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“FOREWARD”

Graph theory is a mathematics of structure. Many years ago we (Nystuen and Dacey, 1961) used some
theorems from graph theory in the analysis of the spatial structure of a nodal region. The application
was novel. More commonly, Euclidean geometry had served as the means to formalize spatial aspects
of geographical problems. Tinkler’s work is an exception. Cver the years he has developed graph theory
methods of geographical analysis (involving nodal regions) that have gone well beyond cur modest beginning.
The present work shows the evolution of nodal analysis. Tinkler’s paper of 1979 is of particular interest; in
it, he draws from graph theory and probability theory to characterize message flows in a network of cities.
He develops notions of the expected nodal structure and expected nodal flows. He identifies several types of
nodes which may exist and provides several statistics suitable for nodal analysis. The paper presents logical
development of several stimulating ideas and suggests others for further work.

Recent developments in computer-aided geographical information systems have created great interest
and activity in geography and allied disciplines. I have noticed that the huge capacity for data management
made possible by these systems has not been matched by particularly sophisticated structural analysis.
Therefore, Tinkler’s volume on fundamental spatial structure is timely and welcome.

John D. Nystuen
Professor of Geography and Urban Planning
University of Michigan

Ann Arbor, MI 48109
June 24, 1988
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It is ususzlly expected of an Editor that he explain the reasons for the work with which
he burdens the world. I shall be no exception, but as I am something of a historian
mangué in geomorphological matters I feel that an historical view of the origins of this
monograph will eventually be of interest as an explanation, rather than a Jjustification,
of its blatant palasc~ and neo-struciuralism - I suppose that is the proper epithet to
apply to such work as this mongraph contains.

story undoubtedly begins with the publication of the Nystuen-Dacey paper
= izl znalysis {though not nodal regions as an idea),
hy' first, As far as I can tell this has no real
., & am unsure of the degres to which it found its
ory itself: certainly digraphs {which a nogdal graph certainly
is} wers ESCT y 1741 in the mathematical literature. What is unusual is the
method by which the digraph is abstract_i from & complex datz tzble. Since then the
technique has been adaptsed in many ways, most of which are briefly menticned in my
1979 review, the relevant part of which is regrinted here in Appendix & (item i}
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A characteristic of geocgraphy in the 1%960s was its wholesale adoption of existing
statistical technigques; usually from other social sciences and often pyschology. Even graph
theory itself was no sexception, although the method was not inherently statistical. But
Nodal Analysis was different because it structured geographical data with a mathematical
technigue and in doing so provided a siructural analysis. In terms of the complexity
in the original data - an # x 2 matrix where n was usually well over 10 - an enormous
statistical simplification was achieved, indesd by the order of (i-n'). Now it is tempting
to think that in so doing cne is throwing out the baby with the bathwater, that such
an encrmous reduction in complexity must inevitably lose much of significance.

Although philosophers praise simplicity and the beauty of Occam's razor, seasoned
practitioners {and certainly sedulous critics cut for an easy target) are all toco ready
to assume that it cax’t be ZAaqr simple. Perhaps they are right, perhaps nct, and it is
not my purpose to debate the issue at length. However, one can point cut that one reason
that many statistical operations lost favour was because of the difficulties of providing
2ood, and binding interpretations. Factor analysis is perhaps the prime example, but papers
using graph thecory also fell readily to the tempiation to repeat what the last analyst
had said, without any real attempt to link the processes being performed on the graph
to the geographical world being modelled. Thus the interpretation connecting the theory
to realily was missing. But something else was missing too., In relation to real world
data sets (transaction tables in the present case) the discipline as a whole failed dismally
to sven see the point at which statistical questions about theoretical analysis really
should enter: how does the statistical structure of the transaction table affect the answers
that various technigues applied to the Table yield? The guestion is Jjust as valid when
asked about the data matrices being used for Factor Analysie (which I'm only picking
on because it is probably the best documented example in the literatura)

The reader will find that in my review {Appendix A, item Z} of two papers that
appeared after my 1979 review {Appendix A, item i) there are =choes and reflections of
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these disciplinary flaws and failures, It seems toc have besn all too easy to drop a method
and move on to something else which, in the end, proves to be no more satisfactory.

I would have no basis for carping abpout the deficiencies of the discipline, or even
a tiny guantitative subset of it, unless I could claim toc have made some efforts to remedy
it myself. Whether my efforts are worthwhile is besides the point: but [ can and do
claim to have tried to make some amends in the limited field of graph theoretical analysis,
and this monograph is merely the latest of these attempts, and I am very grateful to
IMaGe for the opportunity to at least put the statistical analysis in Nodal Analysis before
the ‘public)

I was trained as & geomorphologist, but from my very first University appoiniment
I was reqguired to teach Quantitative Methods to all and sundry. When I arrived at Makerers
University College (University of East Africa as it them was, at Kampala, Uganda) in
June of 1968 I was followed very shorily afterwards by Don Funnell, a graduate of
Cambridge, who came to Makerere with the intent of working for a Doctorate on some
aspect of Uganda's spatial economy. In the absence of suitable alternatives I was asked
to act as a guantitative supervisor, and Funnell’s interests soon ensured that 1 come
to terms with the Cambridge approach to human geography, especially as embodied in
Hageettl's “Locational Analysis in Human Geography.” In my subsequent readings I was
appalled by the lack of a sound, or well justified, interpretative basis for the procedures
heing followed in the graph theory applications that I encountered. Also lacking was
a general theoretical framework into which the techniques being used might fit, The
lack was in itself excusable up to a point, but by the late 1%9460s it -did not seem that
serious efforts were being made to remedy the situation (despite the appearance of “Vetwork
Analysis in Geography™ for example); and I might add that this was true of virtually
i the technigues being applied, not Just graph theory.

It was from this background that my 1972 papers on the interpretation of
eigenvalues and a theory of radizl graphs emerged. The next year my paper connecting
graph colouring and rural periodic markets appeared, together with a paper that addressed
a theory of the region. In the following years my move to the United States and then
two years later to Canada interrupted the flow of papers along these lines although
two papers that locoked at statistical aspects of graphs were given at Conferences: the
1976 one on the expected distribution of nodality (given in Ann Arbor at a regional
AAG meeting and reproduced in this monograph), and one in 1978 (given in absentia at
the AAG in New Orleans) which sought to characterize all graphs which have the same
local siructure {i.e. which have identical labelled adjacency mabrices, but different patterns
of connectivity],

During these years I was also considering the problem of Nodal Analysis: specifically
how could you find out the expected number of nodal regions that a given transaction
table should have? At least as a stari, that was the most obvious question to ask,

If you don't have a good, or any (statistical) theory, then brute force computer
simulation is one avenue by which to obtain some hints that may lead to a solution:
at the very least it gets you started! So I wrote some programs that would do Nodal
Analysis on random matrices and was rapidly appalled by the quantity of ocutput and
the problems of reducing it without graduate student labour. Still I felt that this was
the only way to go and decided, against my inner instincts which told me it was a total
waste of public money, to apply for a research grant (with student labour) to tackle

ra



[dh]
I

PrREFACE : -

the problem. I sat down to write the grant application and in the process developed
the paper which forms the core of this mongraph: there was then no need for the grant!
I don't recall many of the details now, but once I realised that an estimating matrix,
[M] in the monograph, could be based on the column sums of [T], the rest was mainly
a matier of following my nose and applying standard principles, although sometimes these
were used in relatively ingenious ways: eg. the use of Markov techniques to generate
the expected structure of nodal paths longer than 1. It does come to mind that the
real insight came right after what looks like just a nifty trick: the use of a permutation
mairix to re-order the initial Transaction Table according te the rank on the column
sums, After this step nodal flows are those that occur below the main diagonal, and
it then becomes visually obvious (if you-are in the correct mind-set) that an estimation
matrix like [M] need only consist of elements in those positions.

I would re-iterate that the re-ordering by rank order using the permutation was
never intended to be anything other than a ‘tidying up’ trick, but once done something
previously implicit then became explicit. Because I already had most of the ‘parts’ I needed
for the FORTEAN program (markov chains, chort path algorithms, powers of matrices,
standard Nodal Analysis) that aspect of the work fell intoc place rapidly, The paper was
then given at the Canadian Association of Gecgraphers meeting in Montreal (May 1979),
and the following January at the Jfastitute of Fritich Gecgraphers meeting in Leicester,
U.K. {in both cases to minuscule audiences!)

Since then it has languished, partly because I had other progjects, and partly because
it seemed unlikely that it would attract much use or attention. Perhaps, too, a lack of
graduate students who might have been bullied into using it, and of colleagues of like
mind, helped to keep it suppressed! It is only appearing now because I saw the IMaGe
advertisement in the AAG newsletter in 1984, Because [ connected John Nystuen with
Michigan, which is the base for IMaGe, I wrote a letter of enquiry suggesting that it
might be a very appropriate place for the paper to appear. After more delays which
are almost entirely of my making, here it is!

The FORTRAN listing which is provided in Appendix B was retyped from a Xerox
of the old program listing. It was uploaded to the Burroughs at Brock University, and
after the typos were debugged it compiled and ran on a FORTRAN 66 compiler (old FORTRAN
IV, which is what I originally used). The output agreed, decimal by decimal, with that
on my 1979 output, still extant. The complete output from the input file for Kenya is
given, except that the spacing has been adjusted for printing purposes. The program
as listed can be provided by IMaGe as a Textfile on a Macintosh, IBM PC, or AFPPLE II
(DOS 3.3 or ProDOS) disk.

In its simplest and most natural form the program performs a standard Nodal
Analysis (including the re-ordering step to ‘tidy up’ the matrix), and computes a short
path matrix for the nodal structure. Simultaneously it takes the column sums of the
original transaction matrix and uses these as a basis for the statistical estimation of
all the items needed in the analysie. Thus, at this step, the analysis is entirely internal.
Two alternatives are provided: (i) to use a rank-size model (with exponent -1, though
this could be changed easily enough) as a basis for the column estimates, or (i) to use
instead of the vector of columns sums, & vector of weights supplied by the user, and
which presumably reflects some other measure of importance over the nodes of the system:
perhaps population figures. A further alternative would be to supply an entire matrix
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of ectimates: one for each ij element in the transaction matrix, and these might, perhaps,
be derived from a variety of gravity models. The program would be easily modified to
do this (indeed such a version was once tried and tested) but at the time it seemed
too like special pleading: it provides an estimate for each potential nodal flow, and so
it was abandonned in the final version,

In most applications one will be begin with the transaction table, induce the nodal
structure, and then assess it via the statistics produced by the program. Still, it is
worth re-iterating that the whole probability structure of a nodal analysis is implied
by Jjust one item defined over a set of nodes: a set of weights, which of course contains
within itself an implicit ranking by virtue of its numerical attributes. Thus one can
speak of the probakbilitisic nodal struture of a set of cities. Because this makes no direct
reference to the spatial arrangement of these nodes it contains spatial attributes only
to the extent that the set of weights does. /f the spatial economy produces puckers
in the nodal system, as reflected in the actual nodal structure revealed by the transaction
table in use, then to this extent the present system of analysis reveals the impact of
additional localised geographical factors, over and above those which operate to produce
the weights. The text describes an example of this in the way that Eldoret grews an
actual nodal flow from Kitale which on probabilistic grounds is extremely unlikely.

Keith Tinkler
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Introduction

When Nystuen and Dacey (1941, hereafter NDéi for brevity) introduced the method of nodal
analysis into Geography for the purpose of delineating a certain category of functional
region on the basis of a table of transactions between a set of places, they devised
a2 method of considerable elegance and originality for a specifically geographical problem.
The technigue has attracted considerable use over the years (for a full review see Tinkler
1979, the relevant section is reprinted in this monograph together with references, Appendix
4), and while it may be criticised for using only an apparently small part of the total
information in a typical transaction table, its virtue is exactly that - it achieves
considerable simplification in what is often a complex system, greatly aiding interpretation.

Somewhat surprisingly perhaps, while the method has been readily adopted as an
empirical technique to structure a transaction table, few people if- any, have addressed
the abstract question: how expectable are the results? For example, how many nadal regions
should there be in an &t ¥ 2 table? To what extent would such a result depend on the
frequency distribution of the elements in the table? How many nodes should each nodal
region contain, and what is the expected maximum distance a nede in a region would
lie from the focal or terminal city? To my knowledge no attempts have heen made to
consider these guestions, and the aim of this paper is to develop and illustrate a statistical
methodology that is capable of answering them, Given a square transaction table
representing the interactions amongst a set of places and with self-interactions at each
place omitted from consideration (the main diagonal of the table), the procedure developed
below derives all the required statistics from the entries in the iransaction table, and
more particularly from their column sums.

However, Jjust as the nodal scheme itself may be worked on the basis of some
external ranking of the places in the transaction table (NDé1), so the required statistics
also may be based on an external set of values (weights, in addition to ranks) for the
places, In this way it becomes possible to test an empirical nodal system against the
expected nodal structure of a chosen geographical model, with a consequent improvement
in the sharpness of interpretations. For example, it would be possible to use a set of
weights for places based on some variant of the rank-size rule - a hoary old geographical
favourite.

In a more specific direction the methodology can be adapled to deal with the
situation where the elements in the transaction table are regarded simply as estimates
of the true values. When they are suitably normalised, row-wise as in a transition
probability matrix they can be used to estimate the probability that a certain transaction
occurs. When they are normalised over the entire matrix they can be used to estimate
the probability that a certain nodal structure occurs.

Significance testing
The issue of testing the statistical significance of the expected values obtained from
the methods in this paper, vis-&-vis observed values obtained by standard Nodal Analysis

of an empirical transaction table, is not touched upon. In most cases an application of
a Chi-Squared test would be appropriate, but for small tables there may be difficulties
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with small expected frequencies for which corrections may have to be made.

Restructuring Nodal Analysis

The mechanics involved in determining the matrix of nodal flows, [N, from the transaction
table or matrix [T], are well known (¥D41) but the methed will be reviewed briefly. It
is immaterial to the discussion in this paper whether the matrix [T] has been adjusted
beforehand, via powering procedures, to take account of indirect flows, or not. Such
procedures are detailed in NDé1 and they are discussed at length in Tinkler (1976). It
is possible though that adjustments of that type might complicate the process of
interpretation unduly.

The column sums of [T] are first summed toc establish a ranking of places according
to the number of incoming transacltions they receive., (Nystuen and Dacey remark that
an external set of weights can be used to rank the places according to criteria such
as population size or central function. However, no examples of the use of this alternative
method are known to me) In each row the largest element is marked. This element, indexed
by the i% row and the %' column (and excluding the case i=j), is marked as ncdal and
is entered with a 1 in [N] {f and only if the ith column sum is smaller than the jt
column sum, and with 0 otherwise. Thus a flow is nedal if the place to which it is going
is ranked higher in the hierarchy than the place from which it is coming: places of
high rank therefore receive more transactions, and nodal flows, than do places of low

rank.

For the purpose of analysis it is advantageous to restructure this procedure by
reordering [T] according to the rank of its nodes on the columns sums {or according
to an external criterion if that variant of the methed is used). For example, given:

| = 8 % 3
[Tl = 2 ~ A i {largest element in each row is boldface)
B - 3
4, & & = ]
Column Sums i2 8 13 9
Eank 2 4 i 3

it can be reorganised to give:

- B 3 &

T+ ~ & - 34 B

[T 3 4 - 2

4 & F =

Column Sums I3z 2 g
Fanks i 2 3 4

In this procedure, and throughout this paper, a numerically low value for the rank signifies
a high ranking node; in this way the row and column indices of [T]# indicate the rank
of the nodes on the column sums of [T].
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It is assumed that no ties cccur in the ranks based on the column sums, or among
the row elements insofar as they affect the determination of the maximum element. Ties
within rows can usually be resolved by using the maximum flow corresponding to the
element with the highest column total. If ties occur in the column totals, then insofar
as they affect the assignation of ncodal flows then the tie must be resolved on the basis
of external criteria, although an alternative might be to consult the outgoing flows for
the nodes concerned: the one with the smallest outgoing flow might be thought to be
more of a sink in the regional system.

The recrdering of [T] to give [T}¥ can be accomplished by calculating:

[T]* = [P]TLTILP],

where [P] is a permutation matrix and [P]T is its transpose. LEP:] can be established
from the vector of ranks for the column sums of [T] If the j* column [T] has rank
k then:

Bji = 1 for k=i, = 0 otherwise.
In this example, therefore, [P] is found to be:

[ 1

g=ih

It is now possible to reduce [T]* to a matrix [F] in which the largest element
on each row is marked 1 in [F] where an element in [T]¥* is boldface, and is marked
0 otherwise. The result is:

[
m=l

0
]
2
0

oo -
ol e B s [ e
{ e I e N o e |

1

|

Now, because of the strict requirement that nodal flows may only proceed up the hierarchy,
{to nndns with larger column sums), it is possible to show a poteaniial nodal flow matrix
[F¥] as follows, in which & { shows that the ijth entry is pefenticlly nodal, and a D
that it isn’t. '

0
b4
0

0O
| sun S e N s B s
[ B e ) o Y

1

0 o o 0
PN -~ i 0 0 0O
LPN] 1 4 00
. 4 4 0
BEecause of the restructuring, [PN] has the form of a lower triangular matrix. The matrix
of nodal flows [N] follows directly as :

[N} = [Flo[ew] weenni{ 1}

where O indicates element by element multiplication of the [F] and [PN] matrices; is,
the same formalism as is used in ordinary matrix addition and subtraction). Thus:
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and [PN] acts as a filter which only permits flows up the hierarchy. It is the lower
triangular part of [F] that yields [N] As a graph, [FN] is represented in Figure 1
{a,b} which makes it clear that long indirect paths through the nodal hierarchy are
only possible for nodes which rank relatively low. It is the existence of this sirict ordering
which makes possible the probability analysis given below so readily computable {with
the aid of the appended FORTRAN support; Appendix B} In addition all possible nodal

FIGURE 1

Potential and actual nodal structure in a small example (see text).

——> Potential nodal flow

mememmp— Actual nodal flow

Number of node indicates rank

Isolated sink
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structures in [N] are sub-graphs of [PN] with the condition that a row sum of [N]
i either 0, or 1. Figure i (¢} shows the graph [N] embedded in [PN] for this example.
Thus, a unique nodal flow exists out of the i node, or it does not. There is no such
restriction on column sums. Nystuen and Dacey (1961) have already shown that (1) their
procedure partiticns the set of places in the system and (2) that each nedal component
has a unigue terminal point which I will here term a &ink These results are taken as
understood and it follows that counting sinks will serve to count the number of nodal
regions in the system. This in turn is equivalent to counting the rows in [N] which
have a sum of zerg; L.e, have no nodal outflow.

In addition to counting the expected number of nodal regions (sinks), other statistics
that will be of interest include: (1) the expected number of nodes tributary to the ith
node at k steps, as an estimate of the expected size of each nodal region. {2) The probability
that any particular node will serve as the sink of a nodal region and (3) the expected
numbers of different node types. These types are: (i} sinks which have tributary nodes
(ii) isolated nodes with no tributary nodes (trivial according to the terminology of ND&1)
(iii) source nodes, which have no incoming nodal flows and, (iv) passing nodes which both
receive (possibly several) nodal flows and which generate one outgoing nodal flow {by
definition, see abave).

Because the highest ranking node is a guaranteed sink, particular interest may
focus on the nodal region tributary to this node.

Approaches to the statistical analysis of nodal structure

From equation (1) the only apparently variable element in the analysis is the matrix [r]
showing the position of the maximum flow in each row. However, there is unfortunately
a hidden subtle effect in [F] because even if the elements of [T] are chosen from (say)
a uniform distirubution of random numbers it is nevertheless true that the column sum
which is largest in the resulting [T] matrix has a greater chance of having more of
the maximum {(and for this particular column, nodal) flows than has the column with
the smallest column sum. When [T] is reorderd according to the size of the column sums
to give [T]*# then from equation (2) it may be seen that this causes the nodes with
high column sums to be much more likely to receive nodal flows, since there are many
more ‘smaller’ nodes {lower down the hierarchy) which potentially can send nodal flows
to it. This bias may be restated by saying that in the matrix [F], which is based on
[T]¥ (the reordered matrix), more of the maximum flows occur below, than above, the
main diagonal.

Nodal Analysis in the limiting case of random transaction tables

In the case of random transaction tables this bias can be ignored, or rather its effect
can be reduced, by considering the limiting case as n, the dimension of the (square) table
increases without bound. It is then possible to argue that the probability that the gt
column in the i row is a nodal flow is (n-1)7, (remembering to exclude the diagonal
position), The Central Limit Thegrem can then be applied to the celumn sums and as the
limit is approached the variance amongst the sums will tend to vanish and althcugh
a ranking may be established amengst the column sums on the basis of tiny differences
in magnitude, the nodal flows will be virtually independent of the ranking on the column
cums. For small n this situation can be simulated by building a random transaction table
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where the ij'" element is constructed by (i+i} where i is a random variable and 1 « 1.
Either of these situations is clearly very unrealistic but it is worth pursuing the argument
because with only minor modifications the more realistic analysis follows identical
methodology. Let m = (n-1) be the probability that the ij™ element of [T}#* is a nodal
flow, then:

m = | o

ECICJ
[ oo I o BN i
Lo B e e |

m m m O

This matrix, [M], is the probabilistic analogue of [PN]. The aim is to establish the expected
number of sinks, or rows with sum = 0. The highest ranking place (the one with the
largest column sum) can have no cutgoing nodsal flow since there is higher ranking place
to which it might be sent. In [M] this is represented by the first row which has sum
zero, with probability 1. Because we know that each row of [M], in a realisation of
the process, can have only ane nodal flow then we can deduce from [M] by standard
probabilistic arguments that the probability that the ith row has a 1 is m(i-1), and that
it has sum zero is i-(m{i-1)). The total expected values can be found by summing either
of these terms over all the elements, It is perhaps easiest to count the number of nodal
flows directly and then subtract these from n to cbtain the number of sinks. In a lower
triangular matrix of dimensions 2 x n there are (U.S(nz—n)) entries and remembering that
each element is equal to (n-1)* then the expected number of nodal flows is:

n<-n n
gxpected number of nodal flows = = =
2(n—-1) 2

which will also be esgual to the number of sinks, because these are the complement to
nodal flows. The variance on this mean may be calculated by the usual methods but as
the result is only of limited interest I shall simply report the fact that the exact value
for the variance is, where k=n—1:

. 14k 7 7
var{expected number of sinks) = ¥ = g
3 3k ks

For large n this is well approximated by the first term alone, so that for a 1000 node
random transaction table there would be about 500 expected sinks with a standard deviation
of aboutl &8,

Returning to [M] the expected number of nodal flows incoming te the ™ node
can be computed by adding up the entries in the i column. In the limiting case then
the jth ranking node will have [(j-1)m] expected incoming nodal flows, & probability that
must decline for the lower ranking nodes until the lowest ranked nodes is reached, a
node which cannot receive a nodal flow.

h

Because of its general inapplicability it is not worthwhile pursuing this limiting
case any further in detail {we don’t deal with large random transaction tables, or even
approximations to them!), The logic reveals that the probabilistic matrix [M] is all that
is required to generate the required statistics and the only problem is to find a more
realistic distribution for the entries with respect to a given empirical problem.

- 10 -
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Nodal Analysis of empirical transaction tables: direct flows

An element in [M] estimates the probability that a particular nodal flow is present. In
realistic systems we would expect field effects, generated by the larger nodes in the
system, to attract flows to those nodes preferentially. Table 1 shows the pattern of
telephone calling amongst ten Xenyan cities during July 1%67.

TABLE 1

Kenya: telephone trunk (long distance) census, July 1967 (5 days 30 hrs)

from /to | 1 z a2 4 5 6 7 8 § 40
Eldoret 1 D 44 79 189 i 472 10 166 0 &
Hericho 2 33 0 222 8 § 39 44 270 1 0
Kisumu 3 174 448 0 32 35 757 3 i@ 2 5
Kitale 4 | 265 3 5 0 7 233 0 8 0 B
Mombasa 5 1] 3 0 2 0 4315 i 33 0 2
Nairobi & | 284 230 433 140 1747 0 384 1153 334 577
Maivasha 7 & 1 1 2 2 420 0 272 O 1
Nakuru 8 109 490 491 &% 30 4800 209 0 24 16
Nanyuki 9 § 0 2 1 2 40 + W 0 22
Nyeri 10 4 1 2 1 10 805 1 37 183 D

Z 82¢ 594 44B46 414 1B42 4308 &I5 Z2ZB3 B4l B33

Total sum over all the takle, 15454 calls

The powerful effect of Nairobi (the capital) is cbvious, while smaller field effects are
displayed by Mombasa and Nakuru, and to a small extent by Kisumu. One reaspnable way
to allow for this in our revised version of [M] is to assume that the iyt element in
[M] G4 > @, is estimated by the j'" column sum (which represents its drawing power in
transactions) over the sum of all column sums (zll transactions in the system). For Nairobi
this yields (6308/15454) = 0.4082, However, this value cannot be applied directly to the
same column in each row because in each row one diagonal element is missing. In consequence
gach j* row of [M] has to be adjusted by multiplying it by (i—p‘j}'l, where pj is the
M element in the probability vector derived from the column sums in Table 1 according
to the prescription Jjust given. Table 2 shows the [M] matrix obtained in this way with
the nodes reordered (as described earlier) on the basis of the values abtained from the
column sums in Table i, The probability vector derived from the column sums in Table
1, and used to construct it is also given in Table 2. Note that in each column the values
decline downwards, This iz because the value of (i-pJ}'l is declining te 0 as smaller and
smaller elements are encountered for pj, the pattern is readily visible thanks to the
re-cordering process,

The method might be regarded as somewhat deficient because it assumes that all
nodes are affected by each other’s fields in essentially equal strengths, after allowances
of the type detailed in the last paragraph are taken into account. On the other hand
s more detailed epecification of [M] would come close to simply reproducing [T]#, which

- 11 -
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would serve little useful purpose. The implications of such a procedure will be considered
later but the method advocated, based on the column sums, appears to be a reascnable
one in that it takes intc account all flows in the system, and the way thal they are
distributed amongst the nodes. Assuming the [M] matrix is reasonable I shall now show
how it may be used to compute the required statistics using the Kenyan example.

TABLE 2
The matrix [M] based on the transactions from Table 1

Note that the matrix has been reordered by ranks

rank 1 2 3 4 5 & 7 B g 10

cld index & g B 3 i0 i 7 2 g 4 place
i & === Nairobi
2 8 0479 ——- Nakuru
3 5 0443 0168 - Mombasa
4 3 0422 04460 0429 —-~—- Kisumu
E 10 0431 0456 0426 0.081 ---—- Nyeri
6 1 0431 0.5 0426 0.0814 008L -—- Eldoret
7T 7 0.42F 0454 0424 0080 0056 0O ———- Naivacha
8 2 0425 0.484 0.424 0.080 0.05s6 0.086 0042 -——- Kericho
2 ¢ 0423 0453 0424 0080 0056 0055 0042 0040 -——- Nanyuki

10 4 0449 0452 0.422 0079 0055 0.055 0.042 0040 0034 =---— Kitale

The matrix is based on the probability vector:
0.408 0.148 0.44% 0.077 0.054 0.053 0.040 0039 0.035 0.027
which is based on the vecior of column sums of Table 1

Expected numbker of sinks

The method is identical to that discussed for the random transaction tables. The probability
that the i% row has a nodal flow is found by summing the values in the jth row, Zim,
where # indicates summaticn over the full range of the index in that position. Summing
a1l the row totals obtained gives the expected numbker of nodal flows, which is equivalent
to summing all the elements in the matrix below the main diagonal:

i=n  j=i-1
explsinks) = I Emij or AmES (1)
=2 g=i
Subtracting this value from n gives the expected number of sinks or nodal regions. Table
3 shows the results for the [M] in Table 2. The total number of expected nodal flows
is 7291, so that the expected number of sinks is 2709, No attempt has been made to
compute the variance, although this could be done by standard methods, since the frequency

_12_
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distribution of sinks is likely to bz strongly skewed so close to the origin, and indeed
James Furst in a student project under my direction confirmed this for a sample of
small random matrices.

TABLE 3

Sinks and nodal flows in Table 1

sinks nodal flows
Expected observed Expected observed

2709 2 a7l g

One might use a Chi-squared test to test for differences between observed and expected
freguencies, although there may be problems with small expected frequencies. In this case
the two measures are close in any case: there are two actual nodal regions revealed
by [T}¥ in Table 4 (the Kenyan towns), and 2.7 are expected (Table 2 & 3). When the
ocbserved is smaller than the expected then, whatever significance might be attached to
the actual numbers involved, the system is tending in the direction of greater structuring
- fewer nodal regions (see Figure 2, page 14, for a map of the nodal structure).

TABLE 4

[N, Modal flows for the re-orderad matrix [T]*

Town & 8 5 3 10 4 7 2 9 4 rowZ colz

Nairobi & = a 7
Nakuru g 41 - i ]
Mombass 5 i 40 - b 0
Kisumu * 4 g B = i ¥
Hyeri 10 i B @ 8 = i 0
Eldoret i 0 ¢ 0 0O 0 - 0 1
Naivasha 7 i 0 0 0 o o - 1 0
Kericho 2 4 68 0 D8 O = i 0
Nanyuki ¢ 4 000 00 OO0 - i 0
Hitale 4 0 0 0 O0OC OCLI 0 0 0 - 1 D

(n]
=]
=
|
[sen ]
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=
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o
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Expected number of different node types

A more refined distinction between different node types was suggested in an earlier section.
Fossible row sums in the nodal matrix [N] are 0 and 4, and possible cclumn sums are
0 or (positive) integer. Taking all four possible combinations for the ith node yields the
following structural types:

row column type

{out) {(in}

] ] isolated sink

& integer sinks with tributary nodes

i a sgurce nodses - no incoming flows

51 integer passing nodes with incoming nodal flows, one nodal flow out

Toc count these expected frequencies for the i node requires the evaluation of the
probability of the appropriate row or column sums. To count isolated sinks we sum for
all i nodes the product of the probability that the i'h row is zero with the probability
that the it column is zero. This can be written as:

i=n Jg=i-1 d=n
exp(0-0) nodes = Z [+ - Em; L0 (4-m2]1 | e (5
i=i J=1 J=itl

Because isolated sinks are a subset of the set of all sinks, calculated in the previous
section, then the category (O-integer) can be cobtained by subtraction from equation (4)
although of course a direct expraession would be possible

A similar strategy can be applied to the category (1-0); the relevant equation is:

i=n J=i-1 J=n
exp(i-0) nodes = Z [Em; IO C(d4-mg21  } e (&)
i-4 j=1 g=iti

Again, the (1-1) category is found by subtracting equation () from (n - equation 4).
TABLE &

Nodal Structure based on four node types

type observed expected
0-0 0 0.897
O-integer 2 1,842
1-0 8 B.674
i-integer 0 1.616

..-15_
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Table 5 shows the observed and expected frequencies for the four categories. Perhaps
the most interesting category herz is the (1 - integer) or passing node because nodes
of this type imply intermediate steps in the hierarchy of flows - a characteristic called
step-wise migration in studies of population mobility. A deficiency for the observed
frequency of this node type with respect to the expected would imply short-cuts in the
hierarchical structure; the converse would imply step-wise processes at work in forestalling
flows routed towards the eventual sink.

Expected number of inflows to the jth ranked node

These guantities are very easily computed since they are the column sums of I;M], and
there is no restriction on the possikle number of ncdal flows coming into the J"™ ranked
node, other than that imposed by the ranking, which means that the j" node has a
maximum of (n-j) possible nodes tributary to it. Table 6 shows these values derived from
[M] In a regional system, interest will often focus on an obvious primary node and therefore
a good test of structure might be to see whether the actual size of this regional structure
{the number of tributary nodes} is larger or smaller than expected.

TABLE &

Number of nodal flows into the ' node
Kenyan Cities

Hode Chserved Expected
6 7 3.9395
B8 0 1.2524
LS 0 0.8752
3 0 0.4804
10 1] 0.2804
1 1 0.2216
7 0 0.1255
2 { 0.0778
g 0 0.0340
{4 0 0 by definition)

The interest in Table & is twofold. Nairobi has about twice the expected number of tributary
nodes and dominates the Table. On the other hand there is little expectation from the
figures that Eldoret (node 1) will be a sink. On the basis of the recerded transactions
in the Table it is Nakuru (node 8) that ‘ought’ to be the next largest sink, whereas
it is the lowly Eldoret that actually achieves this status. Here is a clear indication
of a geographical effect ~ Nairobi is drawing in all the nearby nodes, even Mombass,
whereas the isolated Eldoret, in the far north west, is able io act as 2 small local sink
{this can be clearly seen on Figure 2, page 14},

- 14 -
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Expectation that the i" node has a nodal flow (i.e., an cutflow)

These quantities are computed as the row sums of [M], and for the Kenyan example they
are tabulated in Table 7. The first and last elements in the Table, 0 and 1 respectively,
merely re-zffirm the fact that one sink and one source are guaranteed by the structure
of nodal analysis. The Table indicates that the probability that a node has an outgoing
nodal flow is inversely preportional to its hierarchical rank in the system, though the
exact values depend on the entries in [M] which are derived from the transaction structure.
Once again Eldoret stands out as running counter to the trend; the probability that
it has a ncdal flow is 0.85, whersas in fact it does not have one.

TABLE 7

Probability that the i node has a nodal flow
Kenyan Cities

Node Observed Probability

& 0 0.0000
g i 0.4789
5 1 0.6311
3 i 07342
i0 1 0.7947
i 0 0.8542
q i 0.8954
2 1 0.9287
9 i 0.9722
4 i 1.0000

Statistics for Nodal Analysis - indirect nodal flows

Actual short path structure

Eecause nodal flows are directed strictly up the hierarchy, any ncdal region is a directed
tree in the graph theory sense of the word (see Tinkler 1977 for an introduction to
graph theoretical terms). Such a tree is very similar to a river system except that there
is no topological limit to the number of incoming nodal flows to a node cther than those
set by the size of the table and any particular node’s position in the hierarchy. The
tree structure of the graph of the nodal flow matrix [N] ensures that within a nodal
region there is exactly one directed path from any tributary node in the region to a
sink. In consequence, a standard accessibility analysis of [N], obtained by powering [}
(see Tinkler 1977 for review) will be of little interest and it is better to go directly
to the short path matrix [8], of [N} [S] = s(IN]). This may be done by powering, or
more efficiently by using Floyd's algorithm, which is coded in the FORTRAN support {Floyd
1942), For the Kenyan example [S] is identical to [N] (Table 4) and so it will not be
reproduced - again, but in general this will not be so. The number of tributary nodes
in any nodal region can be established directly by counting the number of non-zero

- 417 -
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entries in those columns of [S] which are sinks (i.e, which have row sums of 0 in [N
The short path distances in the same columns can be used te construct the structure
of each nodal region in terms of the number of nodes lying at successively greater distances
from the sink. {In an # x » system with t sinks the maximum distance a node can be
from a sink is (n—t), and most will much nearer to a sink than this)

Statistical short path structure

Statistical information on indirect routes, that is to say the probability of paths of
length k in or cut of a selected node, can be obtained by normalising [M] to the form
of a transition matrix, (the notation ®#[M] will indicate that this has been done), and
then manipulating it according to standard markovian methods {(for the markov methods
and terminology used here see Kemeny and Snell 1940), Three types of analysis are described
below, and are available in the computer program where they are performed sequentially.
Initially [M]} must be normalised to have row sums equal to 1 for all rows with a sum
larger than zero, this gives e[M]. The first two analyses can be performed on e[M].
For the third type of analysis #[M] must be rencrmalised after structural adjustments
have been made which involve deleting columns, which in turn will affect row sums. This
form will be marked by ®e[M], and the notation e(®)[M] will indicate that a choice of
pither form is possible depending on what is required by way of eventual interpretation.

The reason for the initial normalisation is that [M] was established to estimate
the first order properties of the system, and the upper triangular pertion of the matrix
was ignored because although it can be calculated in principle, it does not describe nodal
flows and is therefore irrelevant. Analysis at step lengths greater than 1, however, pertains
only to the nodal structure itself and therefore only permissible nodal flow paths are
taken into account (those described by 1's in [PN]). Renormalising non-zero rows after
the upper triangular part of the matrix is discarded (including the main diagcnal) allows
for this need. Rows with all elements equal to zero (the first row of an #[M] derived
from a [T]* matrix always has this property) are equivalent to sinks or ebsorbing states
in a markov chain. In fact in large part ®[M] is the transient part (termed [&@] in
Kemeny and Snell 1940) of the transition matrix of an absorbing markov chain, and this
is true for all three types of analysis described below, The only differences from standard
absorbing markov chain analysis are that (a) the focus of interest is on the column
sums rather than the row sums and (b) the absorbing states, the sinks for each nodal
region, are left in the matrix instead of being partitioned out. In neither case does this
affect the analysis performed.

The expected number of k-step links for any k is found by computing the k'h
power of @[M]. The interpretation of ¢[M]* is the same as that for identical procedures
applied to a normal accessibility or transition matrix (for details of these interpretations
see Tinkler 1977 & Tinkler 1987). While full details may be obtained by inspecting the
ijth element of E’}:M:LK: it will be sufficient for present purposes to consider the row and
column sums of =[M]%

Three types of indirect flow analysis can be made and I shall call them:

prime sink constrained (Figure 3{(a))
actual sink constrained (Figure 3(b))
actual sink and source constrained (Figure 3{(ch

_18_
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FIGURE 3

Various constraints on indirect flow analysis in a small example.

KEY
Sink — Paossible nodal flow
Passing — — - Prohibited nodal flow

due to constraints

Source

Ol®] _

Numbers indicate ranks 1 2 3 4 5 6
highest lowest

Note (1) Node 1 is a guaranteed sink
(2) Node 6 is a guaranteed source

The first type leaves ®[M] as it is for the powering, and all flows eventually
arrive (in a probabilistic sense) at the only sink - the first ranked node, which is
automatically a sink, Figure 3(a). The second type specifies those nodes to be sinks which
are found to be so from a Nodal Analysis of the actual system, ie, the nodes with row-
sums of zero in [N]. To cater to this the same rows in ®[M] have all their elements
set to zero., The effect of this is to interrupt some of the flows up the hierarchy so
that no flows cnward from known sinks are permitted, Figure 3(b) In this way the
intervening effect of sinks on the path structure to the primary sink can he evaluated
and compared with the results obtained from type 1 analysis,

The third type specifies not only the observed sinks but in addition specifies the
ohserved sources - nodes which have zero columns in [N} For these nodes the corresponding
columns in #[M] must have their columns set to zero, and #[M] must be recalculated

- 49 -
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to give @##[M]. In this case the only probabilistic paths available are either directly
between specified sources and sinks or through such passing nodes as the system possesses,
Figurs 3(ch '

Before proceeding to the uses to which the three types of analysis can be put
it will be useful to review the results which can be oblained from e(#)[M]¥ irrespective
of which type of analysis is performed, and this will aid in interpreting the putput from
the FORTRAN support.

Expected number of incoming k-step links to node j§

This value is obtained as the column sum of the ™ column of #(®)[M]*. The result may
be compared with the observed number of k-step paths which is found from (5] by counting
the numbker of entries equal to k in the i column. It is important to note that because
of path unigueness from any node to another in the hierarchical tree (this is true of
any tree) counting the number of k-step paths to a node is the same as counting the
number of nodes tributary to j at k-steps away, and which by definition lie further
down the hierarchy. When k=i the total number of expected paths must egual » minus
the number of sinks specified, but the distribution of expectations by node may be revealing,
For nodes which are sinks this provides a method of computing the observed and expected
sizes of the nodal regions tributary to them. For other nodes it computes the number
of nodes below them in the hierarchy, both expected and cbserved. The example, Table
8, shows the results for a k=2, Type 2, analysis for the Kenyan Cities.

TABLE 8

Type 2 Analysis
Incoming 2-step links to 4" node

Node Expected QObserved

2,44
0.44
0.i8
0.05
0,02
0.01
0.0
0.00 0
zero by definition
zero by definition

e
= I s IC (R o s o S
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The final two entries are =eroc because a city must be thres ranks up the hierarchy
from the bottom to be able to receive an incoming two step link, The Table indicates
that Nairobi ought to receive at least two incoming two step nodal flows, but fails to
do so, an indication of the strong structuring effect that the city has on the system,
even taking into account the existing transaction structure

_28_
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Expected probability of an outgoing k-step link from node i

This quantity, if it is required, can be found from the row sums of ®(®)[M]¥ and may
be compared to the existence, or not, of such a k-step link in the i row of [S]. Because
of path unigueness in the nodal system there is only one node at k-steps up the hierarchy
from i, or there is none. Table 9 is an example which complements Table 8.

TABLE 9

Type 2 Analysis
Probability of an outgoing 2-step link from the i node

Node Expected Observed

& zero by definition (sink}
8 zero by definition
5 0.27 0
3 0.40 0
i0 0.46 0
1 0.00 (Type 2 sets this as a sink)
7 0.46 0
2 0.49 0
9 0.54 0
4 0.53 0

It shows the probability that the ith node has an outgoing two-step link (e,
two successive nodal flows) In an opposite fashion to Table 8 the first two nodes in
the hierarchy cannot generate two step links up through the hierarchy, and by definition
in Type 2 analysis the other sink, node i, is defined as a sink, and therefore cannot
generate nodal (out) flows, It can be seen that there is a roughly 50% chance that each
of the nodes in the lower part of the hierarchy will generate a two-step link up the
hierarchy, but they have failed to do so, being pulled directly into Nairobi with one
step links. Thus the method shows exactly the manner in which the actual nodal structure
departs from the thecretical expectation.

Total expected k-step links in the nodal system

Summing the results for all i or all j respectively in the last two sub-sections will yield
this value which may be compared to the chserved value in [5]. Divide this expected
sum by n will give the probability that a k-step link exists in the system. When this
value falls below scme chosen value the powering of e(8){M] in a computer program may
be stopped to save time (0.01 is used in the FORTRAN suppori). Otherwise e(s)[M] will
be powered to (n-1), although the probability of very long paths is extremely low and
they are likewise very rare in actual nodal systems. As noted earlier their existence
would imply the existence of step-wise processes.
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TABLE 10

Total step lengths expected under different analysis types

Analysis Type

i 2 3
step exp ohs exXp obs EXp ochs
1 g 8 g8 8 8 g
2 3.83 0 .10 0 0 0
3 0,36 0 0.63 a 0 a0
4 041 o 0.07 ] 0 c
5 0.04 0 0.00 g 1] g

{further probabilities too low for analysis to be worthwhile)

Table i0 shows the results of such a summation for the three types of analysis. Type
2 is probably the most useful set of results as it is constrained by the actual sinks
in the system. Type 3 is sO constrained that it reproduces that actual system exactly.
The type 2 results show that probabilistically speaking there should have been about
3 two step links, whereas in fact none appeared. Again this re-emphasizes the strong

structuring effect that Nairobi has on the system of cities.

The expected number of nodes tributary to node Jj

Adding the vectors of column sums optained from ﬂ(@)[M}k from k& = 1 up toc some chosen
valus (see the last section) will yield the expected number of nodes tributary to the
j*P node, Table 11,

TABLE 41

Total number of nodes tributary to the i node
type 2 analysis

gxp 775 179 402 048 025 025 043 008 0.04 0.00
ohs 7 0 1] 0 o i 0 ] a 0

Note: this table provides an estimate for one node at a time only.
The expected values total more than the total nodes in the sysiem.

an
A
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This is a particularly useful measure for nodes which are sinks in the actual system,
as will be explained below.

Use of different analysis types for indirect flow analysis

Some care is needed in the use of the three analysis types in conjunction with the measures
described in the preceding sub-sections. Type one analysis allows the evaluation of the
expected nodal region size for the ;% node with no interruption by possible sinks lower
in the hierarchy. Hence it estimates expected nodal region sizes for each node within
the probabilistic constraints of a[ M]. However it cannot be used as a hasis for simultaneous
comparison between several sinks and their corresponding region sizes from the actual
system because the expected computations include overlapping effects, whereas the actual
ones do not. Similar comments apply to the computation of the expected number of incoming
k-step links and to the total number of r—step links,

Ea)

Type 2 analysis specifies the actual sinks and forces them to be absorbing elements
in #[M], as node 1 always is. Consequently no (probabilistic) paths are transmitted through
these nodes to nodes higher up the hierarchy, Figure 3(b), For the nodes designated as
sinks, absorbing states in e[M], this analysis provides estimates of nodal region sizes
where the sinks are as designated, but nodes lower in the hierarchy may be sinks, passing
or source nodes - sinks are already designated, and the lowest ranked node is a guaranteed
source. This type of analysis may be useful when a system is almost certain to have
certain centres as sinks, but where the other nodes may fluctuate between being passing
nodes (receiving and sending nodal flows) and source nodes (just sending nodal flows)
perhaps in circumstances where the transaction table is a sample, slight changes in certain
values might affect a nodes status between ‘passing’ and ‘source’ while at the same time
it may be very unlikely that it could ever change into being a sink.

Type three analysis imposes the full constraints of the actuasl nodal system on
[M], and naturally the expected results will usually be very close to the actual ones,
particularly when there are Very few passing nodes - intermediate steps in the nodal
hierarchy - a situation which seems to characterise actual nodal systems. However, type
3 analysis does permit the assessment of the degree to which nodes which are not sinks
are distributed amongst the sinks, and this can reveal the extent to which one node,
or another, is exerting an undue pull on the remaining nodes. It also shows, incidentally,
that basing [M] on the column-sums of [T]¥* is quite reasenable. For empirical systems
that I have investigated, type 3 analysis reproduces the indirect properties of the actual
nodal system gquite closely, but this may also result from the fact that these have been
quite small systems.

Statistics for Nodal Analysis

More specific alternatives

It might be argued that if a sufficiently fine temporal timescale were taken then a
transaction table could be reduced to a large number of individual eveniz or transactions.
In a given period node i might generate an outgoing transaction to node §, or it may
not. For that time period the collection of transactions recorded could constitute a
dichotomous matrix essentially eguivalent to [F] defined above (equation 1) except that

_23_
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rows with zerc sums might be expected. Given the existence of an external ranking scheme
for the nodes, a nodal structure can be defined for the period. Consequently, a transaction
table can be seen as a reflection, or a time average, of a whole series of individual
events and the nodal component is a filtered subset of these events. Transforming the
transaction table to a probability matrix by normalising the rows to sum to one will
produce a matrix whose ij*h element estimates the probability that transaction ij will
take place in the unit time period. This transition matrix can be used directly as the
[M] matrix of the preceding sections if (i) & ranking and weighting of the nodes is
available to reorder the matrix using [F], and then when this is done (ii} to set the
upper triangular part (including the main diagonal) to zero. The ranking could be internal
{based as before on column sums in the transaction table) or external, according to some
criterion of geographical interest. The result will be, when [M] is treated as indicated,
an analysis of the nodal structure expected during a very transient period, except that
the normalisation of the rows implies that each node is active within the time unit used
to construct the table. An alternative is to normalise [M] with regard to the largest
row sum so that all rows except the largest sum to less than i, This would reflect the
fact that not all nodes will generate transactions within the time unit.

Regional field effects

Yet another alternative would be io specify different, and limited, field effects for different
nodes and to model these in the probability matrices, [M] and #(#)[M]. This can be done
by writing down the mean information field {(sensw Hagerstrand) for each node (2 row
in the probability matrix) and supplying an overall ranking of the nodes. Indirectly a
similar effect could be achieved by deriving the required [M] as a transition matrix
derived from some species of gravity model which estimates the n x # transaction table.
A ranking of the nodes might then be based on the marginal totals of the estimated
transaction table, just as in the case of an empirical tansaction table. They might, howaver,
be supplied separately according to yet other criterion: city or regional populations, pes
capita income, or whatever might be deemed appropriate. This may be a reascnable approach
for establishing the rankings of the smaller places in the system which might be
particularly susceptible to variations in survey sample data, or which might have special
characteristics not properly reflected in the guantitative data. For example, an
adminisirative centre may generate transactions out of proportion to its mere population,
or even its per cqpeiia income,

There is no need ito labour these alternatives. The essential point is that the
methodology can accommodate numerical inputs of any kind the investigator cares to supply,
and can interpret.
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i Review of Nodal Analysis literature to 1979

2 Some selected literature on Nedal Analysis since 1777






Item 1 - A review of graph theory Nodal Analysis up to 19279

The following extract is reprinted with the permission of Edward Arnold
from my essay entitled “Grarr TuEory” which appeared in Frogress n Human
Geagraphy, 1919, 3(1), 85-116

---- (material omitted) ----

II Graph theory-—-ideas from the first decade of geography

I Vodz! Arnalpsis

Garrison's (1960) paper started graph theory application in geography and a great many
subsequent papers owe an intellectual debt to it. Huff (1960) acknowledges Garrison's
influence; his matrix manipulation of variables affecting shopping behaviour was the first,
and for a long time, the only non-transportation gecgraphy application. When Nystuen
and Dacey (1961) introduced nodal analysis, a uniguely geographical innovation, they too
brought ideas from the University of Washington. They proposed a power series expansion
of the basic interaction matrix in order to account for indirect effects in the interaction
system and their method had the merit of giving an automatically convergent exXpansion.
Garrison’s method of weighting the power series expansion for indirect effects was less
precisely specified and may have led to non-converging expansion in later work, for example
Hebert (1964), Gauthier (1%6Ba), Harvey (1972) and Stutz (1973). A clarification of these
issues was attempted by Tinkler (1974) but it is not clear that the discussion has been
heeded. Cates (1978) chooses a scalar for his expansion on the basis of explorations
conducted by Stutz (1973) but he does truncate the expansion at three terms: the diameter
of his system. Returning to nodal analysis, the original paper has generated at least
nineteen substantive applications of the method, many of them introducing variations.
The commonest variation, other than the choice of analysis based on direct and/or indirect
sffects, has been an extension of the method by considering the nth largest cutflow from
sach node. This yields n'® order nodal structures. Kariel and Welling (1977), for example,
carry the analysis to the fifth order. The original innovators in this exiended direction
were apparently Davies and Robinson (1968) whom Thorpe (1948), and see Davies (1948), takes
to task on several grounds, one of which is the problem, still unrecognized or undiscussed
in other applications, of how stable the nodal structures are when they are taken from
sample surveys. What are the statistical properties of nodal structures, for an a2 % n
matrix whose elements are drawn from a specified freguency distribution? For many
applications, of course, the statistical reliability of the interaction data may not be called
into guestion and indeed it is a separate problem from the structural properties of random
i % n matrices.

The temporal stability of nodal structures has been examined by Clark (1973) who
remarks on ‘the contemporary importance, as well as the historical permanence of the

_E?_
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underlying nodal structures’ in a study of telephone calling in Wales, On the other hand
Cates (1978) loocks at the substantial changes in the nodal structure induced on air
passenger flows as a function of the fuel crisis in 1974-5 and Clayton (1977) has examined
the changing structure of interstate migration flows over several decades using nodal
analysis, amongst other methods. Migayi (1964; Haggett and Chorley, 1949, 41) examined
the effect on the nodal level of iruncating the expansion at three different levels—as
expected, higher orders of regionalization corresponded to taking more terms into the
expansion. Regrettably the work was never published.

From the technical point of view a number of pleas should be made. It is not
always as explicit as it should be precisely what method of analysis has been
adopted—direct of indirect—and if the latter whether the matrix was scaled according
to the Nystuen and Dacey method (1961) or according to some other criteria {e.g. Cates,
1978), Then again if the indirect method was used, was the power series summed directly
to some convergent criterion, was it iruncated at some pre-chosen value as recommended
by Tinkler (1976a) or was it computed by the inverse method? Matters become more
complicated when nt® order structures are developed. If the n'™ grder is being considered,
have all the flows for orders less than n been deleted and their values deducted from
the column totals, used io measure importance? The methodology on these issues is far
from clear and may seriously affect attempts to replicate methodology or results.

In terms of its use as an accepted technigue we find in addition to those already
quoted, evidence from Soja (1968b), O'Sullivan (1948), Board ef al. (1970), Hay and Smith
{1970, 132), Waller (1970), Tolosa and FReiner (1970), Davies and Lewis (1970), Simmons (1770;
1972), Britton (1974). By the mid—1970s the method is used without extensive apologies in,
for example, Riddell and Harvey (1972), Hadjifotiou (1972), Hafrier (1973), Clayton (1974 19770,
Holsman (1975), Langdale (1975), Kariel and Welling (1977), and Cates (1978)

———— (material omitted) ——-
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Item 2 - Some Nodal Analysis 2raph theory papers after 1977

I have found very few papers after 1979, and my intent here is to discuss two in particular,
as much from the point of view of the symptons they display, as for their substantive
content or interpretations.

Davies and Thompson (1980} count the Nystuen-Dacey method among the empirical
methods of nodal analysis which are used when the total number of flows in interaction
problems overwhelm the investigator., Other methods which were recognized to achieve
simplification included factor analysis, Markov chains and cluster analysis. However all
these were rejected in favour of dyadic factor analysis which can take into account
multiple commodities on links, in addition to origins and destinations.

A dirsect use of Nystuen-Dacey analysis was made by Helleiner (1981) in a study
of recreational boating on lakes, rivers and canals on the Trent-Severn waterway in
Ontaric. The study was perhaps unusual in the detail of the flows recorded: 156401 separate
records pertaining to 18,515 different boats and 43 locks {(points of record), although
only =z selection of this data was used in the final study. There were other unusual
aspects of the study: the flow matrix was intrinsically symmetrical because boats going
into cul-de-sacs had to re-emerge. In consequence, column sums correlated with row sums
with r = 0.99%. In addition destinations with fewer than 100 boat trips recorded were
dropped from the study leaving n = 30; these terminals being classed as “Zrivial’ using
Nystuen-Dacey terminoclogy, although the definition is not precisely the same,

In the analysis that followed Helleiner differed from the standard medel by looking
for ihe largest {nflow toc a node {the largest element in its column} to define the nodal
flow, rather than the largest outflow {largest slement in its row). The footnote justification
of this change was that since the nodal ranking was made on inflow totals (the column
sums) then (logically) the nodal structure should be defined similarly. However, any node
receives inflows and clearly these may be used assess its importance inm the whole system
(vou can’t be important if nobody calls youl), Nenetheless, cuificws are needed to assess
the node’s connections with the rest of the system, and are hierarchically important
only when they proceed up the system to more highly ranked places. Because of the high
degree of symmetry in the transaction takble (which was not reproduced) Helleiner argued
that this would yield identical results to the original procedure. However, this is only
true when the whole transaction table ir symmetric, ie. Ti; = T4 for all i and §, although
this was probably close to being the case in his study. However, if the transaction table
is not symmetric it will lead to differing results. Even in the small Kenyan case discussed
in the main text of this monograph Helleiner’s method would lead to Eldoret being connected
to Nairobi, in contrast to it being a small ‘upcountry’ nodal centre under the standard
definitions. Certainly the method of statistical analysis developed in this monograph
requires that the original Nystuen-Dacey procedure ke followed.

A very different approach was followed by Nader (1981). Here the intent was to
develop a hierarchy of nodal regions, and for this purpose an elaborate oblique factor
analysis was performed: that is to say that the factors extracted are nof mathematically
independent of each other. Nader notes that there will normally be as many nodal regions
as there are factors in a rotated factor matrix, although he then admits that ‘the “number-
of-factors” problem has been one of the most intraciable problems in factor analysis’
Nystuen-Dacey analysis is not seriously considered until the very end, where a map is
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prezented based on, presumably, & standard analysis. The following comment is made:

Although the functional associations depicted by the largest flows appear
to be representative of the hierarchical associations existing within the
province, the Nystusn-Dacey method provides no criteria for delineating
subprovincizl regions.

Nader then notes that “similar, thowugh less exirsme, polarisations have besn found in
other studiss” and then points to various suppesed structural deficiencies in the method:
{i} that important nodal centres will not necessarily be ierminal peints, (ii) that terminal
points are not necessarily nodal centres of any conseguence and the related point (iii)
that terminal points may have no dependent places {firvial in the Nystuen-Dacey
terminology). He concludes that “in shart, the Vystucn-Dacey method 5 slnply tnappropriate
for delinealing a Rerarchy of nogdal regions.”

To my prejudiced mind this is merely finding excuses for not using a simple method
when a more complex one can be found; furthermore it appears to pre-judging the issus.
Nader's own admissiocn is that his Figure 8 appears to depict the functicnal associations
in the province, a supposition re-inforced by a view of Figures § 6 & 7 on the previcus
pages which show the system deduced from the factor structure. It may be strictly true
that Nystuen-Dacey analysis provides no criteria for delineating sub-provincial regions:
but it is blatantly clear from his Figure 8 that such criteria are easily supplied by
an enterprising research worker. The provincial ‘functional associations’ so well depicted
are seen io be nodes which draw in nodal flows, yet which themselves are nodal to a
higher ranking centre. This process can be seen to be operating over path-lengths of
3 and 4 in the Saskatchewan system. Some of the intermediate nodes have between 9
and 14 dependent places, and the lowest order cnes have between 1 and 4 places. It is
hard to imagine a more convincing demonstration of & nodal hierarchy! His first structural
objection noted above seems ito be saying that a place is only nodal if it is terminal.
But thal objection (or the definition on which it is based) seems to defeat the whaole
idea of a hierarchy in which intermediate levels act as nodal ‘traps’ to funnel flows
up the system. His second (and the related third) objection is pre-judging the issue.
It implies you already have decided what nodes are important, and why! His example would
be an ideal test for the statistical apparatus developed in this monograph since it is
fair comment in a graph as complex as Nader’s Figure 8, (which is based on flows among
198 centres) that it és very hard to tell what is ‘expected.” In contrast, factor models,
of whatever complexion, appear to quite incapable of answering rAat question.

RHeferences

Davies, W.K.D. & Thompson, R.ER. 1980: The structure of interurban connectivity: a dyadic
factor analysis of Prairie commaodity flows, Regicnal Studies, 14, 297-311.

Helleiner, F.M. 1981, The regionalization of a waterway: a study of recreational beoat traffic.
Canadian Geographer, 25, 60-74,

Nader, G. 1984, The delineation of a hierarchy of nodal regions by means of higher-
order factor analysis. Fegional Siudiss, 15, 475-492




ArrENDIXx B

FORTRAN support

{1 FORTRAN &b (old FORTRAN IV) program listing
? Sample input file for output in monograph
3 Sample input file annotated

4 Sample output generated from 2 & 3, as used in monograph
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APPEMDIX

STATISTICAL aNALYSIS OF NYSTUEMNM-DACEY MNODAL AMNALYSIS

Frogrammer: K.J.Tinkler Department of Gecgraphy, Brock University
S5t. Catharines, ONTARIG, L25 341, CaNabDa
41&-488~-5550 extension 3484

{MOTE:- This is standard FORTRAN &4 <old FORTRAN INVIZ

DIMENSION FMT(20), MAT(30,30), IRK{30), XMAT{30,300,1C(30),1R(30)
1,155¢2,2),%{30),X1¢30),PR{30) ,FPC(30) ,EIS5¢30,30) ,PX{30),NF{30,30)
1,I1RAK:30) , TITLEL20)

READ(5,102) (TITLE(I),I=1,20)

102 FORMAT:2044)
103 FORMAT(1HL, 1%, 20440

READ(S,100)N,1EX

100 FORMAT(212)
200 FORMAT(7X,1514,/7)

XM=
READ(S,102) (FMT(I1),1=1,207

Do 1 I=1,N

1 READ(S,FMTI(MAT(I, ) ,J=1,N)

WRITECS,103)¢TITLECI),I=1,20)

WRITE{&,200)

200 FORMAT( 7, NYSTUEN - DACEY ANALYSIS NOTE: INPUT MATRIX 1S LATER
{ REORDERED BY RaNK ORDER ACCORDING TO COLUMM SUMS IN INPUT MATRIX
1 - OR BY WEIGHTS IF THIS OFTION WAS CHOSEN’,/ /)
WRITE(4,3010¢1,I=1,N)

201 FORMAT(4X,2514)
WRITE! 4,203)
D0 30 I=1,M

20 WRITECS, 20101, CMATCL,J),d=1,N)

201 FORMATI1X,12,2%,2514)
IF¢IEX-1)802,801,5802

802 CONTINUE

ADD UP THE COLUMNS

po 3 J=1,N

X(J)=0,

DO 3 I=1,M

IFL1-J24,3,4

KOJI=XOJI+MATE T, 00

COMTINUE

CALL RANK(N,IRK,X?

Do 500 I=1,N

500 IRAK{IRK(I) =1
IF¢IEX.NE.2)GOTO 803

Joa

T Y

|
L



&}

[al

[}

(e A A T A e T I o B O B

[ I o A

D e 00 G

APPENDIX B
DO 89 I=1,N
89 X{I1)=1000.0/¢IRAK(I)D
CALL RANK(N, IRK,X)
60TO 803
201 READ(S,FMT){ICCI),I=1,ND
DO 850 I=1,N
850 X(I1)=ICCI)
CALL RANK(N, IRK,X)
DO 501 I=1,N
501 IRAK(IRK(I))=I
502 CONTINUE
ADD UF COLUMN SUMS
X3=1.
DO 5 I=1,N
5 XE=XEHX(I)
CALL MODAL(N,NF,MAT, IRAK)
CALL PERMCN MAT , IRAK)
FIND NODAL MATRIX IN LOWER TRIANGULAR ORDERED FORM
FRINT NF &5 A CHECK
IRK CARRIES RANK IMFORMATION ABOUT ORIGINAL ORDER IN X,
% 15 SORTED BY RANK (HIGH = 1, AND 50 ON DOWNWARDS)
CONVERT X TO & PROEABILITY VECTOR
DO & I=1,M
& H{II=X(1I/XS
COMSTRUCT EXPECTED MATRIX, LOWER TRIAMGULAR ONLY
DO 40 I1=1,N
DO 40 J=1,N
40 XMAT(I,J2=0.

PR(1)=0.0

Do 7 1=2,N

PR(I)=0.

po ? J=1,01-13

KMAT T, JD=X{J2%(1.,0/¢1.0-XC12))
PRCII=ERCII+XMAT (L, J)

XMAT 18 EXPECTED MATRIX
OUTPUT BASIC OBSERVED STATISTICS

IFL=0

[ox)
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1INFL=0

DO 15 I=1,N

IR:12=0

1C419=0

DO 15 J=1,N
IRCII=IR{II+NFCT,J0
ICET1)=1CCIo+NF{d, 1)
IFL=TFL+NF (I, J)
15KS=N-1FL

DO 14 I=1,N
IFLIC(13)16,16,17
TINFL=1INFL+1

& COMTIMUE

ISRCES=N-TIIMNFL

15RCS NUMBER OF SOURCES
I5KS NUMBER OF SINKS
COMPUTE NODE STRUCTURE TYPE FOR EACH NODE (185

i

DO 20 I=1,2
DD 20 J=1 2
85841, 1r=0

DO 21 1=1,N

IPT=0
TF{IEAT Y21 ,21,22
IPT=1

ISSCIR(INHL, CIPT+1) =158 IR{I)+13,(IPT+120+1
155 15 NODE STRUCTURE MATRIX
MO GUTPUT SO FAR

WRITE( S, 202
FORMAT{ 93,2514

02 FORMAT(A/750

FORMATL)
IFCIEXLEQ.1DGOTO 762
WRITEL&,7800

FDPHATf ;r,i” s INPUT MATRIX REORDERED BY RAMK OR COLUMN SUMS” ;.77

GoTR ¢
USITEfé 761]

FORMAT (/7 ,1%,* INFUT MATRIX REORDERED BY RANK OF INFUT WEIGHTS' , 2

g

; CONTINUE
WRITEL4,303)¢ =1 N}
wRITEfa‘haav KOTY,I=1,ND
WRITE{&,203)

DO 770 I=1,N

37
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770 WRITECS,222)1,IRK(I),{MATLT,J) ,J=1,ND
222 FORMAT(1X,213,2X,2514)
WRITEL&,710)

710 FORMAT(//,* ANALYSIS IS BASED ON THIS PROBABILITY VECTOR WHICH IS
IDERIVED FROM THE COLUMN SUMS‘,/,” OF THE INPUT MATRIX - - OR, IF T
1HE OPTIOM WAS CHOSEN, ON AN INPUT SET OF WEIGHTS?,/,9X,18Fé.3,/,9X
1,18F4.3)

IF¢IEX.ER.1)WRITECS,711)

711 FORMAT(-/,* IN THIS EXAMPLE INPUT WEIGHTS WERE USED” ,//)
WRITEL4,203)

WRITE{&,7712¢X(1),I=1,N)

771 FORMAT(9X,20F&.3)

IFCIEX.ER.2)WRITE(4,712)

712 FORMAT(//,* THE RANK SIZED OFTION WAS USED FOR THIS ANALYSIS ,//)

WRITECS,202)

WRITE{&,205)

FORMAT(.//,* NODAL FLOWS - NODES REORDERED BY RAMK’ ,//)

WRITE(4,208)¢1,1=1,N>

WRITE(&,204) CIRK(I) , I=1,N)

204 FORMAT7X,3013)

WRITEC4,203)

DO 32 I=1,N

WRITE(S, 20701, IRKCI) ,ENFCI,Jd),Jd=1,N) , IR(1),1C(1)

FORMAT{1%¢,3413)

WRITEC&,206)¢1CL1) ,I=1,ND

WRITE(6,202)

WRITE(4,202)

WRITE(4,702)

702 FORMAT(22X,’ROW COL”)

WRITE($,208)

=08 FORMAT(1X,’ NOTE: NODE TYPES ARE 0-1 = SINK *,/,24%,70-0 = SINK
1 (ISOLATED)“,/,24%,“1-0 = SOURCE’,/,24X,’1-1 = PASSING’ /)
WRITE{&,202) \
WRITE&,2093185¢1,1),18541,2),1588(2,1),155¢(2

209 FORMATC1X,* NODE TYPE FREGUENCIES',//,d4X,’ 0
17,14,/,8%," 1-0 = *,14,7,4%,” 1-1 = *,14,///

I3
o
i

aN)
S o

i
[

I,

T

23
i

STATISTICAL TEST BASED ON XMAT

SKEXP=0.0
DO 440 I=1,M
440 SKEXP=SKEXP + PR{I)
%L INKS=SKEXP
SKEXP=XN-SKEXF
ILINKS=N-15KS
WRITEC&, 2500 SKEXP, 1SKS,XLIMNKS, ILINKS

_48_
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FORMAT{1X,* TEST BASED ON NUMBER OF SINKS AND LINKS  ,//,”  EXF
1ECTED SINKS = /,F4.3," OBSERVED SINKS = ,13,/,/ EXPECTED LINK
15 = * F4,.3,” OBSERVED LINKS = *,13,//)

350

CHI={ {SKEXP-1SKS)#%2.0) /SKEXF
SKEXP=XMN-SKEX
XLINKS=XN-15KS
CHI=CHI+€ ¢ SKEXP-XLINKS) %22 . 0)/5KEXP)
WRITECS,210)CHI

210 FORMAT(///,* CHI-SQUARED = *,F8.4° DF = 17,//)

C EXPECTED MUMBER OF NODAL FLOWS INTO & NODE
DO 42 J=1,N
PC{JI=0

DO 42 I=1,N
42 PCLOI=PCLJY+XMAT(I, )

COMPUTATION FOR ISOLATED SINKS

OO0

XIS0L=0.0
PX{NI=1.0

DO 44 J=1,(N-1)
XP=1.0

DO 45 I={J+1) N

45 XP=XP#(1.0-XMATCI,d))
PX{J)=XP

XP=xXP%{1,0~PR(J))

44 XI150L=XISOL+XP
EISS¢1,1)=xIS0L
SKEXP=XMN-SKEXP
SKOT=SKEXP-X1S0L
EI55(1,2)=5K0T

COMPUTATIONSG FOR FASSING MODES CASE

[ I A B

XXP=0.0
DO 44 I=1,M
44 HXP=XXP+PR{I1)%{1.0-PX({1))

EISS(2,2)=XX
EISS(2,1)=XN-{EI55¢1,1)+EIS5(1,2)+EIS6(2,2))
WRITE(S,202)
WRITE( &, 3400

340 FORMAT(1X," TEST OF STRUCTURE BASED ON THE FOUR POSSIBLE NODE TYFE
157,//,” OBSERVED EXPECTED’ ,//)
DO 47 I=1,2

_41._
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47 WRITE(6,216) (188¢1,d),J=1,2) ,{EI8S¢1,J),J=1,2)
214 FORMAT(1X,213,2X,2F7.3,//)

COMPUTE CHI-SQUARED

CHI=0.
DO 48 I=1,2
DO 48 J=1,2
CHI=CHI+{({158¢1,J)-EIS5¢1,T))%%2,0)/(EISS(I,d)))
WRITE(4,217) CHI
217 FORMAT(//,1%,* CHI-SOUARED = *,F7.3,7 DF = 37,//)
WRITE¢4,700)
200 FORMAT(//// , EXPECTED 1 STEP ANALYSIS’)
WRITE¢S,701)
701 FORMATLIX, 2407 =22 ,/7/)
WRITE(4,211)
211 FORMAT(1X,’ EXPECTATION THE ITH NODE HAS A NODAL FLOW YERSUS OBSER
1VED? /440
GO 41 I=1,N
41 WRITE¢S,212) IRK:13,PRCI), IRCID
212 FORMAT(IX,13,2X,F8. a,2%,12)
WRITEL4,202)
WRITE(S,213)
213 FORMAT(1X,’ EXPECTED MUMEER OF INFLOWS TC THE JTH NODE VERSUS OBSE
1RVED? ,///)
DO 43 I=1,N
WRITECS,212) IRK(I) ,PCLIY,IC(TD
1P=N-2
CALL SPATH(N,NF, IRK)
CALL TRANSON,XMAT,IP,NF,IRK,IR,IC)
CLOSE(4)
STOP
END

I
oo

Y
L0

SUBROUTINE TRANSN,X,M,NF, IRK, IRR,I1CC)

DIMEMSION X(30,30),X2(30,307,X3¢30,30),R(30),C(30)
1,NF(30,30),PC(30) ,IRR¢30) ,1CC(30)
1,IRK(30),1C{30),IR{30),5UM{3D)

I T=M~1

Do 15 I=1,N

TEOICEC 13015, 15,14

14 1CC{I)=1
15 CONTINUE

WRITE(S,222)

272 FORMAT(1H1,” TYPE 1 ANALYSIS 15 ABSORBING TO THE HIGHEST RANKED NO
IDE - NODE 1 IN THE REORDERED MATRIX”,//,” TYPE 2 ANALYSIS 1S ABSO
1REING TO NODES DEFIMED A5 SINKS IN THE NODAL FLOWS MATRIX <, /7,7
{TYPE 3 ANALYSIS IS AS FOR TYPE 2 AND IN ADDITION SOURCE NODES ARE

l
S
ta

I



3 APPENDIX B

1CONSTRAINED S0 A5 NOT TO RECEIVE FLOWS?)
DO 30 KP=1,3
Do 14 I=1,N
DO 14 J=1,M
GOTO{14,17,18) ,KP
17 X{1,J9=X¢1,J)%IRR{1?
BOTO 14
18 X{I,Jy=X¢1,J)*ICCLJY
14 CONTINUE
WRITE( 4,220 KP

220 FORMATCIHI,” TYFE 7,11," ANALYSIS)
WRITE(4,221)

221 FORMAT(2X,15( -7
CALL NORMEN X0
0o 40 J=1,N
PC{JI=0.0
DO 40 I=1,N

40 PCLJI=PCCTI+XCT, 0

WRITEL&,240)

240 FORMAT(///,° EXPECTED 1 STEP ANALYSIS GIVEN THE NODAL STRUCTURE DE
IFINED BY THE ANaALYSIS TYPE®,// /2

I1X=1
CALL PATHS(M,NF,IX,I1C,IR,1TOTY
T=HN-1

WRITE(&,20121X,T,1T0T
Do 41 I=1,N
41 WRITE(S,203)1,1RK(1Y ,PCLIY,ICCTD
00 3 I=1,M
SUMCII=FPC:1)
DO 3 J=1,M
Wq T JT=000 150
Do 1 IT=1,(M-12
Do 2 I=1,M
DO 2 J=1,N
X3¢1,d)=0.
DO 2 K=1,N
X3CT, =KD, Ty +0K0T KD ¥X20K, 000

4%

SR N ]

I

DO 5 I=1,M
R{1)=0.0

CCId=0.0

DO 5 J=1,N
ROID=R{II4X2{I,d)
CCId=CCI)4X2¢d, 10
T=T+X2(1,0}

n
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IX=1T+1
CALL PATHS(N,NF,IX,IC,IR,ITOT)
WRITE(S,200)IX
200 FORMAT(//7/,” EXPECTED ’,12,° STEP ANALYSIS”,)
WRITEL 64,2100
210 FORMAT{1X,25(7=*) ,/77)
WRITE(4,201)IX,T,ITOT
201 FORMAT(1X,’ TOTAL EXPECTED “,12° STEP LINKS = *,Fé4.2,” ODBSERVED
= 2 1F AR
WRITE(S,202)0 IX
202 FORMAT(1X,” PROBABILITY THE ITH NODE HAS QUTGOING /,12,° STEP LINK
1 VERSUS OBSERVED’ ,//7)
DO & I=1,N
& WRITE(&,2031,1IRK{I) ,R{I),IR(I)
203 FORMAT(1X,214,2X,F4.2,2%,12)
WRITE(&,204) IX
204 FORMAT(/// ,1X,* EXPECTED NO OF INCOMING ,12,7 STEP LINKS TO THE I
{TH MODE VERSUS OBSERVED” ,///)
B0 7 I=1,N :
7 WRITE{&,203)1,IRK(I),CC1),1CC1)
Do 8 I=1,N
SUMCI)=SUMCII+CCT)
XN=N
TH=T/XN
IF{TN-0.001)87,99,1
99 1D=IX-1
WRITE(&,211)1D
211 FORMAT(//, EXPECTED PROBABILITY OF A ’,12,7 STEP LINK IS BELOW O.
1017,/ ,“ FURTHER ANALYSIS ABORTED” ,////)
WRITE(S,212)
212 FORMAT(/// ,1%,¢ EXPECTED NUMBER OF NODES TRIBUTARY TO THE JTH NODE
1 VERSUS OBSERVED” ,//./)
D0 10 J=1,N
1C(J)=0
0o 10 I=1,N
IF¢NFLT,d2310,10,11
11 1C¢JI=1CCdr+1
10 CONTINUE
oo ¢ 1=1,N
2 WRITE(,203)1,IRK(I),SUMCT), 1CCT)
WRITE(6,213)
213 FORMATL /71X, NOTE - NOT ALL NODES CAN BE SINKS AT THE S4&ME TIME
1 “,/,1%,* ADD 1 TO NODES WHICH ARE SINKS TO GET TOTAL NUMBER IN TH
1E COMPOMENT? ,/47)
GOTO 30
CONTINUE
CONT INUE
END

o

0]
P
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SUBROUTINE PATHS{N,NF,M,IC,IR,ISTFS)
DIMENSION NF{30,302,1C430),IR(3D)

1STPS=0
D0 1 I=1,N

1C¢1)=0

IR¢I)=0

oo 2 J=1,N
IF(NFCI,J)-M4,3,4
IRCII=IR{I)+1
IF(HFCI,10-My2,5,2
1CCTI=1CL{12+1

CONT INUE

CONTINUE

DO & I=1,M
15TPE=I15TFS+IR(I)
RETURN

END

SUBROUTINE R&NKIM,IRK, XD
DIMENSION IRK(30),X{302
0o 4 I=1,M

IRK({I¥=1

LIr=h~1

p0 3 J=1,LIM

DG 1 I=1,LIM

M=1+1
TRLXE ) =xiMaa2, 1,1
W= 1)

IR=IRK(I)

H¥OIy=xX{M

IRKCI 3=1RKLM)

H{Ma=xX

IRK{MI=1IR

COMTIMNUE

CONTINUE

RETURM

END

SUBROUTINE SPATH(N,C,IRK)
INTEGER C{30,302,IRK(30?
FLOYDS SHORT PATH ALGORITHM
Do 10 I=1,N

DO 10 J=1,N
IFSC{T,Jd))10,11,10
Ci1,J)=797999

BT 150

- 45 -
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DO 2 K=1,N
DO 2 I=1,N

1F(T-K¥3, 2,2
IFCC(I,K)~PF7999)7,2,7
Do 4 J=1,N

IF(J-K)5,4,5
IF(CK,J)-999999)4,4,6
AD=C(1,K)+CIK, )
C{T,Jo=AMINI(C{I,d),AD)
CONTINUE

CONTINUE

DO 20 I=1,N

DO 20 J4=1,N
IF(CCT,d)-999999) 20,22, 20
Cel,do=0

CONTINUE

WRITE(4, 2000

APPENDIX B

FORMATCIHT ,© SHORT PATH MATRIX

WRITECS ,206)
FORMAT(ZX,17(7 =72
WRITE(4,2042¢1,1=1,N)
FORMAT9X,3013)

WRITESS,2023 CIRK(1),1=1 M)

FORMATI#X, 3013
WRITE(a,207)

207 FORMATLA

w0l

——

Do 21 I=1,N

WRITEC(& .LDIJI IRK:1Y ,(C(T,d),d=1,N)

FORMATOLX,214,3013)
RETURN
EMD

SUBROUTINE NORM(N,X)
DIMENSION ¥{30,303,R{30)
Do 1 I=1,N

R(1)=0

DO 3 J=1,N
RCII=RCIIXIT, I
IF(R¢IY.EQ.02GOTO 1

DO 2 J=1,N

¥el, =01, D/RED
CONTINUE

RETURN

END

SUBROUTINE FERMIN,IX,IRK)

44
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DIMENSION IX(30,303,1X2{(30,302,1AC30,302,1AA8430,30) ,IRK:302

DO 1 I=1,N
DO 1 J=1,N

1841, d0=0

186841 ,J)=0

DO 3 I=1,N

1ALT, IRKL 1) ¥=1

IAACIRK(IY, =1

Do 4 I=1,N

DO 4 J=1,N

1X241,J9=0.0

DO 4 K=1,M
IX201,J)=IX2¢T,J2+ 188 CT K #IXLK, J)
Do 5 I=1,N

DO 5 J=1,N

TXOT ;0050 -8

DO 5 K=1,N

IXCT, D=IXCT, JI+1X2¢1 K *IACK, D)
RETURH

END

SUBROUTINE MNODAL{M,NF ,MAT , IRAK)
DIMENSION NF{30,300,MAT(30,30),IRAK{30?
Do 1 I=1,N

DO 1 J=1,N

NF{1,J0=0

PO 8 I=1,N

MAX=0

DO 9 J=1,N

1FCI-~3311 2,11

IF(MATCT, J)-MAX>9,10,10

MAX=MAT (1, J2

JJ=J

CONTINUE

IF(IRAK{I1)-1RAK(JJ)?8,8,12
NF¢IRAKCD) , TRAK{JI) ¥=1

CONTINUE

RETURM

END

- 47 -
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2 - EXAMPLE INPUT FILE FOR KENYAN CITIES

This is the input file for the output example, which is also the example
discussed in the text.

NODAL ANALYSIS OF KENYAN CITIES USING TELEPHOME CENSUS DATA (1%67)
i0 0

{20140
a0 14 79 18% 1 172 10 1448 0 &
33 g 222 g 8 3% 14 270 1 ]
121 14ds 0 32 35 737 2 1&s 2 -5}
2463 3 3é 1] 7 233 o &8 1] 3
] 3 i 2 61315 1 33 o i
284 230 &33 1101747 g0 3841153 334 577
& 7 1 2 2 420 g 272 0 1
109 190 1?1 &% 301800 209 o 21 14
4 a Z 1 2 410 1 74 0 2Z1
4 i 2 1 10 803 1 37 183 0

_48_
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SAMPLE INPUT FILE FOR FORTRAN MODAL ANALYSIS PROGRAM WITH MOTES OM USE.

{The data is that used in the monograph to illustrate the method. This repeats in
part the example just given in 2 above, but note the need for the final line (line
MM+d) in certain cases.?

MODAL AMALYSIS OF KEMYAN CITIES USING TELEPHOME CENSUS DATA (19473

10
{20140
0 14 72 182 1 172 10 1s8 ] &
33 0 222 g g 3P4 14 270 1 a
121 148 B 32 35 757 3 188 2 2
233 3 58 0 & 233 a0 g8 a o
0 2 0 2 01315 1 38 ] 2
284 230 433 1101747 0 3841133 339 377
& 7 i 2 2 420 0 272 o 1
109 190 191 &% 301800 209 g 21 14
4 0 e 1 2 410 1 74 b 221
& 1 P 1 10 BG5S 1 37 183 o

]
o

{NOTE THIS LINE FOR INTEGER WEIGHTS USING FORMAT OF LIME 3 IF LINE 2 COL 4

Line 1 4= Alphanumeric Title to label printout

Line 2 :- W in columns 1 and 2 right Jjustified tMaximum dimension in
program is currently 10). Column 3 is blank. IEX in column 4. IEX is a
control variable and should be set egual to 1 in column 4 if the user is
suppl¥ing an integer set of weights as a basis for estimating the
expected nodal flows matrix. IEX is set equal to 2 in column 4 if the
users wished to have the expected nodal flows estimated according to a
simple rank-size distribution with exponent -1. If IEX is left blank
fdefault = 0) a standard analysis based on column sums ie performed.

Line 3 :- The FORTR&M format under which the input transaction matrix
will be read. The program assumes that this will be an integer format,
i.e. (2014) as given here. Remeber to include the parentheses.

Lines 4 to MN+3 Fach row of the transaction matrix to be used for Modal
analysis. assume here 1 line per matrix row but the format in line 3
can be used to expand this if necessary according to the usual FORTRAN
format conventions. If there are M lines to one row in the transaction
matrix then the last tine here will be the {MN+3)th line in the data

_4-?_



Line HNHM+4

AFPENDIX B

listing.

I+ IEX in Line 2 was set to I then this line (or lines) is
read according to the Format in Line 3, and is the integer set of
weights supplied by the user, It is used by the program to estimate the
expected nodal structure.

For interpretative help see the text of the monograph.

_58_
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4 - QUTPUT FROM NODAL ANALYSIS PROGRAM FOR EXAMPLE IM THE MOMOGRAPH

MOTE: This ocutput is exactly what the FORTRAN program will produce for the input
example provided, and is the same as the example discussed in the text. However,
spacing of the cutput has been altered to accomodate the paging of this monograph,
and to save some space. Wrapround in the titles is due to the fact that line
printer ocutput on mainframes usually allows a line longer than 80 columns, a
facility that was used in the FORTRAN program.

MODAL aNALYSIS OF KENYaN CITIES USING TELEPHONE CEMNSUS DATA (19673

RMYSTUEM - DACEY ANALYSIS NOTE: INPUT MATRIX IS LATER REORDERED BY RAMK ORDER
ACCORDING TO COLUMW SUMS IN IMPUT MATRIX

1 2 2 4 o & " 8 g 10
1 o 14 7% 189 L 172 18 1é8 0 &
b a2a @ Z22 3 g 374 14 270 1 o
3 121 148 0 Z 38 297 3 188 2 3
4 243 g 34 o ? 233 g B8 0 3]
= 0 2] 0 2 01313 1 33 0 2
& 284 230 433 1101747 0 38481133 334 377
7 & P 1 2 2 420 0 272 ] i
g 109 1#0 121 &% 301800 207 0 21 14
¢ 4 ] 2 1 2 410 1 74 0 221
10 ! i 2 1 10 803 I 3F 183 a

INPUT MATRIX REORDERED BY RANK OR COLUMN SUMS

1 & 3 4 3 & 7 a8 b

& 8 3 3 Ll 1 7 2 g 4
1 4 011531747 433 577 284 384 230 334 110
2z 8 1800 0 30 191 14 10% 209 190 21 4%
8 b 1318 38 ] 0 2 i 1 3 0 2
4 3 757 188 33 0 a 121 3 148 2 B2
o 10 2053 37 10 P a 4q 1 1 1&3 1
8 4d 172 1aé 1 7% & o 10 14 0 18%
z 2 420 272 2 i 1 & 0 i 0 2
g =z 324 270 8 222 0 33 14 0 i 8
2 9 410 7é 2 2 221 4 i U 0 1
10 4 233 B8 7 Db S 243 ] 3 0 0
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ANALYSIS 1
SUMS
OF THE INPUT MATRIX - - OR, IF THE OPTION WAS CHOSEN, ON AN INPUT SET OF

(g}

0.408 0.148 0.11% 0.077 0.054 0.053 0.040 0.03% 0.033 0.027

MODAL FLOWS - MODES REORDERED BY RANK

1 2 3 4 & Z B ¥y
& 8 3 318 1 2 2 19
1 & 0 0O 0 ¢ 0 8 0 D O 0 7
Zz &t 0o 0 0 @ Q0 0 Q0 Q0 0 1 0
3 5 {0 0 0 0 0 0 0 0 0 1 O
4 3 1 ¢ 0 0 o 0 0 0 0 0 I 0
516 {1 o 0 0 © 0 0 o O O 1 O
& 1 00 0 O o 0 0 000 0 01
7 7 1 ¢ 0 0 0 0 0 0 0 0 1 O
g 2z 1 0 0 0 0 0 0 0 0O 0O 1 O
g = { B8 % 8 § € 0 a4 0 T 1 @
io 4 0 0o 0 9 0o t 0 0o 0 0 1 0@
7 0 0 0 0 1 0 0 0 0O
ROW COL
MOTE: MODE TYFE 8§ ARE 0-1 = S5INK
0-0 = SINK {ISOLATED)
1-0 = S0URCE
1-1 = FPASEING

NODE TYFE FREQUEMCIES

[

U_
G..-
1_
1_..

o I Y o

i

TEST BASED OW NUMBER OF S5IMKS AND LINKS

2 .20Y OBSERVED SIMKS
Zu2¥1 OBSERVED LINKS

KPECTED SINKS
EXFECTED LINKS

oo

CHI-SOUARED = 0.2548 DF =1

©n
i

BASED ON THIS PROBABILITY VECTOR WHICH IS DERIVED FROM THE COLUMN

WEIGHTS
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W]

TEST OF STRUCTURE BASED ON THE FOUR POSSIBLE NODE TYPES

OBSERVED EXPECTED

o 2 0.897 1.81Z2
g8 0 5.474 1.4818
CHI-SOUARED = 3.484 DF = 3

EXPECTED 1 STEP ANALYSIS

EXPECTATION THE ITH NODE HAS & MNODaL FLOW VERSUS OBZERVED

& g.0000 0
g 0.478% 1
5 0.4311 1
i 0.7312 i
10 0.7947 1
1 0.8512 a
7 0.8734 1
2 0 .935¢ i
B 0.9722 1
g 1.0000 i

EXPECTED NUMBER 0OF INFLOWS TO THE JTH NODE YERSUS OBSERVED

& 3.7375 7
g 1.2524 0
3 0D.8732 0
g 0.4804 0
10 0.2804 0
i 0.2214 1
7 0.1255 a
2 0.07%4 0
7 0.0340 a
g g.,o000 0

SHORT PATH MATRIX

i 2 3 4 53 &4 7 8 910
& B 5 340 12 2 B 9 4
1 4 0 0 0O 0O O©o 0 0 0O 0 0O
i 8 1 0o o 0 0 0 0 0 © O
: = {1 0 0D 0 0 0 0 0O O O
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4 21 00 o0 0 0 0 0 0 0@
5 10 1+ 0 0 0 0 0 0 O 0 O
& { 0 0o 0 0 0 O 0 0 0 0
Z 72 1 9 B D o 0o 0 0 O
=] 2 1 0 0 0 0 0 0 0 0 O
? ¢ 1 0 0 0 0O O 0 G 0 O
10 4 o0 0 0 0 @ 1 0 0 0 O

TYPE 1 ANALYSIS 15 ABSORBING TO THE HIGHEST RANKED MNODE - NODE 1 IM THE REORDERED
MATRIX

TYFE 2 ANALYSIS 15 ABSORBING TO NODES DEFINED AS SIMKS IN THE NODAL FLOWS MATRIX
TYPE 3 ANALYSIS IS A5 FOR TYPE 2 AND IN ADDITION SOURCE WODES ARE CONSTRAINED SO
&5 MOT TO RECEIVE FLOWS

TYPE 1 ANALYSIS

XFECTED 1 STEP ANALYSIS GIVEW THE NODAL STRUCTURE DEFINED BY THE ANALYSIS TYFE

TOTAL EXPECTED 1 STEP LINKS = 9.00 OBSERVED = 8
1 & 5.17 7
g 8 1.51 @
2 5 1.00 0
4 3 0.53 0
5 10 0.30 0
& 1 A28 |
7 7 g.13 @
g 2 0.08 0
¢ 9 0.04 O
10 4 0.00 O

EXPECTED 2 STEP aNALYSIS

1l

TOTAL EXPECTEDR 2 STEP LINKS = 2.83 OBSERVED 0

PROBABILITY THE ITH NODE HaS OUTGOING 2 STEP LINK VERSUS OBSERVED

1 & 0.o00 a
Vi 8 0.00 0
3 ) s 25 L

_5‘3_
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4 3 0.40 0
3 10 0.44 0
& 1 0.4% 0
s 7 .82 0
g pd .85 o
2 g 0,38 0
10 4 0.38 ]
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APPENDIX C

“A graph theory interpretation of nodal regions”
by John D. Nystuen and Michael F. Dacey

This paper appeared originally in the Papers and Proceedings of the Regional Science Association ,
Volume 7, 1961, pp. 29—42. It is reprinted here with the permission of that journal which
retains all rights. It also appears here with the permission of both authors.
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A GRAPH THEORY INTERPRETATON
OF NODAL REGIONS

By John D. Nystuen and Michael F. Dacey

The authors are, respectively, Assistant Professar of Geography in
the University of Michigan and Assistant Professor of Regional Sci-
ence in the Uuiversity of Pennsylvania. This study was formulated
and the computations were obtained while both authors were ol the
University of Washington, Seattle. Professor Nystuen has been the
primary contributor to the present statement. The responsibility far

this statement is, of course, shared jointly.

THE PURPOSE OF THIS PAPER is to describe a procedure for ordering and
grouping cities by the magnitude and direction of the flows of goods, people,
and communications between them. Current theories of nodal regions and
central place hierarchies provide the bases for the recognition of region-wide
organization of cities into networks. These two theories were developed by
students who recognized that the direction and magnitude of flows associated
with social processes are indicators of spatial order in the regional structure of
urban society. Whether the flow is local and to the city’s hinterland, or region-
al and to the rank ordering of cities, the notion of central or nodal point is
dependent upon the levels of strongest associations within the total flow."

The present problem is to develop a method capable of quantifying the
degree of association between city pairs in a manner that allows identification
of the networks of strongest association. These associations may be in terms
of interactions that occur directly between two cities, or indirectly through one
or more intermediary cities. The magnitude of the combined direct and indirect
associations is measured by an index that is related to certain concepts of graph
theory. This index is used to identify the degree of contact between city pairs
and it provides a quantitative basis for grouping cities. The resulting sub-
groups of cities are analogous to nodal regions. When each city in a study
region is assigned to a subgroup, it is possible to specify the rank ordering of
cities and to evaluate the functional relations of the nodal hierarchy.

In this paper, pertinent geograrphic and graph theoretic concepts are dis-
cussed and are then used as a basis for deriving the method of isolating nodal
regions. While this method is illustrated by the use of intercity telephone calls
in Washington state, the techniques are quite general and may be adapted to

t Berry, B.J.L. and W.L. Garrison, “A Note on Central Place Theory and the Range
of a Good,” Economic Geography, Vol. 34 (1958), pp. 304-311. Ullman, E.L., ““A Theory for
Location of Cities,”” American Journal of Secialogy, Vol. 46 (1941), pp. 853-864. Whittlesey
D., “The Regional Concept and the Regional Method,”" American Geography: Invenlory
and Prospect, (P.C. James and C.F. Jones, eds.) Syracuse University, Syracuse, 1954,

PAPERS AND PROCEEDINGS OF THE REGIONAL SCIENCE ASSOCIATION, VOLUME 7, 1961
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many types of phenomena. A particular phenomenon is suitable for this type
of analysis when it may be viewed as a relationship or flow that links objects
that are properly mapped as points. In the present illustration, cities are con-
ceptualized as punctiform elements in a telephone network. Other suitable areas
of application include the flow of information or material products between
business firms in a metropolitan area, the flow of mail or freight between cities
in a region, the interpersonal relations between the inhabitants of a city or the
political structure that connects federal, state and local governments.

Relatlonship to Existing Theory

Cities may be viewed as nuclei of specialized activities which are spatially
concentrated and functionally associated. Each activity has its own set of as-
sociations outside the city. To account for the many different external con-
nections of each specialization, general statements concerning urban dssociations
must be multi-dimensional. Accordingly, urban hinterlands are normally defined
by establishing a boundary from a composite of the spatial range of several
central place functions, such as the trade area of the local newspaper, the extent
of wholesale drug distribution, bus passenger volumes, governmental jurisdiction,
and similar indices of central place functions.

Long-distance telephone communications may be considered a single index
of this multi-dimensional association among cities. A grouping of cities on the
basis of telephone data defines only a networlk of telephone traffic centers. The
validity of interpreting these telephone traffic centers as an accurate indicator
of multifunctional associations depends upon a correspondence of the hinterlands
which are developed with those obtained from studies which evaluate many
types of contacts. The authors are willing to accept that telephone flows are
one of the best single indices of all functional contacts. It has an advantage
over the use of a series of indices because it obviates weighing the individual
contributions of the several indices.’

The Nodal Region or Hinterland

Nodal regions are defined by evaluating the external contacts of small areal
units. Each of these areal units is assigned to that place with which it has the
dominant association. Usually, this will be a nearby city, and this city is de-
fined as the central place or nodal point for the unit areas oriented to it. The
aggregation of these unit areas, in turn, is called the nodal region.

This does not deny the existence of other flows or associations to and from
each areal unit. Such flows do exist so that each areal unit is connected to
many other cities. Newspaper circulation, for example, may be dominated by
the local daily while the nearest metropolitan paper may also be well represented,
and The New York Times may find its way into a few homes in the area.
Also, many sporatic contacts with former hometown papers may be present.

2 Hammer, C. and F.C. Ikl¢, “Intercity Telephone and Airline Traffic Related to Dis-
tance and the ‘Propensity to Interact’,” Sociometry, Vol. 20 (1957), pp. 306-316. Harris,
C.D., Salt Lake City: A Regional Capital, University of Chicago, Chicago, 1940. Ullman,
E.L., Mobile: Industrial Seaport and Trade Center, University of Chicago, Chicago, 1940,
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Nevertheless, the “dominant association” remains the critical concept in defining
2 nodal structure. The remaining non-dominant associations are not used, even
though the magnitudes of some of these associations may be relatively large.

The Hierarchy of Cities

The nodal rgion describes the relationship between the hinterland, which
is areal, and the central or nodal city, which is punctiform. Clearly, there is
no loss of generality by considering only paired contacts between points. In
the hinterland concept, the areal units may be abstracted to the level of points
so that the association is in terms of many points being linked to a single cen-
tral point.?

The hinterland of a major metropolitan center, such as Chicago, may
encompass a Jarge region and incorporate many of the region’s functions. The
strongest of the flows between Chicago and its hinterland are point to point
associations of the cities within the region. At this scale, the relationship be-
tween modal regions and the hierarchy of central places becomes clear. The
major hinterland of Chicago is defined by its dominant association with many
smaller metropolises. Each of these centers, in turn, is the focus of association
from other, smaller centers within its immediate vicinity. These associations
incorporate lower-order functions than those establishing direct .associations to
Chicago. In this fashion city regions are nested together, intimately dependent
upon the range of the functions which define the associations at each level.

A hierarchy of cities of this type may be reduced to an abstract network
of points and lines. The points represent the cities while the lines represent
the functional associations. Though a myriad of lines exists in the network,
there is present a basic structure of strongest associations which creates the
nested nodal regions and the hierarchy of cities. Both the direct and indirect
associations are important in these intercity structures. In terms of the direct
associations, for example, a wholesale establishment may receive orders directly
and ship directly to some points within the system. Alternately, the associa-
tions are indirect when the orders are accumulated at various levels of the
hierarchy and proceed upward to the regional headquarters. In the same man-
ner, the outbound shipments from the central city proceed down the ranks to
intermediary levels through middlemen, rather than directly to every point in
the region. )

Many associations are of this indirect type. For instance, political control
moves up and down the ranks, rather than through direct communication be-
tween the national party leaders and the ward leaders. Most commuodities are
assembled and distributed through a hierarchical structure within the organiza-
tion. This results, in part, from the economies of moving large lots over long
distances and, in part, from the better control it affords over the operation. In
evaluating the entire fabric of urban society, it is evident that subtle, indirect
influences and associations are frequently exerted by one location on another.
A system of analysis which accounts for both the direct and the indirect as-

8 For example see: Isard, W. and D.J. Ostroff., “‘General Interregional Equilibrium,"’
Journal of Regional Science, Vol. 2 (1960) pp. 67-74.
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sociations between cities is appropriate.

In summary, the nodal region is defined on the basis of the single strongest
flow emanating from or moving to each of the unit areas in the vicinity of a
central place. The region is delimited by the aggregation of these individual
elements. The hierarchy of central places is determined by the aggregation of
the smallest central places which are dependent upon a single, larger center
for the functions they lack. This nesting of cities defines the organization of
networks of cities and the position of each city within the network. Such
nesting depends upon the available bundle of functions and the relative domi-
nance of bundles.

In this study we start with the cities and towns of a large -area. Then,
the structure of association among the cities is specified by assigning each city
to one of several subgroups. By considering the system as a set of points and
lines, where the lines represent the association between points, certain theorems
of linear graphs become available for the analysis of the functional association
of cities within an area.

A GEOGRAPHICAL APPLICATION OF SOME GRAPH THEORY CONCEPTS

Graph theory is a mathematics of relations. By specifying certain properties
of the relations between cities and accepting the point-line abstraction of graph
theory, certain theorems become available for analyzing intercity flows." Con-
sider the cities in a region as a set of points. Consider, also, a line joining a
pair of points whenever there exists a certain flow between the cities they
represent. The finite collection of points and lines, where each line contains
exactly two points, is a linear graph of the relations established by the flows.

Some Characteristics of Linear Graphs

A point is called adjacent to another point if it is connected to it by a line.
The network of lines is the only information contained within the graph. Scalar
distance and direction, the most striking aspects of geographical maps, are not
defined for a graph. If the relationship is of equal value for every connected
pair, the graph is a binary graph. Most graph theory relates to this type of
construction which simply indicates whether a line (a relation) exists or does
Dot exist between any pair of points. The connections, however, may be con-
sidered to have intensity. Intensily is displayed on the graph by assigning a
value to the lines.

Orientation of a relation between two points is displayed on the graph by
an arrowhead a— b, and read “e is related to b.” A graph which specified

+ Some general statements of graph theory are: Konig, D., Theorie der Endlichen und
Unenlichen Graphen. Leipzig, 1936 (reprinted by Chelsea Publishing Co., New York, 1950);
Berge, C., Theorie des Graphes et Ses Applications. Dunod, Paris, 1958; Harary, F.,
“Unsolved Problems in the Enumeration of Graphs,” Publications of the Mathematical In-
stitute of the Hungarian Academy of Sciences, Vol. 5 series A (1960) pp. 63-95;—, “Some
Historical and Intuitive Aspects of Graph Theory,” Siam Review Vol. 2 (April 1960) pp. 123-
131. The utility of graph theory for geographic analysis has been demonstrated by Garri-
son, W.L., *‘Connectivity of the Interstate Highway System,” Papers and Proceeding of
The Regional Science Association, Vol. 6 (1960) pp. 121-137.

67



NYSTUEN & DACEY: INTERPRETATION OF NODAL REGIONS

arientation is called a directed graph or digrapl. The relationship between two
points on a directed graph need not be symmetrical and, when intensity of the
connection is defined, the intensity may be different for each direction.

A path from the points ¢ to ¢ is a collection of points and lines of the
form, a,a—b,b,b—c¢c, -, d,d— e, e, where the points &, b, ---, ¢, are distinct.
A sequence is a collection of points and lines from a to e in which the inter-
mediate points need not be distinct. A graph is weakly connected if there
exists a path between each pair of points, disregarding orientation. The points
in a component of a graph are weakly connected and are not connected to any
other points in the graph. The degree of a point is the number of points to
which it is adjacent. In a directed graph a peint has an out-degree and an in-
degree depending on the orientation of the lines incident to it.

Matrix Notation

For every linear graph there is an adjacency matrix which completely de-
scribes the graph, and vice versa. The matrix notation is convenient for arithme-
tic manipulation. Every point in a graph is represented by a row and a column
of the matrix. The element, xy, of the adjacency matrix takes the value of
the line; if it exists, between the points ¢ and j; if the line does mot exist, the
value of the xi; is O.

The diagonal elements, xu, of the adjacency matrix represent the relation
of each point to itself. This relationship may or may not be defined. When
it is not defined, all elements of the main diagonal are, by convention, put
equal to zero.

Properties of the Dominant Relations Between Clties

The geographic theory reviewed above suggests that within the myraid
relations existing between cities, the network of largest flows will be the ones
outlining the skeleton of the urban organization in the entire region. The term
“largest” implies an oriented relation because a flow between a pair of cities
may be the largest in terms of one city but not necessarily in terms of the
other city. The relation “largest flow” may have various definitions, such as
the largest out-flow, in-flow, or total flow. The present example uses the
number of out-going intercity telephone messages from each city to every other
city in the study area. It is possible to comstruct a directed graph of these
relations. Using the principle of dominant association, a single out-directed
line is assumed to be associated with each point. When number of telephone
messages are used to measure intensity of intercity associations, this assump-
tion is easily accepted because for any city the largest volume to any one city
is typically several times greater than the next largest message flow. An as-
sumption of this type is temable only for intercity relations which may be
ranked or have a unique, largest interaction. In other situations, nodal region
1s most likely an inappropriate concept.

The collection of largest flow lines between city pairs defines a network of
orientation among the points. Where each point has a largest flow, that
largest flow may be found by simple inspection of a matrix of flows between
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all pairs, and it is the maximum element in each row when the matrix dis-
plays number of messages from the row city to the column city. The present
intention is to use this notion of largest flow to aggregate cities associated
with a central place. The resulting aggregation is said to be composed of the
“subordinates” of the central city. The problem is the recognition of a “central
city.” In order to establish a “dominate center” three additional properties of
the “largest flow” relation are now identified.

One property states that a city is “independent” if its “largest flow” is to
a “smaller city.” A small city remote from large metropolitan centers may
display this type of independence because its largest flow is to an even smaller,
nearby city. Conversely, in the same region a large satellite city closely as-
sociated with a metropolitan center does not have this independence because its
largest flow is to the metropolis. So, to identify independent cities a measure
of size is required. Size may be externally assigned, e.g., by population of
each city; or it may be internally assigned, e.g., by the total volume of mes-
sages to or from all cities in the region. In the example below size is assigned
in accordance with the total in-message flow from all cities in the study region.
This value is the column total of the matrix of flows between all pairs of cities.
In these terms, an “independent” or “central city” is defined as one whose
largest flow is to a smaller city: A subordinate city is a city whose largest
flow is to a larger city. This assumes no ambiguities arise to obscure the
dominate (largest) city of a pair. This occurs when largest flows are reflexive,
that is, two cities whose largest out-connections are to each other.

A second property is transitivity. This property implies that if a city a
is subordinate to city & and b is subordinate to ¢, then @ is subordinate to c.

A third property stipulates that a city is not a subordinate of any of its
subordinates. A graph showing this relation is called acyelic. 1t is casily seen
that an acyclic graph contains a hierarchy.

Two Theorems

The largest flow from every subordinate city is called the nodal flow. These
flows form the nodal structure of the region and (for the particular relation
under study) this skeleton displays the functional association of the cities in a
region. This structure is analogous the nodal region and contains a hierarchy
of centers. It is important to recognize that in this pnodal structure the out-
contact from at least one point is zero. This particular case is called a terminal
point and in terms of an urban structure, this type of point is interpreted as
a central city.

The following statements are useful deductions concerning the graph of a
nodal structure. Figure 1 illustrates the resulting concepts.

(1) The components of a nodal structure partition the set of cities,

Proof. Each city is represented by a point in a graph of a nodal structure.
Each point is weakly connected to every point in its component and to no point
not in its component. A trivial component is an isolated point. Each point is,
therefore, assigned to one and only one component. Such an assignment of a
set is a partitioning.

(2) Each compenent of a nodal structure has a unique central city {terminal
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MATRIX OF NUMBER OF MESSAGES BETWEEN CITY-PAIRS

T0 CITY
b & 4 w £ % B & 31 %k 2
a o G 15 20 28 2z 3 2 1 20 1 0
b* 69 0 45 50 58 12 20 3 6 35 4 2 Largest flow clrcled.
[ ) o 12 40 0o 6 1 3 15 @ L Largest flow
d 19 14 o 30 7 6 2 11 18 5 1 determined by the
FROY ek 7 40 48 26 O 7 10 2 37 3% 12 6 number of cut-going
£ 1 6 1 110 o€ 1 3 & 2 0 messages.
CITY g* 2 16 3 3 13 31 0 3 18 8 3 1
h o 4 0 1 3 3 6 0 12 4 0
i 2 28 3 6 43 & 16 12 0 13 1
i* 7 40 10 B 40 5 17 3 98 0 35 12
kL8211806512@015
1 o 2z o o 7 0o 1 0 1 & @ o
Column
Total 113 337 141 128 230 71 118 65 202 311 91 39
#Largest flow from thess citles is to a "smaller" city where
wgize" is determined by the column totals.
GRAPH OF THE NODAL STRUCTURE BETWEEN CITIES
Graph of a,b,..., 1 cities In Adjacency Matrix of Graph G
Region G.
abecde fghijkl
a 1
b *
c 1
d 1
[ e
£ 1
4 *
h 1
i 1
3 *
k 1
1L 1

Blank spaces represent Zero elements.

*Terminal point. **Irivial terminal
point.

FIGURE 1. Graph of a Nodal Structure In a Region. (Hypothetical)

point).

Proof, Every path has at least one subordinate point and also a point to
which all points on the path are subordinate by the transitive property of the
relation. If this point is subordinate it must be adjacent to a point not on the
path because the relation is acyclic. Upon extending the path, an end point
with zero out-degree will be found in the component because at least one point
is in the component and is not subordinate.! This end point is the only terminal

s Here, only finite graphs are considered.

70



PAPERS AND PROCEEDINGS OF THE REGIONAL SCIENCE ASSOCIATION

point to which all points on the related paths are subordinate because 1o
branching occurs on any path (every subordinate point has an out-degree of
one).

Now assume distinct paths in a component and extend the paths to their
terminal points. Any other point connected to a point in one extended path
has no other connection because each point has an out-degree 1o greater than
one. If their terminal points were distinct, the subgraphs associated with dis-
tinct paths by the method described would not be connected in any way. This
contradicts the fact that all elements in a component are weakly connected.
Therefore, each extended path must have the same terminal point.

Interpretation of the Nedal Structure

The nodal structure may be used to distinguish groups of cities that have
maximum direct linkages and the rank order of these cities may be calculated.
The hinterland of the central city may also be determined by mapping the cities
in a nodal structure and then drawing a line just beyond the cities which are
most distant from the central city. In accordance with existing theory, the
hinterland or nodal region contains the area in which the maximum association
or flow is toward the central or nodal city. In addition, this plotting shows
the hierarchy over which the central city is dominant.

An Exfention of the Theory to Indirect Associations

The operations and structure that has been described evaluates only direct
contacts between city-pairs. It does not incorporate the indirect associations,
and these, conceivably, could be very influential in determining functional as-
sociations. Admittedly, direct contacts should receive the greater weight, but
some evaluation of the indirect channels between city-pairs would seem appro-
priate because of the indirect associations which occur within a hierarchy.
Indirect associations may be evaluated by using matrix manipulations to adjust
the nodal structure. It is postulated that the increment of indirect association
or influence decreases with increases in the length of the channel.

Power Series of the Adjacency Matrix

The first step in accounting for indirect influence is to adjust the raw data
matrix so that the direct association between each city-pair is some proportion
of the total association of the largest center in the area. This is accomplished
by obtaining the maximum column total of the adjacency matrix (max X Xo)

2
and dividing every x; element by this summation. Put: v = xi;/max 2 Xij.

J
The following inequalities result for a graph of » points:

(1) 0=ys<1 (i, = 1,2y o 5y00)
(2) D<=l (j=1,2---,m).

7
The maximum column total equals I.
The linear graph corresponding to this adjacency matrix has the appropriate,
positive, decimal loading. Let the adjacency matrix be called ¥. In terms of
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linear graphs, the power expansions of Y have interesting interpretations. The
matrix Y?, which is obtained by ¥ - Y under usual matrix multiplication, de-
sciibes a graph when all sequences have a length of 2. The length of a se-
quence is the number of lines it contains. Further, the loading of the lines of
each sequence of length 2 are obtained by multiplication. Since the initial
loadings are decimal values, an attenuated value is associated with a contact
that proceeds from point 7 to j through a sequence of length 2. The sum of
all such two-step sequences from i to j is the value of all possible indirect
contacts of length 2.

This assertion may be demonstrated as true by considering the meaning of
the summation:

(3) Gi; = >k Yude; (=12, -=~,m)

and where a;; is an element in Y*

The yu is the loading cn the line from point 7 to point % in the graph and
the y; has the same meaning for the link from % to j. The only terms which
enter the summation are those where a sequence of length 2 exists. When a
link from or to the kth point does not exist, the whole term is zero. The ai; is
the total value of all sequences of length 2. In a similar manner it may be
shown that the elements of ¥° specify the attenuated value of all sequences of
length 3, and so on, The meaning of the following summation is clear:

(4) B= Vit ¥4 ¥ F - o YL 5

The element, b;;, of B represents the total direct and indirect influence from i
to J.

Some examples may be useful. Given the cities a,b, ---, 7, a typical se-
quence from « to ¢ might be e —b—c—d—e. Imagine an activity in city a
as having influence on a respondent in &, this # in turn contacts a respondent
in ¢, and continuing until a small response in e is affected. The probability of
such a chain of occurrence depends, in part, on the magnitude of the flows in
every link of the sequence. In general, the longer the sequence, the more
remote is the probability of a response and when a response occurs it is less
intense.

Alternatively, the flow of influence may be re-channeled through the same
city more than once. For example, a sequence may have the form a—b—a—e.
All such summations are included in the matrix B.

The summation of the power expansion of ¥ is not demonstrated to be the
correct form of the attenuation of flows in a sequence. It is extremely doubtful
that the matrix B is the most appropriate measurement of the total direct and
indirect influences. It is essentially a measure of chance indirect contact. The
distribution of actual indirect association is very likely not at all random but
rather concentrated in certain flow channels, in which case the matrix B would
be an underestimate of indirect influence. It does, however, have a greater
appeal than the matrix ¥ which incorporates only the direct influences. The
choices of the particular power expansion is dictated by the ease of its compu-
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tation. Several other methods may also be appropriate.®

Computaticn of the Power Series of the Adjacency Matrix

A convenient method of computing the matrix B is to use the following
identity:

(5) Q=) '=14+Y+Y'+ -+ ¥+ -
and then:
(6) . B=Q-¥Yy'—1,

where the 1 is the identity matrix. The inverse, (1 — ¥y, is known to exist
if the inequalities (1) and (2) hold.

The MNodal Structure of Matrix B

The nodal structure of matrix B is established by isolating the network of
largest flows in the same manner as was described for the direct associations.
Because the associations enumerated in matrix B are adjusted for both direct
and indirect flows, it is expected that a more reasonable structure is obtained.

AN EXAMPLE

Washington State was chosen as the study area. The utility of the nodal
structure concept is evaluated by choosing a set of cities in this area and then
determining the nodal structure that prevails. The nodal structure which
emerges should resemble the known hinterland and ranking of the major cities
in the area. Certain cities outside of the State were included in the study in
order to examine the role they play in the network of city associations. Port-
land, Oregon and Vancouver, British Columbia were especially important addi-
tions.

The associations were defined by the number of long distance telephone
messages between city-pairs during one week in June, 1958." Certain cities
were omitted from the study due to characteristics of the data and in order to
limit the size of the study.

Many pairs of neighboring cities have direct dialing service and in these
instances the intercity calls were not recorded in long distance data. Dormitory
towns for Seattle and several “twin cities” such as Aberdeen-Hoquiam, Chehalis-
Centralia and Pasco-Kennewick had direct-service exchange. This is not a
serious deficiency in the data because such cities very likely function as a single
point in the state-wide networlk, and one of the “twin cities” in each pair could
be used in the study. Certain fairly large cities north of Seattle and along the
Puget Sound were omitted for lack of data. These cities were serviced by a
different telephone company. Because each year the telephone companies simul-

¢ For examples see, Luce, R.D, and D. Perry, “A Method of Matrix Analysis of Group
Structure,’”’ Psychometrika, Vel. 14 (1949) pp. 95-116; and Katz, L., “A New Status Index
Derived from Sociometric Analysis,” Psychomelrika, Vol. 18 (1953) pp. 39-44.

7 We are indebted to the Pacific Bell Telephone and Telegraph Company and especially
to Mr. Homer Moyer, a Seattle officer of that company, for this information.
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FIGURE 2. MNodal Structure Based on Telephone Data, State of Washington, 1958,

taneously take a one-week sample of intercity telephone calls, comparable data
exist but there was no attempt to obtain them. Finally, all cities above a
certain population size were not included in order to restrict the size of the
study. Some small towns were chosen, however, in an effort to obtain samples
of hierarchies with directed paths of length 2 or more. The map in Figure 2
identifies the cities in the study. With the advantage of hind-sight, it might
have been preferable to have included more small towns in the study.

TABLE I. A Portlon of the 40 X 40 Table of Number of Messages Between
City-Pairs, for One Week of June 1958.

To City
From City
Code 01 02 03 04 08 13 26 27 40

Aberdeen 0L — 24 50 0 246 3671 54 4 1005
Auburn 02 26 — 35 0 8 7654 42 0 163
Bellingham 03 55 r. — 782 24 2494 101 3 356
Lynden 04 4 0 2250 — 4 357 9 0 110
Long'vicw 03 329 15 32 0 — 1911 87 4 47:?3
Seatt:le 13 3427 4579 3343 308 1268 — 6168 269 157:31
Spokane o6 61 32 19 6 8 9991  — 38z 3838
Couer d'Alene 27 (] 4 4 0 6 254 5104 — 141
Portland, Ore. 40 802 210 304 29 4190 22179 3310 98 —

Largest column total—Seattle 154,192
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Certain channels of communication are omitted because they are not re-
corded in the long distance data. Direct-line calls are an example. Probably
the only large volume, direct-line in the state links Seattle with Olympia, the
state capital. If these data were included, the maximum association of Olympia
might shift from Tacoma to Seattle. Though beyond the scope of this study,
interesting results could be obtained if all channels of communication were in-
cluded, such as radio, telegraph, mail and messenger service.

Table I is an example of the raw data tabulations. Forty cities were used
in the study.® The entire table is the adjacency matrix of the almost completely
connected graph of associations—there are a few zero entries. The row totals
are the total out-contacts while the column totals are the total in-contacts. The
direction of the message flow is read from the “row” city to the “column” city.
The main diagonal entries are zero by convention.

TABLE Il. A Portion of the Matrix B (Direct and Indirect Associations).

To City
From City
Code 01 02 03 04 08 13 26 27 40

Aberdeen 01 — .248(4) .305(4) .551(5) .166(3) .245(2)% .479(4) .325(5) .726(3)
Auburn 02 .303(4) — .364(4) .109(5) .108(4) .508(2)* .500{4) .107(5) .171(3)
Bellingham 03 .402(4) .232(4) — .513(2) .180(4) .165(2)* .739¢4) .247(5) .254(3)
Lynden 04 .328(5) .790(6) .148(2)* — .307(5) .239(3) .716(3) .B8A(7) .753(4)
Longview 08 .221(3) .150(4) .252(4) .34L(B) — ,131(2) .695(4) .325(5) .316(2*
Seattle** 13 .227(2) .303(2) .253(2) .204(3) .870(3) . ,409[2) .188(3) .111(1)
Spokane 26 .568(4) .421(4) .953(4) .536(5) .688(4) .649(2)* — .252(2) .260(2)
Couer d'Alene | 27 .650(6) .332(5) .340(5) .560(7) .459(5) .191(3) .335(2y*  — .103(3)
Portland, Ore**| 40 .563(3) .185(3) .237(3) .176(4) .278(2) .140(1) .224(2) .725(4)

Column Total J548(2) .588(2) .613(2) .866(3) .585(2) .102(0) .22901) .311(2) .563(1)

**Terminal point. *Nodal flow.

Remark: Figures are rounded to three significant digits. Data were processed to 8
significant figures. The value in parentheses represents the number of zeros before the
first significant digit.

Table II is the adjacency matrix B which evaluates both the direct and
indirect associations between the cities.” The nodal structure contained in this
matrix was determined by (1) identifying the nodal flow, (2) ranking the cities
by their total incoming associations (column totals), (3) assigning an orientation
from cities with smaller total associations to one with a larger total association
and (4) identifying the non-oriented cities as the center of its hierarchy. Figure
2 shows the results. Figure 3 is the adjacency matrix of the nodal structure
derived from the direct and indirect associations.

3 A copy of the entire matrix shown in Table I may be obtained from Jehn D. Nystuen,
Department of Geography, University of Michigan.

» The computations were made possible by a grant of computer time from Weslern
Data Processing, University of California at Los Angeles.
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Arrows indicate cicies which are terminal points.

FIGURE 3. Matrix of the Nodal Structure.

CONCLUSIONS

The techniques defined in this paper will divide a set of cities into sub-
groups which specify a central place and its subordinate hierarchy. The as-
sociation between cities is not the only system which may be defined as a
network of points and lines. Nations or states may be thought of as points
with migrations or commodity fows as lines. The important step in the employ-
ment of abstract linear graph apalysis is the assignment of plausible meaning
to the points and lines, preferably in terms of some real world phenomena.
The usefulness of the attributes and the interpretation of the resulting hierarchy
depends on the correspondence between an empirical example using graph theory
analysis and other knowledge of the phenomena. The procedure described in
this paper may be employed in a variety of ways, but the application is valid
only when significant theoretical conclusions are produced and verified em-
pirically.

Implications of the Nodal Structure in Washington State

The nodal regions that are suggested by the nodal structure agree, in
general, with expectation. Seattle is the dominant center with nested hierarchies
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defined around Spokane and Yakima. Portland forms a system of its own by
capturing nearby Washington State cities. The two small but independent
hierarchies defined on Pasco and Moses Lake are most interesting.

Ephrata and Moses Lake are located on the boundary between two large
hinterlands where it is postulated that self-reliance or independence is most
likely to appear.® In addition, these two cities constitute an anomaly because,
while Ephrata is an old city, Moses Lake was recently created by government
fiat.

The small hierarchy with Pasco as the central point was anticipated by
Ullman when he evaluated the growth centers of the western United States:"

“One hypothesis that cccurs to me for the future is that Pasco-Kenneick-Richland. ..

might develop as the subregional shopping center, supplanting the dominance of older

(and more attractive) Yakima and Walla Walla.”

The effect of the national border is clear. Vancouver is subordinate to
Seattle and it does not dominate any city in the study, even though it is a
large city and is much nearer to Lynden and Bellingham than is Seattle. It is
probable that Vancouver would have been a terminal point if other Canadian
cities had been included within the study. This is not a defect in the method.
The results are only an evaluation of the associations between the cities in the
study.

The nodal region of Tacoma, a large city south of Seattle, is also antici-
pated by theory. Tacoma is dominant in a nearby region. This region is off-
center, in the direction away from the larger city of Seattle. The dominance
of Seattle re-asserts itself at even greater distances so that Aberdeen and Cen-
tralia are directly associated with Seattle, rather than by a two-link path through
the closer and larger city of Tacoma'* This and the other agreements with
existing theory and accepted empirical evidence demonstrate the utility of the
nodal structure for analyzing city associations.

Further Graph Theory Applications

Given a set of cities in an area and a measure of association between them,
a set of hierarchies has been obtained. Even more information is desirable.
Spokane is obviously the second most important central place in Washington
state, yet it is subordinate to Seattle in a hierarchy while the much smaller
places of Moses Lake and Pasco dominate their respective systems. Intuitively,
a second in command position in a large organization is more important than
the primary position in a tiny organization. Some measure of this difference
in status is desirable. A further application of graph theory to this problem
is suggested in a paper by Tarary.” His ideas are adapted to this problem
by the present authors in a further study of city associations.

w0 Hoover, E.M., The Location of Economic Activity, McGraw-Hill, New Yorlk, 1948,
Isard, W., Location and Space Economy, John Wiley and Sons, New York, 1956. Losch,
A., The Economics of Location, Yale University, New Haven, 1954.

1 Ullman, E.L., Growth Centers of the West, University of Washington, Seattle, 1955,
p. 48.

12 Hoover, E.M., op. cit. Isard, W., op. cit. Losch, A., op. cit.

13 Harary, F., ““Status and Contrastatus,” Sociometry, Vol. 22 (1959) pp. 23-43.
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APPENDIX D

Previously unpublished telephone data (for the State of Washington) referred to in Ap-
pendix C, 1958—a starting point for a time—series. Nystuen and Dacey.
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APPENDIX E
1. Comment by Nystuen, 1988;

2. Missouri map showing organizational hierarchy of telephone network, 1958—Nystuen
and Dacey;

3. Previously unpublished telephone data (for the State of Missouri), 1859—another
element or starting point for a time—series— Nystuen and Dacey.
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COMMENT BY NYSTUEN, 1988
The 5t. Louis message flow matrix displays the functional nodal region for that telephone system. The
map displays the organizational hierarchy set up by the telephone company to handle this message network.
An interesting question is “to what extent does the organizational system match the functional patterns in
the message exchanges?” Tinkler’s method can be applied to this question.
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MISSOURI MAP SHOWING ORGANIZATIONAL HIERARCHY
OF TELEPHONE NETWORK, 1959
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PREVIOUSLY UNPUBLISHED TELEPHONE DATA
(FOR THE STATE OF MISSOURI, 1959)—ANOTHER
ELEMENT OR STARTING POINT FOR A TIME-SERIES.
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APPENDIX F
THE EXPECTED DISTRIBUTION OF NODALITY
IN RANDOM (p,q) GRAPHS AND MULTIGRAPHS.

By

Keith J. Tinkler
Department of Geography
Brock University
St. Catharine’s, Ontario

Paper presented to the East Lakes Association of American Geographers
Octaber 15—186, 1976, Ann Arbor, Michigan.
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THE EXPECTED DISTRIBUTION OF NODALITY IN RANDOM (p,¢) GRAPHS AND MULTIGRAPHS

One problem in studies of network structures represented as graphs is to find a suitable
normative model to test an empirical structure against. One solution to this has been suggested
in terms of structures defined as radial graphs (Tinkler, 1972). This paper suggests another
approach using the frequency distribution of nodality in a graph. The test proposed is a graph
counterpart to nearest neighbour models for points in Euclidean spaces. It enables a test to
be made between an observed frequency distribution and the expected one for nodality in a
graph with the same number of points and lines. The method is readily extendable to any
number of nearest neighbours.

A (p,q) graph has p points and q lines. Its adjacency matrix, 4, is p x p with main diagonal,
ai; = 0. When 4 has (0,1) entries it defines a graph (Harary, 1969), and when it has (0,integer )
entries it defines a multigraph: i.e. links may be repeated between the same pair of points.
For both types of graph the row sums of 4 define the degrees or nodalities, A, of the points
of the graph G, G = G(4). A frequency distribution, f(A,G) can be formed from these row
sums. Half the sum of all the row sums defines the number of edges or lines, q, in the
graph or multigraph. An expected frequency distribution of nodality is defined as f*(A,G)
and arises from considering how the g lines are added to the p points. An urn model can be
defined yielding the expected distributions for both graphs and multigraphs. The urn contains
P = %(p;‘I —p) distinct pairs of labelled points. These represent all the possible lines in the graph.
A random (p,g) graph is now obtained by making q draws from the urn, withou! replacing a pair
that has been drawn. Further analysis of this model yields the hypergeometric distribution
for which the probability that a point has degree exactly A :

osiay = DG

P = (PE_P): A:D,_._,pfl:

)

The expected number of nodes of degree A is found by multiplying equation 1 by p, the
number of nodes, and this yields for all the expected distributions, f*(A,G). The case for a
multigraph, Gm, is simpler. The urn model permits the replacement of a drawn line and so
the probabilities remain stationary with successive draws. The corresponding equation is:

Prob ) = F gy @a : (19?&’ 2

AZO?""Iq"

a2 =

with mean Zﬂq and variance

with mean %il and variance 33%}21. Again this is multiplied by p to get the expected number
of nodes with this nodality. The calculation of [2] for all A yields f*(A,Gm). Obviously for any
(p.q) graph the difference between f(A,G) and f*(A,G) can be used to see how the empirical
graph departs from the expected structure. Two main departures from the expected can be
envisaged. If there are a larger than expected number of points of high nodality then there is
evidence of clustering of points in the network space so that a large number of points connect
to a few points with high nodality. A corollary of this effect may be a larger than expected
number of points with low nodality and since in the closed system an excess in one place implies
a deficit elsewhere there may be a relative depletion in the centre of the expected distribution.
This tendency is therefore one in which clusiering is manifest and in which the differences are
found towards the tails of the distribution. The extreme case is the star with one point of
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degree p — 1, and p — 1 points of degree 1. The opposite effect is when the number of nodes
is larger than expected close to the average A, i.e. in the centre of the expected distribution.
This type of departure implies dispersion of points in the network space and is a tendency
towards a lattice in which each point has equal degree. A Christaller lattice, regular of degree
6, apart from points on the boundary in the finite case, would be an extreme example of this
tendency. Similar remarks apply to the distributions for multigraphs and the interpretations
are the same.

ASSUMPTIONS
A legitimate objection to these models has been pointed out to me by Alan Hay (personal
communication). Both the above tests assume that the choices, the links being connected
to a point, are made at random from the available set, whereas in practice this is unlikely.
The implication is that ell links in the system have an equal chance of being chosen, whereas
distance decay notions suggest that short routes will be incorporated more frequently, and
more probably, than long ones.

(i) The Binomial Case

The total number of draws and hence the mean is controlled by the p and q for the graph.
Consequently the possible effect of the argument will be confined to the variance. In the
binomial case the draws leave the probabilities unaffected and since the total weight of all the
links to a point over those for all the rest of the system remains constant it is clear that the
distribution of the weights on the individual Links is irrelevant to a consideration of incidences
at a point. The objection is relevant to the frequency distribution of the individual draws for
particular links, but that is not the current problem. The binomial case is therefore immune
to Hay’s problem in this example. There is, however, another objection. In cases where the
points of the graph are embedded in geographic space, (presume for simplicity the Euclidean
plane), then the variable distances from a point to the other (n — 1) points; a potential (n — 1)
links with weights, say, inversely proportional to their length, are not necessarily all from the
same set. Points on the periphery will have a set of links with, on average, a greater length,
and hence a total probability of being chosen lower, than for more centrally located points.
In these circumstances the assumptions that the weight sets for every node are the same will
not be true and there will be a bias in the results. Other things being equal the bias in the
actual net would lead to a higher than expected number of low nodality places. This pattern
is usually, but not always, associated with polarisation in the net so that this pattern may be
too readily detected with reference to the binomial model which will tend to underestimate it.

(i) The hypergeometric case

In this case each successive draw reduces the probability of another success for and par-
ticular node. When the links are weighted then the effect will be to reduce the variance in
the distribution since the drawing of a few links becomes more probable, and of many, less
probable: hence frequencies of very low degree and of very high degree become less probable
and the variance about the mean is reduced. One deduces, therefore, that the test will be
conservative for the polarised case, but biased for the lattice case: a lattice tendency may be
too readily detected by comparison to the hypergeometric model.

The second objection: that weight sets for every node will not be identical again applies.
The actual net in these circumstances would display more nodes of low degree, since their
weight sets have fewer of the high probability, (short distance) links in them. Consequently
the actual net, if it is built with distance links that are distance biased would appear more
polarised than the probability model would suggest. Fortunately, the hypergeometric model
applied to the weighted link case, is already conservative with respect to polarisation so that
to some extent the two biases work against each other. We can expect, therefore, that the
test will be reasonably robust.

STATISTICAL CONSIDERATIONS
Chi-squared and Kolmogorov-Smirnov tests

It seems natural to use a Kolmogorov—Smirnov one sample test to ascertain the goodness
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of fit between the observed and the expected distributions. This avoids the problems arising
from the very large number of very small expected values encountered if a Chi-squared test
is used. However, there are indications that even the K-S test is not ideal for this particular
problem. The analysis is performed here for a six point star graph, Table I. Testing the
maximum difference between the two distributions for N = 6, 0.399767 is not significant even
at the 20% level. This is clearly unsatisfactory for a graph which has only a 1 in 3,000 chance
of occurring under the urn model, and one which is extreme in terms of polarisation. The
trouble partly stems from the fact that there is no suitable way of testing using a one-tailed
test, the tabulated values are for two-tailed tests. However, the main problem arises from
the fact that the observed frequency distributions are not drawn from an infinite population
but are constrained by the total number of possible graphs for a given p and gq. This is very
limited for small graphs but grows rapidly, (see Appendix in Wilson, 1972). This appears to
have the effect of making the test ultra-conservative. The effect might lessen for graphs with
large p and q. It is also clear from the nature of the test that a few high nodality nodes do
not themselves lead to large differences between the distributions and it is the effect these
have on the frequency of low nodality nodes that mainly affects the size of the difference that
is tested under H;. There are then serious problems involved with either the Chi—squared
test, or the Kolmogorov—Smirnov tests; in the latter case the effect of the finite population of
observed distributions appears to have a conservative effect, but it is difficult to be certain. It
is worthwhile, therefore, to propose an alternative method by which the tendency to clustering
can be assessed.

EXACT PROBABILITIES

From the tabulated expected cumulative probability distribution one can identify points’
corresponding to the expected probability that the given (p,q) graph contains a point equal or
larger than A. It is then only necessary to see whether the graph in fact contains a point of A
equal to this or larger. This can be seen to be the case if the observed cumulative probability
distribution is still smaller than the expected one. If it is less than the expected one then the
H, that the graph does not contain such a point with a given significance level can be rejected
with confidence equal to 1 — (cum.ezp.Prob(A)). Applying this idea to Table I the expected
probability of finding a node of degree 4 or larger is (1.0 — 0.983016) = 0.16954 and as the graph
does contain such a node then Hg is rejected with this significance. Similarly the probability
that it contains a node of degree 5 is just 0.000333, and since the graph contains this node we
can obviously reject H; very strongly.

This idea is useful for assessing the significance of observed nodes in the tails of the
expected distribution, but is not applicable to deviations from the centre of the expected
distribution. However, in these regions it is possible that the K-S test is helpful.

TENDENCY TO A NORMAL DISTRIBUTION

As n increases both the binomial and the hypergeometric cases tend to a normal distribu-
tion provided that the mean is far enough from the boundary of the distribution. In general
this requires that for the values given the mean needs to be about 9 or more for the normal
approximation to be useful. This necessity means that the approximation can only be applied
to large and fairly well connected graphs: it is no use for cases 1,2,4,5,6,7 in Table 2. Using the
normal approximation, when it is appropriate, a test of network structure is possible without
extensive calculation. For example, using the weighted Kisii District Market visiting structure
reported in Wood (1975) with p=80 and q=517 with A = 12.93 the standard deviation is 3.55
so that with p=0.001 we should expect a node with nodality larger than 24. In fact a node
with degree 77 exists in this multi-graph (Figure 1) so that we can say that the system is
extremely polarised and very significantly so since it lies more than 18 standard deviations
away from the mean!

EXAMPLES WITH ACTUAL NETWORKS

The observed distribution of nodality in a series of networks available to the author was
tested against the expected distributions using equations [1] and [2]. Table 2 summarises the
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TABLE 1:

Degree Probability Cum. Prob. Obs. Prob. Cum. Difference
0 0.083916 0.083916 0.000000 0.083916
1 0.349650 0.433566 0.833333 0.399767
2 0.399600 0.833166 0,833333 0.000167
3 0.149850 0.983016 0.,8333233 0.149683
& 0.016650 0.999666 0:833333 O0:d66333
5 0.000333 0.229592% 1.000000 0.000001

9



Figure 1: Market Visiting Network, Kisii District, Kenya (from Wood, 1975).
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results; reasons of space prohibit a complete tabulation of the analysis for each network. As
an example, a tabulation for an easily available network, Table 3, gives the analysis for the
1921 Uganda road network (Figure 2) published in Gould (1967) and Tinkler (1972). In Table
2 decision 1 is based on the Kolmogorov—Smirnov statistic, whereas decision 2 is based on the
alternative exact probability method proposed above. The significance levels given are the best
available and are rounded to the nearest convenient value since the expected distribution is a
discrete one, not continuous. Decision 3 utilises the approximation to the normal distribution
when it is appropriate. According to the K-S test only the airline network (Figure 3) and
Wood’s market visiting structure are significantly different from the expected distribution,
and this was reasonable on the basis of the original graphs. For multigraphs, equation [2],
both the graphs were significant. Funnell’s multigraph representing the historical growth of
routes in Teso District, Uganda, showed a marked deviance, as expected, although the (0,1)
structure of the same network was not significant by the same statistical test. On the other
hand Wood’s multigraph in which the (0,1) structure of market visiting is weighed by the
number of visits retains, and accentuates, the original deviation from the expected random
structure.

In the tests based on the second criterion all but one of the networks turned out to differ
from the expected distribution at the limits of the distribution. This can be interpreted to
mean that every network contained at least one highly nodal element when the significance
level was that given in the table. The only network that failed to have such an element was
the Sierra Leone road network given by Harvey (1972) (Figure 4) and the network in fact is
extremely dispersed. The graph theoretical dispersion was ¢.45,000.

Table 3 illustrates the complete working for the Uganda 1921 road network. The expected
frequencies are seen to give a reasonable fit to the observed ones but the isolated node with
degree 6 (Kampala in the actual network), has only a 5% chance of occurring in a random
structure, and the cumulated observed probability distribution at A = 5 is seen to be smaller
than the expected one at this level. One may therefore conclude that the occurrence of this
node is, with 99.5% confidence, not likely to be due to chance and indicates real polarisation
tendencies in the network. Comparing the frequency distribution one may see the slight
excess of terminal nodes, degree 1, and degree 2 nodes in the observed distribution, partly as
a structural consequence of the hub created by the one node of degree 6.

n™ ORDER NEAREST NEIGHBOUR ANALYSIS IN GRAPHS

The adjacency matrix 4 = A(G) represents the one step adjacencies in G. It is well known
that if a;; = 0 then A" represents exactly n-step adjacencies in G. In general, however, A", has
(0,integer ) entries and the graph of A™,G, = G(A") yields, in general, a multigraph. Conse-
quently two tests may be performed on G. It may be tested by equation (2) while it remains
a multigraph, or one may apply a binary operator b* to A" such that b*(e};) = 1if aj; > 0, and
0 otherwise, and if a® > 0. Then the matrix b*(4™) can be tested by equation [1]. Logically
the analysis can be carried as far as A? where d is the topological diameter of the network.
Beyond this point there are no points out of reach of any point in the network. However, for
many points in the graph this will be larger than their Konig number and an alternative may
be to carry the analysis only as far as r, where r is the radius of the network, the minimum
Koénig number.

An alternative procedure is to operate using (4 + I)™ since this will count all points up to
and including a distance of n from each point; again this will generally be a multigraph even if
the original graph is a graph and the operator b* may be applied here too. It is worth noting
that when n =d then b*(4 + I)" is simply a matrix full of ones, apart from the main diagonal
which is set to zero in calculating the observed distribution to compare with the expected
distribution computed from [1] or [2]. This means that v*(4 + I)* = A(K,) where K, is the
complete graph on p points and is trivially a lattice regular of degree p — 1. These comments
are also true if 4, (a; = 0), is a primitive matrix and d is equal to or larger than the solution
number for the matrix.

These methods ought to be able to detect the presence of higher than first order clustering
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Figure 2: Uganda Roads 1921 (after Gould, 1967).
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Figure 3: East African Airlines - Domestic Routes 1970.

102



Figure 4: Sierra Leone Roads 1970 (simplified from Harvey, 1972).
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in the graph. It has been shown in Tinkler (1972) that the vectors of row sums of successive
matrix powers of 4 tend to the principal eigenvector of 4 and represent limiting accessibility
in the network. Hence if equation [2] is applied to the powers of 4 without the operator b*
being applied then we have effectively devised a method of testing the nature of the frequency
distribution of values on the principal eigenvector. Similarly the row sums of A4 itself are
known to be exactly proportional to the fixed vector of the transition matrix of 4, (Tinkler,
1973), and so the methods in this paper also test the significance of this vector in terms of its
frequency distribution.

An n** order example is given here for a simple network of 13 nodes and the computations
were carried out up to n = 4 for the matrices (4 + I)* with the main diagonal, ¢ — " = 0,
and with the matrices subject to ™. A tabulation is given for n = 3 and a summary table
for all n. The network is shown in Figure 5. The results are interesting because none of the
networks display a significant difference on the K-S test which probably reflects the small
N value and the limited nature of the possible observed distributions discussed above. This
latter limitation becomes especially limiting for b*(A™) as n tends to d. This is because the
number of possible (p,g) graphs reduces drastically as q approaches its limiting values of 0 and
1(p* —p).

However, using the other criterion suggested it is possible to show that the graph does
tend to deviate from the expected structure at its limits. This ean be seen from Table 4
where it is clear that the structure possesses more low nodality nodes than expected. At the
4% level the observed value on the cumulated probability distribution is 0.153846 indicating
a considerable surplus in this region. This is simply reversing the procedure used on Table
3. The high frequency of low nodality nodes carries the corollary of more than expected high
nodality nodes, and this too can be seen from the Table. The corollary does not lead in this
case to large differences between the cumulated probability distributions. It would seem that
the criterion suggested is a useful one and emphasises which tendency is the more dominant
element.

It is interesting that for n = 1, the original network, neither method indicates any dif-
ferences from the expected distribution. This signifies that it may be necessary to carry out
the analysis at higher n values to see if there are any significant advantages to be gained from
connections within the graph at longer process lengths.

FREQUENCY DISTRIBUTION OF NODALITY IN DIGRAPHS AND MULTLIDIGRAPHS
The extension of the results in this paper to the more general case of digraphs, i.e. matrices
of (0,1) form but not symmetric and with main diagonal zero, and to multidigraphs, asymmetric

0,7nteger ) matrices is very easy. By substitutin 1) for (2) in equation [2] and with
) g g {2 = q

§ Ayg,

i#]

redefined as

we obtain the results for multidigraphs. By substituting P = (p?—p) for P = %(pz —p) in equation
[1] we get the corresponding results for digraphs. In digraphs and multidigraphs the indegree
of a point is usually different from the outdegree of the point so that in the adjacency matrix
the row sums differ from the corresponding elements in the column sums. These results show
that the frequency distribution of these elements should be the same irrespective of whether
they are indegrees or outdegrees, although corresponding elements on the degree vectors may
differ. By regarding any integral tally table as the adjacency matrix of a multidigraph one can
use these methods to test the deviation of the frequency distributions of marginal totals from
an expected norm.

CONCLUSIONS

A method has been suggested for the analysis of networks in terms of the frequency
distribution of their nodality. It can be applied to graphs and multigraphs and is capable of
indicating the extent to which there is a clustering or dispersion of nodes within the network
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Figure 5: A simple test graph on 13 points.
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space. It is the graph counterpart of nearest neighbour analysis and can be carried out for n
step adjacencies in the graph. Because the frequency distribution of nodality is linked with the
frequency distribution of process in the graph via the theorem in Tinkler (1873) it provides
a method by whick this too can be tested in terms of the structure from which it arises. By
taking the vector of row sums of any sufficiently high power of (4+71)" —I one has a test on the
frequency ‘distribution of accessibility in the original graph since it is known that this vector
approaches the principal eigenvector of 4 as n tends to infinity, and the principal eigenvector
indicates limiting accessibility in G (Tinkler, 1972).

It is hoped that these methods will provide readily implemented techniques for assessing
empirical structures. The main drawback at this moment is a handy statistical test to compare
the observed and expected frequency distributions. Refinements on, or alternatives to, the
alternative criterion suggested here will be welcome. Geographically the notion of a randomly
generated structure, and its characteristics, adds additional noise to normative theory! Clas-
sical theory would lead us to expect the widespread existence of lattice structures, dispersed
networks. Conversely we can easily construct arguments that lead us to expect polarised
structures especially in activity networks, such as Wood’s market visiting network where the
polarisation is evident even in the unweighted form, and in the unweighted structure of the
East African Airways domestic air routes. In between these extremes we have the idea of a
randomly constructed graph, arising from a multitude of local decisions often independent of
the rest of a larger structure of which they eventually become part. The analyses given here
suggest that several road networks tend to have these characteristics but that they may con-
tain within them a number of nodes with a nodality that is improbable under the postulated
urn models.

108



REFERENCES

Gould, P. R., 1967, “On the Geographical Interpretation of Eigenvalues,” Transactions,
Institute of British Geographers, No. 42, pp. 53-86.

Funnell, D.C., 1972, “Service Centres in Teso,” Occasional Paper No. 46, Department of
Geography, Makerere University, Kampala.

Harary, F., 19698, Graph Theory, Addison-Wesley.

Harvey, M. E., 1972, “The Identification of Development Regions in Developing Coun-
tries,” Economic Geography, 48, No. 3, pp. 229-243.

Tinkler, K. J., 1872 (a), “Bounded Planar Networks: a Theory of Radial Structures,”
Geographical Analysis, 4, No. 1, pp. 5-33.

Tinkler, K. J., 1972 (b), “The Physical Interpretation of Eigenfunctions of Dichotomous
Matrices,” Transactions, Institute of British Geographers, No. 55, pp. 17-46.

Tinkler, K. J., 1973, “Letter to the Editor,” Transactions, Instituie of Brilish Geographers, No.
58, pp. 149-150.

Wilson, R. J., 1872, Introduction to Graph Theory, Oliver and Boyd, Edinburgh.

Wood, L. J., 1875, “The Functional Structure of a Rural Market System,” Geografiska
Annaler, 57B, 2, pp. 109-118.

109



APPENDIX G
“Advice to authors” and other fliers. Institute of Mathematical Geography.

110



INSTITUTE OF MATHEMATICAL GEOGRAPHY
790 Briarchiff
Ann Arbor, MI 48105

IMaGe MONOGRAPH SERIES-ADVICE TO AUTHORS
ADVICE TO AUTHORS

Ianuscripts should be submitted directly to the editer. The monographs in this series
are produced on demand from camera-ready copy supplied by the author. All manuseripts
will be reviewed by at least two members of the editorial board or by referees suggested by
them. Initial submissions should be typed, double-spaced, with one inch margins on all sides.
Submit three copies, at least one of which should be copied on one side enly. Figures should be
in close-to-final form. Once a manuscript has been accepied, the author will be provided with
further suggestions for the preparation of the final document. Authors should retain copies
of all submissions as the high cost of postage prohibits the return of manuseripts. Royalty
checks will be issued periodically, depending on sales. There is no charge to the author for
producing these books. Before a book is released, authors will be provided with a transfer of
copyright form, and copyright will be procured for each volume in the series by IMaGe.

PURCHASE CF MONOGRAPHS

Monographs may be ordered directly from IMaGe; the price of a monograph does not
include postage and handling. A list of monograph titles and abstracts appears on the last
page of each book. Because these books are published on demand, they do not go out of print.
Standing orders, as well as individual orders, are welcome; the former well be filled ahead of
the latter.

EDITORIAL BOARD
Sandra L. Arlinghaus (Ph.D.), Director and Founder, IMaGe, Ann Arbor, ML

Williama C. Arlinghaus (Ph.D.), Assistant Professor of Mathematics, Lawrence Institute
of Technology, Southfield, MI.

Robert F. Austin (Ph.D.), Director, Computer Data Systems, Baystar Service Corpora-
tion, Clearwater, FL.

David Barr (M.F.A.), Professor of Art, Macomb Community college, Warren, MI.

Jack A. Licate (Ph.D.), Deputy Director of Government Relations, Greater Cleveland
Growth Association, Cleveland, OH.

Jonathan D. Mayer (Ph.D.), Professor of Geography, University of Washington, Seattle,
WA,

John D. Nystuen (Ph.D.), Professor of Geography and Urban Planning, University of
Michigan. Ann Arbor, MI.

Helen Santiz (M.A.), Lecturer in Mathematics, University of Michigan— Dearborn, Dear-
born, MI (editorial consultant).

Sylvia L. Thrupp (Ph.D.), Alice Freeman Palmer Professor Emeritus of History, University
of Michigan, Ann Arbor, ML

Waldo R. Tobler (Ph.D.), Professor of Geography, University of California— Santa Barbara,
Santa Barbara, CA.

111



INSTITUTE OF MATHEMATICAL GEOGRAPHY
2790 Briarvcliff
Ann Arbor, MI 48103

IMaGe MONOGRAPH SERIES-1988 PRICE LIST (EXCLUSIVE OF SHIPPING)

1. Sandre L. Arlinghaus and John D. Nystuen. Mathematicai Geography and Global Art:
the Mathematies of David Barr’s “Four Corners Project,” 1986. $8.95.

This monograph contains Nystuen’s calculations, actually used by Barr to position his
abstract tetrahedrs! sculpture within the earth. Placement of the sculpture vertices in Easter
Island, South Africa, Greenland, and Indonesia was chronicled in film by The Archives of
American Art for The Smithsonian Institution. In addition to the archival material, this
monograph also contains Arlinghaus’s solutions to broader theoretical questions—was Barr’s
choice of a tetrahedron unique within his initial constraints, snd, within the set of Platonic
solids?

2. Sandra L. Arlinghaus. Down the Mail Tubes: the Pressured Postal Era, 1853-1984,
1986. $9.95.

The history of the pneumatic post, in Europe and in the United States, is examined for
the lessons it might offer to the technological scenes of the late twentieth century. As Sylvia
L. Thrupp, Alice Freeman Palmer Professor Emeritus of History, The University of Michigan,
commented in her review of this work “Such brief comment does far less than justice to
the intelligence and the stimulating quality of the author’s writing, or to the breadth of her
reading. The detail of her accounts of the interest of American private enterprise, in New
York and other large cities on this continent, in pushing for construction of large tubes in
systems to be leased to the government, brings out contrast between American and European
views of how the new technology should be managed. This and many other sections of the
monograph will set readers on new tracks of thought.”

2. Sandra L. Arlinghaus. Essays on Mathematical Geography, 1986 $15.95

A collection of essays intended to show the range of power in applying pure mathematics
to human systems. There are two types of essay: those which employ traditional mathematical
proof, and those which do not. As mathematical proof may itself be regarded as art, the former
style of essay might represent “traditional” art, and the latter, “surrealist” art. Essay titles
are: “The well-tempered map projection,” “Antipodal graphs,” “Analogue clocks,” “Steiner
transformations,” “Concavity and urban settlement patterns,” “Measuring the vertical city,”
“Fad and permanence in human systems,” “Topological exploration in geography,” “A space
for thought,” and “Chaos in human systems—the Heine-Borel Theorem.”

4. Robert F. Austin, A Historical Gazetteer of Southeast Asia, 1986. $12.95.

Dr. Awustin’s Gazetteer draws geographic coordinates of Southeast Asian place-names
together with references to these place-names as they have appeared in historical and literary
documents. This book is of obvious use to historians and to historical geographers specializing
in Southeast Asia. At a deeper level, it might serve as a valuable source in establishing place-
name linkages which have remained previously unnoticed, in documents describing trade or
other communications connections, because of variation in place-name nomenclature.
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5. Sandra L. Arlinghaus, Essays on Mathematical Geography—II, 1887. $12.95

Written in the same format as IMaGe Monograph #3, this volume contains the fellowing
material: “Frontispiece—the Atlantic Drainage Tree,” “Getting a Handel on Water-Graphs,”
“Terror in Transit: A Graph Theoretic Approach to the Passive Defense of Urban Networks,”
“Terrae Antipodum,” “Urban Inversion,” “Fractals: Construetions, Speculations, and Con-
cepts,” “Solar Woks,” “A Pneumatic Postal Plan: The Chambered Interchange and ZIPPR
Code,” “Endpiece.”

6. Pierre Hanjoul, Hubert Beguin, and Jean-Claude Thill, Theoretical Market Areas

Under Buclidean Distance, 1988. (English language text; Absiracts written in French and in
English.) $15.95.

Though already initiated by Rau in 1841, the economic theory of the shape of two-
dimensional market areas has long remained concerned with a representation of transportation
costs as linear in distance. In the general gravity model, to which the theory also applies, this
corresponds to a decreasing exponential function of distance deterrence. Other transportation
cost and distance deterrence functions also appear in the literature, however. They have not
always been considered from the viewpoint of the shape of the market areas they generate,
and their disparity asks the question whether other types of functions would not be worth
being investigated. There is thus a need for a general theory of market areas: the present
work aims at filling this gap, in the case of a duopoly competing inside the Euclidean plane
endowed with Euclidean distance.

(Bien gu’ébauchée par Rau dés 1841, la théorie économique de la forme des aires de marché
planaires s’est longtemps contentée de I’hypothése de coiits de transport proportionnels & la
distance. Dans le modeéle gravitaire généralisé, auquel on peut étendre cette théorie, ceci
correspond au choix d’une exponentielle décroissante comme fonction de dissuasion de la
distance. D’autres fonctions de cofit de transport ou de dissuasion de la distance apparaissent
cependant dans la littérature. La forme des aires de marché qu’elles engendrent n’a pas
toujours été étudiée ; par ailleurs, leur variété améne a se demander si d’autres fonctions
encore ne mériteraient pas d’étre examinées. Il parait donc utile de disposer d’une théorie
générale des aires de marché : ce a quoi s’attache ce travail en cas de duopole, dans le cadre
du plan euclidien muni d'une distance euclidienne.)
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INSTITUTE OF MATHEMATICAL GEOGRAPHY
2780 Briarcliff
Ann Arbor, MI 48105

IMaGe MONOGRAPH SERIES-INFORMATION VALID TO 1/1/89
UNIVERSITY LIBRARY STATEMENT

IMaGe Monographs are produced on demand from camera-ready copy, supplied by the
author. Guidelines for authors, and a statement of IMaGe review policy appear on a different
flier. Price structure is negotiated with Michigan Document Services, Inc.. on a regular
basis, reflecting changing costs in producing books. Fluctuations might be up or down—up,
for example, if equipment maintenance costs rise; down, for example, if the factory location
is moved to a cheaper site. Because IMaGe is responsive to the concerns of Aecquisitions
Departments in university libraries, it has established the following guidelines concerning the
frequency of publication of monographs.

1. No single book shall be of a length forcing its cost to exceed $20.00, exclusive of postage
and handling.

2. No more than six books shall be issued in a calendar year. If a single monograph
number is of a length requiring more than one book for publication, then each of those books
counts as one of the six. Therefore, the maximum amount of a basic annual subscription is
$120.00.

3. Libraries should specify, at the time the order is placed, the preferred mode of shipping;
if left unspecified, books will be shipped via Fourth Class mail, or Library Rate (whatever
applies), in the continental United States, and via Air Mail (using a mail company to ascertain
the the cheapest mode of transmission) to overseas and foreign libraries.
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INSTITUTE OF MATHEMATICAL GEOGRAPHY
2780 Briarchiff
Ann Arbor, MI 48105
MICMG DISCUSSION PAPERS, JOHN D. NYSTUEN, EDITOR

The collected work of the Michigan Interuniversity Community of Mathematical Geogra-
phers is reprinted in a single essay format (as they were originaliy reproduced). Royalties from
sales will be deposited in the “MICMG” fund for the development of projects in mathematical
geography, administered by IMaGe, and disposed of by Nystuen, in collaboration with IMaGe.

Consider ordering one number as reading supplementary to texts in an upper division
course. The dates or original release and titles of the individual numbers are listed below.

1. Arthur Getis, Temporal land use pattern analysis the use of nearest neighbor and
guadrat methods. July, 1963.

2. Mare Anderson, A working bibliography of mathematical geography. September, 1963.
3. William Bunge, Patterns of location. February, 1964.
4. Michael F. Dacey, Imperfections in the uniform plane. June, 1964.

5. Robert S§. Yuill, A simulation study of barrier effects in spatial diffusion problems.
April, 1965.

6. William Wearntz. A note on surfaces and paths and applications t¢ geographical prob-
lems. May, 1965.

7. Stig Nordbeck, The law of allometric growth. June, 1965.

B. Waldo R. Tobler, Numerical map generalization; and Notes on the analysis of geo-
graphical distributions.

9. Peter R. Gould, On mental maps. September, 19866.

10. John D. Nystuen, Effects of boundary shape and the concept of local convexity;
Julian Perkal, On the length of empirical curves; and, Julian Perkal, An attempt at objective
generalization. December, 1966.

11. E. Casetti and R. K. Semple, A method for the stepwise separation of spatial trends.
April, 19€8.

12. W. Bunge, R. Guyot, A. Karlin, R. Martin, W. Pattison, W. Tobler, S. Toulmin, and
W. Warntz, The philosophy of maps. June, 1968.
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