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CHAPTER I

Introduction

Three essays investigating the construction and implications of economic agents’

internal representations of problems they face.

In the second chapter, “Optimal Auctions under Ambiguity,” we investigate the

construction of an optimal auction mechanism when agents are ambiguity averse over

the valuation of the other bidder. A crucial assumption in the optimal auction litera-

ture is that each bidder’s valuation is known to be drawn from a unique distribution.

In this paper we study the optimal auction problem allowing for ambiguity about

the distribution of valuations. Agents may be ambiguity averse (modeled using the

maxmin expected utility model of Gilboa and Schmeidler [14].) When the bidders

face more ambiguity than the seller we show that (i) an auction that provides full

insurance to all types of bidders is always in the set of optimal auctions, and in

certain cases the seller can strictly increase his revenue by switching to a full insur-

ance mechanism; (ii) if the seller is ambiguity neutral and any prior that is close

enough to the seller’s prior is included in the bidders’ set of priors then the optimal

auction must be a full insurance auction; (iii) in general, neither the first nor the

second price auction is optimal (even with suitably chosen reserve prices). When the

seller is ambiguity averse and the bidders are ambiguity neutral an auction that fully

1
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insures the seller must in the set of optimal mechanisms.

In the third chapter, “Causal Coherence,” I investigate agents with differing men-

tal models of the same phenomenon. Agents with the same information and same

preferences can make different choices. Agents differ not only with respect to their

preferences and information, but their causal interpretations of that information.

This can lead to what agents with the correct causal model would perceive as “ir-

rational mistakes” committed by others. I apply an axiomatic representation to

develop the causally coherent agent, who has a causal model about a causally am-

biguous phenomenon that is consistent with data, makes choices rationally, but is

unaware of alternative models. In essence, her model is not identified so she hazards

a guess. The causal model is a causal bayesian network. In this framework, I show

how agents with the same information and the same preferences will make different

choices. Moreover, with this framework, I can construct a set of reasonable theories

that emerge from data the agents see. This provides a framework for constructing

agents’ conjectures in a general setting. I apply this framework to an auction to show

that agents with wrong models suffer a ‘causal curse’ similar in kind to the winner’s

curse.

In the fourth chapter, “Of Wolves and Sheep,” I place the agents developed in the

previous chapter into an economy. In this simple dynamic economy, agents with dif-

ferent theories of how ideas develop into firms leads them to choose different optimal

take-up of these ideas. Their different behaviors yields a predator/prey relationship

among these agents, which causes natural population cycles of theories and behavior

to emerge endogenously. The agents are identical but for their theories (identical

data, actions, preferences) so the predator/prey relationship emerges only from their

different interpretations of common data. Since the system does not collapse, it shows



3

that agents with differing theories may persist in a long-run, dynamic equilibrium.



CHAPTER II

Optimal Auctions with Ambiguity

2.1 Introduction

Optimal auctions for an indivisible object with risk neutral bidders and inde-

pendently distributed valuations have been studied by, among others, Vickrey [51],

Myerson [36], Harris and Raviv [17], and Riley and Samuelson [43]. These papers

show that the set of optimal mechanisms or auctions is quite large, and that the

set contains both the first and second price auctions with reserve prices. One of the

assumptions in this literature is that each bidder’s valuation is known to be drawn

from a unique distribution. In this paper we relax this assumption and study how

the design of the optimal auction is affected by the presence of ambiguity about the

distribution from which the bidders’ valuations are drawn.

The unique prior assumption is based on the subjective expected utility model,

which has been criticized among others by Ellsberg [8]. Ellsberg shows that lack

of knowledge about the distribution over states can affect choices in a fundamental

way that can not be captured within the subjective expected utility framework. In

one version of Ellsberg’s experiment, a decision maker is offered two urns, one that

has 50 black and 50 red balls, and one that has 100 black and red balls in unknown

proportions. Faced with these two urns, the decision maker is offered a bet on black

4
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but can decide from which urn to draw the ball. Most decision makers prefer the first

urn. The same is true when the decision maker is offered the same bet on red. This

behavior is inconsistent with the expected utility model. Intuitively, decision makers

do not like betting on the second urn because they do not have enough information or,

put differently, there is too much ambiguity. Being averse to ambiguity, they prefer

to bet on the first urn. Ellsberg and many subsequent studies have demonstrated

that ambiguity aversion is common.

Following Gilboa and Schmeidler [14], we model ambiguity aversion using the

maxmin expected utility (MMEU) model. The MMEU model is a generalization of

the subjective expected utility model, and provides a natural and tractable frame-

work to study ambiguity aversion. In MMEU agents have a set of priors (instead

of a single prior), on the underlying state space, and their payoff is the minimum

expected utility over the set of priors. Specifically, when an MMEU bidder is con-

fronted with an auction, he evaluates each bid on the basis of the minimum expected

utility over the set of priors, and then chooses the best bid. An MMEU seller, on

the other hand, evaluates each auction on the basis of its minimum expected revenue

over the set of priors and chooses the best auction. In order to better contrast our

results with the risk case, we assume that the bidders and the seller are risk neutral

(i.e. have linear utility functions).

Our main result, Proposition II.1, is that when the bidders face more ambiguity

than the seller an auction that provides full insurance to the bidders1 is always in

the set of optimal mechanisms. Moreover, given any incentive compatible and indi-

vidually rational mechanism, the seller can strictly increase his revenue by switching

to a full insurance mechanism if the minimum expected utility of a bidder over the

1A full insurance auction keeps the bidders’ payoffs constant for all reports of the other bidders and
consequently keeps them indifferent between winning or losing the object.
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seller’s set of priors is strictly larger than the one over the bidders’ set of priors for

a positive measure of types.

This result can explain some auction mechanisms that are observed in real life.

In particular Goeree and Offerman [15] observe that: “In Europe, sellers of houses,

land, boats, machinery and equipment regularly offer a premium to the highest losing

bidder to promote competitive bidding. Many Dutch and Belgian towns have their

own variant of premium auctions, some of which date back to the Middle Ages.”

Goeree and Offerman explain the existence of such auctions by asymmetries among

bidders. They argue that even though premium auctions are not optimal, in envi-

ronments with asymmetries among bidders they may be second best. In this paper

we provide an alternative explanation by showing that even with symmetric bidders

when there is ambiguity premium auctions may outperform standard auctions2.

To obtain some intuition for the main result, consider the special case where the

seller is ambiguity neutral, i.e., his set of priors is a singleton. In this case the main

result says that if an incentive compatible and individually rational mechanism is

optimal for the seller then the minimizing set of distributions for all types of the bid-

ders must include the seller’s prior. Suppose this is not true for a positive measure

of types and consider some such type θ. In this case, the seller and type θ of the

bidder will be willing to bet against each other. The seller would recognize that they

have different beliefs about the underlying state space and would offer “side bets”

using transfers. The crucial issue is that the modified mechanism will have to main-

tain overall incentive compatibility. In our proof we address this issue by explicitly

2Goeree and Offerman [15] study the Amsterdam auction which proceeds in two stages. In the first stage
all but two bidders are eliminated, and in the second stage a premium auction is conducted. Our comments
are only relevant for the second stage of their auction. Also, premium auctions are rich in many institutional
details and we do not claim that any of these particular auctions exactly implement the optimal selling
mechanism described in this paper. Rather, our objective is to point out that presence of ambiguity might
be an alternative explanation as to why the seller in these auctions find it profitable to offer a payment to
a losing bidder.
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constructing the additional transfers that continue to satisfy incentive compatibility

constraints while making the seller better off. Essentially, we show that these addi-

tional transfers (to the seller) can be chosen so that in the new mechanism, under

truth telling type θ gets the minimum expected utility that he gets in the original

mechanism in every state, and thus is fully insured against the ambiguity. Obviously

then, under truth telling, type θ is indifferent between the original mechanism and

the new mechanism since he gets the same minimum expected utility under both.

More interestingly, no other type wants to imitate type θ in the new mechanism.

This is because the additional transfers in the new mechanism are constructed so as

to have zero expected value under the minimizing set of distributions for type θ in

the original mechanism, but to have strictly positive expected value under any other

distribution. Therefore, if type θ′ imitates type θ in the new mechanism, he gets at

best what he would get by imitating type θ in the original mechanism. Hence, since

the original mechanism is incentive compatible, the new mechanism must also be in-

centive compatible. Moreover, since by assumption, the seller’s distribution is not in

the minimizing set for type θ in the original mechanism, the additional transfers (to

the seller) must have strictly positive expected value under the seller’s distribution.

Since the original mechanism can be modified this way for a positive measure of

types, the seller strictly increases his revenue. In fact, for any incentive compatible

and individually rational mechanism, by modifying the mechanism for all types as

described above we can obtain a full insurance auction that is weakly preferred by

the seller. Therefore, a full insurance auction must always be in the set of optimal

mechanisms.

There may be optimal selling mechanisms in addition to the full insurance mech-

anism, but in some cases the full insurance mechanism is the unique optimal mecha-
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nism. In Proposition II.4 we show that if the seller is ambiguity neutral and any prior

that is close enough to the seller’s prior is included in the bidders’ set of priors then

the optimal auction must be a full insurance auction. We also show in Proposition

II.7 that, in general, the first and the second price auctions are not optimal.

To highlight some of the economic implications of the above analysis, in section

2.4, we explicitly derive the optimal mechanism when the seller is ambiguity neutral

and bidders’ set of priors is the ε-contamination of the seller’s prior. We show that

the seller’s revenue and efficiency both increase as ambiguity increases. We also

describe an auction that implements the optimal mechanism.

When the seller is ambiguity averse and the bidders are ambiguity neutral we show

that for every incentive compatible and individually rational selling mechanism there

exists an incentive compatible and individually rational mechanism which provides

deterministically the same payoff to the seller. From this it follows that when an

optimal mechanism exists, an auction that fully insures the seller must in the set

of optimal mechanisms. A similar result was first shown by Eso and Futo [10] for

auctions (in independent private value environments) with a risk averse seller and risk

(and ambiguity) neutral bidders. Hence, as long as bidders are risk and ambiguity

neutral, ambiguity aversion on the part of the seller plays a similar role to that of

risk aversion.

There is a small but growing literature on auction theory with non-expected utility

starting with a series of papers by Karni and Safra ([24], [26], [25]) and Karni [22].

The papers that look at auctions with ambiguity averse bidders, and thus are closer

to this paper are by Salo and Weber [45], Lo [28], Volij [52] and Ozdenoren [37].

These papers look at specific auction mechanisms, such as the first and second price

auctions, and not the optimal auction problem.
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Billot, Chateauneuf, Gilboa and Tallon [1] analyze the question of when it is

optimal to take bets for agents with MMEU preferences in a pure exchange economy.

They show that if the intersection of the set of priors for all agents is non-empty,

then any Pareto optimal allocation is a full insurance allocation. This result is in the

same spirit as our results. Furthermore, even though a direct comparison of the two

models are difficult, a possible implication of our result could be that Billot et. al.

[1] result may be robust to the introduction of incentive constraints. Another related

paper is Mukerji [33] that shows that in the investment hold-up model ambiguity

aversion can explain the existence of incomplete contracts. The incomplete or null

contract is where the ex post surplus is split equally between the two parties and they

thus agree on the ranking of the states. To implement more efficient investments, a

contract has to introduce more variation in ex-post payoffs which would also result

in disagreement among the two parties; and when ambiguity is sufficiently large any

such contract would be dominated by the null contract.

Matthews [32] and Maskin and Riley [30] study auctions with risk averse bidders.

A more detailed comparison of our paper with Maskin and Riley [30] is given in

section 2.7.

Finally, there is also a strand of literature that studies robust mechanism design.

(See for example Bergemann and Morris [4], Ely and Chung [9], and Heifetz and

Neeman [19]). Even though there is some similarity between that literature and our

work here (as we, just like them, relax certain assumptions of the standard mecha-

nism design framework), it is important to point out that we differ significantly from

this literature. Standard mechanism design - in particular Bayesian implementation -

relies crucially on the underlying model being common knowledge. The focus of those

papers is to study mechanism design while relaxing (some of) the common knowl-
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edge assumptions. In contrast, we maintain throughout the standard methodological

assumption of considering the underlying model - that includes the modelling of the

ambiguity - to be common knowledge and we relax assumptions on the preferences

of the agents, in particular, we allow the agents to exhibit ambiguity aversion.

2.2 The Optimal Auction Problem

In this section we generalize the optimal auction problem by allowing the bidders

and the seller to have MMEU preferences (Gilboa and Schmeidler [14].) There are

two bidders and a seller. We assume that both the bidders and the seller have linear

utility functions. Bidders have one of a continuum of valuations θ ∈ Θ = [0, 1] . Let

Σ be the Borel algebra on Θ. Each bidder knows his true valuation but not that of

the other. The set ∆m
B is a set of probability measures on (Θ, Σ) with a correspond-

ing set ∆B of distribution functions. This set represents each bidder’s belief about

the other bidder’s valuation. Bidders believe that valuations are generated indepen-

dently, but they may not be confident about the probabilistic process that generates

the valuations. This possible vagueness in the bidders’ information is captured by

allowing for a set of priors rather than a single prior in this model.

The seller is also allowed to be ambiguity averse. The set ∆m
S is a set of probability

measures on (Θ, Σ) with a corresponding set ∆S of distribution functions. This set

represents the seller’s belief about the bidders’ valuations. That is, the seller believes

that bidders’ valuations are generated independently from some distribution in ∆S.3

Each bidder’s reservation utility is 0. As is standard, we assume that all of the above

is common knowledge.

3Formally the seller’s belief is the set of product measures µ × µ on the product space (Θ×Θ, Σ× Σ)
where µ ∈ ∆m

S , even though for notational simplicity, throughout the paper we continue to refer to the
seller’s belief simply as as µ ∈ ∆m

S . It is important, however, to keep this in mind, especially for a later
result (Proposition 2) which talks about the seller’s belief being in the interior of the set of the bidders’ set
of beliefs.
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We consider symmetric mechanisms where bidders make simultaneous reports. As

we show in section .1.1 of the appendix the revelation principle holds in this setting

so we restrict attention to direct revelation mechanisms. In the direct revelation

mechanism, each bidder is asked to report his type, where a report is some θ ∈ Θ.

The mechanism stipulates a probability for assigning the item and a transfer rule as a

function of reported types. Let x(θ, θ′) be the item assignment probability function

and t(θ, θ′) the transfer rule. The convention is that the first entry is one’s own

report, the second entry is the report of the other bidder.4

The seller’s problem is to find a mechanism (x, t) that solves

sup
(x,t)

[
inf

F∈∆S

∫∫
[t (θ, θ′) + t (θ′, θ)] dF (θ) dF (θ′)

]
(2.1)

subject to

(IC) infG∈∆B

∫
(x (θ, θ′) θ − t (θ, θ′)) dG (θ′) (2.2)

≥ infG∈∆B

∫ (
x(θ̃, θ′)θ − t(θ̃, θ′)

)
dG(θ′) for all θ, θ̃ ∈ Θ (2.3)

and,

(IR) inf
G∈∆B

∫
(x (θ, θ′) θ − t (θ, θ′)) dG (θ′) ≥ 0 for all θ ∈ Θ. (2.4)

The first inequality gives the incentive compatibility (IC) constraints, and the

second inequality gives the individual rationality (IR) or participation constraint.

These are the usual constraints except that the bidders compute their utility in the

mechanism using the MMEU rule. For example, the IC constraint requires that the

infimum expected utility a bidder of type θ gets reporting his type truthfully is at

4A word about notation before we proceed. Formally, one should have separate notation for reports, saybθ as opposed to θ, and define the mechanism in terms of reports, not types. Since the optimal mechanisms
we describe will all be incentive compatible, here and in several other places, we save on notation by
describing the mechanisms directly in terms of θ. We hope this departure from convention, however, will
cause no confusion.
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least as much as the infimum expected utility that he gets under reporting any other

type θ̃.

One way to think about the set of priors in the above formulation is a “subjective”

interpretation where preferences of the players are common knowledge, and the sets

are subjective representations of the uncertainty (as well as the aversion to this

uncertainty) players face about the stochastic process that generates the valuations.

Alternatively, one can think of an “objective” interpretation of the set of priors, in

which, players learn everything that they can learn about the stochastic process that

generates the types, but there are hard to describe factors that prevent them from

learning the process completely. The objective interpretation is more restrictive then

the subjective one for two reasons. First, when the set of priors is objectively fixed,

bidders ambiguity attitude is represented by the minimum functional only, which

may be viewed as extreme. Second, the objective interpretation makes sense when

both the seller and the buyers have the same set of priors (which is covered in our

framework), since the set of priors is assumed to be common knowledge.

Note that in our formulation, we differ slightly from Gilboa and Schmeidler since

we use infimum (supremum) instead of minimum (maximum); however, we continue

to refer to these preferences as maxmin since this is the standard terminology. At

the end of the next section we provide conditions on preferences and mechanisms

that will guarantee that the minimum over the sets of priors and an optimal auction

exist.
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2.3 Full Insurance auction

In this section we show that, when ∆m
S ⊆ ∆m

B , 5 a full insurance auction is always

in the set of optimal auctions and discuss when the seller can make strict gains by

switching to a full insurance auction. In what follows, for a given mechanism (x, t),

it will be convenient to define

q(x,t)(θ, θ
′) ≡ x(θ, θ′)θ − t (θ, θ′)

for all θ, θ′ ∈ Θ. So q(x,t)(θ, θ
′) is the payoff to type θ from truth telling in the

mechanism (x, t) when the other bidder reports θ′. When it is clear from the context

which mechanism we are referring to, we drop the subscript (x, t) and use q instead

of q(x,t).

We say that an event Θ̃ ⊆ Θ has positive measure if infµ∈∆m
S

µ
(
Θ̃

)
> 0 and zero

measure otherwise. Next, we formally define a full insurance auction.

Definition 1. A full insurance mechanism is one where the payoff of any bidder is

constant for any report of the competing bidder. That is (x, t) is a full insurance

mechanism if, for almost all θ ∈ Θ, q(θ, θ′) is constant as a function of θ′ ∈ Θ.

Next, we give the formal statement of the main proposition. All proofs are in the

appendix.

Proposition II.1. Suppose that the seller and the bidders are ambiguity averse, the

seller’s set of priors is ∆S and the bidders’ set of priors is ∆B with ∆S ⊆ ∆B. Let

(x, t) be an arbitrary incentive compatible and individually rational mechanism.

There is always a full insurance mechanism, also satisfying incentive compatibility

and individual rationality, that generates at least as much minimum expected revenue
5In particular, this covers two interesting cases. If ∆m

S is a singleton set, then the seller is ambiguity
neutral and the bidders are (weakly) ambiguity averse. On the other hand, if ∆m

S = ∆m
B , then both the

seller and the bidders are (weakly) ambiguity averse with a common set of priors.
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over the set of priors ∆S for the seller. Moreover if there exists some positive measure

event Θ̃ ⊆ Θ such that for all θ ∈ Θ̃,

inf
G∈∆S

∫
Θ

q(θ, θ′)dG(θ′) > inf
H∈∆B

∫
Θ

q(θ, θ′)dH(θ′) (2.5)

then (x, t) is not optimal. In fact, the seller can strictly increase his minimum

expected revenue over the set of priors ∆S using a full insurance mechanism.

To understand this result consider the case where the seller is ambiguity neutral,

i.e., ∆S = {F} . Let

∆ (θ) = arg min
H∈∆B

∫
Θ

q(θ, θ′)dH(θ′)

where for ease of exposition we assume that the minimum exists so that we write

min instead of inf6. In this case Proposition II.1 says that if a mechanism (x, t) is

optimal then F must be in ∆ (θ) for almost all θ ∈ Θ. Suppose to the contrary that

there exists a positive measure of types for which this is not true. Consider some

such type θ̃ for which F /∈ ∆
(
θ̃
)

. The seller can always adjust transfers of type θ̃, so

that type θ̃ under truth telling gets the same minimum expected utility that he gets

in the original mechanism in every state, and thus is fully insured against ambiguity

in the new mechanism. Furthermore, by construction, the difference between the

transfers in the new mechanism and the original mechanism has weakly positive

expected value7 for any distribution in ∆B. This is true because this difference has

zero expected value under ∆
(
θ̃
)

, the minimizing set of distributions in the original

mechanism, and strictly positive expected value under any other distribution, i.e.,

for distributions in ∆B −∆
(
θ̃
)
. Obviously, under truth telling, type θ̃ is indifferent

between the original mechanism and the new mechanism since he gets the same

minimum expected utility under both. More interestingly, no other type wants to
6See proposition II.2 below for conditions that guarantee that this assumption holds.
7Recall that these are transfers to the seller.
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imitate type θ̃ in the new mechanism. This is true since the original mechanism is

incentive compatible and imitation in the new mechanism is even worse given that

the difference in transfers has weakly positive expected value under any distribution

in ∆B. Moreover, by assumption, the seller’s distribution is not in the minimizing

set for the original mechanism, which means the additional transfers (to the seller)

must have strictly positive expected value under the seller’s distribution. Thus the

seller is strictly better off in the new mechanism, contradicting the optimality of the

original mechanism.

When the infimums and supremums in equations (2.1), (2.3) and (2.4) are replaced

with minimums and maximums, we can prove a stronger version of Proposition II.1.

The next proposition provides sufficient conditions for this.

Proposition II.2. Suppose the seller can only use mechanisms such that transfers

are uniformly bounded and suppose that ∆m
B ∪∆m

S is weakly compact and convex and

its elements are countably additive probability measures. Then the sets of minimiz-

ing priors in equations (2.1), (2.3), (2.4) and the set of optimal mechanisms are

nonempty.

The following corollary strengthens Proposition II.1 when the hypothesis of Propo-

sition II.2 holds.

Corollary II.3. Suppose that the hypothesis of Proposition II.2 holds. Let

∆min
S = arg min

G∈∆S

∫
Θ

∫
Θ

[t(θ, θ′) + t (θ′, θ)] dG (θ) dG (θ′) .

For any mechanism (x, t) , if there exists some positive measure event Θ̃ ⊆ Θ such

that for all θ ∈ Θ̃ and for all G ∈ ∆min
S ,∫

Θ

q(θ, θ′)dG(θ′) > min
H∈∆B

∫
Θ

q(θ, θ′)dH(θ′) (2.6)
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then the seller can strictly increase his minimum expected revenue over the set of

priors ∆S using a full insurance mechanism. Moreover, there is a full insurance

mechanism that is optimal for the seller.

Corollary II.3 is stronger than Proposition II.1 in two ways. First inequality

in (2.6) is checked only for the minimizing distributions for the seller (not all the

distributions in ∆S). Second, since an optimal mechanism exists a full insurance

auction is always optimal for the seller8.

In general there may be optimal selling mechanisms that are different from the

full insurance mechanism. On the other hand, if the seller’s belief F has strictly

positive density and if any prior that is close enough to F is in ∆B, then the set of

distributions that give the minimum expected utility will not include F unless the ex

post payoffs are constant. In this case the optimal auction must be a full insurance

auction. The next proposition states this observation.

Proposition II.4. Suppose that the seller is ambiguity neutral with ∆S = {F} where

F has strictly positive density. If there exists ε > 0 such that for any distribution

H on Θ, (1− ε) F + εH ∈ ∆B, then the unique optimal auction is a full insurance

auction.

In the next two sections we provide some applications of the results in this section.

2.4 Full insurance under ε-contamination

In this section we explicitly derive the optimal mechanism in the case of ε-

contamination when the seller is ambiguity neutral with ∆S = {F}. In ε-contamination

we assume that the seller’s distribution F is a focal point, and bidders allow for an

8In contrast, Proposition II.1 says that the seller can get arbitrarily close the supremum in equation
(2.1) using a full insurance mechanism.
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ε-order amount of noise around this focal distribution. We make the common as-

sumptions that F has a strictly positive density f and,

L (θ) = θ − 1− F (θ)

f (θ)

is strictly increasing in θ. We construct ∆B as follows:

∆B = {G : G = (1− ε) F + εH for any distribution H on Θ}

where ε ∈ (0, 1]. By Proposition II.4 we know that the unique optimal mechanism

for the ε-contamination case is a full insurance mechanism. This implies that we

can restrict ourselves to full insurance mechanisms in our search for the optimal

mechanism.

Let (x, t) be a full insurance mechanism i.e., q(θ, θ′) is constant for all θ′. Let

u (θ) = q(θ, θ′). Next we define some useful notation. Let

X (θ) =

∫
x(θ, θ′)dF (θ′),

Xmin (θ) = inf
G∈∆B

∫
x(θ, θ′)dG(θ′),

Xmax (θ) = sup
G∈∆B

∫
x(θ, θ′)dG(θ′).

Using the IC constraint we obtain,

u (θ) = inf
G∈∆B

∫
(x (θ, θ′) θ − t (θ, θ′)) dG (θ′) ≥ inf

G∈∆B

∫ (
x(θ̃, θ′)θ − t(θ̃, θ′)

)
dG(θ′)

(2.7)

= u
(
θ̃
)

+ inf
G∈∆B

∫ (
θ − θ̃

)
x(θ̃, θ′)dG(θ′).

If θ > θ̃ then

u (θ) ≥ u
(
θ̃
)

+
(
θ − θ̃

)
Xmin

(
θ̃
)

. (2.8)
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Exchanging the roles of θ and θ̃ in (2.7) we obtain

u
(
θ̃
)
≥ u (θ) + inf

G∈∆B

∫ (
θ̃ − θ

)
x(θ, θ′)dG(θ′)

Again if θ > θ̃ then

u
(
θ̃
)
≥ u (θ) +

(
θ̃ − θ

)
Xmax (θ) . (2.9)

Now observe that u is non-decreasing since, for θ > θ̃ by the IC constraint we have,

u (θ) ≥ u
(
θ̃
)

+
(
θ − θ̃

)
Xmin

(
θ̃
)
≥ u

(
θ̃
)

.

The next lemma is useful in characterizing the optimal auction.

Lemma II.5. The function u is Lipschitz.

Since u is Lipschitz, it is absolutely continuous and therefore is differentiable

almost everywhere. For θ > θ̃ we use (2.8) and (2.9) to obtain,

Xmax (θ) ≥
u (θ)− u

(
θ̃
)

θ − θ̃
≥ Xmin

(
θ̃
)

.

We take the limit as θ̃ goes to θ to obtain for almost all θ that,

Xmax (θ) ≥ ∂u

∂θ
≥ Xmin (θ) .

Since an absolutely continuous function is the definite integral of its derivative,∫ θ

0

Xmax (y) dy ≥ u (θ)− u (0) ≥
∫ θ

0

Xmin (y) dy. (2.10)

Equation (2.10) suggests that the auctioneer may set,

u (θ) =

∫ θ

0

Xmin (y) dy (2.11)

and

t (θ, θ′) = x (θ, θ′) θ −
∫ θ

0

Xmin (y) dy, (2.12)
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since for a given allocation rule x, transfers as in (2.12) are the highest transfers

the auctioneer can set without violating (2.10). Of course, (2.10) is only a necessary

condition and for a given allocation rule x, the resulting mechanism (x, t) may not be

incentive compatible. Fortunately, this difficulty does not arise if the allocation rule

x is chosen optimally for transfers given as in (2.12). In other words, our strategy is

to find the optimal allocation rule x, assuming that the transfers are given by (2.12),

and then show that the resulting mechanism, (x, t) is incentive compatible.

For transfer function given by (2.12), we can rewrite the seller’s revenue as,

R = 2

∫ 1

0

∫ 1

0

(
θx (θ, θ′)−

∫ θ

0

Xmin (y) dy

)
dF (θ′) dF (θ) .

Using integration by parts we obtain,

R = 2

∫ 1

0

θX (θ) f (θ) dθ −
∫ 1

0

(1− F (θ)) Xmin (θ) dθ. (2.13)

Define,

Lε (θ) = θ − (1− ε)
1− F (θ)

f (θ)
,

and let r ∈ (0, 1) be such that Lε (r) = 0.

The following proposition characterizes the optimal allocation when transfer func-

tion is given by (2.12).

Proposition II.6. For any θ and θ′, let

x (θ, θ′) =


1 if θ > θ′ and θ ≥ r

1/2 if θ = θ′ and θ ≥ r

0 otherwise

and let t be given by (2.12). The mechanism (x, t) defined this way is the unique

optimal mechanism for the seller.
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It is interesting to note economic implications of the above analysis for revenue

and efficiency. First, the seller’s revenue increases as ambiguity increases. To see

this note that under the above allocation rule Xmin (θ) = (1− ε) X (θ) for all θ < 1.

Plugging this into the revenue expression (2.13) we see that the revenue increases as

ε increases. In fact, when ambiguity becomes extreme, i.e., as ε approaches to one,

the seller can extract all the surplus.

Second, an increase in ambiguity helps efficiency. To see this note that Lε shifts

up as ε increases and since Lε (θ) is an increasing function of θ, the cutoff type r

decreases as ε increases. Again in the case of extreme ambiguity the seller does not

exclude any types, and full efficiency is achieved.

Finally, a natural question to ask at this stage is how to implement the optimal

mechanism described above. There are several auctions that implement the mecha-

nism, and we will describe one such auction here. Consider an auction where bidders

submit bids for the object and the allocation rule is the usual one, namely, the high-

est bidder who bids above the reservation value r obtains the object. The payment

scheme is as follows: the winning bidder pays to the auctioneer an amount equal to

his bid, and all bidders (regardless of having won or lost) who have bid above the

reservation price receives a gift from the seller. For a bidder who bids, say, b, (where

b is greater than r), the amount of the gift is given by S(b) = (1− ε)
∫ b

r
F (y) dy. In

this auction, the equilibrium strategy of a bidder with valuation θ is to bid his valu-

ation. To see this note that the allocation rule is the same as the one in Proposition

II.6. Moreover, a bidder who bids θ pays θ− (1−ε)
∫ θ

r
F (y) dy if he wins the auction

and −(1− ε)
∫ θ

r
F (y) dy if he loses the auction, and these transfers are also the ones

in Proposition II.6. Since reporting one’s true value is incentive compatible in the

optimal mechanism, it is also optimal to bid one’s true value in this auction as well.
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2.5 The First and Second Price Auctions

Lo [28] showed that the revenue equivalence result does not hold when bidders are

ambiguity averse. In particular, the first price auction may generate more revenue

than the second price auction. In this section we show that the first price auction is

in general not optimal either9. In fact under rather general conditions, the first and

second price auctions, as well as many other standard auctions are not optimal in

this setting. The following proposition gives a weak condition on ∆B that is sufficient

for the non-optimality of a large class of auctions including the first and second price

auctions.

Proposition II.7. Suppose that ∆S and ∆B are weakly compact and convex with

elements that are countably additive probability measures. Suppose that for any G ∈

∆S there exists some distribution H ∈ ∆B such that H first-order stochastically

dominates G. Now, if under some mechanism (x, t) with uniformly bounded transfers,

there exists a positive measure subset Θ̃ ⊆ Θ such that for all θ̃ ∈ Θ̃, q(θ̃, θ) is weakly

decreasing in θ and q(θ̃, θ′) < q(θ̃, θ′′) for some θ′, θ′′ ∈ Θ then (x, t) is not optimal.

To apply the above proposition to the first and second price auctions, we need to

show that in the direct mechanisms that correspond to these auction forms q(θ̃, θ)

is weakly decreasing in θ and q(θ̃, θ′) < q(θ̃, θ′′) for some θ′, θ′′ ∈ Θ for a positive

measure subset Θ̃ ⊆ Θ. First note that the payoff q(θ̃, θ) of all types of a bidder is

weakly decreasing in the report of the other bidder. Next consider a type θ̃ that

is greater than the reserve price and less than one which is the highest possible

valuation. The payoff of θ̃ is strictly larger if the other bidder reports a type θ′ that

is less than θ̃ as opposed to a type θ′′ more than θ̃. This is because in both of these

9When the type space is discrete, neither the first nor the second price auction is the optimal auction
for reasons completely unrelated to the issues being studied in this paper.
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auctions if the other bidder reports more than θ̃ the payoff of θ̃ is zero, but if the

other bidder reports less than θ̃ the payoff of θ̃ is strictly positive. This shows that

q(θ̃, θ′) < q(θ̃, θ′′). Therefore under the hypothesis of Proposition II.7 the first and

second price auctions are not optimal.

2.6 Ambiguity Averse Seller

In this section we first provide a result that is in some sense a counterpart of

Proposition II.1.

Proposition II.8. Suppose that the seller is ambiguity averse, with a set of priors

∆S and the bidders are ambiguity neutral with a prior F ∈ ∆S. For every incentive

compatible and individually rational selling mechanism (x, t) there exists an incentive

compatible and individually rational mechanism
(
x, t̃

)
which provides deterministi-

cally the same revenue to the seller, i.e. t̃(θ, θ′)+ t̃(θ′, θ) is constant for all θ, θ′ ∈ Θ.

Moreover if,

inf
G∈∆S

∫∫
[t(θ, θ′) + t(θ′, θ)] dG(θ)dG(θ′) <

∫∫
[t(θ, θ′) + t(θ′, θ)] dF (θ)dF (θ′)

then
(
x, t̃

)
strictly increases the minimum expected revenue of the seller over the set

of priors ∆S.

When an optimal mechanism exists, Proposition II.8 implies that an auction that

fully insures the seller must in the set of optimal mechanisms. Eso and Futo [10]

prove a similar result for auctions with a risk averse seller in independent private

values environments with risk (and ambiguity) neutral bidders.

The basic idea of the proof is simple. For any individually rational and incen-

tive compatible mechanism (x, t) , one can define a new mechanism
(
x̃, t̃

)
where the
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allocation rule x̃ is the same as x, but with the following transfers:

t̃(θ, θ′) = T (θ)− T (θ′) +

∫
T (i)dF (i)

where

T (θ) =

∫
t(θ, θ′)dF (θ′).

Note that in the new mechanism t̃(θ, θ′) + t̃(θ′, θ) is always 2
∫

T (i)dF (i) which is

constant. It is straightforward to check that this mechanism is incentive compatible

and individually rational as well. The reason this mechanism works in both risk and

ambiguity settings is that, since the bidders are risk and ambiguity neutral
(
x̃, t̃

)
is

incentive compatible in either setting (risk or ambiguity) and provides full insurance

to the seller against both.

2.7 Comparison of Optimal Auctions with Risk Averse vs. Ambiguity
Averse Bidders

Matthews [32] and Maskin and Riley [30], henceforth, MR, relax the assumption

that bidders are risk neutral and replace it with risk aversion. Even though there is

some similarity between risk aversion and ambiguity aversion, the two are distinct

phenomena. In particular, an environment with risk-averse bidders gives rise to opti-

mal auctions that are different from the optimal auctions when bidders are ambiguity

averse. In this section we contrast our results with those in MR, to highlight this

distinction. To facilitate comparison, we assume, like MR, that the seller is risk and

ambiguity neutral. Bidders, on the other hand, are risk averse and ambiguity neutral

in MR and risk neutral and ambiguity averse in this paper.

MR define u(−t, θ) as the utility of a bidder of type θ when he wins and pays t,

and w(−t) as the utility when the bidder loses the auction (and pays t). Assuming



24

u(·) and w(·) to be concave functions, they note that if the auction mechanism is such

that the marginal utility u1 is different from w1, then keeping other things constant, a

seller can gain by rearranging the payments in such a way that the bidder’s expected

utility remains the same while the expected value of the revenue increases. They

note however, that providing this insurance can change the incentives of the bidders;

in particular when the marginal utility, u1 varies with θ, the seller can exploit this

to earn higher revenue by exposing all but the highest type to some risk, thus,

in effect, screening types better. MR define a mechanism called perfect insurance

auction where the marginal utility u1 is equal to marginal utility w1 for all types.

Their results show that in general the optimal auction is not perfect insurance, the

exception being the situation when bidders’ preferences satisfy the condition u12 = 0,

i.e. when the marginal utility u1 does not vary with θ. (See their discussion following

Theorem 11).

To contrast their result with ours, notice first that in our model, (using their

notation) u(−t, θ) = θ − t, and w(−t) = −t, so that u12 = 0, and more importantly,

the marginal utilities, when a bidder wins and when he loses are equal to each other

in all situations. (This is just restating the fact that we assume risk-neutral bidders

in our model). With ambiguity averse bidders, our results show that a full insurance

auction is always within the set of optimal auctions and in some situations it is the

uniquely optimal one. With risk-averse bidders, MR show that for the special case

when u(−t, θ) = θ− v(t) and w(−t) = −v(t), so that u12 = 0, the optimal auction is

a perfect insurance auction (given that v(.) is a convex function)10. Notice however,

that our full insurance auction is different from their perfect insurance auction, since

in a full insurance auction x(θ, θ′)θ−t(θ, θ′) is a function of θ only (i.e., does not vary

10Put differently, letting a and b be the payments when a bidder wins and loses the auction respectively,
MR show that convexity of v(.) implies that a = b under the optimal mechanism.
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with θ′), which means that the realized payoff when the bidder wins, θ − t(θ, θ′) is

the same as the realized payoff when he loses, −t(θ, θ′). Hence, the optimal auctions

under the two situations are different mechanisms even when preferences in their

model satisfy the restriction u12 = 0.

Finally, note that in their framework, perfect insurance auctions do become full

insurance auctions when preferences satisfy what they call Case 1. This is when

u(−t, θ) = U(θ − t) and w(−t) = U(−t), (with U a concave function) so that

equating marginal utilities implies equating utilities. However, in this situation, the

perfect insurance auction (and hence the full insurance auction) is revenue equivalent

to the second price auction (MR, Theorem 6). When U is strictly concave, both full

insurance and second price auctions generate expected revenue that is strictly less

than the expected revenue from the high bid auction (MR, Theorem 4 and Theorem

6; see in particular, the discussion at the bottom of page 1491). Hence, the full

insurance auction, which is the optimal mechanism under ambiguity aversion (in

some cases, as mentioned above, is the uniquely optimal mechanism) is not the

optimal mechanism in the risk aversion framework.

2.8 Conclusion

We analyzed auctions a seller designs to maximize profit when agents might not

know the distribution from which bidders’ valuations are drawn. We have shown

that when bidders face more ambiguity than the seller, an auction that provides full

insurance to the bidders is optimal and sometimes it is uniquely optimal. We have

also shown that standard auctions such as the first and the second price auctions

with reserve prices, are not optimal in this setting. We have also shown that when

the bidders are ambiguity neutral, but the seller ambiguity averse, it is the seller who
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is perfectly insured.

These methods developed here maybe be used in other mechanism design prob-

lems with incomplete information in which agents are ambiguity averse. We believe

that the results in this paper will naturally extend to these situations, especially in

environments where the payoffs are quasilinear. For example in a bargaining prob-

lem (see Myerson [35]) we conjecture that the most efficient (from the mechanism

designer’s point of view) mechanism will require that some agent be fully insured

against the ambiguity. In any case, and unlike the standard unique prior environ-

ment, the transfer and not just the allocation rule will play a crucial role in the

design of the optimal mechanism in the presence of ambiguity. We hope to explore

these extensions in future research.



CHAPTER III

Causal Coherence

3.1 Introduction: Why would people suffer causal confusion?

Two potential CEOs, Sam and Quincy, are equally talented leaders and equally

adept at picking successful companies on the stock market. They see the same data

and they pick the same winners in the market. Sam has a chance to take over a

company. His theories of what makes a company successful have all been confirmed,

so he knows what choices to make. However, he’s a failure. At the same time, Quincy

takes over a company. Quincy’s theories have also been confirmed, so he knows what

choices to make: but his choices are not the same as Sam’s, and Quincy is a success.

Why would Quincy make different choices after seeing the same data, and why would

Quincy succeed where Sam failed?

The difference between playing the stock market and running a company is the

difference between prediction and intervention. To make money on the stock of a

company, on only needs to predict what will happen to the company. If Sam and

Quincy make the different causal inferences from the same data, they may disagree on

counterfactuals, though they are equally good at predicting the future of a company

that they both observe.

This is an example of agents with different causal models that may arise from, and

27
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be consistent with, the same data. In this case, agents with the same information

and same preferences can make different choices. Agents may have the same prefer-

ences and information, but differ with respect to their causal interpretations of that

information. Agents could be confused for a variety of reasons. Here I provide one:

their models are not identified, and they hazard a guess. There is no missing data

nor variables, and yet they draw different conclusions and make different choices.

The framework of causal Bayesian networks provides us a reasonable set of theories

that agents might believe given common data.

In section 3.2, I describe causal bayesian networks. Causal Bayesian networks

are mathematical objects that can represent probabilistic and causal information.

Causal Bayesian Networks represent variables as nodes on a network connected with

causal arrows, and have a associated family of conditional distributions. They are

used extensively in artificial intelligence and statistics [40]. In statistics, they are used

by model makers to estimate causal effects. In artificial intelligence, they are used to

represent a mental model of a problem. I describe this framework, which allows me

to describe an agent’s optimal behavior when endowed with such a model. I describe

what it means for an agent to be causally coherent with respect to data (i.e., have

a causal model consistent with the data, and act in a manner consistent with it).

These agents are rational in the sense that their beliefs, actions, and data all logically

cohere. They are not aware of alternative models, however—this captures the idea

that people may be inductive, that is, have a theory about how something works and

act in accordance with that theory until they are disabused of it. Alternatively, it

can be said that they confuse evidence consistent with their model with evidence for

their model.

Causal Bayesian Networks emerge in the utility representation provided in section
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3.3, which, given agent’s choices over interventions and bets on outcomes, allows one

to construct a utility function, probability distributions, and causal structure which

rationalize those choices. This representation is an application of the representation

theorem in Karni05 [23], which is a utility representation in the Savage style without

reference to a state space. I provide an additional axiom of choice which provides for

the causal Bayesian network. The version in this section provides for a case when

there are two variables.

In section 3.4, I provide two applications of the causally coherent agent. I first

show a decision problem in which agents agree on the data and have the same pref-

erences, but make different choices. Then, I introduce causally coherent equilibria

to investigate interactions of agents with different causal models. Causally coherent

equilibria arise from considering agents with different causal models of the same in-

formation. Causally coherent equilibria are, in general, short-run phenomena; they

arise from the different understandings of a phenomenon that can be settled when

the right experiment is run. Agent behavior will sometimes implicitly run that ex-

periment. Causally coherent equilibria are therefore appropriate for irregular events

or the initial stages of a repeated game. I apply causal coherence to an auction, and

find the causally coherent equilibrium, as if between Sam and Quincy above. The

auction yields a result similar in kind to the winner’s curse. Why? Consider how one

nullifies the curse: by constructing one’s opponent’s information by mapping from

the bid to data. Since Sam and Quincy draw different inferences from the same data,

they, conversely, map the same inference to different data. In the presence of causal

disagreement (and ignorance of it), Sam and Quincy cannot correct for the winner’s

curse; the chain is broken, and the winner will suffer a ‘causal curse.’

In section 3.5, I discuss the cognitive science evidence for the value of such a
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model, the role of rationality in causal coherence, and some possible extensions to the

model. The first extension would use causal models to explain apparent preference

differences in a median voter setting. The second extension would construct agents

who are ambiguity averse in the sense of El61 [8], who treat causal ambiguity in a

manner similar to GiSc89’s [14] Maxmin expected utility agents. The third would use

this framework to construct agents who act in accordance with QuattroneTversky84’s

[42] empirical finding that people attribute causation to correlation.

I conclude in section 3.6.

3.2 Background in Causal Bayesian Networks

Causal Bayesian Networks are a way of representing causal models. A causal

model is a model of the internal workings of some phenomenon that the agent con-

fronts. For example, the phenomenon could be “the firm,” and the causal model

could describe what causes a firm to be a success or a failure. The agent observes a

cross-section of firms in the world, some of which were successes and some failures,

and may observe other characteristics of these firms. Given these observations, she

constructs a theory (a causal model) of how characteristics of the firms determine

success.

Suppose the agent has the opportunity, after constructing her model, to manipu-

late the firm by changing one or more characteristics. (One such manipulation would

be replacing the CEO.) The agent’s causal model of the phenomenon provides, given

the agent’s observations about the firm, a forecast for the outcome of each of possi-

ble manipulations. Given these predictions, the agent can decide how to optimally

manipulate the firm.

The goal of this framework is to provide a set of reasonable causal models that
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the agent might consider in this setting: when she is called upon to intervene on an

arbitrary phenomenon but her model is not identified in a statistical sense. When the

correct model is not identified, then the set of possible models is infinite. I would like

to make minimal, reasonable assumptions on the agent’s cognition of the phenomenon

to construct a more tractable, finite set of models. I suppose, given evidence from the

cognitive science literature and intuitive appeal of the framework, that the finite set of

causal Bayesian networks that are consistent with the data provides a good estimate

of the set of reasonable models the agent might consider. Below, I describe causal

Bayesian networks. As described by SlomanLagnado04 [48]: “A formal framework

has recently been developed based on Bayesian graphical probability models to reason

about causal systems (Spirtes93 [49]; reviewed in Pearl00 [40]). In this formalism,

a directed graph is used to represent the causal structure of a system, with nodes

corresponding to system variables, and direct links between nodes corresponding

to causal relation[ships].” This presentation follows Pearl00 [40]. In the discussion

section I discuss the cognitive science evidence regarding these structures.

Briefly, causal Bayesian networks are graphs of directed, causal relationships

among variables in a phenomenon, and a mapping from the observed joint data

about the phenomenon to particular relationships among variables. The set of these

relationships are not unlike structural equation models, so with a brief introduction

they should look familiar.

The mapping from these network graphs to particular relationships, that is, mov-

ing beyond knowing X causes Y to predicting what happens to Y when X changes,

is based on a few key assumptions. The first key assumption is that no variables are

excluded. The agents suppose that what they see is the complete phenomenon they

have to work with. The second key assumption is that relationships are acyclic: that
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is, that if X causes Y, then Y does not cause X. This is essentially the codification of

an assumption that agents are not good at understanding feedback loops in arbitrary

systems.

This section proceeds in three parts. First, the components of the causal Bayesian

network are introduced and defined. Second, I describe, given a causal Bayesian net-

work of a phenomenon, the effect of manipulations or interventions on phenomena,

and hence what an agent will believe will happen for each of her available actions.

One typically understands causality as being revealed under some kind of inter-

ventionist experiment[18] and this section describes what the outcome of such an

experiment is given a causal Bayesian network. Third, I construct the set of ‘rea-

sonable’ causal models from minimal assumptions about the agent’s cognition of the

phenomenon. These assumptions follow Spirtes93 [49] and Pearl00 [40].

Z

Y

X

Figure 3.1: A causal structure

3.2.1 Causal Bayesian Networks

Let V be a set of random variables with support supp(V) =
∏

V ∈V supp(V ). Let

F be a joint distribution over V. For the firm example, Vfirms might be

{CEO skill S, firm quality Q, firm performance P, firm value V }

Define a directed acyclic graph as a collection of points (“nodes”) and lines with

arrowheads (“edges”) connecting some (possibly empty) subset of the nodes, and

suppose no series of arrows will lead a node to itself. (A series of arrows which lead

from a node to itself would be a cycle). Figure 3.1 depicts a directed acyclic graph.
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Define a causal structure C of V to be a directed acyclic graph, in which each node

corresponds to a distinct element of V, and each link represents a direct functional

relationship among the corresponding variables [40]. Figure 3.1 depicts a causal

structure over the variables {X, Y, Z}. if X causes Y and Y causes Z, but X does

not directly cause Z. (If you believed this about X,Y , and Z, you would say that X

is a good instrument.)

Define a C-causal parent of V ∈ V as any variable W ∈ V such that there is

an arrow in C which runs from W to V . The C-causal parents of a variable are the

direct causes of that variable under structure C. In Figure 3.1, Y is a C-causal parent

of Z, while X is not a C-causal parent of Z. Define PaC(V ) as the (possibly empty)

set of all C-causal parents of V .1

Let ∆(V ) be the set of all distributions over V ∈ V. Let a causal probability

function ΦC
V be a mapping from the C-causal parents of V to the set of distributions

over V .

ΦC
V : supp(PaC(V )) → ∆(V )

The causal probability function answers the following question: “Suppose the vari-

ables PaC(V ) achieved the values ~pa. What distribution would they induce on V ?”2

One example of a causal probability function is a Savage act [46], that is, a

choice over lotteries. The agent is asked to choose lotteries which deliver different

distributions over money. The choice over lotteries represents a function that assigns,

for each value of Lottery, a distribution over all possible dollar winnings.

Another example of a causal probability function is the classic econometric linear

regression. Consider the regression Y = α + βX + ε, where ε is distributed normally

1Other familial relationships can be similarly defined, namely C-causal child, ancestor, and descendant.
2I abuse notation slightly by supposing that, since ΦV (PaC(V )) assigns a distribution over V , that

ΦV (v|PaC(V )) is that distribution (note the v).
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with mean zero and variance σ. Suppose that regression properly captured causality.

Then:

ΦY (X = x) = Normal(α + βx, σ)

In this sense, that regression represents the claim that setting X to x will induce

a normal distribution over Y with appropriate mean and variance. Let us consider

that interpretation carefully. As said above, here causal effects are stochastic: the

effect of changing X may not be a fixed change in Y , but rather a draw from a new

distribution. This is not the interpretation usually given to regressions: typically,

the “error term” represents omitted variables and the true effect is supposed to be

deterministic. That interpretation can be brought into this framework by including

the “error term” explicitly as an additional variable:

ΦY (X = x, ε) = α + βx + ε

Φε(∅) = Normal(0, σ)

The implications of omitted variables on behavior are excluded from this paper,

although this is clearly interesting and worth developing in other work. But in this

paper, I wish to highlight disagreement that can result without missing variables.

Now for the definition of a causal Bayesian network:

Definition 2. A causal Bayesian network is a pair M =
{

C, Φ̂C

}
consisting of a

causal structure C and a set of causal probability functions Φ̂C =
{
. . . ΦC

V . . .
}
, one

for each variable V ∈ V.3

An example of a causal Bayesian network can be brought to the earlier example

of the firm.

Vfirms = {CEO skill S, firm quality Q, firm performance P, firm value V }
3Adapted from Pearl00 [40].
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One causal structure S over those variables is represented by Figure 3.2, which

represents the claim that Skill causes Quality, both Skill and Quality cause Perfor-

mance, and Performance alone causes Value. This embeds classic causal claims: for

example, that changing Performance has no effect on either Skill or Quality.

p

q

s
v

Figure 3.2: Causal structure S

One could then write down a kind of structural equation model describing this

system. A typical structural equation model of this system would look as follows,

supposing the εs were error terms normally distributed around zero and the βs linear

coefficients.

S = βS,0 + εS

Q = βQ,0 + βQ,1S + εQ

P = βP,0 + βP,1S + βP,2Q + εP

V = βV,0 + βV,1P + εV

The causal Bayesian Network allows for a more general relationship between the

variables and their causes. Instead of distributions around the means of the parent

variables, the distributions can be arbitrary:

S ∼ ΦC
S

Q ∼ ΦC
Q(S)

P ∼ ΦC
P (S, Q)

V ∼ ΦC
V (P )
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Note that this allows for a different distribution on Q, for example, for each value

of S.

I claim the causal Bayesian network provides a complete causal model of the

phenomenon represented by the variables V. It says what characteristics cause other

characteristics in the phenomenon and, stochastically, how much one characteristic

causes another.

3.2.2 Intervention actions and causal Bayesian Networks

Sam and Quincy in the opening example took over a firm and replaced the CEO

with themselves. This disturbs the otherwise stable system: it takes a firm from the

population, out of its current context, and changes or manipulates or intervenes on

it.

Definition 3. A intervention on variables W ⊆ V is the setting of variables W

from some current values ~w to some set of values ~w′. The variables W will be called

the intervention variables, and ~w′ the intervention values, and variables V −W the

non-intervention variables.

Pearl00 [40] denotes the act of setting the intervention variables, appropriately

enough, as do(W). In the case of the firms, an intervention might be an agent

replacing the skill of the CEO or changing the quality of the firm.4

An intervention breaks at least some of the current causal relationships that exist

in the system at rest. Consider a barometer and the weather: the weather causes

the barometer to change, and there is an observable, stable, natural, and stochastic

steady state that {weather, barometer} exist in: the weather and the barometer have

some joint distribution. Now, suppose I intervene and squeeze the barometer. Now

4“Interventions” are equivalent to “manipulations” in the econometrics literature.



37

the causal relationship between the weather and the barometer is broken: whatever

causal influence the weather had on the barometer has been usurped by my hand.

The phenomenon has been pushed out of its natural state, and now the distribu-

tion over {weather, barometer} is new. . . but not wholly unrelated to the original

distribution. After all, the marginal distribution over weather continues unabated.5

The causal Bayesian network provides both which variables change and how much

they change. The algorithm to determine these is as follows.

Theorem III.1. Suppose a vector ~x is drawn from V, with entry xV corresponding

to variable V ∈ V. Suppose the intervention do(W = ~w) is performed. Let Y ⊆ V be

the set of all variables which are descendants of at least one variable in W. Let ~x′ be

the outcome vector of intervention. Then:

1. mV = wV ∈ ~w if V ∈ W,

2. mV = vV ∈ ~v if V ∈ V− (Y ∪W)

and otherwise, if V ∈ Y − W, then mV has a distribution. The distribution is

determined by:

F (Y\W|do(W)) =
∏

Y ∈Y\W

ΦY (y|paC(Y ) ⊂ ~m)

This states the following: that when the set W of variables are manipulated by

being set to particular values, those variables change to the new values (point number

1.) Other than those variables, only variables which are descendants of the variables

in W change. The descendant variables are those variables which are caused by

variables in W, or the variables which are caused by those variables, etc. Hence,

non-descendant variables which are also not in W do not change (point number 2.)

Finally, the causal Bayesian network delivers what those descendant variables change
5The weather/barometer example is in both DruzelSimon93 [6] and Pearl00 [40].
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to. The probability of a selection of variables, conditional on a particular variable,

can be constructed by chaining the relevant conditional distributions. For example,

f(x, y|z) = f(x|y, z)f(y|z)

I will illustrate the all the objects discussed so far in this framework with the

investor example: suppose a CEO is taking over a firm and investors are trying to

forecast what will happen to the value of this company when she takes over.

Here I suppose for simplicity that firms are defined by three only values:

1. S, the skill of the CEO (“she is a talented manager”);

2. Q, the quality of the firm (“quality of the product this firm produces”);

3. V , the value of the firm (“the current market assessment of the value of this

firm”)

So V = {S, Q, V }. Suppose investors know the skill of the new CEO is some level

sc. Then the investors are trying to forecast the effect on V of do(S = sc).

One conjecture is that CEO skill and firm quality create value and, in addition,

CEO skill causes firm quality: a good CEO causes the firm to be better managed

and create more or better output. The causal structure S which represents that

conjecture is depicted in Figure 3.3(a).

v

q

s

(a) With-
out Inter-
vention.

v

q

s

(b) An In-
tervention
on S

v

q

s

(c) An In-
tervention
on Q

Figure 3.3: Directed Acyclic Graphs representing S

S fully captures the causality that the theory puts forth. What is the investor’s

problem? The investor is trying to forecast the effect on V of an intervention on
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S. Figure 3.3(b) represents that intervention: one would expect both Q and V to

change. How much do they change? Suppose the investor’s causal relation S was

augmented with a set of parameters Φ̂S (i.e., the S-causal probability functions):

Φ̂S =
{
ΦS

S (s), ΦS
Q(q|S = s), ΦS

V (v|S = s, Q = q)
}

What will be the distribution of Q under do(S = sc)? Q will be distributed

according to ΦQ(q|S = s′):

Fdo(S=sc)(q|sc) = ΦS
Q(q|S = sc)

This follows the original definition of the causal probability function.

In calculating the distribution over V there is a direct effect through the fact that

S causes V , and an indirect effect, from the fact that S causes Q causes V.

Fdo(S=sc)(v|s) = ΦS
V (v|sc, q)Φ

S
Q(q|S = sc)

For comparison, what if the investors were solving a different problem: one in

which there was a known exogenous change in quality Q (depicted in Figure 3.3(c)).

Then, under S, the investors would expect only V to change. The missing arrow (as

per Pearl’s convention) represents the fact that the intervention in V interrupts one

of the existing causal relationships: the effect of s on q.

Suppose the initial values of V, before intervention, are ~v = {sk, qk, vk}. The

distribution of S would be atomic: S = sk. On the other hand, the distribution of V

would be defined by:

Fdo(Q=q′)(v|s) = ΦS
V (v|sk, q

′)

Now suppose further that the observer intervened on W′, but had not observed

sk. The distribution over V that the observer would expect would therefore need
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to incorporate the observer’s ignorance over the true value of sk. In that case, the

distribution this observer would expect to see over V would be:

F ′
do(W=~w)(v) =

∑
s

ΦS
V (v|s, q′)ΦS

S (s)

3.2.3 The set of reasonable models

A restatement of the goal of this framework: to construct, for each {V, F} pair,

a set M of
{

C, Φ̂C

}
pairs that are ‘reasonable’ for the agent to believe given {V, F}.

First, I show what data (F ) are generated by a particular causal Bayesian net-

work. Then one can ask the question: What other causal Bayesian networks could

generate those same data? The answer to that question, coupled with assumptions

of minimalism and stability (which I explain below) defines the set of reasonable

models.

Mapping from causal Bayesian networks to data:

Lemma III.2.
{

C, Φ̂
}

defines a unique distribution F over supp(V), where:

1. dF (V = ~v) =
∏

V ∈V dΦV (v|paC(v)) ,

2. paC(V ) be an associated instance of PaC(V ); i.e., paC(V ) ∈ supp(PaC(V )),

3. and dΦV (v|~w) is the pdf at v associated with ΦV (paC(V ))

Proof. Without loss of generality, suppose there are n variables in V, and they are

ordered such that parents have lower indices than children. That is, for all Vi, Vj ∈ V,

if Vi ∈ Pa(Vj) then i < j. Since there are no cycles, this is well-defined. Suppose

that there are n variables in V. Then let f be the joint probability density function

(and used to represent marginal density functions). Then it must be the case that

dF (vj|V0, . . . , Vj−1) = dΦj(Vj|pa(Vj)). This is true by the definition of a causal

probability function: any time that Pa(Vj) = pa(Vj), the distribution Φj(Vj|pa(Vj))
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is induced on Vj. When the parents of Vj have values pa(Vj), then the distribution

Φj(Vj|pa(Vj)) is assigned to Vj. No other variables affect the distribution of Vj, and

by virtue of the ordering, Pa(Vj) ⊆ {Vk, . . . , Vj−1}.

The repeated application of Bayes’s Rule demonstrates the equivalence claimed

in the lemma.

dF (v1, v2, . . . , vn) = dF (vn|v1, . . . , vn−1)dF (v1, . . . , vn−1)

= dΦn(vn|pa(Vn))dF (v1, . . . , vn−1)

= dΦn(vn|pa(Vn))dF (vn−1|v1, . . . , vn−2)dF (v1, . . . , vn−2)

= dΦn(vn|pa(Vn))dΦn−1(vn−1|pa(Vn−1)dF (v1, . . . , vn−2)

. . .

=⇒ dF (v1, v2, . . . , vn) =
∏

{i|1≤i≤n}

dΦi(vi|pa(Vi))

To take a causal relation C and a joint distribution F , and construct Φ̂ which is

consistent with both, is the act of calibrating the causal structure to data, or, cali-

brating the causal Bayesian network. Namely, suppose that the data F is observed.

Now for each ΦV , assign the following:

ΦV (pa(V )) = F (V |pa(V ))

For a C-exogenous variable V (for which Pa(V ) is empty), the appropriate calibration

is that ΦV = F (V ), that is, simply the marginal distribution, conditional on nothing.

By this mechanism, for a given F and C, the Φ̂ is unique [40]. However, it is not

the case that for every C with the appropriate variables can a Φ̂ be constructed. If

an F exhibits a Φ̂ relative to C, then it is said that F is Markov relative to C. This is
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important in statistical modeling because it is “a necessary and sufficient condition

for a DAG C to expalin a body of empirical data produced by F [40].”

A graph C represents F if the following is true: For every two variables X and

Y in V, if X and Y are independent or conditionally independent, given any set of

other variables in V, then they are not connected by an edge, otherwise they are.

And, for every two variables X and Y , if they are independent, then there must not

be one path of arrows running from one to the other.

This is best illustrated with an example. Suppose V = {X, Y, Z} and F is such

that Y renders X and Z conditionally independent, but X and Z are otherwise

dependent in the data. Then the following graphical configurations are possible:

X
Y

Z X
Y

Z X
Y

Z

Figure 3.4: Directed Acyclic Graphs that are compatible with F

X
Y

Z X
Y

Z

Figure 3.5: Directed Acyclic Graphs that are incompatible with F

Figures 3.4(a)-3.4(c) are all compatible with F . Figure 3.5(a) is rejected because

X and Z are conditionally independent given Y , which suggests that any effect X

has on Z goes through Y , unless by mere coincidence they cancel each other out (that

such coincidences are ruled out is the assumption of what Pearl calls stability.) It is

also ruled out since the extra branch is not needed to generate appropriate causal

probability functions, which is ruled out by minimalism (if two models explain the

same data, than the less complicated should be preferred.) Figure 3.5(b) is ruled

out because if X and Z have no, even indirect, causal effect on each other than they
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should be completely independent in the data (recall, I suppose there are no omitted

variables.)

So the sets of causal probability functions associated with Figures 3.4(a)-3.4(c)

form the three reasonable models given F .

The set of reasonable models is characterized by this theorem, by PearlVerma90

[50]:

Theorem III.3. (Verma and Pearl). Two DAGs are observationally equivalent if

and only if they have the same skeletons and the same sets of v-structures, that is,

two converging arrows whose tails are not connected by an arrow.

3.2.4 Causal Coherence

With regard to the CEO-replacement problem, consider an investor IS who be-

lieves the causal relation S. S states that skill causes quality (depicted in Figure

3.3(a) and discussed in the previous section). Taking her causal model to be correct,

she acts rationally. This is defined as causal coherence.

Definition 4. An agent i is causally coherent with
{

Ci, Φ̂i

}
if she behaves ra-

tionally supposing
{

Ci, Φ̂i

}
were true.

A causally coherent agent believes that interventions into the phenomenon V will

be resolved according to
{

Ci, Φ̂i

}
.

Now I can precisely define agents who might agree about common information—

that is, the observed distribution F—but disagree about causal models. I define

agents who are causally coherent with a relation Ci and have calibrated it to some

distribution F as causally coherent with data.

Definition 5. An agent i is causally coherent with data F if she is causally

coherent with
{

Ci, Φ̂i

}
, where:
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1. Ci ∈ M(F )

2. Φ̂i results from Ci calibrated to F

Causal coherence can represent the behavioral claim that agents may confuse ev-

idence consistent with their model with evidence for their model. Suppose the agent

was taught the theory that (S, Φ̂) described the phenomenon V. Her observation

of the phenomenon would be consistent with her theory. This may naturally in-

crease her confidence in this theory, although it is in fact not evidence, because the

alternative model (Q, Φ̂′) fits the data equally well.

Now I have described the causal Bayesian network framework for representing

agents’ mental models of phenomena. This framework is appropriate for modeling

decision-making under causal ambiguity. In the following section, I provide a utility

representation of an agent from observing her choices.

3.3 A Utility Representation of the Causally Coherent Agent

In this section, I adapt Karni05’s [23] representation theorem to the causal model

setting to gain a utility representation for the causally coherent agent. Karni05 [23]

provides a framework in which a subjective expected utility representation emerges

without reference to a state space; instead, he uses an event space, which has a prob-

ability distribution the agent can manipulate. Note that both causal and evidential

decision theory (e.g. Jeffrey64 [20], Joyce99 [21]) are extensive literatures in decision

theoretic structures which allow for actions to manipulate probabilities over states,

in contrast to Savage and in a manner similar to Karni. However, those literatures

differ in that choice behavior in those cases do not completely determine utility func-

tions and probabilities in the sense of Savage (they have other advantages, however.)

I seek a representation in which choice behavior completely determines the utility



45

function and probabilities, and hence follow Karni’s model.

Let X and Y be random variables with finite support, and let Z be an arbitrary

variable among the two. These random variables will provide both actions and effects,

which in Karni’s framework take the place of states. Let Θ = supp(X) × supp(Y )

be the set of effects. Let do(Z = z) be the intervention action which sets variable Z

to some value z. The intervention induces a distribution on effect space:

do(Z = z) : supp(Z) → ∆(Θ)

where ∆(Θ) is a set of distributions over Θ. IZ is the set of intervention actions on

the variable X.

IZ = {do(Z = z)|z ∈ supp(Z)}

In addition, do(∅) is the non-intervention action, when the agent does not intervene

in the system and instead allows the system to run its natural course. Let the set of

all intervention acts be I = IX ∪ IY ∪ {do(∅)} with arbitrary element do. Let B be

the set of all functions b : Θ → R, where b is called a bet which yields a real-valued

payoff for each effect. Bets are exactly like Savage acts where effects play the role of

states, denoted here as bets instead to be consistent with Karni and to differentiate

them from the intervention actions, which have more of the spirit of the “activity”

the agent is engaged with. Denote (b−(x,y), r) as the bet which awards b in all effects

(x′, y′) 6= (x, y), and awards r in effect (x, y). In other words, it is the bet b, with the

(x, y)th entry replaced with r.

Agents will chose over (intervention, bet) pairs. The set of all (intervention,bet)

pairs will be denoted C = I × B, and the agent’s preference relation over C will be

denoted %.
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The agent might believe that under some action do, an effect (x, y) might be

impossible. This will be captured by the notion of null effects. An effect (x, y) is null

given do if (do, (b−(x,y), r)) ∼ (do, (b−(x,y), r
′)) for all r, r′. Following Karni, I assume

every effect is nonnull given some action. Let Θ(do; %) be the set of effects that are

nonnull given action do.

Recall the ongoing example of Investor IS and Investor IQ, who invest in a

company and have the opportunity to change the Skill of the CEO or the Quality of

the firm. The actions in this context are the various do(S) and do(Q), that is, the

act of intervening on the phenomenon in its natural state and setting the value of

Skill or Quality to a specified level. The set of effects Θ are all possible values (s, q)

that the phenomenon might attain. The decision maker is allowed to choose pairs of

interventions do(S = s), do(Q = q) and bets over (s, q) outcomes. These bets can be

thought of as representing the role of V in the firm model; the bets are, for example,

going short or long on the company’s stock. The payoff is determined jointly by the

CEO skill and firm quality.

When the choices of (intervention, bet) pairs are observed, and satisfy the axioms

below, then a representation emerges. This representation specifies

1. a unique utility function u over money (the bets), and

2. A unique set of probability distributions π that each intervention induces.

Karni’s original four axioms will deliver a representation with the properties above.

With my additional axioms 5 and 6, it can be determined whether the agent adheres

to the model XCY or Y CX, or perhaps neither. Causal coherence with, for example,

model XCY , has three additional requirements.

First of all, the intervention do(Z = z) fixes Z and induces a distribution over
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the other variable W . This means that causal coherence will require that that, for

all distributions induced on Θ by do(Z = z), the distribution puts zero probability

on effects (z′, w), for z′ 6= z. Axiom A5, the intervention axiom, will deliver this

requirement by rendering such impossible effects as null.

Second, if XCY then Y not CX. This means that causal coherence with XCY

will require that do(Y = y) and do(Y = y′) will induce the same distribution over

X. This will be delivered by axiom A6, the axiom of causal irreversibility.

Third, the overall joint distribution over Θ and the causal distributions will have

to satisfy P (x, y) = P (y|do(x))P (x). The joint distribution P (x, y) is π(x, y|do(∅)).

The distribution P (y|do(x)) is π(x, y|do(x)). And the distribution P (x) is π(x, y|do(y)) =

π(x, y′|do(y′)) ∀y, y′, by the previous axiom. The requirement that P (x, y) =

P (y|do(x))P (x) is not delivered axiomatically, and instead is left as a condition

that must be checked for causal coherence.

3.3.1 Axioms

Here are the axioms. Axioms 0-4 are from Karni05 [23]. Axiom 0 is a structural

axiom, and the rest are behavioral. The first two behavioral axioms are standard.

The third and fourth are discussed at length in Karni and introduced there. They

provide separability between bets, actions, and effects. I then introduce axioms A5,

the intervention axiom, and A6, the causal irreversibility axiom, which provide for

the causal model structure.

Following Karni, a bet b̂ is a constant-valuation bet on Θ if (do(x), b̂) ∼ (do(x′), b̂)

for all do(x), do(x′) in some Î ⊆ I and
⋂

do(x)∈Î {b′ ∈ B|(do(x), b′) ∼ (do(x), b)} =
{

b̂
}

.

In essence, constant valuation bets leave the agent indifferent across outcomes: the

value of the bet is sufficient to offset the value of the effect. (There is an additional

requirement that constant valuation bets are at least pairwise unique across actions.)
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Constant-valuation bets are used to allow utility to be effect-dependent, which is

analogous to state-dependent utility. Since I assume that utility is effect-independent

through axiom A4 below, I do not make much use of the constant-valuation bets.

Recall Θ(do(x), %) are the set of effects which are nonnull given do(x). Then

two effects (x, y), (x′, y′) are said to be elementarily linked if there exists actions

do(x), do(x′) such that (x, y), (x′, y′) ∈ Θ(do(x), %) ∩ Θ(do(x′), %). And two events

(x, y), (x′, y′) are linked if there are a sequence of events, such that each is linked to

its neighbor, and the first is linked to (x, y) and the last linked to (x′, y′). In essence,

two events are elementarily linked if there are two actions which weight both effects

positively. Two events are linked if they are connected by some sequence of linked

events. Linked events are required in Axiom A0 to establish comparability between

events.

Given these definitions, Karni’s Axiom A0 is:

Axiom. (A0) (Karni) Every pair of effects is linked, there exist constant-valuation

bets b, b′ such that b′ % b and, for every (do(x), b) ∈ C, there is a constant-valuation

bet b̂ satisfying (do(x), b) ∼ C.

This structural axiom first requires comparability across effects. This allows for

the definition of a single utility function. Second, there must be one constant-

valuation bet which is superior to another. This is akin to the standard Savage

axiom that the decision problem is non-trivial, in particular when tied with the next

point. Third, it requires a constant valuation bet for each choice: a constant valu-

ation bet benchmark that is indifferent to each possible (action,bet) choice. We see

how these play the role of the constant acts in the Savage framework.

Axiom. (A1: Weak Order) % on C is a complete and transitive binary relation.
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Axiom. (A2: Continuity) For all (do(x), b) ∈ C, the sets

{(do(x), b′) ∈ C|(do(x), b′) % (do(x), b)}

and

{(do(x), b′) ∈ C|(do(x), b) % (do(x), b′)}

are closed.

These axioms are standard. First, that % is a preference relation, and second,

that there is continuity in the bet (act) space.

Axiom. (A3: Action-independent betting preferences) (Karni) For all do(z), do(z′) ∈

I, b, b′, b′′, b′′′ ∈ B, θ ∈ Θ(do(z))∩Θ(do(z′)) and r, r′, r′′, r′′′ ∈ R, if (do(z), (b−θ, r)) %

(do(z), (b′−θ, r
′)),

(do(z), (b′−θ, r
′′)) % (do(z), (b−θ, r

′′′)), and

(do(z′), (b′′−θ, r
′)) % (do(z′), (b′′′−θ, r)), then

(do(z′), (b′′−θ, r
′′)) % (do(z′), (b′′′−θ, r

′′′))

Karni05 [23] explains:6 “To grasp the meaning of action-independent betting pref-

erences, think of the preferences (do(z), (b−θ, r)) % (do(z), (b′−θ, r
′)) and (do(z), (b′−θ, r

′′)) %

(do(z), (b−θ, r
′′′)) as indicating that, given action do(z) and effect θ, the intensity of

the preferences r′′ over r′′′ is sufficiently larger than that of r over r′ as to reverse the

preference ordering of the effect-contingent payoffs b−θ and b′−θ. This axiom requires

that these intensities not be contradicted when the action is do(z′) instead of do(z).”

It means if r′′ is sufficiently better than r′′′ under action do(z) to reverse preferences,

than it shouldn’t make the bet less attractive under action do(z′). That is, how the

agent values money doesn’t change when the action changes.

6Modified to have consistent notation.
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Here is an example: Suppose under do(x), the bet b yielding 2 in outcome (x, y)

was preferred over the bet b′ yielding 1 in outcome (x, y): (b(x,y), 2) % (b′(x,y), 1).

Suppose further that replacing 2 with 3 and 1 with 4 was enough to reverse prefer-

ences, such that the modified second bet was preferred: (b′(x,y), 4) % (b(x,y), 3) Then,

under do(x′), making that same change, from {2, 1} with {3, 4} for a different set of

bets, should not make the second bet less attractive. (It may not make the second

bet more attractive, but it shouldn’t make it worse.) (If (b′′(x,y), 1) % (b′′′(x,y), 2), then

(b′′(x,y), 4) % (b′′′(x,y), 3).)

Axiom. (A4: Effect-independent betting preferences) (Karni) For all do(z) ∈

I, b, b′, b′′, b′′′ ∈ B, θ, θ′ ∈ Θ(do(z)) and r, r′, r′′, r′′′ ∈ R, if (do(z), (b−θ, r)) % (do(z), (b′−θ, r
′)),

(do(z), (b′−θ, r
′′)) % (do(z), (b−θ, r

′′′)), and (do(z), (b′′−θ′ , r
′)) % (do(z), (b′′′−θ′ , r)), then

(do(z), (b′′−θ′ , r
′′)) % (do(z), (b′′′−θ′ , r

′′′))

The interpretation is similar to that of action-independent betting preferences: if

r′′ is sufficiently better than r′′′ under effect θ to reverse preferences, than it shouldn’t

make the bet less attractive under action θ′. That is, how the agent values money

doesn’t change when the effect changes.

Now define ΘZ=z as those effects that are consistent with variable Z having value

z. Namely, ΘX=x = {(x, y)|y ∈ supp(Y )} and ΘY =y = {(x, y)|x ∈ supp(X)}.

Axiom. (A5: Interventions) (do(x), (b−θ, r)) ∼ (do(x), (b−θ, r
′)), for all r, r′ ∈

R, θ ∈ Θ−ΘX=x.

This axiom imposes the causal structure. Consider two (action, bet) pairs de-

scribed above. Consider the action do(X = x). Then this axiom requires that it

doesn’t matter what the rewards are in any effect (x′, y) ∈ Θ−ΘX=x, where x 6= x′.

The agent knows with certainty that those effects (x′, y) will never occur. Hence
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changing the rewards on those effects should do nothing to change preference.

Now, let bz↔z′ be the bet b, which each entry b(z, w) replaced with entry b(z′, w)

and vice versa. Then:

Axiom. (A6: Causal Irreversibility) If there exists b ∈ B such that (do(x), b) �

(do(x′), bx↔x′), then for all do(y) ∈ IY , b̄ ∈ B,

(do(y), b̄) ∼ (do(y′), b̄y↔y′)

for all r ∈ R.

Similarly, if there exists b ∈ B such that (do(y), b) % (do(y′), by↔y′), then for all

do(x) ∈ IX , b̄ ∈ B,

(do(x), b̄) ∼ (do(x′), b̄x↔x′)

for all r ∈ R.

This is the interpretation of this axiom: if there exists b such that (do(x), b) �

(do(x′), bx↔x′), that reveals that the agent believes that do(x) causes a different

probability distribution than do(x′) over Y . In that case, since the agent has revealed

she believes XCY , we would like to assure that Y does not cause X. Hence, the

agent should consider it equally probable that X = x under do(y) as under do(y′).

Therefore, a bet which yields the vector ~b for effects (·, y) will be as valuable under

do(y) as the bet which yields vector ~b under do(y′).

3.3.2 The Representation Theorem

This result is that, if a preference relation % adheres to axioms A1-A6, then there

is a unique utility function u over bets and set of probabilities π over effects under in-

terventions such that (do, b) is represented by fdo(
∑

(x,y)∈Θ [σ(x, y)u(b) + κ(x, y)] π(x, y)|do),

and, additionally, if these probabilities additionally have the property that
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π((x, y)|do(∅)) = π(y|do(x))π(x),

where π(y|do(x)) = π(x, y|do(x)) and π(x) = π((x, y)|do(y))∀y,

then the agent adheres to causal model XCY calibrated to π((x, y)|do(∅)) in the

sense that the revealed probabilities π conform to such a model. It is the Karni repre-

sentation theorem, with the additional causal structure, which appears in statement

3.

Theorem III.4. Suppose axiom (A0) is satisfied, and |Θ(a)| ≥ 2 ∀do(x) ∈ I.

Then:

1. The following are equivalent:

(a) The preference relation % on C satisfies A1-A6

(b) There exists

i. a continuous function u : O → R, and for each θ ∈ Θ, there are numbers

σ(θ) > 0 and κ(θ)

ii. a family of probability measures {π(x, y|do(Z = z))} on supp(X)×supp(Y ),

and π(x, y|do(∅)), and

iii. a family of continuous, increasing functions
{
fdo(x)

}
do(x)∈I,

such that, for all (do(W = w), b), (do(Z = z), b′) ∈ C,

(do(w), b) % (do(z), b′)

⇐⇒ fdo(w)

 ∑
{w,s}∈Θ

[σ({w, s})u(b({w, s}) + κ({w, s})] π({w, s} |do(x))


≥fdo(z)

 ∑
{z,s}∈Θ

[σ({z, s})u(b′({z, s}) + κ({z, s})] π({z, s} |do(z))


2. u, σ, and κ are unique and

{
fdo(x)

}
do(x)∈I are unique up to a common, strictly

monotonic increasing transformation.
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3. For each do(x) ∈ I, π({z, w} |do(z)) is unique and π({z, s} |do(z)) = 0 if and

only if {z, s} is null given do(z), so π({z′, s} |do(z)) = 0,∀z′ 6= z..

Furthermore, if the π satisfy π((x, y)|do(∅)) = π((x, y)|do(x))π((x, y)|do(y)), then:

1. If there exists b ∈ B such that (do(x), b) � (do(x′), bx↔x′) then π satisfies

π((x, y)|do(y)) = π((x, y′)|do(y′)) := π(x) ∀y, y′, π ((x, y)|do(x)) can be rewrit-

ten as π(y|do(x)), and the agent adheres to causal model XCY ,

2. Else if there exists b ∈ B such that (do(y), b) � (do(y′), by↔y′) then π satis-

fies π((x, y)|do(x)) = π((x′, y)|do(x′)) := π(y) ∀x, x′, π ((x, y)|do(y)) can be

rewritten as π(y|do(y)), and the agent adheres to the causal model Y CX,

3. Else if for all b ∈ B, (do(x), b) ∼ (do(x′), bx↔x′) and (do(y), b) ∼ (do(y′), by↔y′),

then π satisfies π((x, y)|do(y)) = π((x, y′)|do(y′)) := π(x) ∀y, y′, and

π ((x, y)|do(x)), π((x, y)|do(x)) = π((x′, y)|do(x′)) := π(y) ∀x, x′. The agent

then adheres to the causal model X¬CY and Y ¬CX.

The proof follows Karni, save for those parts that explicitly reference axioms

5 and 6 in the following description. For every do ∈ I, Axioms 1-3 imply the

existence of jointly cardinal, continuous, additive representations of %do, so that

(do, b) is represented by
∑

θ∈Θ wdo(b(x, y), (x, y)). Axiom A6 allows that the wdos

can be chosen such that wdo(y)(b(x, y), (x, y)) = wdo(y′)(b(x, y′), (x, y′)). Then, two

arbitrary constant valuation bets, b∗ and b∗∗, such that b∗∗ � b∗, are chosen as

reference points, and the following normalization is made: wdo(b
∗(x, y), (x, y)) = 0

and
∑

(x,y)∈Θ wdo(b
∗∗(x, y), (x, y)) = 1, for all do ∈ I. The probability π(x, y|do)

is defined to be wdo(b
∗∗(x, y), (x, y)) and u is constructed by dividing all wdo by

π. Axiom 4 assures that the resulting utility is also almost independent of ef-

fect, in the following form: σ({w, s})u(b({w, s}) + κ({w, s})). Finally, an action



54

d̄o ∈ I is chosen and fdo is constructed with the constant valuation bets, so that

fdo

(∑
θ∈Θ

[
σ(θ)u(b̄(θ)) + κ(θ)

)]
π(θ|do) =

∑
θ∈Θ

[
σ(θ)u(b̄(θ)) + κ(θ)

]
π(θ|d̄o).

By axiom 5, π((x′, y)|do(x)) = 0 for all x 6= x′, and therefore π((x, y)|do(x)) can

be rewritten as π(y|do(x)). By the implication of Axiom 6, π((x, y′)|do(y′)) can be

written as π(x).

Axiom 5 renders all effects that involve non-intervened values of the intervention

value null. This means that, under do(x), Axiom 5 renders effect (x′, y), for all y ∈

supp(Y ) null. By Karni’s representation, the probability distribution π(x′, y; do(x))

is null for all x′ 6= x. This means that π(x, y; do(x)) can be interpreted as the causal

probability function on y of do(x).

Axiom A5 appears to be potentially inconsistent with Axiom A0’s requirement

that all effects are linked, but that is not the case. Recall, effects are elementarily

linked when, for some pair of actions do and do′, both effects are non-null. Two

effects (x, y) and (x′, y′) are linked if there is a sequence of linked events connecting

(x, y) to (x′, y′). Axiom A5 requires widespread and systematic nullification of effects.

Therefore, it is important to demonstrate that A5 and the requirement that all effects

are linked are not inconsistent.

(x’,y’’)do(x’)

do(x’’)

(x,y’’)do(x)

do(y’’)do(y)

(x,y)

(x’,y)

(x’’,y)

do(y’)

(x,y’)

(x’,y’)

(x’’,y’) (x’’,y’’)

Figure 3.6: No effects are elementarily linked

As Figure 3.6 demonstrates, without the non-intervention act do(∅), no effects are

elementarily linked. Effect (x′, y′) can be in, at most, Θ(do(x′), %) and Θ(do(y′), %),
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and no other effects are in that intersection. Even requiring the largest possible

set of non-null effects consistent with the axiom A5, there are too many null ef-

fects to link effects. However, with the non-intervention act, then many effects

might be elementarily linked. For example, (x′, y′) and (x′, y′′) are elementarily

linked:(x′, y′), (x′, y′′) ∈ Θ(do(x′), %) ∩ Θ(do(∅), %). Hence every two effects which

vary in only one coordinate are elementarily linked (and therefore linked), so all

effects are linked.

Now, suppose that pi satisfies

π((x, y)|do(∅)) = π((x, y)|do(x))π((x, y)|do(y))

Then axiom A6 allows for the construction of a causal structure, either XCY

or Y CX, or neither. Consider first when there exists b ∈ B such that (do(x), b) �

(do(x′), bx↔x′). Then Axiom 6 requires that for all do(y) ∈ IY , b̄ ∈ B, (do(y), b̄) ∼

(do(y′), b̄y↔y′) for all r ∈ R. Since π((x, y)|do(y)) can be rewritten as π(x|do(y)),

then this requires moreover that π(x|do(y)) = π(x|do(y′)) and hence can be written

as simply one function π(x). This can be interpreted as what the agent believes

is the exogenous distribution of x, and hence the causal probability function of x.

Then, π(y|do(x)) can be interpreted as the causal probability function of y, and

the causal model is XCY. This process works identically in reverse if it is revealed

that Y CX. It is worth noting, then, if both b ∈ B, (do(x), b) ∼ (do(x′), bx↔x′) and

(do(y), b) ∼ (do(y′), by↔y′), then the agent has revealed that she believes that X and

Y are independent, and therefore the correct causal model is X¬CY and Y ¬CX.

It is also worth noting that if Axiom A6 were to fail, then this would be a case of

cyclic causality and one would not expect π((x, y)|do(x))π((x, y)|do(y)) to have any

particular meaning.
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3.4 Applications

I have described the parts of the causal Bayesian network framework to represent

agent’s models of phenomena. I have proposed an axiomatic framework by which

one can, after observing an agents’ choices of interventions and bets, deduce her

utility function (a utility function which represents her behavior) and the unique

stochastic effect she believes her interventions will result in. This representation in

an application of a result by Karni05 [23] with an two additional axioms to define

the causal structure.

In this section, I place these agents in different scenarios. In the first, I address

an example of a decision problem. I demonstrate that two agents who agree about

observed data and have the same preferences may disagree about optimal interven-

tions. Then, I take the agents to an auction, in which they participate in a causally

coherent equilibrium, which I define below. In the auction, there is a causal curse in

some ways similar to a winner’s curse.

3.4.1 Information, Causal Coherence with Data, and Disagreement

Two agents who are causally coherent with the same data are precisely those

agents who might agree about an (infinite) common source of information but dis-

agree about best behaviors. This is because the same behavior–the same choice of

intervention–is believed to map to different probability distributions over the phe-

nomenon. The following example demonstrates the two investors of the ongoing

example choosing different optimal interventions when their causal models differ,

although their data F is common.

First let us consider investor IS, who believes the causal relation S which states

that skill causes quality. Suppose she calibrates her causal model to a distribution
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Figure 3.7: Directed Acyclic Graphs S,Q

F . This calibration generates a unique Φ̂S .

Φ̂S =
{
ΦS

S , ΦS
Q, ΦS

V

}
where

ΦS
S (s) = F (s)

ΦS
Q(q|S = s) = F (q|s)

ΦS
V (v|S = s, Q = q) = F (v|s, q)

Then investor IS would choose s? ∈ supp(S) to maximize:

∑
v

ui(v)FS
do(S=s?)(v|s?)

=
∑

v

ui(v)F (v|s?, q)F (q|S = s?)

Investor IQ believes the causal relation Q, which is the belief that the quality

of firms is inherent, and that high quality firms attract (cause) high-quality CEOs.

The calibration to F generates a unique and distinct Φ̂Q:

Φ̂Q =
{
ΦQ

S , ΦQ
Q , ΦQ

V

}
where

ΦQ
Q (q) = F (q)

ΦQ
S (s|q) = F (s|q)

ΦQ
V (v|S = s, Q = q) = F (v|s, q)
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Investor IQ, by contrast, would choose s?? ∈ supp(S) to maximize:

∑
v

uj(v)FQ
do(S=s??)(v|s

??, qk)

=
∑

v

uj(v)F (v|S = s??, Q = qk)

3.4.2 Describing the interaction of agents with different models

To describe the interaction of agents with different causal models, I introduce a

new kind of equilibrium, called the causally coherent equilibrium. It has two main

distinguishing features: that each agent believes that her causal model is common

knowledge, and that agents are only required to have an explanation for equilibrium

events, as opposed to the stronger condition that expectations must be correct in

equilibrium.

Causally coherent agents have a causal model and are unaware of alternative

models. So if a causally coherent agent has a causal model Ci, it is natural that she

also assumes other players to have that causal model Ci. This is the first component

of the causally coherent equilibrium: that each agent i who forecasts outcomes with

some causal model Ci best responds to what she believes all other agents will play,

assuming they forecast outcomes using causal model Ci.

In traditional equilibria, ones expectations are met at all information sets, or,

in the case of weaker forms than Nash, such as Fudenberg93’s [13] “Self-Confirming

Equilibrium,” exemplified in EysterRabin05 [12] and Esponda05 [11], along the equi-

librium path of play. Here, I relax that assumption and replace it with a weaker

assumption that every agent must have an explanation for what she encounters in

equilibrium. In other words, any profile of play and outcomes that is possible in

equilibrium must be in the support of each agents’ beliefs. This suggests correctly
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that the causally coherent equilibrium is a short-run phenomenon, and that agents

might learn that some belief of theirs is wrong in the long run (although they may

not be able to identify which one.)

Referring to the ‘set of possibilities’ as what an agent ‘knows’ to be possible, this

assumption that the outcomes must be in the support of the beliefs is called “no

knowledge violations.”

Definition 6. A coherent agent i’s knowledge is violated when the agent observes

an event that is impossible given her model, where “impossible” means an event that

occurs with a non-positive probability (Pr=0 or zero density, as appropriate.)

Given those two fundamental distinctions, here is the definition of the causally

coherent equilibrium.

Definition 7. A Causally Coherent Equilibrium of some game G, with asso-

ciated phenomenon V and data F , is a set of actions played by each player i in

which:

1. V, F , and causal coherence of all agents are common knowledge.

2. Each agent i is endowed with a causal relation Ci, is causally coherent with F .

3. Each agent i plays an action consistent with some Bayes-Nash equilibrium Ei

of the game implied by G, V, F, and that all agents forecast using Ci, calibrated

to F .

4. No agent’s knowledge is violated in equilibrium.

Item one reiterates that the phenomenon and associated distribution are common

knowledge, so that all agents calibrate their causal models to the same (and true)

set of information.
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Since causally coherent agents take their theories as confirmed fact, and, since

they are rational and believe that they are playing against other rational agents,

they believe that their theory is commonly understood to be true.

Since agents have different causal models, and therefore at least some are wrong

about the way the world works, they will typically under this framework not see the

distribution of actions and payoffs that they expect. Hence this equilibrium is not

stable in the long run. However, no knowledge violations means that, in the one-shot

game, the agent can explain any event she encounters.

In the example below, there is an auction for a firm, and the winner of the firm re-

places the current CEO with himself, which is an intervention on the firm. Each agent

sees a signal about current quality of the firm, his opponent’s bid, and, if she wins,

the eventual draw, post-intervention, from supp(V). For no knowledge violations to

hold, it must be the case that any event which obtains with positive probability in

equilibrium–a particular signal, opponent bid, and vector ~V ∈ supp(V)–must also

occur with positive probability under that agent’s believed equilibrium. In the ex-

ample below, this is true by the fact that support is infinite over supp(V), agents’

skill (which determines their bid), and the signal, so their support sets are the same.

This equilibrium stands in contrast with Fudenberg93’s [13] “Self-Confirming

Equilibrium,” exemplified in EysterRabin05 [12] and Esponda05 [11]. In those equi-

libria, the source of data is equilibrium play. In this model, the source of data is

the phenomenon. The phenomenon exists apart from the play of the game. It is

an external object which coordinates beliefs. In this equilibrium, agents make sys-

tematic mistakes, as one would expect from a misunderstanding of causal structure.

However, these mistakes never result in an event that any agent deems impossible.

I construct an explicit example of a causally coherent equilibrium below.
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3.4.3 Example: An auction for a company and a causal curse

Two aspiring CEOs, investor IS and investor IQ, bid to take over a firm and

replace the current CEO with himself. An infinite data stream about firms is public,

so each agent believes she knows how CEO skill effects firm value: i.e., each agent

has her own causal relation about the phenomenon of firm creation. The auction is

a two-price auction, which is a simplified first-price auction. There is a single public

signal about the quality of the firm, and each agent knows his own skill. Replacing

the current CEO with the winner is an intervention, which exogenously changes skill

of an existing firm, so the effect on quality is determined by the true causal model.

A two-price auction is a first-price, sealed-bid auction with only two allowable

bids. It works as follows: each agent chooses one of two bids: $M > $0. The higher

bid wins the object and ties are decided by the flip of a fair coin.

Both investors have seen an infinite data set of firms’ Quality and CEO Skill. S

and Q are binary variables.7 This is the observed symmetric joint distribution over

S and Q, with associated marginal distributions, for some α, 2
3

< α < 1:

F (S, Q) S = 1 S = 0 F (Q)

Q = 1 1
2
α 1

2
(1− α) 1

2

Q = 0 1
2
(1− α) 1

2
α 1

2

F (S) 1
2

1
2

Since α > 1
2
, S and Q are correlated, so that good firms have good CEOs.

The value of the firm after the auction is determined by a bet on the (s, q) outcome.

7This example has discrete types to be consistent with the representation theorem, which is for finite
spaces supp(S) × supp(Q). In this example, the causally coherent equilibrium is also an ex-ante Nash
equilibrium. In the continuous case, the causally coherent equilibrium is distinct from the Bayes-Nash. See
section 3.4.4.
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The bet b(s, q) yields a payoff of $1 if S = Q = 1 and 0 otherwise.

b(s, q) =

 1 if S = 1, Q = 1

0 otherwise

Agents’ Skill is drawn from a known distribution: Skill is 1 with probability 1
2
.

This means that they are typical of the population of CEOs given by F .

The single publicly observable signal is σ. It follows a known distribution

G(σ = 1|q) =

 β if Q = 1

1− β if Q = 0

Note that G(Q = 1|σ = 1) = β , since F (Q = 1) = 1
2
. In other words, when an agent

of either type sees a signal of σ = 1 about the firm before intervention, the agent

believes there is a β chance that the firm is (currently) of high Quality.

The players observe the single signal and place their bids simultaneously, then

the winner is resolved. The winner performs the intervention of replacing the (un-

observed) CEO Skill with his own skill. The new Quality is then resolved according

to the true causal model: in the case of S, Q is determined by the distribution F ,

conditional on the winner’s Skill. In the case of Q, the quality of the firm remains

unchanged. Under S, since Q changes, the signal conveys no useful information.

Under Q, the signal is useful. The winner then observes the new Quality of the firm,

and the bet is resolved according to b above.

3.4.3.1 Play in the Causally Coherent Equilibrium

No agent will want to play M if he is of skill S = 0, since the firm will be

worth zero, so playing M can only make the agent worse off. It turns out that, for

0 < M ≤ 1
2
min {α, β}8

8See appendix section .2.1.1 for the details.
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1. Investor IS plays M only if SS = 1

2. Investor IQ plays M only if SQ = 1 and σ = 1

In causally coherent equilibrium play, each agent plays the Bayes-Nash equilibrium

associated with all agents having the same causal relation (a premise which is false.)

Consider the Bayes-Nash equilibrium that investor IS plays. He supposes that he

plays against an agent who also believes S. Hence he believes that his opponent will

only bid $M if he is of Skill 1 and only bid $0 if he is of skill 0. Hence a high Skill

investor IS expects to win half the time against a fellow high Skill investor and, upon

winning, win the bet α of the time.

Now consider the Bayes-Nash equilibrium that investor IQ plays. He supposes

that he is against an agent who also believes Q. Hence he believes that his opponent

will only bid M if he is of Skill 1 and σ = 1, 0 otherwise. Hence a high Skill investor

IQ expects to win half the time when the signal is 1, and, upon winning, win the

bet β of the time.

No agent encounters a knowledge violation when they play against each other. All

agents have an explanation for any pattern of bids, wins, and losses. For example,

since investor IS does not know the type of his opponent, the first time that investor

IS loses to investor IQ, he ‘learns’ that his opponent is an investor IS of the same

skill. What he learns is false, but it is a coherent explanation for the event he

witnessed.

I consider the case when α = β, and suppose that 1
2
α = M . This choice highlights

the causal curse.

The auction is straight-forward for all pairings with one agent of skill S = 0.

In that case, the agent with low skill always bids $0. The interesting case is when

investor IS and investor IQ both have skill S = 1.
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Investor IS bids M when his Skill is 1 in the Bayes-Nash equilibrium associated

with all agents believing S; that is, he supposes that his opponent is plays the same

strategy and that his (and his opponent’s) payoff is determined by the causal relation

S. He believes that if he wins, that he will get the $1 payoff α of the time. This

is not, however, the case if Q is true. If he were not competing for the object, and

simply getting it when he wanted to pay M , he would only get the $1 payoff half of

the time, which means he would still make a profit (since M = 1
2
α < 1

2
). However,

since he competes for the object, he ends up losing money on average, since investor

IQ is bids high precisely when Q is likely to be 1. Hence, investor IS gets the $1

payoff less than half the time. This violates his incentive constraint, and he would,

were he to know this, be better off bidding 0. He would also, since he loses money

on average, be better off getting out of the game entirely over bidding M .9

Investor IQ bids M when his Skill is 1 and when he sees the signal σ = 1, and he

also believes his opponent does the same. When S is true, investor IQ sees nothing

he cannot explain. Whenever he wins the object, he gets what he expects: a payoff

of $1 exactly α = β of the time. Although he would also get that payoff when he

bids $0, he does not know this, nor ever learns it. Investor IQ finds, however, that

he never wins when he bids $0. He has an explanation, since that is plausible (for

any finite stream), simply unlikely.

Whether S or Q is true, the agent with the wrong causal model loses in some

capacity: either on average losses in the case of investor IS or by lost opportunity

in the case of investor IQ. And each of them must rely on no knowledge violations

instead of matching expectations about exactly one parameter. In the case of investor

IS, that parameter is his payoff. In the case of investor IQ, that parameter is his

9Please see appendix about losing money on average.
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win rate when he bids low.

Since investor IS loses money on average, this is a kind of winner’s curse. Note

that there would be no winner’s curse in this game, if all agents agreed on a causal

model. The classic winners curse arises from incorrectly constructing opponent’s

estimates of the common component. Since both agents construct their values based

on completely private information and completely public information, there are no

deviant estimates of the common component. Instead, their different causal models

serve, in some sense, as additional private ‘signals’ about the source of value of the

firms.

3.4.4 Continuous type example

The set-up is similar to the previous example: two bidders for a firm with char-

acteristics S and Q, and, in this case, an additional characteristic V , which is firm

value (what, in this case, the agents are concerned with). There is a joint distribution

over V = {S, Q, V } with the following properties:

1. S’s marginal distribution is normal (0, 1);

2. Q’s conditional distribution on S is normal (s, 1), that is, with a mean of s for

each s ∈ supp(S);

3. V ’s conditional distribution on S and Q is normal (s + q, 1), that is, with mean

s + q

The public signal is of a known distribution G(q|σ), and is a mean-preserving

spead of q, such that E [G(q|σ)] = σ. This means σ has been normalized such that

one’s expectation of q, after seeing σ, is just σ.

It is known that agents’ skill is drawn from a distribution H(s). It might be

the case that H(s) is F (s), that is, the marginal distribution of s in the data, which
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would be the case if agents suspect that their opponents are typical of the population

at large.10

Then in the causally coherent equilibrium in which each player believes they are

playing the symmetric Bayes-Nash, investor IS and investor IQ play according to:

bS(s) = 2s−
∫ s

s
H(t)dt

H(s)

bQ(s, σ) = s + σ −
∫ s

s
H(t)dt

H(s)

These are the symmetric Bayes-Nash equilibrium actions when both agents believe

S and both agents believe Q, respectively. The first term represents the expected

value of the firm for an agent with skill s who sees signal σ. The agent who believes

Q believes that her own Skill and the original firm Quality each play equal roles.

The agent who believes S believes instead that her own skill counts directly in the

value of V , and indirectly, through its impact on Q. So investors who believe S feel

their own skill plays a larger role.

Some agents also lose money on average, if it turns out that one of the causal

relations, S or Q, is correct, and they are wrong about the model. If the true causal

relation is Q, agents i who believe S and whose skill si is sufficiently above the

average skill (ŝ) lose money on average. These agents over-attribute the value of the

firm to their own skill; hence it is those high skill CEOs who will suffer the curse.

On the other hand, if it is in fact S which is true, those agents who believe Q and

whose skill si is sufficiently below the average will lose money on average.

10And believe either S, in which case skill is exogenous, or Q, and believed that skill is endowed, but
that firms find good CEOs, but not actually cause otherwise bad CEOs to become good.
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3.5 Discussion

In this section, I first discuss the evidence for causal modeling as a good framework

for agents’ mental models from the cognitive science literature. Second, I discuss the

relationship of this framework to the first principles of rationality, and what they

imply for the value of this framework. I then discuss what it means for causally

coherent agents to learn.

SlomanLagnado04 [48] provide an excellent overview of the relevant cognitive

science literature. Cognition, they claim, depends on what does not change: the

separation of items of interest from noise, and that “Causal structure is part of

the fundamental cognitive machinery.” One piece of evidence to support that claim

is that causal relationships become independent of the data from which they are

derived: they cite a case from AndersonLepperRoss80 [2], in which “they presented

participants with a pair of firefighters, one of whom was successful and who was

classified as a risk taker, the other unsuccessful and risk averse. After explaining the

correlation between performance as a firefighter and risk preference, participants were

informed that an error had been made, that in fact the pairings had been reversed

and the true correlation was opposite to that explained. Nevertheless, participants

persevered in their beliefs; they continued to assert the relation they had causally

explained regardless of the updated information. Causal beliefs shape our thinking

to such an extent that they dominate thought and judgment even when they are

known to be divorced from observation.” This provides evidence for the fact that

humans tend to encode information as causal models, since that is what persists.

The evidence from cognitive science provides one reason to consider this frame-

work; the other is first principles from rationality. Does rationality require that
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agents agree about plausible explanations?

Rationality is typically defined in the economic theory literature to be coherence

between beliefs and behavior: it is psychological rationality. These are examples of

psychological rationality: that agents have well-defined goals that they pursue single-

mindedly, have preferences that are complete and transitive, or that they choose

actions they believe will optimize a well-defined objective function. This is often

understood to be what rationality means within the theory literature.

Logical rationality stands at odds with psychological rationality. An agent is

logically rational when she is making what is objectively the best choice. An example

of logical rationality is rational expectations [34]. An agent who forms rational

expections not only has some coherent and reasonable model; she has the right

model (i.e., the economist’s model). Logical rationality is of the Popper model [41]

of situational analysis, as opposed to psychologism “the view that one can explain

all social processes solely by reference to the psychological states of individuals [27].”

Logical rationality is a common (sometimes implicit) definition of rationality outside

of the theory literature.

The phrase “logically rational agents” is not well-defined. Logical rationality

requires a correspondence between the agent and the world, and therefore knowing

the agent alone (and her behavior, preferences, information, etc) is insufficient to

determine whether she is logically rational. You have to know the workings of the

world, too. This makes psychological rationality more satisfying, since, unlike logical

rationality, psychological rationality has meaning with reference to the agent alone.

This is the downside: psychological rationality is not sufficient to generate common

sets of plausible explanations.

There has been an unhappy marriage between psychological and logical rationality,
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in which beliefs were required to be true, or, at least, the set of possible explanations

that the agent considers was required to include the truth.

Causal coherence does not make that assumption. Causal coherence investigates

the case of psychologically rational agents with logically irrational beliefs about the

world.11 These agents do not have a common prior over the set of theories, since

they don’t put positive probability on each other’s theories.

How do these agents learn? Although it is not yet made explicit in this model,

an agent with one causal relation C over a phenomenon V has an associated set of

possible explanations: namely, the set of possible theories
{

C, Φ̂
}

, for all possible

Φ̂. If one were estimating the following regression:

V = α + βS

a similar set would be all possible values for (α, β). Standard Bayesian updating will

eliminate possibilities (in the long run) as the Φ̂ which corresponds to F is mapped

out. In that sense, these agents are standard Bayesian updaters.

3.5.1 Extensions

Here I describe three possible extensions of this work. The first extension would

use causal models to explain apparent preference differences in a median voter setting.

This may provide insights into endogenizing otherwise exogenous preference shocks.

The second extension would construct agents who are ambiguity averse in the sense

of El61 [8], who treat causal ambiguity in a manner similar to GiSc89’s [14] Maxmin

expected utility agents. The third would use this framework to construct agents

who act in accordance with QuattroneTversky84’s [42] empirical finding that people

attribute causation to correlation. These agents could be used to derive economic

11See Hacking67 [16] for some related issues regarding construction of reasonable beliefs.
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implications.

Differing causal models of a common phenomenon, when the agents themselves

cannot perform the experiment, may allow us to meaningfully discuss what might

otherwise be exogenous preference shifts. Suppose voters in a median voter setting

disagree about a tax policy. Perhaps some voters prefer a low tax and others a

high tax. One may be able to rationalize their differing preferences as common

preferences, but with differing causal models. For example, it could be the case that

some voters believe education causes skill, and other believe education signals (is

caused by) skill. This may explain apparent preference dispersion in local public

finance models, and, in particular, provide insight into how preferences may change

as government behavior changes.[3]

Causal ambiguity is a form of ambiguity or Knightian uncertainty. El61 [8] dis-

cussed a behavioral implication of ambiguity aversion. In the Ellsberg Urn Exper-

iment, Ellsberg describes uncertainty over the relative number of green and blue

balls in an urn (versus a known number of red). When an agent is called upon to

bet on the color of the next ball, Ellsberg recommends reasonable choices that are

inconsistent with expected utility. GiSc89 [14] provide an axiomatic representation

of utility, which yields behavior consistent with the Ellsberg’s recommended choices

in the Urn Experiment. This representation results in an agent with a set of priors

about a distribution. For example, instead of believing there are exactly 50 green

and 50 blue balls in the urn, the agent believes that there might be as few as 20

green balls and as many as 80: hence the agent believes that there is a set of possible

distributions of balls in the urn. When the agent is called upon to place a bet on

the color of the next ball, she evaluates her utility under each distribution and acts

as if she believes the worst-case scenario were true. For example, called upon to
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bet that the next ball is green, she acts as if there were only 20 green balls; called

upon to bet that the next ball is blue, she acts as if there were 80 green balls (and

therefore only 20 blue ones.)12 If the representation is extended to incorporate these

kind of preferences, it may be possible to generate a set of causal models that the

agent treats in a similar way to a set of priors.

Finally, here is evidence from the psychology literature that the lay person’s un-

derstanding of causality is limited. QuattroneTversky84 [42] showed “that people

often fail to distinguish between causal contingencies (acts that produce an outcome)

and diagnostic contingencies (acts that are merely correlated with an outcome.)” In

other words, have a habit of attributing correlation to causation. This kind of causal

modeling is appropriate for investigating the economic implications of those behav-

ioral claims: by constructing an alternative to causal coherence, in which agents act

as if the variable that they intervene on is the root of the causal structure. That

would allow the development of agents who exhibit this kind of causal bias.

3.6 Conclusion

Considering the agents Sam (investor IS) and Quincy (investor IQ): I use the

framework of causal bayesian networks to represent their models of an arbitrary

phenomenon, and have investigated their behavior when they are endowed with a

particular model. A set of reasonable models can be constructed that the agents

might consider, given data they see. One can consider their behavior when they

participate in an auction, where one of them will perhaps emerge cursed. One can see

why and how much they will disagree on optimal choices when they are confronted

with the same problem, even though they have the same unlimited and complete

12This is an informal treatment of GiSc89’s [14] work. GiSc89’s [14] representation theorem identifies the
set of priors and utility jointly from behavior, so the minimum prior chosen is not identified as the worst
case per se.
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data.

With the axiomatic representation, I am able to construct the utility function and

probability distributions that the agent believes her interventions will cause, based

on observed choices between interventions and bets over outcomes.

I have used the causal bayesian network framework in a game-theoretic setting

to define a causally coherent equilibrium. This has allowed me to describe their

behavior in these interactive games. This causal ambiguity can arise with infinite

data without missing variables. When considering agent choice when models are not

identified, the problem is how to characterize a plausible, general, and tractable set

of “reasonable models” for agents’ conjectures: I have argued that this framework

allows for a general way to characterize sets of theories that agents might believe and

empirically identify those theories from the data the agents see.

These agents are Bayesians and can never transcend their initial endowments of

possibilities as Bayesians regularly cannot. They are psychologically rational without

being logically rational. This framework then provides an alternative to bounded

(psychological) rationality models to handle these kinds of issues. I have described

the distinction between psychological rationality and logical rationality. This setting

provides a rich ground for extensions: applications to public finance, an opportunity

to capture causal ambiguity aversion, and to represent causal bias.



CHAPTER IV

Of Wolves and Sheep

4.1 Introduction

Rational expectations equilibria in macro- and microeconomic models are gen-

erally premised on the idea that agents not only forecasting by using information

rationally, but that they use the information correctly; i.e. that they have the cor-

rect theory. In those models, the predictions the agents make are the same that the

model-maker would make, given the same information. An alternative is proposed

in this paper: agents have theories that are internally consistent and are consistent

with data; however, like econometricians faced with an under-identified model, these

theories may have the wrong functional form. In particular, these agents have data

about a positive correlation between CEO skill and firm performance. The agents’

theories differ on the direction of causality between CEO skill and firm performance.

Some agents believe that the correlation of skill and performance is explained by high

CEO skill causing high firm performance, while others believe that high-skilled CEOs

are better at finding firms that would, regardless of their CEO, be high performers.

These two theories are consistent with the data they see, but, like econometricians

running different regressions on the same data, imply different predictions for out-of-

equilibrium (or out-of-sample) behavior. This leads to differing equilibrium behavior

73
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on the part of these agents, and, when these agents are set in a dynamic economy

with many agents with differing theories, this leads to competition in theories that

is external to the agents (in some sense, a population learning process.)

The dynamic economy in this paper is a series of subgames. These subgames con-

sist of agents who must choose between developing new ideas into firms versus letting

others develop firms and buying firms that appear to be successful. Agents who are

otherwise identical, but who differ on theories of firm performance, make different

choices. Namely, agents who believe firm performance is CEO-lead find it optimal to

develop ideas into firms, because the success of the firm is only dependent on their

own skill, and therefore information about prior firm performance is irrelevant. On

the other hand, agents who believe firm performance is not caused by CEO skill find

it worthwhile to let other agents develop firms, and purchase high-performing firms.

This creates a self-contained causally coherent equilibrium [39] for each subgame.

In this dynamic economy, the initial parameter values of each subgame are de-

termined by the subgame previous; the theory that generates more profits attracts

more followers in the next subgame, and the final distribution of CEO skill and firm

performance gives the agents of the next subgame a dataset with which to calibrate

their theories. The predator/prey aspects of subgame behavior (in which ‘waiters’

prey on ‘developers’) causes population cycles to emerge in some of these dynamic

economies. This causes waves of corporate takeovers, which is an empirical phe-

nomenon that has been observed in the world. Moreover, the population popularity

of theories, in the long run, is a predictor of the ‘true’ model (the extent to which one

theory versus the other is, in fact, true) which suggests that an opinion poll of these

agents, in which none have the true theory, could be used to predict the true theory

(as said above, a kind of population learning process). Finally, the dynamic system
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does not, in general, converge to a state in which one theory prevails, suggesting that

when agents have incomplete, but rational theories, continuing disagreement can be

a long-run phenomenon. Given that theories in the world inevitably have identifying

assumptions, this model suggests that long-run disagreement might be the state of

nature.

This paper proceeds in five sections. In the Background and Literature section

(section 4.2) which follows, I discuss two main models in the literature related to

this paper. I discuss the causal coherence model, which describes differing agents’

theories, and the predator/prey model, which is the basis of the population dynamics

(some literature related to the conclusions of this model appears in the discussion,

in section 4.5). In the Model section (section 4.3), I describe the core of the model,

both each subgame and the dynamic system, which is a series of linked subgames.

Subsection 4.3.1 describes the two-period subgame of agents who develop ideas, buy

each others’ ideas, and bring those developed ideas to market. Subsection 4.3.2

describes how the subgames are linked into an overall dynamic system: namely the

relative success of agents holding particular theories induces how well those theories

are passed to the next subgame of agents, and the outgoing distribution of owners and

firms provides the raw data for the next subgame of agents. The Results section (4.4)

contains the explicit description of a causally coherent equilibrium of the subgame

and simulations of the dynamic system. Subsection 4.4.1 shows that both theories

are consistent with the incoming data and what the agents observe in each subgame.

Subsection 4.4.2 shows simulated results for the dynamic system with regard to the

value of the fixed population ratio and the ‘true’ model (namely, that one can be

used to predict the other) and how and when population cycles emerge, and provides

evidence for the claims made above. The Discussion section (4.5) describes in greater
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detail the relationship of the results with applications; and the Conclusion section

(4.6) provides an overview of the work.

4.2 Background and Literature

This paper builds on two models distinct models. The first is a model of how

individuals model problems that they face; it is a decision theory model, about

individual choice. The second is a model of predator/prey interaction, and hence is

a model of social dynamics.

The first model is the belief model outlined in Causal Coherence [39]. In Causal

Coherence, agents confront a phenomenon and generate causal theories about how

the phenomenon works. In the ongoing example, the phenomenon is what makes

a firm profitable. Agents see the same data about which firms are successful and

the characteristics of successful and unsuccessful firms, but they have different the-

ories to explain those data. In particular, they differ about the direction of causal

relationships among the characteristics of these firms. Given their different theories,

they make different predictions about what will happen when they take over a firm

and manipulate those characteristics. In an equilibrium in an auction, these different

theories alone gives rise to a phenomenon similar to the winner’s curse, where some

agents lose out in the auction by overvaluing the firm.

The central component of Causal Coherence is the causal model (or causal theory.)

The firms are described by three variables: Skill of the CEO of the firm (s), quality

of the firm (q), and value of the firm (v). Some agents believe that skill causes

quality (i.e. high skilled CEOs bring about high quality firms). The typical agent

who believes this is called Sam (“S” for skill, since that variable is the root in his

mental causal model). Other agents believe that quality causes skill (i.e. that high
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skilled CEOs are able to find firms that are high quality.) The typical agent who

believes this theory is called Quincy (“Q” for quality). Sam and Quincy can both

explain the correlation of skill and quality that is observed in the data, but with

differing theories. When Sam is forecasting the effects of changing the CEO (and

therefore changing s), he predicts a change in quality q. When Quincy is forecasting

the effects of changing the CEO, he believes there will be no change in quality q.

And, since quality affects value, they have different predictions of the change in value

of the firm if this change in CEO skill were to occur. Page07 [38] discusses multiple

implications for behavior of agents maintaining different forms of models.

The second model in this paper is the predator/prey model from population biol-

ogy (or, as referred to here, Wolf/Sheep[47]). In this model, briefly, there are three

characters: grass, sheep, and wolves. The sheep eat the grass and the wolves eat the

sheep, and the grass grows at a constant rate. When wolves or sheep eat enough of

their food, they reproduce, and if they eat too little, they die. The equilibrium of this

system is expressed in the populations of wolves, sheep, and grass. There are a few

uninteresting equilibria: for example, if there are too few sheep relative to wolves,

the sheep all get eaten, and then the wolves, without a food source, also die, leading

to a world of only grass. A more interesting equilibrium is an unchanging one, in

which there are stable population ratios of wolves to sheep to grass, and they eat

at a rate which exactly replaces their population (or allows all populations to grow

at the same constant rate.) This equilibrium is unstable. The stable equilibrium

is a cyclic, dynamic equilibrium. To whit, consider the case when there are many

sheep and few wolves. For wolves, there is a bonanza of food, so their population

grows. As their population grows, sheep get eaten more quickly. As this happens,

the population growth rate of sheep begins to fall, eventually becoming negative.
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Since there is now a decreasing supply of sheep, the wolves’ population growth rate

begins to fall as well, with a lag. The lag is key: the populations of wolves and sheep

fall into offset waves or cycles. (In particular, the growth rate of sheep is determined

by the population level of wolves and vice versa. In fact, the system can be described

by those simple differential equations.) (Note: The population of grass also falls into

this cycle, but it was not necessary for this explanation.)

4.3 Model

In this section, the explicit model is introduced. This model connects the causal

coherence model discussed above with the wolf/sheep model. In the Sam/Quincy

model in Causal Coherence, agents have theories about established firms. In this

paper, the agents instead have theories about product ideas which can be developed

into firms. These product ideas are like grass: they simply appear, ready to be

developed by CEOs. Sam believes that the responsibility of the quality of the idea

rests with him. That is, he believes that ideas do not have inherent quality; instead,

he believes the quality of the product is determined by the skill of the CEO. Since

Sam believes every idea is as good as any other, he is like a sheep: he “grazes”

indiscriminately. Quincy, on the other hand, believes that the quality is inherent to

the idea, and therefore finds it optimal to wait, allow “the Sams” to develop some

ideas. Then Quincy will buy one of those ideas that he believes are high quality

(because the development process reveals a signal of the inherent quality of the

idea). Quincy is like a wolf: he preys on the Sams’ ideas, and “eats” a Sam by

buying a firm for less than it (a posteriori) is worth, thus cutting into Sam’s profits.

Since Sams are like sheep, the Quincies like wolves, and the firms like grass, the same

population dynamics should emerge.
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The model consists of two parts: a two-period subgame, and a larger game which

consists of an (infinite) series of these subgames. Each subgame begins with a new

set of players, and some data is transferred from the previous subgame.

4.3.1 Subgame

A subgame Gt consists of two periods, so there are four phases to the game:

before play begins, period one, period two, and after play ends. Before the game,

the product ideas are created, players are endowed with skill s and causal models, and

a data set enters the subgame exogenously. Players observe the data and calibrate

their theories to those data before play begins. In period one, players are given the

opportunity to claim product ideas and develop them into firms. (In equilibrium,

only Sams will take advantage of this opportunity.) In period two, players who have

not developed ideas can choose to buy an existing, developed idea (to be precise,

potential sellers post a bid price and potential buyers post an ask price. If the prices

are compatible, trade occurs at a price between them). (In equilibrium, all Quincies

will choose to do this). After play ends, developed ideas have become firms. Each

firm has one owner of some skill s and the firm is assigned a quality q. Firms’ value

are its quality q. This value accumulates to the CEO of that firm.

Before play begins, three objects come into existence: a set I of product ideas, a

set P of players of type S (for Sam) or type Q (for Quincy), and a data set consisting

of a distribution Ft. (The distribution will be explained below.)

The set I of product ideas, with component product ideas i, have one character-

istic: original quality oi, which is either zero or one (or low and high). oi can be

thought of as the inherent quality of idea i. All oi are independently distributed,

with a fixed probability po of equalling one. The original quality o has a role in

creation of the firm’s final quality q. Quincy’s theory is that the skill of the CEO is
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irrelevant to final firm quality: in this language, it can be said that Quincy believes

that, for all ideas i, qi = f(oi), for some function f , while Sam believes that qi is not

caused by oi, and instead qi = g(sj), for some function g, where j is the index of the

player who owns firm i.

Players, indexed by j, of both types, have a skill sj, which is also zero or one (low

or high). There is a continuum of agents along the index interval [0, 1]. All players

know their own skill and not that of any other. All players’ skill values are drawn

independently, with a fixed probability ps of equaling one. Furthermore, λS
t of the

players are Sams, and
(
1− λS

t

)
of the players are Quincies, where λS

t is an exogenous

value which varies for each subgame. λS
t is determined by the outcome of subgame

Gt−1.

The data set is public and observed by all players. The public data consists of

the distribution Ft of CEO skill s and firm quality q from the pervious subgame. To

whit,

Ft(s, q) qL qH

sL a b

sH c d

where a, b, c, d all correspond to the fraction of firm/CEO pairs that fit that criteria.

For example, b designates the fraction of all firm/CEO pairs which were high quality

and run by a low-skill CEO.

Ft plays a central role in the calibration of agents’ theories. Sam, who believes

that skill causes quality, uses F to determine how likely he believes a CEO of each

skill level will make his product high quality. Quincy uses Ft to determine how

accurate the signals are about true quality.

Play begins in period one. All players may choose to take a product idea and, for
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a cost κ, develop the idea. Sams will choose to do this, and Quincies will not. In the

beginning of period two, each player j receives a signal σj
i about the original quality

oi of idea i, for all ideas i which have been developed (i.e. selected in period one).

Signals σ also take on the value of zero or one. The accuracy of these signals will be

discussed below.

Players who have not chosen to develop an idea in period one can choose to bid on

any existing, developed idea. Quincies will choose to do this: in particular, Quincy

will choose to bid on a developed idea at random from the set of ideas about which

he received a high signal. (Note that the ideas are otherwise indistinguishable.)

After play ends, each player makes his developed idea into a firm, and firm quality

is determined. Firm quality is a stochastic function of both the agent’s skill and the

original quality of the idea. As mentioned before, Sams believe it is a function only

of agents’ skill and Quincy of original quality.

The data set Ft+1 is constructed from the outcome of subgame Gt in a natural

way: the final distribution of skill and quality forms Ft+1.

4.3.1.1 The Players

All players are risk neutral and value final profits:

uj = v(j)− costs (4.1)

where costs are κ, a random variable, discussed below, if the agent has developed an

idea in the period one, and zero otherwise.

v(j) is the value of the final firm that the agent has. If the agent chooses no firm,

then v(j) is zero.

All agents have the following actions available to them:

1. In period one, agents can choose to develop an idea.
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2. In period two, agents who have not developed ideas can post bid prices for

particular firms.

All players also have a theory. This theory consists of three components. The

primary component is the direction of causality: either that skill causes quality or

quality causes skill. The second component of the subgame is a theory about other

agents’ preferences: agents believe (counterfactually) that other agents might have

different risk preferences: namely that other agents might be risk-loving or risk-

averse. The third component is a belief about the distribution of κ, the cost of

developing ideas. The theory is allocated to agents upon their inception–however,

the calibrate the theory to the data available. That is, the theory provides functional

relations among visible variables, and agents take these theories to available data and

measure the parameters of the functions that their theory provides.

4.3.1.2 The determination of final quality

Final quality of the firm is determined jointly and stochastically from both the

owner’s skill and the original quality of the firm. This means that, in fact, the causal

models that Sam and Quincy believe are both wrong; or, alternatively, that they are

both partially right. The extent to which skill causes quality will be denoted by α

(and therefore, the extent to which quality is caused by original quality is (1− α) .)

In particular, the determination of true final quality is determined in the following

way:

Suppose the firm of player j is based on idea i. The quality qj of that firm is

created as a function of both the skill sj of player j and the original quality oi of

idea i. In particular:

Prob(qj = 1) = αsj + (1− α) oi (4.2)
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for some α ∈ [0, 1].

α is an exogenous parameter which describes the true causal model. If α = 1,

then quality is completely determined by the skill of the CEO, and Sam is correct

(recall, sj is either zero or one). If α = 0, then quality is completely determined by

original quality, and Quincy is correct. For values of α between zero and one, they

are each in part correct.

4.3.1.3 The Outcome of the Subgame

After all players have moved in period one and period two, the profit of each player

is determined according to the true causal model (i.e. the function of α above.) At

this point, all players have received their payoffs, and there is a new distribution of

skill of owners and quality of firm. This new distribution is determined in the obvious

way: the fraction of all agents (of type both Sam and Quincy) who are low skill and

have a high quality firm comprises the ‘new’ value of b in the new distribution, for

example. All players then cease to exist, and the subgame is finished.

4.3.2 The Dynamic Game

The dynamic game (or, more accurately, the dynamic series of subgames) is a

connected series of subgames, where the outcomes of subgame Gt determines some

initial parameters of subgame Gt+1.

In the description of the subgame above, λS
t and Ft were taken to be exogenous.

In the dynamic series of subgames, those two variables are determined in subgame

Gt−1.

Ft is determined in the obvious way from the outcome of subgame Gt−1. Namely,

the new distribution Ft is calculated according to the skill and quality of final owners;

i.e. intermediate owners (Sams after the first period) play no role. If, for example, a
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fraction at−1 of all players were both low-skill and ran low-quality firms at the end of

subgame Gt−1, and a fraction bt−1 of all players were low-skill and ran high-quality

firms, and so on, then Ft+1 would be constructed as:

Ft+1(s, q) qL qH

sL at bt

sH ct dt

This means the players in subgame Gt+1 are able to observe the final distribution

of the previous subgame and base their theories on that subgame.

The other parameter of subgame Gt+1 which is determined by the outcome of

subgame Gt is λS
t+1. λS

t+1 is constructed from the fraction of average profits made by

Sam. In particular:

λS
t+1 =

Average Profit of Sams

Average Profit of Quincies
(4.3)

The total profit of Sams is calculated according to:

1. For the fraction of Sams j with low original quality ((1− po) of them), they

receive αsj minus the true cost of development;

2. For those Sams with high original quality, they receive either the sale price if

their firm was sold, or the true average q given above, minus the true cost of

development.

The total profit of Quincies is calculated according to:

1. For low-skilled Quincies, they receive zero,

2. For high-skilled Quincies, they either receive true average q above minus the

sale price, or zero, if they were unable to buy a firm.
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4.3.3 Conclusion to the Model Section

The above fully describes the subgames, the creation of agents, and how subgames

form a dynamic system. If there is an equilibrium for each possible subgame (i.e. for

every F and λS) then, each subgame can act as a mapping from F and λS to a new

F and λS. This mapping constructs a difference model, the properties of which can

be studied.

In the Results section 4.4 below, I propose a complete equilibrium of the subgame,

and then show the implications for the dynamic system, given those equilibria.

4.4 Results

4.4.1 The Causally Coherent Equilibrium of the Subgame

When agents have distinct theories that can both be made to describe the data, it

can be possible to construct a causally coherent equilibrium[39]. In this equilibrium,

(1) all agents believe the theories specified in equilibrium, (2) all agents are best

responding to their opponents, given their beliefs about their opponents’ theories,

(3) they believe their opponents’ theories match their own (that is, they are not

aware of alternative theories), and (4) they see no outcomes in equilibrium which are

impossible given their theories.

The causally coherent equilibrium must specify actions for all players and theories

for all players, such that those conditions are met. The following theorem describes

such an equilibrium of the subgame:

Theorem IV.1. There exists a causally coherent equilibrium in each subgame (for

all λ and F ), where F
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F(s, q) qL qH

sL a b

sH c d

In which all Sams:

1. Choose to develop a firm (i.e. move in period one.)

2. Have the theory that skill causes quality (qi = g(sj)) and that next period movers

are more risk-averse

3. Which they calibrate such that, if ps
s is the probability that an agent of skill s

will make an arbitrary idea into a high-quality firm. Sam’s estimates of these

values will be denoted by:

p̂s
L =

# high quality firms run by low-skill CEOS

total # firms run by low-skill CEOS
=

b

a + b
(4.4)

p̂s
H =

# high quality firms run by high-skill CEOS

total # firms run by high-skill CEOS
=

d

c + d
(4.5)

And costs κ are distributed according to an arbitrary distribution with mean b
a+b

.

And in which all Quincies:

1. Choose to not develop a firm, and instead buy one, if they are high skill, or do

nothing, if they are low skill,

2. Have a theory in which quality is inherent to the idea (qi = f(oi)) and that first

period movers are more risk-loving,

3. Which they calibrate such that they believe, if γq
s is the accuracy of a signal σj

i

that Quincy j receives about developed idea i, when Quincy j has skill s, then:

γq
L =

1

2
(4.6)

γq
H =

(a + c)d

bc + (a + 2c)d
(4.7)
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To demonstrate that this is a causally coherent equilibrium, three things are nec-

essary. First, the true actions and outcomes for all players are established. Second,

it must be shown that this outcome is consistent with Sam’s theory. Third, it must

be shown that this outcome is consistent with Quincy’s theory.

In the true outcome of the subgame, Sams all move in the first period, and offer

an ask price p < d
c+d

. All Quincies move in the second period, offering a bid price

p above b + d. There are prices, therefore, in the range
(
b + d, d

c+d

)
.1 The outcome

of the subgame, moreover, is that get a random κ cost from the true distribution

and a value (final quality) of zero or one. All these facts must be compatible with

each of Sam and Quincy’s theory and information for this to be a causally coherent

equilibrium.

4.4.1.1 The Outcome is Consistent with Sam’s Theory

Agents of type Sam have the theory that skill determines quality of the firm.

If that is the case, then the process by which ideas were attached to owners was

irrelevant to final quality. Sam reviews the data from the previous subgame to

evaluate how effective each skill level is at producing quality. The data he has

available is Ft. He uses Ft to estimate (ps
L, ps

H).2 ps
s is the probability that an agent

of skill s will make an arbitrary idea into a high-quality firm. Sam’s estimates of

these values will be denoted by:

p̂s
L =

# high quality firms run by low-skill CEOS

total # firms run by low-skill CEOS
=

b

a + b
(4.8)

p̂s
H =

# high quality firms run by high-skill CEOS

total # firms run by high-skill CEOS
=

d

c + d
(4.9)

This allows one to construct Sam’s belief of the value of a particular idea, when

developed into a firm.
1Note that, since skill and quality are correlated, b + d < d

c+d
.

2The superscript S is to suggest that this probability corresponds to Sam.
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Sam believes there is be a cost associated with developing an idea. Sam believes

the cost κ is a random variable with distribution µ and expected value κ̄, where

κ̄ = b
a+b

.

Suppose Sam believes there is a price p at which firms will be bought and sold

in the second period. Therefore, Sam must choose between developing a firm in the

first period or waiting to buy a developed firm in the second period. His payoffs are

dependent on his skill. The payoffs are:

If Sam is high skill, then

• The payoff to developing a firm in the first period is:(
d

c + d
− κ̄

)
or (p− κ̄) if he decides to sell it, and

• The payoff to waiting until the second period is:(
d

c + d
− p

)
assuming he can buy a firm at that price.

If Sam is low skill, then

• The payoff to developing a firm in the first period is:(
b

a + b
− κ̄

)
or (p− κ̄) if he decides to sell it, and

• The payoff to waiting until the second period is:(
b

a + b
− p

)
assuming he can buy a firm at that price.
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Given these choices, Sam might be better acting in the first period or waiting; it

depends on the value of p.

Sam’s theory must both induce Sam to act in the first period and provide an

explanation as to why other agents with presumably the same theory would choose

to act in the second period. His explanation is that there are some agents who are

risk-averse, but otherwise the same. These risk-averse agents are hoping to get rid

of the risk associated with the cost random variable. The choices they face are:

If this risk-averse Sam is high skill, then

• The payoff to developing a firm in the first period is:(
d

c + d

∫
(1− κ̄) dµ(κ) +

(
1− d

c + d

) ∫
u (−κ̄) dµ(κ)

)
or

∫
u (p− κ) dµ(κ) if he decides to sell it, and

• The payoff to waiting until the second period is:(
d

c + d
u(1− p) +

(
1− d

c + d

)
u(−p)

)
assuming he can buy a firm at that price.

If this risk-averse Sam is low skill, then

• The payoff to developing a firm in the first period is:(
b

a + b

∫
(1− κ̄) dµ(κ) +

(
1− b

a + b

) ∫
u (−κ̄) dµ(κ)

)
or

∫
u (p− κ) dµ(κ) if he decides to sell it, and

• The payoff to waiting until the second period is:(
b

a + b
u(1− p) +

(
1− b

a + b

)
u(−p)

)
assuming he can buy a firm at that price.
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Sam believes that risk-averse, high-skilled Sams will wait until second period and

offer some bid price. The low-skill Sam must consider what price to set as an ask

price and what price to expect as a bid price. This is a complex problem for the

low-skill Sam; he would like to ask d
c+d

, which is the expected value of the firm to

the second-period Sam. However, the second-period Sam would only accept such a

high price if he were actually risk-neutral (since he is accepting the risk associated

with whether the firm will be high or low quality.) So the low-skilled Sam offers an

ask price below d
c+d

, and expects some bid price above b
a+b

.

4.4.1.2 The Outcome is Consistent with Quincy’s Theory

Quincy has a theory that the skill of CEOs determines their ability to identify

high-quality, developed ideas (or, developed ideas that will make high-quality firms.)

The variable that Quincy is interested in estimating with the data Ft are γq
H and κ̄,

the mean cost of developing an idea. γq
s is the accuracy of a signal σj

i that Quincy j

receives about developed idea i, when Quincy j has skill s. In other words, suppose

that Quincy j is of high skill, and gets signal σj
i = 1 about developed idea i. This

signal equals the true original quality with probability γq
H . Quincy believes that the

low-quality signal γq
L is 1

2
; i.e. that it contains no information.

Quincy believes that some risk-loving, low-skilled agents found it worthwhile to

develop ideas in the first period while high-skilled agents found it worthwhile to wait

until the second period and bid on an existing idea. Applying this theory to the

observed data allows Quincy to estimate γq
H .

Suppose this was the case, and the final distribution Ft was, as before,
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Ft(s, q) qL qH

sL a b

sH c d

If, in period one, only low-skilled agents moved, then they were allocated high-

quality ideas/firms in proportion to the amount of high-quality in the system overall.

The total number of high- and low- quality firms will not change between periods

one and two (by Quincy’s theory.) Therefore, the allocation after period one would

be:

Ft:1(s, q) qL qH

sL (a + c) (b + d)

sH 0 0

Then, high skill agents, who enter in period two, successfully bid on firms for

which they have received a high signal. The ratio of d (high skill, high quality) to c

(high skill, low quality) must equal the original likelihood, times the rates given by

the accuracy of the signal:

d

c
=

γq
H

(1− γq
H)

b + d

a + c
(4.10)

=⇒ γq
H =

(a + c)d

bc + (a + 2c)d
(4.11)

Therefore, Ft allows Quincy to calculate γq
H , and he calibrates accordingly.

For this theory to dictate this behavior, Low-skilled Quincies and High-skilled

Quincies must both believe that κ̄ is sufficiently high as to make investing in period

one unprofitable on average; in other words, that κ̄ is at least (b + d) (which is the

probability, Quincy believes, of getting a high-quality firm on average.) On the other

hand, Quincy sees that there are agents who have entered in the first period. How

does Quincy explain this phenomenon? It would only make sense, for sufficiently
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small costs κ (that is, close to (b + d)), if there were risk-loving, low-skilled agents.

This belief allows Quincy to rationalize the outcome of the previous subgame.

Given these estimates, high-skilled Quincies find it profitable to wait until the

second period to bid on existing firms, and low-skilled Quincies find themselves

better off by opting out of the process altogether.

Given the price mechanism, high-skilled Quincies would like to set the lowest

bid price to capture what he believes are a monolithic set of risk-loving agents who

moved in the first turn. That price must certainly be above b+ d, but how far above

depends on Quincy’s beliefs about the risk-lovingness of these agents.

Thus, any price in the range
(
b + d, d

c+d

)
is consistent with Sam and Quincy’s

expectations.

This finishes the proof that this is a causally coherent equilibrium.

4.4.2 Results of the Dynamic Game

The dynamic game is constructed by setting an initial ratio of Sams and Quincies

and an initial distribution F , and allowing the repeated subgames to unfold until

some kind of convergence in λS emerges. In some cases, the dynamic game does not

settle on a particular value, but, instead, goes into a cycle. The hypotheses, which

are confirmed by simulation but not yet formal proof, are:

Hypothesis One

The average, long-run value of λS is a positive monotonic function of α. This

function is a function of parameters of the model (the fraction of high skilled agents,

the fraction of high original quality ideas.) This reveals that the average λS in fact

carries the same information as α. That is to say, that, although individual agents

are incapable of learning the ‘truth,’ the population ratio contains the truth.
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However, it is not the case, in general, that the average value of λS is equal to

α, which one might suspect. This arises from the fact that the true distribution of

κ allows for arbitrary re-distribution of profits between Sams (who are first-period

movers, and therefore bear the cost κ) and Quincies. In particular, however, there

is a value of the mean of the distribution of true κ which allows for average λS to

equal α. However, there is no mechanism within the model which would make this

equality hold.

Consider the following graph, which is of convergent λS as a function of α, holding

all other parameters fixed at:

F(s, q) qL qH

sL 0.4 0.1

sH 0.2 0.3

λS = .4 (4.12)

po = 0.5 ps = 0.5 κ = 0 (4.13)

Figure 4.1: Lambda is a positive function of alpha

Hypothesis Two

There are parameter values of this model which cause population cycles to emerge.

The population cycle of Sams and Quincies arises from the following two forces at

work:



94

When there are few Quincies, the high-skill Quincies can all be served, and they

get high profits per Quincy; moreover, as their population grows, they cut into the

profits of the Sams. When there are many Quincies, they crowd each other out;

each additional Quincy does not generate profit (hence lowering the average profit

of Quincies) but does not lower the profits of Sams any further.

The following simulations of the dynamic game are constructed in the following

way. The causally coherent behaviors, described in theorem IV.1, are programmed

in on an individual level. Then, the behavior and outcomes for each subgroup of

agents is calculated. For example, high-skill Sams or low-skill Sams whose firms are

purchased. The mass of each of these subgroups are also calculated; this allows for

the calculation of average profit for Sams and Quincies, and the final allocation of

skill level with quality level. Those pieces of information are used to construct the

outgoing λS and F , and then the simulation is repeated with the new values.

Below are two example runs; the first shows an example in which population

cycles do not emerge. In the second, the population cycles emerge and converge to

a long-run λS.

4.4.2.1 Example 1: A stable, low level of Quincies

Initial Values and parameters:

F(s, q) qL qH

sL 0.4 0.1

sH 0.2 0.3

λS = .4 (4.14)

α = 0.5 po = 0.5 ps = 0.5 κ = 0 (4.15)
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With these initial values and parameter values, the system converges to a steady

state of a fixed ratio of Sams to Quincies. This is analogous to the constant popula-

tion ratios of wolves, sheep, and grass mentioned in the background.

10 20 30 40 50
time

0.2

0.4

0.6

0.8

1
Λt
S

Figure 4.2: No cycles emerge

4.4.2.2 Example 2: Rapid Population Cycles

Example two uses the same initial values and parameters as the previous example,

but reduces po; that is, reduces the prevalence of original quality in the population.

po = 0.1 (4.16)

This is enough to cause the Quincies to bump into their crowding-out limit early

enough to induce cycles:

10 20 30 40 50
time

0.2

0.4

0.6

0.8

1
Λt
S

Figure 4.3: Rapid Population Cycles

The population cycles that have been induced are severe; that is, they cycle back

and forth between (roughly) two values. Population cycles that we would expect

to observe would be more gradual, and this suggests a weakness of this modeling
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framework. However, given the binary nature of all variables in this model, this

outcome is not surprising: if there were a distribution of skills and perceived signal

strengths, one would expect the Quincies to be more gradually crowded out, which,

I hypothesize, would yield a smoother set of population curves.

Note that the true α in both these settings is .5, well below the convergent λS.

4.5 Discussion

There are several key points to this combined model.

First, the predator and prey roles emerge only because Sam and Quincy have dif-

ferent theories about how firms work. They see the same data (the outcomes of the

previous subgame of Sams and Quincies bringing ideas to the market), they have the

same preferences, and they have the same actions available. Sam chooses to move

on the ideas instead of waiting, and Quincy chooses to wait instead of move. Other

than their theories, the Sams and Quincies are identical. This differentiates from

the classic Wolf/Sheep model, in which wolves are simply biologically incapable of

eating grass. There are existing models in the macro literature that involve endoge-

nous cycles, most recently Matsuyama99 [31], based on RiveraBatizRomer91’s [44]

model of endogenous innovation. In Matsuyama’s paper the macro economy follows

a cyclic growth path that alternates between periods of innovation and periods of

asset accumulation. These papers differ significantly from this paper: they are driven

by the decisions of a representative consumer. The representative consumer has no

role in this paper, in which agents do not have fundamentally compatible beliefs.

Second, the cyclicality is emergent. That is, there are stochastic inputs into the

system from stationary distributions, and cycles emerge endogenously. This is in

contrast with Macro models in which there must be exogenous shocks (magnified by
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the system) for there to be business cycles within the model. Moreover, this emergent

cyclicality may explain waves of firm takeovers or waves of increased competition that

seem heretofore inadequately explained.

Third, this model demonstrates that in a reasonable and interesting setting, agents

with incompatible but rationalizable theories can co-exist (albeit, not peacefully.)

The differing theories of Sam and Quincy do not get learned away in the long run:

on the contrary, they continue to believe their incompatible theories forever.

Fourth, in this model, the long run ratio of Sams to Quincies is a monotonic

function of α, which describes the true model. Hence, the ratio can be interpreted as

a way that the population learns the truth after a fashion, even though no individual

agent is capable of learning the truth.

4.5.1 Discussion of the Subgame

The following table describes agents’ believed average quality versus the true

average quality ex-post:

Expected Quality for Players

type skill expected true s true o true avg q

q component component

Sam sL
b

a+b
0 po (1− α)(po)

Sam sH
d

c+d
1 po α (1) + (1− α) (po)

Quincy sL n/a n/a n/a n/a

Quincy sH γq
H(b + d) 1 1 1

Note that the true average q for the Sams and low-skill Quincies excludes the fact

that Sams who have a high original quality are more likely to be purchased by a

Quincy. The true value for the Quincy, on the other hand, corresponds to the value

of the firm he has purchased.
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Expected value for Quincy is: γq
H ((b + d)1) + (1− γq

H) ((a + c)0)= γq
H(b + d)

High-skilled Quincies are able to buy at a bargain those firms with high original

quality, and therefore make both high- and low-skilled Sams worse off for accepting

their offers. There is no reason, in general, to believe that Quincies will purchase

from the high-skill Sams; there would be no particular reason for Quincy to choose

to offer a bid price as high as d
c+d

, which would be required. Instead, Quincies may

only buy from low-skill Sams. Nevertheless, the offer agreed upon can be below the

true value that the low-skilled Sam would receive.

4.6 Conclusion

This model serves four purposes: it shows that agents with differing theories can

co-exist, without particular theories dying out; it shows how cycles of takeovers can

emerge endogenously in a model with no external cyclic shocks; it shows that this

behavior can arise from different theories with regard to the same data alone; and

it shows that the long-run population ratio of theories can provide a measure of the

true model, which allows for ‘population learning’ which transcends what individuals

can learn.



CHAPTER V

Conclusion

Three essays investigating the construction and implications of economic agents’

internal representations of problems they face. In the second chapter, “Optimal

Auctions under Ambiguity,” we investigate the construction of an optimal auction

mechanism when agents are ambiguity averse over the valuation of the other bid-

der. In the third chapter, “Causal Coherence,” I investigate agents with differing

mental models of the same phenomenon. Agents with the same information and

same preferences can make different choices. Agents differ not only with respect to

their preferences and information, but their causal interpretations of that informa-

tion. This can lead to what agents with the correct causal model would perceive

as “irrational mistakes” committed by others. I apply an axiomatic representation

to develop the causally coherent agent, who has a causal model about a causally

ambiguous phenomenon that is consistent with data, makes choices rationally, but is

unaware of alternative models. In the fourth chapter, “Of Wolves and Sheep,” I place

the agents developed in the previous chapter into an economy. In this simple dynamic

economy, agents with different theories of how ideas develop into firms leads them

to choose different optimal take-up of these ideas. Their different behaviors yields

a predator/prey relationship among these agents, which causes natural population
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cycles of theories and behavior to emerge endogenously. The agents are identical

but for their theories (identical data, actions, preferences) so the predator/prey re-

lationship emerges only from their different interpretations of common data. Since

the system does not collapse, it shows that agents with differing theories may persist

in a long-run, dynamic equilibrium.
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.1 Chapter 2 (Appendix)

.1.1 Revelation Principle

An (indirect) selling mechanism is a set of possible bids Bi for each bidder, an

allocation rule ai : Bi×B−i → [0, 1] for each bidder such that ai ≥ 0 and a1 + a2 ≤ 1

and a payment rule mi : Bi × B−i → R for each bidder. Each mechanism defines

a game of incomplete information where strategies βi : Θ → Bi is an equilibrium if

for each bidder and for all θ given β−i, βi (θ) maximizes bidder i’s maxmin expected

payoff:

inf
G∈∆B

∫
Θ

(
ai

(
βi (θ) , β−i (θ

′)
)
θ −m

(
βi (θ) , β−i (θ

′)
))

dG (θ′) .

A direct revelation mechanism is a mechanism where Bi = Θ for both bidders.

The revelation principle says that given a mechanism and an equilibrium of that

mechanism, there exists a direct mechanism in which it is an equilibrium for each

bidder to bid his value truthfully and the outcomes of the truthful equilibrium in the

direct mechanism are the same as the given equilibrium in the original mechanism.

Next we show that the revelation principle holds in our setting. To see this sup-

pose (Bi, ai, mi), i = 1, 2 describes the original mechanism and (β1, β2) is an equi-

librium of that mechanism. Let xi (θi, θ−i) = ai

(
βi (θ) , β−i (θ−i)

)
and ti (θi, θ−i) =

mi

(
βi (θ) , β−i (θ−i)

)
. To see that bidding truthfully for each bidder is an equilibrium

in the direct mechanism note that,

inf
G∈∆B

∫
Θ

(ai

(
βi (θ) , β−i (θ

′)
)
θ

−m
(
βi (θ) , β−i (θ

′)
)
)dG (θ′)

≥ inf
G∈∆B

∫
Θ

(
ai

(
βi

(
θ̂
)

, β−i (θ
′)
)

θ −m
(
βi

(
θ̂
)

, β−i (θ
′)
))

dG (θ′)
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implies that

inf
G∈∆B

∫
Θ

(xi (θ, θ
′) θ − ti (θ, θ

′)) dG (θ′) ≥ inf
G∈∆B

∫
Θ

((
xi

(
θ̂, θ′

)
θ − ti

(
θ̂, θ′

)))
dG (θ′) .

Finally, by construction the outcomes of the truthful equilibrium in the direct mech-

anism are the same as the given equilibrium in the original mechanism.

.1.2 Proof of Proposition II.1

Fix a mechanism (x, t) . Let

K(θ) = inf
G∈∆B

∫
Θ

q(θ, θ′)dG(θ′)

so that K(θ) is bidder θ’s maxmin expected payoff. For any θ ∈ Θ, define the

function δ (θ, ·) : Θ → R by

δ(θ, θ′) = q(θ, θ′)−K(θ) for all θ′ ∈ Θ.

Let t′(θ, θ′) = t(θ, θ′) + δ(θ, θ′) and consider the mechanism (x, t′).

We prove the proposition in several steps. In the first step we show that (x, t′) is

a full insurance mechanism. Furthermore, it leaves the bidders’ payoffs unchanged

under truth-telling and therefore it is individually rational.

To see that (x, t′) is a full insurance mechanism consider an arbitrary bidder θ ∈ Θ

and note that,

x(θ, θ′)θ − t′ (θ, θ′) = x(θ, θ′)θ − t(θ, θ′)− δ(θ, θ′)

= q(θ, θ′)− q(θ, θ′) + K(θ) = K(θ).

Thus bidders’ payoffs under truth telling are unchanged since

inf
G∈∆B

∫
Θ

[x(θ, θ′)θ − t′(θ, θ′)] dG(θ′) = K(θ).
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In the second step of the proof we show that (x, t′) is incentive compatible. The

payoff for θ ∈ Θ to deviate to an arbitrary θ̃ ∈ Θ, θ 6= θ̃, is:

inf
G∈∆B

∫
Θ

[
x(θ̃, θ′)θ − t′(θ̃, θ′)

]
dG(θ′)

= inf
G∈∆B

∫
Θ

[
x(θ̃, θ′)θ − t(θ̃, θ′)− δ(θ̃, θ′)

]
dG(θ′)

≤ inf
G∈∆B

∫
Θ

(
x(θ̃, θ′)θ − t(θ̃, θ′)

)
dG(θ′)− inf

G∈∆B

∫
Θ

δ(θ̃, θ′)dG(θ′).

The inequality above follows since the sum of the infimum of two functions is

(weakly) less than the infimum of the sum of the functions. But note that

inf
G∈∆B

∫
Θ

δ(θ̃, θ′)dG(θ′) = inf
G∈∆B

∫
Θ

[
q(θ̃, θ′)−K(θ̃)

]
dG(θ′) = 0.

Combining this with (??) implies that

inf
G∈∆B

∫
Θ

[
x(θ̃, θ′)θ − t′(θ̃, θ′)

]
dG(θ′) ≤ inf

G∈∆B

∫
Θ

[
x(θ̃, θ′)θ − t(θ̃, θ′)

]
dG(θ′).

Now the payoff for type θ to truth-telling in (x, t′) must be weakly larger than the last

expression, because the mechanism (x, t) was assumed to be incentive compatible,

and by the first step the truth telling payoffs are unchanged. Thus (x, t′) is incentive

compatible.

In the third step we show that the seller is weakly better off using (x, t′). To see

this first note

inf
G∈∆S

∫
Θ

∫
Θ

[t′(θ, θ′) + t′(θ′, θ)] dG(θ)dG(θ′)

= inf
G∈∆S

∫
Θ

∫
Θ

2t′(θ, θ′)dG(θ)dG(θ′)

= inf
G∈∆S

[∫
Θ

∫
Θ

2t(θ, θ′)dG(θ)dG(θ′) +

∫
Θ

∫
Θ

2δ(θ, θ′)dG(θ)dG(θ′)

]
≥ inf

G∈∆S

∫
Θ

∫
Θ

2t(θ, θ′)dG(θ)dG(θ′) + inf
G∈∆S

∫
Θ

∫
Θ

2δ(θ̃, θ′)dG(θ′)dG(θ̃).
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Moreover for any G ∈ ∆S,

∫
Θ

∫
Θ

δ(θ, θ′)dG(θ′)dG(θ)

=

∫
Θ

∫
Θ

(q(θ, θ′)dG(θ′)−K(θ)) dG(θ)

=

∫
Θ

[∫
Θ

q(θ, θ′)dG(θ′)− inf
G′∈∆B

∫
Θ

q(θ, θ′)dG′(θ′)

]
dG(θ) ≥ 0.

Combining equations (??) and (??) we see that the seller is weakly better off using

(x, t′) .

Finally we show that if there exists some positive measure Θ̃ ⊆ Θ such that for

any θ̃ ∈ Θ̃

inf
G∈∆S

∫
Θ

q(θ̃, θ′)dG(θ′) > inf
H∈∆B

∫
Θ

q(θ̃, θ′)dH(θ′)

then the seller strictly prefers (x, t′) to (x, t) . To see this note that,

inf
G∈∆S

∫
Θ

∫
Θ

δ(θ̃, θ′)dG(θ′)dG(θ̃)

= inf
G∈∆S

∫
Θ

[∫
Θ

q(θ̃, θ′)dG(θ′)− inf
H∈∆B

∫
q(θ̃, θ′)dH(θ′)

]
dG(θ̃) > 0.

The strict inequality follows because for all G ∈ ∆S the expression inside the integral

is greater than zero for all θ̃ ∈ Θ̃ and, by assumption, the event Θ̃ gets strictly positive

weight for all distributions in ∆S. Combining equations (??) and (??) we conclude

that the seller strictly prefers the mechanism (x, t′) .

This completes the proof.

.1.3 Proof of Proposition II.2

Note that since in this paper we deal in environments where the bidders’ valuations

are drawn independently, restricting attention to mechanisms where the transfers are

uniformly bounded is without any loss of generality as far as search for optimal selling

mechanism is concerned.
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In our proof we will use the following definitions and results. Suppose that p and

q are conjugate indices, i.e. 1/p + 1/q = 1. If p = 1 then the conjugate is q = ∞.

Suppose that fn ∈ Lp (Θ, Σ, µ̃) for n ∈ {1, 2, ...} . (From now on we will write Lp

instead of Lp (Θ, Σ, µ̃) for notational simplicity.) We say that fn converges weakly

to f ∈ Lp if
∫

gfndµ̃ converges to
∫

gfdµ̃ for all g ∈ Lq.

Let ca (Σ) be the set of countably additive probability measures on (Θ, Σ).

Chateauneuf, Maccheroni, Marinacci and Tallon [29] prove that when ∆ ⊂ ca (Σ)

is weakly compact and convex then there is a measure µ̃ ∈ ∆ such that all measures

in ∆ are absolutely continuous with respect to µ̃. Using this result we fix µ̃ to be a

measure such that µ << µ̃ for all µ ∈ ∆m
B ∪∆m

S .

For each µ ∈ ∆m
B ∪∆m

S there exists a Radon-Nikodym derivative f ∈ L1 (µ̃) . By

the Radon-Nikodym Theorem, there is an isometric isomorphism between ca(µ̃) and

L1 (µ̃) determined by the formula µ(A) =
∫

A
fdµ̃ (see Dunford and Schwartz [7], p.

306 ). Hence, a subset is weakly compact in ca(µ̃) if and only if it is in L1 (µ̃) as

well.

Let ∆̃B and ∆̃S be the set of Radon-Nikodym derivatives of measures in ∆m
B and

∆m
S with respect to µ̃ respectively.

Finally, let

Br
∞ = {g ∈ L∞ : ‖g‖∞ ≤ r} .

By theorem 19.4 in Billingsley [5], Br
∞ is weakly compact.

Now we turn to the proof.

Proof of Proposition II.2 First we show that the minimizing set of priors is

nonempty in (2.1). Let

gθ̃θ (θ′) = x(θ̃, θ′)θ − t(θ̃, θ′).

Recall that we assume |t (θ, θ′)| ≤ K for some K > 0. In other words transfers are
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uniformly bounded. Therefore by assumption gθ̃θ ∈ L∞.

Now suppose that fn ∈ ∆̃B is such that∫
gθ̃θf

ndµ̃

converges to

inf
f∈∆̃B

∫
gθ̃θfdµ̃.

Since ∆̃B is weak compact, by passing to a subsequence we can find f̄ ∈ ∆̃B such

that fn weakly converges to f̄ . Thus,

f̄ ∈ arg min
f∈∆̃B

∫
gθ̃θfdµ̃.

This proves that the minimizing set of priors is nonempty in the IC and IR con-

straints.

Now, we show that the minimizing set of priors in the seller’s objective function

is nonempty. Suppose fn ∈ ∆̃S is such that∫∫
t (θ, θ′) fn (θ) fn (θ′) dµ̃ (θ) dµ̃ (θ′)

approaches to

inf
f∈∆̃S

∫∫
t (θ, θ′) f (θ) f (θ′) dµ̃ (θ) dµ̃ (θ′) .

Since ∆̃S is weak compact, by passing to a subsequence we can find f̄ ∈ ∆̃S such that

fn weakly converges to f̄ . Thus
∫

t (θ, θ′) fn (θ) dµ̃ (θ) converges to
∫

t (θ, θ′) f̄ (θ) dµ̃ (θ) .

Let

gn (θ′) =

∫
t (θ, θ′) fn (θ) dµ̃ (θ)

and let

g (θ′) =

∫
t (θ, θ′) f̄ (θ) dµ̃ (θ) .
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Consider
∫

gn (θ′) fn (θ′) dµ̃ (θ′) . Note that,∣∣∣∣∫ gn (θ′) fn (θ′) dµ̃ (θ′)−
∫

g (θ′) f̄ (θ′) dµ̃ (θ′)

∣∣∣∣
≤

∣∣∣∣∫ gn (θ′) fn (θ′) dµ̃ (θ′)−
∫

gn (θ′) f̄ (θ′) dµ̃ (θ′)

∣∣∣∣
+

∣∣∣∣∫ gn (θ′) f̄ (θ′) dµ̃ (θ′)−
∫

g (θ′) f̄ (θ′) dµ̃ (θ′)

∣∣∣∣
≤ |K + 1|

∣∣∣∣∫ (
fn (θ′)− f̄ (θ′)

)
dµ̃ (θ′)

∣∣∣∣
+

∣∣∣∣∫ (gn (θ′)− g (θ′)) f̄ (θ′) dµ̃ (θ′)

∣∣∣∣ .

The first term goes to zero. To see that the second term also goes to zero note∣∣∣∣∫ (gn (θ′)− g (θ′)) f̄ (θ′) dµ̃ (θ′)

∣∣∣∣
=

∣∣∣∣∫ (∫
t (θ, θ′) fn (θ) dµ̃ (θ)−

∫
t (θ, θ′) f̄ (θ) dµ̃ (θ)

)
f̄ (θ′) dµ̃ (θ′)

∣∣∣∣
=

∣∣∣∣∫ (∫
t (θ, θ′) f̄ (θ′) dµ̃ (θ′)

)
fn (θ) dµ̃ (θ)−

∫ (∫
t (θ, θ′) f̄ (θ′) dµ̃ (θ′)

)
f̄ (θ) dµ̃ (θ)

∣∣∣∣ .

Thus,

f̄ ∈ arg min
f∈∆̃S

∫∫
t (θ, θ′) f (θ) f (θ′) dµ̃ (θ) dµ̃ (θ′) .

This proves that the minimizing set of priors in the seller’s objective function is

nonempty.

Next, we show that there exists a mechanism (x, t) that satisfies the IC and

IR constraints and achieves the optimal revenue for the seller. Since transfers are

bounded, the seller’s revenue is bounded. Suppose that the value of the seller’s

problem (2.1) is R. This means that there exist a sequence of mechanisms {(xn, tn)}

such that (xn, tn) satisfies IC and IR constraints for each n, and if we let,

Rn = min
µ∈∆m

S

∫∫
[tn (θ, θ′) + tn (θ′, θ)] dµ (θ) dµ (θ′) ,

then Rn → R.
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Note that xn ∈ B1
∞ and tn ∈ BK

∞. Therefore passing to subsequences xn converges

weakly to x and and tn converges weakly to t. Clearly x (θ, θ′) + x (θ′, θ) ≤ 1 for all

θ, θ′ ∈ Θ.

Next, we will show that (x, t) satisfies IC and IR constraints. Note that it is

sufficient to show that for any θ, θ̃ ∈ Θ,

lim
n→∞

min
µ∈∆m

B

∫ (
xn(θ̃, θ′)θ − tn(θ̃, θ′)

)
dµ(θ′) = min

µ∈∆m
B

∫ (
x(θ̃, θ′)θ − t(θ̃, θ′)

)
dµ(θ′).

To simplify notation let

gn
θ̃θ

(θ′) = xn(θ̃, θ′)θ − tn(θ̃, θ′)

and

gθ̃θ(θ
′) = x(θ̃, θ′)θ − t(θ̃, θ′)

for all θ, θ̃ ∈ Θ. Observe that gn
θ̃θ

and gθ̃θ are both bounded by K + 1 and thus they

are both in L∞. Moreover since xn and tn converge weakly to x and t, gn
θ̃θ

converges

weakly to gθ̃θ.

Now note that for all µ̂ ∈ ∆m
B ,,

lim
n→∞

min
µ∈∆m

B

∫
gn

θ̃θ
(θ′)dµ(θ′) ≤ lim

n→∞

∫
gn

θ̃θ
(θ′)dµ̂(θ′) =

∫
gθ̃θ(θ

′)dµ̂(θ′),

where the equality follows since gn
θ̃θ

converges weakly to gθ̃θ(θ
′). Thus,

lim
n→∞

min
µ∈∆m

B

∫
gn

θ̃θ
(θ′)dµ(θ′) ≤ min

µ∈∆m
B

∫
gθ̃θ(θ

′)dµ(θ′).

On the other hand, for each n let fn ∈ ∆̃B be such that,∫
gn

θ̃θ
(θ′)fn (θ′) dµ̃(θ′) = min

f∈∆̃B

∫
gn

θ̃θ
(θ′)f (θ′) dµ̃(θ′).

(We know such fn exists since minimizing set of priors is nonempty.) Since ∆̃B is

weakly compact again by passing to a subsequence, fn converges weakly to f̄ ∈ ∆̃B.
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Note that, ∣∣∣∣∫ gn
θ̃θ

(θ′)fn (θ′) dµ̃(θ′)−
∫

gθ̃θ(θ
′)f̄ (θ′) dµ̃(θ′)

∣∣∣∣
≤

∣∣∣∣∫ gn
θ̃θ

(θ′)fn (θ′) dµ̃(θ′)−
∫

gn
θ̃θ

(θ′)f̄ (θ′) dµ̃(θ′)

∣∣∣∣
+

∣∣∣∣∫ gn
θ̃θ

(θ′)f̄ (θ′) dµ̃(θ′)−
∫

gθ̃θ(θ
′)f̄ (θ′) dµ̃(θ′)

∣∣∣∣
≤ |K + 1|

∣∣∣∣∫ (
fn (θ′)− f̄ (θ′)

)
dµ̃(θ′)

∣∣∣∣
+

∣∣∣∣∫ gn
θ̃θ

(θ′)f̄ (θ′) dµ̃(θ′)−
∫

gθ̃θ(θ
′)f̄ (θ′) dµ̃(θ′)

∣∣∣∣ .

The last inequality follows from the fact that
∣∣∣gn

θ̃θ
(θ′)

∣∣∣ ≤ K + 1. Since fn weakly

converges to f̄ ∈ ∆̃B and gn
θ̃θ

converges weakly to gθ̃θ both terms on the right hand

side of the last inequality approach to 0. This implies by taking limits in equation

(.1.3) that,∫
gθ̃θ(θ

′)f̄ (θ′) dµ̃(θ′) = lim
n→∞

min
f∈∆̃B

∫ (
xn(θ̃, θ′)θ − tn(θ̃, θ′)

)
f (θ′) dµ̃(θ′),

which in turn implies that

min
f∈∆̃B

∫
gθ̃θ(θ

′)f (θ′) dµ̃(θ′) ≤ lim
n→∞

min
f∈∆̃B

∫ (
xn(θ̃, θ′)θ − tn(θ̃, θ′)

)
f (θ′) dµ̃(θ′).

The previous inequality together with (.1.3) implies (.1.3) which concludes the proof.

.1.4 Proof of Corollary II.3

Suppose that for some mechanism (x, t) , there exists some positive measure event

Θ̃ ⊆ Θ such that for all θ ∈ Θ̃ and for all G ∈ ∆min
S ,∫

Θ

q(θ, θ′)dG(θ′) > min
H∈∆B

∫
Θ

q(θ, θ′)dH(θ′)
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We need to show that there exists a full insurance that is strictly preferred by the

seller. Let (x, t′) be defined as in the proof of Proposition II.1. We know that

inf
G∈∆S

∫
Θ

∫
Θ

[t′(θ, θ′) + t′(θ′, θ)] dG(θ)dG(θ′)

≥ inf
G∈∆S

∫
Θ

∫
Θ

2t(θ, θ′)dG(θ)dG(θ′) + inf
G∈∆S

∫
Θ

∫
Θ

2δ(θ̃, θ′)dG(θ′)dG(θ̃).

Let G̃ ∈ arg minG∈∆m
S

∫∫
[t′(θ, θ′) + t′(θ′, θ)] dG(θ)dG(θ′). We will show the claim by

considering two cases.

The first case is G̃ ∈ ∆min
S . In this case for all θ ∈ Θ̃ equation (.1.4) holds.

Therefore, ∫
Θ

∫
Θ

δ(θ, θ′)dG̃(θ′)dG̃(θ)

=

∫
Θ

[∫
Θ

q(θ, θ′)dG̃(θ′)− min
H∈∆B

∫
Θ

q(θ, θ′)dH(θ′)

]
dG̃(θ) > 0.

Using equation (??) we conclude that the seller strictly prefers the mechanism (x, t′) .

The second case is G̃ /∈ ∆min
S . In this case by definition of ∆min

s ,∫
Θ

∫
Θ

2t(θ, θ′)dG̃(θ)dG̃(θ′) > min
H∈∆S

∫
Θ

∫
Θ

2t(θ, θ′)dH(θ)dH(θ′).

Again from equation (??) we observe that,

min
G∈∆S

∫
Θ

∫
Θ

[t′(θ, θ′) + t′(θ′, θ)] dG(θ)dG(θ′)

=

∫
Θ

∫
Θ

2t(θ, θ′)dG̃(θ)dG̃(θ′) +

∫
Θ

∫
Θ

2δ(θ̃, θ′)dG̃(θ′)dG̃(θ̃)

> min
H∈∆S

∫
Θ

∫
Θ

2t(θ, θ′)dH(θ)dH(θ′).

and the seller strictly prefers (x, t′) .

.1.5 Proof of Proposition II.4

Towards a contradiction suppose that (x, t) is optimal but for a positive mea-

sure set of θ̄, q(θ̄, θ) is not constant. Since F has strictly positive density we have
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∫
q(θ̄, θ′)dF (θ′) > infθ′∈Θ q(θ̄, θ′). So∫

q(θ̄, θ′)dF (θ′) > (1− ε)

∫
Θ

q(θ̄, θ′)dF (θ′) + ε inf
θ′∈Θ

q(θ̄, θ′)

≥ inf
H∈∆B

∫
Θ

q(θ, θ′)dH(θ′).

By Proposition II.1 (x, t) can not be optimal.

.1.6 Proof of Lemma II.5

We need to show that there exists M > 0 such that∣∣∣u (θ)− u
(
θ̃
)∣∣∣ ≤ M

∣∣∣θ − θ̃
∣∣∣ .

We know that,(
θ − θ̃

)
Xmin

(
θ̃
)
≤ u (θ)− u

(
θ̃
)
≤

(
θ − θ̃

)
Xmax

(
θ̃
)

.

So if θ > θ̃, using the fact that u is increasing we can conclude that,

u (θ)− u
(
θ̃
)
≤

(
θ − θ̃

)
Xmax

(
θ̃
)
≤

∣∣∣θ − θ̃
∣∣∣ .

Similarly if θ < θ̃, then

−
(
u (θ)− u

(
θ̃
))

≤ −
(
θ − θ̃

)
Xmin

(
θ̃
)
≤

∣∣∣θ − θ̃
∣∣∣ .

Together these imply that Lipschitz condition holds with M = 1.

.1.7 Proof of Proposition II.6

First note that Lε is increasing in θ, if L is increasing in θ. To see this note that,

θ − 1− F (θ)

f (θ)
> θ′ − 1− F (θ′)

f (θ′)

⇒ θ − θ′ >
1− F (θ)

f (θ)
− 1− F (θ′)

f (θ′)

⇒ θ − θ′ > (1− ε)

(
1− F (θ)

f (θ)
− 1− F (θ′)

f (θ′)

)
⇒ θ − (1− ε)

1− F (θ)

f (θ)
> θ′ − (1− ε)

1− F (θ′)

f (θ′)
.
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Note that Xmin (θ) ≤ X (θ) . Therefore if X (θ) = 0, Xmin (θ) = 0 as well. Letting

Xmin(θ)
X(θ)

= 1 whenever X (θ) = 0, we define M (θ) = θ− Xmin(θ)
X(θ)

1−F (θ)
f(θ)

. We can rewrite

R as,

R = 2

∫
Θ

∫
Θ

M (θ) x (θ, θ′) f (θ′) f (θ) dθ′dθ.

Now we can show that the optimal allocation rule is given by setting x (θ, θ′) = 1 if

θ > θ′ and θ ≥ r, x (θ, θ′) = 1
2

if θ = θ′ and θ ≥ r, and x (θ, θ′) = 0 otherwise. First

note that, in the ε-contamination case, Xmin (θ) ≥ (1− ε) X (θ) for all θ such that

X (θ) < 11.

Under the above allocation rule Xmin (θ) = (1− ε) X (θ) for all θ such that X (θ) <

1. Therefore this allocation rule maximizes M (θ) . By construction x (θ, θ′) = 1 if

and only if M (θ) > M (θ′) and M (θ) ≥ 0 therefore maximizing (.1.7).

Finally we show that (x, t) is incentive compatible. To this end first we show that

if Xmin is non-decreasing selecting u as in ( 2.11) satisfies IC. We check two cases.

If θ > θ̃,

u (θ)− u
(
θ̃
)

=

∫ θ

θ̃

Xmin (y) dy ≥ Xmin
(
θ̃
) (

θ − θ̃
)

and if θ < θ̃,

u
(
θ̃
)
− u (θ) =

∫ θ̃

θ

Xmin (y) dy ≤ Xmin
(
θ̃
) (

θ̃ − θ
)

.

So in either case,

u (θ) ≥ u
(
θ̃
)

+ inf
G∈∆B

∫
Θ

(
θ − θ̃

)
x(θ̃, θ′)dG(θ′)

= inf
G∈∆B

∫
Θ

(
x(θ̃, θ′)θ − t(θ̃, θ′)

)
dG(θ′).

1This is true since:

Xmin (θ) = inf
G∈∆b

Z
Θ

x(θ, θ′)dG(θ′) = (1− ε)

Z
Θ

x(θ, θ′)dµ̃(θ′) + ε inf
µ̂<<µ

Z
Θ

x(θ, θ′)dµ̂(θ′)

≥ (1− ε)

Z
Θ

x(θ, θ′)dF (θ′).
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which is the IC constraint.

Now, note that for the allocation rule in the statement of Proposition II.6, Xmin

is non-decreasing, and thus the mechanism (x, t) is incentive compatible.

.1.8 Proof of Proposition II.7

Suppose that given a mechanism (x, t), there exists a positive measure subset

Θ̃ ⊆ Θ such that for all θ̃ ∈ Θ̃, q(θ̃, θ) is weakly decreasing in θ and q(θ̃, θ′) < q(θ̃, θ′′)

for some θ′, θ′′ ∈ Θ. First note that if H ∈ ∆B first-order stochastically dominates

G ∈ ∆S then

∫
Θ

q(θ̃, θ′)dH(θ′) <

∫
Θ

q(θ̃, θ′)dG(θ′).

So there exists H ∈ ∆B such that∫
Θ

q(θ, θ′)dH(θ′) < min
G∈∆S

∫
Θ

q(θ, θ′)dG(θ′)

which in turn implies that

min
H∈∆B

∫
Θ

q(θ, θ′)dH(θ′) < min
G∈∆S

∫
Θ

q(θ, θ′)dG(θ′).

Note that since ∆S and ∆B are weakly compact and convex with elements that are

countably additive probability measures and the transfers are uniformly bounded,

the minimums above exist by Proposition II.2. Finally, by Proposition II.1, (x, t) is

not optimal.

.1.9 Proof of Proposition II.8

Let (x, t) be an arbitrary incentive compatible and individually rational mecha-

nism. Define T (θ) as bidder θ’s expected transfer under F , that is,

T (θ) =

∫
Θ

t(θ, θ′)dF (θ′)
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Now let

t̃(θ, θ′) = T (θ)− T (θ′) +

∫
Θ

T (i)dF (i).

First, we show that the mechanism (x, t̃) makes the seller (weakly) better off, leaves

the bidders’ payoffs unchanged under truthtelling, and is incentive compatible.

To see that the seller is (weakly) better off under (x, t̃),note that the seller’s payoff

in the mechanism (x, t̃) is:

inf
G∈∆S

∫
Θ

∫
Θ

[
t̃(θ, θ′) + t̃(θ′, θ)

]
dG(θ)dG(θ′)

= inf
G∈∆S

∫
Θ

∫
Θ

[T (θ)− T (θ′) +

∫
T (i)dF (i) + T (θ′)− T (θ)

+

∫
Θ

T (j)dF (j)]dG(θ)dG(θ′)

= inf
G∈∆S

∫
Θ

∫
Θ

[
2

∫
T (i)dF (i)

]
dG(θ)dG(θ′)

= 2

∫
Θ

T (i)dF (i) =

∫
Θ

∫
Θ

[t(θ, θ′) + t(θ′, θ)] dF (θ)dF (θ′)

≥ inf
G∈∆S

∫
Θ

∫
Θ

[t(θ, θ′) + t(θ′, θ)] dG(θ)dG(θ′)

where the last inequality follows since F ∈ ∆S. Hence the seller weakly prefers (x, t̃).

Next we show that (x, t̃) leaves the bidders’ payoffs unchanged under truth-telling.

By construction:

∫
Θ

t̃(θ, θ′)dF (θ′) =

∫
Θ

[
T (θ)− T (θ′) +

∫
Θ

T (i)dF (i)

]
dF (θ′)

= T (θ)−
∫

Θ

T (θ′)dF (θ′) +

∫
Θ

T (i)dF (i) = T (θ) =

∫
Θ

t(θ, θ′)dF (θ′).

Finally we show that (x, t̃) is incentive compatible. Note that,
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∫ [
θx(θ̃, θ′)− t(θ̃, θ′)

]
dF (θ′) =

∫
θx(θ̃, θ′)dF (θ′)−

∫
t(θ̃, θ′)dF (θ′)

=

∫
θx(θ̃, θ′)dF (θ′)− T (θ̃) =

∫
θx(θ̃, θ′)dF (θ′)−

∫
t̃(θ̃, θ′)dF (θ′).

So the payoff for type θ to pretend to be θ̃ is the same in both mechanisms (x, t)

and (x, t̃) and since (x, t) is incentive compatible, (x, t̃) must be as well. Since, by

construction, t̃(θ, θ′) + t̃(θ′, θ) is constant for all θ, θ′ ∈ Θ, the first part of the proof

is completed. Next suppose

inf
G∈∆S

∫
Θ

∫
Θ

[t(θ, θ′) + t(θ′, θ)] dG(θ)dG(θ′) <

∫
Θ

∫
Θ

[t(θ, θ′) + t(θ′, θ)] dF (θ)dF (θ′).

Then the weak inequality becomes strict, and the seller becomes strictly better off.
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.2 Chapter 3 (Appendix)

.2.1 Notes Concerning the Two-Price Auction

.2.1.1 Causally Coherent Equilibrium Play

In this section I demonstrate that, for 0 < M ≤ 1
2
min {α, β}, the causally coherent

equilibrium play for investor IS is “Bid M iff SS = 1.” Then I demonstrate that

Investor IQ plays M only if SQ = 1 and σ = 1.

First, consider the payoffs for any low skill agent. This agent stands to win 0

under bid $0 and −M with some positive probability under bid $M . Trivially, low

skill agents bid $0.

Now consider the high-skill investor IS. He has sufficient incentive to play $M

iff:

POS(M) ≥ POS(0)

ProbS(win|M)α−M ≥ ProbS(win|0)α(
1

2
γs + (1− γs)

)
α−M ≥ (1− γs)

1

2
α

where γs is the probability that (he believes) his opponent plays M

1

2
α ≥ M

Consider the high-skill investor IQ. He has sufficient incentive to play M iff:

POQ(M) ≥ POQ(0)

ProbQ(win|M)β −M ≥ ProbQ(win|0)β(
1

2
γq +

(
1− γq

))
β −M ≥

(
1− γq

) 1

2
β



118

where γq is the probability that (he believes) his opponent plays M

1

2
β ≥ M

.2.1.2 That investor IS loses money on average

We must establish the probability that Q = 1 given that S won, when Q is true.

Prob(Q = 1|Swon) =
1

2
Prob(Q = 1|investor IQ plays M)Prob(investor IQ plays M)

+ Prob(q = 1|investor IQ plays 0)Prob(investor IQ plays 0)

Prob(Q = 1|investor IQ plays M) is β. Prob(investor IQ plays M) = 1
4
; there

is a half chance that the agent is of type SQ = 1, and a half chance that the firm

receives a signal of 1. Therefore,

Prob(Q = 1|Swon) =
1

2
β

1

4
+ (1− β)

3

4

=
3

4
− 5

8
β < M

when 2
3

< β.
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