus, by

Theorem 3, which shows that harmonic sets are invariant under perspectivity,

it follows that PC and PC’ are harmonic conjugates.with respect to PN and S.

G Bl
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FIGURE 12
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CASE STUDY

Suppese a point P, located at 30°S. Latitude on a unit sphere, is to be
projected into a plane tangent at the South Pole, S. Using the conventional
formulas based in spherical trigonometry, displayed in Theorem 54, Bb,; 5S¢, it
is a simple matter to calculate the distance in the plane from the projected
image of P to 5. From Theorem 5a.(with ¢ = -30°), when the center of
projection C is at the center of the sphere, O, the image under this gnomonic

'projection, PO, is such that |SPO| = V3. From Theorem 5b, the orthographic

Il

image of P, P, is such that ]SPm| /572. From Theorem 5c, the stereographic

image of P, P_, is such that |5PN| 2/V3. This yields positions for points on

N
SPO determined in Figure 13 via "perspective projections.”
The Harmonic Map Projection Theorem (Theorem 7) promises that, given S,
PN’ and P_, PO may be constructed in the tangent plane using the Harmonic
Construction (Construction 3), as long as © and « are inverse points with
respect to the sphere (Definition 1). Positions for P_, PN' and PO may be
determined in the projective plane, along SPO’ without recourse to Theorem 5,
as follows. 1In A(OSPO), <SOPo = 60° since ¢ = —305, so that |OS| = 1 and

[SP = /3. Further, P bisects |OPO| since |OP| is a radius of the unit sphere;

ol
thus, |SPw‘ = A2 % ]SPOI = ¢§72. Finally, Theorem 4 shows that ]PWPNI/|PNPO|

= |Pmsl/|POSJ. Cross-multiplying, and substituting ]PwP = |PNSI = IPwSl and

»
legPsl = |ps| - |p S| where appropriate, yields e s| - lpgsl - |28l - |p_s|
= |p_s]| - les| - =8| - |egs| or, 2|p_s| - |ps| = [pgskles| + [P s|) so that
2/ e s|= (legs| + |p s/ (|p s]| - legs|) = /e sh + (/[ s]). Thus,
2/|ps| = (2/¥3) + (1/¥3) = /3, ana |ps| = 2/v3. The positions for s, Py

PN' P_ are the same as those determined using Theorem 5; the positions for these

points on SPO are determined in Figure 13, in the tangent plane, using the
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notion of harmonic conjugacy. Equality in the metric representation of harmonic
conjugacy, given in Theorem 4, will follow naturally. For, ]PwPN|/|PNPO|

= (2/V3 - V372)/(/3 - 2/V3) = 1/2 and lpws]/}:posl = (/3/2)/V/3 = 1/2. Thus,
Construction 3 permits the construction, in the projective plane; of a gnomonic
projection as the harmonic conjugate of an orthographic projection with respect
to stereographic projection and the fixed point of the South pole (Figure 13).
CONCLUSION

Through the case study we have seen that the gnomonic, stereographic, and

orthographic are more than merely a set of useful perspective projections; for,

together with the fixed point S, they exhibit the same natural mathematical harmony

as the major musical triad. An infinite number of other harmonic triads of
perspective map projections may be built on any ray emanating from S, and, by

the Harmonic Map Projection Theorem (Theorem 7), these harmonic conjugates in

the plane will have centers of projection that are inverses relative to the sphere.

Building from these triads, one can imagine using theorems about harmonic
conjugates, from projective geometry, to orchestrate the non-Euclidean "Look of
Maps" [Robinson, 1952], lending a geographic interpretation to the harmonious

notion of the "music of the spheres.”



-G

Perspective
projections

N
Both yield the
same position

Bl .
for o

Harmonic construction:
Construction 3
(Figure 8).

——————e

FIGURE 13



-26-

LITERATURE CITED

* The author wishes to thank Professor H. S. M. Coxeter, Department of Mathematics,
University of Toronto, for his constructive comments leading to significant
improvement of the "Case Study" section. His generosity of time and effort are
greatly appreciated.

1. Biernacki, F. Theory of Representation of Surfaces for Surveyors and

Cartographers. Warsaw, Poland: U. S. Department of Commerce and the

National Science Foundation, Scientific Publications Foreign Cooperation
Center of the Central Institute for Scientific Technical and Econcmic
Information, 1965.

2. Coxeter, H. S. M. The Real Projective Plane. Second ed. Cambridge: The

University Press, 1960.

3. Coxeter, H. S. M. Introduction to Geometry. New York: John Wiley, 1961.

4. Coxeter, H. S. M. DNon-Euclidean Ceometry. TFifth ed. Toronto: University

of Toronto Press, 1965.

5. Coxeter, H. 5. M. Projective Geometry. Second ed. Toronto: University of

Toronto Press, 1974.

6. Deetz, C. H. and Adams, O. S. Elements of Map Projection. Washington, D. C.:

U. 5. Department of Commerce, Coast and Geodetic Survey Special Publication
no. 68, third ed., 1931.

7. Einstein, A. Relativity: The Special and the General Theory. Translation

by R. W. Lawson, New York: Bonanza Books, 1961.
8. Golledge, R. G. and Hubert, L. J. "Some comments on non-Euclidean mental maps."

Environment and Planning A 14, (1982), 107-118.

9. Lyndon, R. personal communication via attendance at lectures on "Groups and
Geometry," The University of Michigan, 1985.
10. Mac Lane, S. "Proof, truth, and confusion: the 1982 Ryerson lecture."™

Chicago: The University of Chicago, 1982.



1

X2,

3

14.

15:

16.

1T

-27-

Muller, J.-C. "Canada's elastic space: a portrayal of route and cost

distances." Canadian Geographer, 28, (1984), 46-62.

Robinson, A. H. The Look of Maps: An Examination of Cartographic Design.

Madison, Wisconsin: The University of Wisconsin Press, 1952.

Steers, J. A. An Introduction to the Study of Map Projections. London:

London University Press, 1962.
Snyder, J. P. "The perspective map projection of the earth." The American

Cartographer, 8, (1981), 149-160.

Tobler, W. R. "World map on a Moebius strip." Surveying and Mapping 21,
(1961), 486.

Tobler, W. R. "A classification of map projections.” Annals, Association
of American Geographers, (1962, #2), 167-175.

Tobler, W. R. "Geographic area and map projection.™ Geographical Review,

53, (1963), 59-78.



ANTIPODAL GRAPHS *

"The earth, that is sufficient,
I do not want the constellations any nearer.”

Walt Whitman, "Song of the Open Road,"
1860.

Geographical puzzles, from strolls in K&nigsberg parks to tours of cities
"Around the World," have served, historically, to help stimulate graph theoretic
ideas [Harary, 1969]. In today's technological setting, which carries the
physical realm of geogréphy far beyond earthly confines, one wonders what sorts
of similar interaction, between mathematics and geography, might emerge.

For example, satellite navigation 5ys£ems, such as Transit (U. S. Navy
system) and the Global Positioning System, NavStar (Department of Defense),
employ satellite locations that provide highly symmetric tesselations of their
orbital spheres [Laurila, 1976, 1983; Wenninger, 1972]. Evenness in satellite
spacing, suggested by engineering demands, may produce, as an upper bound for
the number of satellites visible to an earth-based bbserver, half the number of
the total in the entire configuration. Thus, when the satellites appear in
antipodal pairs, so that as one satellite descends beyond the horizon another
ascends, a flat geographical map that conforms to the earth-based observer's
view of the satellite sphere, and that represents simultaneously the entire
satellite configuration, would appear with antipodal identified (abstractly
glued together). Klein's model of the elliptic plane, an object of non-Euclid-
ean geometry in which “"parallel" lines meet, formed by identifying antipodal
points on a sphere, would suit these maps well [Mac Lane, 1982]. Geographical
maps that represent discrete phenomena, such as satellite constellations, can

be compressed abstractly as graphs in some surface (once adjacency relations

—~D
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have been specified). The natural surface in which to embed such satellite
graphs is the elliptic plane, for like the elliptic élane, the eye of the
satellite-camera knows no parallel lines [Arlinghaus, 1985].
Definition 1

Suppose a graph G can be embedded in a closed ball with its vertices on
the boundary of the ball sc that each vertex of G has an antipodal point which
is alsc a vertex of G. The antipodal graph of G, denoted 9, has vertices
obtained by identifying corresponding antipodal vertices of G, and edges

determined by adjacencies present in G.

The graph composed of vertices and edges of a cube satisfies Definition 1;
however, the graph composed of vertices and edges of a tetrahedron does not.
For, as Figure la shows, each of a, b, ¢, and d on the cube has, as antipodal
points, a', b', ¢', @', which are also on the cube. In Figure l1lb, the four
vertices, a, b, ¢, d of the tetrahedron, have a', b', ¢', @' as antipodal
points; however, none of these lies on the tetrahedron.
Lemma 1:

Any graph that satisfies Definition 1 has 2n vertices, n a positive integer.
The proof is a direct consequence of Definition 1.
Corollary 1:

The converse of Lemma 1 does not hold.
The tetrahedron has 2 x 2 vertices; however, it does not satisfy Definition 1.
Lemma 2:

There exists an unambiguous labelling of any graph G that satisfies
Definition 1.
Proof :

By Lemma 1, G has 2n vertices for some positive integer, n. Let

X = {xl,...,xn} be a set of distinct numerals; label n vertices of G in a single
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hemisphere of the ball using a single label from X for each. Then
a) label the vertex antipodal to xi as xi', R [NV, ,
or b) label the vertex antipodal to x, as Xlxz"'xi—lxi+1"' i
Corollary 1:
There exists an unambiguous labelling of 9.
Proof:
To obtain 9 from G identify antipodal points so that either
a) x, and x_ ';
i i
or b) x, and Xlx2"'xi—lxi+l"'xn
represent the same point in 9.
Definition 2: (Coxeter, 1950].
The Schldfli symbol {p,q}, (p, g > 2) represents a regular solid with a
typical face of p edges and a typical vertex with g vertices adjacent to it.
The solid {q,p} is said to be the dual of {p,q}. Solids for which {p,a} = {q.p}

are said to be self-dual.

Proposition 1

For a graph G, representing a solid with Schl&fli symbol {p,q}, if
a) n = p+2
or b) n = q'2a
where o > 0, then
a) p
or b) g+l
distinct labels will provide an unambiguous labelling for G.
Proof:
a) If n=p-2", a >0, then X = {xl,...,xp].
Label the p vertices in a single face of G using a single label from
X for each. Label the vertices antipodal to these as in Lemma 2b. This provides

labels for 2p vertices, leaving 2n-2p = p-2m+l - 2p = 2p(23 - 1) to be labelled.
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To label another set of p vertices, use p pairs of labels from among the
Y possible pairs. It follows that ———JiL*—>>p since p > 2
2 21 (p-2)1 2! (p-2)1! d
(Definition 2) and so this labelling is possible. Use Lemma 2b to label the
p points antipodal to these with strings composed of (p-2) labels. This
procedure may be continued, using strings composed of r labels, and of (p-r)
labels for the antipodal points, so long as (i) > p. There are enough levels
for this procedure to continue, as long as 2" < [p/2] (greatest integer in p/2).
o

b) Ifn=gqg+2, a > 0, then X = {xl,...,xq+l}.

Label the g vertices of G that are adjacent to a vertex with g of the (g+l}
single labels, and label the vertex itself with the remaining single label.
Label the vertices antipodal to these as in Lemma 2b. This provides labels for

2(g+l) vertices, leaving 2n-2(g+l) = 2(q(2Dc — 1) - 1) to be labelled. To label

another set of (g+l) vertices, use (g+l) pairs of labels from among the

q+l}_ (g+1)!

2 1% 2t > (g+1l) since g > 2

(q;l)possible pairs. It follows that (
(Definition 2), and so this labelling-is possible. Use Lemma 2b to label the
(g+1) points antipodal to these with strings of labels composed of ((g+l) -2)
= (g-1) elements. This procedure may be continued, using strings composed of
r labels, and of ((g+l) - r) labels for the antipodal points, so long as
(q:l)> g+l. There are enough levels for this procedure to continue as long as
o™ < [(g+l) /2] (greatest integer in (g+l)/2).
Corcllary 2:
Under the hypotheses of Proposition 1, there exists an unambiguous labelling
oE 9k
Proof:

To obtain 9 from G identify antipodal points so that both the labels

.---X., and x_...X, - ...X _Tre sent the e point in 9.
=y 3 1 1= J+1 n PES =SSN B =
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The set of regular solids which can be inscribed in a sphere is the set of
Platonic solids, comprised of the tetrahedron, the cube, the octahedron, the
dodecahedron, and the icosahedron [Coxeter, 196l]. Because of their high
degree of syﬁmetry, these might serve as models for satellite placement on the
sphere with radius, for example, that of the geostationary orbit.

The Proposition and the Lemmas above will permit consistent labelling of
the vertices of these solids. When the solids are projected into the plane,
they are represented as a graph, in what is known as a Schlegel diagram [Coxeter,
196L1] .

Construction (Coxeter, 1961].

Within the set of graphs, G, of the Platonic solids, only those of the
non self-dual solids have antipoaal graphs. The antipodal éraphs,s , of the
cube, octahedron, and icosahedron are, respectively, the complete graphs on
four, three, and six vertices. The antipodal graph,s , of the dodecahedron is
the so-called 'Petersen' graph. These are displayed below, using labelling

schemes from Lemma 2b and from Proposition 1, as indicated in Figure 2.

When adjacency between vertices is viewed as communication between satellites
(presumably including bouncing back to earth), the less susceptible is the entire
constellation of satellites (with antipodal points iaentified) to fragmentation,
the more secure is the transmission of messages. The following material from graph
theory, when applied to the set of Platonic solids, classifies the antipodal
graphs of the Platonic solids, according to extent of mathematical fragmentation.
Definition 3 [Harary, 1969]

The degree (or valency) of a point v in a graph G is the number of edges

of G incident with wv.
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Definition 4 [Harary, 1969].
A graph G in which all points have degree n, is said to be reqular of
degree n.
Definition 5 [Harary, 1969].
A bridge, x, in a graph, G, is an edge of G whose removal forces an increase
in the number of connected components of G.
Definition 6 [Harary, 1969].
An n-factor of a graph G is a subgraph of G, spanning the vertices of G,
which is regular of degree n.
Definition 7 [Harary, 1969].

A graph G is n-factorable if it can be expressed as a sum of n-factors.

Thus, in Figure 3, the antipodal graph of the cube is l-factorable, the anti-
podal graph of the octahedron is 2-factorable, the antipodal graph of the
icosahedron is l-factorable, and the antipodal graph of the dodecahedron is not
factorable. The Petersen graph may be decomposed as a sum of a l-factor and

a 2-factor; the 2-factor, however, is irreducible--it may not be further
decomposed as a sum of two l-factors.

Theorem [Harary, 1969].

Every bridgeless graph, which is regular of degree three, can be decomposed
as a sum of a l-factor and a 2-factor.

Petersen used the graph, labelled with his name in Figure 3, to show that
the stronger result, 'Every bridgeless graph, which is regular of degree three
can be decomposed as a sum of three l-factors' is false [Petersen, 1891; Harary,
1969]. This result may hold for some graphs which satisfy the hypotheses, but
not for all of them; in particular, it does not hold for the graph which is the
antipodal graph of the dodecahedron. Thus the decompositions shown in Figure 3

are all irreducible.
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An interpretation of this Theorem suggests that satellite communications
systems whose antipodal graphs have bridges are most vulnerable to mathematical
fragmentation and to physical disarmament; the bridge is mathematically weak,
since removal of it necessarily increases the number of connected components
in the underlying graph (Definition 5). Those graphs which are l-factorable
are next most vulnerable (the antipodal graphs of the cube and of the icosahedron
are l-factorable). Those antipodal graphs which are 2-factorable are next most
susceptible to mathematical fragmentation (such as the antipodal graph of the
octahedron). Those which are neither l-factorable, nor 2-factorable, but
which can be decomposed as a sum of l-factors and 2-factors (such as the
Petersen graph) are not as vulnerable, as disarmament is required at two
different levels of connectivity. Any graph which resists decomposition is
least vulnerable. The same sort of ordering of fragmentation would hold
for graphs that were n-factorable and (n+l)-factorable.

| Thus, within the set of Platonic solids, the dodecahedron has the antipodal
graph which is mathematically the most resistant to decomposition. This
suggests that a dodecahedral constellation of satellites is relatively difficult

to disarm.
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MEASURING THE VERTICAL CITY*

"Die Strahlen der Sonne vertreiben die Nacht"
W. A. Mozart, The Magic Flute

INTRODUCTION

Forces that shape the physical form of a central business district are
largely economic; high demand for accessible land that is relatively short in
supply creates high costs per unit of land. Vertical construction is a natural
response to this situation; repetition of vertical construction produces skylines.
Although skylines are often unplanned in global form, large cities can usually
be identified from skyline silhouettes [Gottmann, 1967].

The arrangement and the form of buildings in a central business district
can create positive feelings wiﬁhin the surrounding urban population [Fuller,
1975; Forgey, 1978]. Abstractly, this notion is an extension of the principles
of Japanese landscape gardening [Feldt, 1974], to the urban scale, in which the
harmonious placement of buildings is designed to produce a unit of urban
space that creates a positive attitude in most who enter it [Conway, 1977].

Thus, the skyline might emerge in response to a set of aesthetic as well
as to a set of economic forces. The procedure described below uses matrices
of 0's and 1's to measure the form of existing skylines and to evaluate
the impact of new construction on a skyline. The possibility of using
these matrices rests fundamentally on the necessity of the elevator in
skyscraper construction. It precludes holes, or gaps, in buildings and in
corresponding matrix structure which would prevent accurate outlining of a

skyline profile.

—~ 3G
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SKYLINE MATRICES

Buildings set back from the streets permit light to enter, offer open
spaces in which to design gardens, rest areas, or sculpture, and generally
produce a more relaxing urban environment than do their counterparts with forty
stories directly abutting the sidewalks [Lynch, 1960]. Measures of the sort of
terracing required in building set-backs to permit a fixed amount of sunlight
to enter from a given compass direction would, of course, vary with latitude.
Further, local empirical evidence might suggest that steep rises can be
tolerated better farther from the street than closer to the street. Thus, what
would emerge is a terraced, stair-case hull with the width of a step and the
beight of the rise dependent on various local conditions that respond favorably
to light and to openness requirements. Buildings built within this hull
(which would vary in shape according to position within the central business
district relative to the sun, prevailing winds, and so forth) would work together
to create the desired positive unit of space, while those which piercé the hull
would not. The material below shows how to measure violations of a simple hull
formed on abstract bases; the same procedure, modified in obvious ways, would
apply to speéific terraced hulls formed on empirical bases. (Figure 1).

Given a parcel, P, of central business district land of arbitrary size;
obtain maps of P that show both position and height of the buildings. Partition
the map into cells which reflect light and openness requirements; assume that P is
rectangular and that there is a series of uniform-width horizontal strips, with
width reflecting how much set-back is required to accommodate another story of
height, which covers P. Assume also that there is a corresponding set of vertical
strips of uniform-width (not necessarily the same width as that of the horizontal
set) which covers P. Thus, in Figure 2, the strips on the edge are best

left empty; hence each contains a 0. Move back a bit--a single story does not
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intrude too much; these cells have a 1. Move back more and add another story;
these are coded 2. Continue until no more cells are left. In the examplé of
Figure 2, the center of P supports five stories. Visualizing this as a three-
dimensional object produces a terraced mountain with vertical profiles that
conform to the direction of the boundaries in the cellular partition, similar
to the situation in Figure 1. This represents a terraced hull on P, formed on
abstract bases; it is topologically equivalent to a hull that might arise from
empirical set-back conditions, such as that shown in Figure 3. The idea of
terracing is the same in both Figures 2 and 3; however, the actual shape of the
vertical profile is not the same, even though the structure of the vertical profiles,
both with five levels, is the same. 1In an attempt to create uniformity, matrices
of 0's and 1's will be used to represent vertical profiles of the hull.
Definition 1

Suppose that the tallest permissible building in parcel P has n stories.
An n x n profile matrix is a matrix of 0's and 1's which represents a vertical
profile of a terraced hull over P. BAn entry of 1 in the (i,7) matrix position
means that there is part of a building within the corresponding position in the
terraced hull; an entry of 0 in that position indicates the absence of a

building in the corresponding position in the terraced hull.

Figure 4 shows profile matrices for selected profiles of the terraced hulls
represented in Figures 2 and 3.
Definition 2

Suppose that the tallest building in parcel P has k stories. A kxn (with
n as in Definition 1) skyline matrix is a matrix of 0's and 1's which represents
a vertical profile of the actual skyline over P. (P is partitioned laterally

as it was for the terraced hull.) BAn entry of 1 in the (i,j) matrix position
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means that there is part of a building within the corresponding position in the

skyline; an entry of 0 indicates the absence of a building.

Figure 5 illustrates Definition 2; here, the resulting profile matrix of the
actual skyline has dimension (8x5) reflecting the presence of an eight-story
building.
Definition 3
Profile matrices of dimension (nxn) of the terraced hull may be made
conformable with (kxn) skyline matrices as follows:
i) if k > n, add k-n rows of zeroes to the top of the (nxn) profile
matrix;
ii) if k < n, add n-k rows of zeroes to the top of the (kxn) skyline
matrix.
The added rows record empty space and do not alter the faithful representation
of building structure in either case.
Theorem 1
Given a (kxn) profile matrix of either the terraced hull, or of the actual
skyline. If there is an entry of 1 in the (i,j) matrix position (i¥k), then all
positions (h,j), with i < h < k, also contain a 1.
Proof:
The theorem is a direct consequence of the fact that skyscrapers have
no "missing" floors. Q.E.D.
any (kxn) profile matrix may be converted, through a sequence of elementary
transformations (adding integral multiples of one row to other rows), to a matrix

in which the only 1's are in rooftop positions. Generally, begin with the



=45

el al e
Qoo -
L B B e B
OO0 -~
©C oo

Partition same

as in Figure 4

OO HH
O H A~
o
e R
o

FIGURE 5

o
— O O

— O O

O d ~
=

— O O

FIGURE 6 a

(o |
- O~

— O

o~
=

o B B |

— o~
~ o~

FIGURE 6b



46—
first row, Rl' in which all entries represent rooftops. 2add (-1) x Rl to each of
the (k-1) remaining rows. This annihilates all entries below the 1's in the
first row, without introducing any new elements into these (k-1) rows (Theorem 1).
Use the second row, R_, to annihilate entries of 1 in any of the (k-2) rows

2
below R2. Repeat this procedure until Rk is reached. By Theorem 1, only
rooftop entries of 1 will remain in the matrix. TFor example, Figure 6a
shows a 3x3 profile matrix. Adding (—l)xR.l to the second row annihilates the
stories directly below roof-top level in the two buildings on the left, and
leaves the lower rooftop level in the third column unchanged. Adding (—l)xR2

to the third row removes the bottom two stories in the first two columns and

leaves the third unchanged. Finally, adding (-1)xR_ to R

5 3 annihilates the entry

below roof-top level in the third column and leaves all else unchanged. The

final matrix in this sequence outlines the roof-tops; were not Theorem 1 txue ;
entries of 1 in positions other than roof-top positions might have been introduced,
as Figure 6b shows.

Definition 4

The rooftop matrix is a row-reduced form of the profile matrix; the rank of
this matrix, representing the number of linearly independent rows, is given by
the number of distinct rows containing at least one entry of 1. In the landscape,
the rank repre;ents-the number of rises in the skyline, along the given profile.
Theorem 2

Given a (kxn) rooftop matrix representing actual skyline and a conformable
(kxn) rooftop matrix representing the corresponding profile of the terraced hull.
Suppose both matrices have the same rank. Add the (row, column) coordinates of
all the matrix entries of 1 to obtain (row sum, column sum) in each matrix;
denote these sums by (R,C) in the rooftop matrix of the terraced hull, and by
(R'",C") in the rooftop matrix of the skyline. Then, when C=C', (i) if R' < R,
the skyline pierces the terraced hull; (ii) if R' > R, the skyline fails to fill

the terraced hull.
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Proof: (Figure 7 shows an example)

i) Suppose R' < R, and that (h,j) is an element of the skyline rooftop
matrix and.(i,j) is an element of the terraced hull rooftop matrix. For R' to
be less than R requires that h < i for at least one pair of entries. Thus the
matrix position (h,j) in the skyline lies above the matrix position (i,3j), and
the skyline pierces the terraced hull.

ii) Suppose R' > R and that (h,j) is an element of the skyline rooftop
matrix and (i,j) is an element of the terraced hull rooftop matrix. For R' to
be greater than R requires that h > i for at least one pair of entries. Thus
the matrix position (h,j) lies below the matrix position (i,j), and the skyline

fails to f£fill the terraced hull.

ROOFTOP MATRICES

FIGURE 7
I 11 00000 1110000
0001100 (@ 2 T8 0 Ko (Y o B 0T 0
0O0OO0OO0OO0ODOO 0O0D0O01lo0oo0O
0000011 0O0000O0C1O
0000O0O0OO 0O000O0O01
actual terraced hull
The matrix positions
corresponding to rooftop
positions contribute to the
row sum R and to the column
sum C.
Here, these matrix positions are: Here these matrix positions are:
(1,1, ((1,2), (1,3), (2,4), (2;5) 4 (1,1): (1,23, (1,3}, (2,4), (3,5},
(4,6}, (4,7). (4,6), (5,7},
Thus, R'=1+1+1+2+2+444=15 Thus, R=1+1+1+243+445=17
C'=1+4+2+43+4+5+6+7=28 C=1+4+2+3+4+5+6+7=28.

Thus, R' < R, and in fact,

the actual skyline does pierce
the terraced hull as Theorem 2
predicts.
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Some skylines will both pierce, and fail to fill, a given terraced hull.

In those cases, comparison of the extent of the violation shows which is dominant.
The extent to which parts of skylines fit, or fail to fit, the terraced hull,

has obvious implications for planning both the location and the height of new
buildings within the skyline.

A subset of all rooftop skyline profile matrices over P, taken from any one
vantage point, produces a numerical shadow of the silhouette from that vantage
point. Takihg the complete set of rooftop skyline profile matrices over P
produces, simultaneously, a numerical composite of skyline silhouettes from
spatially opposed vantage points. This would present a numerical model of the
whole skyline, in a single city, against which parts might be tested.

To classify American skylines across- the set of urban areas, smaller
cities which possess a skyline silhouette similar to a segment of that of a
larger city might benefit from planning guidelines for the appropriate -part of
the large city. An abstract approach to describing such similarity might
involve using the notion of self-similarity, used to overcome scale differences

in fractal geometry [Mandelbrot, 1983].



-49-

LITERATURE CITED

*

Based on participation in the Metropolitan Communities Seminar (funded by

the Mott Foundation, John D. Nystuen and Allan Feldt, directors), The

University of Michigan, Ann Arbor, 1974-75.

1L,

Conway, D. J. (ed.) Human Response to Tall Buildings. Stroudsburg, PA;

Dowden, Hutchinson and Ross, Inc., Community Development Series, Vol. 34,
1977.
Feldt, A. Personal communication, Metropolitan Communities Seminar, 1974.
Forgey, B. "Sculptor Isamu Noguchi's elegant world of space and function,"
Smithsonian, 9, 1 (April, 1978), 46-55.

Fuller, R. B. Synergetics: Explorations in the Geometry of Thinking.

New York: Macmillan, 1975.

Gottmann,J. "The skyscraper amid the sprawl,” in Metropolis on the Move:

Geographers Look at Urban Sprawl, Gottmann, J. and Harper, R. A. (eds.),

New York: Wiley, 1967.

Lynch, K. The Image of the City. Cambridge, Mass.: MIT, 1960.

Mandelbrot, B. F. The Fractal Geometry of Nature. San Francisco: W. H.

Freeman, 1983.



CONCAVITY AND HUMAN SETTLEMENT PATTERNS

The shape of the northern coastline of Australia has been generalized,
by biologist Joseph Birdsell, as two concave-down lobes of land separated by a
concave-up lobe of water (Figure 1) [Birdsell, 1950]. Through this geometric
observation, and through a study of the hunting and gathering practices of early
migrants, he argued that a strong sense of territoriality would force migrants
toward the interior, away from points of entry on the coast, and that coastline
shape would force concentration of migrant settlement under concave-down
northern coastline segments and dispersal of migrant settlement under concave-up
northern coastline segments (Figure 1). One of the implications of these
geometric observations for genetics was that greater genetic diversity would
occur in settlements located under concave-down northern coastline segments
than would occur in settlements located under concave-up northern coastline
segments [Birdsell,1950; Kolars, 1975].

In an urban setting, when interurban arterials play the role of the
northern Australian coastline, bridges across expressways force concentration
of traffic flow from surface routes under concave-down parts of the curve and
dispersal under concave-up parts of the curve (Figure 2). WNaturally, a region
exhibiting dispersal is opposed, across the expressway, by a region of
concentration (and vice-versa--Figure 2). With the concentration of surface-
route traffic flow would come concentration of commercial activity (locating
shopping centers at high traffic-volume intersections) and, ultimately, of
general settlement patterns (building high-cost houses, with large lots, far

from high-volume intersections).
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Thus, the position of concave-up, and of concave—-down, segments of an
expressway helps to guide the direction of concentrated settlements within a
metropolitan region. A new expressway, planned to speed cars past an already
densely-settled urban area, could force an additional concentration of surface-
route flows in this area (Figure 3), and would have the potential to affect the
traffic pattern of the entire metropolitan region. Simple reshaping of the
curvature of the expressway, as in Figure 4, minimizes the shock of concentrated
additional flow across expressway bridges into the already densely-settled
region.

Further, a study of the history of an "inner city,” within a northeastern
American city, might profit from an analysis of the shape of interurban arterials
(such as rivers, rails, and expressways) and their geometric impact on
underlying concentrations of population and land-use during the era in which
each artery-type was the dominant mode of interurban transport. Determining,
in an historical context, whether or not néw arterials forced additional
concentration of surface flows within densely-settled areas might offer lessons
for planning interurban arterials to link cities emerging in the latter half of

the twentieth century.
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STEINER TRANSFORMATIONS

STEINER TREES

Networks that minimize total length of linkage joining a finite number of
locations are graph-theoretic trees; there are no circuits providing redundancy
of network connection. Figure 1 shows three possible "shortest" networks joining
four vertices. Each is shortest within prescribed patterns of connection: in
Figure la, linkage joins the four vertices with no additional wvertices; in
Figure 1b, linkage joins the four vertices, using two additional vertices, in
such a way that the upper and lower vertices are grouped; and, in Figure lc,
linkage joins the four vertices, using two additional vertices, in such a way
that the left-hand and right-hand vertices are grouped. Each of these is
minimal within prescribed connection constraints, and each is a candidate as
the shqrtestrtree. The shortest tree, in any complete set of candidate trees,
is called the Steiner tree, after. Jakob Steiner, a nineteenth century

mathematician [Courant and Robbins, 1958].

a b lo]

FIGURE 1
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Determining the Steiner tree is generally difficult; there are an infinite
number of points available, to serve as elements of a tree, within the convex
hull of any finite set of points in the Euclidean plane. The set of candidate
Steiner trees gets large rapidly as the number of vertices increases; there
are 105 candidates in the six vertex problem [Gilbert and Pollak, 1968]. The
theory for locating Steiner trees is available in the mathematics literature
[Cockayne, 1967, 1969, 1970] ; programs for generating Steiner trees are
available from Bell Laboratories [Boyce and Seery, 1975].

AN APPLICATION OF STEINER TREES

One use to which Steiner trees might be put is to design routes through
urban parklands. Urban neighborhood parks typically have exterior boundaries
controlled by surrounding land acquisitions; however, the interior is open to
design, and is basically Euclidean [Nystuen, 1983] as movement is possible in all
directions from every peoint not on the boundary.

Basic Assumption

In urban parklands it is desirable to have a minimum of parkland replaced

by cement.

Thus Steiner trees, or candidate trees, that are shortest forms within a prescribed
connection pattern, would respond to the Basic Assumption as a design tool for
route location in parks.

Figure 2 shows how an urban neighborhood park might be designed using Steiner
procedures. Suppose there are four points of entry to the open area, produced
at street intersections in a grid pattern. People who use the park have open
access to it from these points only; entry is blocked at other points along the
convex hull by fences or buildings. Routes through this park are required to
serve pedestrian traffic and bicycle traffic; pedestrian traffic might include

couples going for a walk, mothers with children in strollers or on tricycles,
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or people in wheelchairs: Bicycle traffic might include cyclists of all ages,
skate-boarders, or roller skaters. Generally, these two basic flow types do not
mix well--pedestrians are threatened by bicyclists, and bicyclists are

frustrated by slow-moving pedestrian traffic which holds them back. Thus, to
separate the flows, we need routes for each flow which seldom intersect and which
are not near each other. If the Basic Assumption is also to be met, candidates
for Steiner networks will serve well.

The pedestrian-tree and the bicycle-tree shown in Figure 2 are Steiner
candidate trees; the bicycle-tree is the longer of the two, as bicyclists usually
cover ground faster than do pedestrians. To guide flows to the appropriate tree,
signs might suggest which tree to use; however, passive design criteria, such as
route-surface texture might serve to sort flows even more effectively onto the
appropriate tree [Nystuen, 1983]. 1In addition, facilities of particular
interest to pedestrians, such as groupings of chairs and benches might be.placed

at the interior (Steiner) points (8 Sz) of the pedestrian-tree, while

17
facilities such as bike racks might be placed at Sl' and Sz' in the bicycle tree.
The single interior intersection of these two trees might be surrounded by
facilities of interest to both groups, such as eating areas, restrooms, first-

aid, a clock, or telephones. It might also house bicycle racks and bicycle rentals
for individuals wishing to switch, comfortably, from one tree to the other.
Activity areas would be organized around the routes: .those likely to be of
interest to both groups, such as for basketball, tennis, handball, or baseball,
would be located in regions bounded by both trees and would have direct

access from both trees. Those likely to be of interest predominantly to one

set, such as a slalom for skaters, an obstacle course for bicyclists, pony carts

for small children, or bird-watching areas for quiet people (away from roller
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skaters and playgrounds), would be located in regions bounded by the appropriate
tree, only (Figure 2).

Neighborhood parks are one sort of park found in urban areas; another, the
metropark, is usually located away from heavily built-up areas and contains a
large number of low cost-per-unit parcels of land. Often there is an entry fee
and entry is almost always by car or van. Cars converge at the entrances and
then follow a park-wide main car route across which the objectives of global
routing are to minimize path length while distributing that path evenly through
the park [Kirkpatrick, 1983]. From the main route, cars branch off into various
prarking areas, around which park facilities have been organized as sub-parks
[Huron—-Clinton Metroparks Map, 1983). Because the metropark might be viewed as
being formed from smaller sub-parks, two strategies for positioning park-wide
car routes arise naturally. One alternative is to use the Steiner tree linking
A

the distinguished points of entry A A_ (Figure 3a), and the other

1’ AZ' 37 A4' 5
is to link Steiner networks of each of these distinct regions, for example,

as upper, middle, and lower subparks in triangles (A1A2A5}, (A2A3A4), (A2A4AS)
(Figure 3b). The first possibility (global) disregards access to this route
from local subparks, while the second possibility (Iocal) has linkage
redundancy introduced by the presence of circuits (Figqure 3c¢c), and therefore
responds neither to Kirkpatrick nor to the Basic Assumption. To eliminate
this redundancy and obtain a tree that retains many of the characteristics of
the individual local networks, yet exhibits the general structure of the

global tree, a tool called a Steiner transformation will be intreduced.

STEINER TRANSFORMATIONS

The shift in park-route scale, from global to local network, might be

represented using the notion of self-similarity from fractal geometry



-60-

FIGURE 3a

FIGURE 3b




-61-

[Mandelbrot, 1983]. 1In this approach, a geometric shape (a generator) is used

to replace the sides of a given shape (initiator). With successive replacements,
scale is enlarged or reduced. Like the fractal transformation, the Steiner
transformation will be based on successive replacement which will permit it to
transcend scale problems; unlike the fractal transformation, it will involve using
the Steiner procedure, rather than a specified geometric shape, as that which is
replaced.

Steiner transformation [Arlinghaus, 1977].

Given a network of contiguous, closed, polygonal cells. Locate the
Steiner network within each cell and discard the initially given structure.
Examine the new network; if closed polygonal cells remain, repeat the procedure.
Continue until no closed polygonal cells remain. Network edges not included in
the boundary of a closed polygonal cell remain invariant under the

transformation. The resulting tree is said to be irreducible.

Successive applications of the Steiner transformation to the set of contiguous

triangles in Figure 3b results in the sequence of networks, which results in the

reduction of closed cellular matter, shown in Figures 3c to 3e. In Figure 3c,

SlAl, SlAZ’ S are the edges of the Steiner network in cell (A.A_A_ ) of

1o 1227

Figure 3b; 52A2, SZAS’ S2A4, are the edges of the Steiner network in cell

(A2A5A4) of Figure 3b; S3A2, 53A4, SBA3' are the edges of the Steiner network

in cell (A2A3A5) of Figure 3b. With the cell boundaries of Figure 3b discarded,

the network, under the Steiner transformation, is as shown in Figure 3c. Then,

apply the Steiner transformation to the two gquadrangular cells in Figure 3c;

i i i b Stei t ! 'S
cell (51A282A5) in Figure 3c is replaced by the einer network ASSl ; S1 17

1] L L] ] ' : 4 . 2
Sl 52 - S2 82, 52 Az in Figure 3d, and cell (S2A253A4) in Figure 3c is
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FIGURE 3c

FIGURE 3d
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FIGURE 3e
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replaced by the Steiner network A2S3 i 8253 j 83 A ¥ 54 83, S4 A4 in Figure

151 ¢

3d. The edges S3A3 in Figure 3c are invariant under the transformation

and thus appear once again in Figure 3d. Finally, apply the Steiner transformation
to the one closed cell in Figure 3d; all else remains invariant and appears agaon

in Figure 3e. Cell (A282’5253‘) in Figure 3d is replaced by the Steiner network

Sz‘sl", Azsz“, Sl"Sz", stl", S3‘52" in Figure 3e. At this stage, the
reduction is complete; no further cells remain.

Further examination of the Steiner transformation reveals conditions under
which successive applications of the Steiner transformation generates a finite
sequence of reductions. For otherwise, this style of network transformation
would create a global network with enough links to choke tﬁe entire region from
an infinite regeneration of cellular network growth (Figures 4a to 4c).
Examination of Figure 4 shows that application of the Steiner transformation

is not removing circuits; the vertex A_ began as a vertex in four circuits in

2
Figure 4a, remains a vertex in four circuits in Figure 4c, and apparently will
remain so forever. However, the network structure surrounding A2 will continue,
out of control, through successive applications of the transformation, to fill

the region around A, (an open guestion is to calculate a fractal-like dimension

2
for this space-filling process).
Definition 1 [Tutte, 1966, p. 102].

A wheel Wn of order n, n > 3, is a graph obtained from an n-gon, Pn' by
inserting one new vertex h, the hub, and by joining h to at least two of the

vertices of Pn by a finite sequence of edges (A2 is the hub of a wheel formed

in P, in Figure 4a).
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Lemma 1 [Arlinghaus, 1977]

Hubs of wheels are invariant, as hubs of wheels, under any sequence of
successive applications of the Steiner transformation, S.

This is clear since no polygons incident with the hub are removed in apply-
ing S to a wheel; polygon shape may change through successive application of S,
but the degree of the hub is never reduced.

Theorem 1 [Arlinghaus, 1977].

Suppose that there exists a finite set of contiguous triangles T =
{Pl,.-.,Pm} with vertex set V = {Al,...,An}, n >m {(as in Figure 3b, m = 3,

n =5). If T contains a wheel, then a sequence of successive applications of S
te T fails to produce an irreducible tree; the sequence fails to terminate.

This is a consequence of Lemma 1.

Corollary 1 [Arlinghaus, 1977].

Suppose that T and V are as in Theorem 1. If T contains a wheel, and if a
degenerate Steiner network arises during a seguence of successive applications
of S to T, then this sequence may terminate.

Theorem 2 [Arlinghaus, 1977].

Suppose that T and V are as in Theorem 1, and that T does not contain a wheel.
The number of steps M, in the sequence of successive applications of S to T,
required to reduce T to a tree, is

M = (max(degree(Ai)lJ - 1.

Indication of proof:

Since T does not contain a wheel, it follows from Theorem 1 that the
reduction sequence is finite. Proof of the actual size of M is by induction on

the number of cells in T and on the degree of Ai.
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Figure 3a shows the global Steiner network joining Al, AZ’ A3, A4, AS;
when it is compared to the network in Figure 3e, the same general structure is
evident. Thus, a sequence of successive applications of the Steiner trans-
formation helps to resolve scale problems by drawing together local and global
network forms, reflecting that
In nature, parts clearly do fit together into real structures, and
the parts are affected by their environment. The problem is largely
one of understanding. The mystery that remains lies largely in the
nature of structural hierarchy, for the human mind can examine nature
on many different scales sequentially, but not simultaneously

[C. S. Smith, in A. Loeb, 1976, p. xiv].

AN APPLICATION OF STEINER TRANSFORMATIONS

Steiner MetroPark (Figure 5) emerges from the Steiner transformation, within
the boundaries of Figure 3, in much the way that Steiner NeighborhcocodPark arose
from a set of candidate Steiner trees. The irreducible Steiner tree (Figure 3e),
formed from breaking the parkland into upper, middle, and lower, parcels of land
(Figure 3b), exhibits the general structure of the Steiner tree (Figure 3a), yet
retains much of the Steiner network structure specific to each parcel (Figures
3b to 3e).

Suppose Al’ A2’ AB’ A4, AS, are all distinguished as entrances in Figure 5;

A4 and A5 are entrances from a road while Al and A3 are entrances from bridges

across a river which forms one edge of the park. The vertex A2 represents a

boat landing and rental area. Here, the exterior geometrical boundary conforms
to environmental guidelines; the river is a bar to wheel formation, so that a
park-wide tree with both global and local characteristics can be found as the
end of a reduction sequence of applications of the Steiner transformation (by

Theorem 2). Each Steiner point involved in the reduction seguence, Sl, 82’ 53;
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S.t, 8.%, 8. 'y B4 Sl", 82" would serve as a base for a parking area around
which a variety of activities could be organized. The number of lots incident
with a vertex would be the same as the degree of that vertex in the irreducible
tree. The clustering of parking areas along a central car-core suggests locating
activities which make intensive use of the land (such as those found in a
neighborhood park) near these lots, and locating activities that require

larger expanses of land near the edges of the region. For example, playgrounds,
tennis courts, and team sports fields would reflect activities requiring
intensive use of parkland and would be located near the car-core, while golf
courses, bridle paths, and wild life preserves would reflect activities requiring
less intensive use of space, and would be 1ocate§_near the park's periphery.

The land-use pattern induced by this irréducible tree derived from the Steiner
transformation is reminiscent of the ideas underlying von Thiinen's isolated

state; only here, it is the park that is isolated, as metroparks often are, from

the underlying urban population which supports them.
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ANALOGUE CLOCKS*
To see a World in a Grain of Sand
And a Heaven in a Wild Flower

Hold Infinity in the palm of your hand,
And Eternity in an hour.

William Blake, "Auguries of Innocence."

Watches and clocks that keep track of the passing time using a digital
display have achieved widespread distribution in recent years. Clock counters
in department stores exhibit some traditional clocks and watches with a face
containing twelve numerals and hands (analogue clocks), although frequently
their stock is dominated by digital products. The distinction between these two
types, made by those who market clocks, is that digital provides discrete tracking
of the time while analogue produces a continucus display [Ford Motor Company, 1983].
Beyond that, however, the word "analogue” means "something that is similar
to something else;" thus the gquestion is, to what else is an analogue clock
similar? [Webster, 1965]. One obvious answer is a sundial, the forerunner of the
mechanical clock [Cipolla, 1967]. Physical evidence from sundials of both the
Northern and the Southern hemispheres suggests two types of dial: the horizontally
mounted face frequently found in gardens and the vertically mounted dial often
embedded in building walls. In the Northern hemisphere (north of 23.5° North
Latitude), horizontal faces require clockwise orientation of numerals to record
the time and, vertical dials need a counterclockwise arrangement. In the Southern
hemisphere (south of 23.5° South Latitude) the opposite holds; horizontal dials
need counterclockwise orientation of numerals and, vertical dials require a
clockwise pattern. The reversal in orientation of numérals, which distinguishes
a horizontal from a vertical sundial of the same hemisphere, is a result of the

switch in position of the background on which the shadow is cast (the reader
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can verify this experimentally using one pen inclined at a 90° angle to a piece

of paper in a horizontal position, and another inclined at a 90° angle to a
vertical paper, to mark the passing time). Between the Tropics, the Northern
heimsphere approach holds as long as the direct ray of the sun is overhead south
of the dial, while the Southern hemisphere orientation applies when the direct

ray is north of the dial. The orientation of the numerals on the analogue clocks
commonly in use today corresponds to that of a Northern hemisphere garden sundial,
or, equivalently, to a Southern hemisphere wall mounted model, although occasional
models such as the "O.K. Now Alternative Analog Timepiece," designed by the artist
Victor 1111 of Amsterdam, offer a clock face with counterclockwise orientation

of the numerals [Ann Arbor News, 1984]. 1In contrast to analogue clocks, however,
the sundial is not portable, and it records hours of varying length depending

on the season and on the latitude; thus more powerful analogy is sought.

Clocks that were portable and that measured a standard hour (rather than a
varying or "temporary" hour) led to the solution, by about 1750, of the 2000 year
©ld problem of measuring longitude as sea [Brown, 1956]. Suppose, for example,
that a ship at location A, with an accurate clock on board, set sail at 11:00 A.M.
(on the clock) and sailed west until it reached local noon, determined from a
sequence of readings of a sextant, at location B [Forbes, 1974]. At the local
noon meridian through B, the clock on board read 11:27. Since this local noon
meridian through B will cecincide with the actual noon meridian through A when the
clock reads 12:00, it follows that in 33 minutes more of rotational time the meridian
through B will arrive at the meridian through A. Thus B is 33 minutes of rotational
time west of the longitude of A, or B is 8°15' of longitude west of the longitude
of A. As early as 1530, Gemma Frisius understood the theory of how to measure

longitude at sea using a clock, but he had no clock suited to that task [Brown, 1956].
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Christiaan Huygens's application of Galileo's discoveries of physical laws governing
the motion of a pendulum led to the pendulum clock by 1656. These clocks were
guite accurate on land, but they were difficult to transport and certainly were
not precise on a turbulent sea [Brown, 1956; Forbes, 1274]. The use of Robert
Hooke's principle that the force exerted by a spring is directly proportional

to the spring's stretched length minus its length at rest permitted John Harrison
(carpenter and clockmaker) to construct a sequence of clocks with springs, rather
than pendulums, as regulatory mechanisms [Brown, 1956; Forbes, 1974]. These were
portable, and by 1756 Harrison and his supporters had proven them accurate at

sea to within three seconds a day over a period of six weeks [Brown 1956]. Thus,
by the middle of the eighteenth century, all the equipment necessary to measure
longitude at sea was available. Clocks based on Harrison's construction permitted
continuing exploration westward into the New World, and they formed the basis for
navigational fixes until the development of radio and atomic clocks in the
twentieth centruy [Cipolla, 1967].

In addition, the twelve hour analogue clock face serves directly as a
structural replica of the relationship between longitude and time. This is not
immediately apparent; lack of clarity arises from the simultaneocus partitioning
of (i) the clock face into twelve egual central angles each containing 30° of
angular measure and each representing one hour of elapsed time, and of (ii) the
equatorial diametral plane of the earth into tWentyhfour equal central angles
each containing 15° of angular measure (longitude) and each representing one
hour of elapsed time. If one suppoées the center of the analogue clock face to be
superimposed on the center of the earth, within the equatorial diametral plane,
then the partitions do not mesh, and this clock is not a structural model of

this relationship. However, if this natural, but unnecessary, supposition is
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discarded, and a theorem from Euclidean geometry is invoked, then this twelve

hour clock face is not only a precise analogue model of the relationship of

longitude to time but is the most efficient one as well.

Theorem of EBEuclid

"In a circle the angle at the center is double the angle at the circumference,

when the rays forming the angles meet the circumference in the same two points"

[Coxeter, 1961, p.7], so that <POQ = 2 (<P0O'Q)} in Figure 1.
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FIGURE 1

Basic Construction

The following basic construction for placing a configuration of clock faces

in the earth's eguatorial diametral plane will permit alignment of longitude
and time (Figure 2).

a) Inscribe two circular clock faces, with centers O, and 02, in the equatorial
diametral plane of the earth in such a way that these circles are mutually
tangent at the center of the earth, 0. The centers 0, O., and O

b)

1 , are collinear.
Partition the globe in the standard way with parallels and meridians.

c) These clock faces will be labelled as analogue clock faces modulo 12. The

choice of label for the point of tangency for the two clock faces is arbitrary.

When the numeral 6 is chosen as the label for this position, the choice of
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noon and midnight for the remaining two points of contact is forced, and
the configuration will be said to be in standard position. The locations
for the remaining numerals are not specified here; either orientation is

possible.

Fundamental Theorem

Given a configuration of clock faces in the earth in standard position,
let R be an arbitrary point in the equatorial diametral plane used to make points
(numerals) on the clock's perimeter correspond with points on the equator
(Figures 3 and 4). Let P and Q be two consecutive numerals on the clock's
perimeter. Let P' and Q' be the points where the lines RP and RQ intersect the
equator. Then P' and Q' have longitudes differing by 15°.if and only if R = O
(i.e., the spacing between consecutive numerals on an analogue clock face is a
precise measure of longitude if and only if R = 0).

Proof:
I) Assume R = O (Figure 3).
Choose two arbitrary consecutive numerals, P and O on the clock face

centered on Ol' Linking these to 0. forms <POIQ = 30°, which is a measure of

1

ane hour of time on the clock face. Link P and Q to O. By the Theorem of Euclid,

<POQ = 15°. Extend the sides OP

RP and OQ = RQ to pierce the equator at P'

and Q' respectively; thus <P'OQ'

1l

<POQ = 15°, since <P'0Q' is central within
the equator. Therefore the spacing between P' and Q' is 15° of longitude,
providing the desired conversion of clock time to longitude. The same argument
applies for this position of R if P and Q are chosen on the clock face centered
on O, (if P is on one clock face and Q is on the other then one of P and QO must

2

be O since P and Q are consecutive).



B ol

FIGURE 2




by by

FIGURE 3




-78-

II) Assume R # O (Figure 4).

a) Suppose R is not on the perimeter of either clock face.

i) Suppose R is outside one clock face.

Join R
0, that are
the equator
to P and O,
and Qéhhave
(PQPQ) is a

the equator

to the pair of consecutive clock-face numerals, P and
nearest it. Extend the segments RP and RO to intersect
at P' and Q'. Locate the points 5} 5—that are antipodal
with respect to the clock face. Since the segments PP
the same length and bisect each other, the quadrangle
rectangle. Extend the segments RP and Ré-to intersect

at P' and Q'. Because the guadrangle (PQPQ) is a rectangle,

the short arc 5353 is properly nested within the short arc P'Q’.

Thus the two arcs are not equal, and so at least one of them does

not have measure 15°. Therefore this style of position for R does

not convert

time measured on the clock face to time measured by

shifts in longitude resulting from the rotation of the earth on

its axis.

ii) Suppose R is within one clock face.

Then R

is outside the other clock face and this case reduces

to case II.a.i.

b) Suppose R is on

the perimeter of a clock face.

Since R # O, R is outside one clock face, and this reduces to

case II.a.i.
0.E.D.

Corollary

Further refinement of the partitions of clock-time and of longitude into

minutes and seconds leads to interpretations of the minute and second hands

similar to those given by the Fundamental Theorem for the hour hand.
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The Fundamental Theorem ensures that the configuration in standard position
provided by the Basic Construction will permit direct use of the spacing of
numerals on a clock face to measure longitude. Next the positions of the remaining
numerals for the clock face will be determined from longitude as the earth rotates

on its axis.

Ordering Theorem:

There exists a succession of positions measured from O in which cleock-face
numerals will coincide with meridian positions appropriate to the natural ordering
established by the rotation of the earth on its polar axis (Figure 5).

Proof:

Proof is by construction of a succession of positions of an hour hand
centered at 0. 1Initial position: join O to 12 midnight, and call this position
PO on the earth. After one hour, position PO will have rotated 15° to position

Pl. Label the corresponding position on the clock face with the numeral 1.

By the Fundamental Theorem the spacing between 12 and 1 on the clock face will

be such that <P _O,P. = 30°. After another hour, P

o itd will have rotated through

1

15° to P2. The corresponding clock position will be labelled 2. Continue this

procedure, shifting to the clock face centered at O once 6, the position

2!

corresponding to P6’ has been reached. Thus, after another hour, P6 will have

rotated to P7 and the corresponding position of the clock face centered on O

will be labelled 7. After 13 hours the point PO will have rotated to Pl3'

2

through 195° of longitude, and two alternate labelling strategies arise.
I) Label the corresponding clock position 13. Continuing this labelling would
produce a scheme requiring 24 different position for numerals on the

associated clock face.
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FIGURE 5
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The position P is antipodal in the sphere to the position P Identify

13 41

{(glue together, abstractly) the labels of the associated antipodal clock

positions. So, label the clock position corresponding to P13 with the

numeral 1. Continuing this process requires only 12 different numerals
on the clock faces to describe 24 different positions for PO_ To distinguish

the time at position P13 from that at its antipodal point P two conventions

l!

are in use:

a) read the time at P13 to be 13:00, as is done by the U. S. military and

in continental Western Europe;
b) label the time at P13 as 1:00 after the sun's noon position, or 1:00

P.M., as is done in the United States. Positions in the hemisphere

preceding arrival at the noon meridian are assigned A.M. suffixes to

distinguish them from the times at their antipodal points in the hemisphere

succeeding arrival at the noon meridian.

Q.E.D.

hour
ship
the r
numer

as wWr

posit

from

From the proofs of the previous theorems, it isrclear that either a twelve-
clock or a 24-hour clock may be used as an analogue model for the relation-
between longitude and time £hat follows the natural ordering created by
otation of the earth on its axis. Certainly the use of twelve distinct
als, rather than twenty-four, is more efficient on small clock faces, such
ist watches, and anywhere reduction of clutter of symbols is significant.
The previous theorem provided means for enumerating the clock face

ions not labelled in the Basic Construction. Extracting such a clock face

the sphere produces the following theorem.
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Orientation Theorem:

The use of 12 numerals arranged consecutively around the perimeter of a
circle serves as an analogue model of (a) the relationship of longitude to time;
(b) meridian positions corresponding to the natural ordering established by
earth-sun relations. The orientation given to the numerals around the circle
will depend on whether the observer is in the Northern or Southern hemisphere
(Figure 6).

Proof :

The proof of (a) follows from the Fundamental Theorem. The proof of (b)
follows from the Ordering Theorem. Extract a l2-hou; clock face centered on O1
from Figure 5; the orientation of numerals around this circle is a Northern hemisphere
view of this clock, and so, for a clock to be an analogue model for the Northern
hemisphere, it must be as in Figure 6a. Viewing Figure 5 from below produces the
Southern hemisphere analogue clock of Figure 6b. (And, as with sundials, the
reader may trace one of the clocks in Figure 6 and then view it from the other side
to see, experimentally, the change in orientation resulting from change in hemisphere

location.)

0.E.D.
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Uniqueness Theorem:

The twelve-hour clock face is the clock face with the fewest numerals
that can serve as such an analogue model.
Proocf:

This proof follows directly from the fact that no more than two circles
in the (diametral) plane can be mutually tangent at a single point. For, suppose
the number of numerals used, n, is a divisor of 24 that is less than 12. Then
the Basic Construction will be possible, but the Fundamental Theorem will. not.
For suppose n = 8; then three complete rotations of the hour hand are necessary
to account for the 24 hours in a day, and the Basic Construction would reguire
three clock faces, labelled modulo 8, in the equatorial diametral plane. If
these three circles intersect at O, in a number of cases (as shown in Figure 7),
a single point P' on the equator corresponds to two distinct clock positions,
Pl and P2, and the Fundamental Theorem cannot hold. To overcome this difficulty
the circles must be tangent to each other; but then the center of the sphere, 0,
from which longitude is measured, cannot be included on all the clock faces
simultaneously since thrée circles cannot be mutually tangent at a single point.
Thus the Fundamental Theorem cannot hold. Identical arguments work for n = 6
requiring four clock faces, n = 4 requiring six clock faces, n = 3 with eight
clock faces, n = 2 with twelve clock faces, and n = 1 with twenty-four clock faces.

If n is not a divisor of 24 and it is less than 12, then there is no possible
representation of the Basic Construction.

Q.E.D.
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FIGURE 7
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The previous theorems all assume that a day, one complete rotation of the
earth on its azis, is partitioned into 24 hours. The same theoretical structure

holds in the more general case stated below.

Extension Theorem:

If one complete rotation of the earth on its axis is-partitioned into 2n
equal units of time, then a circular clock face with n equally spaced numerals
arranged consecutively around the perimeter is the clock face with the fewest
numerals that can serve as an analogue model of the relationship of longitude
to time and of meridian position corresponding to the rotation of the earth on

its polar axis.

Abstract open gquestions that remain could involve the suitability of
partitioning the day into an odd number of equally spaced time units, and in
particular, into a prime number of time units. Cultural and technological
questions that remain could involve dete¥mining

I) why the orientation of numerals on present day analogue watches follows

that of Northern hemisphere horizontal sundials rather than that of Northern

hemisphere vertical sundials;

II) what sets of conditions have led Northern hemisphere inhabitants to wear

Southern hemisphere analogue watches.
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FAD AND PERMANENCE IN HUMAN SYSTEMS

The processes that lead to the evolution and decay of human systems seem
as complex as the society from which these systems emerge. As time progresses
the increase in degree of complexity of process reflects not only the level of
internal interaction within that system but also the level of interaction of
that human system with others of disparate cultural, economic, and political
backgrounds.

Within this complexity, the following premise is basic to future work
{both theoretical and empirical), and it is the cornerstone upon which the
material below will rest.

Basic Premise

Given any degree of complexity of process, the evaluation of the relative
permanence of human systems should produce significant insight into the processes

of evolution and decay of these systems.

It is the goal of the present material to examine the theoretical potential
of this premise, and of some of its implications, through definitional
alignment of mathematical with social material.

One structural aspect of human systems might have appearance similar to
that of a graph.
Definition 1

A graph G is a mathematical object formed from a finite number p (p#0) of
nodes (points, vertices) and from a set of g edges (lines) that join pairs of

distinct nodes [Harary, 1969].

There are many definitions of the word 'graph', and there are many additional

ideas, such as weighted edges, additional edges, and edges that are loops, that

-88-
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may be superimposed on this basic mathematical object. There are extensions
of graph-theoretic ideas to simplicial complexes that might apply to a larger
component of human systems [Atkin, 1976]. Only the simplest structure, the
graph, will be dealt with here, to demonstrate concepts.
Definition 2

A human landform, H, is a structure that has its origins based in human
activity and is one that requires the existence of that human activity for its

continued presence on the surface of the earth.

A skyscraper, a college campus, a church, the institution of marriage,
and inflation ére a few examples of human landforms. Scale may vary, but the
basic character of the human landform is reliant on human activity, be these
structured elements of a region (either dense or diffuse) whose boundaries are
determined by diversified human activity such as in a city, or be they elements
of a region whose boundaries are determined by specialized human activity such
as in a college campus, a political rally, or an accumulation of money. Human
landforms represent a set of structures, rooted in human activity, that can be
distinguished from one another. 2and, in that regard, they have formal, structural,
properties similar to nodes in a graph.
Definition 3

A social network is formed from an arbitrary number of human landforms,
represented structurally as nodes, that are joined by lines of channeled human

interaction.

These links joining human landforms may be physical or non-physical. Rail,
television, and sewage lines provide natural examples of physical linkage while
systems of communication within academic, political, and economic groups

suggest some non-physical linkages.
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The expression of social networks in terms of human landforms leads to
the development of procedure, as cited in the Basic Premise, for the
evaluation of the relative permanence of social networks (as one component of
human systems). Means for such evaluation will be based on one approach to the
nature of the abstract structure of social networks and will employ a
modification of recent work in which symbolic logic is used in graph theory to
uncover classes of graphs that possess particular types of properties
[Blass and Harary, 1979]. The material below exhibits the general idea of
material that is dealt with mathematically by Blass and Harary [1979], and by
Fagin [1976]; the statements are cast in language go that extension of them to
the set of human landforms should appear natural.

Definition 4 [Blass and Harary, 1979]

A graph G is said to be an n-point graph if it has n nodes. 1In a set of

n-point graphs, let P be a property of graphs. Form the ratio F(n), dependent

on n, as F(n)=(# of n-point graphs having property P)/(# of n-point graphs).

If 1lim F(n) = 1, then almost all graphs are said toc have P.
n-e

If 1lim F(n) = 0, then almost no graphs are said to have P.
n-e

For example, almost no graphs are trees; intuitively, this is not surprising.
For, as n gets large, more and more links are introduced joining the n points
in all possible ways, and one might imagine that the number of trees produced
by such activity is small relative to the total number of possible graphs formed
through such linkage procedure. However, proving that the magnitude of the
numerator is insignificant relative to that of the denominator (that lim F (n)=0)
n--e«

requires combinatorial analysis resting in expressing the number of trees as a

generating function stated in terms of analytic functions of a complex variable
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[Harary and Palmer, 1973]. The statement that almost no graphs are trees is
typical of a set of theorems that rest on the ideas of Definition 5.

A question of abstract interest greater than the formulation and proofs
of specific "almost all"™ or "almost no" theorems, is to determine conditions
for a style of property P that will yield the result that either almost all
graphs have P or almost no graphs have P. Precise formulation of style of
property is a significant gquestion that has been dealt with more generally from
a logical viewpoint by Fagin [1976] and that has been considered specificaily
with respect to graphs, and then extended to simplicial complexes, by Blass
and Harary [1979].

Theorem 1 [Blass and Harary, 1979].
Given a suitable property P of graphs, either almost all graphs have P

or almost no graphs have P.

For Fagin, and Blass and Harary, suitability must be expressed in terms of
logical language that is first-order definable (Blass and Harary indicate direc-
tions for future research in expressing suitability in terms of other logical
languages) [Blass and Harary, 1279]. For purposes of application to social
problems, the crucial point is to note that it is the determination of suit-
ability of a property P that is fundamental.

Also, note further that Theorem 1 is similar in form to the law of the
excluded middle in that it deals with classes of statements that either hold or
do not hold. It is not merely a mechanical tool, such as an index, that describes
technical characteristics of networks. Since it deals with classes of
properties, it appears to be the sort of theorem that could elevate the level
of abstraction in application of graph theory, and of other formal structure,

to social problems.
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Analysis of the 'relative permanence' of a social network will be
approached in terms of human landforms and graphs. Within mathematical struc-
tures 'permanence' describes the same idea as 'invariance', and invariant
mathematical structure is that which remains fixed relative to a given
transformation from one mathematical space into another [Renfrew and Cooke,
1979].

Definition 5

Permanence of any quality of a set of human landforms is recognized by

identifying elements of that quality which remain invariant through time,

relative to some appropriate transformation.

That is, a property of human landforms will be said to be permanent under a given
transformation if application of that transformation to the property results
in only limited distortion of the landform; the character of the landform is
neither destroyed nor altered in such a way that it appears to be a different
human landform.

The following empirical observations motivate Definition 6, below.
Suppose that the set of all traditions in style of clothing is a set of human
landforms covering the period of time from Fhe primitive to the present. As
suggested by evidence from art, the idea that at least some clothing is worn
by living adults (and even by marble representations of such adults) is a
property of this set of human landforms that is permanent--from loincloth
and fig leaf, to slacks, skirts, and blue jeans. However, any one particular
style of clothing, such as a Nehru jacket or a mini-skirt, viewed as a
property of human landforms, might be a fad; only the time interval over which

general disappearance occurs varies.



—O R

Definition 6

In a set of human landforms, {Hili € I}, that exist over time, t, let P
be a property of human landforms. Let Ht = (# of Hi at time t) and let
P(Hi) = (# of H, at time t with P).

P is called a fad if lim (P(Ht))/(Ht) = 0;

oo
P is called permanent if lim (P(Ht))/(Ht) i
t e

In the case of a fad, almost no Hi have property P as time progresses,
reflecting the waning of interest characteristic of a fad; in the case of
permanence, almost all Hi have property P as time progresses, reflecting the
universal acceptance characteristic of permanence.

Definition 6 may also be applied to music. Auditory stimulation that
produces a favorable response is permanent over time within the set of human
landforms, although many specific types of music are fads that exist only in
some relatively small time interval. Whether the music of Mozart is a fad that
exists in a relatively long time interval, is permanent, or occupies a
position between permanence and fad is a question that motivates the material
that follows.

Certainly Theorem 1 applied to the class of human landforms beccomes,
Theorem 2.

Given a suitable property of human landforms, either P is a property of

human landforms that is permanent, or it is a fad.

In this form the theorem is apparently not true for a wide variety of gualities
of human landforms, as with assessing the enduring guality of the music of Mozart.
As in the mathematical case, the problem is to determine suitable properties

for which Theorem 2 is true.
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This i1s an open guestion, whose solution offers to shed light on the
following conjectures.

1) The hierarchy of central places and associated sets of hexagonal nets,
determined by variable spacing between rival centers (k-values) are (spatially)
relatively permanent under the transformation of population growth
[Christaller/Baskin, 1966].

The problem is to determine the class of time intervals in which distorticn
is controlled sufficiently that increase in population does not destroy pattern
[Tobler, 1963]. Classical central place theory would then become a central
place principle, valid in certain time classes within the larger, spatial,
fractal geometry, thereby putting central place theory in a space-time context

[Arlinghaus, 1985].

2) A geographical map is a human landform with the property P of potential
to communicate.

Application would be to the class of time intervals in which distortion
of communication through channels, represented as edges, is controlled
sufficiently that understanding of map content and shape dominates other

change in attitude resulting from landform changes over time [Tobler, 1963].
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TOPOLOGICAL EXPLORATION IN GEOGRAPHY?*

Discovery is the ultimate goal of topological exploration in geography,
where point set topeclogy "is concerned with those intrinsic gqualitative
properties of spatial configurations that are independent of size, shape, and
location."l Geographic use of topology that superimposes 'size' (in the form
of a metric) on topelogical structure could be viewed as quantitative geography
or as applied location theory, that which superimposes ‘'shape’ as cartography,
and that which superimposes 'location' as abstract, qualitative, location theory.

The work which follows is general and attempts to exhibit correspondence
between topology and geography without the introduction of 'size', 'shape',
or 'location', until the final section, when 'location' is introduced to examine,
in some detail, the mechanics of geographic uses of point set topology. This
essay aligns some basic topological and geographical definitions; future work
would attempt to make this correspondence strong enough that theorems from
peoint-set topology might be used to discover new patterns within the associated
geographic structure. For, if the prefixes in the pair of words 'topography'
and 'geology' are switched, the pair 'geography' and 'topology' emerges--a
linguistic duality suggesting that knowledge of topological relations underlying
human activity is as critical to understanding groupings of human relationships
as is topographic structure to understanding groupings of physical landforms.

GEOGRAPHICAL TOPOLOGICAL SPACES

Topological ideas to be exhibited are among those that are basic to the
development of point set topology itself; consistent alignment of fundamental
concepts is viewed as a beginning necessary to a systematic approach to char-

acterizing geographic regions with diffuse boundaries.

-06=-
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Definition 1 (definition of a topology).2

Let X be a non-empty set and let T be any collection of subsets of X.
Then T is called a topology for X if

1) GY e T for all y € T, then ;E{ GY £ T;

2) G, €T for all i € I, I finite, then £ Y G, & T;
i Tel "a
3) X e Tand @ € T.
W T . 3
Definition 2 (definition of a topological space).
If T is a topology for the set X, then the couple (X,T) is referred to as
a topological space.
4
Definition 3 (definition of open sets).
Suppose (X,T) is a topological space. The sets G are called the open
sets of the topological space.
The letter M, often used to denote an arbitrary set, is from the German

"Menge;" "Menge" means set within this context, although more common meanings

of "Menge" such as "crowd" suggest mass or content of the set.5 This in turn

suggests that while the nature fo the content of mathematical sets is

unimportant to formal operation, a geographical interpretation might focus,

additionally, on the content of sets. Thus, to form geographical sets in a

space X one must first determine a differentiating characteristic (or set of

differentiating characteristiés) by which to distinguish content and on which

to base set formation. Identification of such a set of differentiating

characteristics will p? such that to decompose an individual open set into a

union of sets would be to des;roy the gquality of the differentiating characteristic.
Once a collection of sets can be formed within X, on the basis of geographical

differentiating characteristics, Definitions 1 and 3 emphasize the mathematical

significance of identifiying collections of open sets; again, notational origins
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reinforce this from a geographical point of view. For an open set of (X,T),

often denoted by G, is from the German "Gebiet," which might reasonably be
translated "region" rather than "open set."6 Thus, identification of a collection
of open sets might be thought of as selection of a set of regions fundamental

to the geographical processes being considered.

One collection of geographical open sets that occurs naturally is composed
of an arbitrary collection of uniform regions, and such selection will permit
generation of geographical topological spaces. For suppose that in a geographic
set X the differentiating characteristic of spatial homogeneity, relative to
scale and to natural form, is used to separate homogeneous sets of individuals
from one another in forming homogeneous, or uniform, regions.

With open sets and uniform regions in correspondence, a geographical
topological space will be formed once it is verified that Definition 1 applies.
Let X be the union of all uniform regions and of all other regions contained
in that union. Let T be the collection of all uniform regions, that are uniform
relative to scale and natural form. Then T is a topelogy for X if

1) the union of an arbitrary number of elements of T is once again a
member of T.

Union of uniform regions represents expansion or aggregation of these regions;
nothing new is added, so the aggregate is once again uniform.

2) the intersection of a finite number of elements of T is once again a
member of T.

This is clearly true; whether or not "finite" may be replaced by "infinite"
is not clear.

3) X & T by definition of X; @ ¢ T where @, the empty set, represents the
potential uniform region.

To address problems that focus on clustering, the feollowing additional

basic topoclogical definition will be useful.
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Definition 4 (definition of neighborhood)

A neighborhood N in (X,T) of a point p is a subset of X that contains p
and an element G or T, for which p € G. It is important to note that a
neighborhood of p is not necessarily an open set of T; however, any open set
of T is a neighborhood of each of its elements.

Within the geographical topological space (X,T), outlined above, let
neighborhood correspond to functional region. Neighborhoods N of (X,T) are
functional regions based on a node p that is contained within a uniform region
(open set of T) throughout which distribution of the phenomenon is uniform;
this in turn is surrounded by a hinterland in which activity declines.

Internal structure of a geographical topological space

The definitional associaticon of open set to uniform region and of neighborhood
to functional region will permit development of a taxonomy as a framework in
which to view interaction of these objects. It appears that'such interaction
unifies (¥X,T) as a whole composed of an aggregate of basic structural geographical
components. This taxonomy will deal with internal structure of a geographical
topological space; external structure, via transforﬁations, will be considered
later (Appendix A).

To develop classification procedure for characterizing neighborhood
interaction, or interaction among geographical units, we proceed as follows.

Suppose that N. is a neighborhood of Py and that p; € Gl(: Nl, while N, is a

1 2

neighborhood of P, and P, & GZC: N2. Only two neighborhoods will be dealt with;

this situation is complex mechanically but generalization of it should be fairly
clear conceptually.
Definition 5 (Neighborhood domination)

Suppose N_ and N2 are two neighborhoods of (X,T), with p; e G C N and

1 1 i

e i i i i > i N d
P, ¢ G2 C.N2 The neighborhood N2 will be said to dominate Nl if p, e N, an

p2 ¢ Nl.
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The taxonomical framework will be based on forming all possible logical
combinations of the statements below, that describe the spatial relations that
can occur as two neighborhoods come into contact. Visualization will be made

easier if one thinks of N2 as 'sliding across' N., or, as superimposing itself

1
on N_.
]

TABLE OF NEIGHBORHOOD INTERACTION

1) NlnN2=ﬁ 5) plEN2
") N AN, F P “5)  py ¢ N,
Z) G, NG, =¢ 6) p, £ N
“2) G NG, # g 6) P, ¢ N
3) G NN, =¢ 7 p, €6,
“3) & AN, #8 “7) p, 4G,
4) Nl N G2 = ¢ 8) p, € Gl
) N.NnG, 78 n8) P, ¢ G,

The combination of these statements, as given below, will omit, for the sake
of clarity, cases that are symmetric with another case; in cases of this sort,

the case which includes more of Nl in N2 will be considered--that is, the case

in which N2 dominates Nl.

The following outline presents the logical possibilities for contact

between N, and N under the assumption that N2 dominates N

. 5 whenever appropriate.

1
(The stages in the outline correspbnd to the stages in Figqure 1).
NEIGHBORHOOD INTERACTION TAXONOMY
N_ = @;
I) (1), or leW 5 @;
II) (1) and (2), or [Nl N, 7 41 A [Gl NG, = @]

A) (3) and (4), or, [Glr\ N2 = @1 A [szﬁ Nl = @]
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B) (v3) and (4), or, {Gl 8} N2 # @) ﬁ\[Gzlﬁ Nl = gl
i) Py ¢ N2
ii) p; € N2;
c) (v3) and (v4), or, [Gl n N, # @] A\IGZ F\Nl # @1
i) = ¢ N2
a) P, ¢ Nl
b) pz € Nl——not considered; N2 dominates Nl
ii) Py € N2
a) P, é Nl
b) p, € Nl
III) (v1) and (v2) or, [Ny N N, # #] NG NG, # 7]
(It follows from this assumption that we also have (v3) and (v4)).
a) 1 é N2
i} J;Nl

ii) p, € Nl-—not considered; N2 dominates Nl

B) P, €N,
i) p; ¢ G,
a) P, ¢ N
b) P, € Nl
1 p, éGl
2) P, € Gl——not considered; N2 dominates N

1
ii) P, € G2
a) P, i Nl
b) p, € Nl

1) P, ¢ <

2) P, € Gl
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The hierarchy constructed above is to be used for classifying neighborhood
interaction, where the interaction between two neighborhoods is such that
hinterlands are joined first (up to stage II.a), then uniform region and
hinterland (stage II.B to stage II.C.ii.b), and then both uniform regions (stage
IITI to stage II.B.ii.b.2). The final phase in stage III (III.B.ii.b.2)

represents assimilation of the two nodes into a common uniform region resulting
in topological fusion of neighborhood content. This taxonomy is viewed as useful
for dealing with geographic phenomena that do not rely on a metric, for it is
based only on ideas of inclusion.

GENERAL DIRECTIONS FOR EXPLORATION

Geographic avenues to be explored here are of two types: those that appear
to require largely geographic work, and those that also require further
topological development.

Case 1

The material exhibited below is neither complete nor are the corréspondences
unique; many of the words represent complex ideas but are given simple
interpretation as a beginning. Where there is proof, the structure of the
proqf is formal but its deals with non-mathematical entities. This use of
non-formal proof content within formal proof structure reflects earlier emphasis
on neighborhood and open set content within formal topeological structure.

Before forming propositions it will be useful to specify, in a general
manner, what X and T are. For the rest of this section, we suppose that X
consists of the set of all human beings that live, have lived or ever will live,
together with all human systems, traditions and institutions (i.e., civilizations).
The collection T will consist of 'societies.' Formation of societies will be

used as a differentiating characteristic for open set formulation in T. Selection
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of this particular differentiating characteristic is consistent with the idea
that decomposition of an open set should destroy the quality of that charac-
teristic, when viewing a society as "a broad grouping of people having common
traditions, institutions and collective activities or interest."8

We now have X and T. It remains to show that T is a topology for ¥, using
Definition 1, and to determine what a neighborhood of a point p of (X,T) will be.
Then proposition formulation in (X,T) will be approached.
Lemma 1

The collection of all societies, Sy, Y € I' forms a topology for the set
X of all human systems and traditions.
Proof:

Tc show this each of the three conditions of Definition 1 muéﬁ be verified.
1) if s € T, for all v € T, then LJ g & T

¥ YeT Ty

For this to be true, we must show that any aggregation of these societies
is again a society. An aggregation of "broad groupings of people" is again a
"broad grouping" so that part of the definition is satisfied. The guality of
"having common traditions , institutions, and collective activities or interest"
remains in the the aggregate, although the degree to which such commonness is
present may change. In this way JE#SY represents a society and so is an element
of T
2) if Si e T for all i € I, I finite, then i/;\l Si £ T

For this to be true, we must show that the intersection of any finite number
of societies is itself a society. In contrast to the case for aggregation,

the gquality of "broad grouping" remains but is changed in degree while the

definition of intersection assures us intensification of "commonness." In this

Mg

ie T4 represents a society and so is an element of T.

way
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3) X e Tand @ € T.

We see by the definition of X that X conforms to our definition of “society"
and so is a member of T.

The empty set @ is in T if it is viewed as the set of societies which
have never occurred (but which could conceivably). Thus two entirely separate
societies, Sa and Sb are disjoint, Sa N Sb = @, if there has never been any
commen tradition within the two; however, that potential is still there, so
g e T.
Q.E.D., Lemma 1.
Lemma 2

A neighborhood N, of a point p € X, where p represents some human feormation,
will consist of a culture generated from p where p is adopted relatively uni-
formly by the society G which formed p.
Proof:

A neighborhood N of a point p within the topological space (X,T) determined
in Lemma 1 is a subset of X that contains p and an element S ¢ T such that
p € 8. Thus if p represents some characteristic human formation, then a neigh-
berhood N of p within (X,T) is that subset of characteristic features that
developed in X, based on p. Thus N represents culture based on p, where for
"culture," we use "the characteristic features of a particular stage in the
advancement of civilization."9 Such an N contains an element of T that contains
p; namely, the society S which generated the formation p and derivative concepts.
In this way, p € G and G C N so that N is a neighborhood of p in (X,T).
Q.E.D., Lemma 2.
Lemma 3

Suppose N, and N, are two neighborhoods in (X,T). The culture N, of

1 2 B

society 82 dominates the culture N2 of society Sl if pl £ N2; ie., if interaction
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between Nl and N2 has reached, at least, to stage II.B.ii or to stage II.C.ii

or to stage II.B.i of the taxonomy of Figure 1.
Proof:
"Domination" refers to the "supremacy or ascendancy over another or

10 g
others." Such supremacy of N2 over Nl sill necessarily occur if N2 controls

or engulfs that characteristic, p, which is the generating element of N; i.e.,

if P1 € N, . (In this case one could also say that N

5 is subordinate to Nz).

1

That is, within the taxonomy developed above, domination of N2 over Nl occurs

in all cases where pl € N2'
Q.E.D., Lemma 3.

Proposition 1

Suppose Nl and N2 are two neighborhcods of (¥,T) with p, € Sl c;Nl and

p2 € 82 C;Nz. Then 52 is said to acculturate Sl F Sl N 52 # @ and if

Py € 52, i.e., if interaction between Nl and N2 has reached stage III.B.ii of
the taxonomy of Figure 1.
Proof:
Acculturation refers to "the process of interaction between two societies
by which the culture of the society in the subordinate position is drastically
e . . wll . .
modified to conform to the culture of the dominant society. (Migration

is not necessarily implied). That is, the societies within N1 and N2 must

interact, or, within Ni N N_ we must have Sl f\S2 # # and the dominant culture

2

must engulf the heart of the subordinate culture or, in this case, 82 must

contain Py- Within the taxonomy, acculturation of N_, by N2 occurs in all cases

1
where slrﬁ 82 # @ and pl € S2.

Q.E.D., Proposition 1.
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Clearly Proposition 1 is a refinement of Lemma 3. One could think of
these in terms of the introduction of Spanish influence into Latin America.

),

One could begin at stage I of the taxonomy and imagine Indian culture (as Nl
as separate from the Spanish (NZ). Then one could trace gradual interaction
leading up to domination (but not acculturation) of Nl by the Spaniards before
1519. In the Conguest of 1519, the Spaniards capture control of the heart of
Nl and begin a process of acculturation, culminating in the final stage of
topological fusion of neighborhood content, represented in the physical
landscape by the superimposition of Roman Catholic churches, constructed in the
Spanish style of architecture, on sites of previously existing Indian temples.
Case 2

A different approach is suggested below. A topology on a set X might
describe reqgulation of permeability of the set X (viewing X as a barrier) that
separates a region into two subregions, each contiguous with one face of the
barrier. To consider such an appreoach, it will be useful to introduce a
topological hierarchy of separation axioms, and then to explore directions for
geographic application by considering how openings in the barrier are separated
from one another.
Definition 6

A subset F of X in (X,T) is called closed in T if X-F is open in T
((X-F) denotes all of X not in F).

Definitions 7 to 11 provide a topological hierarchy of separation axioms
(The 'T' is from 'Trennungsaxiome'). (Figure 2)
Definition 7  (Kolmogoroff)

A topological space (X,T) is said to be T0 if and only if, for distinct

points there exists a neighborhood containing one point but not the other.
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A HIERARCHY OF TOPOLOGICAL SPACES BASED ON SEPARATION

TO—PROPERTY

Tl—PROPERTY

T2—PROPERTY

T3—PROPERTY

T4—PROPERTY

FIGURE 2
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Definition 8 (Fréchet)

A topological space (X,T) is said to be T, if and only if the set {p!} is

1

closed for every p e X.
Definition 9 (Hausdorff)

A topological space (X,T) is T, if and only if distinct points have

2

disjoint neighborhoods.

Definition 10 (Vietoris)

A topological space (X,T) is T, if and only if (a) for each point p and

3

each closed set F there exist disjoint open sets Gp and GF such that p ¢ Gp

(so points can be separated).

and F C GF; (b) it dis Tl

Definition 11 (Tietze)

A topological space (X,T) is T, if and only if (a) for each disjoint pair

4
of closed sets Fl and F2, there exist disjoint open sets Gl and G2 such that

; . 12
o and (b) it is Tl.

FlC Gl and cm; G
If (X,T) represents a barrier which is permeable, let the elements of T
correspond to holes in the barrier through which flow may pass. If (X,T) is a
TO—space then for any pair of points that attempts to pass the barrier there is
an opening that accommodates one member of the pair and excludes the other.
Any pair of points partitions the space in such a way that neither element of
the partition is an extreme.
If (%X,T) is a'Tl-Space {p} is closed and X - {pl is open. This provides
a partition of X in which both elements are extremes. The set X-{p} is an element
of the class of 'largest' open subsets of X. Thus all points but p may pass

through the barrier via the opening X-{p}. The substance of the barrier is

a mass of points.
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If (X,T) is a T_—-space, pairs of points pass through the barrier through

2

any openings G G, contained in N_, N2. If (X,T) is a T3—space, then pairs

1r g 1
of points and closed sets may pass through the barrier. If (¥X,T) is a T4~space,
then pairs of closed sets may pass through the barrier (see Figure 2).

Suppose that the topeology T on X is based on the differentiating
characteristic of property inheritance. 1If the style of inheritance is that of
equal division of property among male heirs, then (X,T) may be viewed as a
To-space. For as man and wife approach this barrier only the man may penetrate
the barrier. 1In this case, the wife is reflected back to the original space
by the barrier. As a man and his son approach this barrier, the son will penetrate
it while the father will be absorbed into the barrier as he dies (permitting
the son to pass through). The only men who will be reflected by the barrier
are those who are no longer in a position to inherit anything because anyone
from whom they could is already dead. This topology on X is a regulator of
one-way flow; it permits flow only.as~time progresses——inheritance is not usually
a reversible property.

If the style of inheritance is different, then the manner of regulation
of flow through the barrier is different. The topology T will be viewed as a
T3 regulator on flow in the following case. Suppose that a man is free to will
his property to any of his family or to anyone or anything else. In this case,
a man and his family approach the barrier; the man is absorbed into the barrier
at point p (dies) while his family penetrates the barrier through the opening
created by the open set Gp; any non-members of his family that are to inherit

property (institutions, servants, pets) pass through X via GF' reflecting their

dependence on p as well as their separation (Gb N GF = @) from his family.
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To view corporate (rather than individual) death, (X,T) could be considered
a T4—space. Here Fl would play the part of p in the T3—case.

Bnalysis of property inheritance in terms of separation of styles of
inheritance, resulting in partitioning of land and consequent change in overall
pattern of land use, might be of use in studying changing land use over time.

A different realization of separation, and one in which the topology on a
barrier X serves as a two-way regulator on flow across the barrier, comes from
using as a differentiating characteristic for topology formulation ideas of
black-white racigl prejudice and discrimination. Here such a topology has
two regulatory functions; white acceptance of blécks, and black acceptance of
whites.

The view of a white individual walking along the street might be TO
(Definition 7); as a pair of blacks approach, he is willing to admit one to his
territory, but not both. He doesn't wish to be outnumbered.l4

More refined separation would be available at higher T-levels. éuppose
the opposing spaces on either side of X are composed of young black single men
on one side, and young white single women on the other side. A bigoted view of
white parents' acceptance of black potential soné—in—law,as one aspect of the
differentiating characteristic, might exercise T regulatory
control (Definition 8) for no individual single black male, p, could pass across
the barrier, but groups of single black males, X-{p} of any size could
(assuming one woman marries only one man at a time).

a T2 regulator (Definition 9) of flow across X assures that points are

separate and can pass across X through, passible, more than one disjoint pair of

openings. A T2 regulator of black acceptance by whites would represent a situation
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in which any pair of blacks always passes through the barrier, and, each is
accepted individually, as reflected in the separatian of the openings through
which each passes. Also some groups of blacks, of which each point (individual)
is a member, permeate the barrier, while others are rejected (i.e., reflected
or absorbed). For example, some groups of black males may cross this
acceptance barrier while others, such as large groups of black teen-age boys,
may be blocked by the barrier.

A view of black-white relations in terms of separation axioms could be
used to map a city according to each regulator on the differentiating
characteristic; those areas which showed regulators of the same general T type
might be considered to be in greater racial harmony than those areas in which the
regulators belonged to different T classes. This might be useful in dealing
with current problems in which race relations are crucial, such as in
cross—-district school bussing.

At a more global scale, analysis of this sort might provide insight into
other situations, especially when such T spaces are mapped to other human situations.
If the mapping T is a homeomorphism (Bppendix A) and if an early stage of black-
white relations is in X, then in the image of X under 1 we might speculate
that a line of societal development similar to the black-white one could occur.
The idea of homecomorphism would permit recognition of invariant structure and
extension of internal analysis of structure over time.

KIOSKLAND

Since it is difficult, without extensive exploration, to envision what
sorts of problems would arise in topological examination of the internal structure
of the spatial development of relatively large segments of human civilizations

it will be useful to enlarge the scale of analysis and to consider a local example.
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Substantive material for this case study is drawn from direct observation of the
University of Michigan campus (1977).

The case study to be presented deals with examining the spatial distribution
of M-Kiosks, cylinders of concrete used as message boards, which are scattered
around University of Michigan campuses. It will begin by considering the Kiosk
distribution from the viewpoint of general observation and mapping, then will
show that this descriptive viewpoint and the topological description derived
from the neighborhood taxonomy can be made incident. It will conclude by
exhibiting the mechanics of (and by suggesting problems associated with) geographic
use of point set topology as an attempt to provide a small amount of additional
insight into this locational problem.

Analysis of kiosk function

A kiosk is a line-of-sight means of communication within a space in which
traéel on foot is dominan£. It interacts with pedestrians that are sufficiently
close to read its messagés, has the potential to interact with those who are
aware of its location (usually those who can ses it), and generally has no
attraction for those who cannot see it. These observations suggest a natural
way in which to form a functional region based on a kiosk. The kiosk is the node ,
the area surrounding the kiosk from which signs can be read is the core of the
functional region in which interaction of kiosk and pedestrian is fairly uniform
throughout, and the area enclosed by lines-of-sight based on the kiosk forms
the hinterland of the functional region. The space containing all kiosk locations,
and potential kiosk locations, and their associated functional regions will

be referred to as "Kioskland."
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Boundaries of Kioskland

Kioskland will be partitioned into the following regions, at least partially
matching the partitioning of The University of Michigan into a central Ann
Arbor Campus, a satellite North Ann Arbor Campus and separate campuses in
Dearborn and Flint, Michigan.
1) Rural Kioskland: the part that is totally removed from fhe Ann Arbor heart of
the University of Mighigan. This would include kiosks and their associated
functional regions on the Dearborn and Flint campuses.
2) Suburban Kioskland; this will consist of those kiosks and their functional
regions that are neither rural nor urban (indicated below}.
3) Urban Kioskland: the boundaries of this will be determined by the location
cof parking structures around the Central Campus. For within the hull formed
by these structures, pedestrian movement dominates. The edges of this hull will
be formed along streets since pedestrian flows move along the street pattern
in those parts where there are streets. So to form the urban boundaries, we
use Manhattan distance to connect the parking structures (Map 1) and, if two
distinct paths have the same length, we choose the one that includes the maximal
number of University buildings without including blocks that contain no University
buildings.
4) Central Kioskland; the boundaries of this area, in which there is no provision
for automobile movement, consist of the boundaries of the "Diag" (or central
guadrangle): State Street, North University Avenue, East University Avenue,
and South University Avenue (Map 1).
This case study will consider only those kiosks visible from Central
Kioskland and their associated functional regions constrained within the edges

of Urban Kioskland.
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A DISTRIBUTION OF M-KIOSKS
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Location of kiosks within the study area

From direct observation of the study area, the following kiosks were
located on a University of Michigan Campus map (Map 1). The kiosks were plotted
on the map according to their locations relative to surrounding buildings.
Nine kiosks were visible from the Diag. They will be numbered from Kl to K9

as shown in Map 1.

Mapping of associated functional regions

Direct observation of the study area was useful for determining kiosk,
or node, location. It was also useful for assessing extent of the core area
surrounding the kiosk. The size of sign and lettering on the signs showed a
great deal of variation but within forty feet of all kiosks, I could read some
part of some sign. So one estimate of core size might be a circle forty feet
in radius, centered on the kiosk. Variation in sign size, individual eyesight
and a variety of other factors, would warp this circular core boundary.

Direct observation was notespecially useful in determining the line-of-
sight edges of the hinterlands of these regions. Changes in vegetation would
greatly alter the boundaries of some of these areas. It seemed better to plot
line-of-sight regions around each kiosk based on information in Map 1 and use
actual vegetation (building) patterns to reduce the size of these regions when
appropriate. Maps 2-10 show these line-of-sight neighborhoods for each of
Kl to K9.

Map 11 shows the composite, derived from .overlaying Maps 2-10, with the
base map removed. The rough outlines of many of the buildings on the Diag show
up as areas not within line-of-sight of any kiosk, as if they were intersections

of Kiosk pneumbrae.
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To align observed geographical structure with topological structure, we
proceed as follows. The set X will consist of message content that has been,
or that is to be, transmitted by kiosk (at a current or future location) to any
pedestrian that has or will pass through Central Kioskland. To form open sets
of T, we use potential or actual direct message transmission as a differentiating
characteristic. BAn open set is a uniform region around an actual or potential
Kiosk location from which messages may be read. The collection of open sets T
is a topology for X for the union of open sets is again open (within the union
the message content of some kiosk can be read) and the intersection of open
sets is again an open set (within the intersection, the message content of all
kiosks can be read). X € T by definitiop of X, and @ € T when @ represents
potential direct interaction.

A kiosk neighborhood around kiosk K within (¥X,T) can then be defined as
a set in which messages may be reléyed from the kiosk, but not necessarily
through direct interaction of the pedestrian and the kiosk. That is, the margins
of the neighborhood coincide with lines-of-sight from the kiosk, or with the
hinterland boundaries of the kiosk functional regions. Also, each such set N
of K must contain an element G £ T such that K € G (( N for the core of the
functional region in which the kiosk can be read directly is precisely such a G,
and any N defined by lines-of-sight from K must contain such a G. So functional
region and topclogical neighborhood coincide. The functional regions of Map 11
are kiosk neighborhoods. Map 12 shows these kiosk neighborhoods with an open
set (the core of the functional region) exhibited as a dark circle.

Choropleth maps and topological mosaics

Kiosk neighborhood mapping, shown in Map 11, suggests that to investigate,
rather than to just describe, the configuration determined by these neighborhoods,

it would be useful to consolidate the information presented in this map to
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reduce clutter. One obvious way to do this is to form a choropleth map from
this information (Map 13), where areas from which x kiosks can be observed are
all covered with the same pattern.

The choropleth map (Map 13) is one way to simplify the content of Map 11.
Another way is to form a topological mosaic, as described in Proposition B.1
(Appendix B). Only those sets of interacting neighborhoods in which the
hinterland of one overlaps the core of the other are included in this mosaic
(Map 14). For example, neighborhood 1 (Nl) based on Kl intersects core area
G7 based on K7; Nl a) G7 = G7. So Nl and N7 are part of the topological mesaic.
Neighborhood and core interaction is as follows.

NlﬂG7=G
N7 f\Gl = Gl

N3 {"\G4 G

N, NGy =
N4nG3=£5
N4 F\ch: G

Ng NG,y

Il
h ]

|
@

Ny By Gy =
The neighborhoods Nl' N3, N4, N?' Ng form a topological mesaic in Kioskland.
This is in contrast to the choropleth mosaic in which all neighborhood inter-
sections are included. Within the terminology of the taxonomy, we have that a
choropleth mosaic Mc in a topological space (X,T) can be expressed as an appro-
priate union of intersecting neighborhoods, where the level of neighborhood

interaction is contained between stages II.A and II.C.ii.b of the neighborhood

interaction taxonomy.
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By not including II.A in the formation of a topological mosaic we have
chosen to emphasize more than just superficial (between hinterlands only) contact
between regions. The topological mosaic selects those kiosks and neighborhoods
among which there is the most interaction according to the original constraints.
These regions are not singled out for particular attention using the choropleth

map, although from direct observation one might notice that K.l and K7 are more

closely related than are other subsets of kiosks (and the same for KB’ K4,
and K9). The use of the topological mosaic lends precision to this intuitive
feeling from direct observation that is not evident on the choropleth map.

Checks on the content of these kiosks suggest that if signs were made large

enough, the core of Kl could be extended so that Gl and G7 would intersect.

In this case Kl would dominate K7. An experiment using different sizes and

colors of sign could be constructed to see what kinds of signs could be used

to achieve this. The set Gl would then exert pressure in the mosaic

(Proposition B.2, Appendix B).

Using both the choropleth mosaic of Map 13 and the topeclogical mosaic of
Map 14, as investigative tools for examining Central Kioskland, the following
recommendations arise. If a minimal number of signs are to be distributed and
maximum coverage of X is desired, then six signs are necessary to cover kiosk
neighborhoods: one on each kiosk not in the topological mosaic (there are four

of these K

o KS' K6, KB), and one sign for each set of kiosks where the size

of the sign is sufficient to exert pressure on other kiosks within the set

(a sign on one of Kl and K, and a sign serving G3, G4, 9

7; G on K4).

Thus from the point of view of the kiosk user, identification of
topological mosaics is desirable for it permits him to cut his expenses.

However, from the point of view of the kiosk builder, efficiency of communciation
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using kiosks is greatest in regions where there are no topological mosaics and
so, from that-view, location of new kiosks should avoid creating topological
mosaics.

Correspondence of geographical and mathematical framework in this case
study indicates that the primary difficulty in approaching and executing such
work is in creating an object (geographical topological space in this case)
that lies between both topological and geographical structures and yet is also
one that is systematically developed with respect to both structures.

Emergency telephone placement

The Xioskland case study proved useful in analyzing the effectiveness of
coverage of Ohio State's Campus by emergency telephones. Students in both
mathematics and geography courses were assigned the project of evaluating the
extent of coverage provided by the emergency telephone system then in palce,
and of determining locations for new telephones. A summary of the results is
included in Appendix C.

Urban hypsometry

Identification of curves A, B, and C (Figure 3) that characterize the
relations between relative altitude and relative drainage basin area for streams
embedded in topographic surface is a geometric realization of hypsometric analysis

" . ; ; i : . .16
("relation of horizontal cross-sectional drainage basin area to elevation ).
Curve C characterizes the drainage basin of a young stream, curve A that of an

. ; i 137
old-age stream, and curve B that of an equilibrium position between the two.
FIGURE 3 A broader view might suggest that a
catenary [y = cosh x] is the limiting form
Y of curve A, and that a reflected catenary

is the limiting form of curve C. The

Rel. Altitude

presence of a hull of catenaries bounding
Relative Area
intermediate positions for hypsometric
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curves is consistent with geomorphological interpretation of the limiting forms
of these curves. For a catenary is the curve that provides maximum support
between two extreme positions (as in suspension bridges), and, catenary A& is
such that the basin supports the maximum amount of sediment deposited from an
cld-age stream, while catenary C represents a basin that supports the minimum
amount of sediment deposited from a youthful stream.

Further reflection suggests that the position of curves may be forced
outside the bounding hull; for, in the physical landscape, &am placement could
alter deposition of sediment to such an extent that the drainage basin could no
longer tolerate its own stream.

Even more generally, transforming these ideas to an entirely symbolic
form as a pivot for thought, suggests alternate style of analysis. The hull of
catenaries is roughly similar in form to the monad, when catenaries are deformed
to semi-circles and the line of stream equilibrium is deformed to the line
of separation between Yin and Yang. The inflection point of the stream equilibrium

line is the center of the monad.

a Using the symbol as city leads

0 FIGURE 4 =rng Y .

= 18
ey to the idea of urban hypsometry.

O

& In the urban landscape Yin and Yang
P

—

% become human landform and human

B erosive agent, or CBD and transport
™

i ; i , inst d

Relative area drained by CBD lige, instead of land and water,
or natural landform and natural
erosive agent. Transformation of the monad, in the urban landscape, back to the

Cartesian plane produces a figure (Figure 4) corresponding to that developed for

drainage basins (Figure 3). 1In this case, faster moving streams of traffic



-136-

are considered to erode a huge block of cement to steep landforms (high rise
buildings). So, caternary A is such that the urban area supports the maximum
amount of settled traffic relative to the CBD (the CBD is decaying) while
catenary C represents a period of swift building of the CBD and a minimal amount
of traffic has settled across the entire urban area.

Between these two positions is an equilibrium position which may be forced
outside the bounding hull by severe alteration in traffic patterns or by the
introduction of too many high buildings relative to nearby land that can support
parking garages. Use of this style of analysis in urban areas, together with
line-of-sight neighborhoods at different croos-sectional levels may aid in
forming CBD's and urban areas that are arranged harmoniously relative té
area/altitude relations.l9

Street gangs (urban terrorism)

Regions formed by street gangs based on territoriality could lead to the
use of the taxonomy to monitor the level of action of street gangs in an urban
area; danger occurs in areas of regional overlap, particularly in areas of overlap
of core areas (domination), leading to seizure of the focus of a nodal region

26 o § g

by one group or another. Assessment of level of activity within the taxonomy
could be through current newspaper accounts and word frequency tabulation.

The map that follows shows two such interacting regions derived from data
: : : 21 L :
in Ley and Cybriwsky's article. It is intended as representative of the type

of map that mightalign nicely with the taxonomy (Figure 5).
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APPENDIX A
TRANSFORMATION OF GEOGRAPHICAL TOPOLOGICAL SPACES

Earlier sections examined problems in defining geographical topological
spaces and in determining the nature of the internal structure of such spaces.
They did not consider comparison of one geographical topological space to another.
To accomplish such comparison requires locating structure in both spaces that is
invariant with respect to some systematic method of transformation of one space
into the other; change is recognized in terms of that which remains fixed.
Since point set topology itself already relies heavily on such transformations,
initial experiment would invoke those methods. The mathematical development
presented below culminates in definition of a homeom;rphism, a topological
transformation useful in determining similarity of structure.

Definition A.l (definition of a transformation, T)

A relation 1 that relates elements of a set X to elements of a set Y is

said to be a transformation of X into Y, T1:X - ¥, if, whenever XlT £ X2T it

follows that Xl #F X (xl, X, £ X). When 1 satisfies this definition, it is

2 2

said to be well-defined.

Definition A.2 (definition of a one-to-one transformation)

If 1:X¥ > Y is well-defined and if, whenever %, # X, it feollows that

X T # X € X), then T is said to be a transformation from X into ¥

1 5T (xl, X

2

that is one-to-one.

Definition A.3 (definition of onto)

Suppose T:X + Y is well-defined; T is said to be a transformation of X
onto ¥ if X1 = Y.

. -1 ’
Proposition A.l (existence of T as a transformation).

; ; : =]} : ;
Suppose T1:X > Y is well-defined. The relation T :Y - X is a transformation

if and only if T1:X - Y is one-to-one and onto.

=138~
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Definitions A.1l, A.2, and A.3 and Proposition A.l1 deal with transformation
between sets; the definitions that follow rely on these and provide material
that deals with transformation between topological spaces.

Definition A.4 (definition of a continuous transformation in terms of open sets).

Suppose T:X > Y is well-defined. Then 71:(X,T) = (Y,U) is said to be
continuous with respect to the topologies T and U if and only if
ik
RT € T for ¢ach R E Us

Definition A.5 (definition of continuous transformation in terms of neighborhoods)

A transformation 71:X =+ Y is said to be continuous at a point x € X if and
only if T-l of each neighborhood of xT is a neighborhoéd of x. The transformation
T:X > ¥ is said to be continucus if and only if it is continuous at each point
x £ X. (This is equivalent to Definition A.4.)

Definition A.6 (definition of a homeomorphism)

A transformation t:(X,T) -+ (¥,U) is said to be a homeomorphism if and

: : . =1 . .
only if T is one-to-one, onto, and if both T and 1 are continuous transformations.

Homeomorphisms look particularly promising.as means of external examination
of geographical topological spaces. For the search for properties that are
invariant under homeomorphisms is one that could be of interest to physical
and human geographers alike, as well as to others in a wide variety of
disciplines. Both transformation and set (as process and-form, respectively)
are essential to such invariance.

APPENDIX B

Proposition B.1l

A mosaic M, in (X,T), is a union of neighborhoods N § € 4, of (X,T}),

(5#
where the level of neighborhood interaction is contained between stages II.B

and II.C.ii.b of the neighborhood taxonomy (Figure 1). .



-140-

Proof:

A mosaic is "a surface decoration made by inlaying small pieces of variously
colored material to form pictures or patterns."23 There is the interpretation
of this definition then that the individual tiles retain their basic character-
istic (color) but, when aggregated, work to form an uninterrupted pattern.

That is the Si retain their character; they do not intersect each other, but
their hinterlands come into contact, and, pairwise, at least one hinterland has
non-empty intersection with another core, as a glue fusing the individual core-
tiles with each other, in order to form an uninterrupted pattern. Or,

M = STA N5 (where the level of interaction between any two N5 is contained

between levels II.B and II.C.ii.b). Q.E.D.

Proposition B.2:

In a union M* of neighborhoods NS*' 8§ ¢ A, of (X,T), a society 52* will be
said to be creating pressure in the civilization M* if there existslNO* among
the NS*' 8 € A, such that 52* f\SO* # @ and NO* and N2* do not havé topologically
fused neighborhood content.
Proof:

This is clear from the definition of pressure as "the application of force
to something by something else in direct contact with it when this definition
is viewed within the neighborhood ta:‘:onomy.z4 0:E.D:

APPENDIX C

The content of this Appendix consists of the material in Figqure 6.
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NOTES
*Based on an invited lecture given to the Department of Geography, The University
of Chicago, May 2, 1979, and on material developed at The University of Michigan,

19T~V
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Springer, 1935), pp. 58-68, passim.

13. If one were to admit something similar to reincarnation into the space under
consideration, then inheritance might be viewed as a reversible property. In
fact, such observation might permit partitioning of human traditions into
equivalence classes, where an equivalence relation v among elements of a set is
such that

a) a v a (reflexive)

b) if a v b then b v a (symmetric)

c¢) if a vb and b v ¢, then a v ¢ (transitive).

Thus property inheritance is an equivalence relation if, and only if, a concept
such as reincarnation is admitted, for otherwise the relation could not be
reflexive. Equivalence classes, or almost-equivalence classes (satisfying
some, but not all of (a), (b), and (c)) based on a set of fundamental human
relations might be used to develop "cultural" plates and to examine zones of
contact, zones of generation, and zones of destruction of these plates anchored
on a set of human traditions that shift through time and space by the

mechanism of diffusion.
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14. Territoriality is to be studied topologically in this case. Gerald D.
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Chicago Press, 1972); Kevin Lynch, The Image of the City (Cambridge, Mass.:
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15. Application of this type would represent an attempt to go beyond the
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D'Arcy Thompson, Lewin, Sokal and Sneath, Darwin, Spencer, Tylor, Vallaux,
Morgan, Childe, White, Steward and many others.

16. Arthur N. Strahler, "Quantitative Analysis of Watershed Geomorphology,"
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17. Arthur N. Strahler, "Hypsometric (Area—-Altitude) Analysis of Erosional
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1952), p. 1124.

18. Inversion of the usual 'city as symbol'.

19. As discussed with Everette Bannister, Ph.D., (deceased) of the Department
of Geography of The University of Michigan; the phrase ‘'urban hypsometry' is
Bannister's suggestion.

20. David Ley and Roman Cybriwsky, "Urban Graffiti as Territorial Markers,"
Annals, Association of American Geographers, (December, 1974), p. 498.

21. Ibid.
22. Kelley, op. cit., note 2, pp. 10-11.
23. Webster, op. cit., note 8, p. 552.

24. Ibid., p. 673.
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A SPACE FOR THOUGHT
I never saw a moor,
I never saw the sea;

Yet know I how the heather locks,
And what a wave must be.

Emily Dickinson

INTRODUCTION

Albert Einstein's comment to Max Wertheimer, that "Imy] thoughts did not
come in any verbal formulation. I very rarely think in words at all. A
thought comes, and I may try to express it in words afterward...I have it in
a kind of survey, in a way visually" [Wertheimer, 1959, p. 238], provoked
this attempt to describe diffuse thought-processes. Thoughts of this sort
might bounce around; in one instant a given thought might be close to another,
yet, in the next instant, quite distant from it. Thus the use of metric
spaces to describe such thought-processes appears inappropriate unless one
allows some sort of folding, to juxtapose "near" and "far," as René Thom
does with his use of differential topology (based on the Euclidean metric)
to characterize "thought [as] a virtual capture of concepts with a virtual,
inhibited, emission of words..." [Thom, 1975, pp. 312-313, 331-332]. BAnother
approach is simply to abandon metric spaces and revert to point-set topology,
whose relations form the foundations of differential topology [Auslander and
MacKenzie, 1963]. This is the approach taken below; it is more global than was
Kurt Lewin's use of point-set topology in 1936 to represent an individual's
"life-space" [Lewin, 1936]. Both, however, rest primarily on the set-theoretic
notions of inclusion, union, and intersection.

R. H. Atkin also applies topological structure to examine human affairs;
throughout, he employs the combinatorial approach to topology [Atkin, 1974].

The combinatorial approach creates the global picture by glueing together
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small pieces, while the set-theoretical approach begins with the whole and
dissects it to look at individual systems and subsystems. The impact that
the chosen style of approach has on the final preoduct is as vivid in the
application of mathematics as it is in art; from the latter vantage point,
the difference in choice of topological approach comes alive as a striking
difference in paintings, as between Seurat's pointillistic and Cézanne's
impressionistic representations of play, as a walk in the park, or as a hand
of cards. As the mathematician Saunders Mac Lane has put it, in commenting
on finding combinations of mathematical ideas well-suited to application,
"...subtle ideas, fitted by hand to the problem, can lead to triumph"

[Mac Lane, 1982, p. 28].

TOPOLOGICAL BACKGROUND

The following sequence of definitions provides material for application;
the use of definitions and theorems beyond these would no doubt produce
additional insight but is beyond the scope of this article.

Definition 1 [Mansfield, 1963, p. 15; Kelley, 1955, p. 37].

Let X be a non-empty set and let T be any collection of subsets of X.

Then T is called a topology for X under the following conditions:

1) futuristic condition (Lemma 1 will motivate this term)

If GR e T for all A ¢ A, then ALE}A GA € T; this condition admits infinite,

as well as finite, unions of sets as members of the topology.
2) historical condition (Lemma 1 will motivate this term)

n
FE Gl, G2,...,Gn e T, then {:} Gi e T; this condition admits finite,

but not infinite, intersections of sets as members of the topology.

3) X e Tand ¢ € T, where ¢ denotes the empty set.
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Definition 2 [Mansfield, 1963, p. 15; Kelley, 1955, p. 37].
If T is a topology for the set X, then the couple (X, T) is referred

to as a topological space; the sets G, € T are called the open sets of T

A

(G, from the German "gebiet" ("region") is often chosen to denote open sets).

To characterize some of the types of structures that might occur within a
topological space, other than the required open sets, Definitions 3, 4, 5,
6, and 7 prove useful.
Definition 3 [Mansfield, 1963, p. 89; Kelley, 1955, pp. 62-63].

A sequence s in a set X is a mapping of the set of non-negative integers,
2, into X; that is, s: - X 1s defined by s(w) = x for w & f where x| is

the value of the sequence s at w.

Thus, for example, the set X of pages in a book is put into a sequence by

the assignment of numerals, beginning with the numeral 1. Here w represents

a numeral while s(w) = Xw represents the page with that numeral assigned to it.
Definition 4 (Figure 1) [Mansfield, 1963, p. 89; Kelley, 1955, p. 63].

Let s be a seguence in (X, T). Let G be an open set in (X, T) containing the
point p. The sequence s is said to be eventually in G if and only if there

exists w, £ { such that x € G whenever w, > W where "greater than or

1 m2 2

egqual to" means is "beyond" in sequential position.

l!

i, 2h

s (w) ®

FIGURE 1
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Elements of the sequence need only eventually fall into some open set G
containing p. A stronger condition for determining how "close" a sequence s
is to a point p, chosen a priori, is given in the Definition that follows.
Definition 5 (Figure 2) [Mansfield, 1963, p. 90; Kelley, 1955, p. 63].

Let s be a sequence in (¥, T), and let p ¢ X. Then p is a limit point

of s if s is eventually in every open set containing p.

FIGURE 2

Here, s must eventually lie totally within any intersection of open sets of
which p is a member. There may, however, be more than one point p in X which
satisfies this Definition.

For example, suppose (X, T) is composed of the set X of rational numbers
between 0 and 10 (including 0 and excluding 10) and of the collection T
formed firom left-half closed intervals with integral endpoints (such as [1,2),
where the left-hand endpoint is included and the right-hand endpoint is not).
Using Definition 3, if Q = {integral powers of 2} = {w|w = 2n, n an integer},
then s: © + X produces the sequence {8, 4, 2, 1, 1/2, 1/4, 1/8,...} in X.
From Definition 4, this sequence is eventually in G = [0,4), for since 4 is a

power of 2, it is an element of T and will serve as Wy in Definition 4;
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any w_, "beyond" 4 is in the interval [0,4). Of course, by similar reasoning,

2
this sequence is also eventually in [0,2), [0,1l) as well as in other intervals.
Using Definition 5, the point p = 1/2 is a limit point of s since s is eventually
in every open set containing p; it is eventually in all left-half closed
intervals with 0 as the left-hand endpoint and there are no other left-half
closed intervals containing 1/2. Similarly, 1/3 is a limit point for this
sequence, as is any other point in [0,1). Clearly, with this choice of
topology T for X the sequence s has more than one limit point. The Definition
that follows is more restrictive and describes a more highly controlled situation.
Definition 6 [Mansfield, 1963, p. 91; Kelley, 1955, p. 63].

A sequence s in (X, T) is convergent in (¥, T) if and only if there
exists a unique point p £ X that is the limit point of s.

Using the example above, suppose X is the same and suppose instead that
the topology T is formed from left-half closed intervals with rational endpoints.
With this topology, that permits "finer" distinctions, 0 is the only limit
point of the sequence s described above.

In addition, a given sequence may converge in one topological space
and fail to converge in another. For example, consider again the sequence
i, 1/2, 1/4,... . Let X, = [0,10), the left-half closed interval of rational

1

numbers from 0 to 10, and let T. represent the set of all left-half closed

1

intervals in [0,10). Then this sequence converges to 0 in (X Tl) since

1’
0 e Xl is the unique limit point of s in (Xl, Tl). If, however X2 = (0,21,

the right-half open interval of rational numbers from 0 to 10, and if T2

represents the set of all right-half open intervals in (0, 10], the sequence s

fails to converge in (Xz, T2) as 0 ¢ x2 and as there is no other limit point

of s in (X2, T2) to which the sequence might converge.
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To interpret topological structure at a more local scale, the following
Definition will prove useful.

Definition 7 [Mansfield, 1963, p. 48; Kelley, 1955, p. 51].

Let (X, T) be a topological space and let Y be a subset of X. The
T-relative topology for ¥, denoted by S is the collection S = {G N Y[ G e TI.
The topological space (Y, S) is called a subspace of (X, T).

APPLICATION

To align topological material with human communication systems, the
following words and the diverse images they might represent are taken as
primitive terms.

Primitive Terms:

a) Thought b) Concept <¢) Conscious.
What these mean will of course vary from individual to individual. Concerns
about the interaction of language and thought date from classical Greek
rhilosophy and the iiar's paradox of Epimenides the Cretan [Bronowski, 1978,
p. 82], to twentieth century logicians Russell, Quine, and Tarski [Bourbaki,
1968, p. 328; Quine, 1960; Tarski, 1956, pp. 154-155]1, to the linguists Chomsky,
Hayakawa, and Whorf [Chomsky, 1968; Hayakawa, 1941; Carroll, 1956], as well as
to a host of others in a variety of disciplines. The propositions that follow
attempt to capture the diffuse character of thought with "diffuse" mathematics.
As the mathematical symbols are, to some extent, free from different inter-
pretations in different languages, the self-reference problem behind these
paradoxes is superficially addressed. However, as Tarski puts it, "the language
about which we speak need by no means coincide with the language in which we
speak,"” suggesting that any such "capture" of thought needs further evaluation

to determine whether or not it is only apparent [Tarski, 1956, p. 402].
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For the purpose of a display of mathematical alignment, as opposed to
that of an exhibit of linguistic or philosophical underpinnings, "thought"
is assumed to be present in the mind of the individual whether or not one
contends, as does Whorf, that language shapes one's thoughts and view of the
world [Carroll, 1956]. Similarly, "concept" is considered to be an organized
grouping of thoughts. There remains with this grouping the difficulty of the
Russell Paradox, inherent in any formulation of classes. As Quine comments,
however, "...the admission of classes as values of variables of quantification
brings power that is not lightly to be surrendered..." [Quine, 1960, p. 266].
Finally, "conscious" is viewed as a state of being that presumes a degree of
alertness suff;cient for thought and concept formulation. Such alertness
requires sufficient imagination to engage in thought and concept formulation,
and it thus fits, to some extent, with Bronowski's view that "the central
problem of human consciousness depends on the ability to imagine" [Bronowski,
1979, p. 18].
Lemma 1

Let X represent the set of all conscious human thoughts. Let T represent
the set of all concepts. Then the pair (X, T) is a topological space,
representing collective human thought.
Proof:

To show that (X,.T) is a topological space, it is required to show that
T meets the three conditions of Definition 1.
1) Show that the union of an arbitrary number of concepts is once again a concept.

A) Finite unions.
i) Unions of similar concepts.

a) The union of two concepts that are similar fuses them as a
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single concept that might be viewed as a small enlargement
of the scope of either original concept.

b) The union of a larger number of similar concepts procedes as
in (a), until something akin to a "corporate" image is reached.
One would expect this image to be recognizable to those internal
to it as well as to those external to it.

ii) Unions of dissimilar concepts

a) The union of two concepts in which the differences between
the concepts dominate is yet another concept which focuses on
these differences. For example, the radically opposed South
African views of "one person--one vote" and "Apartheid" fall
together under the broader conceptual umbrella of the role of
voting procedures in providing equitable governance.

b) The union of a large number of dissimilar concepts procedes
as in (a), until a social structure somewhat like a research
university, which thrives on interchange among differing
philosophical viewpoints, is reached. Here, the internal view
would be. opposed to the external view, as in the "town-gown"
conflict present in many college communities.

iii) Unions of similar and dissimilar concepts.

The union of a set of related concepts with another set of
unrelated concepts would produce a revolution once these sets have
merged. For example, the merging of the corporate computer image
with the traditionally diverse liberal arts curriculum is creating
a technological revolution in printing from word-processing to

books printed from camera-ready copy.
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B) Infinite unions.
An infinite union of concepts presents itself at a variety of levels

in the mind. For example, each of the numbers, "one," "two," "three,"
represents a distinct concept, while the infinite set of all such
numbers merges them as the concept of all positive integers. More broadly,
the union of an infinite number of concepts permits the indefinite
extension of a set of concepts into the future--hence, the label of
"futuristic condition" for the arbitrary union property in Definition 1.
Show that the intersection of a finite number of concepts is once again a
concept.
The intersection of two concepts, similar or not, is the common core
of tradition from which they arose. Of course, in the case of highly
similar concepts this core would be "larger" than it would be in the case of
dissimilar concepts. Any finite set of concepts has a éommon tradition
(including possibly the empty set) around which these concepts have emerged.
Since such traditions, be they "gréat“ or "small' [Redfield and Singer, 1954,
p. 58], have been established over time, and since the amount of time
which has elapsed (in contrast to that which is yet to elapse) is finite,
the presence of a finite {(rather than an infinite) intersection property
is required--hence the label of "historical condition" for the finite
intersection broPerty in Definition 1.
A) @ e T.
The empty set represents the lack of organization of thoughts into a

concept; however, this lack is itself a concept and must therefore be

included in T.
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B) X e T.
The characterization of X as the set of all conscious human thought
is itself a concept and must therefore be included in T. QED

Corollary 1

The topological mind-space of an individual, (Y, S), is a subspace of (X, T).
Proof:

Using Definition 7, Y represents the thoughts of a single perscon and
S represents the collection of concepts that his view of the concepts in T
admits into his mind.
Theorem 1

Suppose that 51 represents a sequence of thoughts of individual Il, in

T. ), and that s

10 T 5 represents a sequence of thoughts of individual

mind-space (X

12 in mind-space (X2, T2). The position of a thought p relative to the

thought-sequences sy and s, may be used to order the level of understanding

about p exchanged between Il and I2 as : maximal, significant, moderate,

minimal (exposure only), misunderstanding, or bewilderment. It is assumed

that such an exchange is communicated via words and that appropriate dictionaries
or interpreters are available.

Proof:

It is assumed that Il initiates the exchange; dual arguments hold if

12 is the initiator (Figure 3).

converges to the unique limit point p in (X_, T.);

1) Suppose Sl 1 1

A) if s, also converges to p in (X T2), then "maximal" understanding

2'

about p is exchanged between I1 and 12. This follows since every open

set of Tl containing p eventually contains Sy and s, since every open set

of T  eventually contains s, (Definition 6 and Corollary 1), and there

2 2

is no room for confusion since no other point p in either Xl or X2

has this property.
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c)

D)

2) Suppose p is one of several limit points of s

a)

B)
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if p is one of several limit points of Soe then "significant" understanding

is exchanged. Again, every open set of T, containing p eventually

a2

contains sl, and every open set of T2 containing p eventually contains
s, (Definitions 5, 6, and Corollary 1). However, here p is a unique

limit point of sl; if it is alsc a unique limit point of Sor then

Case 1.A holds. Otherwise, it is one of several limit points within

any intersection of open sets in T_. Thus, there may arise some

2

"incompleteness" in I_'s understanding of the sequence in Il's mind

2

that is associated with p (as if, in the example following Definition 5,

Il used 0 as a limit point and 12 used 1/2).

if s, is eventually in some open set of T2 containing p, then I2 receives

exposure to I.'s thought sequence leading to p. Here, elements of s

1 2

need only eventually fall into some open set in T2 containing p
(Definition 4), so that the exchange linking the two sequences may
contain only a very small amount of information.

if s_ is not eventually in any open set of T

5 containing p, then

2

misunderstanding about p results for 12, and it is recognized immediately

in (Xl, 11

i

by Il since there is no other limit point for Sy

l;

if p is also one of several limit points of s then a moderate level

2’
of interchange is ensured, since each of s1 and s, must lie eventually

in every open set of T1 and T2 containing p. The extent of significance

in the exchange is reflected in the extent of overlap of the intersections

and T_, which contain p.

£ ets £ i
of open sets from T, 5

if s, is eventually in some open set of T2 containing p, then 12

receives only minimal insight about p (as in 1.C; however, here the degree

to which 12 receives exposure may be even less than in that case).
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c) if s, is not eventually in any open set of T2, then misunderstanding

about p by 12 is the result. Such misunderstanding is suspected by Il

since the number of possible limit points for s, is bounded by the

q

size of the intersection of all open sets in Tl containing p.

3) Suppose s. is eventually in some open set of T. containing p.

1 il

A) Suppose S, is eventually in some open set of T2 containing p. As in
1.C and 2.B, only exposure to each other's sequences results, and in
this case that exposure is even more superficial than in the two
previous ones.

B) If s, is not eventually in any open set of p, misunderstanding results.

In this case, I. likely has only a faint notion that this has happened.

1

is not eventually in any open set of T..

4) Suppose s 1

1

A) If S, is not eventually in any open set of T bewilderment results. for both.

2’

As an example, suppose one considers thoughts associated with the word
"group." A mathematician's thought-sequence leading to this particular p would
contain, in any open set containing the thought, the concepts in the definition
of a group as a mathematical system, closed under a single operation, that
obeys associative, identity, and inverse properties. Thus, in Figure 3.i,
maximal exchange takes place between two mathematicians Il and 12 in which the

sequences s, and S, both converge to p in (Xl, Tl) and (X2, T2) respectively.

Figure 3.ii illustrates a situation in which s, converges to p in (Xl, Tl)

and in which s, has p as one of several limit peoints; in this case, significant
understanding about groups is exchanged between the mathematician, Il' and the

non-mathematician, I,. Figure 3.iii shows an exchange in which s

5 converges

1

to p in (Xl, Tl) and in which the sequence s_ is eventually in some open set in T

2 2

containing p. Here only a superficial level of communication occurs, resulting
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in exposure of 12 to Il's ideas. Figure 3.iv again shows the mathematician

and the non-mathematician, and here it is clear to Il that the non-mathematician
has completely misunderstood p. The sequence 52 triggered by the word “group"
in 12 is not eventually in any open set of T2 that contains p. The final

frame, Figure 3.v, represents bewilderment; the word "group" triggers no

57 Tz).

sequence in (X
What appears to be critical in this example is not so much that the word
"group" has different meanings, but rather that the thought-processes leading
to this word were distinct. The non-mathematician required only existence
criteria (Definition 5), whereas the mathematician required existence as well
as uniqueness criteria (Definitions 5 and 6). This distinction suggests the
precision in language-use required in mathematics and mathematical sciences
as well as the frustration often felt by non-mathematicians in attempting to
communicate with mathematicians. At a deeper level, it suggests yet another
approach to expressing the differences between "Thé Two Cultures," and the
implications of these differences for solving problems of global significance,
commented on by C. P. Snow [Snow, 1959].
Corollary 2
The way in which individuals choose to partition space may depend on
whether or not they expect thoughts to appear as unique limit points of
sequences; e.g., mathematicians sit together at one lunch table at the faculty
club while humanists congregate at another.
Corollary 3
Thought-sequences that do not have limit points in an individual's topological

subspace of (Xl, T,), might consume much of his thought-space. If the individual

1

figures out a way to find limit points in (X, T) and incorporate them in

(X T.), through further education, then he develops something that, to him, is new.

1" 71
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Certainly Bronowski touches on this idea as he comments that "you have a
lot of irrelevant thoughts about what you are going to wear tonight...but
vou do not put such thoughts into words because they are not specific; you are

just conscious that you are thinking... [Bronowski, 1978, p. 35].
Corollary 4

Thought-sequences that converge to limit points outside of conscious
thought-space (X, T) of Lemma 1 might represent dreams. The sequence might

eventually lie within an open set of a dream once the boundary between "awake"

and "asleep" has been crossed.

Thom, in his catastrophe theory context, sees "a duality between thought and
language reminiscent of that...between dreaming and play..." [Thom, 1975,

p. 313]. A comprehensive analysis of the role of sequences that converge
outside of the thought-space that contains them (as did the sequence 1, 1/2,
1/4,... under the topology of right-half open intervals) is, however, beyond
the immediate extension of Theorem 1. It would appear to require additional
technical knowledge of verious mental diseases and disorders. (E.g., do
multiple personalities always have multiple limit points for even "simple"
issues such as physical identity?)

DIRECTIONS FOR FURTHER INVESTIGATION

One of the assumptions of Theorem 1 required adequate translation of language
using dictionaries and interpreters where necessary. To conform to Whorfian
ideas of linguistic relativity which separates those languages which unify
space-time words (such as Hopi) from those which do not, one would need to
consider language-specific cases of Theorem 1 [Carroll, 1956].

Further, one might extend this Theorem to include modes of comprehension
of sequences other than through language. Certainly insight is often gained

through a touch or a glance [Arlinghaus, 1985].
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Finally, one might consider, from an experimental vantage point, dualizing
the relations within the human thought-space of Theorem 1 as those within an
animal instinct-space. In the latter case, however, the issues of whether or
not animals can understand parts of "sentences" and of whether or not they have

more than one way to say the same thing need to be confronted [Bronowski, 1978,

b 29, 37].
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CHAOS IN HUMAN SYSTEMS--THE HEINE-BOREL THEOREM

One theorem, based in topological notions, that is critical in the development
of higher mathematical analysis and that might have potential for application
to human systems at the global scale is the Heine—-Borel Theorem. This theorem
holds in all integral dimensions; for ease in visualization, it is realized
here along the real number line. Extensions of this Theorem and of the
applications suggested below to fractal sets appear promising, but are beyond
the scope of this material [Arlinghaus, 1985].

Definition 1 [Taylor, p. 483].

"A point set S on the x—-axis is said to be bounded if there is some finite
interval which contains all of S; that is, if there exist numbers a and b,

a < b, such that a < x <b for all x ¢ S."
Definition 2 -[Taylér, p. 491]

"Let S be a point set, and suppose we have a collection of a certain number

of open sets such that each point of S beléngs to at least one of the open sets.

Then we say that S is covered by the collection of open sets."

For example, suppose S = {x]O < X 5_1} and suppose T is a collection of open
sets (open intervals on the x—axis) with
n n . c
T = {In = (1/(27), (n+2)/(27)) |n is an integer}
[Taylor, p. 491]1. Figure 1 displays the approximate positions of the open
intervals on the set S. As n becomes large, l/(2n) becomes small, but it

I cover everything in S to the right

nevexr reaches 0; the sets I 13, and I

1°* =2° 4

of 1/16. The infinite sequence of open intervals is required to cover 0 < X

< 1/16. This set S5 is covered by the collection T of open intervals, since
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every %, 0 < x <1, lies in In for some value of n. The set S is bounded, since
0 < x <1 (as in Definition 1); it is not, however, closed--its complement on
the real axis is (-«,0] v (1,*) which is not a union of open intervals.

Suppose we make S closed by adding the point 0; R = § U {0}. Does T, as
described above, cover this closed and bounded interval R? Clearly it does not, as
0 lies in no In' To cover 0, add an interval such as (-1/10, 1/10). Then the
infinite collection U=T U {(-1/10,1/10)} covers R (Figure 2).

The addition of the point 0 to 'close' S, forcing the addition of
(-1/10,1/10) to T in order to cover S, has deeper implications. The closed
set R may be covered by a finite number of judiciously selected intervals from U;

I and I, cover everything in R to the right of 1/16,

the intervals I_, I 37 4

1 27
while the added interval, (-1/10,1/10), covers all of R, including 1/16, to
the left of 1/10. Thus, five intervals may be used to replace an infinite
collection in covering the sét R

Clearly, this is not the case in the situation shown in Figure 1. For,

if the intervals I_,...,I  (k an arbitrary positive integer) were considered

1 k
as a finite candidate-set, the interval 0 < x i_l/(2k) would remain uncovered.
Thus, no finite subset of the infinite collection of open intervals T will
cover S = {x|0 < x £ 1}

The notion of being able to select a finite subcover from a given

covering is the thrust of the Heine-Borel Theorem.

Heine-Borel Theorem [Taylor, p. 493]

"Let S be a bounded and cleosed point set, and let S be covered by a
collection [T] of open sets. Then a finite number of open sets may be chosen
from the collection [T] in such a way that S is covered by the new finite

collection."

The examples above give the idea of the proof of this theorem; a rigorous

proof may be found in Taylor or Rudin.
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To apply this Theorem to human systems, suppose that S is a collection
of human systems and that T is a collection of interpretations of those systems.
Using the Heine-Borel Theorem, wé see that if S is closed and bounded, and is
covered by T, then from T a finite collection also covering S can be chosen.
We might expect S to be bounded by a geographic region (possibly the whole earth),
and S might be viewed as closed, if no new input were required from different
systems to ensure the functioning of S. The ceollection T clearly could be
finite; however, it rests on belief systems, value systems, and a variety of
other social and cultural factors which might be infinite. If the Heine-Borel
Theorem holds, a finite number of these views may be chosen that cover, or
produce understanding of and rational response to, these systems. In this
case, some uniformity in interpretation of the systems is possible in the geo-
graphic region containing them. When the number of elements in the finite cover
is small, and when the geographic region bounding S is large, global harmony
is maximized. Conversely, when the Heine-Borel Theorem does not hold, an
infinite collection of interpretations may be required to cover, or understand
and respond to, even a fairly small set of human systems (compare to the
motivational examples). This suggests cultural chaos; empirical studies along
these lines might be drawn from Middle Eastern politics, from English/Irish

relations, or from widespread terrorism across the surface of the Earth.
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1. Sandra L. Arlinghaus and John D. Nystuen. Mathematical Geography and Global Ari: the Mathe-
matics of David Barr’s “Four Corners Project,” 1986.

This monograph contains Nystuen’s calculations, actually used by Barr to position his abstract tetrahe-
dral sculpture within the earth. Placement of the sculpture vertices in Easter Island, South Africa, Greenland,
and Indonesia was chronicled in film by The Archives of American Art for The Smithsonian Institution. In
addition to the archival material, this monograph also contains Arlinghaus’s solutions to broader theoretical
questions—was Barr’s choice of a tetrahedron unique within his initial constraints, and, within the set of
Platonic solids?

2. Sandra L. Arlinghaus. Down the Mail Tubes: the Fressured Postal Era, 1855-1984, 1986.

The history of the pneumatic post, in Europe and in the United States, is examined for the lessons it
might offer to the technological scenes of the late twentieth century. As Sylvia L. Thrupp, Alice Freeman
Palmer Professor Emeritus of History, The University of Michigan, commented in her review of this work
“Such brief comment does far less than justice to the intelligence and the stimulating quality of the author’s
writing, or to the breadth of her reading. The detail of her accounts of the interest of American private
enterprise, in New York and other large cities on this continent, in pushing for construction of large tubes in
systems to be leased to the government, brings out contrast between American and European views of how
the new technology should be managed. This and many other sections of the monograph will set readers on
new tracks of thought.”

3. Sandra L. Arlinghaus. Essays on Mathematical Geography, 1986.

A collection of essays intended to show the range of power in applying pure mathematics to human
systems. There are two types of essay: those which employ traditional mathematical proof, and those which
do not. As mathematical proof may itself be regarded as art, the former style of essay might represent
“traditional” art, and the latter, “surrealist” art. Essay titles are: “The well-tempered map projection,”
“Antipodal graphs,” “Analogue clocks,” “Steiner transformations,” “Concavity and urban settlement pat-
terns,” “Measuring the vertical city,” “Fad and permanence in human systems,” “Topological exploration in
geography,” “A space for thought,” and “Chaos in human systems-the Heine-Borel Theorem.”

4. Robert F. Austin, A Historical Gazetteer of Southeast Asia, 1986.

Dr. Austin’s Gazetteer draws geographic coordinates of Southeast Asian place-names together with
references to these place-names as they have appeared in historical and literary documents. This book
is of obvious use to historians and to historical geographers specializing in Southeast Asia. At a deeper
level, it might serve as a valuable source in establishing place-name linkages which have remained previously
unnoticed, in documents describing trade or other communications connections, because of variation in
place-name nomenclature.

5. Sandra L. Arlinghaus, Essays on Mathematical Geography—II, 1987.

Written in the same format as IMaGe Monograph #3, that seeks to use “pure” mathematics in real-world
settings, this volume contains the following material: “Frontispiece-the Atlantic Drainage Tree,” “Getting
a Handel on Water-Graphs,” “Terror in Transit: A Graph Theoretic Approach to the Passive Defense of
Urban Networks,” “Terrae Antipodum,” “Urban Inversion,” “Fractals: Constructions, Speculations, and
Concepts,” “Solar Woks,” “A Pneumatic Postal Plan: The Chambered Interchange and ZIPPR Code,”
“Endpiece.”



6. Pierre Hanjoul, Hubert Beguin, and Jean-Claude Thill, Theoreficel Market Areas Under Fuclidean
Distance, 1988. (English language text; Abstracts written in French and in English.)

Though already initiated by Rau in 1841, the economic theory of the shape of two-dimensional market
areas has long remained concerned with a representation of transportation costs as linear in distance. In
the general gravity model, to which the theory also applies, this corresponds to a decreasing exponential
function of distance deterrence. Other transportation cost and distance deterrence functions also appear in
the literature, however. They have not always been considered from the viewpoint of the shape of the market
areas they generate, and their disparity asks the question whether other types of functions would not be
worth being investigated. There is thus a need for a general theory of market areas: the present work aims
at filling this gap, in the case of a duopoly competing inside the Euclidean plane endowed with Euclidean
distance.

(Bien qu’ébauchée par Rau dés 1841, la théorie économique de la forme des aires de marché planaires
s’est longtemps contentée de 'hypothése de cofits de transport proportionnels a la distance. Dans le modele
gravitaire généralisé, auquel on peut étendre cette théorie, ceci correspond au choix d’une exponentielle
décroissante comme fonction de dissuasion de la distance. D’autres fonctions de colt de tramsport ou de
dissuasion de la distance apparaissent cependant dans la littérature. La forme des aires de marché qu'elles
engendrent n’a pas toujours été étudiée ; par ailleurs, leur variété amene a se demander si d’autres fonctions
encore ne mériteraient pas d’étre examinées. Il parait donc utile de disposer dune théorie générale des aires
de marché : ce & guoi s’attache ce travail en cas de duopole, dans le cadre du plan euclidien muni d'une
distance euclidienne.)

7. Keith J. Tinkler, Editor, Nystuen—Dacey Nodal Analysis, 1988.

Professor Tinkler’s volume displays the use of this graph theoretical tool in geography, from the original
Nystuen—Dacey article, to a bibliography of uses, to original uses by Tinkler. Some reprinted material
is included, but by far the larger part is of previously unpublished material. (Unless otherwise noted, all
items listed below are previously unpublished.) Contents: “ ‘Foreward’ ® by Nystuen, 1988; “Preface” by
Tinkler, 1988; “Statistics for Nystuen—Dacey Nodal Analysis,” by Tinkler, 1979; Review of Nodal Analysis
literature by Tinkler (pre—1979, reprinted with permission; post—1979, new as of 1988); FORTRAN program
listing for Nodal Analysis by Tinkler; “A graph theory interpretation of nodal regions” by John D. Nystuen
and Michael F. Dacey, reprinted with permission, 1961; Nystuen—Dacey data concerning telephone flows
in Washington and Missouri, 1958, 1959 with comment by Nystuen, 1988; “The expected distribution of
nodality in random (p, q) graphs and multigraphs,” by Tinkler, 1976.

8. James W. Fonseca, The Urban Rank-size Hierarchy: A Mathematical Interpretation, 1980.

The urban rank-size hierarchy can be characterized as an equiangular spiral of the form r = ae® ot

An equiangular spiral can also be constructed from a Fibonacci sequence. The urban rank-size hierarchy is
thus shown to mirror the properties derived from Fibonacci characteristics such as rank-additive properties.
A new method of structuring the urban rank-size hierarchy is explored which essentially parallels that of the
traditional rank-size hierarchy below rank 11. Above rank 11 this method may help explain the frequently
noted concavity of the rank-size distribution at the upper levels. The research suggests that the simple
rank-size rule with the exponent equal to 1 is not merely a special case, but rather a theoretically justified
norm against which deviant cases may be measured. The spiral distribution model aliows conceptualization
of a new view of the urban rank-size hierarchy in which the three largest cities share functions in a Fibonacci
hierarchy.

9. Sandra L. Arlinghaus, 4dn Atlas of Steiner Networks, 1989.

A Steiner network is a tree of minimum total length joining a prescribed, finite, number of locations;
often new locations are introduced into the prescribed set to determine the minimum tree. This Atlas explains
the mathematical detail behind the Steiner construction for prescribed sets of n locations and displays the
steps, visually, in a series of Figures. The proof of the Steiner construction is by mathematical induction, and
enough steps in the early part of the induction are displayed completely that the reader who is well-trained
in Euclidean geometry, and familiar with concepts from graph theory and elementary number theory, should
be able to replicate the constructions for full as well as for degenerate Steiner trees.



10. Daniel A. Griffith, Simulating K = 3 Chrisialler Central Place Structures: An Algorithm Using A
Constant Elasticity of Substituiion Consumpiion Function, 1989.

An algorithm is presented that uses BASICA or GWBASIC on IBM compatible machines. This algo-
rithm simulates Christaller K = 3 central place structures, for a four—level hierarchy. It is based upon earlier
published work by the author. A description of the spatial theory, mathematics, and sample output runs
appears in the monograph. A digital version is available from the author, free of charge, upon request; this
request must be accompanied by a 5.5-inch formatted diskette. This algorithm has been developed for use
in Social Science classroom laboratory situations, and is designed to (a) cultivate a deeper understanding of
central place theory, (b) allow parameters of a central place system to be altered and then graphic and tab-
ular results attributable to these changes viewed, without experiencing the tedium of massive calculations,
and (c) help promote a better comprehension of the complex role distance plays in the space-economy. The
algorithm also should facilitate intensive numerical research on central place structures; it is expected that
even the sample simulation results will reveal interesting insights into abstract central place theory.

The background spatial theory concerns demand and competition in the space—economy; both linear
and non-linear spatial demand functions are discussed. The mathematics is concerned with (a) integration of
non-linear spatial demand cones on a continuous demand surface, using a constant elasticity of substitution
consumption function, (b) solving for roots of polynomials, (c) numerical approximations to integration and
roct extraction, and (d) multinomial discriminant function classification of commodities into central place
hierarchy levels. Sample output is presented for contrived data sets, constructed from artificial and empirical
information, with the wide range of all possible central place structures being generated. These examples
should facilitate implementation testing. Students are able to vary single or multiple parameters of the
problem, permitting a study of how certain changes manifest themselves within the context of a theoretical
central place structure. Hierarchical classification criteria may be changed, demand elasticities may or may
not vary and can take on a wide range of non-negative values, the uniform transport cost may be set at
any positive level, assorted fixed costs and variable costs may be introduced, again within a rich range of
non-negative possibilities, and the number of commodities can be altered. Directions for algorithm execution
are summarized. An ASCII version of the algorithm, written directly from GWBASIC, is included in an
appendix; hence, it is free of typing errors.

11. Sandra L. Ariinghaus and John D. Nystuen, Envirenmentel Effects on Bus Durability, 1990.

This monograph draws on the authors’ previous publications on “Climatic” and “Terrain” effects on
bus durability. Material on these two topics is selected, and reprinted, from three published papers that
appeared in the Transportation Research Record and in the Geographical Review. New material concerning
“congestion” effects is examined at the national level, to determine “dense,” “intermediate,” and “sparse”
classes of congestion, and at the local level of congestion in Ann Arbor (as suggestive of how one might use
local data). This material is drawn together in a single volume, along with a summary of the consequences of
all three effects simultanecusly, in order to suggest direction for more highly automated studies that should

follow naturally with the release of the 1990 U. S. Census data.

12. Daniel A. Griffith, Editor. Spatial Statistics: Past, Present, and Future, 1990.

Proceedings of a Symposium of the same name held at Syracuse University in Summer, 1989. Content
includes a Preface by Griffith and the following papers:

Brian Ripley, “Gibbsian interaction models”;
J. Keith Ord, “Statistical methods for point pattern data”;
Luc Anselin, “What is special about spatial data”;
Robert P. Haining, “Models in human geography:
problems in specifying, estimating, and validating models for spatial data”;
R. J. Martin, “The role of spatial statistics in geographic modelling”;
Daniel Wartenberg, “Exploratory spatial analyses: outliers, leverage points, and influence functions”;
J. H. P. Paelinck, “Some new estimators in spatial econometrics”;
Daniel A. Griffith, “A numerical simplification for estimating parameters of spatial autoregressive models”;
Kanti V. Mardia “Maximum likelihood estimation for spatial models”;
Ashish Sen, “Distribution of spatial correlation statistics”;



Sylvia Richardson, “Some remarks on the testing of association between spatial processes™;
Graham J. G. Upton, “Information from regional data”;
Patrick Doreian, “Network autocorrelation models: problems and prospects.”

Each chapter is preceded by an “Editor’s Preface” and followed by a Discussion and, in some cases, by
an author’s Rejoinder to the Discussion.
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