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ABSTRACT 

 

The objective of this research was to model freshman engineering success, using 

education theory and statistical modeling techniques.  Freshman academic success and 

retention were modeled from pre-college characteristics.  The UCLA/CIRP survey was 

used in this to survey students’ pre-college attitudes and experiences.  An empirical 

analysis was conducted at the University of Michigan to validate the model using factor 

and regression analysis. 

 

Three research objectives were explored:  

• Define a proposed model based on the significant pre-college predictors of 

engineering student academic success and retention from the literature and 

determine if the empirical data support the proposed model.   

• Define and explore the effectiveness of selected intervention strategies for student 

academic success and retention. 

• Evaluate if the predictors of student success and retention are different for 

engineering students than for non-engineering students.  Three student sectors 

other than engineering were considered: pre-med students; students pursuing an 

intended major in science, math or a technical field; and students with an intended 

major in the social sciences, humanities or business field.  

 

The significance of this research is that it proposed and validated a model for engineering 

student success.  Prediction equations for both academic success and retention were 

developed.  The modeling of freshman student success of the Engineering discipline was 

compared to the Pre-Med, STEM and Non-STEM disciplines.  The only factor that was a 

common predictor for academic success for all four disciplines was the factor that 

included the high school GPA and class rank.  All other significant predictors were 



 

 xxiii   

discipline specific.  This finding supports that the modeling of freshman engineering 

student success is different from the modeling of general college freshman success.  

Significant predictors unique to freshman engineering academic success (GPA) included 

the factors related to quantitative skills preparation (ACT Math and Science test scores 

and the math and chemistry placement tests) and confidence in quantitative skills (self-

rating of math and computer abilities).  Significant predictors for freshman engineering 

retention were high school rank and concern about financing a college education.  
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CHAPTER I 

INTRODUCTION  
 

1.1 Motivation 

 

The U.S. engineering community is concerned with the predicted shortage of engineers in 

the workplace (NAE, 2004; NAS, 2005).  Data from the U.S. Bureau of Labor Statistics 

indicates that 43% of the growth in new jobs will be in engineering and computer related 

careers from 2004 to 2014; this equates to an average 4% growth in engineering jobs per 

year (Hacker, 2005; cited in US Department of Education, 2006).  At the same time, a 

large number of scientists and engineers are reaching retirement age, increasing the total 

growth in engineering jobs to 6% per year (based on statistics from the National Science 

Board (NSB), 2006).  Yet, the number of students enrolled in engineering bachelor 

programs has remained constant from the mid-1980s to 2003 (NSB, 2006).  Looking 

further back in the pipeline to students in high school, there is less interest in an 

engineering career among high school students.  ACT reports that the percent of high 

school students who took the ACT test and indicated an interest in an engineering major 

has declined by 36% from 7.6% in 1995 to 4.9% in 2005 (ACT, 2006).  If these trends 

continue, it is expected that the U.S. will have a significant shortage in engineers. 

 

In addition, a major concern is the effect of a shortage of engineering on the innovative 

competitiveness of the U.S.  With a shortage of Bachelor engineers, the pipeline for 

research engineers is decreased; this can have a significant effect on the innovation 

competitiveness of the U.S. (NAS, 2005).  Related to the issue of innovative 

competitiveness, the U.S. is falling behind other countries in the production of scientists  
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and engineers.  In China, 60% of all Bachelors degrees are earned in science and 

engineering.  This compares to 30% of all Bachelor degrees are earned in science and 

engineering in the U.S., of which only 5% are engineering (Friedman, 2006, 331; NSB, 

2006).  With a shortage of engineers in the U.S., the innovation competitiveness issue is 

expected to become a more serious problem.   

 

There is hope that women and minority engineers will help make up the deficit in number 

of new engineers.  Women constitute 56% of the U.S. population, but women earn only 

20% of the Bachelor engineering degrees (Grose, 2006).  Likewise, minorities constitute 

30% of the college age population (NSB, 2004) and, by 2020, are expected to constitute 

37% of the U.S. population (National Center for Public Policy and Higher Education, 

2005).  In 2001, NSF reported that minorities earned only 13% of the Bachelor degrees in 

engineering.  This data suggests that minorities and women must be more strongly 

recruited into the engineering programs, in order to meet the projected growth in 

engineering jobs.  

 

As an overall indication of this national crisis, the National Science Board has recently 

expressed their concern.  They have  recommended that “the Federal Government must 

direct substantial new support to students and institutions in order to improve success in S 

& E [science and engineering] study by American undergraduates from all demographic 

groups” (NSB, 2007). 

 

In the larger picture of the challenges that universities are facing today, student retention 

is one factor that a university considers in measuring its effectiveness in serving its 

students, faculty and staff.  To achieve better effectiveness, more emphasis is being 

placed on continuous improvement.  Dew recently wrote, “What’s new in higher 

education is the increased emphasis on continuous improvement and the growing 

appreciation of quality management systems” (Dew, 2007).  Within the framework of 

continuous improvement, student success is a significant part of the effectiveness effort 

by universities, and continuous improvement in retention rates will continue to be 

emphasized.  
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Given the overwhelming data that supports a shortage of engineers in the next ten years, a 

short-term solution is to increase the graduation rates of engineering colleges.  The 

average graduation rate of all U.S. engineering colleges is under 55% (Clough, 2006).  A 

10 to 20% improvement in this average graduation rate would substantially increase the 

number of new engineers to the engineering workforce and research community, and 

improve the institutional effectiveness of the university.  A component of the graduation 

rate to consider is the freshman retention rate, which represents the percent of students 

who stay in an engineering program after their freshman year.  Research supports that the 

freshman year tends to have the lowest retention of all the college years (Tinto, 1993).  

Figure 1-1 shows the relationship between the six-year graduation rate and the first year 

retention for research universities, which have very large research efforts (categorized by 

the Carnegie classification of Research University-very high research activity)1  

(Education Trust, 2007).  These universities tend to have the higher graduation rate 

compared to all colleges and universities.  Note the large variation in the graduation rates 

for these universities.  

 

 Figure 1-1:  The Higher the First Year Retention, the Higher the  
           Graduation Rate 

                                                 
1 Figure 1-1 was generated from the College Online Results Database at the Education Trust website: 

http://www.collegeresults.org/   The Carnegie Classification of Research University-very high research 

activity is defined as “at least 20 doctorates …and scored very high on either or both an aggregate and/or a 

per-capita index measuring research and development (R&D) expenditures in science and engineering 

(S&E), R&D expenditures in non-S&E fields, S&E research staff, and doctoral conferrals in humanities, 

social sciences, STEM, and other fields.”  
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 The University of Michigan is represented as the blue triangle on this graph.  

 

1.2 Modeling Freshman Success  

 

Modeling of retention rates can help identify key variables that affect the graduation rate.  

Since the freshman year typically has the lowest retention rate of all years of engineering 

college, the most benefit to increasing the graduation rate is to model the freshman 

engineering retention.  Based on this modeling, the development of related interventions 

that help students succeed could lead to a higher freshman retention rate.  As shown in 

Figure 1-1, a freshman retention rate is highly correlated with a six-year graduation rate.   

 

In modeling retention rates, one of the considerations is whether to use data from a multi-

institutional study or a singe-institution study.  The first major studies of engineering 

retention were multi-institutional studies, including the Astins study and the Adelman 

study (Astin and Astin, 1992; Adelman, 1998).  These studies showed general national 

trends and significant patterns that explained significant predictors of engineering student 

success and retention including  high school academic preparation, the intensity of the 

high school curriculum, math and science preparation, aspiring to a career in engineering, 

and having a strong orientation towards science.  The Astin and Astin study was based on 

a survey of pre-college characteristics, including high school attitudes and experiences 

and expectations for the college experience.  The strength of a multi-institutional study is 

that it presents a consistent set of inputs from all universities.  The same admission tests 

(ACT/SAT) or the same surveys can be collected and prediction trends across many 

universities can be defined.  The weakness of a multi-institutional study is that it is 

difficult to study interactions between variables.  In addition, it is very difficult to study 

intervention support activities because they will vary from institution to institution.   

 

On the other hand, with single-institution studies, it is easier to model relationships 

between variables and their interactions, and understand the effect of a particular 

intervention on student academic success and retention. Student retention is the 
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intersection of an educational institution’s efforts to support students and the student’s 

decision to stay.  The institution defines the climate, the curriculum, the advising center 

and numerous other activities that help the student both academically and socially.  

Ultimately, the student decides to stay or leave.  This decision is based on a number of 

factors.  A single institution study allows the study of this decision in more detail. In fact, 

some researchers have suggested that more single-institution studies on student success 

and retention are needed (Braxton, 2000; Dey, 2007). Single institution studies allow an 

analysis of which intervention strategies are most effective, taking into account the high 

school preparation levels of the students.  Especially for public universities, it is 

necessary to effectively use the available student support dollars, which are usually 

substantially less than at private universities (Veenstra and Herrin, 2006b).   

 

1.3 The University of Michigan Selected as a Single-Institution Study 

Because of the advantages of a single institution study, it was the preferred study for 

freshman engineering retention.  One of the considerations in modeling freshman 

engineering retention was to select the University of Michigan as the institution to study.  

The University of Michigan was considered for the following reasons:  

 

1. The University of Michigan Has a High Percent of Students who Stay and 

Graduate in Engineering 

If we are to understand freshman success and retention, we need to study 

universities that are successful at retaining students.  Tinto has observed, 

“Leaving is not the mirror image of staying.  Knowing why students leave does 

not tell us, at least directly, why students persist.  More importantly, it does not 

tell institutions, at least not directly, what they can do to help students stay and 

succeed (Tinto, 2006).  Therefore, research success requires the study of 

engineering student retention at successful universities.  The University of 

Michigan has one of the highest freshman retention rates and graduation rates 

both at the university level at the College of Engineering level.  At the university 

level, the first year university retention averages 96% and the six-year graduation 

rate averages 85% (University of Michigan, 2006).  In Figure 1-1, the University 
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of Michigan is shown as the triangle point.  In Michigan’s College of 

Engineering, 75% of the entering freshmen graduate with Bachelors in 

engineering and 85% graduate with Bachelors in engineering or another major  

(University of Michigan, 2007a).  The 75% graduation rate equates to a 36% 

increase over the average of all engineering colleges (i.e. 55%).  Similar to the 

national statistics, the experience at Michigan is that the freshman year has the 

lowest retention for engineering students.  However, with a freshman engineering 

retention rate of 94% (retained in the College of Engineering based on this 

project’s data), Michigan has one of the highest freshman engineering retention 

rates.  (National statistics on the freshman engineering retention rate are not 

publicly available.)  If we want to understand why students stay, we need to 

model universities like the University of Michigan with established high retention 

rates.   

 

2.   Adds to the Body of Knowledge about Freshman Engineering Retention 

Because 78% of the engineering students graduate from large research 

universities (NSB, 2004), an engineering student success study at a large research 

university adds substantially to the body of knowledge about engineering student 

success and retention.  There are very few freshman engineering retention studies 

from large research universities, whose engineering college ranks in the top 10.  A 

University of Michigan freshman engineering student success modeling study of 

this magnitude has not been conducted, and published in the research literature. 

 

3.   Answering the Question of How Engineering Success is Different 

In addition, a single institution study of Michigan is ideal because it allows the 

study and modeling of student academic success and retention of engineering 

students compared to other student groups.  This is particularly significant 

because Michigan is a larger research university with diverse educational goals 

and programs.  In particular, in this research, an engineering model was 

developed and used to compare the student academic success (first year GPA) and 
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retention of engineering students with pre-medicine majors; science, math and 

technology majors; and social studies, humanities and business majors.  

 

In order to study freshman engineering academic success and retention and select 

appropriate variables, an educational model was needed.  As part of this research, a 

literature-based model using both the engineering education and education literature was 

developed.   

 

1.4 Research Objectives  

 

In summary, the research objectives are three-fold:  

1. Develop a literature-based model for freshman engineering academic success and 

retention, based on pre-college characteristics and validate this model with an 

empirical study using University of Michigan student data.  Significant pre-college 

characteristics that predict both academic success and retention will be examined.  A 

second cohort will be used to cross-validate the model.   

2. Determine the effectiveness of current engineering intervention strategies, when the 

significant pre-college characteristics are taken into account.  These interventions 

included advising and an engineering career survey course.  Since this is a single-

institution study, the interventions can be studied more easily and within the context 

of the model.  

3. Determine if the modeling for the engineering sector is different from the modeling of 

non-engineering sectors.  Are the predictors of student success and retention different 

for engineering students than for non-engineering students?  Three non-engineering 

student sectors were considered: students intending on a career as a physician; 

students pursuing an intended major in science, math or a technical field; and students 

with an intended major in the social sciences, humanities or business field.  

 

These research objectives support the underlying thesis that the modeling of freshman 

engineering retention is different from general college retention and that freshman 
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engineering success can be substantially improved.  The discussion on the model and 

empirical studies follows.  

 

Overview of the Model for Freshman Engineering Success 

In modeling freshman-engineering success, Tinto’s model (Tinto, 1993) was selected and 

revised, for the development of a literature-based model of freshman engineering 

retention.  The model for student success is illustrated in Figure 1-2 as two models: the 

first for academic success and the second for student retention.  Two models are needed 

because the modeling techniques are different for each model.  Because the freshman 

year is a transition year from high school to engineering college, the inputs to the student 

success model were pre-college characteristics. Pre-college characteristics, including 

overall academic preparation and quantitative skills, were shown to be significant in the 

Astin and Astin (1992) and Adelman (1998) studies.  Also significant were attitudes and 

career goals (significant in the Besterfield-Sacre, et al. (1997) study, and high school 

activities.  These were considered as important predictors of academic success (in terms 

of the first year GPA) and retention.   

 

 

 
Figure 1-2: Student Success Model 

 

 

The outputs from the academic success model include two measures of student academic 

success 

• Overall academic success - First year GPA  
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• Academic success for the STEM courses - First year GPA of the science, 

technology, engineering and math (STEM) courses 

In addition, the outputs from the student retention model include two measures of student 

retention:  

• College retention (returning to engineering at the beginning of the 2nd 

year)  

• University retention (returning to the university at the beginning of the 2nd 

year). 

 

Modeling Techniques include Regression Modeling 

The success of statistical modeling is dependent on both the method of modeling and the 

data used in the modeling.  Consistent with Figure 1-2, two models were developed and 

validated: 

  

 1) A model with the first year GPA as the dependent variable, and the pre-college   

 characteristics as the independent variables. 

2) A model with a dichotomous variable of staying in engineering or leaving 

engineering as the dependent variable and the first year GPA and selected model 

variables as the independent variables.   

 

In the first model, modeling of the college GPA is usually achieved using a form of 

regression analysis (Besterfield-Sacre et al., 1997; Levin and Wyckoff, 1988) but has 

been approached with a structural model (Platt, 1988, French et al., 2003).  Regression 

analysis was preferred over the structural model because of the need to eventually test a 

hypothesis of differences in gender and ethnicity, controlling for the significant pre-

college characteristics.  It is common in both engineering and education research to use a 

principal component analysis or factor analysis to define the underlying correlation 

structure of the independent variables. In this case, the principal axis factoring method 

was used to define the common correlation structure.  From this analysis, the defined 

factors were entered into the regression analysis. Two freshman cohorts were actively 
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used; the 2004 freshman class cohort to estimate the coefficients of the regression model, 

the 2005 freshman class cohort to validate the prediction accuracy of the model.  

 

In the second model, several approaches have been taken in the past. The first, as was 

conducted by Elkins and Leutkemeyer (1974), was that of identifying the “persisters” and 

“leavers” and using an F- test to test for a significant difference in the averages of the two 

groups.  It is descriptive, but does not lead to a statistical model for retention. The second 

approach is to use logistic regression or ordinary regression as a substitute for logistic 

regression. The third approach is to use a structural model. This approach can have some 

difficulties in defining the paths correctly.  Due to my experience with logistic regression 

analysis, I chose to use logistic regression, which is the most common approach in 

modeling freshman engineering retention.  The logistic regression has been used very 

successfully by engineering education researchers (Astin and Astin, 1992; Levin and 

Wyckoff, 1988; Besterfield-Sacre et al., 1997; Scalise et al., 2000, French et al., 2005).  

A dichotomous variable usually was defined based on whether or not a student returned 

to engineering and the independent variables were the model predictors of interest.  Astin 

and Astin (1992) used a dichotomous variable to define whether a student was an 

engineering major or not.  

 

Choice of Survey for Pre-College Characteristics 

A survey was needed to include variables related to pre-college characteristics such as 

motivation and career decisions for each student in the study.  There were three options: 

an independent survey, the PFEAS© survey or the Cooperative Institutional Research 

Program (CIRP) survey.      

 

An independent survey would need to be developed and validated. It would have the 

advantage that specific questions related to the University of Michigan engineering 

program could be asked.  It had the disadvantage that it would need to be an online 

survey, which typically generated a low response rate.  It would take more time to 

validate the survey. In addition, due to the need to administer the survey at the beginning 
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of the freshman year and wait one year to collect data on the freshman retention status of 

each student, only one year of data would be available. 

 

The Pittsburgh Freshman Attitudes Survey (PFEAS)© was developed at the University of 

Pittsburgh and had the advantage of surveying students specifically about their attitudes 

about an engineering career, confidence in engineering skills and how much they liked 

math and science (Besterfield-Sacre et al., 1997). To implement it would have required 

an online survey and would have been limited to one year.   

 

The UCLA’s Cooperative Institutional Research Program (CIRP) survey was already 

available for three freshmen years; this was a major advantage. The CIRP is a 40 year old 

program of research currently operated by the UCLA Higher Education Research 

Institute (HERI). It has been administered throughout the U.S. annually to first-time, full-

time college freshmen to measure their beliefs, goals and characteristics and is a 

recognized survey for retention studies. The 2005, the CIRP survey was administered to 

over 263,000 students at 385 colleges and universities (Pryor, et al., 2005).  Its 

disadvantage was that it did not ask as many questions about attitudes towards 

engineering as the PFEAS©.  Yet, the CIRP surveys have a number of questions on 

major, career, motivation and goals.  

 

The decision was made to use the CIRP survey; data from the survey was then combined 

with student performance data and engineering intervention data. Based on the model’s 

pillars of student success, approximately sixty variables were selected to be included in 

the empirical analysis and validation of the model. 

 

Study of Gender and Ethnicity Differences 

Because of the concern over increasing the number of women and minority engineers, it 

is important to ask whether women and minority engineering students are as 

academically successful and retained at the same rate as majority men students.  

Statistical hypothesis testing was conducted with a generalized linear model technique to 

test for statistical differences in gender and ethnicity within the context of the model.     
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Study of Interventions and Course Placement 

Engineering education researchers have shown early intervention to be important for 

engineering student success. A key paper on early intervention was that of Budny et al. It  

showed that correct placement into the first term courses was key for engineering 

retention (Budny et al., 1998).  Besterfield, et. al. (1997) showed that student attitudes 

towards engineering can influence retention in engineering.  The basic question is what 

practices are effective in helping students with academic achievement.  Two interventions 

for student success and retention were studied in the context of the developed model: 

• Advising  

• Survey course in engineering careers, Engineering 110 

In this analysis, a randomized database technique was used to reduce bias due to common 

participation in several intervention programs by students.   In addition, an independent 

study of mentoring is also reviewed.  Because of the importance of correct placement into 

the first term courses (Budny, 1998), an approach to course placement was proposed and 

applied in this research.   

 

Based on this analysis, recommendations for improving retention will be discussed.   

 

Comparison of Engineering to other Student Sectors  

Using the predictors from the model, predictors of academic success and retention were 

compared between engineering students and three other student sectors: students 

intending on a career as a physician,; students pursuing an intended major in science, 

math or a technical field; and students with an intended major in the social sciences, 

humanities or business field.  This will define how modeling of engineering student 

success is different or the same as these three other student sectors at the University of 

Michigan.  As a single-institution study, a more consistent comparison can be conducted 

since the admissions process is common and the underlying culture for student success is 

the same.  
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Comparison of ACT and SAT scores as Predictors  

Although almost all engineering retention studies tend to use the SAT Math, my previous 

research showed that the ACT Math is a better predictor of success in Calculus and 

Chemistry than the SAT Math test (Veenstra and Herrin, 2006a). Most engineering 

education retention studies use the SAT Math test score as a predictor .  The State of 

Michigan is replacing the Michigan Educational Assessment Program (MEAP) at the 

high school level with the Michigan Merit Exam, which is the ACT test and the state 

covers the cost of testing. (Michigan Department of Education, 2007).  More Michigan 

residents, who apply to the University of Michigan, will therefore report the ACT test. 

This increases the need to understand the effectiveness of the ACT test scores as 

predictors of student success.  Therefore, the research plan proposed two subsets: a subset 

that included students who reported their ACT results and a subset that included students 

who reported their SAT results. The models developed from each subset were compared 

for predictiveness.  

 

1.5 Student Success in the Context of Quality Improvement Theory 

With my background, I approached the development of a model of freshman engineering 

success from a quality engineering and improvement perspective. During the past five 

years in which I have worked on my PhD, the paradigms on student success have  

changed in higher education and engineering colleges.  For this reason, I decided to 

include this section in the Introduction. This section discusses some of the past and 

current trends related to quality improvement theory and it provides a backdrop for this 

thesis on engineering student success.  

 

To begin with, I would like to address the impact quality improvement thinking is having 

on university operations. Dew reports, “The use of quality principles and methodologies 

is becoming more popular, and they are being adopted all levels of higher education 

throughout the country…  higher education is seeing an upswing in interest in --and the 

application of – quality management” (Dew, 2007).  Dew goes on to report,  

“Higher education has always held a strong interest in quality assurance.  

For decades, regional accreditation ….have focused on ensuring the quality 
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of academic programs, qualifications of faculty, adequacy of library 

resources, adherence to admission standards and academic independence of 

colleges and universities.  What’s new in higher education is the increased 

emphasis on continuous improvement and the growing appreciation of 

quality management systems” (Dew, 2007).   

 

How has this increased emphasis on continuous improvement come about and what 

impact does it have on a theory of engineering student retention?  A brief history of 

quality improvement theory is needed to explain this and identify concepts that are 

relevant to a model of engineering student success.   

 

Most knowledge of quality management and continuous improvement in quality can be 

traced back to the thinking of Walter Shewhart.  In the 1930’s, he observed that quality 

represented the “goodness of an object” and defined quality of a product as the value of a 

characteristic, such as length or velocity (Shewhart, 1931).  By the 1950’s, the focus of 

quality engineering theory was on producing parts that were within engineering 

specifications and the theory of statistical process control was well established.  In the 

“quality decades” of the 1970’s, 1980’s and 1990’s, statisticians W. Edwards Deming, 

A.V. Fiegenbaurn and Joseph Juran, were expanding the definition of quality to include 

customer satisfaction and value added.  Deming developed 14 points of quality 

management for business, including being customer focused and having a ‘profound 

knowledge” of a process.  Deming also took Shewhart’s Plan-Do-Check-Act (PDCA) 

cycle of scientific thinking and re-emphasized this feedback kind of thinking about 

processes (Deming, 1994).   

 

As quality management and continuous improvement strategies have developed, the ideas 

of quality and continuous improvement were expanded in manufacturing to include Total 

Quality Management, a quality management approach for business, Six Sigma and the 

ISO9000 quality standards.  Six Sigma was originally developed at Motorola as a 

continuous improvement approach to reducing manufacturing variability (Godfrey, 

2002).  Motorola’s emphasis on an aggressive continuous improvement process to reduce 
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variability, improve customer satisfaction and increase innovation in design and 

processes was driven by global competition.  Six sigma programs use design of 

experiments, statistical process control and other quality tools in an integrated approach.  

In the 1980’s, the criteria of the Malcolm Baldrige National Quality Award (MBNQA) 

evolved out of the concepts developed by Drs. Deming, Juran and Fiegenbaum and the  

six sigma programs.  Motorola was the first company to win the MBNQA.  Central to 

both MBNQA and Six Sigma are goal-oriented, customer focused and data-driven 

paradigms.  The MBNQA provides a systematic framework for organizational excellence 

and continuous improvement (National Institute of Standards and Technology, 2007).   

 

These ideas of quality improvement moved from manufacturing to the service industries.  

When MBNQA was modified for educational institutions in the mid-1990s, MBNQA 

found more acceptance among educators.  A broader definition of quality that blends 

continuous improvement in quality into strategic planning and institutional effectiveness 

began to emerge.  The MBNQA in Education included constructs of learning-centered 

education, valuing of faculty and staff, focus on results and visionary leadership.  In 

2001, the University of Wisconsin-Stout became the first university to win the MBNQA 

(Cokeley, 2006)...  Prior to 1999, most accreditations on colleges were based on the 

reputation (quality)  of the faculty, the number of courses in a particular discipline and 

the number of volumes in the library and the accreditation process included auditing a 

college’s quality once every five or seven years.  In 1999, the North Central 

Accreditation of Colleges and Schools implemented an alternative accreditation, 

Academic Quality Improvement Program (AQIP) that focuses on active continuous 

improvement projects of both academic and administrative processes on an annual basis 

(AQIP, 2007).  At about the same time, the ABET accreditation process for engineering 

colleges was revised focusing on continuous improvement and student learning 

outcomes.  (ABET, 2007) 

 

The University of Michigan has a strong history of participating in quality improvement 

transformations since the mid-1990’s (Dew and Nearing, 2004).  This transformation at 

Michigan began at the President’s level, with a series of presidential commissions on key 
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issues, with communication about the transformation in the entire university community 

(Duderstadt, 2007).    

 

With the National Academy of Sciences’ report, Rising above the Gathering Storm: 

Energizing and Employing America for a Brighter Economic Future, there became a 

national focus on the need for more engineers, better-prepared students entering 

engineering colleges and a higher graduation rate of engineers from engineering colleges 

(NAS, 2005).  Motorola invented Six Sigma because of global competition, the need to 

be more innovative and more customer-focused; likewise, U.S. engineering colleges are 

being pressured by global competition for engineering know-how and innovation to 

produce more engineers (i.e. improve their graduation rates)  

 

At many universities, quality improvement is embedded in institutional effectiveness 

programs.  With less funding from states, universities are striving for quality 

improvement in student success with smaller budgets.  The ideas of quality improvement 

are becoming more relevant to universities.  In fact, in the final report of the Secretary of 

Education’s Commission on the Future of Higher Education entitled A Test of 

Leadership: Charting the Future of U.S. Higher Education, the commission 

recommended: “We recommend that America’s colleges and universities embrace a 

culture of continuous innovation and quality improvement.”  (U.S. Department of 

Education, 2006)  

 

Consider freshman retention (percent of students who return for the second year).  More 

universities are addressing freshman retention from a quality management approach.  

They want to know what processes lead to a high retention rate.  The tradeoffs in 

institutional effectiveness are the cost of losing students (three years tuition) versus the 

cost of programs that help students be successful, such as tutoring and mentoring 

programs.  As a result, the idea of a quality education is emerging to include a value-

added education that is also student-focused.  In the development of an engineering 

student success model, these concepts of quality improvement and institutional 
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effectiveness become important to the underlying paradigm of thinking about student 

success.  

 

1.5 Outline of the Thesis 

 

In this thesis, the research questions ask how the freshman engineering student academic 

success and retention are different from general college student academic success and 

retention at the University of Michigan.  This research question is answered within the 

framework of the development of a new model for freshman engineering retention.  

Chapter II includes a literature review and development of a literature-based student 

success model for freshman engineering success.  In preparation for the validation of the 

model, Chapter III documents the variable development and data management related to 

this project.  Chapter IV explains and evaluates the factor analysis.  Chapter V  discusses  

student academic success for engineering students and analyzes the effectiveness of the 

engineering intervention support activities within the context of the model.  It also  

proposed a new approach to course placement.  Chapter VI discusses the retention of 

engineering students and includes a sensitivity analysis of retention.  Chapter VII  

continues the development of the thesis that freshmen engineering retention is different 

from general college retention with the comparison of student success of engineering 

majors to pre-med students; science, math and technology majors; and social science, 

humanities and business majors.  Finally, Chapter VIII makes recommendations for 

improving freshman engineering student academic success and retention based on this 

research.  
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Figure 1-3 Chapter Development of Dissertation 
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CHAPTER II 

LITERATURE REVIEW AND  

DEVELOPMENT OF A MODEL FOR 

ENGINEERING STUDENT SUCCESS 

 
The engineering education literature has a growing body of empirical studies on freshman 

engineering student success and retention.  This chapter both develops a new model for 

freshman engineering success based on engineering education and education research 

literature and reviews the literature upon which the model was based.     

 

Student success was defined in terms of both academic success and retention.  Academic 

success was defined in terms of first year GPA.  Previous researchers have discussed 

student academic success in terms of the GPA. (Levin and Wyckoff, 1988; Lackey et al., 

2003; French, et al., 2005).  Retention of a student was defined as the student returning 

for academic studies in the second year.  Retention can be considered within either the 

engineering college or the university.  Different techniques are used for predicting 

academic success and student retention.  As a result, the overall student success model 

was viewed as two adjoining models (Figure 2-1).   

 
Figure 2-1: Student Success Model 
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Students have various experiences, both academic and social, in high school.  They bring 

these experiences to college with them.  The transition from high school to college is a 

major life style transition.  It is a reasonable assumption that the pre-college 

characteristics that define these experiences are major contributors to both academic 

success in the freshman year and the decision the student and his/her family make at the 

end of the freshman year of whether to return to engineering college for the second year.  

My thesis is that freshman engineering retention is different from (general) college 

retention.  For this reason, I wanted to develop a model on freshman engineering 

retention based on the pre-college characteristics. Figure 2-1 shows this emphasis with 

pre-college characteristics as input to the academic success model. 

 

In the development of the overall student success model, the following will be discussed:  

• The importance of a model relative to empirical studies (Section 2.1) 

• Previous models of engineering retention (Section 2.2) 

• Education theories and Tinto’s model for attrition (Section 2.3) 

• A new model of freshman engineering retention (Section 2.4) 

 

The literature review of the dissertation will be integrated into the development of the 

model.  

 

2.1 Importance of a Theory 

In developing a model or theory of student success, it is important to understand the 

importance of a model.  The word model is often interchanged with the word theory.  My 

preference is to use the word model to describe my “model” of engineering student 

success, but some researchers prefer to use the word theory.  Tribus described a theory as 

a “connected set of concepts” and explained that the concepts that make up the theory are 

needed to predict the future based on actions that are taken (Tribus, n.d.).  Deming wrote, 

“Without theory, experience has no meaning” (Deming, 1994, p. 103).  Deming 

understood that “profound knowledge” required a theory.  “Profound knowledge” was 

Deming’s terminology for completely understanding a process.  Peter Senge indicated the 
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need for mental models or theories in order to lead and to understand what can be 

accomplished (Dean, 2004).   

 

Clearly, a theory was needed to understand and further develop an understanding of 

engineering student success.  A model provides a standard by which to judge empirical 

studies and then revise the model into a better model.  Box, Hunter and Hunter (1978) 

discuss this process of model development in terms of deductive and inductive thinking 

for scientific research about a process.  A model is developed; a deductive thinking 

process is used to compare the data to the model; based on the data, an inductive thinking 

process is used to change the model if the data does not agree with the model. In this 

sense, the model may be viewed as a hypothesis.  The empirical analysis is validation of 

the hypothesis.  If the empirical analysis does not validate the model, the model may need 

to be changed. This iterative process eventually determines the validity of the model.  In 

the context of the Shewhart Plan-Do-Check-Act cycle,  the model is the “plan” stage, the 

empirical study is the “Do” stage,  the validation of the empirical results to the  model is 

the “Check” stage and modifications to the model is the “Act” stage.  An example of this 

process is the many empirical studies that have been completed based on the Tinto model 

for retention.  Over a 30-year period, Tinto has revised his model based on the results of 

the empirical studies.  

 

2.2 Models of Engineering Student Success 

In the development of a model that suggests that engineering success is different from 

(general) college success, I found three models of engineering retention or success.  They 

are discussed in this section.  

 

The Pipeline Theory 

The pipeline model envisions a leaky pipeline with the leaks representing attrition from 

middle school to graduation from an engineering college.  (See Figure 2-2) 
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        Figure 2-2: Pipeline Theory 

 

 Johnson and Sheppard (2002) discussed an example of the application of this model.  In 

their paper, the authors looked at the pipeline structure of the high school senior class of 

1990 (nationally) as they made decisions to go to college, enroll in an engineering college 

and graduate including an analysis by gender and ethnicity.  Of the 1990 high school 

senior class, 87% graduated from high school; 28% enrolled in 4-year colleges; only 

2.3% enrolled in engineering programs; and only 1.6% graduating with an engineering 

degree.  Their review of studies led them to state, “HS [High School] preparation and 

lack of finances are two key factors that cause the differences in the enrollment rates 

between underrepresented minority students and other populations.”  The pipeline theory 

was useful for conceptualizing the loss of students from high school through engineering 

graduate school, but a more theoretical basis is needed for understanding why students 

decide to stay or leave the engineering field.  

 

The Path Model 

Adelman proposed that the correct model was not a pipeline but a path model.  

(Adelman, 1998)  The courses taken in high school in math and science are similar for 

both engineer and science/math majors.  Since the freshman courses in engineering 

include chemistry, physics and math, students may switch to a science major with little 

loss of time in major.  This model supported the competitiveness of the STEM programs 

in attracting students.  Adelman viewed the decision as a competitive one among several 

choices.  The path model gave a better understanding, but still is weak in understanding 

why students decide to stay or leave engineering.  
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The Transmission Line Model 

The most recent development of an engineering student success model has been proposed 

by Watson and Froyd and is focused on a model to increase diversity in engineering 

colleges (Watson and Froyd, 2007).  They discussed that the pipeline theory may be used 

to conceptualize why there is not more diversity in the engineering student body.  Instead 

of viewing the pipeline as longitudinally in time as in Figure 2-2, the “leaks” from the 

pipeline can be viewed as reasons for leaving.  For example, the ‘leaks” can be “not 

cognitively prepared” or “a sense of isolation.”  They discussed the number of 

intervention programs for underrepresented minorities, and indicate that they fall into 

three areas to address the pipeline leaks:   

• Stop Leaks: (Community Building) Build Community through 

organizations or networks for the underrepresented participants so that 

they can help each other. 

• Stop Leaks: (Cognitive Ability Development) Understand the 

‘weaknesses” in the cognitive abilities of underrepresented groups as a 

whole and intervene to strengthen these weaknesses. 

• Increase Intake: (Occupational Choice Development) Increase exposure of 

underrepresented groups to engineering practice and careers.” 

 

The community building interventions develop an individual’s sense of self-identity; 

cognitive ability interventions develop an individual’s cognitive ability especially for 

under-prepared students in engineering, and occupational choice interventions such as a 

course on engineering courses develop self-identity as an engineer.  Watson and Froyd 

proposed that the pipeline theory was too simple; that there are significant interactions 

between self-identity, career identity and cognitive ability.  Interventions are often added 

onto a system that already exists.  Rather than use a pipeline, Watson and Froyd use a 

transmission line because it represents the transfer of energy among the three main 

components of the transmission line: cognitive ability development, occupational choice 

development and self-identity development.  (See Figure 2-3)  Here the curriculum is 

most closely tied to the cognitive ability development.   
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The distribution of personal energy was important in this model.  They stated: “Energy 

that might have been channeled into academics is siphoned into energy for identity 

development.  Students who can delay these developments to focus on academics may be 

advantaged in academic reward systems, but not necessarily in their maturity and 

preparedness to work in a diverse world.”  They argued that in order to minimize loss of 

energy, balance between these three strands of the transmission line must exist.  All three 

developments (cognitive, self-identity and career development) must develop together.  

The model supported a smoother integration of the current intervention programs into the 

curriculum.  For example, career development as an engineer is continuous throughout 

the student’s engineering undergraduate program, not just in the freshman year prior to 

making a decision about an engineering major.    

 

 
Figure 2-3: Transmission Line Model (Adapted from Watson and Froyd, 2007) 

 

As a new theory, the transmission line theory has merit.  I especially liked the idea of 

strong interactions between cognitive development, self-identity, and identity as an 

engineer (career identity) and this theory influenced some of my empirical hypotheses.    

 

2.3 Education Theories and a Review of Tinto’s Model 

 

In the development of a model for freshman engineering retention, two approaches may 

be taken: 

1. Develop a new model based on learning theory  

2. Revise an existing model 

The engineering education models, discussed in Section 2.2, did not provide the detail 

related to the academic and social backgrounds of engineering students that I wished to 
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study.   I found there were other models in the education research literature. My interest 

in this research was primarily to develop systemic recommendations that would help 

students succeed; the development of a model was secondary.  If a model already existed 

that included the effect of pre-college characteristics, my research would benefit from 

any empirical studies related to that model.  With the number of models that have already 

been developed by education researchers, I decided to pursue revising an existing model. 

Models of particular interest will be discussed next.   

 

General College Success Theories  

Education researchers for (general) college student retention and success have developed 

the most comprehensive theories on general college student success.  A summary of these 

theories are presented in Table 2-1 and all are oriented towards general college attrition.  

These theories of why students leave college without a degree were based on theories in 

four disciplines: economics, psychology, sociology and organizational theories (Braxton 

and Hirschy, 2005). 

Table 2-1: Summary of Education Theories on Student Success 
 

Researcher Name of Theory Main Points 

Alexander 
Astin 

Theory of Involvement • Empirically based on HERI 
longitudinal study 

• Persistence related to student 
involvement 

• Behavioral model 
John Bean Theory of Student 

Attrition 
• Importance of interaction with faculty 
• Working off-campus leads to attrition 

Vincent 
Tinto 

Interactionalist Theory 
of Student Departure 

• Separation from home environment 
and integration into college 
environment 

• Importance of integration into 
environment both academically and 
socially 

• Persistence related to student 
involvement, including interaction with 
faculty and other students 

• Based on experiences, student changes 
goals 

Source: Berger and Milem (1999) 
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The most accepted theory is that of Vincent Tinto (Braxton, 2000).  Braxton noted,          

“Tinto’s Interactionalist theory, nevertheless, enjoys near paradigmatic stature in the 

study of college student departure.”  Based on a review of the theories presented in Table 

2-1 and the reputation of the Tinto model, substantial effort was taken to review Tinto’s 

model and revise it to a working model for freshman engineering success.  

 
 
Tinto’s Model  

In his theory that was developed in the 1970’s  and then revised to take into account the 

results of empirical studies, Tinto presented a process of adjustment of a new student to 

college  (Tinto, 1993; Tinto, 2006).  First, a student needed to separate from his family 

environment and then adjust to the college culture.  In this adjustment, a student came to 

college with a set of pre-college characteristics and career and college goals.  As he/she 

adjusted to college, a process of both academic and social integration was needed for the 

successful integration of the student.  Academic integration was defined broadly as doing 

well in courses and social integration included both social relationships with other 

students and discussions with faculty.  As academic and social integration occurred, a 

student reaches a new level of learning.  This level of learning translated into value-added 

education, student success and potential persistence.  In this adjustment, a student came 

to college with a set of career and college goals.  As integration occurred, a student may 

change his/her goals for college with respect to a major or career.  

 

Tinto’s model was based on a four-year college experience.  Compared to a model on 

freshman student success, in Tinto’s model, academic and social integration was a larger 

part of the theory and pre-college characteristics were minimized.  This emphasis on 

academic and social integration has led to discussions among educators of whether 

academic or social integration is more important.  Braxton, in his review of Tinto’s model 

using current empirical studies, found little support for academic integration but much 

support for social integration (Braxton, 2000).  This is consistent with Astin’s model on 

the importance of the involvement of the student in college activities (Astin, 1984).  

However, other empirical studies have found support for academic integration   (Scalise, 

et al., 2000; Allen, 1999; Munro, 1981; Getzlaf et al, 1984).   
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In his original model, Tinto conceptualized that a good institutional fit (the fit between 

the student and college/university) was the responsibility of the student.  If either the 

student did not have strong academic or social integration into the institutional culture, 

he/she was at risk of dropping out.  Over time, the theory changed to recognize that the 

educational institution has the responsibility to make the culture welcoming to all 

students who have been admitted to the institution (Tinto, 2007).   

 

The difficulty with the concept of academic and social integration was that the concept 

does not naturally lead to an effective institutional action.  Tinto indicated: “What is 

needed and not yet available is a model of institutional action that provides guidelines for 

the development of policies and programs that institutions can reasonably employ to 

enhance the persistence of all their students” (Tinto, 2006).  He has argued that a high 

level of institutional commitment leads to high expectations, which leads to a high level 

of support.  This together with feedback and involvement leads to more effort by the 

student in learning; this ultimately leads to student success (Tinto, 2005, p. 326).  

Although Tinto did not define quality, his writings support Fiegenbaum’s definition of 

value-added quality from the quality field (Kubiak, 2005). 

 

Particularly relevant to a model on freshman student success, Tinto’s model stressed the 

importance of engagement of students in the classroom by professors of freshman courses 

(Tinto, 1993; Tinto, 2006).  This is the main contact of engagement between faculty and 

students for academic integration and integration into the institution’s culture.  

 

 

2.4 New Model and Explanation 

Using Tinto’ model as a basis, a new model of freshman engineering success was 

developed.  This includes a model for both academic success and retention and is 

displayed in Figure 2-4.  
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Figure 2-4: Block Diagram of Model of Freshman Engineering Student Success 

 

The block diagram was divided into three stages for student success and will be discussed 

in the following sections: 

2.4.1 Pre-College Characteristics 

2.4.2 The Freshman Year Process, leading to successful learning as a student 

2.4.3 The Retention Decision by the student at the end of the freshman year: to either  

      stay or leave engineering  

 

2.4.1 Pre-College Characteristics 

This section discusses the pre-college characteristics that informed the engineering 

student success model. The process for the development of the model’s pre-college 

characteristics was based on : 

• a literature review of both engineering education literature and education 

literature (Sections 2.4.1.1, 2.4.1.2, and 2.4.1.3) 
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• the development of a list of hypothesized differences between engineering 

and other disciplines with respect to student success (Section 2.4.1.4) 

 

With respect to the literature review of the pre-college characteristics, Section 2.4.1.1 

describes the literature review process and sources for the literature review; Section 

2.4.1.2 compares the findings of the literature review to Tinto’s model; and Section 

2.4.1.3 then discusses the findings of the literature review.  

 

2.4.1.1 Literature Review Process 

Figure 2-5 illustrates the process of conducting the literature review.  To develop a 

model,  I first reviewed Tinto’s model, which was based on the entire college experience     

(four years) and considered revisions for a model for freshman success and retention.  

Note that the pre-college characteristics were considered more important in the proposed 

freshman success model than in Tinto’s four-year model. Next, I reviewed Tinto’s model 

with respect to a model for engineering retention.     

 

 

 
Figure 2-5: Development of Freshman Engineering Success Model 

 

With model-building, it is typical to start with a wide net of possible variables that could 

be predictors for the model.  Because of the few freshman engineering student success 
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papers that were available in the literature, I expanded my literature review to include the 

education research literature and four to six-year retention studies.  From the literature 

review, a list of significant pre-college characteristics was developed.  These significant 

predictors were then summarized into nine major categories and are referred to as the 

pillars of student success2.  Pre-college characteristics from Tinto’s model were used as a 

guide (see Section 2.4.1.2).  The literatures sources for the literature review are given 

next.  

 

Literature Sources 

In selecting research literature to review, the following research strategy was used. 

Both multi-institutional and single-institutional research was used.  Empirical studies that 

included an analysis of the relationship of pre-college characteristics to the following 

retention subjects were reviewed: 

1. 1st year student success ( college GPA) 

2. first year through 2nd year retention 

3. student success for 3rd year through graduation (cumulative college GPA) 

4. 3rd year retention through graduation (retention or graduation rate) 

 

Specific to Engineering Education retention research, the following sources were 

reviewed: 

1. For the past ten years (1997 to present), papers in the ASEE Journal of Engineering 

Education (JEE) and the ASEE conference Proceedings; and for the past three 

years, the Conference Proceedings of the Frontiers in Education Conference. 

2. “Undergraduate Science Education: The Impact of Different College 

Environments on the Educational Pipeline in the Sciences”, which describes the   

UCLA/ Higher Education Research Institute (HERI) longitudinal study conducted 

under the direction of Alexander and Helen Astin (Astin and Astin, 1992). Also 

relevant papers on engineering student retention published by HERI researchers.   

                                                 
2 The idea of using the term “pillars” was adopted from “pillars of total quality education” in Cokeley et al. 

(2006). 
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3 Talking about Leaving by Seymour and Hewitt (1997). 

 

In the engineering education literature, the articles on empirical studies of  freshman 

engineering student retention generally fall into two areas: the relationship of pre-college 

characteristics to freshman retention and the effect of a change in teaching strategy, 

course development (such as an Engineering 100 course) or student support service such 

as mentoring on freshman retention. Only literature with a research focus on the effect of 

pre-college characteristics were considered.   

 

Specific to Education retention research, the following sources were reviewed: 

1. Four-year college studies included in Braxton’s study of Tinto’s model 

(Braxton,(2000), Tables  7 and 8, pp. 20-22) 

2. Tinto (1993, 2005, 2006) 

3. A summary of a meta-analysis study of 109 studies (Lotkowski et al., 2004).  The 

details of the meta-analysis are in Robbins, et al. (2004) 

4. Selected UCLA/HERI studies related to college student retention 

5. Selected articles from Journal of College Student Retention  

 

      Because of the volume of education literature studies, this selection was considered as a 

representative sample in the education field, and in particular, representative of the study 

of Tinto’s model..  It should be noted that the papers referenced in the Braxton study 

were mostly studies of four-year retention focused on the issues of social and academic 

integration during the college experience.  For four year studies, it is logical that social 

and academic integration becomes more important compared to the pre-college 

experience. The meta-analysis of 109 retention studies by Lotkowski et al. (2004) was of 

particular significance in my research for the general education retention studies.  

Empirical studies specific to one gender or ethnicity were not included.  In addition, 

empirical studies specific to one college course were not included.   

 

Differences were observed between the predictors of student success for engineering 

education studies compared to education studies.  Only the engineering education studies 
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included predictors for academic success or retention that were related to quantitative 

skills or confidence in quantitative skills. On the other hand, mostly the education studies 

showed predictors related to commitment to this college or family support.  

 

2.4.1.2. Pre-College Characteristics in Tinto’s Model 

Tinto’s definitions of pre-college characteristics were used as a guideline to define a set 

of categories for pre-college characteristics. In Leaving College, he wrote about the 

importance of pre-college characteristics and goals and commitments:  

“Individuals enter institutions of higher education with a range of differing 

family and community backgrounds (e.g., as measured by social status, 

parental education, and size of community), a variety of personal attributes 

(e.g., sex, race, and physical handicaps), skills (e.g., intellectual and 

social), financial resources, dispositions (e.g., motivations; intellectual, 

social, and political preferences), and varying types of pre-college 

educational experiences and achievements (e.g., high school grade-point 

average)…Intentions or goals specify both the level and type of education 

and occupation desired by the individual. Commitments indicate the 

degree to which individuals are committed both to the attainment of those 

goals (goal commitment) and to the institution into which they gain entry 

(institutional commitment). ”  (Tinto, 1993, p. 115).   

 

In Tinto’s model, goals and commitments were considered as a separate category from 

“pre-entry attributes.”   In my revised model for freshman engineering success, goals and 

commitments were included as pre-college characteristics with the rationale that a student 

comes to college with an initial set of educational and career goals and therefore were 

considered as a pillar of pre-college characteristics.  Since I was interested in proposing a 

model that would work for both genders and all races, gender and race were not included 

in my model.  

 

Table 2-2 presents a comparison of Tinto’s pre-college characteristics to my findings 

from the literature review.  
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Table 2-2: Pre-College Characteristics Important for Engineering Student       
       Success 
Pillar Pre-College 

Characteristic 
Pillar 

Tinto’s  
Suggestion (1993) 

Predictors of Student Success 
In Empirical Studies 

1 High School 
Academic 
Achievement 

Intellectual Skills 
Pre-college Educational 
experiences 
Pre-college educational 
experiences and 
achievements including the 
high school GPA 

H.S. GPA or H.S. Rank 
ACT Composite or SAT Total 
Academic self-confidence 
Communication Skills 

2 Quantitative and 
Analytical 
Knowledge 

Not  
defined 

ACT Math or SAT Math 
Math or Science preparation 
(instrument other than ACT or 
SAT);High School years of math 

3 Study Habits Study Skills Study habits 
Hrs/week studied in high school 
Time management skills 
Came Late to Class 
Overwhelmed 

4 Education  and 
Career Goals 

Motivation and goal 
attainment 
Level and type of education 
and 
Occupation desired;  
Intellectual, social and 
political preferences 
 

Education and Career Goals 
Drive to Achieve/Motivation 
Engineering specific: 
Like Engineering 
Started as freshman in engineering 
Family member is an engineer 
Financial benefits/ influence of 
engineering 
Good impression of engineering 
Strong scientific orientation 

5 Confidence in 
Quantitative  Skills 

Not 
defined 

Self-rating  or confidence in math, 
science or computers 
Confidence in engineering skills 
Enjoy math or science 
Orientation towards science 

6 
Commitment to this 
(Enrolled) College 
 

Institutional 
Commitment 

Choice of College 
Reason for choosing this college 
Satisfaction with choosing this 
college 

7 Financial Needs  Financial 
resources 

Amount of loans 
Scholarship indicator 
Working in high school  indicator 

8 Family Support Social Status 
Parental education 
Size of Community 

Education level of parents 
Income level of parents 
Social Status 

9 Social Engagement Social Skills Social  involvement; 
connectedness with teachers and 
other students 
Participate in community/clubs 
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The third column of Table 2-2 displays the pre-college characteristics as described by 

Tinto (above) and the fourth column provides a comparison to the literature review based 

on the nine pillars of student success.  

 

The predictors of student success for the second pillar, Quantitative Skills, and the fifth 

pillar, Confidence in Quantitative Skills, were found only in the engineering education 

literature. The literature review provided more definition to Tinto’s initial list of pre-

college characteristics and goals.  

 

Next, the discussion of the literature for each student success pillar of pre-college 

characteristics follows.  For each pillar, the more relevant articles that influenced my 

thinking on the pre-college characteristics pillar are discussed.      

 

2.4.1.3 Literature Review Shows Support for Pre-College Characteristics  

P1.  High School Academic Achievement  

For this pillar, both academic performance and non-academic variables (e.g. self-

confidence) were considered from the literature.   

 

Strong Support for Academic Variables as Predictors 

There was consistently strong support for the academic variables high school GPA and 

high rank.  High school GPA was a significant predictor for freshman engineering 

academic success or retention studies ( Levin and Wyckoff, 1988; Lackey et al., 2003) 

and for freshman education academic success or retention studies (Glynn et al., 2005; 

Williamson and Creamer, 1988)  Burtner (2004) found a significant difference in the 

average high school GPA between students who returned and students who left after one 

year of engineering college. High school GPA was also a significant predictor for upper-

class engineering academic success or retention studies (Astin and Astin, 1992; Zhang et 

al., 2004) and upper-class education academic success or retention studies (Monroe, 

1981; Getzlaf et al., 1984; Stoecker et. al., 1988; Astin and Oseguera, 2005).  High school 

rank was a significant predictor for freshman engineering academic success or retention 

studies (Besterfield-Sacre, et al., 1997; Scalise et al., 2000) and for freshman education 
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academic success or retention studies (Terenzini et al., 1985; Allen, 1999).  High school 

rank was also a significant predictor for upper-class engineering academic success or 

retention studies (Moller-Wong and Eide, 1997; Besterfield-Sacre, 2002; French et al., 

2005,).  Only the Scalise et al. (2000) showed support for the SAT Total as a predictor of 

freshman engineering retention; more support for either the SAT Total or ACT 

Composite as a significant predictor was evident in the freshman education (non-

engineering) academic success or retention studies ( Tinto, 1993; Terenzini et al., 1985; 

Pike et. al., 1997) For the upper-class academic success and retention studies, the 

engineering education studies (Padilla et al., 2005; French et al., 2005; Moller-Wong and 

Eide, 1997) and the education studies ( Tinto, 1993; Astin and Oseguera, 2005) showed 

support for the SAT Total or ACT Composite scores as significant predictors. In addition, 

in their meta-analysis of 109 studies on postsecondary retention, Robbins, et al., 

identified the High School GPA, and ACT scores as strong predictors of college GPA.  

(Lotkowski, et al., 2004; Robbins, et al., 2004).  Of the academic variables, Robbins, et 

al. concluded that the high school GPA and ACT scores have the strongest relationship to 

college GPA.  They also concluded that the strongest variable for college retention was 

the high school GPA.  A recent multi-institutional study by Astin and Oseguera (chapter 

9 in Seidman, 2005) gave independent evidence of the strength of the high school GPA; 

they wrote, “Clearly, the pre-college characteristic that carries the most weight in 

estimating the student’s chances of completing college is the high school GPA.”  

 

Moderate Support for Non-Academic Variables as Predictors 

Most of the support for non-academic factors was found in the education retention 

studies.  Robbins identified academic self-confidence as a strong predictor of both 

college GPA and college retention (Lotkowski, et al., 2004; Robbins, et al., 2004).   Some 

support was found in the engineering education literature.  In the Besterfield-Sacre et al. 

(1997) study, support was found for a survey question on self-assessed confidence in 

writing and speaking skills as a significant variable for attrition of engineering students in 

good academic standing.  In this study, students who left engineering college had high 

average scores on communication skills compared to students who stayed in engineering 

and students who left engineering due to a poor academic standing. 
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P2.  Quantitative Skills 

 
Strong Support in the Engineering Education Research for the SAT Math or ACT 
Math Scores as Predictors of Student Success 
 
Support for the ACT Math or SAT Math as significant predictors of academic success or 

retention was found, almost entirely, in the engineering education research literature.  

This is a major difference between the engineering education and education research on 

academic success and retention.  From the freshman engineering education empirical 

studies, there was strong support for the ACT Math or SAT Math as a predictor of 

freshman engineering academic success or retention (Besterfield-Sacre et al., 1997; Levin 

and Wyckoff, 1988; Lackey et al., 2003; Leuwerke et al., 2004).  For the upper-class 

engineering education empirical studies, there was strong support the ACT Math or SAT 

Math as a predictor of academic success or retention (Astin and Astin, 1992; Moller-

Wong and Eide, 1997; Besterfield-Sacre, et al., 2002; Zhang et al., 2004; French et al., 

2005).   There was also support for placement test scores (Levin and Wyckoff, 1988; 

Budny et al., 1998; Besterfield-Sacre et al., 2002) in the engineering education literature.  

For all majors in his multi-institutional study, Adelman found that “the highest level of 

mathematics one studies in secondary school has the strongest continuing influence on 

bachelor’s degree completion” (Adelman, 1992).  Supporting this, a recent study by Astin 

and Oseguera (2005) showed that the number of years of high school math was a 

significant predictor of graduation rate (using a CIRP database at HERI/UCLA).                                        

 

P3.  Study Habits  

Strong Support in Literature 

The literature review of the freshman engineering education research showed that study 

habits and the number of hours/week a student studied in high school were important pre-

college characteristics of academic success or retention (Levin and Wyckoff, 1988; 

Besterfield-Sacre, et al., 1997; Scalise et al., 2000; Burtner, 2004). In addition, for the 

general college freshman student studies, support was also found for study habits 

(Donovan, 1984, Glynn et al., 2005 Tinto, 1993).  Support was also found for good study 
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habits from high school as a predictor of student retention.  Astin and Oseguera (2005) 

found hours spent in high school studying as a significant predictor of six-year 

graduation.  In their meta-analysis, Robbins, et al. (2004) found “time management skills, 

study skills, and study habits” as a strong predictor of college retention and a moderate 

predictor of college GPA (academic success).  

 

In a structural model, French et al. (2003) found that 3- to 4-year retention in engineering 

was negatively affected by integration with faculty (talking with faculty), and positively 

affected by integration with students (talking with students).  This suggested the 

importance of learning teacher and student engagement in high school.  Astin and 

Oseguera (2005) found that the frequency of talking with a teacher outside of class 

(positive effect) was a significant predictor of retention.  Glynn (2005-2006) found his 

factor Good Habits, that was highly loaded with “Saw teacher for help,” “Studied with 

friends,” and “extra credit” in high school was significant for four cohorts on student 

retention.   

 

Daempfle discussed the importance of being an independent learner in college, compared 

to high school.  In consideration of the intensity of freshman engineering courses, 

students who are already independent learners with good study habits will earn better 

grades compared to students who are not independent learners.  For an engineering 

education, Tribus indicated that being an independent learner was especially important.  

With increased autonomy, the student develops an attitude of “joy in learning” and 

intrinsic motivation (Tribus, n.d.).  Support for the importance of independent learning 

also came from the Astins: “When students see themselves, or are viewed by others, as 

both learners and teachers, they take more responsibility for their own learning and help 

create more favorable learning environment for each other.”  (Astin and Astin, 2000)   

 

Frequency of coming late to class in high school (a CIRP variable) was considered as a 

negative contribution to learning in the high school or college classroom and was 

included in this pillar.  Shumann, et al. found a significant difference (p<.010) in the 

percent of students placed on probation for the first term of engineering college between 
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students who had a high frequency of coming to class late in high school and students 

who had a low frequency (Shumann, et al., 2003).  In a 303-college HERI study for 

entering freshmen in 1994, Oseguera (2005-2006) also found support for the significant 

of this variable for college four- and six-year retention.  

 

One of the CIRP variables included in this pillar was related to “feeling overwhelmed” in 

high school.  Shumann et al.(2003) found support for the being overwhelmed as a 

possible contribution to freshman engineering attrition.  In a survey conducted with 

students who transferred out of engineering, the question was asked: “were you 

emotionally prepared for the stress of the curriculum?”  Thirty-seven percent of the 

freshmen leaving engineering responded “no” to this question.  

 

P4.  Commitment to Career and Educational Goals 

Strong Support in Literature 

Sources from both engineering education and education research supported the 

importance of a commitment to career and educational goals.  Engineering education 

researchers.  found that students who had a high impression of engineering and liked 

engineering as a career had a higher freshman retention rate (Besterfield-Sacre et al., 

1997; Burtner, 2004, Hartman and Hartman, 2006).  In addition, Levin and Wyckoff 

(1988) found that a positive attitude towards engineering significantly affected the 

college GPA; Students with an “intrinsic” interest in engineering tended to have a higher 

GPA (.14 difference) than students who choose engineering for high pay and status.  

Astin and Astin (1992) found that students who are oriented towards a scientific career 

(i.e. important to make a theoretical contribution to science), and who indicated their 

most probable career was to be an engineer (as freshmen), tended to persist to graduation 

in engineering.  This was supported by the Moller-Wong and Eide (1997) study.  A 

significant predictor of graduation in engineering is starting in engineering as a freshman 

(Astin and Astin, 1992; Johnson and Sheppard, 2002).  In addition, it was found that 

there was a higher probability of a student graduating in engineering if his/her peers are 

in engineering.  Support was found for having a father who was an engineer (Astin and 

Astin, 1992; Seymour and Hewitt, 1997).  Some engineering students who primarily 
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entered engineering college because of the financial influence of good pay tended to 

switch to another major, especially if they did poorly academically (Seymour and Hewitt, 

1997; Besterfield-Sacre, et al., 1997).   

 

For freshman non-engineering retention studies, it was found that academic goals are 

highly significant for college retention.  (Robbins, et al., 2004)  Using the CIRP survey, 

Astin and Oseguera (2005) found the self-rating on drive to achieve and going to college 

to prepare for graduate school were a significant predictors of upper-class college 

retention.  French et al. (2005) also found that motivation was a significant predictor of 

upper-class retention of engineers.  

 

With respect to freshman retention in engineering, Leuwerke et al. (2004) explored the 

relationship between math knowledge as measured by the ACT Math and the Hexagon 

Congruence Index (HCI).  In this study, the HCI measures the congruence between 

individual interests and an engineering career.  844 students from one university were 

involved with this study.  They found: 

• It is not sufficient to have a strong congruence (interest) in engineering for 

retention in engineering; instead, retention in engineering is “within the context of 

mathematics achievement.”  Students with higher ACT Math scores tend to stay 

in engineering regardless of the congruence to engineering.  An ACT Math score 

of 26 is indicated as a threshold for a high probability of retention.  

• For students with strong math scores, efforts to “increase these student’ interests 

in the field could improve retention rates.”  The authors indicated that this is 

supported by social cognitive career theory.  

• Students who left engineering had lower ACT Math scores, lower college GPAs 

and lower congruence with engineering.  

• Based on their analysis, there were no differential attrition rates in engineering 

attrition rates for female and minority students.  They hypothesized that “it s not 

gender or ethnicity but interests that affect motivation to pursue an engineering 

degree”.  
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P5.  Confidence in Quantitative Skills 

Strong Support in Engineering Education Literature 

Questions on confidence in quantitative skills, such as self-rating of math ability usually 

were significant for only the engineering education studies.  In the multi-institutional 

education studies that used the CIRP survey, the self-rating of math ability was not 

usually significant.  Using the CIRP survey, the Astin and Astin study showed that a high 

self-rating in mathematical skills was related to retention in engineering.  (Astin and 

Astin, 1992)   

 

Using the PFEAS © survey, Besterfield-Sacre et al. studied freshman engineering 

retention at the University of Pittsburgh and showed that confidence in basic engineering 

skills increased freshman retention.  Besterfield-Sacre et al. and Burtner also showed that 

the pre-college characteristic of enjoying math and science was important for freshman 

engineering retention.  (Besterfield-Sacre et al., 1997; Burtner, 2004)  

 

P6.  Commitment to This College 

Strong Support in Education Literature 

Commitment to the enrolled college includes the college choice by the student.  Although 

there was very strong evidence of commitment to the enrolled college as a predictor of 

retention in the education retention studies, there was minimal evidence of its importance 

in the empirical engineering studies.  In the Astin and Astin multi-institutional study 

(1992), choice of college was not significant for persisting in an engineering career.   

 

The education research first year retention studies showed “commitment to the 

university” as having a strong relationship to first year retention or college retention 

(Pascarella and Chapman, 1983; Glynn et al., 2005; Lotkowski, et al., 2004; Robbins, et 

al. 2004).   

 

P7.  Financial Needs 

Financial Needs Influence Retention 
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Retention studies, both engineering education and education, showed support for 

financial needs as a predictor of academic success and student retention (Astin and Astin 

(1992);Brainard and Carlin (1998); Johnson and Sheppard, 2002)  In a freshman retention 

study, having a scholarship was a significant variable for first term GPA (Besterfield-

Sacre, 1997)   

 

Using a causal model, Allen (1999) found that financial aid had a direct effect on 

freshman GPA, but not on retention.  A recent HERI study showed that “concern about 

being able to finance college had a negative effect” on college retention.  (Astin, 2005-

2006).  

 

P8.  Family Support 

Support by Family Important for Student Success 

Seymour and Hewitt (1997) discussed the importance of family members in persuading 

students to enroll in science or engineering majors.  Examples were cited of a student’s 

father being a family member, of concerns expressed by parents of low paying jobs in 

other fields and students feeling obligated to their parents who were paying for college.  

Several education studies have shown the importance of family support of students 

(Elmers and Pike, 1997; Pike, Schroeder and Berry, 1997; Tinto, 2006).  Some studies 

have found that the educational level of the parents, contribute significantly to retention 

in four- to six- year studies (Oseguera, 2005-2006; Glynn, 2005-2006).  Astin and 

Oseguera (2005) found support for both the parent’s educational level and parental or 

family aid for six-year college retention (formula 5).   

 

Support was found for encouragement from friends and family being significant for 

retention (Cabrera, Nora and Castaneda, 1993).  In support of these findings, Elkins, 

Braxton, and James (2000), in another education study, concluded: “Especially before 

and during the critical first semester, higher education practitioners should seek to 

involve parents, other family members, and friends in a variety of ways to provide 

assistance to students negotiating the separation process.” 

 



 

 42

P9.  Social Engagement 

Strong Support in Astin’s Theory of Involvement 

Astin’s Theory of Involvement stressed the importance of students becoming involved 

with activities within the university, including clubs and volunteer activities (Astin, 

1984).  The more involvement in activities, the more integrated the student becomes into 

the values of the institution.  In a recent HERI 6-year study, “participate in 

volunteer/community service work” was significant for college retention.  (Astin and 

Oseguera, 2005)  In their meta-analysis, Lotkowski, et al. (2004) found a moderate 

relationship between social involvement (defined as “extent to which a student feels 

connected to the college environment, peers, faculty, and others in college, and is 

involved in campus activities) and college GPA and retention.   

 
 
2.4.1.4 Hypothesized Differences Between the Freshman Engineering Curriculum   
       and Other Freshman Programs that Influence the Development of a Model    
       of How Freshman Engineering Student Success is Different 
 
  In addition, to the literature review, hypothesized differences between engineering and 

other disciplines were considered and their influence on the development of the pillars of 

student success.   This section discusses the development of a theory of how engineering 

student retention is different in preparation for development of a model on freshman 

engineering success. The discussion follows below.  

 

Role of the Engineering Professional Program 

The role of an undergraduate bachelor program is to prepare an engineering student for 

an engineering career.  Engineering is one of several pre-professional and professional 

programs at the undergraduate level to prepare a student for a specific career.  Besides 

engineering, education (teacher), business, pre-medicine, and pre-law are considered as 

pre-professional or professional programs in the university environment.  This leads to a 

need to have a “commitment to career goals” in a student success model.  Some of these 

pre-professional and professional programs have a closer freshman curriculum to 

engineering than others.  For example, both engineering and pre-medicine require 

enrollment in science courses and math courses (either calculus or statistics) in the 
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freshman year.  In contrast, pre-law and business would have more focus in the social 

sciences in the freshman year.  Majors in the liberal arts or sciences focus less on a 

career, especially in the freshman year. 

 

Role of Engineers in Society is That of a Designer or a Technology Problem-Solver 

To understand the engineering curriculum, it is important to understand the role of 

engineers in society.  In becoming a competent engineer, the function of an engineer in 

society is that of a designer of a new product or system or problem-solver.  Typically, 

engineers are involved with defining or using the latest technology.  Engineering is also 

seen as the profession that will create the latest innovation in technology or the 

innovation-makers.  In manufacturing, this includes designing the manufacturing 

processes for the component or assembly.  In quality engineering, this includes designing 

the processes (both technical and human interfaces) that assure that the manufactured 

product meets the design’s intent.  In summary, an engineering student is preparing for a 

career as an analytical thinker who can lead people in innovation, design and systems 

thinking.  

 

Engineering Curriculum Stresses Mathematics and Science 

The courses most strongly related to analytical thinking n technology are mathematics 

and science courses.  The engineering freshman curriculum is weighted with mathematics 

and science courses and of all disciplines, the engineering students take the most 

mathematics and science courses in their freshman year.  Expectations for admissions to 

an engineering program will include a wide range of college-prep courses with a large 

number of math and science courses (due to the need to develop analytical skills).  The 

science and math majors take the same freshman level science and math courses as 

engineering students.  Therefore, it is expected that their success and retention rates will 

be the most similar to engineering students.  The difference between these two student 

groups is that engineering students also enroll in freshman engineering classes, which 

also have a high math and science content.  The largest difference would be seen between 

engineering students and liberal arts majors (almost no math and science courses).  In 

summary, an engineering education is considered uniquely different from the other pre-
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professional or professional programs or the liberal arts, leading to different retention 

issues.   

 

Competitive Grading  in Freshman Engineering Classes 

Seymour and Hewitt (1997) have discussed the weeding-out system that is common in 

engineering colleges, especially for the freshman engineering courses.  In addition, the 

Astin and Astin study found that engineering students earned lower college GPAs than 

other students (Astin, 1993).  Students with a stronger math and science background will 

have a competitive advantage, whereas students with a weak math and science 

background may have a competitive disadvantage.  There is a stronger need for 

institutional support of students in achieving academic success in the first term.  

 

Hypothesized Differences between Engineering Freshman Curriculum and other 
Freshman Programs 
 
Based on these four concepts, four differences are hypothesized between the engineering 

freshman curriculum and other freshman programs that influence the development of a 

model of engineering student success: 

 

1. A major in engineering prepares a student for a specific career, that of an 

engineer; the other pre-professional and professional programs also prepare a 

student for a specific career in their program.  Majors in the liberal arts or 

sciences focus much less on a career. 

2. The focus of the freshman-engineering curriculum is on developing strong 

analytical skills and problem-solving using technology; the engineering 

curriculum is the most intense with math and science courses in the freshman 

year. 

3. Expectations for admissions to an engineering program include a wide range of 

college-prep courses with a large number of math and science courses (due to 

the need to develop analytical skills).  

4. A competitive grading system is common in engineering colleges.  As a result, 

the freshman-engineering curriculum tends to be very competitive.  Those 
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students who have the stronger pre-college preparation in math and science will 

have an advantage.  There is a stronger need for institutional support of students 

in achieving academic success in the first term.  

 

These four differences were applied to support the model for freshman engineering 

success.  The first one was that engineering students were more focused on a career than 

most other disciplines. This difference is supportive of the P4 pillar: Commitment to 

Career and Educational Goals. The second difference was a curriculum focused on 

developing strong analytical skills using technology.  This difference is supportive of the 

P2 pillar: Quantitative Skills. The third difference was that admissions is based on a wide 

range of college-prep courses, including a large number of math and science courses. 

This difference is supportive of the P1 and P2 pillars: High School Academic 

Achievement and Quantitative Skills.  The fourth difference was a competitive grading 

system. This difference is supportive of all the pillars.  Support in all the pillars for 

student success will enable an engineering student to be more prepared for academic 

success and retention in a competitive grading environment. The pillars most directly 

related to grades are P1, High School Academic Achievement, P2, Quantitative Skills, 

and P3 Study Habits. The other pillars contribute indirectly to academic success in a 

competitive environment.  

 

In summary, the literature review and the  set of hypothesized differences inform the 

model into the development of the nine pillars for student success. These nine pillars can 

be thought of as a structure that is important for the support of all students. 

 

2.4.2 The Freshman Year Process 

In Figure 2-4, the Block Diagram includes a circle labeled as the Freshman Experience 

Community.  Consistent with Tinto’s model, it includes academic and social integration, 

which leads to a high level of learning and student success.  Both “academic integration” 

and “social integration” are “abstract concepts that are basic to Tinto’s model.  (Tinto, 

2006)  Academic integration is defined broadly as doing well in courses and social 

integration includes both social relationships/leadership with other students and 
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discussions with faculty.  Both are needed for successful interaction between the student 

and the institution and the retention or persistence of the student.  The student’s 

experiences continually affect his/her commitment to his/her goals and the institution.  

 

Unfortunately, in the reviewed empirical research papers, especially the papers used in 

the Braxton research project (Braxton, 2000); there was inconsistency in the definition of 

‘academic integration” and “social integration”.  In drawing any conclusions, a broad 

definition needs to be applied.  However, in a very general sense, it may be strongly 

stated that there was a consistent validation of Tinto’s model that integration and 

interaction between the student and, an institution’s efforts at interaction or integration 

with a student leads to higher retention.  

 

2.4.3 Retention Decision:  

With the proposed model, the student is influenced by two elements of the model 

• academic success, as defined by the first year GPA 

• A revised commitment to an educational goal of an engineering degree 

and commitment to continuing at this college. 

 

The Influence of Academic Success 

This portion of the proposed model is a departure from Tinto’s model.  In the proposed 

model, there is a more specific emphasis on the first year GPA.  Tinto’s model is more 

general and does not appear to specifically identify the college GPA.  Rather, his model 

recognized the importance of academic integration (doing well in courses) and this leads 

to learning, which leads to student success.   

  

Empirical research strongly supported that the actual college GPA influences a student’s 

decision whether to stay in engineering (Elkins and Luetkemeyer, 1974; Astin, 1993; 

Budny, 1998; French, et al., 2005; Burtner, 2004; Zhang, et al., 2006; Allen, 1999).  In a 

study of 512 engineering freshmen at the University of Maryland, Elkins and 

Luetkemeyer found that the average first year GPA for students who returned to 

engineering was significantly higher than for students who left engineering.  The Astin 
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and Astin study (1992) found that engineering students earned a lower GPA than other 

college majors.  Astin also found that “undergraduate GPA is the single most important 

determinant of students’ aspirations for advanced degrees” and hypothesized that since 

engineering students earn a lower GPA than other majors that they are discouraged from 

applying to graduate programs (Astin, 1993).  Budny, et al., (1998) reported a higher 

correlation between first year GPA and engineering retention than between high school 

rank or GPA and engineering retention.  French et al. (2003) found that the college GPA 

was a significant predictor of engineering retention along with high school rank, the SAT 

Math score and a motivation score.  In a logistic regression, the odds ratio for the college 

GPA was the largest with an odds ratio of 2.19.  (95% confidence interval was 1.72 to 

2.77.)  Burtner (2004) found a significant average difference in the first year GPA of 

engineering students at Mercer University between those students who stayed and left 

engineering after one year.  Zhang, et al. (2006) reviewed the relationship between the 

college GPA and retention at nine engineering colleges over fifteen years.  They found 

that, within 3 semesters, most students with a low GPA had switched out of engineering.  

In this study, a very low percent of engineering graduates earned a first year GPA less 

than 2.0.  As a result of their extensive research on the relationship between the college 

GPA and retention for engineering students, Zhang et al. stated, “ We hypothesize the 

causal link that student self-efficacy improves with academic success and self-efficacy 

lead to improved retention. “ 

 

In a freshman non-engineering retention study conducted by Allen (1999), the first year 

GPA (i.e. student performance) had a direct effect on persistence for both minority and 

non-minorities.  High school rank was a major predictor of the college GPA for all 

students. 

 

Contrary to these studies, the Seymour and Hewitt study (1997) indicated no difference in 

academic performance between students who stayed, and students who left their STEM 

programs.  
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The Influence of a Revised Commitment to Educational and Career Goals 
As the student takes courses in the first year, he/she re-evaluates his/her career and 

educational goals.  This concept was initially adopted from Tinto’s model, which 

recognizes that the student may change his/her college goals and commitment during 

his/her college experience (Tinto, 1993).  In addition, Watson and Froyd’s engineering 

education model reinforces its importance by describing this as “interference” or 

interaction between the cognitive performance, career goals and self-identity (Watson, 

2007).  Adelman’s proposal of competing paths to a college major adds validity to this 

idea (Adelman, 1998).  The model (see Figure 2-5) shows the student reaching a revised 

educational goal of either being interested in engineering as a major and career or in 

some other major,  ( usually in the science/math domain).   

 

The student also re-evaluates whether he/she has commitment to the college in which 

he/she is enrolled.  If the student is doing well and had integrated both academically and 

socially, the student will continue with high probability at this university, even if he/she 

changes major.  If the student has not integrated well, he/she may switch universities or 

dropout without transferring to another college.   

 

Engineering 110, a survey career on engineering careers at Michigan will be discussed in 

this research with respect to helping students decide on a career.  Although there are 

papers in the literature on the effectiveness of an Introduction to Engineering course, I 

found no papers on the effectiveness of an engineering career survey course. 

 

Four States of Retention (Decision to Stay or Leave) 

This part of the model is more detailed than Tinto’s model and specific to engineering.  It 

is based only on retention at the end of the freshman year.  We can summarize the 

decision made by the engineering student at the conclusion of his/her freshman year as 

one of four states.  These are shown in Figure 2-4.  The four states are: 

A. The student decides to return to Engineering   

B. The student leaves Engineering (due to academic probation or voluntarily leaves) 

and transfers to another college in the same university  
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C. The student is pushed out or voluntarily leaves Engineering and transfers to another 

engineering college or a non-engineering program at another university  

D. The student decides he/she is not college material and drops out completely.  

 

Student’s Decision to Leave Due to Low Grades and Academic Probation 

Leaving due to academic probation is more of a concern with engineering colleges.  Astin 

(1993) found that the college GPA for engineering students was less than for other 

majors.  Students who are marginally prepared in math or science are at risk of earning 

poor grades in a competitive grading system,  Generally, students who earn less than a 

“C” average are placed on probation and within one or two terms, the student may decide 

to leave engineering or may involuntarily leave.  

 

It should be noted that in comparing the proposed model to Tinto’s model, Tinto’s model 

is focused mostly on attrition due to voluntary leaving, not leaving due to academic 

probation.  Tinto wrote, “the model pays special attention to the longitudinal process by 

which individuals come to voluntarily withdraw from institutions of higher education.  

Though the occurrence of academic dismissal will not be ignored, it will not be central to 

our discussions”(Tinto, 1993, p. 112)  My general sense from the literature review was 

that leaving due to an academic probation status(i.e. the institution asking a student to 

leave) is much more prevalent in engineering studies than general college studies.  (I 

reviewed some freshman retention studies that did not even address leaving due to a low 

GPA in the general college retention literature.) 

 

 

Defining Loss to Society 

From Industrial Engineering concepts, a loss can be conceptually described for each state 

of retention and is shown in Figure 2-6.   
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Figure 2-6: Loss Function Related to Retention/Attrition of Engineering Students  

 

1. In States A and B, investment of the university in the first year is returned with the 

student returning to the same university and there is no loss; only gain in the potential of 

the student.  The freshman year is a time of transition and if the student decides to switch 

to another college in the same university, this should be considered part of the retention 

process.  Many students enter engineering college without a full understanding of an 

engineering career.  

 

2. In State C, the student leaves the university and transfers to another engineering 

college or university.  In Tinto’s model of a good fit, the student has decided he/she is not 

a good fit for the initial university.  The first university lost its investment in the student.  

On the positive side, the student is still pursuing a college degree and with the degree, 

he/she will add more value to society.   

 

3. In State D, after one year of college, a student drops out.  This is both a loss in the 

investment of the initial engineering college and university and to society.  Instead of the 

student having an engineering career or other college-based career, he/she will potentially 

be limited to an entry-level position in the job market.  The potential of the student will 

not be reached in either his/her education, earning power or value to society.  
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Using the ideas of institutional effectiveness, if a student leaves after one year, the 

educational institution loses three years of tuition.  This tuition must be replaced by 

recruiting a transfer student.  The loss of the student is also important to an institution.  

 

Thus, both for the institution and the student, the initial loss of the student and loss of 

income by the institution can be traded off to the initial costs of significant retention 

intervention programs.     

 

2.5 Summary 

The thesis is that engineering retention is different from general college retention.  

Current engineering retention models were discussed and the development of a new 

model for freshman engineering retention was developed.   

 

 This model for freshman engineering student success was based on the concepts in 

Tinto’s model.  Tinto’s model was used as the model’s basis because it has a strong 

initial focus on pre-college characteristics.  In addition,  Tinto’s model has been validated 

over the past 30 years and is well accepted by education researchers.  The model of 

freshman engineering retention has three components that are shown in Figure 2-7: 

1. Pillars of student success (Pre-College Characteristics) 

2. The Freshman Year Process 

3. The Retention Decision by the student 
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Figure 2-7: Model for Student Success 

 

The literature review and the  set of hypothesized differences informed the model into the 

development of the nine pillars for student success. These nine pillars can be thought of 

as a structure that is important for the support of all students.  

 

 Just as the Doric columns of the classic architecture of Angell Hall symbolize the 

strength of the University of Michigan campus and “give unity and form to the entire 

campus” 3, the pillars of student success define the structure needed for supporting 

engineering student success. (Figures 2-8  and 2- 9  ) 

 

                                                 
3 Quote made by President Burton on the building of Angell Hall.  
Source; University of Michigan, “A Historical Tour of the University of Michigan Library, 
http://bentley.umich.edu/exhibits/campus_tour/angell.php 
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Figure 2-8 : Angell Hall, University of Michigan 

 

 
Figure 2-9 Nine Pillars for Student Success 

 

Together with the pillars of student success, the freshman year of learning process and 

the retention decision, the model is defined for freshman engineering student success, 

both in terms of academic success and student retention.  This model has the advantage 

over most models on engineering success in that it lends itself to empirical model 

building.  
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The concept of a loss function was discussed for student attrition.  When students leave 

the university, a loss to the university and society may be defined.  When a student drops-

out, any institutional commitment to the student stops; leading to a high loss of human 

potential to society.  This provided an argument for institutional responsibility for a high 

retention rate in order to minimize the loss of  human potential to society.  
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CHAPTER III 

VARIABLES AND DATA STRUCTURE 

 
In Chapter II, a model for freshman engineering success was developed. This model 

includes nine pillars for student success. The variables selected for each pillar will be 

discussed in this chapter. In addition, this chapter summarizes the data management 

issues addressed in this research. The following data management elements significant to 

the empirical study will be discussed: 

• Variables considered in the model’s pillars (Sections 3.1 and 3.2) 

• Calculation of the output variables from the model (Section 3.3) 

• Definition of each student sector: Engineering, Pre-Med, STM and Non-

STEM (Section 3.4) 

• IRB Approval (Section 3.5) 

• Response Rates from the CIRP survey (Section 3.6) 

• List of Databases used for each analysis (Section 3.7) 

• Definition of ACT and SAT Subsets  (Section 3.7) 

 

3.1 Overview of Selection of Variables 

Chapter II defines the freshman engineering success model (see Figure 3-1) with the nine 

pillars of student success based on a literature review. This section defines that selection 

process.  

 

The variables used in this study come from three sources: 

• The UCLA/Higher Education Research Institute (HERI) Cooperative 

Institutional Research Program (CIRP) survey conducted during freshman 

orientation. 
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• The Michigan Administrative Information Services (MAIS) database 

which contains student performance data 

• A research database for College of Engineering students; this database 

contained frequency of advising visits to the Engineering Advising Center. 

 

These databases are discussed in more detail along with the IRB approval in Sections 3.5, 

3.6 and 3.7.    

 

For each pillar defined in the model, relevant variables from the CIRP data and MAIS 

data were selected.  A complete list of variables is presented in Section 3.2.  

 

 

 
Figure 3-1: Model for Student Success 
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3.1.1 Selection of Variables  

Most of the data management issues revolved around the selection of variables from the 

CIRP database.  The CIRP database initially had about 300 variables.  It asks incoming 

freshmen questions related to academic, religious and social background;  parents’ 

background; college and career plans; reasons for coming to college; abilities and traits 

measured by self-ratings; student attitudes on social issues; academic and social 

activities; aspirations; commitment to current major and career; and concern about 

financing a college education. Only CIRP variables that were related to the nine pillars 

were considered. 

  

 Figure 3-2 illustrates the selection method that was taken.  Based on the model 

developed in Chapter 2, variables were selected from the 300 CIRP variables and some 

MAIS variables to represent the model’s pillars of student success.  The initial CIRP 

database of 300 variables for each cohort year was “filtered” into a smaller database. This 

smaller database contained the active variables that were considered representative of the 

model’s pillars in the empirical analysis.  

 

3.1.2 Selection Criteria 

As I approached these selection criteria, I appreciated the availability of the richness of 

the questions in the HERI/UCLA CIRP survey. The selection criteria were based on 

maximizing the selection of variables from the CIRP data that would contribute to my 

research on freshman engineering success. For each pillar of the model, a set of variables 

were selected based on the following criteria: 

1. Support was found in the literature review presented in Chapter 2. This 

support could come from either the engineering education literature or the 

education literature. For example, the high school GPA was selected for 

P1. High School Academic Achievement. In the literature review, many 

research studies included the high school GPA as a possible predictor of 

student academic success and it was found to be significant. The majority 

of variables fall into this category. 
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Figure 3-2: Selection and Filtering of the Pre-College Variables 

 

 

2. If a CIRP variable was considered related to a variable in group 1), it was 

added to that pillar. For example, there was strong support for self-rating 

of math ability in the HERI studies, but less support for self-rating of 

computer ability. This variable was added, as a subjective decision, 

because I thought it was related to self-rating of math ability.  

3. For the Social Engagement pillar, I had some literature review results, but 

not consistent indicators of social engagement.  I reviewed the survey 
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questions related to social engagement and choose a set of questions, 

based on both my general readings of the leaders in engineering education 

and education; and also based on my experience of what makes a 

successful engineer. I considered this as traditional model-building, in the 

engineering sense expressed by Box, Hunter, and Hunter (1978).  A few 

variables were selected in this way for the other pillars also, but primarily 

for the Social Engagement pillar.  

4. Because factor analysis works well with continuous variables, all selected 

variables had an underlying continuum, either continuous or ordinal. 

Binary variables were not included.  

5. At least two variables were selected for each pillar. 

 

In the next section, the rationale for each pillar’s variable will be given.  

 

3.2 Pre-College Characteristics 

3.2.1 List of Pre-College Characteristics Used as Predictors in Model 

Table 3-1 shows the pre-college characteristics included in this study.   These include 

both variables from the HERI / CIRP survey and the MAIS student performance 

databases.  A summary of the averages and standard deviations for both the 2004 and 

2005 cohorts is given in Appendix A.  

 

 

3.2.2 Rationale for Each Pillar’s Variables 
The rationale for each variable is explained in this section. In most cases, variables were 

included because there was literature-based evidence.  For each pillar, a table is presented 

that indicates the variables for which literature-based evidence is presented.  Chapter 2, 

Section 2.6.2,  contains the literature review explanation.  For the variables that were 

included with no literature based evidence, the Discussion section (associated with each 

pillar) explains the rationale that was used.  
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Table 3-1: Pre-College Characteristics by Pillar 

P1. High School Academic Achievement 
  1. High school GPA  (corrected for non-significant courses) 
  2. High school class rank 
  3. ACT composite* 
  4. SATI total** 
  5. Self-rating of academic ability 
  6. Self-rating of cooperativeness 
  7. Self-rating of leadership ability 
  8. Self-rating of writing ability 
  9. Self-rating of self-confidence  (intellectual) 
P2. Quantitative Skills  
  1. ACT math score* 
  2. SAT math score** 
  3. ACT science score* 
  4. UM math placement test score 
  5. UM chemistry placement test score 
P3. Study Habits 
  1. Hours per week in the past year spent on studying/ doing homework 
  2. Hours per week in the past year spent talking to teacher outside of class 
  3. Hours per week in the past year spent reading for pleasure 
  4. Frequency of using the Internet for research or homework 
  5. Frequency of studying with other students 
  6. Frequency of asking a teacher for advice after class 
  7. Frequency of tutoring another student 
  8. Frequency of coming late to class 
  9. Frequency of feeling overwhelmed by all a student had to do 
10. Importance in deciding to go to college: to learn more about things that interest me 
11. Chance in the future to communicate  regularly with your professors 
P4. Commitment to Career and Educational Goals 
  1. Highest academic degree that you intend to obtain 
  2. Importance in deciding to go to college: to get training for specific career 
  3. Importance in deciding to go to college: to prepare myself for graduate or          
professional school 
  4. Importance  in deciding to go to college: to be able to make more money 
  5. Chance in the future to change major field 
  6. Chance in the future to change career choice 
  7. Self-rating on drive to achieve 
  8. Importance of making a theoretical contribution to science 
      Note: * indicates characteristic is used in ACT subset only; 
              ** indicates characteristic is used in SAT subset only. 
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Table 3-1: Pre-College Characteristics by Pillar (continued) 

P5. Confidence in Quantitative Skills 
  1.   Self-rating of computer skills 
  2.   Self-rating of mathematical ability 
  3.   Self-rating of creativity 
P6. Commitment to this College (U-M) 
  1.   What choice is this college? 
  2.   To how many other colleges other than this one did you apply for admissions?
  3.   Importance of coming to this college: college has good academic reputation 
  4.   Importance of coming to this college: college has good reputation for social  
        activities 
  5.   Importance of coming to this college: rankings in national magazine 
  6.   Importance of coming to this college: college’s graduates get good jobs 
  7.   Importance of coming to this college: my relatives wanted me to come here 
  8.   Importance of coming to this college: offered financial assistance 
  9.   Importance of coming to this college: not offered aid by first choice 
10.   Chance in future you will be satisfied with this college 
P7. Financial Needs 
  1.   Concern about ability to finance college education 
  2.   How much of first year’s educational expenses are expected to be from loans? 
P8. Family Support 
  1.   Education level of father 
  2.   Education level of mother 
P9. Social Engagement 
  1.   Self-confidence (social) 
  2.   Hours per week in past year socializing with friends 
  3.   Hours per week in past year playing video/computer games 
  4.   Hours per week in past year partying 
  5.   Hours per week in past year working (for pay) 
  6.   Hours per week in past year volunteer work 
  7.   Hours per week in past year student clubs/groups 
  8.   Chance in the future you will join a social fraternity or sorority 
  9.   Chance in the future you will play varsity/intercollegiate athletics 
10.   Chance in the future you will participate in student clubs/groups 
11.   Chance in the future you will  participate in a study abroad program 

 

A summary of the rationale for the variables in each pillar of student success is discussed 
next.  
 
P1. High School Academic Achievement 
The objective of this pillar is to represent with both academic and non-academic 

characteristics the high school academic achievement prior to college.  
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Table 3-2: Checklist of Literature Based Evidence for Variables Associated with         
         P1. High School Academic Achievement 
 

Variable Literature-Based 
Evidence of Effect 

1. High School GPA 
    (corrected for non-significant courses)

Yes 

2. High School Class Rank Yes 

3. ACT Composite Yes 

4. SAT Total Yes 

5. Self-Rating of Academic Ability Yes  

6. Self-Rating of Cooperativeness See Discussion 

7. Self-Rating of Leadership Ability See Discussion 

8. Self-Rating of Writing Ability Yes; See Discussion 

9. Self-Rating of self-confidence 
    (intellectual) 

Yes 

 

Discussion 

In choosing non-academic characteristics for this pillar, I was influenced by the meta-

analysis by Lotkowski, et al. (2004), The Engineer of 2020 and my own experience in 

working with middle-school and high-school students.    

 

The CIRP variables, self-rating of academic ability and self-rating of self-confidence 

(intellectual) were selected as being related to academic self-confidence.  In asking which 

variables could fit in this pillar and predict academic success, I hypothesized that a high 

self-rating of leadership and cooperativeness were important attributes for academic 

success in a highly selective, highly competitive engineering college.  In support, Astin 

and Astin (2000) discuss the importance of leadership and cooperative skills in college; 

this concept could be extended to high school studies as a preparation for college. 

Students who learn leadership and cooperativeness skills in high school tend to be the 

high achieving students and this contributes to their college success. (In my experience 

working with youth interested in the STEM disciplines, I learned that leadership and 

cooperativeness are important attributes for success on STEM-related activities such as 
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Odyssey of the Mind and Science Olympiad, and the curriculum-related AP courses, all 

of which are recognized as contributing to successful engineering students.)  Both 

industry and the National Academy of Engineering (The Engineer of 2020, (2004)) have 

indicated the importance of leadership and cooperativeness (on work teams) as desirable 

characteristics of entry-level engineers.  

 

Because I was comparing the engineering sector to the Non-STEM sector, I was 

interested in adding a variable to the overall set of variables that was comparable to self-

rating of math (in P5-Confidence in Quantitative Skills) for the Non-STEM sector.  I 

decided to add self-rating of writing skills. My rationale was that the Non-STEM sector 

includes humanities and social studies majors who take courses that require significant 

writing. Besterfield-Sacre et al. (1997) found self-rating of writing and speaking skills to 

be a significant predictor for attrition. Hawley and Harris (2005-2006), in a retention 

study of a community college, found self-rating of writing to be significant in their factor 

analysis. I added it to this pillar because I considered it to be highly related to high school 

academic achievement.  Either a factor analysis or regression analysis would indicate the 

final significance of this variable. In addition, its selection made it available for analyses 

for the Non-STEM student sector.  

 

P2. Quantitative Skills 

The objective of this pillar is to present the quantitative and analytical skills in high 

school of the entering college students.  

Table 3-3: Checklist of Literature Based Evidence for Variables Associated with  
        P2. Quantitative Skills  
 

Variable Literature-Based 
Evidence of Effect 

1. ACT Math Score Yes 

2. SAT Math Score Yes 

3. ACT Science Score See Discussion 

4. UM Math Placement Test Score 
 

See Discussion 

5. UM Chemistry Placement Test Score See Discussion 
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Discussion 

Budny et al. (1998) discussed the importance of correct placement into the freshman level 

courses for student academic success and retention.  The literature review for engineering 

retention studies consistently showed that the SAT math and ACT math scores are 

predictors of both academic success and retention.  (See Section 2.6.2, P2. Quantitative 

Skills.) Veenstra and Herrin (2006a) found that the ACT Math score of 27 was a 

predictor of earning a passing grade in the Calculus I, Chemistry, and Engineering 100 

and Engineering 101 at Michigan. The ACT Science score measures scientific reasoning; 

this is an important basis for strong analytical skills, which are needed for engineering 

(NAE, 2004).   Unpublished reports at the University of Michigan have shown that the 

SAT Math, ACT Math, ACT Science, and placement tests are predictors of academic 

success in individual courses or related to the first year GPA.  The University of 

Michigan (UM) Math Placement Test Score is part of the placement criterion for 

placement into either Pre-Calculus or Calculus I. It tests incoming students on their 

knowledge of pre-calculus. The UM Chemistry Placement Test Score is used to 

determine if a student needs an extra lecture session per week in the Chemistry I course. 

It tests incoming freshmen on their scientific reasoning and knowledge of high school 

chemistry.  

 

P3. Study Habits 

The objective of this pillar is to represent the study habits that were learned in high 

school.  

 

Discussion 

The literature review supports the significance of being an independent learner as 

important for engineering student success.  In Tinto’s model of social and academic 

integration, he explains that this leads to learning, and learning is needed to be successful 

in college (Tinto, 1993). He wrote, “The more students learn, the more value they find in 

their learning, the more likely they are to stay and graduate” (Tinto, 2005).  Astin and 

Astin explained that the learning environment is enhanced by a “collaborative learning 

environment”.  They further explained that:  
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a new paradigm is emerging that “embraces both students and faculty as teachers 

and learners.  In this new paradigm, “students are expected to engage each other 

and their professors actively in a dynamic learning environment” (Astin and 

Astin, 2000). 

 
Table 3-4: Checklist of Literature Based Evidence for Variables Associated with  

           P3. Study Habits 
 

 
Variable 

Literature-Based 
Evidence of 
Effect 

1. Hours per week in the past year spent on  
    Studying/ doing Homework 

Yes 

2. Hours per week in the past year spent  
    Talking to teacher outside of class 

Yes 

3. Hours per week in the past year spent 
    Reading for pleasure 

See Discussion  

4. Frequency of using the Internet for research or homework See Discussion 

5. Frequency of studying with other  students Yes 

6. Frequency of asking a teacher for advice after class Yes 

7. Frequency of tutoring another student See Discussion 

8. Frequency of coming late to class Yes 

9. Frequency of feeling overwhelmed by all a student had to do Yes 

10 Importance in deciding to go to college: 
    “to learn more about things that interest  me” 

See Discussion 

11.Chance in the future to communicate regularly with your 
professors    

See Discussion 

 

In support of both Tinto and the Astins’ ideas on learning, CIRP variables were chosen 

that 1) suggest learning through collaborative learning of the high school student with 

teachers and other students and 2) suggest the student’s expectation of continuing this 

style of collaborative learning in college. Although some of these variables could be 

considered as social engagement variables, they were placed in P3 (Study Habits) 

because these activities were considered directly related to study habits and learning.  
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“Frequency of using the Internet for research or homework” was selected because many 

students in high school use the Internet for research, especially in the honors and AP 

courses. It is consistent with the ideas of learning to be an independent learner.    With 

respect to “Chance in the future to communicate regularly with your professors”, I 

hypothesized that if a student spent time talking to teachers in high school, they would be 

more inclined to talk to professors and this would improve academic success. This is 

consistent with Tinto’s integration concepts and the Astins’ collaborative learning as 

discussed above.   Frequency of studying with other students, and Frequency of tutoring 

another student in high school are questions that are consistent with Tinto’s integration 

concepts and the Astins’ collaborative learning as discussed above.  The importance in 

deciding to go to college: “to learn more about things that interest me” is consistent with 

being an independent learner and has potential as a significant predictor. Likewise, Hours 

per week reading for pleasure was seen as an indication of an independent learner. 

 

P4. Commitment to Career and Educational Goals 
 

The objective of this pillar is to represent the variables related to commitment to career 

and educational goals.  

 

Discussion 

All were selected based on evidence from the literature review. 
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Table 3- 5: Checklist of Literature Based Evidence for Variables Associated with  
            P4. Commitment to Career and Educational Goals 
 

 

Variable 

Literature-Based 
Evidence of 
Effect 

1. Highest Academic Degree that you intend to 
obtain. * 

Yes 

2. Importance in deciding to go to college: 
“to get training for specific career” 

Yes, for 
engineering 

3. Importance in deciding to go to college: 
“To prepare myself for graduate or 
professional School” 

Yes  

4. Importance  in deciding to go to college: 
“ To be able to make more money” 

Yes 

5. Chance in the future to change major field Yes 

6. Chance in the future to Change Career 
Choice 

Yes 

7. Self-Rating on Drive to Achieve Yes 

8. Importance of Making a theoretical  
contribution to science 

Yes 

 
*This variable was recoded to: 0=None, 1= Associate degree or less, 2= Bachelor’s 
degree  3= Masters Degree including M.DVD and 4= PhD, Ed.D, M.D., D.O.,DDS, 
DVM, JD.  
 

P5. Confidence in Quantitative Skills 

The objective of this pillar is to represent the confidence in quantitative skills. Strong 

support for this exists in the engineering education literature. 

 

Table 3-6: Checklist of Literature Based Evidence for Variables Associated with  
         P5. Confidence in Quantitative Skills 
 

 
Variable 

Literature-Based 
Evidence of 
Effect 

1. Self-Rating of Computer Skills See Discussion 

2. Self-Rating of Mathematical Ability Yes 
3. Self-Rating of Creativity  See Discussion 
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Discussion 

Self-rating of computer skills was considered to be related to self-rating of math ability 

for which there is literature support.  I was influenced by The Engineer of 2020  (NAE, 

2004) to add “self-rating of creativity”. I wanted this variable to be available for 

modeling of student academic success and retention. From my experience as an engineer 

and reading of The Engineer of 2020, I recognized that engineers will need creativity 

(which is a component of innovative thinking).  This variable was probably the most 

difficult to place in one of the pillar groups.  I felt that self-rating of creativity does lead 

to a higher level of confidence in engineering skills, of which confidence in quantitative 

skills is a component.  If it was not important, it would not enter into either the factor 

analysis or regression analysis.  

 

P6. Commitment to this College  

The objective of this pillar was to represent variables related to motivation to attend 

Michigan because it was the first choice college and to capture the reasons for attending 

Michigan.  There was strong support in the education research literature, but not in the 

engineering education literature. 

 

Discussion 

There was evidence in the literature supporting the choice of the college. The CIRP 

question “To how many other colleges other than this one did you apply for admissions?” 

was seen as related to choice; the more colleges, the less the certainty of a choice. The 

CIRP survey has a series of questions on the importance to the student of attending this 

college. (Very important, somewhat important, not important). Seven questions from this 

series were included in the set of variables and they were all assigned to this pillar, 

Commitment to this college. They indicate the strength of the reason for attending this 

college.  The CIRP question “Chance in future you will be satisfied with this college” 

was chosen because of its orientation toward quality of expected experience; it also is 

related to the strength of a college choice.  If a student expects to be satisfied, the 
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commitment to that college is intrinsically stronger with an assumed higher probability of 

retention.  

Table 3-7: Checklist of Literature Based Evidence for Variables Associated with  
         P6. Commitment to this College 
 

Variable Literature-Based 
 Evidence of Effect

1. What Choice is this college? Yes 

2. To how many other colleges other than this one  
   did you apply for  admissions? 

See Discussion 

3. Importance of coming to this college: 
College has good academic reputation 

See Discussion 

4. Importance of coming to this college 
    College has good reputation for social activities 

See Discussion 

5. Importance of coming to this college 
    Rankings in national magazine 

See Discussion 

6. Importance of coming to this college 
    College’s graduates get good jobs 

See Discussion 

7. Importance of coming to this college: 
   My relatives wanted me to come here 

See Discussion 

8. Importance of coming to this college 
   Offered financial assistance 

See Discussion 

9. Importance of coming to this college: 
   Not offered aid by first choice 

See Discussion 

10.Chance in future you will be satisfied with this college See Discussion 

 

P7. Financial Needs 

The objective of this pillar was to represent variables related to the financial needs of 

students.   

Table 3-8: Checklist of Literature Based Evidence for Variables Associated with   
          P7. Financial Needs 
 

 
Variable 

Literature-
Based 
Evidence of 
Effect 

1. Concern about ability to finance college education Yes 
See Discussion 

2. How much of first year’s educational expenses are expected to be   
from loans? 

Yes 
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Discussion 

With the rising costs of college attendance, significant literature exists on the need for 

financial help for higher student retention. Related to the two questions selected from the 

CIRP survey, there is less evidence of the importance of the question, “Do you have any 

concern about ability to fianace your college education” with responses being none, some 

or major.  I liked this question because it was an affective question on the concern the 

student had about his/her finances for college. With the three levels of responses, it could 

be used to identify differences between students with major concern about finances and 

minor or no concern.  

 

P8. Family Support 

Initially, the objective of this pillar was to represent the support that the extended family 

gives to a college student. 

  

Table 3-9: Checklist of Literature Based Evidence for Variables Associated with     
          P8. Family Support 
 

Variable Literature-Based 
Evidence of Effect

Parents’ Education Yes 

 

Discussion 

More evidence supports the need for the continuing support of the family in helping a 

student adjust to college.  The best available variable to represent this was the education 

level of the parents.   If parents have a high level of education, they will encourage their 

children to attend college and complete a degreed program.   I did not include financial 

information about parents in this category for two reasons: 1) to the CIRP question of 

“what is your best estimate of your patents’ total income last year”, there was much 

missing data and 2) in the Astin and Oseguera (2005) study, education level of the 

parents was significant for retention, but income level was not consistently significant.  
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The two CIRP variables: Education Level of Father and Education Level of Mother were 

combined to indicate the overall education level of both the mother’s and father’s 

education (as a family unit) as follows: 

Parents’ Education = Max (Mother’s Education code, Father’s Education code) 

The coding of Parents’ Education was revised to: 

1= less than high school 

2= High school graduate 

3= some college or postsecondary education 

4=College degree (Bachelor) 

5= Graduate school or Graduate degree 

 

P9. Social Engagement 

The objective of this pillar was to represent Astin’s theory of involvement, i.e. the more 

involved students are in social activities relate to their college, the more they learn.  

 

Discussion 

The literature was varied on support for individual questions. Questions were chosen that 

I thought supported Astin’s theory of involvement.  The Lotkowski et al. (2004) study 

showed general support for the importance of social engagement (social involvement in 

their report) for both academic success and retention across 109 retention studies. In 

addition, the question: Chance in the future you will participate in a study abroad 

program was added because of the importance that the engineering community attached 

to being an engineer in the global community in The Engineer of 2020 (NAS, 2004).  

Nicholls et al. (2007) found a significant difference between STEM and Non-STEM 

students for this variable.  
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Table 3-10: Checklist of Literature Based Evidence for Variables Associated with   
          P9. Social Engagement 
 

Variable Literature-Based
Evidence of 
Effect 

1.    Self-Confidence (social) Yes 

2.    Hours per week in past year-socializing with friends Yes 

3.    Hours per week in past year- playing video/computer games Yes 

4.    Hours per week in past year-partying Yes 

5.    Hours per week in past year-working (for pay) Yes 

6.    Hours per week in past year-volunteer work Yes 

7.    Hours per week in past year-student clubs/groups Yes 

8.  Chance in the future you will join a social Fraternity or sorority Yes 

9.   Chance in the future you will play varsity/Intercollegiate           
athletics 

Yes 

10.  Chance in the future you will participate in student clubs/groups Yes 

11. Chance in the future you will  participate in a study abroad 
program 

See Discussion 

 

 

3.3 Calculations of Dependent Variables (Model Output) 

The calculations of the four academic success and retention variables, which serve as the 

dependent variables in the empirical model are discussed in this section: 

1. 1st year GPA. 

2. 1st year STEM GPA, a GPA based on the science, math and engineering courses 

taken in the freshman year.  

3. Retention status in the admitting College. Whether a student was still in the same 

College at the beginning of the fall term of his/her 2nd year. 

4. Retention Status with respect to the University. Whether a student was still 

enrolled in the university at the beginning of the fall term of his/her 2nd year.  

The variables originated from the MAIS data system. 
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3.3.1 First Year GPA 

The first year GPA is defined as the Grade Point Average (GPA) for all courses in which 

the student completed in his/her first year of college.   

 

It was calculated from the freshman fall term number of credits and term GPA; and the 

winter term number of credits and term GPA.  It is illustrated with the variable names 

used in the database: 

• Term1un – Number of credit hours taken in the fall term that go into the 

fall term GPA.  Does not include credits taken for pass/fail credit 

• Term1gpa- Fall term GPA 

• Term2un – Number of credit hours taken in the winter term that go into 

the winter term GPA. Does not include credits taken for pass/fail credit. 

• Term2gpa- Winter term GPA 

 

The first year GPA was then calculated as: 

 

       1st Year GPA = (Term1un*Term1gpa+Term2un*Term2gap)/(Term1un+Term2un) 

 

If a student withdrew in the first term, the first year GPA was not calculated.. If a student 

withdrew or did not register in the 2nd term, only the first term GPA was used in the 

calculation. 

 

3.3.2 First Year STEM GPA 

First year STEM GPA is defined as the weighted average of the grades of 100- level 

STEM courses taken in the freshman year.  

 

Table 3-11 lists the 100-level STEM courses  and the number of credits associated with 

each course.  The grades, which  are available in MAIS database as letter grades, were 

converted to a numeric course GPA, based on a 4-point scale.  The STEM GPA was then 
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calculated as the weighted average of the numeric course GPA, weighted by the course 

credit hours. 

 

 First Year STEM GPA =∑ (HRi X Course GPAi)/ ∑(HRi) 

 

In order to have an equitable comparison between different STEM majors, only 100-level 

courses are included in this calculation.  (Some students test with AP scores into 200-

level course.)  Engineering 110 is not included in the STEM GPA; it is a survey course 

on engineering careers.   

 

TABLE 3-11: STEM Courses and Credit Hours 

Course Number and Name Number of  
Credit Hours

BIOLOGY 162-Introductory Biology 5 
CHEM 125- General Chemistry Laboratory I 1 
CHEM 126-General Chemistry Laboratory II 1 
CHEM 130-General Chemistry and Reaction Principles 3 
ENGR 100-Introduction to Engineering 4 
ENGR 101-Introduction to Computers and Programming 4 
MATH 105-Data, Functions and Graphs 4 
MATH 110-Pre-Calculus 2 
MATH 115-Calculus I 4 
MATH 116-Calculus II 4 
MATH 156-Applied Honors Calculus II 4 
MATH 185-Honors Calculus I 4 
PHYSICS 125-General Physics Mechanics and Sound 4 
PHYSICS 126-Electricity-Light 4 
PHYSICS 127-Mechanics and Sound Lab 1 
PHYSICS 140-General Physics I for Scientists and Engineers 4 
PHYSICS 141-Elementary Lab I 1 
PHYSICS 160-Honors Physics I 4 

 
 

3.3.3 Calculation of Student Retention   

The definitions of College Retention and University Retention are defined in this section. 

Only full-time freshmen enrolling for the first time in the summer or fall of the freshman 

class year are included.    

 



 

 75

Definition of College Retention  

 For a particular college, College Retention is the percent of students who enrolled 

 in that college in the fall term of the freshman year and are registered in the same 

 college at the beginning of classes for the third term (fall term 2nd year).   

 

  

  

Definition of University Retention 

 University Retention is the percent of students who enrolled in a college in the fall 

 term of the freshman year and are registered in any college of the university at 

 the beginning of classes for the third term. (i.e. some may have transferred to 

 another college within the university.)   

 

Students who enrolled in courses past the first day of courses in the third semester (fall) 

and then withdrew from the university were considered to be retained.  

  

3.4 Student Sectors 

The thesis is that the modeling of engineering academic success and retention is different 

from other student sectors.  To support this, one of the research objectives of this Ph.D. 

research was to compare Engineering students’ performance to three other student 

sectors: 

• Pre-Med Students (an identified pre-professional sector with a high level 

of scientific knowledge) 

• STEM Students (excluding engineering and Pre-Med in order to have 

independent samples).  STEM students generally include Science, 

Technology, Engineering and Math majors. 

• Non-STEM students 

One of the challenges of this research was to define each sector.  A preliminary literature 

review showed that a common definition of “STEM” majors does not exist in the U.S.  

This section defines the student sectors, as it was used in this research. 
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For the Engineering student sector, all students registered in the College of Engineering 

were considered as Engineering students. For the Pre-Med student sector, all students 

with a CIRP variable of student’s probable career of Physician were considered in this 

sector.  The CIRP variable, student’s probable major was used to determine if the 

remainder of the students could be classified as STEM or Non-STEM students. There 

were a few “probable major” categories that still were difficult to determine.  I exchanged 

emails with Gillian Nicholls of the University of Pittsburgh, who has researched the 

history of the definitions of STEM and their inconsistencies (Nicholls, 2007a, Nicholls, et 

al., 2007). Her dissertation chapter on this subject was reviewed and used in identifying if 

a major was a STEM or Non-STEM major (Nicholls, 2007b). If the “student’s probable 

major” code was “undecided” or not specific enough to make this determination, the 

student’s sector was considered to be missing data.  More detail is given below. 

 

3.4.1 Definitions of each Student Sector 

Engineering Sector (Student Sector Code =1) 

All Engineering majors in the College of Engineering.   (LSA has a few students with 

probable major of engineering; they were categorized as Science and Math (STM) 

majors) 

 

Pre-Med Sector (Student Sector Code=2) 

All students who indicated a Probable Career as Physician were included in this student 

sector, regardless of college.   The only exception to this coding was that Engineering 

students who indicated a probable career as a physician were categorized as belonging to 

Engineering. In this research, Pre-Med majors were selected as an example of a pre-

professional program. Michigan does not have a formal Pre-Med program; as a result a 

range of majors are included. 

 

STM Sector - STEM Majors Excluding Engineering and Pre-Med (Student Sector 

Code=3) 
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This student sector is denoted as the STM sector, since it does not include Engineering.  

The Majors in the STM sector include: All Science, math, technology, medical or 

healthcare technology, forestry, architecture and urban planning. 

 

Non-STEM Sector- Non-STEM Majors (Student Sector Code=4) 

The following majors are included: art and humanities, social science, business, 

education, kinesiology and therapy 

 

 

3.4.2 Description of Table 3-12 

A more detailed listing is shown in the Table 3-12. A “probable major” code is not coded 

(indicated as “missing”) if: 

• There is insufficient information in the name of the CIRP “probable 

major” code to make this determination. This would apply to code 60-

Other Professional or 85-Undecided.  

• The University of Michigan does not have a degree in this area. For 

example, the University of Michigan would not have a degreed program in 

the building trades (this is usually an associate degree).   

For some majors, the freshman curriculum at Michigan was reviewed to decide it was 

more appropriately classified as a STEM or Non-STEM major in terms of freshman 

retention. For example, Architecture and Urban Planning was categorized as a STEM 

discipline. It is a major in the School of Arts (usually a Non-STEM field)  and its students 

are required to take Calculus I (Math 115) and Physics. For this reason, it was 

categorized as a STEM major.  Forestry was considered as a major field in 

Environmental Sciences, which requires all students to take two semester of Calculus. 

Based on this, Forestry was categorized as a STEM discipline.   

 

Approximately 10% of the students were undecided about their major and were not 

assigned a student sector code.  
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TABLE 3-12: Coding for STM and Non-STEM Student Sectors 
       Based on the CIRP “Student’s Probable Major” 
 
CIRP Student’s Probable Major 
Numeric Code and Label4 

STM or 
Non-STEM 

CIRP Student’s 
Probable Major 
Numeric Code and 
Label 

STM or  
Non-STEM 

Arts and Humanities  Business  
1= Art, fine or applied Non-STEM 20=Accounting Non-STEM 
2=English  
    (language and literature) 

Non-STEM 21=Business 
Administration 
      (general) 

Non-STEM 

3=History Non-STEM 22=Finances Non-STEM 
4=Journalism Non-STEM 23=International 

Business 
Non-STEM 

5=Language and Literature 
     (except  English) 

Non-STEM 24=Marketing Non-STEM 

6=Music Non-STEM 25=Management Non-STEM 
7=Philosophy Non-STEM 26=Secretarial 

Studies 
Non-STEM 

8=Speech Non-STEM 27=Other Business Non-STEM 
9=Theater or Drama Non-STEM Education  
10=Theology or Religion Non-STEM 28=Business 

Education 
Non-STEM 

11=Other Arts and Humanities Non-STEM 29=Elementary 
Education 

Non-STEM 

Biological Sciences  30=Music or Art 
Education 

Non-STEM 

12=Biology(general) STM 31=Physical 
Education or  
 Recreation 

Non-STEM 

13=Biochemistry or 
       Biophysics 

STM 32=Secondary 
Education 

Non-STEM 

14=Botany STM 33=Special Ed. Non-STEM 

15=Environmental Science STM 34=Other Education Non-STEM 

16=Marine(Life) Sciences STM 

17=Microbiology or 
      Bacteriology 

STM 

18=Zoology STM 

19=Other Biological Sciences STM 

 

                                                 
4 CIRP Student Probable Major are from: the CIRP 2005 Freshman Survey Data File (File Documentation), 

File Name: CIRP2005.DAT, from the Higher Education Research Institute, UCLA 
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 TABLE 3-12: Coding for STM and Non-STEM Student Sectors 
                        Based on the CIRP “Student’s Probable Major” (continued) 
CIRP Student’s 
Probable Major 
Numeric Code and 
Label 

STM or 
Non-
STEM 

CIRP Student’s 
 Probable Major  
Numeric Code and  
Label 

STM or 
Non-STEM 

Engineering  Professional (cont.)  
35=Aeronautical 
Engineering 

STM 54=Health Technology 
(medical, dental, laboratory) 

STM 

36=Civil Engineering STM 55=Library or Archival 
Science 

Non-STEM 

37=Chemical 
Engineering 

STM 56=Medicine, Dentistry,  
      Veterinary Medicine 

STM 

38=Computer 
Engineering 

STM 57=Nursing STM 

39=Electrical or  
 Electronic Engineering 

STM 58=Pharmacy STM 

40=Industrial 
Engineering 

STM 59=Therapy (occupational, 
      Physical, speech) 

Non-STEM 

41=Mechanical 
Engineering 

STM 60=Other Professional Non-STEM 

42=Other Engineering STM Social Sciences Non-STEM 
Physical Sciences and 
Math 

STM 61=Anthropology Non-STEM 

43=Astronomy STM 62=Economics Non-STEM 
44=Atmospheric Science 
      (including 
Meteorology) 

STM 63=Ethnic Studies Non-STEM 

45=Chemistry STM 64=Geography Non-STEM 
46=Earth Science STM 65=Political Science 

(gov’t., international 
relations) 

Non-STEM 

Professional  66=Psychology Non-STEM 
47=Marine Science 
      (incl. Oceanography) 

STM 67=Social Work Non-STEM 

48=Mathematics STM 68=Sociology Non-STEM 
49=Physics STM 69=Women’s Studies Non-STEM 
50=Statistics STM 70=Other Social Studies Non-STEM 
51=Other Physical 
Sciences 

STM Technical   

52=Architecture and  
 Urban Planning 

STM 71=Building Trades missing 

53=Family and Consumer  
 Sciences 

Non-
STEM 

72=Data Processing or  
      Computer Programming 

STM 

73=Drafting or Design STM  
74=Electronics STM 
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TABLE 3-12: Coding for STEM and Non-STEM Student Sectors 
       Based on the CIRP “Student’s Probable Major” (continued) 
 

CIRP Student’s Probable Major
Numeric Code and Label 

STM(STEM)  
or Non-STEM 

Technical (cont.)  
75=Mechanics STM 
76=Other Technical missing 
Other Fields  
77=Agriculture STM 
78=Communications Non-STEM 
79=Computer Science STM 
80=Forestry STM 
81=Kinesiology Non-STEM 
82=Law Enforcement Non-STEM 
83=Military Science Non-STEM 
84=Other Field missing 
85=Undecided missing 

 

3.5 IRB Approval Database Requirements 

 

IRB approval was received from the University of Michigan IRB board for this research.  

The IRB study number and title is HUM00007149 Research on First Year Engineering 

Student Success and Retention for 2003, 2004 and 2005 freshmen classes. In the IRB 

application, three sources of data were defined: 

 

1) The UCLA/ Higher Education Research Institute (HERI) Cooperative 

Institutional Research Program (CIRP) survey. The CIRP survey is a national 

survey that has been conducted for the past 40 years by UCLA. The CIRP survey 

includes questions on high school activities, goals for education and future career, 

self-ratings on academic and social characteristics, importance of coming to 

college, financial concerns about college expenses, and future college activities.  

During freshman orientation, all freshmen were invited to participate in the CIRP 

survey; this survey is administered by Division of Student Affairs Office at the 

University of Michigan.  

2) Data on student performance including ACT/SAT component scores, placement 

scores, number of credit units, term GPA and grades for freshman STEM courses. 
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This data is collected from the Michigan Administrative Information Services 

(MAIS) database.  

3) Student support data from the College of Engineering including frequency of 

advising and whether a student participated in a mentoring program. 

 

These databases were merged for the 2004 and 2005 freshman class cohorts (fall 2004 

and fall 2005). Note that initially the 2003 database was to be included in the analysis. 

Because of a low response rate, it was not considered  

 

IRB approval for the research required that the databases be merged without my having 

access to any personal identifiers.  Among the three databases, the only common 

variables that could be used as a merge index variable was the student ID.  The actual 

merging of the databases was coordinated through the efforts of the Division of Student 

Affairs Office and the Registrar’s Office.  Part of the process included identifying 

students who had given permission for their CIRP survey data to be used in research 

projects.  After these records were selected, a verification of students who were full-time, 

first-time freshmen was conducted.  After a database was created consistent with the IRB 

plan, the student ID and personal identifiers were deleted.  This new database was then 

delivered to me for further data processing as described in this chapter.    

 

3.6 Response Rates and Permission Rates for the CIRP Survey 

The response rates for the CIRP survey for these two freshman classes (2004 and 2005) 

were 75% for both cohorts.   (Matney, 2005, 2006)  Based on the full-time students who 

gave permission for their CIRP data to be included in this research, the effective sample 

rate compared to the total freshman class was 27% for 2004 and 33% for 2005. A review 

of the sample rate by gender and ethnicity showed good representation in all areas; an 

inherent sampling bias was detected.  The overall response rate (including the survey and 

permission rate) for the 2004 and 2005 cohorts are shown in Tables 3-13 and 3-14. 

 

Review of Table 3-13 and 3-14 show a very consistent response rate across all colleges 

for the 2004 cohort with the exception of a low response rate for Kinesiology.  For the 
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2005 cohort, the response rates for the LSA, Engineering and Nursing colleges were 

highest.  For both cohorts, there was good participation in the CIRP survey by gender and 

race.   The participation of international students in the 2004 cohort in both Engineering 

and LSA was substantially less than expected (2% and 8% respectively).  For the 2005 

cohort, participation by engineering international students was only 7% compared to 27% 

for LSA students.  

 
Table 3-13: Response Rates for the CIRP Survey 2004 and 2005 Cohorts, Overall   
          and for the College of Engineering 
 

  Freshmen 
CIRP 

Survey Response Freshmen 
CIRP 

Survey Response 
 Population Sample Rate (%) Population Sample Rate (%) 
  2004 2004 2004 2005 2005 2005 
Overall 6040 1650 27% 6115 2010 33% 
Engineering 1290 336 26% 1206 399 33% 
LSA 4178 1176 28% 4353 1450 33% 
        
Other 
Colleges        
Art and 
Design 99 24 24% 106 27 25% 
  
Kinesiology 178 28 16% 163 43 26% 
  Music 189 55 29% 181 49 27% 
  Nursing 106 31 29% 106 42 40% 
         
College of         
Engineering 
        
Gender        
   Female 324 81 25% 300 112 37% 
   Male 966 250 26% 906 285 31% 
        
Race        
   Asian 181 56 31% 189 55 29% 
   Black 51 14 27% 52 16 31% 
   Hispanic 45 15 33% 41 12 29% 
   White 739 217 29% 783 293 37% 
           
International        
Students 150 3 2% 98 7 7% 
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Table 3-14: Response Rates for the CIRP Survey 2004 and 2005 Cohorts,   
        College of LSA 
 

  Freshmen 
CIRP 

Survey Response Freshmen 
CIRP 

Survey Response 
 Population Sample Rate (%) Population Sample Rate (%) 
  2004 2004 2004 2005 2005 2005 
College of 
LSA 
       
Gender        
  Female 2367 705 30% 2457 882 36% 
  Male 1811 464 26% 1896 564 30% 
        
Race        
  Asian 505 137 27% 562 163 29% 
  Black 271 46 17% 342 85 25% 
  Hispanic 200 49 25% 242 70 29% 
  Nat. Amr. 44 10 23% 52 16 31% 
  White 2681 859 32% 2850 1042 37% 
        
International         
students 144 11 8% 131 36 27% 

 

3.7 Databases  

For reference, this section was added to discuss the databases used for each analysis in 

this dissertation.  As the chapters are discussed, more detail about the data used in each 

analysis will be discussed.  

 

3.7.1 Discussion of Database Structure 

Based on the analyses being used, different subsets of the data were used.  A summary of 

the databases is presented in Table 3-15.  This paragraph summarizes some of the key 

issues that led to the different databases.  The Filtered Database and Factor Analysis 

Database were for the preparation of the data.   The 2004 ACT Regression, and 2004 

SAT Regression Databases were used for the initial modeling of academic success.  The 

2005 ACT Cross-Confirmation and SAT Cross- Confirmation were used for cross-

validation of the predictions from the 2004 cohort predictions.  The Retention database 

included the combined 2004 and 2005 database and was use to predict student retention. 

The Randomized Database was a special application for the study of interventions.  
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Table 3-15: Description of Databases 

Database Analysis N Comments 

Filtered Database 
For both the 
2004  
and 2005 cohort 

Input to  
Factor  
Analysis 

3660 Contains the selected variables for the pillars of 
student success (Table 3-1) and calculated output 
Variables discussed in this chapter 

Factor Analysis Factor  
Scores 
(Chapter IV) 

3660 Contains the variables for the pillars of student 
Success (Table 3-1), factor scores, and output 
variables for both the 2004 and 2005 cohorts. 
Used for the contribution of each pillar in 
Chapter V. Missing data was controlled within 
each pillar with the listwise missing data option.   

2004 ACT  
Regression 

Regression 
For 
Academic 
success (1st year 
GPA) 
(Chapter V & 
VII) 

635 Contains the factor scores for the 2004 cohort (all 
student sectors) with no missing data among the 
factor scores and model output variables. 
Includes only students who reported their ACT 
scores and had no missing data among the ACT 
test scores. 

2004 SAT  
Regression 

Regression 
For 
Academic 
success (1st year 
GPA) 
(Chapter V & 
VII) 

608 Contains the factor scores for the 2004 cohort (all 
student sectors) with no missing data among the 
factor scores. Includes only students who 
reported their SAT scores and had no missing 
data among the SAT test scores. 

2005 ACT 
Cross-
Confirmation 
Engineering 
Sector 

Cross-
confirmation for 
model of 
academic 
success 
(Chapter V ) 

161 Contains the factor scores from the 2005 cohort 
(with no missing data) and model output 
variables.  Includes only students who reported 
their ACT scores and had no missing data among 
the ACT test scores. (Engineering sector only) 

2005 SAT 
Cross-
Confirmation 
Engineering 
Sector 

Cross-
confirmation for 
model of 
academic 
success 
(Chapter V) 

150 Contains the factor scores from the 2005 cohort 
(with no missing data) and model output 
variables.  Includes only students who reported 
their ACT scores and had no missing data among 
the ACT test scores. (Engineering sector only) 

Retention 
Database 

Analysis of 
retention model 
(Chapters VI and 
VII) 
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2004 and 2005 cohorts were combined into one 
database.  Due to missing data issues, initial 
variables in the pillars were used, not the factor 
scores  

Randomized 
Database 

Analysis of  
effect of 
engineering 
Interventions 
(Chapter V) 

  27 Sampling of Retention Database for selected 
variables (both cohorts)  
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3.7.2 Research Using ACT AND SAT Subsets 

Most engineering retention studies use the SAT math and SATI Total in their prediction 

models of academic success or retention.   Only a few studies show that the ACT Math 

test score is an excellent indicator of student success (Moller-Wong and Eide, 1997; 

Leuwerke, et al., 2004).  In my pre-dissertation PhD research, I conducted an analysis 

that showed that the ACT Math was a more effective predictor of Calculus I and 

freshman Chemistry than the SAT Math, using a 2 x 2 contingency table analysis. 

(Veenstra and Herrin, 2006a)  It was hypothesized that this was due to the differences 

between the ACT Math and SAT Math tests.  The ACT Math tested for competence in 

trigonometry and some pre-calculus while the SAT Math tested for competence only 

through Algebra II.  In addition, the ACT test is of interest because it has a Science 

Reasoning test, which will be referred to as the ACT Science test. The SAT does not have 

a science component in standard SAT test (often referred to as the SATI test).   

  

This research project was seen as an opportunity to further compare the effectiveness as a 

predictor of the ACT Math score compared to the SAT Math score. At Michigan, student 

can report either the SAT or ACT scores or both for admission consideration.  As a result, 

both the ACT and SAT variables were introduced into the database.  In the empirical 

analysis, two subsets of the database were developed:  

 

1.) Records that included the ACT scores  

2.) Records that included the SAT scores. 

 

If a student took both the ACT and SAT, he/she would be included in both subsets. Both 

subsets would contain all the high school achievement variables such as the high school 

GPA and Rank and all the CIRP variables. The ACT and SAT subsets affect only the P1 

(High School Academic Achievement and P2 (Quantitative Skills) variables. If a student 

only took the ACT test, he/she would have missing data for the SAT test variables; the 

same is true for students who took only the SAT test.  
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A comparison of the ACT and SAT statistics in the survey sample is shown in Table 3-

16. It shows a good representation of both the ACT and SAT tests.  For the 2004 cohort, 

64% of the students reported the SAT test scores and 76% of the students reported the 

ACT test scores.  40% of the students reported both the ACT and SAT test scores. (See 

Table 3-16.)  Similarly, for the 2005 cohort, 60% of the students reported the SAT test 

scores and 79% reported the ACT test scores. 

 

Table 3-16: Comparison of Survey Sample Cohorts to Freshman Class for ACT and 
           SAT Statistics 
 

Statistic 2004 
Class 

2004 
Survey 
Sample 

2005 
Class 

2005 
Survey 
Sample 

Number of Freshmen 6040 1650 6115 2010 
50%  Mid-Range 
SAT Math  

630- 
720 

620- 
710 

630- 
730 

630- 
720 

50% Mid-Range  
SAT Verbal  

580- 
680 

580- 
690 

590- 
690 

600- 
690 

ACT Composite 26-30 27-31 26-31 27-31 
Percent with 
SAT scores 

58% 64% 55% 60% 

Percent with 
ACT scores 

67% 76% 66% 79% 

 

  

3.8 Summary 

 

In this chapter, the following were discussed: 

• The process for choosing variables for the empirical analysis and the 

rationale for each variable 

• Calculation of the output variables from the model 

• Definition of each student sector: Engineering, Pre-Med, STM and Non-

STEM 

• IRB Approval and response rates from the CIRP survey  

• Database Structure, and the definition of the ACT and SAT Subsets 
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CHAPTER IV 

 FACTOR ANALYSIS 

 
In Chapter III, the development of the empirical database was discussed.  The modeling 

of academic success using regression analysis (Chapter V) was a challenge with sixty-one 

predictor variables and multi-collinearity among these predictor variables. Factor analysis 

was used to reduce the number of predictor variables, reduce the multi-collinearity 

among the predictor variables, and better understand the underlying latent correlation 

structure of the variables within a pillar. A factor analysis was conducted on each pillar 

discussed in Chapters II and III.  A strength of factor analysis was that the factors within 

a pillar were uncorrelated.  

 

Factor analysis is an extension of Principal Component Analysis (PCA).    Whereas PCA 

identifies components that explain most of the total variation among the variables, factor 

analysis identifies unobserved variables known as latent factors that explain the common 

variation among the original variables.  Factor analysis explores the correlation structure, 

identifying the set of variables that have a high correlation among themselves, but low 

correlation with other variables.  This set of highly correlated variables will become a 

factor.  Principal Axis Factoring (PAF) is a form of factor analysis and is commonly used 

in education research studies.  PAF was the factor analysis method used for this research.  

 

The theory of eigenvalues, on which PAF is based, and the algorithm used to analyze this 

data will be presented in Section 4.1 Methodology. Section 4.2 discusses the algorithm of 

factor analysis for the empirical data and the examination of deleted variables from the 

factor analysis.. The results from the factor analysis are discussed in Section 4.3. The 

discussion and summary sections follows in Sections 4.4 and 4.5.  As a result of the 

factor analysis, the sixty-one predictor variables (from the model’s nine pillars) were 
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partitioned into nineteen factors. These nineteen factors will be considered as the 

predictor variables for the regression on academic success in Chapter V.  

 

4.1 Methodology 

Both PCA and factor analysis are based on the eigenstructure of the data.  The 

eigenvectors are uncorrelated, resolving the multi-collinearity problem that typically 

exists among the original variables.  Both Principal Components and Factor Analysis 

assume that the data is distributed as a multivariate normal distribution and that for each 

variable there is an underlying continuum of either interval or continuous data.  

(Marques, de Sá, 2003, Johnson and Wichern, 1998) 

 

4.1.1 Eigenvalue Structure 

The eigenvalue structure is common to both the theory of PCA and factor analysis.  

Suppose each freshman has p pre-college characteristics, Xij,  where i represents the ith 

pre-college characteristic (i = 1 to P) and j represents the jth student ( j= 1 to N) .  

Because of a different scale among the X variables in the research data, the correlation 

matrix was used for explaining both PCA and PAF.  Let R represent the Pearson 

correlation matrix of X, the matrix of pre-college characteristics.   

  

The eigenvalue structure of the R  is defined as: 

 

   (R – λiI) ei = 0       4.1 

 

where R is the correlation matrix of X,  λi is the ith eigenvalue of R, I  is the identity 

matrix (pxp) and e is the eigenvector (column vector px1) corresponding to the ith 

eigenvalue.  The eigenvectors will define a linear combination of the original variables 

that explains a higher percent of the total variation of X. 

             

To obtain non-trivial solutions of the eigenvectors (equation 4.1),  λi must be chosen to 

solve the determinant:  
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   | R - λI| = 0        4.2 

 

After solving the determinant for λ, the eigenvectors can be solved using equation 4.1.  

The principal components are the eigenvectors,  ei .  

 

The principal components scores for each set of x-values can then be expressed as  Y  

 

   Y = e′ Z        4.3 

 

where  Z  is the standardized scores of the X matrix.  Because the eigenstructure is 

calculated for R, the principal component scores are based on the standardized X values.  

 

Selecting the Number of Principal Components 

The PCA generates p principal components.  If all p principal components are used, the 

dimensionality is the same as the set of variables.  The first principal component explains 

the most variation and the variance of the first principal component is denoted as λ1.  The 

second principal component will explain the next highest amount of variance with the last 

principal component explaining the least amount of variance.  The variance of the ith 

principal component is equal to its eigenvalue:  

    

   Var (Yi)    = λi .   

 

Because the correlation matrix was used, the total population variance of all principal 

components is p, the number of original variables.  The proportion of variance due to the 

ith principal component is λi / p .   

 

To use PCA to reduce the dimensionality, the Guttman-Kaiser rule or Scree plot is 

generally used.  The Guttman-Kaiser (Unity) rule selects all principal components with a 

eigenvalues greater than 1.0.  Since the total variance of all principal components is p, 

this Unity rule of 1.0  represents the variance of one variable if the variance were 

distributed equally among all the variables.  The Scree plot is a plot of the eigenvalues, λi, 
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versus i.  The appropriate number of principal components is determined by looking for 

the bend in the curve.  For many sets of data, the first several components will have high 

eigenvalues and the remaining will be small.  In this analysis, both techniques were used.   

Based on these rules, the first d principal components were selected to define the 

information associated with the original data. Thus, the dimensionality of the data has 

been reduced from many variables to a few principal components.  

 

4.1.2 Principal Axis Factoring (Factor Analysis) 

Principal Axis Factoring (PAF) tries to identify the latent factor or underlying structure 

that “represent the common variance of variables, excluding unique variance, and is thus 

a correlation-focused approach seeking to reproduce the intercorrelation among the 

variables” (Garson, 2006).  An iterative algorithm is used to calculate the factors based 

on R.  The p common factors should include the non-diagonal correlations of R plus part 

of the diagonal element that is usually 1.0.  In the case of PCA, the diagonal elements of 

R remain at 1.0.  With PAF, the diagonal elements are less than 1.0 as explained below.  

The diagonal elements can be partitioned into: 

 

   Rii = hi
2

  + Si = 1      4.4 

        

where  hi
2 is known as the communality, the variance that is common with all variables 

and Si  is the unique variance for all variables.  With each iteration, R will include the 

same off-diagonal Pearson product-moment correlations but the diagonal elements will 

be the communalities hi
2

 .  Si can initially be estimated by 1- the square of the multiple 

correlation coefficient of the ith X variable with all the other X variables.  

 

 Then, the initial  hi
2 = 1- Si  

 

These hi
2 become the diagonal elements of  Rk   (the iterative R matrix) and the 

eigenvalues and eigenvectors are determined until a convergence of the eigenstructure is 

obtained.  The final common factors (eigenvectors) ei are solved with: 
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   (Rk – λiI) ei = 0 

 

and the factor scores are z =  e′ (X - μ )  

 

The correlation between the common factors and the original variables are known as 

factor loadings.  Factor loadings of 0.300 or more are usually considered significant to 

the factor structure (Child, 2006). The communality for a variable is also defined as the 

sum of squared factor loadings across all factors.  From this perspective, a low 

communality for a variable indicates that it is not contributing to the latent factor 

structure. A communality of 0.2 or less was indicative that a variable was not highly 

correlated with the other variables in the factor analysis.  In most cases, the variables 

would be deleted from the factor analysis (Child, 2006).   If the factor loading was 0.300 

for each of two factors, then the communality would be 2 x (0.300)2 or 0.18, This agrees 

with the previously stated minimal value of 0.200 for a significant communality. Thus a 

factor loading of 0.300 and a commonality of 0.200 are consistent measurables; both 

indicate a low correlation among the variables and the variables would not be considered 

well-suited for factor analysis.  

 

Three statistical tests are used to examine the correlation matrix for appropriateness of 

factor analysis.  The Barlett’s test for sphericity and the Kaiser-Meyer-Olkin test are 

usually used with a factor analysis. The Barlett’s test for sphericity tests for significant 

correlations, a condition necessary for factor analysis. It tests whether the correlation 

matrix is an identity matrix (SPSS, 2006).  Its probability of significance should be .000 

for a factor analysis to be conducted.  The Kaiser-Meyer-Olkin (KMO) test is a test for 

sampling adequacy relative to the number of variables and should be 0.5 or higher.  The 

KMO test is the ratio of the sum of the squares of all the correlations of the variables in 

the factor analysis (all factors) compared to the same sum plus the sum of all bivariate 

partial correlations.  Thus, the sum of the bivariate partial correlations must be relatively 

small for a high KMO test statistic.  As a result, if one or two variables define the 

correlation structure, the KMO test statistic will be low.  In addition, some education 

researchers prefer Cronbach’s alpha as a measure of reliability for a factor.  Cronbach’s 
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alpha is usually used for an (survey) instrument to indicate a measure of internal 

consistency (reliability) among questions about a particular subject. In factor analysis, it 

is use to determined if the variables used in one factor have internal consistency.  The 

statistic is based on the average correlation and the number of variables for each factor.  

Whereas the KMO test statistic includes bivariate correlations across all variables in all 

factors in the factor analysis, the Cronbach’s alpha includes the correlations associated 

with only one factor. Their combined use can complements each other. The Cronbach’s 

alpha statistic is usually greater than 0.4.   (Marques de Sá, 2003; Johnson and Wichern; 

1998, Child, 2006; Kim and Mueller, 1978; Cronbach, 1951, SPSS, 2006)  

 

To represent the factors in a rotated space, an orthogonal rotation routine of the factor 

axes is typically used.  The most common technique is the Varimax rotation which 

includes an orthogonal rotation of the factors.  In the case of two variables and two 

factors, the rotation can be viewed as the rotation of the axes so that the variance of the 

first factor is maximized and the two factors, Y1 and Y2 , are uncorrelated.  The 

Anderson-Rubin method for factor scores was used to estimate the factor score 

coefficients such that the factor scores are scaled to an average of zero with zero 

correlation between factor scores (SPSS, 2006). 

 

4.2 Factor Analysis Approach with the Empirical Data 

 

4.2.1 Factor Analysis Process 

Nine factor analyses were conducted using the 2004 student cohort; one for each pillar of 

student academic success.  A research consideration was whether to run a factor analysis 

on the entire freshman cohort for a specific pillar or to run independent factor analyses 

for each student sector.  A latent structure for the entire cohort was desired.  Because the 

research plan included comparison of the factors across student sectors, it was necessary 

for the factor analysis to include all four-student sectors.  Figure 4-1 illustrates the factor 

analysis process.  
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Figure 4-1 Process Flow of Factor Analysis 

 

The pillars and factors are listed in Table 4-1 of this chapter.  

 

SPSS 15.0 for Windows was used with the Principal Axis Factor method to extract the 

factors for the 2004 cohort and the Varimax method was used to rotate the factors.  The 

Anderson-Rubin Method was used to calculate the factor scores for both the 2004 and 

2005 cohorts.  All variables included in the factor analyses were represented in the factor 

scores.  

 

Because a student could report either the ACT or SAT test, the SAT and ACT subsets 

were considered separately.  Note in Figure 4-1 that there are two P1 and P2 factor 

groups; one for the factors associated with ACT variables and another for factors 

associated with the SAT variables.   

 

The following procedure was used for the factor analyses. 

1. The correlation matrix was examined.  The Bartlett’s test of sphericity required a 

probability of significance of .000, to proceed with a factor analysis.  Next, the 

KMO Measure of Sampling Adequacy was examined for a value of .5 or more.   

2. The factor analysis was run on the 2004 cohort using the principal axis factoring 

method and the Varimax rotation. If the communalities table showed extraction 

communality less than .200, these variables were flagged as possible variables to 

delete from the factor analysis.  



 

 94

3. In determining the number of factors, the Unity rule (eigenvalue >1.0) was used 

and the Scree plot was reviewed.  Then the factor analysis was rerun with one 

less and one more factor than that generated by the Unity rule. In some cases, the 

solution did  not converge and a factor analysis was not completed.   

4. The rotated factor loadings were examined for patterns of factors (high loadings 

for a variable related to a factor and low loadings for the other factors).  The best 

pattern dictated the number of factors used.  Labels were given to each factor 

based on the high factor loadings with the original variables 

5. If the flagged variables (from 2. above) had low factor loading coefficients in the 

rotated matrix  (less than .400), they were considered for deletion from the 

analysis.  In some cases, dropping lowly-correlated variables will make other 

variables load better on fewer factors.  The final decision of whether to delete a 

variable was based on an examination of the factor loadings with and without that 

variable.  

6. There were a few outliers in the data. Because of the amount of data (over 1000 

students’ records) in the factor analysis, the outliers did not affect the factor 

analysis.  The factor analyses were run with the outliers included.  

7. The SPSS listwise option was used for missing data.  If one variable’s value was 

missing, that observation was not included in the analysis.    

8. After the final factor structure was determined, the factor analysis was rerun 

using the Anderson-Rubin method to compute and store the factor scores for both 

the 2004 and 2005 cohorts. Labels were attached to the latent factors to identify 

the nature of the factor based on the highest factor loadings with the variables. 

 

The sample sizes for the factor analyses ranged from 1232 to 1638. 

 

4.2.2 Examination of Deleted Variables from Factor Analysis 

A factor analysis was run on each pillar.  In some cases, individual variables dropped out 

of the analysis as not highly correlated with the other variables in that pillar.  An attempt 

was made to consider them for another pillar’s factor analysis. The following procedure 

was followed: 
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1. Because the factor analysis is being conducted to enter the factors into a 

regression on the first year GPA, the correlation of each deleted variable with the 

first year GPA was computed. It would need a strong correlation with the first 

year GPA to strengthen the factor in the regression analysis.  

2. If this correlation was statistically significant (p<.05) and the correlation was 

greater than .100, the variable was further considered.   

3. The correlation of the variable with each of the factors was calculated.  If one of 

the factors of a pillar had a significant correlation with the variable, it was 

considered for a new factor analysis (with that pillar). To further consider it, a 

subjective judgment was made as to whether the variable would make logical 

sense as a possible variable in the latent factor structure of the pillar under 

consideration. 

4. All possible candidates for a different factor structure were then analyzed with a 

new factor analysis.  To be further considered, the extracted communality needed 

to be at least .200.  If this was the case, the usual rules for factor analysis were 

applied.  As a final test, to be considered in a factor structure, the factor analysis 

with the new variable in it, needed to have a higher cumulative initial eigenvalues 

and a higher extracted sums of squared loadings. This would indicate that adding 

this variable was an improvement over the initial factor structure.  

 

4.3 Factor Analysis Results 

In this section, the summary statistics for the nine factor analyses (one for each pillar) are 

discussed.  In addition, the examination of the deleted variables is discussed. 

  

4.3.1 Overall Factor Analysis Statistics  

From the factor analyses, nineteen factors were established. As an overall measure of a 

successful factor analysis, the KMO statistic and Barlett’s test for sphericity was used. 

For all nine factor analyses, the KMO statistic was at least .500 and the probability of 

significance associated with Barlett’s test of sphericity was .000.  As a summary of the 

factor analyses, Figure 4-2 plots the cumulative percent of the eigenvalues (total 

variation) and the cumulative percent of the factor loadings for each pillar.  



 

 96

P9P7P6P5P4P3

P2
-S

AT

P2
-A

CT

P1
-S

AT

P1
-A

CT

100

90

80

70

60

50

40

30

20

10

0

Pillar

Cu
m

ul
at

iv
e 

Pe
rc

en
t

C umulativ e % of Eigenv alues
C umulativ e %  of Factor Loadings

 
Figure 4-2: Cumulative Percent of Eigenvalues and Cumulative Factor Loadings for 
         each Pillar 
 

The cumulative percentage of the eigenvalues represents the percent of the total variation 

(both common and unique) associated with the selected factors for a pillar.  The 

cumulative percent of factor loadings represents the percent of the common variation 

associated with the selected factors for a pillar.  P8 (Family Support) is not included 

because P8 includes only one variable.   

 

4.3.2 Communalities, Factor Loadings and Cronbach’s Alpha for each Factor 

Table 4-1 displays the communalities for each variable, factor loadings of the variables 

that are highly loaded on a factor, and Cronbach’s alpha for each factor.  The higher the 

communality for a variable, the better it “fits” in the latent factor structure.  The factor 

loading is the correlation between the variable and each factor and only factor loadings 

with an absolute value of 0.3 or higher are listed in Table 4.3.  Cronbach’s alpha statistic 

is listed for each factor as a measure of internal consistency of scales (Cronbach, 1951). 

In practice, an alpha greater than .7 indicates high consistency, .4 to .7, moderate 

consistency and less than .4, poor consistency.   
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4.3.3 Variables Deleted from Factors Analysis 

Of the sixty-one variables, thirteen were found not to fit into the latent factor structure of 

the nineteen factors. These thirteen variables are listed in Table 4-2.  

  

An analysis, as described section 4.2.2, suggested that none of these variables were 

strong candidates for a latent factor structure for another pillar in the model. Any 

additional variables should add to the predictiveness of the regression on first year GPA; 

therefore, only variables that had a high correlation with the first year GPA were 

considered.   Seven of the variables, listed in Table 4-2,  had a significant correlation with 

the first year GPA. For these variables, correlations were computed with all the factors; 

then the factor analyses were rerun with the variables that were reasonable possibilities 

for a latent factor structure.  The results are displayed in Table 4-3.  

 

Of the seven variables, only “self-rating of drive to achieve” was a strong possibility for 

another factor structure.  The communality for “self-rating of drive to achieve”  in the 

High School Academic Achievement pillar was greater than 0.400 for  both the ACT and 

SAT subsets.. Because this pillar includes either the ACT Composite score or the SATI 

Total score, there are two subsets and therefore two factor analyses (see Figure 4-1).  For 

both factor analyses for this pillar, the extracted sums of squares of loadings  with “self-

rating of drive to achieve” included in the factor structure was compared to the extracted 

sums of squares of loadings with “drive to achieve” not included. The extracted sums of 

squares of loadings indicates the percent of variation of the common variance that is 

explained by the factors.  With the addition of a significant  variable, the extracted sums 

of squares of loadings should show an increase. Table 4.4 displays the sums of squares 

statistics, with and without the “drive to achieve” variables for both the ACT and SAT 

subset factor analyses.  For both subsets of the High School Academic Achievement 

pillar, the extracted sums of squares of loading was less with “self-rating of drive to 

achieve” included than with the original set of variables.  Therefore, it was concluded that 

‘self-rating of drive to achieve” did not add significantly to the factor analysis and no 

change was made in the original factor structure.  



 

 103

Table 4-2: Variables That Did Not Fit into a Factor Structure and Their Correlation 
        with First Year GPA 
 

Variables Pillar Correlation with 
First Year GPA 

Self-rating of cooperativeness P1 High School 
Academic Achievement 

-0.014 

Self-rating of writing ability P1 High School 
Academic Achievement 

  0.126* 

Hours per week in the past year spent 
reading for pleasure 

P3 Study Habits -0.010 

Frequency of using the Internet for 
research or homework 

P3 Study Habits 0.013 

Frequency of tutoring another student P3 Study Habits   0.054* 

Importance in deciding to go to college: 
“to learn more about things that interest 
me 

P3 Study Habits   0.062* 

Self-rating of drive to achieve P4 Commitment to 
Career and Educational 
Goals 

  0.085* 

Importance of making a theoretical 
contribution to science 

P4 Commitment to 
Career and Educational 
Goals 

-0.092* 

Self-rating of creativity P5 Confidence in 
Quantitative Skills 

-0.014 

Importance of coming to this college: 
My relatives wanted me to come here 

P6 Commitment to this 
College (U-M) 

-0.011 

Chance in the future you will be satisfied 
with this college 

P6 Commitment to this 
College (U-M) 

-0.004 

Hours per week in past year working for 
pay 

P9 Social Engagement  -0.055* 

Chance in the future you will play 
varsity/intercollegiate athletics 

P9 Social Engagement   -0.128* 

   * indicates statistical significance (p<0.05) 
      Note: The sample size for the correlations vary from 1612 to 1633 
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4.4 Discussion 

 

Based on the factor structure, commonalities, factor loadings, KMO statistic, Bartlett’s 

test, and Cronbach’s alpha, the overall latent structure showed favorable characteristics 

for a factor analysis. Some pillars showed a stronger factor structure than others; a 

discussion follows on the strength and weaknesses of the factor analyses.  

 

Examination of the commonalities, factor loadings, Cronbach’s alpha (Table 4-1) and the 

cumulative factor loadings (Figure 4-2) indicates that the following Pillars have a strong 

factor structure: 

• P1 High School Academic Achievement  

• P2 Quantitative and Analytical Skills 

• P4 Commitment to Career and Educational Goals 

• P7  Financial Needs 

 

With a Cronbach’s alpha greater than 0.7, F1 (High School Grades), F4 (Quantitative 

Skills), and F8 (Choice of Major and Career) indicate a high degree of consistency (often 

referred to as reliability).  This is consistent with the high commonalities and factor 

loadings.  

 

 

The following Pillars have a weaker factor structure: 

• P3 Study Habits 

• P5  Confidence in Quantitative Skills 

• P6  Commitment to this College (U-M) 

• P9  Social Engagement   

 

Based on the nature of the questions asked in the CIRP survey, P3 (Study Habits) was 

expected to have a stronger factor structure.  The weaker structure for Study Habits may 

suggest that for a highly selective university (or, specifically, at this university), other 

questions are more appropriate than the questions selected.  All the bivariate correlations 
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among the variables were .4 or less.  With lower correlation coefficients, a weaker factor 

structure is expected as indicated by the commonalities, factor loadings and Cronbach’s 

alphas.  

 

 F7 (Study Habits Class Attendance) had the lowest Cronbach’s alpha of .232.  This may 

be an artifact of the factor structure and not an issue of major concern.  Only two 

variables were highly loaded on this factor: Frequency of came late to class (factor 

loading of .461) and Frequency of felt overwhelmed with everything I had to do (factor 

loading of .319). The Pearson correlation of these two variables was only .132. 

Frequency of felt overwhelmed with everything I had to do was cross-loaded on F6 

(Study Habits) with a higher factor loading of .405.  It is common in practice to consider 

any factor loading of .300 or more as significant and therefore include all variables with a 

factor loading > .300 in the Cronbach’s alpha statistic. Since the .319 factor loading of 

“Frequency of felt overwhelmed with everything I had to do”  is close to .300, an 

argument can be made that this may not be a significant factor loading, since it is already 

loaded on F6 (Study Habits Homework) at a higher loading. With this assumption, there 

is only one significant variable in F7 (Study Habits Class Attendance), i.e. Frequency of 

came late to class for the Cronbach’s alpha.  In this case, with one variable, the alpha 

cannot be calculated.  More variables relevant to homework questions in high school and 

attendance of classes would be a recommendation for future research.  

 

 P5 Confidence in Quantitative Skills is based on only two questions; they were the most 

appropriate questions in the CIRP survey for addressing confidence in quantitative skills. 

More questions relative to confidence in quantitative skills would have been preferred for 

this pillar.   

 

In the pillar, P6 (Commitment to this College (U-M)), F12 (Goals-U-M Reputation) and 

F14 (Goals-U-M Financial Aid) included only questions from the CIRP survey section on 

the importance of the reasons for choosing this college.  These CIRP questions were 

designed with institutional commitment as the focus of the question.  The order of the 

factor loadings for F12 (Goals –U-M Reputation) is very consistent for what would be 
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expected for a highly selective academic-oriented research university with “Grads get 

good jobs” producing the highest factor loading of .653.  The Cronbach’s alpha of .402 

was weaker for F14( Goals-UM Financial Aid) than for the other two factors in this 

pillar. This was probably due to only two questions being included in the calculation of 

this alpha and survey questions being related to financial aid. F13 (Goals U-M Choice) 

was based on a question on whether Michigan was the first choice college and how many 

other applications were sent to other schools (indicating indecision on Michigan as first 

choice or uncertainty about being accepted by Michigan).    Its Cronbach’s alpha of .573 

was the highest for this pillar.  

 

For P9 (Social Engagement), the factor loadings are logical and the overall structure is 

strong with a KMO test score of .621.   In this case, preference is given to the KMO test 

score over the Cronbach’s alphas (.591, .525 and .460), which are in the moderate range.  

The KMO test score > 0.5 indicates a strong sampling adequacy across the three factors.    

 

The commonalities ranged from .113 to .970, representing the percent of total variance 

that is common for all the factors in a pillar. Child (2006) recommends commonalities of 

at least .200.  Five variables had a communality less than .200.  These included 

Frequency of studying with other students; Importance in choice of this college- social 

reputation, and - I was offered financial aid; Self-rating of social self-confidence; and 

Hours/week in past year in volunteer activities.  All five variables were included because 

the rotated factor loading was .300 or higher. As part of the factor analysis, factor 

loadings were compared with these variables included and not included.  The final 

decision was based on the number of factors, the number of variables and the rotated 

factor loading distributions. Preference was given to variables that loaded high primarily 

on one factor (and low on the others), and increased the percent of common variance 

across the factors. 

 

The analysis of variables deleted from individual factor analyses indicated that they did 

not contribute significantly to the correlation structure of another factor analysis.  
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4.5 Summary 

The sixty-one variables chosen from the CIRP survey and student performance data were 

factored into nineteen factors using the Principal Axis Factoring method.  To understand 

the latent structure and minimize the effect of multi-collinearity on regression analyses, a 

factor analysis was run on each pillar of student success variables.  

 

Overall, the factor analysis was considered successful.  Of the factor structures that were 

developed, most were considered to have either a moderate or strong factor structure with 

the variables that were chosen.  All the KMO test statistics were at least .500.  The high 

school GPA and rank had the highest factor loadings and communalities > .900.  Except 

for F7 (Study Habits Class Attendance), all factors had moderate to strong values for 

Cronbach’s alpha, indicating internal consistency of response to the survey questions.   

 

As indicated in the discussion, some of the factor structures were weaker than expected 

(but still considered to have moderate strength as a factor structure).  When more 

variables were considered, the percent of common variation was about the same and the 

factor structure was more difficult to interpret; i.e. more variables did not contribute to a 

stronger factor structure.   

 

For reference purposes, the overall model is shown in Figure 4-3 and the factors are listed 

in Table 4-1 and in Appendix B.   
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Figure 4-3: Student Success Model 
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CHAPTER V 

MODELING OF ACADEMIC SUCCESS 

FOR THE ENGINEERING STUDENT SECTOR 

 
Chapter V and Chapter VI together model student success in the engineering student 

sector.  This chapter discusses the modeling of engineering student academic success 

(first year GPA).  Chapter VI discusses the modeling of engineering student retention 

(probability of returning to engineering after the freshman year).  Figure 5.1 displays the 

topics covered in these two chapters. 

 
Figure 5-1: Content of Chapters V and VI 
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In Section 5.1, the contribution of each pillar of student success to first year GPA is 

discussed.  In Section 5.2, a prediction equation of first year GPA based on the pre-

college characteristics is presented.  The prediction equation of the ACT subset is 

compared to the prediction equation of the SAT subset’s prediction equations.  In 

addition, the predictability for a second cohort is discussed for both the ACT and SAT 

subsets.  In addition, in this section, the Hotelling’s T2 is discussed for its modeling 

potential.  This technique identifies outliers in a multivariate control chart approach and 

describes the stability of the underlying multivariate structure.  Section 5.3 discusses the 

statistical hypothesis testing of differences in gender and ethnicity relative to the model.  

 

 Sections 5.4 and 5.5 discuss the influence of interventions on academic success for 

engineering students. Consider this question: What techniques can be used to improve the 

development of best practices for academic success?  If we can identify the students who 

need help, and then provide them with the support that will help them succeed, then we 

can transform these actions into policies and practices for engineering academic success.  

Currently, we do not know which programs for academic integration (i.e. intervention 

programs) are the MOST effective for academic success.  At the same time, public 

universities like Michigan have limited funds for student support.  In Section 5.4, a set of 

guidelines for interventions based on the proposed model are presented.  In addition, 

three intervention programs for academic success are discussed.  The first is a mentoring 

program (Section 5.4.1).  As part of my doctoral research, I studied the success of a 

mentoring program for academic success in the College of Engineering.  This program 

was successful in improving academic integration of struggling students and is described 

in this chapter. In Section 5.4.2, the two other interventions, advising frequency and 

enrollment in Engineering 110, are discussed..  The advising support was provided by the 

Engineering Advising Center.  Although the Engineering 110 course is not a traditional 

“intervention” program, it was studied as a possible intervention program for motivating 

students towards an engineering career.  Engineering 110 is currently an elective course 

on the survey of engineering courses.  Although I found more support in the literature 

that motivation towards an engineering career improved retention, I also studied the 



 

 114

effect of enrollment in Engineering 110 on academic success and it is discussed in this 

Section 5.4..  

 

 A technical issue related to the analysis of intervention programs is the “happenstance” 

nature of the data (i.e., data collected without experimental control).  Students decide to 

participate in one or more programs.  A researcher surveys participants of an intervention 

program and analyzes some data from the program. It is generally unknown which other 

intervention programs in which students have participated.  If a group of students 

participated in several programs together, the results could be biased just because of this 

fact. In Section 5.4.3, a randomized database technique based on statistical randomization 

concepts was developed and explored to address this issue.  In analyzing this intervention 

data, the significant predictors from the model were used to control the pre-college 

characteristics.  If there are significant differences between students who participated in 

an intervention and students who did not, the effect of the pre-college characteristics has 

been taken into account.  

 

Also covered in this chapter as an independent research topic related to academic success, 

is first course placement (Section 5.5).  In the late 1990’s, Purdue University researchers 

showed that the first term GPA was a predictor of graduation and that correct placement 

was important (Budny, et al., 1998).  Veenstra and Herrin (2006a) used the ACT Math 

score to predict academic success in the freshman engineering courses.  F4 (Quantitative 

Skills) was considered as an improvement over the ACT Math as a predictor of academic 

readiness for each of the freshman level engineering courses.  My research suggests that 

the concern is not just placement into pre-calculus or Calculus I, but also into the higher-

level math courses.    In Section 5.5, modeling of placement into freshman level courses 

based on F4 (Quantitative Skills) is considered.  A discussion of academic performance 

in Calculus II based on the AP test scores is also provided.   

 

The empirical research on academic success was limited to first-time, full-time students, 

whose freshman engineering class matriculated in the fall of 2004 and 2005..  The factors 

from the factor analyses described in Chapter IV were used as predictors of academic 



 

 115

success.  The word “factor” is used both in factor analysis and to indicate a variable in an 

analysis of variance table. To avoid confusion, the factors from the factor analysis will be 

referred to by factor number such as F1 or F4 and factors in an analysis of variance will 

be referred by name, such as Gender.  

 

In summary, Section 5.1 covers the validation of the model developed in Chapter II; 

Section 5.2 develops the prediction equation for academic success (first year GPA); and 

Section 5.3 discusses differences in the average first year GPA by gender and ethnicity 

within the context of the model. Section 5.4 discusses intervention programs for student 

success and the randomized database technique while Section 5.5 discusses using the 

Quantitative Skills factor as a placement instrument for student success in the freshman 

level courses and the placement of AP Calculus students.  Section 5.6 summarizes the 

chapter.  

 

5.1 Validation of the Academic Success Model by Pillar 

 

5.1.1 Methodology 

Figure 5-2 displays a copy of Figure 4.1 of the factors associated with each pillar.   In 

order to validate that these pillars were significant contributors to the model, each set of 

factors associated with a pillar were entered into a regression linear model.  The first year 

GPA was the dependent variable. 

 

 
Figure 5-2: Factors Associated With Each Pillar of Academic Success 
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  For example, for  pillar P1, the model for the jth student can be represented as:  

 

 GPAj =  β0 + β1F1 + β2 F2 + β3F3 + εj 

 

Within a pillar, the factors are uncorrelated with each other. The adjusted R2 represents 

the true proportion of variation in first year GPA that is explained by the factors in this 

pillar. The adjusted R2 statistics were used to rank the pillars by their contribution of 

explained variance of the first year GPA. The adjusted R2 and the p-value of the F-test 

associated with the regression were used as measures of predictability.  With the F-test 

for the regression, it was possible to statistically determine if the pillar was significant in 

the development of the model.   

 

5.1.2 Validation Results 

To validate the significance of a pillar, multiple regressions were run for EACH pillar.  

For each of the nine regressions (one for each pillar), all the factors were forced into the 

regression.  As an example, P1 consists of three factors.  All three factors were entered 

into the regression. As a result, it was possible to estimate the relative importance of each 

pillar in its contribution to the model, in terms of explained variation of first year GPA.  

The adjusted R2 was used as the statistic to measure the explained variation for each 

regression. The F-statistic for the regression was used to indicate whether there was 

overall statistical evidence of significance of a pillar in the model.   

 

The results in Table 5-1 clearly show that most of the pillars have a significant F- statistic 

in predicting the first year GPA, with P1 and P2 explaining the most variability in first 

year GPA. The sample size was 184 for the ACT subset and 161 for the SAT subset.  

Because some students report only the ACT or SAT test scores, there is a difference in 

the sample sizes of these two subsets. 
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TABLE 5-1: Validation of the Contribution of each Pillar to First Year GPA for the   
           Engineering Sector (Pillars ordered by their Adjusted R2) 
 

ACT Subset (n=184) SAT Subset (n=161)  
Model’s Pillar 

For Student Success*  
 
Adj. R2 
 

 
Regression 
F p-value 

 
Adj. R2 
 

 
Regression  
F p-value 

P1. High School 
      Academic Achievement 

 
.262 

 
.000 

 
.295 

 
.000 

P2. Quantitative Skills .231 .000 .179 .000 

P8. Family Support .039 .004 .056 .001 

P5. Confidence in  
       Quantitative Skills 

 
.041 

 
.003 

 
.032 

 
.014 

P4. Commitment to Career  
     And Educational Goals 

 
.048 

 
.008 

 
.025 

 
.074 

P7. Financial Needs .019 .035 .002 .252 

P9.  Social Engagement .008 .225 .029 .053 

P6. Commitment to this 
       College 

.000 .489 .023 .086 

P3  Study Habits .000 .562  .011 .189 

* A separate regression was run for each pillar. The independent variables were all the 
factors for that  pillar and the dependent variable was first year GPA. 
 

5.1.3 Discussion  

High School Academic Achievement and Quantitative Skills Are Major 
Contributors to Academic Success with at least 18% Explained Variation 
 
The regression results on first year GPA confirmed the strong effect of P1 (High School 

Academic Achievement) and P2 (Quantitative Skills).  P1 ( High School Academic 

Achievement) explained 26% of the total variation in the first year GPA for the ACT 

subset and 30% for the SAT subset.  P2 (Quantitative Skills) explained 23% of the total 

variation in the first year GPA for the ACT subset and 18% for the SAT subset. 

  

Family Support and Confidence in Quantitative Skills Each Explain 5% 

In addition, for both subsets, P8 (Family Support) and P5 (Confidence in Quantitative 

Skills) showed significant effects for first year GPA, with each pillar explaining about 
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5% of the total variation.  Between the ACT and the SAT subsets, the effects of P4 

(Commitment to Career and Educational Goals), and P7 (Financial Needs) were mixed. 

These factors were significant in one of the subsets, not both (using a significance level 

of .05).    

 

Some Pillars were not Significant Contributors to Academic Success 

Neither pillars P3 (Study Habits), P6 (Commitment to this College (Michigan)) nor P9 

(Social Engagement) showed a significant effect for either subset.  This finding was 

somewhat surprising.  For the ACT subset, none of the regression coefficients were 

statistically significant (See Tables C-3, C-6 and C-9 in Appendix C).  The maximum 

magnitude of the correlation coefficients of these factors  with the first year GPA was 

only 0.15.  For the SAT subset, for each of these three pillars, one regression coefficient 

was significant but the overall regression was not significant. Within the P3 (Study 

Habits) pillar, F7( Study Habits-Class Attendance) was significant (p=.031, Table C-12 

in Appendix C), but the overall (regression) F-test was not significant (p=.189). Within 

the P6 (Commitment to this College) pillar, F12 (Goals- UM Reputation) was statistically 

significant (p=.039, Table C-15 in Appendix C), but the overall (regression) F-test was 

not significant (p=.086).  Within the P9 (Social Engagement) pillar, F17 (Social 

Engagement- Socializing) was significant (p=.007, Table C-18 in Appendix C) but the 

overall (regression) F-test was not significant (p=.053).   

 

5.2 Significant Factor Predictors for First Year GPA 

 

This section discusses the modeling of freshman engineering academic success (first year 

GPA) from the factor scores.  

 

5.2.1 Methodology 

The validation results of Section 5.1 showed the strength of EACH pillar in a general 

predictive sense for first year GPA.  It indicates the percent of total variation in the first 

year GPA that can be attributed to each pillar. It does not provide a predictive equation 

for academic success (i.e. first year GPA) from the pillars.  To predict the first year GPA, 
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the individual factors must be used as predictors across all the pillars. In this section a 

prediction equation for academic success (first year GPA), will be developed using the 19 

factors from the nine pillars. A model for first year GPA is shown in equation 5.1.  

Desirable in this model is a set of factors that explain the most variation with the least 

number of factors and a low level of multi-collinearity.   

 

 GPAj =  β0 + β1Fxj + β2 Fyj + … + β3Fzj + εj     5.1 

 

To achieve this, both best-subset regression and stepwise regression were used together.  

The adjusted R2, Mallows Cp and residual standard deviation were considered in the final 

regression.  The adjusted R2 is the percent of variation in the GPA explained by the 

factors in the model, adjusted for the number of predictors.  Mallows Cp gives a measure 

of the amount of bias in the regression equations. A guideline for Mallows’ Cp is that it 

be close to the number of predictors.  For each factor that is added, a decrease in the 

residual standard deviation should be obtained.  The initial probability of the F to enter 

was set at 0.15 for the stepwise regression with the final regression requiring a 

significance level of 0.05 or less for each predictor. In the modeling, interactions among 

the significant factors were tested for significance.  GPAs of less than 1.0 were 

considered outliers and not included in the regressions. 

 

Once the significant factors were defined, a Hotelling’s T2 control chart was used to 

 1) determine the students whose factors were not consistent with the multivariate 

 space of the identified factors.  

 2) explore the stability of the process.   

Those data points that were considered “in control” from the Hotelling’s T2 were then 

entered into the stepwise regression again to determine a final linear model.  The 

Hotelling’ T2 is defined in matrix notation as: 

 

N (X – μ)′ S-1 (X – μ) 
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where N is the sample size, X is the matrix of factor scores, μ is the vector of averages of 

the factor scores, and S is the variance-covariance matrix of the factors.  The Upper 

Control Limit is based on the F distribution.   

 

The Minitab for Windows 15.0 and SPSS 15.0 were used to generate the regressions, 

plots and Hotelling T2.   

 

5.2.2 Regression Results  (Including Hotelling’s T2) 

As previously described, the research design included two subsets; a subset including 

records of students who reported the ACT scores and a subset of students who reported 

the SAT scores.  There was research interest in comparing the predictability of the first 

year GPA between these two subsets. In addition, there was research interest in whether a 

prediction would be valid for more than one freshman year cohort. Therefore, the 

predictions using the ACT and SAT subsets were based on the 2004 cohort.  These 

prediction equations were then applied to the 2005 cohort as a cross-validation for a 

second year. If the adjusted R2 was as high for the 2005 cohort as for the 2004 cohort, it 

would indicate that the prediction equation could be used for more than one year.  The 

results for the ACT and SAT subsets and cross-validation discussion are provided in this 

section.  

 

ACT Subset Regression Results 

For the 2004 cohort, the regression modeling of first year GPA results using the ACT 

subset is shown in Table 5-2. 

 
Most of the predictiveness occurred with the first two predictors, F4 (Quantitative Skills) 

and the F1 (High School Grades) x F4 (Quantitative Skills) interaction, yielding an 

adjusted R2 of .33.  As more predictors entered the regression, the Cp decreased, leading 

to less bias of the regression coefficients.  (Cp should be approximately equal to the 

number of predictors for no bias in the coefficients.) 
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Table 5-2: Stepwise Regression Results for Modeling of Academic Success for the    
       ACT Subset for the 2004 Cohort  (N=184) 
 

Predictor Coefficient T P Adj. 
R2 

Mallows 
Cp 

Constant 2.921 63.70 .000   

F4 (Quantitative Skills) 0.233   6.17 .000 0.231 46.2 

F1 x F4 Interaction 0.205   4.58 .000 0.331 17.9 

F1 (High School Grades) 0.113   2.92 .004 0.349 13.6 

F11( Confidence 
      in Quantitative Skills)

0.096   2.41 .017 0.365  9.8 

F10 (Career Goals) -0.087 - 2.37 .019 0.381  6.2 

 

F10 (Career Goals) entered in this regression with a negative coefficient.  This was 

difficult to understand. Including it reduced the effect of the F4 (Quantitative Skills) and 

decreased the bias in the regression coefficients (based on the Cp statistic).  For the ACT 

subset, the correlation between F10 (Career Goals) and first year GPA is -.132 and was 

statistically significant (p=.022).  F10 (Career Goals) also has a significant negative 

correlation of -.162 with F4 (Quantitative Skills).  

 

SAT Subset Regression Results 

For the 2004 cohort, the regression modeling of first year GPA results using the SAT 

subset is shown in Table 5-3. 

 

Most of the predictiveness occurred with the first three predictors, F4 (Quantitative 

Skills), F1 (High School Grades), and F2( High School Performance), yielding an 

adjusted R2 of .32, indicating that 32% of the variation was explained by these factor 

scores .   Both F7 (Study Habits class Attendance) and F10 (Career Goals) entered into 

the regression model with negative coefficients and accounted for another 4%  of the 

explained variation.  The interaction of F1(High School Grades) x F4(Quantitative Skills) 

entered the regression as a significant predictor but explained only another 1% of  the 

variation. With the interaction included, the regression coefficients were relatively 

unbiased, as indicated by a Mallows’ Cp of 6.6.    
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Table 5-3: Stepwise Regression Results for Modeling of Academic Success for the    
       SAT Subset for the 2004 Cohort (N=161) 
 

Predictor Coefficient T P 
 

Adj. 
R2 

Mallows 
Cp 

Constant 
 

3.024 73.15 0.000  

F4 (Quantitative      
      Skills) 

0.131 2.49 0.014 0.179 51.0

F1 (High School      
     Grades) 

0.198 4.56 0.000 0.279 26.5

F2( High School  
     Performance) 

0.141 2.89 0.004 0.318 17.4

F7 (Study Habits  
     Class Attendance) 

-0.109 -2.98 0.003 0.344 12.0

F10 (Career Goals) -0.084 -2.24 0.026 0.360 9.0

F1 x F4 (High 
School Grades  x 
Quantitative Skills 
Interaction) 

0.093 2.11 0.037 0.374 6.6

 

 
Comparison of the Regressions from the ACT and SAT Subsets  and Cross-
Validation 
 
Table 5-4 shows the summary of the regression results for the ACT and SAT subsets.  

Using the 2004 cohort as the basis for the regression coefficients in the model of first 

year GPA, both the ACT and SAT subsets yielded approximately the same percent of 

explained variation (adjusted R2)  and the same Cp value.  Cp  measures the amount of 

bias in the regression coefficients. A value of 6 for Cp represents an unbiased estimate for 

5 to 6 predictors and indicates a reasonable prediction equation.   

 
In Table 5-4, the major difference between the ACT and SAT subset statistics is in the 

adjusted R2 for the cross-validation with the 2005 cohort.  The R2 has been used as an 
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indicator of good cross-validation of cohorts and “model generalizability” in the literature 

(French, et al., 2005).  The cross validation will be discussed next.  

 

Table 5-4:  Summary of Regression Results for First Year GPA for Engineering 
            Using the 2004 cohort and Cross-Validation with the 2005 Cohort 

 
 

Subset 
 

Number of 
Significant 
Factors 
 

 
Adjusted R2 

(2004 Cohort).

Mallows 
Cp 
(2004 Cohort)

Validated 
 Adjusted R2.

On 2005  
Database 

ACT subset 5 0.38 (n=184) 6.2 0.36 (n=177) 
SAT Subset 6 0.37 (n=161) 6.6 0.17 (n=150) 

 

 

 

 

ACT Subset Cross-Validation with the 2005 cohort 

The ACT subset for the 2005 cohort shows good cross-validation with an adjusted R2 of 

0.36 compared to 0.38 for the 2004 cohort.. The conclusion is that the model can be 

generalized across cohorts.  

 

SAT Subset Cross-Validation with the 2005 cohort 

From Table 5-4, it can be seen that the proportion of total variation explained by the 

regression, (i.e., the adjusted R2 of .17)  was reduced by a factor of 2 in the cross-

validated 2005 cohort SAT subset, compared to the 2004 cohort SAT subset, with which 

the regression was based.  To understand this finding better, Table 5-5 summarizes three 

regressions using the 2005 cohort.  The first regression (A.) was the cross-validation 

using the same predictors and the same estimates of the regression coefficients as used in 

the 2004 cohort. This is the standard cross-validation.   The second regression (B.) forced 

the same predictors into the 2005 cohort regression with the regression program 

estimating the BEST LEAST SQUARES ESTIMATES of the coefficients.  This 

regression examined the use of the same predictors as in the original regression but 

allowed the coefficients to be re-estimated using the 2005 cohort data.   The effect was 

that a much higher R2 (of 0.34) was generated (See Table 5-6).  
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The third regression (C.) was a stepwise regression with all nineteen factors and the F1 

(High School Grades) x F4 (Quantitative Skills) interaction considered.  In C., the 

regression was independent of the 2004 cohort regression and chose the best set of 

predictors from the nineteen factors (See Table 5-7) using stepwise regression.   

 

Table 5-5: Comparison of Regressions on the 2005 Cohort for Academic Success  
 

 
Regression 

S.E. 
Residual 
(√ MSE) 

Adjusted 
R2 

A. Cross-Validation: 
Same  Predictors AND Same Regression Coefficients
as 2004 Cohort 

0.4498 0.17 

B. Same Predictors Forced Into Regression and 
Best Estimates of  Regression Coefficients are  
Determined by the Regression algorithm 

0.4085 0.34 

C. Step-wise Regression with All Factors 
(Selected Predictors are: F4(Quantitative Skills), 
F1 (High School Grades) x F4(Quantitative Skills), 
F7(Financial Needs), F1( High School Grades) 

0.4057 0.34 

 

The fit was much better with the latter two regressions.  If the same predictors were used 

but the coefficients of the regression prediction were re-estimated, the adjusted R2 was 

.34 compared to .37 for the original prediction with the 2004 cohort (Regression B, Table 

5-6).  Two findings were significant from Table 5-6:  

 1) Using the p-level for the t-test, three predictors that were significant for the 

2004 cohort were not significant for the 2005 cohort. These predictors included: 

F2 (High School Performance), F7 (Study Habits Class Attendance) and F10 

(Career Goals).  This was also verified by the confidence interval on the 

coefficient including zero.  

 2) The coefficient for F4 (Quantitative Skills) from the 2004 cohort was 

significantly less than for the 2005 cohort since the coefficient was outside the 

confidence interval for the estimate of the coefficient from the 2005 cohort.   The 

same was true for F7 (Study Habits Class Attendance) and F10 (Career Goals) but 

not relevant, since these factors were not significant with the 2005 data.  
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In the examination of the stepwise regression of the 2005 cohort ( Regression C., Table 

5-7), the most significant predictors for the 2005 cohort using the SAT subset were F4 

(Quantitative Skills), the Interaction of F1 (High School Grades) x F4 (Quantitative 

Skills) and F15 (Financial Needs).   The stepwise regression yielded a R2 of 0.34, which 

was comparable to the 0.37 achieved with the 2004 SAT Subset, but with a different set 

of variables as predictors.   

 

In summary,  the poor cross-validation with an R2 of only 0.17 was explained by the 

finding that different predictors are significant for the 2005 cohort than for the 2004 

cohort.   
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Decision to Use the ACT Subset for a Regression Model 

Because of the SAT subset yielded a much smaller cross-validation R2 for the 2005 

cohort, the decision was made to model first year GPA with the ACT variables and ACT 

subset.   All subsequent modeling of the first year GPA is based on the ACT subset.   

 

The prediction equation for academic success (first year GPA) is: 

 

 GPA = 2.921 + 

   0.233 F4 (Quantitative Skills) + 

   0.113 F1 (High School Grades) +  

   0.205 F1xF4 (High School Grades x Quantitative Skills) +  

   0.096 F11 (Confidence in Quantitative Skills)- 

   0.087 F10 (Career Goals)         5.2  

  

F4 (Quantitative and Analytical Skills) was the first of five factors to enter the regression 

and explained 23% of the total variation in the GPA (See Table 5-3).  The five predictors 

explain 38% of the variation.  The coefficient for F10 (Career Goals) was negative.   As 

previously discussed, this was difficult to explain.  

 
        
One of the diagnostic graphs used to evaluate the residuals for patterns in regression 

modeling was a plot of the residuals versus the predicted value.  Figure 5-3 illustrates the 

randomness of the residuals from the regression with the model of equation 5.2. 
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           Figure 5-3: Plot of Standardized Residuals versus Predicted GPA (ACT   
                    Subset, n=184) 
 

 

 

Examining Stability with Hotelling’s T2 

To explore the stability of the multivariate X responses in the model, the factors 

identified in the regression equation 5.2 were entered into a Hotelling T2 multivariate 

control chart analysis using Minitab.  After three iterations of deleting outliers (a 

common practice), a stable control chart was obtained. (See Figure 5-4)  

 

Examination of Figure 5-4 showed stability for T2 and included 95% of the original 

sample. Most of the ten outliers represented students whose pre-college characteristics 

indicate a significantly less or higher level of a characteristic when compared to the “in 

control” data.  The residual plot from Figure 5-3 with the outliers identified by open 

circles is shown in Figure 5-5.  Based on the residuals, no significant patterns are present.  

Since  some of the identified “outliers” have a positive standardized residual, this is an 

indication that the support programs in place or activities that occurred during the 

freshman year enabled students to achieve academically at a higher level than was 

predicted.    
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Figure 5-4: Hotelling’s T2 Multivariate Chart Shows Consistency of Data 
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Figure 5-5: Plot of Standardized Residuals versus Predicted GPA with T2 Outliers   
         Identified by Open Circles (n=184) 
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5.2.3 Discussion 
 

The Final Model for the First Year GPA 

Using the ACT variables and subset, the modeling for first year GPA for the engineering 

sector was considered successful.  The model for engineering academic success (first 

year GPA) is given  as follows:  

 

GPA = 2.921 + 0.233 F4 (Quantitative Skills) + 

   0.113 F1 (High School Grades) +  

   0.205 F1xF4 (High School Grades x Quantitative Skills) +  

   0.096 F11 (Confidence in Quantitative Skills)- 

   0.087 F10 (Career Goals)         5.2  

 

To calculate the factor scores, the coefficients generated by the Anderson-Rubin method  

were used. The Anderson-Rubin method was discussed in Chapter IV.  Anderson-Rubin 

generates a coefficient for each variable included in a factor analysis. Using these 

coefficients, the factor scores for predicting the first year GPA from Table 5-2 are 

calculated as follows: 

 

F1 (High School Grades) =    0.603 High School Rank Percent  

             +0.442 High School GPA  

                                              -0.114 ACT Composite 

             -0.075 Self-Rating of Academic Ability  

            +0.035 Self-rating of Leadership Ability 

             -0.035 Self-rating of intellectual self-confidence 

     

F4 (Quantitative Skills)   =     0.501  ACT Math Score 

 +0.314  U-M Math Placement test score 

 +0.183 Chemistry Placement test score 

 +0.178 ACT Science Reasoning Score 
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F1 x F4 Interaction is calculated as the product of F1 and F4 as described above. 

 

F11 (Confidence in Quantitative Skills) 

                                        =      0.632 Self-rating of math ability 

 + 0.632 Self-rating of computer skills 

 

F10 (Career Goals)        =      0.616 Importance to go to college to get training for  

                                                          A specific career 

      +0.433 Importance to go to college to be able to make 

                                                           More money 

  +0.362 Importance to go to college to prepare for graduate/ 

                                                          Professional school 

   -0.381 highest degree recoded (see chapter III) 

  +0.080 Change Major Field 

  +0.046 Change Career Choice 

     

     

With an adjusted R2 of .38, almost 40% of the variation in first year academic success 

(GPA) can be explained by five factors, consisting of pre-college student 

information.  The most significant of these factors, F4 (Quantitative Skills) accounted 

for 23% of the total variation in first year GPA.  The next most significant predictor was 

F1 (High School Grades), which was highly loaded from the variables, high school GPA 

and high school rank. These two factors together explained 29% of the total variation in 

the first year GPA. The interaction between F1 and F4 was significant and explained 

another 6% of the variation for a total of 35%.  The last two significant predictors were 

F11 (Confidence in Quantitative Skills) and F10 (Career Goals) were significant but 

contribute only another 3% to the adjusted R2.    

 

Hotelling’s T2 

Hotelling’s T2 control chart showed exceptionally good stability among the student data 

in the ACT subset.  Of 184 data points, only 5% of the data were identified as 
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inconsistent with the mass of the data.  In general, this 5% were considered as outliers 

with a lower levels of preparation, as indicated by F1 (High School Grades) and F4 

(Quantitative Skills).  Exploration of the data using Hotelling’s T2 suggested that this 

multivariate technique could be used to identify students who are in need of early 

academic intervention.  With a Hotelling’s T2 analysis, students in need of intervention 

would be identified (as outliers) and examination of individual student records would 

show a value outside the normal range of statistical variation. . This would be useful to 

advising counselors. 

 

5.3 Gender and Ethnicity Effects on Model for First Year GPA 

 

This section examines whether there is a significant difference in the first year GPA 

based on gender or ethnicity, controlling for significant predictors of academic success 

from the modeling already conducted in Section 5.2.  The 2004 cohort was used for this 

analysis.  

 

 In this analysis, ethnicity is summarized into two student categories: URM, which 

includes the under-represented minority students (Black, Hispanic and Native American 

races) and Non-URM, which includes the White and Asian races.  International students 

are not included in the URM and Non-URM classifications of ethnicity.  

 

5.3.1 Methodology 

Two linear models were considered.  The first includes only gender and ethnicity with a 

dependent variable of academic success.  In the second model, the regression model of 

section 5.2 for academic success was extended to a linear model that includes gender and 

ethnicity.  The significant factors from the regression model (equation 5.2) are included 

as covariates.  The SPSS for Windows 15.0 generalized linear model program was used.  

 

5.3.2 Results  

Table 5-8 displays the average and standard deviation for the first year GPA and the 

significant model covariates by gender and ethnicity for the 2004 cohort. 
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Table 5-8 Averages and Standard Deviations of Regression Factors and GPA by       
      Gender and Ethnicity Show Significant Differences 
 

Gender 

Female (N= 48) Male (N=135) 

Variable/ 
Factor 

Average Std. Dev.  Average Std. Dev. 

First Year GPA 3.064 0.542 3.166 0.548 

F1 High School Grades 0.041 1.029 0.055 0.846 

F4 Quantitative Skills* 0.148 0.890 0.760 0.846 

F10 Career Goals 0.192 1.012 0.183 0.847 

F11 Confidence in 
       Quantitative Skills* 

0.325 0.712 0.881 0.831 

*Significant difference in the averages at p =.050 using an one-way analysis of variance 
Ethnicity 

URM (N=20) Non-URM (N=155) 

Variable/ 
Factor 

Average Std. Dev.  Average Std. Dev. 

First Year GPA*  2.793 0.481 3.174 0.546 

F1 High School Grades* -0.556 1.597 0.112 0.746 

F4 Quantitative Skills* -0.149 0.820 0.665 0.876 

F10 Career Goals*  0.629 0.653 0.140 0.892 

F11 Confidence in 
       Quantitative Skills 

 0.635 0.613 0.758 0.892 

*Significant difference in the averages at p =.050 using an one-way analysis of variance 
 

When only gender and ethnicity status were included in a linear model (no covariates) 

with the first year GPA as the dependent variable, the adjusted R2 was only .04.  There 

was a significant effect by ethnicity (p=.006) but not by gender..   

 
Once the covariates (F4 (Quantitative Skills), F1 (High School Grades), Interaction of F1 

x F4, F11 (Confidence in Quantitative Skills), and F10 (Career Goals) were added to the 

model along with gender and ethnicity, the adjusted R2 was .39.  After controlling for the 

significant covariates, no significant difference in gender (p=.807) or ethnicity (p=.460) 

existed.  (See Table 5-9). The F-statistic for a test in difference in gender controlling for 

the covariates is only .060 (p=.807); similarly, the F-statistic for difference in ethnicity 

(URM) is only .548  (p=.460). 
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TABLE 5-9 Linear Models on First Year GPA with Gender, Ethnicity 
                        And Covariates for Engineering 

Dependent Variable: First Year GPA

22.164a 8 2.770 14.895 .000
356.900 1 356.900 1918.810 .000

6.909 1 6.909 37.146 .000

1.382 1 1.382 7.432 .007

1.433 1 1.433 7.706 .006

.863 1 .863 4.642 .033
4.001 1 4.001 21.509 .000

.011 1 .011 .060 .807

.102 1 .102 .548 .460

.360 1 .360 1.934 .166
30.690 165 .186

1759.603 174
52.854 173

Source
Corrected Model
Intercept
F4 Quantitative
Skills
F1 High School
Grades
F11 Confidence in
Quantitative Skills
F10 Career Goals
F1xF4
Gender
Ethnicity
Gender * Ethnicity
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .419 (Adjusted R Squared = .391)a. 
 

 
 
Note that the total degrees of freedom are 174 (instead of 184 for the ACT subset) due to 

missing data related to the ethnicity classifications.  

 

5.3.3 Discussion 

The following are the findings for academic success when gender and ethnicity are 

considered with a model that controls for the effect of the covariates.  

• 39% of the total variation in First Year GPA is explained by the model 

• After adjusting the averages of First Year GPA for the covariates, no statistically 

significant differences exist in gender or ethnicity.  

 

In the initial analysis of the first year GPA, no difference existed in the average GPA 

between male and female students.  This is consistent with the literature.  For example, 

Hartman and Hartman (2006) provided average GPAs that showed that female 

engineering students earned GPAs slightly higher than male engineering students did.   
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The average difference of the first year GPA by ethnicity (URM and Non-URM students) 

can be explained by the covariates.  To explore this finding in more detail, Figure 5-6 

displays the average first year GPA and adjusted first year GPA (adjusted for the 

covariates) by ethnicity.  Figure 5-6 clearly illustrates a large difference in the unadjusted 

average first year GPA between the URM and Non-URM student groups (solid line). It 

also illustrates that this difference is narrowed significantly, when the averages are 

adjusted for the covariates5 (dashed line). Table 5-9 shows that this difference in the 

adjusted averages between URM and Non-URM students groups is not significant 

(p=.460).  Since the covariates are primarily related to the P1 (High School Academic 

Achievement), P2 (Quantitative Skills), and P5 (Confidence in Quantitative Skills), the 

difference in ethnicity can be explained by different levels of preparation and confidence 

in quantitative skills. P4(Commitment to Career and Educational Goals) contributes to 

this difference with F10(Career Goals). F10(Career Goals) is the last factor to enter the 

stepwise regression and its contribution is weaker than the other factors.  Interestingly, 

the URM students have a significantly higher F10(Career Goals) average than Non-URM 

students.   

 

Support in the literature is present for this trend.  Allen (1999) found that “pre-college 

academic ability (i.e. high school rank) was found to play a significant role on their [both 

minorities and nonminorities] cumulative grade point average.”  

 

In summary, there is no difference in the average first year GPA with respect to either 

gender or ethnicity, once the averages are adjusted (controlled) by the covariates  with the 

model equation of 5.2. 

 

                                                 
5 The average first year GPA is adjusted to the average for each covariate: F4=.576, F1=.034, F1xF4= .061, 

F10= .195, F11= .745 
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Figure 5-6 Comparison of Actual Average GPA and Adjusted Average GPA by   
         Ethnicity 
 

 

5.4 Interventions for Academic success 

Researchers have shown that a strong relationship exists between the first term GPA in 

engineering and the engineering retention rate. (Budny, et.al., 1998, Scalise et.al., 2000)  

Student intervention programs that help student succeed academically are part of the 

student support function at engineering colleges. These programs include mentoring, 

tutoring, and advising.  Course placement can also be considered as an intervention 

program since correct placement increases the student’s probability of academic success 

(Budny, et. al., 1998).  

 

As an example of how intervention strategies can connect to the model, Table 5-10 

summarizes possible intervention strategies for student deficiencies in a pillar. In the 

Seymour and Hewitt study (1997), students indicated that when they realized they were 

in academic trouble, they could not get help soon enough. This implies a systematic and 

proactive approach by the university is needed to help students in academic trouble.  
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Table 5-10: Proposed Intervention Change Based on Pillars 

Pre-college 
Characteristic 
Pillar 

Measured  
By 

Low Level 
Expected 
Effect on 
Student 
Success 

Process  
Change 

Effect 

P1. 
 High School 
 Academic 
 Achievement 

 

H.S. GPA,  
H.S. Rank 
SAT  Total 
ACT  
Composite 

Less prepared 
academically, 
freshman 
courses 
challenging 

Proper  
placement is  
key; directed 
tutoring, Advising 
support 

Significant 
improvement 
in knowledge; 
leading to a 
good college 
GPA 

P2. 
 Quantitative 
 Skills 
 
Math Skills 

ACT Math 
SAT Math 

Less prepared, 
may not be 
ready for 
calculus, 
residual effect 
on rest of 
engineering  
courses; 
at very high 
risk 

1st term is 
key; proper 
placement into all 
courses, less 
course 
load; directed 
tutoring 
advising support 

Enable  
student to be 
successful, early 
intervention 
a must. 

P2. 
 Quantitative  
 Skills- 
Scientific 
Reasoning 

ACT 
Science 

Less prepared 
for 
chemistry and 
physics 

Proper placement 
in science 1st term, 
directed tutoring, 
advising support  

Enable  
student to be  
successful 

P3.  
Study  Habits 

High 
School. 
hours/week 
studying 

May not be 
able to  
Keep up with 
course load 

Mentoring Enable  
student to be  
successful 

P4. 
Commitment to 
Career/Degree 
of  
Engineering  

Indicator 
such as  
highest 
degree 
Sought 
CIRP  
variables 

May drop out Career mentoring 
or course on 
engineering 
careers; advising 
discussion of 
engineering 
careers by faculty 
in classes, 
establish peer 
community 

Student 
persists 
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Table 5-10: Proposed Intervention Change Based on Pillars (continued) 

Pre-college 
Characteristic 
Pillar 

Measured  
By 

Low Level 
Expected 
Effect on 
Student 
Success 

Process  
Change 

Effect 

P5.  
Confidence in 
Quantitative 
Skills 

Confidence 
Indicator, 
self-ratings 

Even with 
good 
grades, student 
may drop out 

Mentoring, career 
advising or course 
on engineering 
careers 

Student 
persists 

P6. 
Commitment to 
college the 
student is 
attending 

Indicator 
whether 
this college 
was  
first choice 

May drop out Establish peer 
community in 
engineering 

Student 
persists 

P7.  
Financial    
Needs 
 

Survey 
indicator 

May drop out; 
financial needs  
not met 

Financial advising 
 

Student 
persists 

P8. 
Family Support 

Parents’ 
level of 
education 

May drop out Parents’ 
encouragement of 
student 
online parents’  
network 

Student  
persists 
 

P9. 
Social 
Engagement 

Survey 
indicator 
of social 
engagement  
in high 
school 

May drop out; 
may be over-
challenged in 
courses that 
stress team 
work 

Extra guidance on 
participating in 
dorm activities, 
small engineering 
club activities 

Student persists 

 

Currently, a university like Michigan will provide a number of intervention programs: 

mentoring, tutoring and advising. It is the responsibility of the student to take advantage 

of these programs. Table 5-10 provides a set of guidelines and suggests the paradigm that 

interventions can be applied in a systematic way to help all students, based on the pillars 

of student success.  

 

Michigan supports its students with a number of intervention and support programs.  The 

rest of this section will discuss three intervention programs available in the College of 

Engineering, for which data was available. These include:  

 1)   Mentoring of first year students (Section 5.4.1) 

 2)    Advising (Section 5.4.2 through 5.4.5)) 
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 3)    Enrollment in Engineering 110   (Section 5.4.2 through 5.4.5) 

Initially data on Engineering 110 was collected because it was an engineering course.  

From the data analysis, it became evident that Engineering 110 could be considered as an 

intervention, related to commitment to an engineering career.   

   

5.4.1 Mentoring of First Year Students 

This section summarizes a research effort that I led on the analysis of a first year 

mentoring effort for the 2004-2005 freshman class.  Staff and volunteers under the 

leadership of the Associate Dean of Undergraduate Education in the College of 

Engineering conducted the mentoring.  A more detailed report is available.  (Chung, 

Koch and Veenstra, 2005) 

 

The Academic Mentoring Program (AMP) is for students who are academically 

struggling.  Generally, students are invited into the AMP mentoring program if they are 

on scholastic probation.  For freshmen, this would include students who have been placed 

on academic probation with a first term GPA less than 2.0 (out of 4.0); they would be 

invited into the mentoring program for the second term of their freshman year. For this 

analysis, only AMP mentored students who carried a full credit load of 12 credits or more 

in the fall term were included in the analysis.  

 

The analysis included a comparison of two groups of students: the 14 students who were 

mentored and a control group of 74 students. All students in either the mentored or 

control (non-mentored) group were full time in the fall term and earned a fall term GPA 

less than 2.0.  

 

At the end of the winter term, both groups showed improvement in the winter term GPA 

over the fall term GPA.  

• The Control group earned an average GPA for the winter term .56 higher than the 

fall term.  

• The AMP mentoring group earned an average GPA 1.08 (one grade) higher than 

the fall term.  
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• Using a t-test for testing the difference in average GPA, the average improvement 

in the GPA of the AMP group over the control group was statistically significant 

with a p-value of .01.   

• There was an average improvement of .52 for the AMP group compared to the 

Control group.    

 

The conclusion from this research project was that implementation of mentoring in the 

winter term of the freshman year significantly contributed to academic success of 

academically struggling students. 

 
5.4.2 Advising and Engineering 110 

The Engineering Advising Center (EAC) advises freshmen on course selection and 

placement, career decisions and general counseling.  Its role is to “provide academic 

advising services and support for first-year and undeclared students in their transition 

form high school to the rigorous academic demands of the College of Engineering” 

(University of Michigan, 2003).  The EAC especially counsels students with low 

academic achievement. Advising data (related only to advising frequency) was collected 

and made available to this research.  An advising frequency of four or less to the 

Engineering Advising Center was considered low and a frequency of more than four 

visits was considered high. (It is routine for a student to visit the EAC twice both 

semester for course counseling.)  As a measure of engagement between each student and 

EAC, the number of visits per year for each student was collected and included in the 

research database.  The following hypothesis was developed: 

 

 Hypothesis 1: Students with a high level of advising visits will have a lower GPA 

than students with a low (routine) level of advising. This hypothesis suggests that 

there will be a correlation between the number of EAC visits and the first year 

GPA but that it is not a causal relationship.  

  

Engineering 110 is a two-credit survey course in engineering careers.  Approximately 

one-third of the students in the 2004 and 2005 cohorts enrolled in Engineering 110. The 
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model development in Chapter II provides evidence that motivation towards an 

engineering career increases retention, but not the first year GPA.  The following 

hypothesis was developed: 

 

 Hypothesis 2: Enrollment in Engineering 110 will not have a significant effect of 

 the first year GPA 

 

5.4.3 Methodology- Randomized Database Analysis 

The analysis of intervention programs is challenging for most researchers.  The data tends 

to be “happenstance” data, i.e. data that is collected with no experimental control.  It is 

generally recognized that students participate in several intervention programs. When a 

simple control-experimental samples approach is taken, bias may be generated due to 

students participating in more than one program.  This section discusses an approach that 

was taken in the analysis of the data to minimize the inherent bias.  Also significant with 

this analysis was that the testing of the hypotheses was conducted, controlling for the  

significant predictors in the model. (The predictors from equation 5.2 were covariates in a 

generalized linear model).  

 

The approach to evaluating the effect of advising frequency and enrollment in 

Engineering 110 was to extend the generalized linear model used in Section 5.3 to 

include two new factors, a two-level advising frequency factor (low/high) and a two-level 

Engineering 110 factor (Yes, No enrollment) was desired.  With the competing 

intervention programs, there could be a confounding effect between enrollment in  

Engineering 110 and another intervention such as a learning community effort.  In 

traditional design of experiments, randomization is usually used to minimize this effect. 

Subjects would be randomly selected for a particular treatment, such as enrollment in a 

class. For example, the University of Maryland chose to control pre-college 

characteristics for evaluating the effectiveness of the first-year seminar by randomly 

assigning students to either be enrolled or not be enrolled in the seminar. (Goodman et al. 

2006).   
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Figure 5-7: Flowchart of Randomized Database Procedure 

 

In this research, students have already decided on the level of advising and course 

enrollment (i.e. they cannot be assigned to experimental groups).    In order to minimize 

the confounding effect of interventions, students for the analysis were randomly selected 

from the database to ensure randomization and minimize the effect of other intervention 

strategies. Instead of randomly selecting the students from a large population with a 

particular characteristic (low or high advising frequency), students were randomly 

selected from the database.  (See Figure 5-7) 
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A four-factor, 2-level 24 model was used with two replicates.  This equates to 32 data; 

because of some missing data (levels not available as data in the database), the analysis 

include 27 data.   The four factors were: Gender, Ethnicity (URM, Non-URM), Advising 

frequency (low, high), and Engineering 110 (enrolled, not enrolled).  Because of missing 

data in one of the combinations, the four-way interaction could not be estimated.  

Insignificant interactions were pooled into the error term to achieve a valid analysis.  A 

random number table was used for randomly selecting the observations from the database 

based on a dummy ID. (Beyer, 1991)  In addition, the factor scores that were significant 

in the regression model were included as covariates. This approach will be referred to as 

a randomized database analysis.  

 

5.4.4 Results Using the Randomized Database Analysis 

The final Analysis of Variance Table for the generalized linear model associated with the 

randomized database analysis is shown in Table 5-11.  An analysis showed that 

interaction effects with Ethnicity (URM) were not significant.  In addition, the three way 

interactions were not significant and were pooled into the error term. Neither F10 (Career 

Goals) nor F11 (Confidence in Quantitative Skills) were significant; as a result their sums 

of squares were also pooled into the error term.  The Interaction F1 x F4 (High School 

Grades x Quantitative Skills) is significant.  By the hierarchy rule on pooling of sums of 

squares into the error sums of squares, F1(High School Grades) and F4 (Quantitative 

Skills) must also be in the model.   

 
No main effects among the factors were significant.  The p-values for the ethnicity, 

gender, advising frequency and Engineering 110 effects were all > .05.  The significant 

interactions are Gender x Engin 110 (p=.020) and Advising x Engin 110 (p=.022).   The 

plots of the average first year GPA for each of these interactions are shown in Figures 5-8 

and 5-9  
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Table 5-11: Final Generalized Linear Model of First Year GPA Shows Significant       
        Interaction between Enrollment in Engineering 110 and Advising      
        Frequency 
  
       Dependent Variable: First Year GPA  

Source 
Type III Sum 
of Squares df Mean Square F Sig. 

Corrected Model 6.428(a) 10 .643 3.714 .010
Intercept 142.447 1 142.447 823.096 .000
Ethnicity .277 1 .277 1.600 .224
Gender .019 1 .019 .112 .742
Advising .576 1 .576 3.330 .087
Engin110 .005 1 .005 .027 .871
Gender * advising .564 1 .564 3.257 .090
Gender * Engin110 1.161 1 1.161 6.710 .020
Advising * Engin110 1.114 1 1.114 6.437 .022
F4 Quantitative Skills .195 1 .195 1.127 .304
F1 HS Grades .008 1 .008 .045 .834
F1 x F4 1.372 1 1.372 7.927 .012
Error 2.769 16 .173    
Total 233.308 27     
Corrected Total 9.197 26     

         a  R Squared = .699 (Adjusted R Squared = .511) 
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Figure 5-8 Plot of Average First Year GPA for the Interaction of              
         Engineering 110 x Gender (n=27) 
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Figure 5-9: Plot of Average First Year GPA for the Interaction of              
         Engineering 110 x Advising Frequency Suggests That the Combination   
         of Engineering 110 and a High Advising Frequency Help Some Students  
         (n=27) 
 

 

5.4.5 Discussion of Interventions 

Hypothesis 1 was stated as:  

The students with a high level of advising visits will have a lower GPA than 

students with a low level of advising. 

This was not confirmed with the analysis. The difference in the average GPA between the 

low level and high level frequency of advising was not significant (p=.087). 

 

Hypothesis 2 was stated as:  

Enrollment in Engineering 110 will not have a significant effect on first year GPA.   

 

Consistent with Hypothesis 2, there was not sufficient evidence to indicate a significant 

effect due to the enrollment in Engineering 110 (p=. 871).     

 

From Table 5-11, there were two significant interactions: Gender x Enrollment in 

Engineering 110 and Advising Frequency x Engineering 110.  The interaction effect of 

Gender x Enrollment in Engineering 110 suggests that the course motivates male and 
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female students differently for student success.  (Figure 5-8).  There was no main effect 

on a gender difference on first year GPA (p=.742).  Yet, female students who enrolled in 

Engineering 110 earned a lower first year GPA; this GPA  was substantially less than the 

GPA for female students, who did not enroll in Engineering 110.   A review of the data 

showed that the female students who enrolled in Engineering 110 earned a lower average 

GPA for the entire 2004 engineering cohort.  For the ACT subset. from which the data 

was sampled from, the average  first year GPA was 2.94 (n= 17).  This  compared to an 

average of 2.60 for the sample of 6 female students included in the randomized database 

sample. Although the sample was lower, it was within random variation. The t-test for 

comparing the averages was 1.49 with a significance level of 0.171. A review of the 

F4(Quantitative Skills) statistics showed that the female students who enrolled in 

Engineering 110 had a substantially lower average.  This is indicative of this group of 

students being less prepared in their quantitative skills.  From the model, it would be 

predicted that the first year GPA would then be less.    This pattern of averages for the 

first year GPA may have been specific to 2004 since in 2005 the average first year GPA 

of females who enrolled in Engineering 110 was higher than that of females  who did not 

enroll in Engineering 110.  

 

The students who visit the Engineering Advising Center at a higher frequency usually 

have more need for advising support for academic success. Therefore, it is not surprising 

nor a negative reflection on the Advising Center that the average first year GPA is less 

for students who have a high rate of advising frequency, compared to the average first 

year GPA of students with a low rate of advising frequency. What is significant is that 

students who both have a high rate of advising and enroll in Engineering 110 achieve a 

higher first year GPA (See Figure 5-9). 

 

 

5.5 F4 (Quantitative Skills) as a Placement Indicator into Freshman Courses 

Several researchers have shown the importance of correct placement into the first math 

and science courses in college.  (Budny, 1998, Shuman, et. al., 2003, Koch and Herrin, 
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2006)  Sadler and Tai (2007) found that years of high school mathematics was a 

significant predictor of academic performance in all college science courses.  

 

In a paper published in 2006, Veenstra and Herrin provided evidence that the ACT Math 

score was a significant predictor of success in the freshman courses at Michigan.  A  

contingency table approach was used to evaluate a ACT Math score of a 27 as a cutpoint 

predictor of earning at least a passing grade (C) in the first semester freshman courses. 

The efficiency of this instrument was at least 86% for all first semester STEM courses 

taken. The efficiency is “the percent of students whose grades were accurately predicted 

(less than or greater than/equal to a C) by the ACT Math score using a cut-point of 27” 

(Veenstra and Herrin, 2006b). The ACT Math score is one of four variables loaded into 

the factor F4 Quantitative Skills.  I was interested in extending this prediction research by 

considering F4 (Quantitative Skills) as a course placement indicator for the freshman 

engineering courses. 

 

 This section models placement into freshman engineering courses, independent of the 

overall model for first year GPA. Included in this placement modeling is a discussion of 

the AP (Advanced Placement) testing. The modeling of placement is included in this 

chapter because of its impact as a program on improved academic success of engineering 

freshmen. 

 

5.5.1 Methodology 

Placement tests are an integral part of the freshman orientation and first term course 

selection at Michigan.  Each engineering student takes a math placement test and a 

chemistry placement test during freshman orientation.  The math placement test is used to 

place a student either into pre-calculus (Math 105) or the first semester of calculus (Math 

115). In addition, the AP math tests are used to place students into Calculus II (Math 116) 

and Calculus III (Math 215). The chemistry placement test is used to place a student into 

a remedial section of Chemistry 130 or a regular section of Chemistry 130.   
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Currently, math placement into Calculus I (Math) is based on the math placement test and 

the ACT/ SAT Math test scores.  Because of the strong predictability of F4 for the first 

year GPA, I was interested in whether F4 (Quantitative Skills) could be used to place 

engineering students into their freshman classes.  

 

A “C-“grade is usually considered as the lowest passing grade for the freshman courses. 

A linear regression was generated with the dependent variable being the course grade and 

the independent variable being the F4 (Quantitative Skills) factor score. The 90% 

predicted interval for a future value was calculated. The F4 (Quantitative Skills) value for 

the lower prediction interval for a course grade of 1.667 (C- on a 4-point scale) was 

determined from the regression line. This point was denoted by F4T and represented the 

lower bound (target) for F4 (Quantitative Skills) corresponding to a C- grade, taking into 

account statistical variation.  Using this method, there is only a 5% chance that a future 

value of F4 (Quantitative Skills) would be less than F4T.   

 

Figure 5-10 shows an example using Chemistry 130.  The F4 (Quantitative Skills) point 

on the lower 90% prediction interval corresponding to a “C- “grade is used as a target 

point (F4T).  F4T represents the minimal F4 (Quantitative Skills) score that a student 

would have and still be academically successful in this course (i.e. a grade of a C- or 

better)    

 

In this analysis, the combined 2004 and 2005 cohorts ACT database was used. The letter 

grades were converted to a numeric score based on the 4.0 grading scale. 

 

In developing this F4T, the interest is in whether a value of F4 (Quantitative Skills) can be 

used for all freshman level courses. For different courses, the target for F4 (Quantitative 

Skills) would be different for each course.  For the math courses, only the first time math 

course is considered.  For example, only students who enrolled in Calculus II (Math 116) 

for their first Calculus course would be considered in the analysis of a value for the 

targeted F4(Quantitative Skills), F4T.  (The interest here is in placement into the first term 

math course.)   
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Figure 5-10: Illustration of F4T for Freshman Chemistry (Corresponding to a C- or    
         1.667 on a 4-point grading scale, sample size equals 240)  
 
 

The current Michigan Engineering criteria for an AP placement into Math 116 and Math 

215 were used (current in winter term 2007).  These criteria include: a student must 

achieve a 4 or 5 on the AP Calculus AB test or 4 on the AP Calculus BC test in order to 

enroll in Math 116.  For Math 215, a student must achieve a score of a 5 on the AP 

Calculus BC test (University of Michigan, 2007).  Only the students who achieved these 

levels on the AP tests were included in the analysis of Math 116 and Math 215.  

 

5.5.2 Results 

Table 5-12 displays F4T, the targeted F4 (Quantitative Skills) on the 90% lower 

prediction line in the regression between the course grade and F4 for a course grade of a 

“C-“ or 1.667 on a 4.0 grading scale. This can be interpreted as follows: for a future 

student, if a student’s F4 score is greater than F4T, the student has a 95% probability of 

earning a C- or better.  The F4T is a minimal threshold for placement into the course 

using the F4 values. Note that, for the math courses, the increase in the F4T  

F4T 
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corresponding to the sequencing of Calculus courses.  The Pre-Calculus and Calculus II 

regressions yielded poor regression results.  This is explored more in the Section 5.5.3 

Discussion.  

 

Table 5-12: Quantitative Skills F4T Values and Regression Results for Freshman    
       Engineering Courses 
 

Course N F4T 
 

Median
F4 

Adjusted R2 
 

Error 
Std Dev.

First Semester 
Pre Calculus 
Math 105 

 
  22 

Regression not 
 significant 

 
- .90 

 
0.0 

 
N/A 

Calculus I 
Math 115 

 
117 

 
-0.4 

 
.25 

 
.24 

 
.554 

Calculus II 
Math 116 
(AP students) 

 
 
  89 

 
 

0.0 

 
 

.84 

 
.06 

 
.629 

Calculus III 
Math 215 
(AP students) 

 
  57 

 
0.4 

 
1.30 

 
.32 

 
.532 

Chemistry I 
Chem 130 

 
240 

 
-0.7 

 
.38 

 
.37 

 
.494 

Second Semester or either Semester 
Engineering 
Physics 
Physics 140 

 
228 

 
0.3 

 
.68 

 
.24 

 
.653 

Introduction to 
Engineering 
Engineering 100 

 
354 

 
-2.0 

 
.78 

 
.10 

 
.519 

Programming 
Engineering 101 

 
322 

 
0.3 

 
.72 

 
.29 

 
.722 

 

The preparation level  (as shown by F4T ) required for Chemistry 130 and Engineering 

100 was  minimal. The preparation level for Engineering Physics and Engineering 101 is 

equivalent to that of Calculus III.   
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Figure 5-11 clearly indicates the increasing progression of the average value of F4 for 

each calculus course.  
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Figure 5-11: Regression Plot of Math Course Grade Versus F4 (Quantitative   
            Skills) for Calculus I top, Calculus II middle, and Calculus III         
  bottom Show Increasing Progression of Minimal F4 (Quantitative  
  Skills) Values. Sample sizes are displayed in Table 5-12.  
 

F4T= -0.4

F4T= 0.4

F4T=0.0
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Whereas close to the majority of the students who start in Calculus I have a F4 

(Quantitative Skills) less than 0, for Calculus III, all the students have a F4 (Quantitative 

Skills) greater than 0.0. Figure 5-12 displays the empirical cumulative distribution of F4 

(Quantitative Skills).  The median of F4 (Quantitative Skills) is .78 with a range of -1.80 

to 2.15.   

 
 

 

 

Figure 5-12: Empirical Cumulative Distribution of F4 (Quantitative Skills)for the    
           Combined 2004 and 2005 Cohort Engineering Sector Sample (n= 361)  
 
 

Based on Figure 5-12, Table 5-13 displays the percent of the engineering student sample 

with a F4 greater than F4T (i.e. are prepared for these courses from their high school 

preparation).  For comparison to the combined sample of the four student sectors for both 

cohorts within the ACT subset, the overall median for all sectors is .16 with a range of     

-2.76 to 2.16.  Approximately 22% of the engineering students have a F4 score less than 

the median of the overall student population.   
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Table 5-13: Percent of Engineering Students with a F4 (Quantitative Skills) Greater   
        than F4T 
 

Course F4T Percent of  
Engineering Students 
With F4 > F4T 

Math 115 -0.4 91% 
Math 116  0.0 80% 
Math 215  0.4 62% 
Chemistry 130 -0.7 92% 
Physics 140  0.3 67% 
Engineering 100 -2.0 100% 
Engineering 101  0.3 67% 

5.5.3 Discussion 

Research has shown that placement into the correct freshman courses for the first term on 

engineering is extremely important (Budny, 1998).   F4 (Quantitative Skills) includes the 

loading of four variables: ACT math score, ACT science reasoning score, the U-M math 

placement test score and the U-M chemistry placement test score.  F4 (Quantitative 

Skills) as a placement indicator was explored for three reasons: 

• F4 (Quantitative Skills) has a stronger linear relationship with the course grade 

than the ACT Math score, as measured by the adjusted R2. 

• Of all the factor scores, F4 (Quantitative Skills) has the strongest linear 

relationship with the first year GPA. 

• With the high science content in the Calculus courses, it is reasonable to assume 

that preparation in both mathematical knowledge and scientific reasoning is 

important as a predictor of success in the first semester engineering courses.  

 

Quantitative Skills F4T can be viewed as an educational instrument for placement into the 

freshman courses taken by Michigan engineering freshmen.   

 

The following findings are associated with the F4T values for the freshman engineering 

courses (refer to Table 5-12): 

• An increase in F4T was evident from Calculus I through Calculus III.   These 

courses were the first math course that the student placed into, either through the 

math placement test or AP tests. Furthermore, for the Calculus courses, the 
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minimum F4 (Quantitative Skills) increases with each Calculus course in 

sequence. 

• All the Pre-Calculus (Math 105) students had a negative F4 (Quantitative Skills) 

except for one student whose data is considered an outlier.  In fact, all the Math 

105 students had a F4 < -.4 (except the outlier).  For Calculus I (Math 115), -0.4 is 

the F4T for the next course in the math sequence. This adds validity to using this 

instrument in placement practices. 

• Chemistry 130 is a first semester course and showed a placement indicator of F4T 

= -0.7. Only 8% of the engineering students showed a F4 (Quantitative Skills) 

 <-0.7.  This suggests that the current assumed curriculum requirements for 

Chemistry 130 are aligned with the preparation level of the engineering freshmen, 

assuming that F4T is a valid placement indicator.  Chemistry 130 is usually a first 

semester course.  Since it has a F4T less than that of Calculus I (Math 115), all 

Calculus I (Math 115) and most Pre-Calculus (Math 105) students should be 

adequately prepared for Chemistry 130. 

• Engineering 100 is an introduction to Engineering with different sections of 

Engineering 100 having a different project focus.  It is designed for all levels of 

preparation of engineering students.  With a F4T of -2.0, strong support is 

provided for Engineering 100 addressing the preparation levels of all engineering 

students.  

• Physics 140 is almost always a second semester course for engineering freshmen. 

The pre-requisite for this course is that a student has completed Calculus I (Math 

115). Physics 140 shows a F4T of 0.3, suggesting it requires a higher level of math 

and science reasoning than beginning Calculus II (Math 116) students.  This 

suggests that an engineering student should be placed into Physics 140 only if 

he/she has completed Calculus II (Math 116) or entered as a freshman with a F4 

(Quantitative Skills)> 0.3.   

• Engineering 101 is a required programming course for engineering students. It is 

taken either in the first or second semester of the freshman year.  As with Physics 

140, Engineering 101 shows a F4T of 0.3. This suggests that engineering students 
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should enroll in Engineering 101 only after completing Calculus II or entering the 

freshman year with a F4(Quantitative Skills) > 0.3.   

 

Review of Table 5-14 showed that F4 (Quantitative Skills) was not a significant predictor 

for the Pre-Calculus (Math 105) and minimally significant for Calculus II (Math 116).  

These two regressions were explored in more detail and are discussed in the next section.   

 

 

Examination of the Pre-Calculus and Calculus II Regressions 
Pre-Calculus 
 
For the Pre-Calculus regression, the lack of significance was due to a small range for F4 

with a relatively large amount of scatter in the Pre-Calculus Grade.  Some of the students 

may have taken Pre-Calculus in the summer and some in the fall, contributing to this 

scatter. With a stepwise regression, it was found that F16 (Family Support), F8 (Choice 

of Major and Career), and F17 (Social Engagement-Socializing) were significant 

predictors. This warrants further investigation (see Table 5-14). This pattern is quite 

different than that for all students. Here the most significant predictor of academic 

success is F16 (Family Support), which is the combined education level of the student’s 

parents.  Second is a commitment to an engineering major and career(F8) , indicating the 

important of motivation. F17( Social Engagement- Socializing) is the third predictor, Its 

significance is at p=.113 instead of the standard .05 and is included as a possibly 

significant predictor.  Missing as a predictor is F4(Quantitative Skills) or the factors from 

the P1 pillar ( High School Academic Achievement).    It appears that the probable 

commitment by parents (and their encouragement) and motivation towards an 

engineering major are the leading predictors for a high grade in Pre-Calculus.  
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Table  5-14: Stepwise Regression Results of the Pre-Calculus Grade with the Factors 
          as Predictors (n=22) 
 

 
Predictor/Step 

Regression 
Coefficient 

 
T 

 
P 

Adjusted 
R2 

Final 
Mallow’s 

Cp 

Constant 2.247     

F16 (Family Support    0.203 2.53 0.021 0.133 1.6 

F8 (Choice of Major and 

Career 

-0.211 -2.38 0.028 0.311 -1.2 

F17( Social Engagement- 
Socializing 

0.190 1.66 0.113 0.370 -1.2 

 

 

 

Calculus II 

Because of the low R2 for the regression of the Calculus II course grade versus F4 

(Quantitative Skills), a stratification problem was suspected with preparation levels, due 

to the high school AP Calculus courses and measured by the  AP Calculus test scores.  To 

take Calculus II as their first math course in the freshman year, engineering students 

either scored a 4 or a 5 on the AP Calculus AB test or a 4 on the AP Calculus BC test.  

The analysis of this data supports that students who scored a 4 on the (AP Calculus) AB 

test should be considered as a less prepared group of students (on the average)  for 

Calculus II (Math 116) than the students who scored a 5 on the AB test or a 4 on the BC 

test. The following statistics are noted. 

 

• First, the F4 (Quantitative Skills) box plot distributions were reviewed by AP test 

score  (see Figure 5-13).  The median for F4 (Quantitative Skills) is substantially 

different for these three groups, with the students who scored a 4 for the Calculus AB 

test having the smallest values for F4.    Since F4 is the independent variable, this 

could lead to a low predictability if all three groups are combined in one regression.  
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Figure  5-13 : Box Plots of F4 by AP Test Score for Students Enrolled in     
             Calculus II 
 

• When a regression is run for each group, the difference is more evident. The 

regression line of AP Calculus AB=4 students has a lower intercept than that of the 

other two groups (See Figure 5-14). 
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Figure 5-14: Regression Lines of the Math 116 Grade versus F4 Show a       
          Significantly Lower Predicted Math 116 Grades for AP Calculus AB  
          Students with a Score of 4 
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• As further evidence of a potential preparation problem for Calculus II students who 

scored a 4 on the AP Calculus AB test, the cumulative distributions of the Calculus II 

grade were plotted (see Figure 5-15).  The Kruskal-Wallis test showed a significant 

difference in the cumulative distribution of the Calculus II course grade for the 

students who scored a 4 on the AP Calculus AB test compared to the students, who 

scored a 5 on the AP Calculus AB test (p=.002).  
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Figure 5-15: Cumulative Distributions of for the Math 116 Students Show        
           Differences by AP Test Score 
 

These findings suggest that the stratification of the data by AP test score accounts for the 

low R2 for the Calculus II regression.  Placement of students who scored a 4 on the AP 

Calculus AB test needs further research and consideration as a placement policy. 

  

5.6 Summary and Recommendations 

 

The education model developed in Chapter II for engineering academic success was 

mostly validated. To measure the predictability of the ACT admission scores versus the 

SAT admission scores, two subsets were developed; an ACT subset and an SAT subset.  

Based on the regression analyses in this chapter, the ACT test scores were determined to 
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have a better predictability and therefore the ACT subset was selected for further 

analysis.  All the summary statements made in this section are based on the ACT 

subset.  

 

5.6.1 Modeling of First Year GPA 

Of the nine pillars, the following were found to contribute significantly to first year 

academic success (GPA): 

• P1 High School Academic Achievement 

• P2 Quantitative Skills 

• P4 Commitment to Career and Educational Goals 

• P5 Confidence in Quantitative Skills 

• P7 Financial Needs 

• P8 Family Support 

 

P3(Study Habits), P6 (Commitment to this College) and P9(Social Engagement) each 

explained less than 1% of the total variation with their pillar (Table 5-1). P3 (Study 

Habits) had the most literature support.  Included in P6 (Commitment to this College), 

was a variable that indicated if Michigan was the first choice college. Its non-significance 

suggests that motivation to attend Michigan was not sufficient for academic success..  P9 

(Social Engagement) was also not significant.  

 

Prediction modeling of the first year GPA with regression analysis showed that the 

following factors and their associated pre-college characteristics contributed to the 

explanation of the variation in first year GPA.  

• F4 (Quantitative Skills) – this included both knowledge of mathematics and 

scientific reasoning.  Four variables were loaded on this factor: the ACT math 

score, the ACT science reasoning score, the University of Michigan math 

placement test and the University of Michigan chemistry placement test. 

• F1 (High School Grades)- this included the high school GPA and rank 

• F11(Confidence in Quantitative Skills)- this included two CIRP variables; self-

rating of math ability and self-rating of computer ability 
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• F10 (Career Goals) - three CIRP variables were highly loaded on this factor; they 

were the subjective importance of going to college to “get training for a specific 

career”, “to be able to make money”, and “to prepare for Graduate/Prof school”.  

 

In addition, the interaction between F1 (High School Grades) x F4 (Quantitative Skills) 

was strongly significant.  It was found that the interaction explained 6% more variation in 

the first year GPA beyond what the F1 (High School Grades) and F4 (Quantitative Skills) 

explained.  (See Section 5.2.3 for the prediction equations.) 

 

These factors (equation 5.2) explained closed to 40% of the total variation in first year 

academic success (GPA) for engineering students at Michigan.  All of these factors are 

based on high school preparation and pre-college characteristics.  Although each student 

was influenced by his/her experiences at college (Tinto, 1993), it is clear that the 

preparation and pre-college attitudes and confidence are major contributors to success in 

the first year of engineering.  

 

The significance of F1 (High School Grades) and F4 (Quantitative Skills) was consistent 

with engineering academic success empirical studies and was expected.  The significance 

of F11 (Confidence in Quantitative Skills) was consistent with a study by Besterfield et 

al. (2002).  This study showed that confidence in engineering skills from the PFEAS© 

survey was a significant predictor for whether a student was placed on academic 

probation after the first semester of engineering.  It is worth noting that F1 (High School 

Grades) based on the high school GPA and rank is more significant than F2 (High School 

Performance), which is based on the ACT Composite score. 

 

The prediction modeling results were generally consistent with the Besterfield-Sacre et 

al. (1997) study for predicting first term GPA at the University of Pittsburgh. In that 

study having a scholarship, high school rank and SAT Math were the first three 

predictors in a stepwise regression. The significance of F4 (Quantitative Skills) and F1 

(High School Grades) was consistent with Besterfield-Sacre’s predictors of high school 

rank and SAT Math. Scholarship information was not considered in this study.  Levin and 
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Wyckoff (1988) at Penn State University showed that high school GPA and SAT Math to 

be the first two predictors in a stepwise regression on first year GPA in engineering. They 

also found the math placement test and chemistry placement test to be a significant 

predictors (consistent with this study’s F4 (Quantitative Skills).  Both the Besterfield-

Sacre study and the Levin and Wyckoff studies showed a study habits predictor, which 

was not prevalent in this study.  Besterfield-Sacre’s study also showed that “like 

math/science” was a significant predictor; this is similar this study’s Confidence in 

Quantitative Skills which is based on self-ratings of math and computer abilities. The 

prediction results in this study were also consistent with French et al. (2003), who found 

that the SAT Math, and High School Rank were among the significant predictors of 

college GPA.  

 

This modeling strongly suggests that motivation cannot overcome a lack of preparation in 

academic skills.  If this were the case, other factors would have been more significant. F4 

(Quantitative Skills), by itself, accounts for 23% of the total variation in first year GPA.  

The implication for support programs is that engineering students will benefit more from 

strong tutoring programs that develop preparation levels than from social support groups.  

This may not be true for all student groups.  

 

The model was validated by applying it to an independent sample from a different year.  

The validation results showed the same level of predictiveness using the adjusted R2, 

verifying that equation 5.2 can be extended to more than one year and that close to 40% 

of the first year GPA can be explained by pre-college characteristics. 

 

5.6.2 Gender and Ethnicity Differences for Academic Success  

Academically, female students succeed at the same level as male students in the freshman 

year. No significant difference between female and male students was evident for the 

average of first year GPA. There was a statistically significant difference in the average 

F4 (lower average for female students for Quantitative Skills) and average F11 (lower 

Confidence in quantitative skills for female students) at p=.000.  There was not a 

significant difference in F1 (High School grades).  This suggests that programs such as 
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WISE (Women in Science and Engineering) help female students overcome a lower 

quantitative skill and a lower confidence in those skills in order to achieve academic 

success (GPA).  

 

Academically, under-represented minorities achieve at a significantly lower average first 

year GPA than non-under-represented minorities.  Once the significant predictive factors 

(F1 [High School Grade], F4 [Quantitative Skills], F10 [Career Goals], and F11 

[Confidence in Quantitative Skills]) are entered into a linear model with ethnicity, no 

significant difference exists between the adjusted average first year GPA of URM 

students compared to Non-URM students.   

 

In order to achieve more racial diversity, the University of Michigan has had a policy of 

considering race in its admissions criteria.  So a significant difference would be expected, 

assuming that the first year GPA is affected by academic preparation levels.  The model 

strongly validates the importance of preparation levels both in general academic 

preparation and preparation in quantitative skills.  The data supported that a statistically 

significant difference in the average of both F1 (High School Grades) and F4 

(Quantitative Skills) existed between URM and Non-URM students. Consistent with the 

model, these differences accounted for the statistically significant lower average first year 

GPA of under-represented minorities compared to majority students.   

 

What is extremely significant here, is that when the average first year GPA of URM 

students was adjusted to the average F1 (High School Academic Achievement), F4 

(Quantitative Skills), F10 (Career Goals) and F11 (Confidence in Quantitative Skills), 

there was no significant difference in the first year GPA between URM students and 

Non-URM students..  In other words, these four predictors explained the average 

difference in first year GPA between URM and Non-URM students.  Although there may 

have been cultural differences between under-represented students and non-under-

represented (majority) students, they did not play a significant role in the difference of 

these two student groups for first year academic success.  If this were the case, there 

would have been a significant difference after F1 (High School Grades), F4 (Quantitative 
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Skills), F10 (Career Goals) and F11 (Confidence in Quantitative Skills) were taken into 

account. It is appropriate to note that URM students averaged a significantly higher F10 

(Career Goals). This was interpreted that, on the average, URM students were more 

motivated towards an engineering career.  Based on the model, in the competitive grade 

environment of Michigan, on the average, this motivation cannot overcome less 

preparedness in math and high school college-preparation courses.  On an individual 

student basis, there may be exceptions. 

 

The modeling of engineering academic success was first constructed to consider pre-

college characteristics without considering gender or ethnicity.  Once the significant pre-

college characteristics were selected using the factor scores, it was shown that when these 

pre-college characteristics are taken into account, there is no significant difference in 

gender or ethnicity.  This provides support for this model for academic success that is 

independent of gender and ethnicity. 

 

5.6.3 Advanced Techniques for Intervention Analysis 

Two advanced techniques were used to explore first year engineering success.  The 

Hotelling’s T2 was found to be successful as a multivariate tool and showed stability 

among the students’ data.  Some outliers were identified.  It is recommended that the 

Hotelling’s T2 method be further explored as a research tool for engineering retention 

studies.  

 

The Randomized Database Method was used to randomly select students’ records from 

the database in order to minimize the confounding effects of a student participating in 

more than one intervention program.  The results using this method were considered 

effective in analyzing whether an enrollment in Engineering 110 (careers in engineering) 

and a higher frequency of visits to the Engineering Advising Center affected the first year 

GPA.  For example, a group of students enrolled in Engineering 110 could also 

participate in a learning community or mentoring program. By selecting records 

randomly from the database, this bias was minimized. This method showed promise in 

this research and its use is recommended. 
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5.6.4 Intervention Programs 

In this chapter, three intervention programs were evaluated with respect to first year 

academic success (GPA).  In summary, the conclusions were: 

• The AMP mentoring program of supporting second-semester students who 

achieved a low first-semester GPA demonstrated success. The improvement of 

the second semester GPA of the mentored students over the control group was 

statistically significant with the mentored students achieving a one-grade 

improvement in the GPA over the first semester GPA.  It is recommended that 

this mentoring program be continued.  

• No significant difference in average GPA was evident between the students with a 

high frequency of advising and a low frequency of advising.  Since the students 

with lower GPAs visit the advising center more often, this result suggests that the 

EAC is highly effective in helping students become academically successful.  

• Enrollment in Engineering 110 did not have a significant effect on the first year 

GPA.   Engineering 110 can be thought of as an intervention to motivate students’ 

commitment to engineering.  The non-significance of Engineering 110 in 

predicting the first year GPA is consistent with the literature review (Chapter II), 

which showed that commitment to career and educational goals is a significant 

predictor more for retention than for academic success.  There were two 

significant interactions associated with Engineering 110: Engineering 110 x 

Gender and Engineering 110 x Advising Frequency.  More confirmatory research 

is recommended to further study these interactions. In particular, it is 

recommended that a  survey on Engineering 110 students be conducted on their 

congruence to engineering interests (similar to the measure that Leuwerke et al. 

used) before and after completion of Engineering 110.    

 

5.6.5 F4 (Quantitative Skills) as a Placement Indicator into Freshman Courses 

Because of the significance of proper placement into the freshman level courses for 

student academic success and because F4 (Quantitative Skills) was the most significant 

factor for first year GPA,  modeling of the freshman level course grades using 

F4(Quantitative Skills) was conducted.   
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F4 (Quantitative Skills) is the factor associated with quantitative skills and explained 

23% of the total variation in first year GPA.  Four variables are loaded on F4: the ACT 

Math score, the ACT science reasoning score, the U-M math placement test score and the 

U-M chemistry placement test score. A F4 equivalent to a minimal value for expected 

success in a course was developed and was denoted by F4T.  The values for each course 

are shown in Table 5-12.  The results were very consistent; further research in using F4 

(Quantitative Skills) is recommended.  Because F4 (Quantitative Skills) was the best 

predictor of first year GPA for the entire database, it was expected that it would be a 

significant predictor for each subset of data associated with the first math course.  For 

Pre-Calculus and Calculus II, this was not the case.  F4 (Quantitative Skills) was not a 

significant predictor for first year GPA for students who enrolled in Pre-Calculus; the 

range of F4 (Quantitative Skills) was relatively small.  F4 (Quantitative Skills) was 

significant for predicting first year GPA for students who AP into Calculus II, but only 

with an R2 of 6%.  Further analysis showed that students who scored a 4 on the AP 

Calculus AB test earned a significantly lower average course GPA than students who 

score a 5 on the AP Calculus AB test or  a  4 on the AP Calculus BC test.  It was 

recommended that students in the first group should be selected for a special section of 

Calculus II.  Minimally, it is recommended that the College of Engineering placement 

policy be reviewed with respect to placement of AP Calculus students.   

 

5.6.6 Summary 

In summary, the modeling of first year GPA was highly successful and supported 

previous research that showed the importance of quantitative skills and the high school 

preparation for college-level courses.  With the use of factor analysis, 38% of the total 

variation in first year GPA was explained to be related to pre-college characteristics.  

Significantly, this research compared the ACT data to the SAT data and concluded that 

the ACT data gave similar results as the SAT data for the 2004 cohort, and the ACT gave 

a better prediction for the cross-validation sample. This is one of the few engineering 

education empirical studies that use the ACT scores for prediction.  This study also 

showed a strong interaction between quantitative skills and overall high school grade 
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performance.  Including the interaction in the model contributed to a higher R2.  

Confidence in quantitative skills was also shown to be significant.  There was no 

difference in gender or ethnicity for academic success (GPA), once the significant 

covariates in the model were controlled (adjusted).   

 

With respect to interventions for student academic success, two findings were particularly 

significant. 

 1) Mentoring of students at risk in the second semester showed significant 

improvement in the first year GPA. 

 2) A combination of a high level of advising and enrollment in Engineering 110 

showed substantial improvement in the first year GPA over students who only 

participated in a high level of advising visits.  

 

Further confirmatory research of these two findings is recommended.  
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CHAPTER VI 

MODELING OF STUDENT RETENTION 

FOR THE ENGINEERING STUDENT SECTOR 

 
This chapter will discuss the modeling of both college and university retention for 

engineering students using logistic regression.  The following topics are included in this 

chapter: 

• Validating that the first year GPA is a strong predictor of retention (Section 6.1) 

• Modeling retention with the pre-college characteristics (Section 6.2) 

• Sensitivity analysis of retention (Sections 6.2.2.2 and 6.2.3.2) 

• Gender and ethnic differences with respect to retention (Section 6.2.4) 

• The influence of initial commitment to engineering and the University of 

Michigan on retention ( Section 6.3) 

• Effect of advising frequency and enrollment in Engineering 110 on retention 

(Section 6.4) 

• The summary includes a discussion of why Michigan Engineering has a high 

retention rate (Section 6.5) 

 

In the model (see Figure 6-1, Section 6.1), it was hypothesized that the first year GPA 

would be a strong predictor of both college and university retention.  The results showed 

that the GPA was not a predictor of college retention.  The pre-college characteristics 

were then explored as possible predictors of college and university retention.  A 

sensitivity analysis was conducted on the significant variables and their relationship to 

the retention rate. Next, the question of whether freshman engineering retention varies by 

gender or ethnicity was explored.   
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A review of the literature showed that there is literature-based evidence that students that 

have a high rating of “general impression of engineering” have a higher retention rate 

(Besterfield-Sacre, et al., 1997).  The research of Leuwerke et al. (2004) supports that 

career congruence in engineering influences freshman engineering retention. In addition, 

Watson and Froyd (2007) proposed that career development in engineering needs to be 

developed throughout a student’s undergraduate student experience.   In this chapter, 

enrollment in Engineering 110 in addition to advising frequency will be explored for 

effectiveness in retaining students in engineering.  If, as the model (Figure 6.1) 

suggests, that a revised commitment to engineering is important, then students who 

enrolled in Engineering 110 should have a higher retention rate than students who did not 

take Engineering 110.  This will be verified. 

 

Section 6.1 discusses the effect of first year GPA on college and university retention of 

engineering students.  Section 6.2 discusses the effect of the pre-college characteristics on 

college and university retention.  Section 6.3 discusses whether there is a relationship 

between the initial commitment to an engineering major/career or choice of college and 

the college and university retention.  Section 6.4 discusses the contribution of enrollment 

in Engineering 110 and the level of advising to engineering retention.  Finally, Section 

6.5 includes the summary and recommendations.  

 

 

6.1 Validation on the Influence of the First Year GPA on Retention 

 

This section discusses the modeling of retention using the first year GPA.  For purposes 

of discussion, Figure 6-1 displays the retention decision in more detail.  According to this 

model, the retention of students in engineering is dependent on three factors: 

 1) Level of student success (first year GPA) 

 2) A revised commitment to engineering 

 2) A revised commitment to the college 
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An engineering retention model will be developed with the level of student success (first 

year GPA) as an input.  Because of limitations of the data used in this research, only the 

first year GPA (of the three factors listed above) is measured and discussed in this 

research. 

   

 
Figure 6-1: Student Success Model  

 

6.1.1 Methodology 

Definitions 

In discussing retention of engineering students, there are two definitions for student 

retention. 

• College retention: the Percent of students who matriculated into the College of 

Engineering and continued in a major in engineering at Michigan for the third 

semester (fall semester of the second year).  In Figure  6-1, the college retention 

box indicates the students who stay in engineering.  
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• University retention: the Percent of students who matriculated into the College 

of Engineering and were enrolled in a program at Michigan for the third semester 

(fall semester of the second year).  In this definition, students who transferred to 

another college at Michigan are considered retained in the university.  In Figure  

6-1, the larger box represents  the students who are counted in this statistic.  The 

drop-out rate from a university is 100- (the university retention) and includes 

students who transferred to another engineering college or university.  

 

Modeling with Logistic Regression 

In modeling student retention, logistic regression is the most common technique used in 

the research literature (Besterfield-Sacre et al., 1997, French, et al., 2005).  This section 

summarizes the use of logistic regression and compares it to the regression used in 

Chapter V.  

 

In Chapter V, ordinary least squares regression was used to develop a model for the first 

year GPA.  The first year GPA, as a dependent variable in the regression,  is a continuous 

variable.  The factors for the pre-college characteristics were the independent variables.  

In ordinary least squares regression, it is assumed that the errors are normally distributed 

with a mean of 0 and a constant standard deviation.  

 

In this chapter, logistic regression will be used to model student retention.  Retention for 

an individual student is a dichotomous variable; either he or she returned to engineering 

or left engineering. The dependent variable, therefore, is usually coded as a “0” or “1”.  

The independent variable is the first year GPA.  From this model, the error in the logistic 

model for retention is distributed as a binomial distribution. The parameters of the 

logistic regression model are estimated using maximum likelihood instead of least 

squares methods.       

 

Suppose a logistic regression model is desired with retention modeled in terms of the first 

year GPA.  A logistic regression model is given by: 
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 Yi= ln (Pi/ (1-Pi)) = β0 + β1 Xi  + εi     6.1 

 

Where  

Yi = 1 if student i registered for the second year (student retention); 0 if student i did not 

 register for second  year (student not retained) 

Pi =   probability of an engineering student returning to engineering for the 2nd year of          

 engineering college  

Xi =  first year GPA for ith student 

  

The predicted first year retention probability can be calculated as: 

Pi = exp (b0 + b1 Xi) / (1 + exp (b0 + b1 Xi)      6.2 

  

Where the coefficients b0 and b1 are the estimates of  β0 and β1.  

(Hosmer and Lemeshow, 2000) 

 

Note that if  Yi were coded as a “0” to represent a student who registered for classes in 

the second year, the Pi represents the probability of attrition.   

 

In the engineering education literature, the logistic model is usually used for retention 

studies.  It can be argued whether the logistic or probit model is a better theoretical 

model. Because it is expected to have higher probability of retention for higher levels of 

the first year GPA, it could even be argued that the complementary log log model should 

be considered.  In this research, the use of the probit model and the complementary log 

log gave similar results to the logistic model.  Because the logistic model is commonly 

used in retention research, the logistic model was used for this analysis.  

 

Goodness of Fit 

The Hosmer-Lemeshow (H-L) goodness of fit test is commonly used to determine the 

goodness of fit of the data to the logistic model.  Xie et al (2007) states that the objective 

of a goodness of fit test is “to reflect whether the predicted values are an accurate 



 

 173

representation of the observed values. Omitted predictors, a misspecified form of the 

predictor, or an inappropriate link function can all result in poor prediction.”  Researchers 

are interested in a better-performing goodness of fit test, and especially in improving the 

power of the test, in detecting missing terms or an incorrectly specified model.  In this 

section, three goodness of fit test statistics are discussed: the Pearson chi-square, the H-L 

test, which is also known as the Ĉ test, and the unweighted sum of squares statistic , 

known as the Ŝ test. (Other proposals for goodness-of-fit tests for logistic regression have 

appeared in the research literature, including Hosmer, et al. (1997), Hosmer and Hjort ( 

2002), Pigeon and Heyse (1999) and Xie et al. (2007). )  

 

Historically, before the development of the H-L statistic, the Pearson chi-square test was 

used where equal intervals were defined in terms of the independent variable, rather than 

in terms of the dependent variable.  The H-L test statistic, as developed by Hosmer and 

Lemeshow,  uses the chi-square test statistic similar to a chi-square statistic, except each 

category has an equal estimated probability.  Instead of partitioning the data by equal 

intervals of the x- variable (i.e. the Pearson chi-square test), the data is partitioned based 

on equal intervals by the empirical probability of occurrence. The H-L test statistic uses a 

10 x 2 contingency table, where the 10 bins of equal sample size are often referred to as 

the “deciles of risk” (Hosmer, et al., 2000).  For each bin, there are two cells, one will 

represent the frequency of the attribute being studied (with a data value of “1” and the 

other will be the frequency of the attribute not being present (with a data value of “0”).  

In the case of a retention study, the first cell will include the number of students who 

returned to college and the second cell will include the number of students who dropped 

out.  It is also referred to as the Ĉ statistic:   

     

         Ĉ =  ∑
k

(Ok – nk P k)2/ nk P k(1- P k) 

         

where Ok  is the observed frequency for the kth bin, nk is the observed sample size for the 

kth bin and P k is the average expected probability for all observations in the kth bin. 
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 The unweighted sum of squares statistic, Ŝ,  is the sum of squared residuals and is 

calculated by: 

 

           Ŝ = ∑=

=

ni

i 1
(Yi – Pi)2 

 

for all data. (Hosmer and Hjort, 2002).  

  

A disadvantage of the Pearson chi-square goodness of fit test was that it required an 

expected frequency of at least 5 in each cell in order to use the chi-square distribution for 

significance testing.  In most cases, especially with sample sizes of 200 or less, the 

expected frequency could be less than 5 for the outer cells.  

 

The H-L test, as a reliable statistic, has two areas of major concern.  The first concern is 

directly related to the algorithm used by statistical software packages.  The concern is 

that the statistic and associated significance level are different for different software 

packages with the same data.  (Hosmer et al., 1997; Pigeon and Heyse, 1999; Harrell, 

2001)  This is due to the handling of ties and the establishment of the cutpoints needed 

for the H-L test.  For example, if the independent variable is GPA, which has an 

underlying continuum, that continuum must be partitioned into ten bins.  The endpoints 

of the bins are known as the cutpoints and may be slightly different from one statistical 

package to another.  In one statistical package, the H-L statistic could indicate 

significance and in the other non-significance.  The second issue is defined as follows.  

The dependent variable is a dichotomous 0-1 variable.  If a student is retained, the 

dependent variable may be coded as a “1” and then the logistic regression predicts 

probability of retention.  As an alternative method, the coding of a student who is 

retained could be indicated by a “0” (where “1” is coded for students not retained).  In 

comparing these two methods of coding of the data, the coefficients of the logistic 

regression have the same magnitude but the signs are opposite.  This makes sense, since 

in the first case, the probability of retention is predicted and in the second case, the 

probability of attrition is predicted.  The concern is that the H-L goodness of fit statistic 

with the same software is different.  This is due to the cutpoints being different, 
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especially if the total sample size is not a multiple of ten. The last interval usually has the 

smallest frequency.  

 

Another issue is the expected frequency within a cell.  The H-L test, as specified, has 20 

(2 x 10) cells.  First, the total sample size is divided by 10, and then the frequencies are 

divided into the observed frequencies of a “1” and of a “0” representing the attribute 

being considered (in this case, retention of students).  For example, if the total sample 

size were 500, each “decile” or bin of two cells would have a frequency of 50.  In each of 

the two cells would be the frequency of a “0” and of a”1,” respectively, adding to 50.  

The expected value for each of these frequencies would also be calculated.  It is possible 

in the outer cells, for there to be a small expected value for either a “0” or “1,” 

representing the tails of the distribution.  Since the H-L test is distributed approximately 

as a chi-square (Hosmer and Lemeshow, 2000; Pigeon and Heyse, 1999), the usual 

concern about an expected frequency of at least a frequency of 5 for each cell is 

applicable.  

 

The unweighted sum of squares, Ŝ, was first proposed by Copas (1989) for categorical 

data.  Its advantage is that for a continuous x variable, cutpoints do not need to be used 

and a large residual in the tail of the distribution have less influence on the statistic than 

with the H-L statistic. It has the disadvantage of not identifying individual residuals that 

may contribute to a  high Ŝ value. There is substantial interest in the research literature in 

this statistic (Hosmer, et. al., 1997, Harrell, 1999; Hosmer and Hjort, 2002) 

 

One of the issues among statisticians is the use of cutpoints, as one would use in a chi-

square test.  If the independent variable in a logistic regression has an underlying 

continuum (e.g. GPA, high school rank), the selection of cutpoints can influence the 

significance of the test (Harrell, 2007).  Some of the recent goodness of fit tests have tried 

to address this concern.  In particular, there is interest in the research literature in the 

unweighted sum of squares test, S.  (Harrell, 1999; Hosmer, et al., 1997)   
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Hosmer et al. (1997) reviewed the work of Copas on an unweighted sum of squares and 

conducted an extensive simulation study to compare logistic regression goodness of fit 

tests.  Hosmer and Hjort (2002) conducted another simulation study to compare the 

goodness of fit statistics with respect to the power of the test and this will be discussed 

next.  

 

Consistent among the three goodness of fit tests, is that the simulations confirm a 

significance level of about 0.05 when the statistic is used under the null hypothesis of no 

difference (i.e. the simulated results are from a logistic distribution).  The probability of 

rejecting the test with a critical value set at a significance level of 0.05 ranged from 0.032 

to 0.068 for 500 simulations.  Therefore, it can be concluded that all three test statistics 

have a correct test size and have a minimal type I error.   

 

In addition, Hosmer and Hjort (2002) looked at the power of these three tests for three 

conditions: 

1. The detection of a quadratic term in the correct model when it is not in the model 

to which the data is fitted 

2. The detection of an interaction between a continuous independent variable and a 

dichotomous independent variable when it is not in the model to which the data is 

fitted 

3. The detection of an inappropriate underlying distribution.  The data is fitted to a 

logistic model.  The alternative distributions considered for a power evaluation of 

the goodness of fit test were the probit, complementary log-log, the logistic model 

with longer or shorter tails and an asymmetric logistic model with one tail longer 

and the other tail shorter.   

 

The findings from the simulations in the Hosmer and Hjort (2002) paper are discussed 

next. 

1. Detection of a quadratic term.  With an increased quadratic effect and increased 

sample size, the power to detect the quadratic effect increased.  All three tests 

yielded the same magnitude of power.  For a sample size of 100 and a large 
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quadratic effect, the power from the simulations was greater than .90 for all three 

tests.  For a sample size of 500, the power was at least .80 for even a small to 

moderate quadratic effect for all three tests.  The power calculations were 

consistent for all tests.  

2.  Detention of an interaction term.  With a sample size of 100, all three tests 

performed poorly with respect to rejecting the model when an interaction term 

was present.  With a large sample size of 500, the simulated power of the test for 

all three tests was varied with .050 for a low interaction effect to .986 for a high 

interaction effect.  The Pearson chi-square and the Ŝ test outperformed the Ĉ test 

for power across the spectrum of levels of interaction effect.  Except for the 

highest level of interaction, the power was not as high as would be desired.   

3. Detection of an inappropriate underlying distribution.  When the sample size 

was 100, the power was poor for all three tests.  The power was improved for a 

sample size of 500.  The Ŝ test outperformed the other two tests.  Only in the case 

of an asymmetric tails, was the power greater than .80 for all three tests. The 

power of the unweighted sum of squared residuals test (Ŝ) was .77 for the logistic 

model with short tails.  This indicates that the Ŝ test detects this condition much 

better than the other two tests, which showed a power of .436 for the chi-square 

and .190 for the Ĉ test.  Table 6-1 displays the power probabilities for a sample 

size of 500 from these three tests. 

 

Table 6-1: Simulated Power for alternative underlying distributions with n= 500 

Underlying Distribution Pearson’s 
Chi-Square

H-L Test
     Ĉ 

Unweighted  
Sum of Squares, Ŝ

Probit .076 .068 .102 

Complimentary log-log .176 .270 .234 

Logistic model with long tails .130 .078 .126 

Logistic model with short tails .436 .190 .772 

Logistic model with one 
long tail and one short tail 

.872 .926 .864 

      Source: Hosmer and Hjort (2002) 
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Except for the asymmetric tail, and the short tail logistic model for the Ŝ test, the 

simulations support a concern that these tests do not detect an incorrect model (such as a 

probit or complimentary log-log) even with a large sample size.  Relative to the three test 

considered in this discussion, Hosmer and Hjort (2002) recommend using the Pearson 

chi-square and unweighted sum of squared residuals, Ŝ, in addition to the H-L goodness 

of fit test, Ĉ.  In addition, they recommend reviewing the 2 x 10 table of observed and 

expected frequencies.  

 

In their book, Applied Logistic Regression,  Hosmer and Lemeshow (2000) discuss the 

statistical issues faced by the researcher in using the H-L goodness of fit test, Ĉ, and the 

unweighted sum of squared residuals, Ŝ .  They discuss the validity of the H-L goodness 

of fit test, Ĉ , being dependent on an expected frequency of about 5..  Some researchers 

require an expected frequency of at least 5 for each cell; Hosmer and Lemeshow indicate, 

“we feel that there is reason to believe that the calculation of the p-value is accurate 

enough to support the hypothesis that the model fits.”  They caution against collapsing 

bins to satisfy the expected frequency of 5 criteria.  If the 10 groups in the H-L goodness 

of fit test are collapsed down to less than 6 groups to merge cells so that the expected 

frequency is about 5, the test “will almost always indicate that the model fits.”  (Hosmer 

and Lemeshow, 2000).  Contrary to this, Pigeon and Heyse (1999) provided an example 

where they collapsed the number of bins down to 4 bins because their sample size was 

only 39, and had a significant Ĉ  statistic (p<.05).  Hosmer and Lemeshow indicate that 

the advantage of Ŝ  is that it is simple to use; its disadvantage is that without using a table 

of observed versus expected frequencies, an important residual may be missed.  

Therefore, they recommend that diagnostic plots and the contingency table also be used 

to evaluate residuals.   

 

The following summary provides the algorithms for the calculation of the p-value for 

each test. The Pearson chi-square test is well known and its statistical significance is 

based on the chi-square distribution.  

 

   Χ2 = Σ[ (Oi – Ei) 2/ E] 
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The Pearson chi-square test is calculated using Minitab 15.0.  The H-L goodness of fit 

test is also based on a chi-square distribution with 8 degrees of freedom. It is calculated 

by both SPSS 15.0 and Minitab 15.0.  The Ŝ statistic has approximately a normal 

distribution.  If the expected probability of retention is denoted by Pi, and vi = Pi (1- Pi) , 

then V, the sum of the vi,   

 

  V = ∑ vi 

 

is the mean for the distribution of Ŝ .  The variance for the distribution of Ŝ is calculated 

by first computing the weighted linear regression of (1-2 Pi) on the X-variables of the 

logistic regression with weights, vi.  The estimate of the residual sum of squares, RSS,  

from this regression is the estimated variance of the approximate normal distribution of Ŝ 

. (Hosmer and Hjort, 2002).  Significance level can be calculated with a Z-score with a 

mean of V and a standard deviation of the square root of the residual sum of squares from 

the weighted regression.  SPSS stores the residuals of the Yi - Pi..  From these residuals, 

the S statistic may be calculated.  Then the mean and standard deviation may be 

calculated with the weighted regression, which is available in SPSS. Using  a Z-score of 

Z = (Ŝ -V )/ RSS  the level of significance, p, can be calculated from a Normal 

Distribution table.  
 

Sample Size Considerations Require Combining of Two Cohorts  

The initial design of this research included two data subsets: the first to estimate the 

parameters of the model; the second to independently validate the model with a high 

degree of predictability.  This approach was used in modeling first year student success 

(GPA) in Chapter V.  The 2004 cohort was used to model student success and the 2005 

cohort was used to validate the model.   

 

With the very high college retention of 93.9% in the combined 2004 and 2005 cohort, the 

sample of students who choose to leave engineering is small for each cohort.  In this 
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sample of 735 engineering students for the two cohorts, 21 students in the 2004 cohort 

and 24 students in the 2005 cohort choose to leave engineering.   

 

This is an excellent university situation in the retention of students, but provides major 

challenges to modeling of retention.  Hosmer and Lemeshow (2000) discuss using a 

guideline of 10 observations per estimated parameter in the smaller group for a logistic 

regression.  Peduzzi, Concato, Kemper, Holford and Feinstein (1996) developed this 

guideline based on their research.  According to Hosmer and Lemeshow,  

 

“ Peduzzi et  al. show that a minimum of 10 events per parameter are 

needed to avoid problems of over estimated and under estimated variances 

and thus poor  coverage of Wald-based confidence intervals and Wald 

tests of coefficients”  (Hosmer and Lemeshow, 2000).   

 

In consideration of needing a larger statistical sample of students who did not return to 

engineering, the 2004 and 2005 cohorts were combined for this analysis.  With 45 

students who left engineering, a model may include 4 parameters.  Therefore, no cross-

validation of the model with a second sample was possible. The sample size is 735 with 

690 students returning to Engineering for the second year of college and 45 students 

leaving Engineering.  Of the 45 who left, 27 transferred to another college at Michigan 

and 18 did not register in the fall term of the 2nd year. It is assumed that they dropped out 

of college or transferred to another college. 

 

Hypotheses 

To validate the model for student retention, the following hypotheses were developed: 

 

• The first year GPA a significant predictor for college retention 

• The first year GPA a significant predictor of university retention 
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6.1.2 Results 

Discussion of the H-L Goodness of Fit Statistic 
 
In the methodology section, the literature indicated that the H-L goodness of fit statistic 

varies with software packages. A comparison was made of SPSS and Minitab and 

showed differences in the values of the H-L statistic for modeling of college retention as 

a function of the GPA (see Table 6-2).  Because Minitab does not allow the modeling 

without a constant, the comparison was made with both the constant and the slope of 

GPA included in the logistic regression.  In addition, a comparison was made by the 

coding of the dependent variable.  The dependent variable is  a binary 0-1 variable. 

Usually a “1” may be coded to indicate students who returned to engineering (indicating 

probability of retention).  As an alternative method , a “1” may be coded to indicate 

student who left engineering (indicating the probability of leaving). Table 6-2 illustrates 

that the H-L statistic also varies depending on the coding of the dependent variable.  

 
 

Table 6-2: H-L Goodness of Fit Statistics are Different between SPSS and Minitab 
          and between the Retention and Attrition Models (n=735) 
 

Coding Method 
of Dependent Variable 

Software H-L Statistic 
      Ĉ 

  p- 
value 

1=Return; Predict 
College Retention 

SPSS 8.280 .407 

1=Return; Predict  
College Retention 

Minitab 6.281 .616 

1= Leave; Predict 
College Attrition 

SPSS 5.882 .660 

1=Leave; Predict 
College Attrition 

Minitab 5.975 .650 

Note; Logistic model includes both a constant and slope for GPA 
 
 

Overall Retention Statistics 

The engineering college retention for the entire sample is 93.9% and the university 

retention is 97.6%. The empirical relationship of college retention to first year GPA is 

presented in Figure 6-2. As expected from the model, the lowest retention is for students 

with a first year  GPA < 2.000. 
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Figure 6-2: First Year Retention versus First Year GPA (n=735) 

 
Modeling of Retention as a Function of GPA 
 
Table 6-3 displays the logistic regression results for college retention and university 
retention with the GPA as a predictor.   
 
Table 6-3: Logistic Regression Table for College Retention and University Retention 
        Models (n=735) 
 
Predictor Coefficient SE 

Coefficient 
Wald’s
Test 

 P  Odds
Ratio 

95%Confidence 
Interval on  
Odds Ratio 

College Retention 

First Year 

GPA 

0.910 .053 293.8 .000 2.483 (2.238, 2.756) 

Chi-Square Test = 17.62(p< .005) 
Unweighted Sum of Squares( Ŝ) Z-score= 3.166 (p=.001) 
Hosmer-Lemeshow Goodness of Fit Test (Ĉ) = 9.488 with d.f. =8  (p=.303) 
University Retention 

First Year 

GPA 

1.312 .094 196.1 .000 3.713 (3.091,4.462) 

Chi-Square Test = 106.55 (p<.005) 
Unweighted Sum of Squares (Ŝ)  Z-score = 0.112 (p=.544) 
Hosmer-Lemeshow Goodness of Fit Test  (Ĉ)  = 8.010 with d.f. =8 (p=.433) 
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The constant was not significant and was not included in the model. The three goodness 

of fit statistics discussed in the Methodology section are reported. 

 

 Disagreement in Goodness of Fit Statistics of Modeling of College Retention with 
the First Year GPA 
 
For the college retention model, the  H-L statistic  and chi-square test indicate a good fit 

with a p > .05, while the unweighted sum of squares statistic indicates a  poor fit.  To 

better understand the logistic model, a graph of the observed  and predicted college 

retention percent for each GPA in half-grade increments was generated.  The expected 

college retention was calculated as the  predicted retention at the mid-point of each 

interval (See Figure 6-3).  The shape of the logistic curve does not have sufficient 

curvature to fit the expected retention for a GPA < 1.500. Figure 6-3 displays the 

inaccuracy in the fit between the actual data and predicted logistic curve.  
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Figure 6-3: Weak Fit of Data with the Predicted College Retention Influenced by   
         Low Retention of Students with GPA < 1.500 (n=735) 
 
Only 5 data points were included in the retention statistics at the GPA< 1.500 point.  A 

Minitab logistic regression diagnostic  plot of “Delta Beta versus Leverage,” confirmed 

that 4 of the 5 points exerted a high level of leverage to influence the regression 
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coefficient.  The logistic regression was re-run with without these five points, and the 

revised plot of predicted versus observed college retention is shown in Figure 6-4.  The 

coefficient for the first year GPA was not significant (p=.245 with Wald’s test), which 

left the model with only a significant constant term.   

 

The logistic regression equation was : 

 

 ln (P/(1-P) = 2.822        6.1 

 

Solving for P, the College Retention probability was:  

 

 P = .944 or 94.4 % for the range of first year GPA of 1.5 to 4.0 .  

 

Using the goodness of fit statistics, the data fits a constant model.  The Pearson chi-

square statistic was 1.760 with 4 degrees of freedom (p=.778); the H-L statistic was 3.404 

with 8 degrees of freedom(p=.094);  and the unweighted sum of squares Z-score was .031 

(p=.622).  For the unweighted sum of squares, the same standard deviation was assumed 

as was used with the five points included.   All three tests show a significance level 

greater than .05, indicating a good fit.   

 

Modeling of University Retention of Engineering Students Shows that the GPA is 
Significant 
 
In the modeling of university retention, a similar case of a poor fit of the data occurred at 

the low end of the distribution.  Four of the five students (20%) with a GPA less than 

1.500 left the university.  Both the H-L statistics and Ŝ statistic indicated a good fit.   

Again, the SPSS logistic regression was re-run without the data with a GPA less than 

1.500.  For university retention, the GPA predicted the university retention.  The 

difference from Table  6-1 was slight with the coefficient for GPA equal to 1.322 with no 

constant coefficient.  The Pearson chi-square test value was 106.55 (p<.050); the H-L test 

value was 7.931 ( p =.440); and the unweighted  sums of squares Ŝ expressed as a Z-
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score was -1.07 (p=.160). The H-L test and the Ŝ indicate an adequate fit.  Figure 6-5 

shows the revised plot of the predicted University retention versus the observed retention.  
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Figure 6-4 : Better Fit of Retention for GPA > 1.500 When a Constant Model of the    
          Log of the Odds Ratio is Assumed  (n=730).  Note change in scale from 
          Figure 6-3. 
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Figure 6-5: Revised Logistic Regression Model is Consistent With University      
        Retention Data (n=730) 
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6.1.3 Discussion 

The retention rates for engineering students were 93.9% for college retention (within the 

College of Engineering) and 97.6% for university retention.  

 

The hypotheses were: 

1. The first year GPA is a significant predictor for college retention 

2. The first year GPA is a significant predictor for university retention 

 

The GPA was not confirmed as a significant predictor of engineering (college) retention. 

It is possible that due to Michigan’s support of students on probation that students with 

low GPAs perceive that they will be able to recover academically in their sophomore 

year.   

 

The GPA was confirmed as a significant predictor of university retention.   

 

 

6.2 Modeling Retention as a Function of the Pre-College Characteristics 

 

Since the first year GPA was not a significant predictor of college (engineering) retention 

(section 6.1), a wider net of possible predictors was explored.  In Chapter V, it was 

discussed that several of the factor scores were very significant predictors of the first year 

GPA.  It is possible that instead of the first year GPA predicting retention, these same 

variables would predict retention.   

 

6.2.1 Methodology 

Missing Data Considerations Require Using Variables Instead of Factors 

In considering this approach, there was a significant data management challenge.  Of the 

45 students whose data is present in the combined 2004 and 2005 cohorts database, only 

about half have all the factors present (no missing data).  In addition,  if the ACT- or 

SAT-based factors were used, missing data was present with the use of either admission 

test. To maximize the effectiveness of the analysis and minimize loss of data from 
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students who left Engineering (due to missing data), this analysis used the original 

variables.  The UM Math placement and UM Chemistry Placement scores were 

substituted for the ACT and SAT test scores since almost all students took the placement 

tests.  The combined 2004 and 2005 cohort with an overall sample of 735 engineering 

students was used for this analysis.  

 

Discriminant Analysis Combined with Logistic Regression 

Both discriminant analysis and logistic regression were used.  With the discriminant 

analysis, a stepwise algorithm available in SPSS 15.0 was utilized to determine the 

significant variables; then these variables were included in a logistic regression.   

 
The discriminant analysis included two groups: those who returned to Engineering for the 

second year and those who left Engineering.  The F to enter was set at p=.05 and the F to 

remove was set at a p=.10.  The algorithm entered the variable that minimizes the sum of 

unexplained variation.  The total sample size was 735.  

 

6.2.2 Results for Modeling College Retention with Pre-College Characteristics 

 

6.2.2.1 Significant Predictors for College Retention are: Self-Rating of Math Ability, 
 High School Rank, Concern about Finances and Chance to Participate in a 
 Study Abroad Program 
 
From the discriminant analysis, the following variables were found to be significant 

discriminants for College retention. 

• Self-Rating of mathematical ability 

• High School Rank 

• Concern about Finances 

• Chance to Participate in a Study Abroad Program 

 

71% of the 735 students were correctly classifies as stayers or leavers.  72% of the 

stayers were correctly classified and 58% of the leavers.  With a binomial test, it was 

found that this classification was significantly better than a random occurrence (50/50).   
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From the logistic regression, the logistic  model is :   
 
 
ln (P/(1-P)) =    -6.020 
   +0.820 *Self-Rating of Math Ability 
   +0.083 * High School Rank                                                     
      -0.717 * Concern about Finances  
   -0.500 * Chance to participate in a Study Abroad Program   6.2 
 
The typical range of values for each variable is shown in Table 6-4 with the logistic 

regression table displayed  in Table 6-5. The significance of Wald’s test for each 

coefficient was less than .05, indicating significance for all four coefficients.  

 

Table 6-4 : Range of Values for Variables in Logistic Prediction 
 
Variable  Coefficient Scale Range  80% Range 

in data 
Constant -6.020 N/A N/A 

Self-Rating of 
Math Ability 

 0.820 1 to 5  3 (Average) to 5 
(Top 10%) 

High School Rank  0.083 Continuous 91 to 99% 

Concern about 
Finances 

-0.717 1 to 3 (None, 
minor, major) 

1 (None) to 3(Major 
concern) 

Chance to Participate in a 
Study Abroad Program 

-0.500 1 to 4 1 (no chance) to 4 
(high chance) 

 
 
 
Table 6-5: College Retention Stepwise Logistic Regression Results for Engineering   
       Students Using Pre-College Characteristics (n=694) 
 

Variables in the Equation for College Retention

.820 .249 10.881 1 .001 2.272 1.395 3.699

.083 .031 7.313 1 .007 1.087 1.023 1.155

-.717 .267 7.197 1 .007 .488 .289 .824

-.500 .189 7.001 1 .008 .606 .419 .878

-6.020 3.132 3.694 1 .055 .002

Math
Ability
H.S.
Rank
Concern
about
Finances
Study
Abroad
Constant

B S.E. Wald df Sig. Exp(B) Lower Upper
95.0% C.I.for EXP(B)
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For measures of goodness of fit, both the H-L goodness of fit statistic, Ĉ, and the 

unweighted sum of squares expressed as a Z-score were computed.  For the H-L 

goodness of fit statistic, the calculation was made using both SPSS and Minitab, and 

coding the state of a student returning to Michigan Engineering as either a “1” or a “0”.  

Table 6-6 displays the variation in Ĉ.  The unweighted sum of squares did not vary under 

these conditions and its Z-score was calculated as .029 (p=.386).   

 

Table 6-6: Comparison of the H-L Goodness of Fit Statistic 

Description of  Logistic Regression Software H-L test
C 

p- level 

Student Returns =1 (Retention)  
651 Return, 43 Leave 

SPSS  15.998 .042 

Student Leaves = 1 (Attrition) 
43 Leave, 651 Return 

SPSS 12.892 .116 

Student Returns = 1 (Retention) 
651 Return, 43 Leave 

Minitab 10.754 .216 

Student Leaves =1 (Attrition) 
43 Leave, 651 Return 

Minitab 7.657 .468 

Sample size information: 651 students return and 43 students leave. 

 

The SPSS output using a “1” for coding students who returned was the only case of a 

significant goodness of fit of the H-L statistic.  Because the other three H-L statistics and 

the unweighted sum of squares indicated a good fit, it was assumed that the fit of the data 

to the model was reasonable.  

 

The self-rating of math ability is more significant than the U-M Math Placement test, 

indicating that the affective perception of math ability was more significant than actual 

math knowledge as measured by the placement test.   

 

 The significance of  “chance to participate in a study abroad program” was an interesting 

and unexpected predictor.   This was an important issue since the current thinking in the 

engineering community is that students need more exposure to global engineering.  The 

model suggests that students with a high interest in a study abroad program at the 
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beginning of the freshman year have a lower first year retention than students who are not 

interested in a study abroad program.   

 

The chance to participate in a study abroad program is a CIRP survey question with four 

possible responses to the question: “What is your best guess as to the chances that you 

will participate in a study abroad program.”  The four responses are  

• 1= No chance 

•  2= Very little chance 

• 3=Some chance 

• 4= Very good chance 

 

It was found that there was an inverse relationship between the self-rating of math ability 

and chance to participate in a study abroad program. Further analysis showed that the 

students who replied “no chance” had the highest self-rating of math ability, the highest 

ACT Math Score and highest high school GPA.  The variable entered the regression 

because there was a significant difference in the retention among the four levels of the 

study abroad variable (99% for “no chance” down to 90% for “very good chance”).   

 

Female students were more interested in a study abroad program than male students .  

Adding the two top categories (some chance and very good chance) together, 74% of the 

female students thought that there was at least some chance of participating in a study 

abroad program.  Only 50% of male students responded in the same way (p=.000 for a 

difference in percents with a binomial test).  

 

6,2.2.2 Sensitivity Analysis of College Retention using Model 

It is important to understand why Michigan has a high retention rate and how much it 

could vary.  By using the logistic regression equation, a sensitivity analysis on the range 

of the each variable and its effect on predicted retention was calculated.  The logistic 

regression was viewed as a regression of the four variables against the retention rate for 

the ith student and is given by:  

 



 

 191

 ln (P/(1-P)) = -6.020 +0.820 (High School Rank) + 0.083 (Math Ability)   

               -0.717(Concern about Finances)  -0.500(Study Abroad)           6.3 

       

where the odds ratio is (P/ 1-P) and P was the predicted retention  for the ith student. 

Using the estimates of the coefficients derived from the logistic model, a predicted value 

of ln (p//1-p) was calculated.  Back-solving equation 6.3, the predicted college retention 

probability for engineering students was: 

 

 P = 1/(1+ EXP -  (-6.020 +0.820 (High School Rank) + 0.083 (Math Ability)   

                 -0.717(Concern about Finances) -0.500(Study Abroad) ))       6.4 

 

Review of the four predictors established a low value, median value and high value for 

each variable.  The low value was approximately the 10 to 20 percentile and the high 

value was approximately the 80 to 90 percentile (See Table 6-7). Using equation 6-4, the 

sensitivity analysis on retention (p) included varying each variable from the low and high 

values, keeping the other variables at the median value.  The range of predicted retention 

is presented in Figure 6-6.  

 
 
Table 6-7: Low, Median and High Values of the Predictors For Engineering (n=694)  
 
Variable Low  

Value 
Median 
Value 

High 
Value 

High School Rank 91%  96% 99% 
Self-Rating of Math Ability 3 (Average) 4(Above-Average) 5(Top 10%) 
Concern of Finances 1(None) 2(Some) 3(Major) 
Chance to study abroad 1 (No chance) 2 (Very little chance) 4 (High Chance)
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Figure 6-6: Predicted First Year College Retention of Engineering Students Shows   
            a Potential Variation in College Retention of 88% to 97% (n=694) 
 
 

 

Significantly, the sensitivity analysis showed that within the current range of the four 

variables, the first year retention had possibilities of dropping below 90%.  Interestingly, 

the study abroad variable showed the most variation.  The low value for retention for 

students with a major concern about finances was consistent with the data. Of the 8% of 

the students in the sample who had a major concern about finances (in the CIRP survey),  

86.7%  were retained in the College.  

 

6.2.3 Results for Modeling University Retention with Pre-College Characteristics 
 
6.2.3.1 Significant Variables for University Retention are High School Rank and   
 Concern about Finances 
 
The university retention for the engineering students is the percent of students who 

returned to Michigan, even if they left Engineering.  717 out of 735 students returned to  

the University.  Again, a discriminant analysis was run and the leading predictors were 
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high school rank, the U-M math placement score and the CIRP variable, concern about 

finances.  84% of the students were correctly classified; 85% of the stayers were correctly 

classified and 63% of the leavers.  Again, the results of the discriminant analysis were 

significantly better than random chance using a binomial test for proportions (p=.000).   

 

Next, a logistic regression was run with these variables and the regression results are 

shown in Table 6-8.  Due to the small sample size of 18 students who left Michigan and 

using the 10 samples/ parameter rule, only the first two variables from the stepwise 

regression were allowed in the final model.  These two predictors of university retention 

were high school rank and concern about finances.  The H-L goodness of fit statistic, Ĉ, 

was 8.775 (p=.187) and the unweighted sums of squares statistic, Ŝ ,as a Z-score was 

.121 (p=.548).  Both statistics indicated a good fit of the data to this model.  

  

 

Table 6-8: Logistic Regression Table for University Retention of Engineering   
        Students (n=705) 
 

Variables in the Equation

.177 .038 21.717 1 .000 1.193

-1.386 .449 9.526 1 .002 .250

-10.187 3.498 8.483 1 .004 .000

High
School
Rank
Concern
about
Finances
Constant

Step
1

B S.E. Wald df Sig. Exp(B)

 
 
 

 

In section 6.1, it was found that the first year GPA was a significant predictor of 

university retention.  Using the pre-college variables, high school rank and concern about 

finances was also significant.  The comparison of the two models is made in Table 6-9.   
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Table 6-9 Comparison of Models for University Retention 

Model H-L Statistic 
Goodness of  
Fit test (p-level) 
(more is better)  
with SPSS 

H-L Statistic 
Goodness of  
Fit test (p-level) 
(more is better)  
with Minitab 

Unweighted 
Sum of  
Squares 
 Ŝ (p-level) 

Wald’s  
test for  
coefficient 
(p-level) 

First Year GPA,  
No constant 
from Section 
6.1.2 
(n=730)  

 
0.440 

 
Not available 
With Minitab 

 
0.160 

 
p=.000 

High School 
Rank 
Concern about 
finances 
(n=705) 

 
0.187 

 
0.291 

 
0.548 

High school 
rank 

p=.000 
Concern 

about 
Finances 
P=.002 

 
 

The two models are comparable.  The following metrics were used in the comparison of 

the two models.  Both the H-L goodness of fit test from SPSS and Minitab were 

calculated along with the Ŝ as measures of goodness of fit.  In addition, the Wald’s test 

on the significance of the coefficient in the model was considered.  For the model with 

the GPA, the H-L statistic indicates a higher p-value and it is assumed that this is 

indicative of a better fit.  However, the Ŝ indicates a better fit for the High School Rank 

model. The Wald test is highly significant in both cases.  In addition, the Model Chi-

Square test with the SPSS software tests the significance of the model with the added 

variables as a difference in maximum likelihoods. For both models, the p-level for this 

statistic had a p-level of .000.  

 

The conclusion is that both data fit both models.  The model (Figure 6-1) identified the 

importance of the GPA through the literature review.  Some literature supports the 

significance of the high school rank as a predictor.(Besterfield-Sacre et al. , 1997; Scalise 

et al., 2000)   As a confirmation of choosing the best model, the three variables were 

entered into a stepwise logistic regression and the high school rank was selected in step 1 

with concern about finances selected in step 2 of the regression.  Based on this, it was 
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decided that the second model with the high school rank and concern about finances was 

the preferred model...  

 

6.2.3.2 Sensitivity Analysis of University Retention using Model 

Similar to the sensitivity analysis for college retention, Figure 6-7 displays the sensitivity 

analysis for university retention.  
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Figure 6-7: Predicted First Year University Retention of Engineering Students  
   Shows a Potential Variation in University Retention of 93% to 100%   
   (n=705) 
 
 
6.2.4 Gender and Ethnicity Effects 
When gender and ethnicity were considered in the stepwise logistic regression model, 

they were not significant for either college or university retention.  This indicates that the 

four predictors for college retention explain any significant difference between genders 

and under-represented and non-under-represented groups.  Similarly, the two predictors 
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for university retention explain any significant differences that may exist for gender or 

ethnicity.  With these variables in the model, neither gender or ethnicity are significant.  

 

6.2.5 Discussion  

Combining the 2004 and 2005 cohorts, the college retention for engineering students was 

93.9% and the university retention was 97.6%.  In this section, the pre-college 

characteristics were considered as predictors of college and university retention using 

stepwise logistic regression. Initially, with the limitation of 10 observations for each 

parameter, it was thought that a model for college retention would be limited.  However, 

the findings showed that all identified significant pre-college variables were entered.  

Because of the missing data among the factor scores, the individual variables were used 

with some guidelines to reduce the missing data.   

 

In the case of the modeling of college retention of engineering students the four variables 

that were most significant were:  

• Self-rating of math ability,  

• High school rank,  

• Concern about finances and  

• Chance to participate in a study abroad program.   

 

The sensitivity analysis showed that within the range of these significant variables, the 

college retention could range from 86% to 97%.   

 

In the case of the modeling of university retention,  the first two variables in the stepwise 

logistic regression were:  

• High school rank and 

• Concern about finances.  

 

The sensitivity analysis showed that the university retention could vary from 93% to 

100% within the range of current levels of high school rank and concern about financing 

a college education.  
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The significant predictors are consistent with the data of the students who left 

engineering and Michigan.  Eighteen engineering students left Michigan.  Of these, 8 

(44%) had a high school rank less than or equal to the 90 percentile. Six (33%) had a 

major concern about financing a college education, and 7 more (39%) had some concern 

about financing a college education.  Five were underrepresented minorities, all with a 

high school rank ≤ 90.  Six were female students (33%), three of which had a high school 

rank ≤ 90 and 3 had a major concern about finances.  Nine (50%) were recommended for 

placement into the pre-calculus course, indicating low quantitative skills (for 

engineering).  Six students earned a first year GPA of 3.00 or better, so the decision to 

leave Michigan was probably not based on their academic performance.  12 out of the 18 

(67%) indicated a good chance of changing careers.   

 

In the literature review in Chapter II, substantial evidence was presented that the college 

GPA was a significant predictor in logistic regressions for the engineering college 

retention.  Only the Seymour and Hewitt (1997) showed that academic performance was 

not a predictor of retention.  The difference may be because of the highly selectiveness of 

Michigan.  78% of the students considered Michigan as their first choice. Leaving may 

have more perceived risk than staying, even with a GPA < 3.000.  For engineering 

college GPA, the first three significant variables were self-rating of math ability, high 

school rank and concern about finances.  In Besterfield-Sacre et al (1997) study, a logistic 

regression on retention of freshmen showed that high school rank and “enjoyment of 

math/science courses,” and “confidence in basic engineering knowledge”   were 

significant predictors.  “Enjoyment of math/science courses”  and “confidence in basic 

engineering knowledge” can be considered similar to self-rating of math ability.  (If a 

study has a high self-rating of math ability, he/she would tend to enjoy math courses.)  In 

an eight-semester retention study, French et al. (2005) conducted a logistic regression for 

engineering retention, and found that both the GPA and high school Rank were 

significant along with the SAT Math score and a motivation score.  Therefore, there is 

support in the literature for the revised retention using pre-college characteristics.  The 

high school rank is a measure of the ranking of the student’s grades;  In order to earn high 
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grades, a high school student intrinsically must be motivated, be well-organized and 

competitive for grades.  Because of the competitiveness of the freshman engineering 

program at Michigan, it can be hypothesized that students who have a high rank will do 

well and be retained.  Students who are less competitive or less organized may be overly-

challenged and decide to leave engineering.  

 

In summary, the hypothesized model in Figure 6-1 was not validated with respect to the 

first year GPA influencing the college retention of engineering students after the first 

year.  The first year GPA was not a significant predictor of the college retention.   

Perhaps a longer time frame is needed to see a relationship between GPA and retention.  

Students exist in the sample with a GPA < 2.000 who decided to return to engineering for 

their second year of college, even though they are on academic probation (assumed).  It 

can be inferred that with the support systems in place at Michigan, students believe they 

will improve their GPA.  For university retention, the high school rank was a better 

predictor than the first year GPA.   

 

When these predictors are taken into account, there was no significant difference in 

retention by gender or ethnicity.  This was consistent with the research of Leuwerke et al. 

(2004), who found no difference in the “differential attrition rates for female or minority 

students” in a freshman retention single institution study.  In addition, in a logistic 

regression model for first term engineering probation, similar retention percentages were 

obtained for male and female students (Scalise et al., 2000) .  Adelman found that for 

students who were well-prepared for engineering, “the degree completion gap in 

engineering between men and women is negligible.” (Adelman, 1998, p. 67) 

 

 

 
6.3 Validating the Model Using the Initial Commitment 

to Engineering and the University of Michigan 
 
In validating this model, it is reasonable to ask whether the initial commitment to an 

engineering major, to an Engineering career or to Michigan affect a student’s retention 
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decision.  A statistical analyses found no statistically significant difference between 

students who indicated a probable major or career in Engineering and students who 

indicated a probable major or career in a non-Engineering field.  There was no significant 

difference between students who considered the University of Michigan their first choice 

college and students who considered another engineering college their first choice. (See 

Table 6-10.)  In response to the survey question of college choice, 78% of the students 

indicated that Michigan was their first choice for college.  This compares to 71% of all 

public universities in the 2005 CIRP survey (Pryor et al, 2005). 

 

 

Table 6-10: Retention Hypotheses and Results 

 
Null Hypothesis  

 
CIRP 
Variable

Statistic 
(2-sided 
test) 

College 
Retention 
Significant 
at p=.050 

University 
Retention 
Significant 
at p=.050 

Retention percentages are 
equal for Engineering major 
and Non-Engineering major 
(n= 698, 32) 

 
Probable 
major 

2x2 
Chi-
square 

 
No 

 
No 

Retention percentages are 
equal for Engineering career 
and Non-Engineering career 
(n=537, 176) 

 
Probable 
career 

2x2 
Chi-
square 

 
No 

 
No 

Retention Percentages are 
equal for U-M as the first 
choice college and U-M as 
the 2nd choice or more college 
(n=564, 165) 

 
Choice 

2x2 
Chi-
square 

 
No 

 
No 

 
 

6.4 Does Engineering 110 and Advising Contribute to Higher Retention? 

In Chapter V,  Engineering 110 and frequency of visits to the Engineering Advising 

Center (EAC) were considered for their contributions to the improvement in the first year 

GPA of engineering students.  In this section, the  discussion will continue to explore the 

effectiveness of improving the college retention and university retention of engineering 

students with either enrollment in Engineering 110 or a higher frequency of advising 

visits to EAC.   
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6.4.1 Methodology 

Two variables were considered: enrollment in Engineering 110 and frequency of advising 

visits to EAC.  Engineering 110 is an elective 2-credit survey course on engineering 

careers.  All engineering students visit EAC for advising on courses, academic and 

general counseling.  A low frequency of advising sessions was defined as four visits or 

less.  A high frequency was defined as five or more visits.  Considering the extent of 

counseling that the advisors provide, a more comprehensive measure of the content of the 

advising would be desired.  An analysis by frequency of advising visits was viewed as an 

overall objective metric of the amount of advising.  

 

For both retentions, two null hypotheses were developed: 

 

Hypothesis 1: There is no difference in retention rates between students who visited 

EAC at a high frequency and students who visited who visited EAC at a low frequency.  

 

Hypothesis 2: There is no difference in retention rates between students who enrolled in 

Engineering 110 and students who did not enroll in Engineering 110.  

 

Data analysis included descriptive statistics and graphs and chi-square tests. The chi-

square tests were conducted on 2x2 contingency tables of retention (yes, no) versus both 

enrollment in Engineering 110 and a low or high frequency of advising visits.  Retention 

can be considered as a proportion and the chi-square tests for significant differences in 

proportions.  The sample sizes for enrollment in Engineering 110 and advising frequency 

level are shown in Table 6-11.  Based on the sample sizes, the type II error (of 

concluding there is a difference when no difference exists) was calculated for any 

significance differences in retentions.  It was assumed that not being enrolled in 

Engineering 110 and Low Frequency were the standard conditions.  With the sample size 

> 500 for each of  these conditions, this proportion is considered standard and “known”.   

Enrollment in Engineering 110 and a High Frequency of advising are considered  the 
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“experimental” condition.  The Minitab program for power curves was used to calculate 

the power and  type II error based on the test for proportions.  

 

Table 6-11 Sample Sizes for Enrollment in Engineering 110 and Advising Frequency 

391 116 507

53.2% 15.8% 69.0%

174 54 228

23.7% 7.3% 31.0%

565 170 735
76.9% 23.1% 100.0%

Count

% of Total

Count
% of Total

Count
% of Total

Engineering
110-Not
Enrolled
Engineering
110-Enrolled

Engin
110

Total

Low
Frequency

High
Frequency

Advising Frequency

Total

 
 
 

6.4.2 Results 

The results can be summarized in three categories and they are listed in this section.  

 

1) No Significant Difference in Retention Due to Advising Frequency Level 

All students visited the EAC for course scheduling advice and initial placement into 

courses.  23% of the students visited the EAC at a high frequency. The Pearson chi-

square test did not show a statistically significant difference in retention between the 

students with a higher level of advising compared to the students with a lower level of 

advising.  The power of this test was only .05, due to the small difference (less than 1%) 

of detection in the proportions.   

 

 Using the variables in the database, the following profile of students who visit EAC for 

advice at the higher rate (compared to those who visit EAC at the lower rate) emerged 

from the data.  Their preparation in math and science as indicated by the admission and 

placement tests is weaker; their average first term GPA is significantly less; they carry an 

average of 2 credits less in the first semester; their overall high school academic 

achievement as measured by the high school GPA and rank is not significantly different.  

In addition, they have a significantly higher concern about financing college and are more 
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likely to change their major.  40% of all female freshmen visit EAC at the higher rate; 

this is statistically significant.  The percent of under-represented minority students who 

visit EAC at a high rate is not significant compared to their percentage of the student 

population.  In summary, students who visit EAC at the higher frequency have 

significantly lower average academic performance, are more concerned about their 

finances and less sure about an engineering major; all these are factors related to 

engineering retention.    

 

2) Significant Difference in College Retention Due to Engineering 110 Enrollment 

The Pearson chi-square test showed a significant difference in college retention rates 

between students who enrolled in Engineering 110 and students who did not enroll in 

Engineering 110 at p=.021.  (See Figure 6-8)  The power of the chi-square test is 88% 

(type II error is 12%) .  The college retention for students who enrolled in Engineering 

110 was 96.9% compared to 92.5% for students who did not enroll in Engineering 110, 

yielding an average improvement of 4.4%.  The difference was not significant for 

university retention.  The power of the test was .73 (type II error of .27).  
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Figure 6-8: Enrollment in Engineering 110 Shows Higher Retention Rates  (See    
         Table 6-8 for sample sizes) 
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3)  Selection of Students for Engineering 110 

Currently, Engineering 110 is an elective course, with approximately one-third of the 

freshman class enrolling in Engineering 110. It is possible that certain subgroups of the 

freshman class will benefit from this course.  For example, students with a low college 

GPA may be motivated by the course to continue in engineering studies. To understand 

the effectiveness of Engineering 110 and possible recruitment strategies into Engineering 

110, variables that had been considered in the previous analyses were explored for a 

predictive relationship with college retention. In particular, the relationship between 

enrollment in Engineering 110 and advising level, the relationship between enrollment in 

Engineering 110 and first year GPA, the relationship between enrollment in Engineering 

110 and high school rank, and the relationship between enrollment in Engineering 110 

and concern about finances were explored.  This analysis suggests that there are some 

meaningful treads present that could aid in a student retention strategy.  However, 

confirmatory research studies are recommended in the future.  

 

Analysis Shows Engineering 110 AND a High Advising Level Helps Students 

Because of the significance in Engineering 110 for college retention, an exploratory 

research effort was made to review college retention.  As the analysis proceeded, an 

interesting trend developed in terms of both student success and retention for students 

who enrolled in Engineering 110 and visited the EAC at a high frequency.  Figure 6-9 

displays the interaction plot between advising frequency and enrollment in Engineering 

for college retention.  
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Figure 6-9: Enrollment in Engineering 110 Complements Advising Frequency to  
          Increase College Retention Rate (See Table 6-8 for sample sizes) 
 

As illustrated, the students who sought the higher level of advising and enrolled in 

Engineering 110 had the highest level of retention in the College of Engineering.  Taking 

into account that students who have the higher level of advising are generally higher at 

risk of leaving engineering, this is a significant piece of information.  

 

Engineering 110 Motivates Students with a GPA of 3.000 to 3.500 to Stay in 
Engineering. 
 
Although the logistic regression in Section 6.1 did not show a significant relationship 

between GPA and college retention, I explored this relationship including viewing 

retention with respect to enrollment in Engineering 110.  See Figure 6-10.  A Chi-square 

test showed a significant difference in retention for enrollment in Engineering 110 for the 

group of students who earned a 3.0 to 3.5 GPA.  Note that for the group with a GPA 

<2.0, the total sample size was 28 and the difference in retention rates was not 

statistically significant.  
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Figure  6-10: College Retention Improves with Enrollment in Engineering 110:   
            Engineering 110 is Significant for Students with a GPA between 3.0   
            and 3.5 (combined sample size  = 28 for GPA < 2.0, 71 for GPA=2.0 to  
  2.5, 182 of GPA = 2.5 to 3.0, 230 for GPA= 3.0 to 3.5, and 224 for  
  GPA= 3.5 to 4.0) 
 
 
Engineering 110 Motivates Students with a High School Rank < 96% to Stay in 
Engineering 
 
Because of the significance of high school rank as a predictor of college retention,  the 

effect of Engineering 110 in terms of the high school rank was considered.  The data in 

the database was divided into three nearly equal groups by high school rank.  The three 

groups were: students with a high school rank of 99% were placed in the first group; 

students with a high school rank of 97 to 98% were placed in the second group and 

students with a high school rank of 96 or less were placed in the third group.  

(Approximately 90% of the students in this survey (who reported high school rank) had a 

high school rank greater than 91%.)  Figure 6-11 displays the college retention for each 

high school rank group.  For the group with a high school rank of 96% or less, the 

students who enrolled in Engineering 110 showed a significantly higher college retention 

than students who did not(chi-square test, p =.000, type II error < .05). 
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Figure 6-11: Significant Difference in College Retention Between Students With a High   
          School Rank < 96% and Enrolled in Engineering 110 versus Not Enrolled in    
           Engineering 110 (combined sample size = 234 for rank<96%,244 for rank  
          of  97 to 98%, and 232 for rank of 99%.) 
 
 
Relationship between Enrollment in Engineering 110 and Concern about     
 Finances 
 
Interestingly, students who initially indicated a major concern about finances and 

enrolled in Engineering 110 had a significantly higher retention rate (96.7%)  than 

students who did not enroll in Engineering 110 ( 91.1%) using a chi-square test (p=.047). 

 

 

University Retention 

Only 0.9% of the students who took Engineering 110 dropped out compared to 3.2% for 

students who did not take Engineering 110.  This difference was not statistically 

significant using the chi-square test (p=.064).  

 

6.4.3 Discussion  

Two null hypotheses were tested: 
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Hypothesis 1: There is no difference in retention rates between students who visited 
EAC at a high frequency compared to students who visited who visited EAC at a 
low frequency.  
 

There was not enough evidence to reject this hypothesis.  As was presented in the results 

section, students who visit the EAC at a high frequency on the average have more issues 

with achieving at a high academic level, placement into courses, concerns about an 

engineering major and financing a college education.  The fact that there was no 

significant difference is perhaps indicative of the success of the EAC in retaining students 

in engineering with the challenges of the freshman year.  Of the students who visited the 

EAC at a high frequency, many with academic problems, a very high percent, 94%, 

return for the second year.  This suggests that of the students serviced by EAC with a 

high frequency of visits, almost all of them valued this support and choose to return to 

Engineering for the second year of college. 

 

Hypothesis 2: There is no difference in retention rates between students who 
enrolled in Engineering 110 compared to students who did not enroll in Engineering 
110.  
 
This hypothesis was rejected for college retention. The chi-square tests showed a 

significant difference for college retention for students enrolled in Engineering 110 

compared to students not enrolled in Engineering 110.  No significant difference was 

evident for university retention.   

 

Evidence was presented that the enrollment in Engineering 110 combined with a high 

frequency of advising contributed to a higher retention rate.  The group that showed a 

significant difference in enrollment in Engineering 110 was students with a GPA between 

3.0 and 3.5.  These students would be performing well with respect to grades; and if they 

had concerns about engineering major or career, the Engineering 110 could reinforce the 

excitement related to an engineering career.  Students in the lowest third of the data by 

high school rank appear to benefit from enrollment in Engineering 110.  Finally, of the 

students who indicated an initial concern about finances, students who enrolled in 
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Engineering 110 had a significantly higher retention rate than the students who did not 

enroll in Engineering 110.   Although the relationship was not statistically significant, 

enrollment in Engineering 110 seems to influence university retention.  A student takes 

Engineering 110 and decides to transfer to another college at Michigan. The data supports 

that the course influences the student not to transfer to another university.  The dropout 

rate from Michigan of engineering students who enrolled in Engineering 110 was less 

than 1%.   

 

The freshman year is a year of exploration; it is not surprising that some students  transfer 

out of Engineering.  Of the 45 students who left engineering at the end of the freshman 

year,  most were not enrolled in Engineering 110.  Although the retention rate is very 

high (94%), the data suggests that some of these students would have been retained in 

engineering if they had enrolled in Engineering 110. 

  

In summary, both the advising services of EAC and enrollment in the Engineering 110 

show success as intervention strategies for student retention.  Evidence supports that the 

retention could be higher with a higher enrollment in Engineering 110.  Conversely, 

without an Engineering 110 course, the freshman retention would have been lower.  

 

6.5 Summary and Recommendations 

The modeling of freshman engineering retention required an understanding of both 

college and university retention.  Inherent in this modeling was the understanding that the 

freshman year must be thought as a year of transition from high school to college.  A high 

university retention rate guarantees a low drop-out rate from college (any degree) and 

adds value to society.  In the concept of retention and loss to society, for every drop-out, 

there is a loss to society.  The student, who drops out, in most cases, will work at an 

entry-level job instead of enjoying a good career.   Once a student drops out, there is no 

formal educational support system to help a student.   

 

On the other hand, most important to a College of Engineering is the college retention 

rate.  A high college retention rate guarantees a stable student population and minimizes 
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the need to recruit engineering transfer students.  The college retention rate can be 

viewed as a metric for the partnership between the college and the students.  For a college 

of engineering that presents an excellent program, excellent support systems and recruits 

students who are both academically capable and interested in an engineering career, the 

engineering freshmen will see value in the program and decide to return for the second 

year.   

 

In the case of Michigan, both the college retention and university retention are very high, 

93.9% and 97.6% respectively.  Because there is not a national database on college of 

engineering retention rates, it is difficult to compare this retention rates to other 

engineering colleges (Veenstra and Herrin, 2006b).  Compared to available first-year 

university retention rates, these retention rates are very high.  With modeling, we can  

understand Michigan’s success. This study looked only at pre-college characteristics and 

the first year GPA to develop a model of first year retention.    

 

College Retention of Engineering Students 

The first year GPA was not validated as a strong predictor of college retention for 

engineering students.  For college retention, self-rating of math ability and high school 

rank were the most significant predictors.  The self-rating of math ability was a better 

predictor than the U-M math placement test score; this indicates that the student’s initial 

perception of their math ability was more important than actual math ability.  The 

importance of self-rating of math ability is consistent with the Astin and Astin multi-

institutional study, which found that the same CIRP variable, high self-rating of math 

ability, was important for engineering retention (Astin, 1993).  Besterfield-Sacre, et al. 

(1997) found a low level of “confidence in basic engineering skills” to be a strong 

predictor of engineering attrition.  This variable is a component of the Pittsburgh 

Freshman Engineering Attitudes Survey © (PFEAS) and was similar to the self-rating of 

math ability on the CIRP survey.  Research supported the high school rank as a predictor 

of freshman engineering retention.  In the same study, Besterfield-Sacre, et al. (1997) 

found high school rank to be a significant predictor of retention.  For a 4-year retention, 

French, et al. (2005) found that both college GPA and high school rank were significant 
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predictors of engineering retention.  For a freshman retention study involving non-

engineering students, Allen (1999) found both high school rank and first year GPA to be 

significant predictors of retention.   

 

In addition, two other variables were important predictors among the pre-college 

characteristics in the initial model.  They were: initial concern about financing a college 

education and the chance that a student will participate in a study abroad program.  With 

the high cost of college, it is well recognized that concern about finances is a negative 

contributor to college retention.  (Allen, 1999; Tinto, 1993)  In my literature search, very 

few engineering education studies showed financial concern to be a significant predictor 

of freshman retention.  What was a surprise was the significance of interest in a study 

abroad program; and more interest predicted a lower retention.  In the engineering 

community, exposure to a global engineering experience as an undergraduate engineer is 

now considered important in the current economic environment.  More research is 

recommended about this predictor.  

 

These variables have the potential of identifying students who need more support and 

providing organizational indicators for predicting retention.   

 

University Retention of Engineering Students 

The analysis of university retention for engineering students supported two models of 

retention; one included the first year GPA consistent with the model; the second include 

the high school rank and the CIRP variable, concern about finances, as predictors of 

university retention.   

 

Conclusions 

The following conclusions were reached on retention for the Engineering sector: 

• The sensitivity analysis showed that the expected college retention could be as 

low as 86% within the range of the predictors.  To maintain a high retention rate, 

the College of Engineering must recruit students with a high self-rating of math 

ability, a very high high-school rank, and be aware that some students transfer out 
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because they are interested in a study abroad experience (or a characteristic highly 

correlated with this variable.)    Concern about financing college was a significant 

predictor and needs further research. 

•  No statistically significant difference in retention between female and male 

students was evident.  Since there was no significant difference in the average 

high school rank by gender, this is consistent with the model for retention. 

• No statistically significant difference in retention between under-represented 

minority students and non-under-represented minority students was evident, once 

the retention was adjusted for the significant predictors.  This was consistent with 

Allen’s study, which compared minorities and nonminorities.  He stated “ for both 

minorities and nonminorities, pre-college academic ability (i.e. high school rank) 

was found to play a significant role on their cumulative grade-point average in 

college and on persistence behavior” (Allen, 1999).  

 

Engineering Career Development and Engineering 110 

Initially, when I considered intervention programs to support freshmen engineers, I 

considered only tutoring, mentoring and advising programs.  As this research unfolded, I 

also considered Engineering 110, the survey course on engineering careers, as an 

intervention program for student retention.  It supports students in deciding if their career 

choice is engineering.  Consistent with my model that included concepts from Tinto’s 

theory, retention was influenced by the student’s revised commitment to an engineering 

career.  Furthermore, Watson and Froyd’s model suggested that engineering students 

must make the commitment to that of a professional engineer throughout their 

undergraduate education (Watson and Froyd, 2007).   

 

It was found that enrollment in Engineering 110 was linked to a significantly higher 

college retention rate than not being enrolled in Engineering 110.  The theory of both 

Tinto and Watson & Froyd supported that this was a causal relationship.    In addition, 

students who enrolled in Engineering 110 but decided to transfer out of engineering, 

dropped out of the university at a rate less than 1%, suggesting that this course influenced 

them to continue their education at Michigan.  Tinto has indicated that engagement in the 
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classroom was especially important for freshman.  Even though Engineering 110  is 

conducted in a large classroom, there is very good engagement between the students and 

senior faculty members in the engineering community.  This could explain the low 

dropout rate of students who complete Engineering 110.  The course is also known for 

demonstrating the excitement of an engineering career and it is conjectured that it is this 

excitement along with the engagement that makes a difference.  Watson and Froyd 

(2007) suggested that career development into an engineer must be encouraged 

throughout the undergraduate years.  Many students enter engineering college without the 

commitment to an engineering career.  This course may help the student make the career 

commitment and therefore increases the retention.  The following three conclusions were 

made with respect to enrollment in Engineering 110: 

1. Engineering 110 was an effective intervention strategy that supported a higher 

retention rate 

2. This research supported that some students benefit from both a high frequency of 

advising visits and enrollment in Engineering 110.  

3. Some statistical evidence existed to support recruiting groups of students into 

Engineering 110 as a retention strategy. 

 

Why Does Michigan Engineering have a High Retention Rate? 

One of the objectives of this research was to explore why Michigan has a high 

engineering retention rate.  Significant factors for high retention have been identified as 

high self-rating of math ability, high student performance in high school as measured by 

the high school rank, and low concern for financing a college education.  The high school 

rank measured academic competitiveness, study habits and maturity in addition to 

academic preparedness.  It is significant that high school rank was more important than 

either the high school GPA or the math placement test score. From the sensitivity 

analysis, it is clear that the freshman retention could decrease.  However, the answer is 

not just with  the incoming quality of students (high school rank and self-rating of math 

ability) and low concern about financing a college education.  Courses like Engineering 

110 can make a significant improvement in engineering college retention (4% difference 

in taking engineering 110 versus not taking it).  As was stated earlier, engineering 
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freshman retention and graduation rates were not available in the public domain of 

literature.  If we assume the same relationship as in Figure 1-1 (see Figure 6-12 for a 

copy without the pointer to the University of Michigan), a drop in the freshman retention 

rate from 94% (the current retention rate)  to 90% equates to a drop in the graduation rate 

of 85% to 76%.   
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Figure 6-12: Graduation Rates vs. First Year Retention for Large Research      
         Universities 
 

Whereas a graduation rate of 85% is  excellent, 76% is much less.  The inference here is 

that Michigan Engineering has a high retention rate of 94% because it brings in excellent 

quality students AND has substantial interventions that “engineer student success.”  The 

sensitivity analyses provide more evidence that can be used to further engineer student 

success. 

 

Goodness of Fit Statistics for the Logistic Regression 

The comparison was made of the Unweighted Sum of Squares goodness of fit statistic, Ŝ, 

to the Hosmer-Lemeshow (H-L) goodness of fit statistic.  With the variability in the H-L 

by software package, the Ŝ statistic provided an alternative statistic for goodness of fit. 

With the application in this chapter, it detected influential outliers or long tails that were 

not consistent with the assumption of a logistic model for retention (and the H-L did not).  
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The disadvantage to the Ŝ is that it has not been incorporated into most statistical 

packages and requires a weighted regression run to determine the significance level.  

More research with alternative goodness of fit statistics is recommended.  

 

Recommendations: 

Based on these conclusions, the following recommendations related to engineering 

student retention are made: 

• A high self-rating of math ability and a high school rank of 91% are good 

guidelines for college retention of engineering students.  Some support programs 

should help develop an efficacy that supports a higher self-rating of students’ 

math ability.   

• Financial need is a significant predictor of retention and programs to assist 

students financially may be  needed   

• The Engineering 110 course is key to continued high retention.  It should be 

expanded to service more engineering freshmen.  The research suggests that 

student who visit the EAC (advising) at a high rate benefit from Engineering 110. 

It is recommended that a pilot program be implemented to further study the 

effectiveness of enrollment in Engineering 110 for students who need a high level 

of advising.  In addition, it is recommended that an upper level career 

development course be considered.  

Evidence suggests that retention of engineering students could be higher than it currently 

is with a stronger enrollment in Engineering 110 and continuation of the current support 

programs.  
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CHAPTER VII 

COMPARISON OF THE ENGINEERING STUDENT SECTOR  

TO NON-ENGINEERING STUDENT SECTORS 

 
A thesis of this research is that modeling of freshman engineering success is different 

from the modeling of the student success of other student sectors.  This chapter explores 

these differences by comparing the Engineering sector to three non-engineering sectors:  

1. Pre-med students 

2. STM students (science, technology and math majors excluding 

engineering and pre-med students) 

3. Non-STEM students (social science majors, humanity majors and business 

majors) 

A description of each sector was given in Chapter III. The comparison of the Engineering 

sector to the other three sectors was made in three areas: 

1. Multivariate comparisons of the pre-college characteristics. Two 

techniques were used: multiple comparisons across sectors for each pre-

college characteristic and a discriminant analysis by sector using the pre-

college characteristics. 

2. An extension of the regression modeling of first year GPA to each of the 

four student sectors. Also, the STEM GPA was modeled using the factor 

scores for each.  A comparison of first year GPA and STEM GPA 

distributions was made.     

3. An extension of the logistic regression modeling of university retention to 

each of the four student sectors.  
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4. The special case of the subset of students who took Calculus I was 

discusses with respect to the comparison of the GPA and retention 

statistics. 

 

This analysis can be stated in terms of the following hypotheses: 

 

Different Pre-College Characteristics 

1. A significant difference exists between the engineering sector and the 

other sectors in the distributions of pre-college characteristics.  

Student Academic Success 

1. The predictors for student success are different for the four sectors. The 

engineering sector will have more significant differences related to 

quantitative skills and confidence in quantitative skills.  

2. F4 (Quantitative Skills) will be a significant predictor for student success 

3. There will be differences in predictors of both the overall GPA and STEM 

GPA across student sectors.   

4. Differences in first year GPA by gender and ethnicity will be explained by 

the significant predictors of student success.  

 

University Retention  

1. The predictors for university retention for the engineering sector will be 

different than the predictors for the non-engineering sectors. 

2. Initial concern about financing college and the student’s first choice in 

college will be factors that influence university retention for all sectors 

3. The university retention of students who enrolled in Calculus I will vary 

across sectors 

 

Consistent with previous notation, factors from the factor analysis will be denoted by the 

Factor number, i.e. F1 and factors from an analysis of variance will be denoted by the 

factor’s name, such as gender.  
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This chapter is organized as follows. Section 7.1 includes all discussion of the 

methodology used in this chapter.  The modeling of academic success (first year GPA) is 

consistent with the techniques used in Section 5.2. The modeling of university retention 

is consistent with the techniques used in Section 6.1.  Section 7.2 examines multiple  

comparisons of the averages of the pre-college characteristics for the engineering sector 

to the non-engineering sectors. Section 7.2 also presents a discriminant analysis graph of 

the multivariate space of sectors.  Section 7.3 compares the predictors of first year GPA 

and STEM GPA across student sections.  Included in these regressions is the examination 

of significant interactions. Section 7.4 examines the differences in predictors of the 

university retention across sectors.  Students enrolled in Calculus I are considered as a 

special case in Sections 7.5 and 7.6.  Section 7.5 explores the comparison of the modeling 

of academic performance of students in Calculus I, since this is a gateway course into 

engineering. Section 7.6 examines the modeling of university retention of the Calculus I 

students. Finally, Section 7.7 summarizes the findings of this chapter.   

   

7.1 METHODOLOGY 

 

7.1.1 Multiple Comparisons and Discriminant Analysis  

One of the objectives of this empirical research was to determine if the engineering 

students have a different multivariate cluster of pre-college characteristics than the non-

Engineering student sectors (Pre-med, STM and Non-STEM).  If engineering student 

success is different from the student success of other student sectors, it is reasonable to 

hypothesize that there are significant differences among the sectors for the pre-college 

characteristics variables included in the model.  To test this hypothesis, pairwise multiple 

comparisons were made on the four sectors with the pre-college characteristics.  The 

Sidak multiple comparison technique, available with the SPSS 15.0 program was used.   

The Sidak test is a modified Bonferroni test and has a higher power than the traditional 

Bonferroni test. (Matthews, 2005)  The family Type I error was set at .05.  All records 

with an identified student sector of the 2004 cohort database were included in this 

analysis.  
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Nichols et al. (2007) compared STEM versus Non-STEM students for the CIRP survey 

variables by gender and ethnicity.  They then identified the CIRP variables that were 

typically had high scores for STEM students.  Significant variables for STEM students 

were the SAT math score, high school grades, self-ratings in computer skills, math ability 

and academic ability and a science orientation.  The STEM students also scored high on 

deciding to go to college to get training for a specific career. The Non-STEM students 

scored high on several questions including the likelihood of changing a major field and 

career choice and participating in study abroad programs.  

 

Because of the number of variables that showed a significant difference, a discriminant 

analysis further explored that the engineering sector presents a set of pre-college 

characteristics that are different than the other three student sectors.  The objective of this 

discriminant analysis is to establish the most significant variables that defined the 

maximum possible distance between the centroids of the student sectors in the 

multivariate space.  The centroids are the averages of the variables for each student 

sector.  This is difficult to present graphically but the spacing between the centroids can 

be represented by the discriminant functions, often referred to as the canonical 

discriminant functions.  The Unexplained Variance stepwise technique in Minitab 15.0 

was used with a probability of an F to enter .05 (p-value) and to remove a p-value of .15.  

All the factor scores and deleted variables were initially entered into the discriminant 

analysis. Unequal Covariance matrices were assumed.  The classification results table 

includes the accuracy of classification statistics; these were used as the measure of 

success of discriminant analysis prediction. For example, the accuracy of classifying a 

student as an Engineering student, was defined as the percent of engineering students 

who were correctly identified with the discriminant equation as engineering students.  If 

more than five predictors entered the discriminant analysis, an improvement of at least 

1% in the overall classification accuracy was required for the next predictor to enter.  

This criterion avoided entering predictors with a significant F to enter but contributed 

little to the final discriminant results.  Canonical discriminant function plots are generated 

by the SPSS program and illustrate the centroids of the multivariate space of the four 
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sectors.   The discriminant analyses were conducted using the ACT subset of the 2004 

cohort database.  

 

7.1.2 Student Academic Success Modeling 

Student academic success modeling of the engineering sector was discussed in Chapter 

V.  This modeling is extended to the non-engineering sectors. In addition to the first year 

GPA, the first year STEM GPA is also modeled for all four student sectors.  For 

consistency with the analyses in Chapter V, the data from the ACT subset for the 2004 

cohort was used.  No missing data among the factors were allowed.  

 

For each regression, the following procedure was used: 

1. A separate stepwise regression was run for each GPA as the dependent variables: 

first year GPA and first year STEM GPA. 

2. The stepwise regression was run with the GPA as the dependent variable and the 

all the factor scores as the regressors.  An F to enter at the .05 significance level 

was required.  

3. For the significant (p≤ .05) factor scores, all two-way cross-products 

(interactions) were tested for significant at p ≤ .05.    

4. The significant cross-products and all the factor scores were again run in a 

stepwise regression to obtain the final regression equation.  

5. The residuals from a regression should be approximately normally distributed. 

The probability plot of the residuals was checked for a normal distribution of the 

residuals. 

6. The validity of the final regression was checked by reviewing the adjusted R2, 

Mallows Cp and residual standard deviation.  The change in R2  for each step of 

the regression was check for an F-statistic that was significant at p ≤ .05.   

7. Multicollinearity among the independent variables can significantly bias the 

regression coefficients. To check multicollinearity, two measures recommended 

by Myers and Montgomery (2002) were used. VIF, the variance inflation factor 

was checked for a value less than 4.0 and the ratio of the maximum eigenvalue to 

the minimum eigenvalue was checked for a ration less than 100.   
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8. Once the regression coefficients were determined, the significant factor scores 

were entered into a generalized linear model to check for a significant difference 

in gender or ethnicity.  The significant factor scores from the regression were 

treated as covariates in this generalized linear model. 

 

In addition, a generalized linear model for both first year GPA and STEM GPA was 

considered combining all four student sectors.  In this model, sector was a factor and all 

the factor scores were covariates.  For the significant covariates, two-way cross-products 

were evaluated for significance (p≤.05).  Once the model was established, gender and 

ethnicity were added as factors to evaluate their effects on the model.  

 

7.1.3 Student Retention Modeling 

To address modeling of retention, logistic regression was applied.  Consistent with the 

analysis in Chapter VI, the 2004 and 2005 cohorts were combined for the logistic 

regression.  The stepwise logistic regression analysis conducted in Chapter VI for the 

engineering sector was extended to the non-engineering sectors and compared across 

sectors.  

 

Comparison of retention rates for the four student sectors is made only for the university 

retention, the retention of the student in the university at one of its colleges.  A stepwise 

logistic regression was run on each student sector with two groups: students returned to a 

college of the university for the 2nd year or students did not enroll in the university for the 

fall term of the 2nd year.  The first year GPA and all pre-college characteristics were 

initially entered.  The first year GPA was entered to be consistent with the model 

developed in Chapter II.  Consistent with the methodology developed in Chapter VI, the 

Peduzzi et. al. rule of number of predictors is limited to the number of observations in the 

group of students who left the university divided by 10. The stepwise logistic regression 

was then rerun including only the significant predictors. In some cases, due to less 

missing data in the smaller subset of predictors, some of the predictors were no longer 

significant. Also, the Unweighted Sum of Squares goodness of fit statistic was calculated 

with the final run.  After these models were developed, the effect of gender and ethnicity 
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was tested for significance.  Next, a logistic regression was run that included all four 

student sectors, with a factor for sector and all initially significant predictors included.  

The regression was verified by rerunning the regression with only the significant 

predictors. The effect of gender and ethnicity were then considered.   

 

7.2 Pre-College Characteristics Comparison Among Sectors 

 
7.2.1 Significant Pairwise Comparisons among Student Sectors 

One of the research questions was whether there were differences in the averages of the 

pre-college characteristics among the four student sectors.  For the initial set of pre-

college characteristics (see Table 3-1), multiple comparisons were made comparing the 

average of the pre-college characteristic for the engineering sector to the average of the 

same pre-college characteristic for a non-engineering sector for the 2004 cohort.  The 

significant differences are indicated in Table 7-1.  The following variables showed no 

significant pairwise multiple comparisons between the engineering sector and the other 

three sectors: self-rating of cooperativeness, self-rating of leadership ability, self-rating of 

self-confidence (intellectual), hours per week in the past year spent talking to teacher 

outside of class, frequency of using the Internet for research or homework, frequency of 

studying with other students, frequency of tutoring another student, frequency of coming 

late to class, importance in deciding to go to college: to learn more about things that 

interest me, chance in the future to communicate regularly with your professors, 

importance in deciding to go to college: to be able to make more money; all the variables 

in Pillars P6. Commitment to this College, P7. Financial Needs, and P8. Family Support; 

self-confidence  (social), hours per week in past year socializing with friends, hours per 

week in past year working (for pay), hours per week in past year student clubs/groups, 

chance in the future you will join a social fraternity or sorority, chance in the future you 

will play varsity/intercollegiate athletics, and chance in the future you will participate in 

student clubs/groups.   The combined sample size for the multiple comparisons on the 

2004 cohort for all sectors ranged from 947 to 1477 .  

 

 
 



 

 222

Table 7-1:  Significant Differences in Pre-College Characteristics for the 2004 Cohort  
H indicates that the engineering sector average is higher in the pairwise comparison; L 
indicates that the engineering sector average is lower in the pairwise comparison 
Pre-College Characteristics  Engineering

vs. Pre-Med 
Engineering 
vs. STM 

Engineering 
vs.  Non-STEM 

P1. High School Academic Achievement     
High school GPA    H 
High school class rank   H 
ACT composite H H H 
SATI total   H H 
Self-rating of academic ability   H 
Self-rating of writing ability   L 
P2. Quantitative and Analytical Skills    
ACT math score H H H 
SAT math score  H H 
ACT science score H H H 
U-M math placement test score H H H 
U-M chemistry placement test score H H H 
P3. Study Habits    
Hours/week in past year spent studying/ doing 
homework  

L   

Hours/week in past year spent reading for 
pleasure  

  L 

Frequency of asking a teacher for advice after 
class  

L  L 

Felt overwhelmed by everything I had to do  
(frequency) 

L L L 

P4. Commitment to Career and Educational 
Goals 

   

Highest academic degree that you intend to 
obtain (recoded) 

 
L 

  

Importance of going to college 
to get training for specific career 

  H 

Importance of going to college: to prepare 
myself for graduate or professional school 

L   

Chance  in the future  to change major field   L 
Chance  in the future to change career choice   L 
Self-rating of drive to achieve L   
Importance of: 
making a theoretical contribution to science 

  H 

P5. Confidence in Quantitative Skills    
Self-rating of computer skills H H H 
Self-rating of mathematical ability  H H H 
P8. Social Engagement    
Hours/week in past year playing 
video/computer games  

H H H 

Hours/week in past year partying   L 
Hours/week in past year doing volunteer work  L   
Chance to participate in study abroad programs  L L 
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Discussion of the Multiple Comparisons 

The engineering sector had a significantly higher average ACT Composite, ACT Math , 

ACT Science, UM Math Placement Score, and UM Chemistry Placement Score than the 

other sectors (See Table 7-2). The Engineering sector also had significantly higher self-

ratings in computer skills and mathematical ability, indicating a higher confidence in 

quantitative skills.  

 
Table 7-2: Averages and Sample Sizes for Selected Pre-College Characteristics with          
       Significant Differences (2004 Cohort) 
 

 
Student 
Sector 

 
ACT  
Composite
Average 

 
ACT 
Math 
Average 

 
ACT 
Science 
Average 

U-M 
Math  
Placement 
Average  

Engineering 29.9 

(n=265) 

30.6 

(n=268) 

29.4 

(n=268) 

20.7 

(n=333) 

Pre-Med 28.3 

(n=151) 

28.5 

(n=146) 

27.1 

(n=146) 

16.9 

(n=176) 

STM 28.7 

(n=235) 

28.8 

(n=241) 

27.6 

(n=241) 

17.5 

(n=288) 

Non-STEM 28.3 

(n=492) 

27.7 

(n=496) 

26.5 

(n=496) 

15.7 

(n=646) 

 

Significantly, there were no differences in Commitment to attending this College, 

Financial Need or Family Support; indicating that all sectors perceived the same level of 

commitment to the university, financial need and family support.  In the Study Habits 

pillar, the Engineering sector averaged a significantly lower level of “feeling 

overwhelmed” than the other student sectors. With respect to Social Engagement, there 

were only a few significant differences between the Engineering student sector and the 

other sectors. The Engineering sector spent significantly more time playing video games 

than the other student sectors. The Engineering sector had less anticipation of 

participation in a study abroad program than the STM and Non-STEM sectors.   
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Both Engineering and Pre-Med students were focused on a specific career, and there was 

no significant difference in the career-related question concerning going to college to 

prepare for a specific career.  The Pre-Med students showed a much stronger motivation 

with a significantly higher average for earning a higher degree and going to college to 

prepare for a graduate program. The Pre-Med students also showed a higher score on 

average number of hours per week studying or doing homework, and for participating in 

volunteer work.  

 

The comparisons of the Engineering sector to the STM sector had the least number of 

significant differences. Most of the differences were related to the Engineering sector 

having a higher average score for the ACT Math, ACT Science, SAT Math, Math and 

Chemistry placement tests, and self-ratings of mathematical ability and computer skills.   

  

The most significant differences occurred between the Engineering sector and Non-

STEM sector.  As previously discussed, the Engineering sector had significantly higher 

average for the ACT and SAT math scores and self-ratings of computer and mathematical 

abilities. In addition, the Engineering sector had significantly a higher average high 

school GPA and class rank and overall ACT/SAT scores.  On career choice issues, the 

Engineering sector had a significantly higher level of importance attached to making a 

theoretical contribution to science, attached a higher importance of going to college to 

pursue a specific career and had a lower chance of changing careers .   On the other hand, 

the Non-STEM sector had a significantly higher self-rating of writing ability, spent more 

time reading for pleasure, and significantly more likely to participate in a study abroad 

program.   The Non-STEM students were more likely to talk to their professors.  In 

socializing, the Non-STEM sector averaged more time in high school socializing with 

their friends and partying, while the Engineering sector averaged more time playing 

video and computer games.  

 

The significant differences between the Engineering sector and Non-STEM sector were 

generally consistent with the Nicholls’ study of differences between STEM and Non-

STEM students.   
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7.2.2 Discriminant Analysis Results 

Separation between the Non-STEM Sector and the “STEM” Sectors 

Given the number of variables listed in Table 7-1 and the possibility of correlations 

among some of the variables, a stepwise discriminant analysis was used to identify 

significant characteristics that define the multivariate space for each of the four student 

sectors.  Figure 7-1 displays the multivariate space of the four student sectors using the 

results of a four-sector discriminant analysis with the ACT subset. A separation between 

the Non-STEM sector and the other sectors which are usually considered as part of the 

“STEM” disciplines can be seen in Figure 7-1. 

 

 
Figure 7-1: Multivariate Space Plot of Student Sectors Illustrates the Clustering of   
        the STEM Disciplines Compared to the Non-STEM Sector (n=633) 
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For this analysis, both factor scores and the deleted variables were used. The significant 

predictors of the differences between sectors, in order of entering the discriminant 

analysis were:  

1. Make a theoretical contribution to science 

2. F9 (Educational Goals) 

3. F11 (Confidence in Quantitative Skills) 

4. F8 (Choice of Major and Career) 

5. F4 (Quantitative Skills) 

6. Self-Rating of Writing Ability 

 

The variables “Make a theoretical contribution to science” and “Self-rating of writing 

ability” are variables that were deleted from the factor analyses. The overall classification 

accuracy was 58%.  The Non-STEM sector has good discriminant distance from the other 

three sectors.  However, the discriminant analysis had difficulty discriminating the STM 

group from the Pre-Med group. The first predictor, “Make a theoretical contribution to 

science” separated the Non-STEM sector from the other three sectors. The Pre-Med 

sector had the highest level for F9 (Educational Goals) since F9 (Educational Goals) is 

loaded with “highest academic degree aspiration” and Pre-med students are initially 

committed to a M.D. The engineering sector has the highest confidence in quantitative 

skills, even for the same ACT Math scores as students in another sector. F8 (Choice of 

Major and Career) tends to separate engineering and pre-med students from the STM and 

Non-STEM students since they are less likely to change majors or careers. The 

Engineering and STM sectors score high on quantitative skills and the Non-STEM sector 

scores high on writing ability.  

 

Engineering Sector versus the Other Sectors Yields Interesting Discriminants 

Because of the poor classification accuracy of 58% for the four sector discriminant 

analysis, a two-group stepwise discriminant analysis comparing the Engineering sector to 

the three non-Engineering sectors was conducted.  This analysis gave much more positive 

results with an overall classification accuracy of 71% with a 76% classification accuracy 

for the engineering sector.  The significant predictors for the two-group discriminant 
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analysis were the same as the first three predictors in the four-sector discriminant 

analysis. They were: 

1. F11 ( Confidence in Quantitative Skills) 

2. F9 (Educational Goals) 

3. Important to make a theoretical contribution to science. 

 

The model pillars related to P5 (Confidence in Quantitative Skills) and P4 (Commitment 

to Career and Educational Goals) were identified as the most significant for 

characterizing the Engineering student sector different from the non-Engineering student 

sectors.  Even though the multiple comparisons showed significant differences in the 

ACT and SAT Math scores, which are included in the F4 (Quantitative Skills factor), F11 

(Confidence in Quantitative Skills) was a more significant discriminant.  In addition, one 

of the variables, “Important to make a theoretical contribution to science” was significant 

as a discriminant; this variable did not fit into the factor structure.  In summary, 

Engineering sector students have a higher self-rating of their quantitative skills (math and 

computers) and express more of an orientation towards a science career than the non-

Engineering sector students. 

 

Using a binomial test for proportions, the classification accuracies are significantly higher 

than a 50-50 chance at a p-level of .000; therefore the discriminant analysis results 

indicate a significant improvement in prediction of the student sectors using the pre-

college characteristics.  

 

7.3 Comparison of Student Success Predictors 

 

7.3.1 Predictors for First Year GPA- Results 

The Astins’ study (Astin, 1993) showed that engineering students had a GPA less than 

other students.  For this research, the similar results were confirmed, with the engineering 

sector and Pre-Med sector with a GPA less than the STM and Non-STEM sectors.  The 

distributions of the first year GPA are displayed in the form of box plots in Figure 7-2.  A 



 

 228

Kruskal-Wallis test for equal medians confirmed a significant difference among the four 

sectors at p=.002.    
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Figure 7-2: The Distributions for First Year GPA Are Significantly Different (See     
         Table 7-3 for sample sizes) 
 
Stepwise Regressions Results for First Year GPA Show Differences in Sectors 

Table 7-3 displays the significant predictors for each of the four student sectors. The full 

regression tables are displayed in Appendix B.  Table 7-4 displays the analysis of 

variance table for a generalized linear model on first year GPA, testing for differences 

among the student sectors with the factor scores as covariates.  

 

No Significant Difference in Gender and Ethnicity Effects 

When gender and ethnicity (URM status) are the only sources of variation besides sector 

in a generalized linear model, only 4% of the total variation is explained.  Sector, gender 

and ethnicity are highly significant in a model with no covariates. When gender and 

ethnicity are added to the significant predictors of the model (in Table 7-3), gender and 

ethnicity are not statistically significant in a model that includes all sectors. The 

significance p-level for gender was .857 and for ethnicity was .143.   
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Table 7-3: Significant Predictors for First Year GPA for each Sector 
                     (p-level of t-test for regression coefficients)  
 

Significant Factors 
 

Engineering Pre-
Med 

STM Non-
STEM  

F1 High School Grades .004 .025 .001 .000 

F2 High School  
      Performance 

 .000 .000 .000 

F4 Quantitative Skills  .000    

F6 Study Habits 
       Homework 

  .001  

F10 Career goals .019    

F11 Confidence in 
     Quantitative Skills 

.017    

F17 Social Engagement
       Socializing 

  .008  

F15 Financial Needs   .028  

F19 Social Engagement
       -Activities  

 .049  .000 

F1 x F4 .000    

F2 x F19    .024 

Number of 
cases 

184 100 145 206 

Adjusted 
R2 

0.38 0.15 0.27 0.26 

Mallow’s Cp 6.2 2.5 5.9 4.1 

Maximum VIF  
(< 4.0) 

1.193 1.014 1.066 1.025 

Ratio of max/min  
Eigenvalue (<100) 

6.97 1.71 2.54 1.58 
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Table 7-4: Generalized Linear Model for First Year GPA Including all Sectors 
            Includes Covariates with p<.050. (n=635) 
 

Tests of Between-Subjects Effects

Dependent Variable: First Year GPA

41.693a 9 4.633 25.119 .000 .266
217.050 1 217.050 1176.927 .000 .653

7.419 3 2.473 13.409 .000 .060
12.243 1 12.243 66.388 .000 .096
6.408 1 6.408 34.747 .000 .053
.400 1 .400 2.171 .141 .003
.907 1 .907 4.920 .027 .008

1.629 1 1.629 8.834 .003 .014

2.974 1 2.974 16.125 .000 .025

115.263 625 .184
6747.423 635
156.956 634

Source
Corrected Model
Intercept
Sector
F1_HSGrades
F2_HSPerformance
F4_Quantitative_Skills
F16_Family_Support
F19_SE_Activities
F1_HSGrades * F4_
Quantitative_Skills
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

R Squared = .266 (Adjusted R Squared = .255)a. 
 

 
 

7.3.2 Discussion of the First Year GPA Regressions and Generalized Linear Model 

The following findings are supported by Tables 7-3 and 7-4. : 

• The set of selected pre-college characteristics, based on the model of engineering 

retention, explain more of the variation in the first year GPA for the Engineering 

sector data better than the non-Engineering sectors.  The adjusted R2 was 38% for 

the engineering sector compared to 15-28% for the non-engineering sectors.  This 

compares to 29% in the Besterfield-Sacre et al. (1997) study for first term GPA 

and 21% for the Levin and Wyckoff (1988) study of freshman GPA. 

• When the regressions were run separately for each sector, the significant 

regressors for first year GPA were different for each sector. The only common 

regressor among the four sectors is F1 (High School Grades).  As expected, for 

the Engineering sector, F4 (Quantitative Skills), as measured by the math and 

science scores and the interaction effect of F1 (High School Grades) with F4 

(Quantitative Skills) were more significant as regressors.  For the non-

Engineering sectors, overall academic achievement is very significant.  F2 (High 
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School Performance) is very significant (p=.000).  F2 (High School Performance) 

is the factor for overall academic ability as measured by the ACT Composite and 

self-rating of academic ability and was significant at p=.000 for all three non-

engineering sectors.   

• Two factors from P9 (Social Engagement Pillar) entered the regression equations 

for the non-Engineering sectors.  This is supportive of Tinto’s theory of retention 

(Tinto, 1993).  F17 (Social Engagement-Socializing) was the factor associated 

with socializing, partying and social self-confidence. F19 (Social Engagement-

Activities) was the factor associated with the chance in the future of a student 

being involved with college clubs, study abroad programs and playing video 

games).  

• The regression of the STM sector was the only sector that found support for F6 

(Study Habits- Homework) as a strong predictor of first year GPA. 

• Several cross-product interaction effects were found to be significant regressor 

(see Table 7-3). This supported the hypothesis of interaction effects for student 

success.   

• Because of the values of the VIFs and the ratio of the largest to smallest 

eigenvalues, there was little concern about multi-collinearity biasing the 

regression coefficients.  

• The generalized linear model represented a model of first year GPA for the entire 

freshman class. The partial eta squares indicated that F1 (High School Grades) 

and F2 (High School Performance) from the first pillar P1 (High School 

Academic Achievement) dominated and provided the most contribution to 

explaining the total variation in first year GPA across all sectors. 

• The same variables that were significant in the regression were also significant in 

the generalized linear model. In addition, F16 (Family Support) became a 

significant covariate (p=.027). 

• A significant difference of the average first year GPA among the four student 

sectors existed (F-statistic = 13.4, p=.000 for Sector in Table 7-4), even after 

adjusting the averages for the significant covariates in the model. This suggested 
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that each student sector needed its own model for effective student success 

strategies and policies.  

• In the combined analysis using a generalized linear model, F4 (Quantitative 

Skills) was not significant but because the F1 (High School Grades) x F4 

(Quantitative Skills) interaction was, and using the hierarchy rule, it was included 

as a covariate.  The hierarchy rule in design of experiments states that if an 

interaction term is present in a model, the main effects must be also.  

• With only gender and ethnicity in a model for first year GPA, less than 5% of the 

total variation in first year GPA is explained. The differences in the first year 

GPA by  ethnicity was highly significant. Once the covariates were entered into 

the model, there was no statistically significant difference in the average first year 

GPA due to differences in gender or ethnicity (URM and Non-URM); this finding 

suggested that the significant pre-college characteristic covariates explained the 

differences in the average first year GPA by gender and ethnicity.  

 

7.3.3 Predictors for First Year STEM GPA - Results 

The first year STEM GPA is a second measure of student success.  The STEM GPA was 

defined as the GPA of all freshman level science, math and engineering courses (Chapter 

3).   In this section, statistics and graphs will be presented to better understand the first 

year STEM GPA.  Then the regression results for each sector will be presented along 

with the generalized linear model for the entire freshman class.  

 

Understanding the STEM GPA 

For a comparison by sectors of the frequency of enrollment in STEM courses, Table 7-5 

tabulates the number of students who enrolled in the more common STEM courses by 

student sector.  

 
Engineering is often considered similar to the other STEM disciplines.  On the average, 

engineering students enroll in six STEM courses in the freshman year compared to three 

to four courses for Pre-Med and STM students. (Some engineering students enroll in 



 

 233

sophomore level STEM courses.) 45% of the non-STEM students enroll in no freshman 

level STEM courses.  

 

Table 7-5: Number of STEM Courses by Sector 

Course Engineering Pre-Med STM Non-STEM 

N 184 100 145 206 
Biol 
162 

12 62 25 9 

Chem 
130 

69 74 41 13 

Math 
115 

40 43 42 29 

Math 
116 

61 23 29 7 

Physics 
140 

65 7 26 4 

 

 

 

Figure 7-3 plots the empirical cumulative distributions of both the first year STEM GPA 

and (overall) first year GPA for all four sections. Figure 7-3 (top figure) shows that the 

engineering sector has the highest STEM GPA distribution of the four sectors. This 

pattern is reversed in the bottom figure with the engineering sector having the highest 

percent of students with a GPA < 2.5.  Using the Kruskal-Wallis test, there was a 

significant difference in the distributions for the four sectors for both the overall GPA and 

STEM GPA (p<.002). 

 
The STEM GPA includes only the freshman level STEM courses.  With the lower overall 

GPA, academic probation may be more likely for engineering students than for other 

students.  This difference will be explored in more detail in this chapter’s discussion, 

section 7-7.   
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Figure 7-3: Cumulative Distributions of the First Year STEM GPA (top) and First  
        Year GPA (bottom) by Student Sector (sample sizes are the same as in   
         Tables 7-3 and 7-6) 
 
 
Stepwise Regressions and Generalized Linear Model for First Year STEM GPA  
Show Consistency 
 
Table 7-6 presents the stepwise regression results while Table 7-7 presents the 

generalized linear model results. The full regression tables are in Appendix D.  

 



 

 235

Table 7-6: Significant Predictors for First Year STEM GPA for each Sector 
                         (p-level of t-test for regression coefficients) 
 

Significant Factors 
 

Engineering Pre-Med STM Non-
STEM  

F1 High School Grades .000  .010 .004 
F2 High School  
      Performance 

 
 

  
.027 

 

F4 Quantitative Skills  .000 .000 .037 .000 
F9 Educational Goals    .016 
F10 Career Goals  .001    

 
F11 Confidence in 
     Quantitative Skills 

 
.001 

   

F15 Financial  Needs   .025  
F1 x F4 .000    
F1 x F11 .036    
Number of 
cases 

 
184 

 
98 

 
120 

 
113 

Adjusted 
R2 

0.48 0.17 0.30 0.31 

Mallow’s Cp 1.0 9.7 6.0 10.1 

Maximum VIF 
 (< 4) 

2.317 1.000 2.272 1.036 

Ratio of max/min  
Eigenvalue (<100) 

9.64 1.39 7.27 1.65 

 

Table 7-7 Generalized Linear Model for First Year STEM GPA (n=515) 

Tests of Between-Subjects Effects

Dependent Variable: First Year STEM GPA

76.465a 7 10.924 37.364 .000 .340
3671.066 1 3671.066 12556.910 .000 .961

1.985 3 .662 2.263 .080 .013
10.525 1 10.525 36.001 .000 .066

3.153 1 3.153 10.786 .001 .021
8.340 1 8.340 28.525 .000 .053
1.977 1 1.977 6.763 .010 .013

148.224 507 .292
4670.691 515

224.689 514

Source
Corrected Model
Intercept
Sector
F1_HSGrades
F2_HSPerformance
F4_Quantitative_Skills
F11_Confidence
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

R Squared = .340 (Adjusted R Squared = .331)a. 
 



 

 236

All the sectors include F4 Quantitative Skills as a significant predictor in the regression 

of the STEM GPA.  This was explored in more detail. Figure 7-4 shows a plot of STEM 

GPA versus F4 for each sector.  Note that the patterns are very consistent with the 

engineering sector having the least variation about the regression line; its adjusted R2 was 

33% just for F4.   
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 Figure 7-4: First Year STEM GPA versus F4 (Quantitative Skills). Sample  
          sizes are the same as in Table 7-8) 
 

The consistency in the slope of the regression lines across sectors is noteworthy.  

Comparison of the slopes of the regression lines in Figure 7-4 showed no significant 

difference among the sectors. (See Table 7-8) 

TABLE 7-8: Comparison of Slopes of F4 on First Year STEM GPA Show No  
       Difference  
  
Student 
Sector 

Regression Coefficient 
for F4 Quantitative 
Skills (Slope) 

95% 
Lower  
Confidence 
Limit  

95% 
Upper 
Confidence 
Limit 

 
N   

 
Adjusted
R2 

Engineering 0.357 0.283 0.430 184 0.33 

Pre-Med 0.286 0.160 0.412 98 0.17 

STM 0.354 0.231 0.476 120 0.21 

Non-STEM 0.387 0.257 0.517 113 0.23 
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7.3.4 Discussion of the STEM GPA Regressions and Generalized Linear Model 

The following findings are supported by the regressions for first year STEM GPA: 

• With the STEM GPA regressions, there was more consistency across sectors.  

• F4 (Quantitative Skills) was the most significant covariate for all four sectors.  F1 

(High School Grades) was also a strong predictor.  

• There was no statistically significant difference in the slopes of first year STEM 

GPA versus F4 (Quantitative Skills). (Table 7-8)   

• For the engineering sector, with only F4 (Quantitative Skills) in the model, 33% 

of the total variation in STEM GPA was explained.  With all the covariates, 48% 

of the total variation in STEM GPA was explained.  

• Concern about financing a college education was significant only for the STM 

sector  

 

The generalized linear model supports the following findings for first year STEM GPA: 

• The STEM GPA is a more consistent measure across all student sectors. Once the 

covariates are taken into account, there is no significant difference among the 

sector averages of STEM GPA (p=.080).  

• When F4 (Quantitative Skills) is included in the model, there is no significant 

difference in average first year STEM GPA among sectors. 

• Four factor scores explained 33% of the total variation in STEM GPA for the 

entire freshman cohort:  F1 (High School Grades), F2 (High School 

Performance), F4 (Quantitative Skills) and F11 (Confidence in Quantitative 

Skills).  This provides strong support for the importance of strong STEM 

preparation in high school.  

• When Gender and Ethnicity (URM status) are the only sources of variation 

besides sector in a generalized linear model, only 7% of the total variation is 

explained.  In this case, sector, gender, and ethnicity are highly significant 

(p<.004).  When gender and ethnicity were added to the covariate model in Table 

7-7, gender and ethnicity are not statistically significant effects. The significance 

probability level was .243 for gender and .946 for ethnicity with an adjusted R2  at 
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33%.  The covariates explain the differences in the average first year STEM GPA 

by gender and ethnicity.  

  

7.4 Comparison of Predictors of University Retention 

 

In this section, descriptive statistics of the university retention by student sector are 

presented.  The freshman year is seen as a year of transition and the pursuit of an 

academic degree is the important issue.  It is reasonable to expect some students to 

transfer to other colleges within the university.  The complement of university retention is 

the dropout rate (from the university).  To minimize loss to society of human potential, 

the dropout rate ideally needs to be close to zero.    

 

Note on Sample Size:  

For this analysis, the 2004 and 2005 cohorts were combined. For the comparison analyses 

by student sector, the sample size was 3287. The sample sizes for each student sector are 

displayed in Table 7-9 of Section 7.4.1 Results.  For the Pareto chart of retention by 

probably major, the sample size was 3275.  The ACT and SAT subsets were not 

considered in this analysis.  

 

 

7.4.1 Results  

Summary Statistics for the University Retention Rates 

Table 7-9 and Figure 7-5 shows the University Retention Rates for each Sector.  Figure 

7-6 shows the university retention rate by student major for those majors that had at least 

30 students (to avoid small sample size bias).  All the engineering majors have university 

retention greater than 95%. 
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Table 7-9:  University Retention Rates for Each Student Sector Show a  
         High Retention Rate for All Sectors 
 

Student 
Sector 

Students 
Returned 

Students  
Not 
Enrolled 

Total University 
Retention 
(%) 

Engineering 717 18 735 97.6 

Pre-Med 417 17 434 96.1 

STM 599 29 628 95.4 

Non-STEM 1437 53 1490 96.4 

All Sectors 3170 117 3287 96.4 
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Figure 7-5: No Significant Difference in University Retention Rates by Sector Using   
         95% Confidence Intervals on University Retention (n=3287) 
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Figure 7-6: Pareto Chart of University Retention by Probable Major at Freshman   
        Orientation (n= 3275) 
 

 
 
Predictors of University Retention  
 
 Table 7-10 displays the significant predictors for university retention from the logistic 

regressions.   For the Non-STEM sector, there is disagreement between the H-L goodness 

of fit statistic and the unweighted sum of squares statistic.  A plot of influential points 

indicates that when three influential points with a GPA < 1.5000 were deleted from the 

analysis, the GPA is no longer a significant predictor (p=.158).   A review of the  data 

indicates that the high school rank is not a predictor either. An attempt was made to rerun 

the stepwise logistic regression with all the pre-college characteristics (as described in 

Section 7.1), and three variables were significant: Concern about finances, Self-rating of 

creativity and Self-rating of writing ability. Due to all the variables entered, the sample 

size was only 478 out of 1487 data points (due to missing data).  When only these three 

variables were entered into the regression, the sample size was 1431, but none of the 

variables were significant. Concern about finances was the most significant with p=.062.  
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Thus, the attempts to find a consistent predictor without the three influential points, led to 

the conclusion that no consistent predictor existed in this set of variables.  This led to the 

conclusion that the university retention of the Non-STEM sector was best described by a 

constant model of Probability of retention =0 .966.    

 

Table 7-10: Logistic Regression Models 
 
 
Significant Pre-College 
Predictor 

Engineering
Sector 
Coefficient 
(p-level) 

Pre-Med 
Sector 
Coefficient
(p-level) 

STM 
Sector 
Coefficient 
(p-level) 

Non-STEM 
Sector 
Coefficient 
(p-level) 

Constant -10.187 
(p=.004) 

-2.053 
(p=.074) 

-1.488 
(p=.091) 

0.837 
(p=.345) 

First Year GPA  1.787 
(p=.000) 

1.515 
(p=.000) 

0.760 
(p=.006)     

High School Rank  0.177  
(p=.000) 

   

Concern about Finances -1.386  
 (p=.002) 

   

Unweighted Sums of Squares 
Z-Score (p-level) 

.121 
(p=.548) 

-0.679 
(p=.248) 

0.270 
(p=.603) 

-3.929 
(p<.005) 

Hosmer- Lemeshow Test 
(p-level) 

8.775  
(p=.187) 

6.594 
(p=.581) 

4.227 
(p=.836) 

9.891 
(p=.273) 

Sample Size 705 433 626 1490 
 

 

The first year GPA, high school rank and concern about finances were entered into a 

stepwise logistic regression along with a variable for sector. Table 7-11 displays the 

logistic regression for university retention with the entire freshman class (i.e. all four 

student sectors).  
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Table 7-11: Logistic Regression Table for University Retention (All Student Sectors, 
          n=3199)   
 

95% C.I. on 
Odds Ratio 

  

Source 

 

d.f. 

 

B 

 

S.E.(B)

 

Wald

 

p-

level 

 
Odds 
Ratio 
(Exp (B)) 

Lower Upper

First Year 
GPA 

1 1.269 0.159 63.82 .000 3.558 2.606 4.857

Concern 
about 
Finances 

1 -0.474 0.158 9.033 .003 0.622 0.457 0.848

Sector  3   9.59 .022    

 

 

Overall, the first year GPA was a better predictor across all sectors than the high school 

rank. Since first year GPA and concern about finances were significant, the retention rate 

is plotted by GPA in Figure 7-7. (The sample sizes are shown in Table 7-12). Confidence 

intervals by GPA and concern about finances are displayed in Figures 7-8 and 7-9. Most 

of the variation in retention among the sectors occurs when the GPA is less than 2.0.  

There are no significant differences based on comparing the confidence intervals.  
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Figure 7-7:  University Retention by Half-Grade Intervals of GPA for all Sectors  

 

 

 

Table 7-12: Sample Sizes Associated with Figure 7-7 and Figure 7-8 

Sector  

First Year GPA Engineering Pre-Med STM Non-STEM 

< 2.0 27 12 13 14 

2.0 to 2.5 72 24 39 56 

2.5 to 3.0 182 85 125 264 

3.0 to 3.5 230 171 212 555 

3.5 to 4.0 224 142 239 601 

Total 735 434 628 1490 
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Figure 7-8:  95% Confidence Intervals on University Retention by GPA Interval 
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Figure 7-9: 95% Confidence Intervals on the University Retention by Level of   
          Concern about Finances (See Table 7-13 for sample sizes) 
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Table 7-13: Sample Sizes for Figure 7-9 

Concern 
About Finances 

Sector 

 Engineering Pre-Med STM Non-STEM 
None 290 179 218 656 

Some 369 219 336 700 

Major 60 30 55 92 

 

 

No Significant Difference by Gender and Ethnicity for University Retention 

When confidence intervals on the university retention  by gender and ethnicity were 

calculated, there was no significant difference in ethnicity within student sector of gender 

within student section (see Figure 7-10) When gender and ethnicity were entered into the 

logistic regression models discussed in this section, there was no significant difference in 

gender or ethnicity. 
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Figure 7-10: No Significant Difference in University Retention by Ethnicity (left) or   
          Gender (right) as shown by 95% Confidence Intervals on the University 
          Retention 
 

 

Because of the interest in retention for female and underrepresented minority students, 

Figures 7-11, 7-12 and 7-13 show the university retention for female students, male 

students and under-represented minority students, respectively.  The sample sizes for 

Figures 7-10 through 7-13 are shown in Table 7-14.  
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Figure 7-11: University Retention by Sector and GPA Category for Female Students 
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Figure 7-12: University Retention by Sector and GPA Category for Male Students  
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Figure 7-13: University Retention by Sector and GPA Category for Under-   
           represented minority students  
 
 
 
 

 

Figure 7-11 displays the university retention for female students; compared to male 

students, female students appear to factor GPA more into their decision as to whether to 

stay in the university. Note that the engineering sector has the highest university retention 

rates. Both Figure 7-12 and Figure 7-13 show close to 100% retention for a first year 

GPA > 2.5 for both male students and URM students.  The most variability occurs with 

the GPA < 2.5.  95% confidence intervals show no significant differences between 

sectors for any of the GPA intervals, including a GPA< 2.5.   
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Table 7-14: Sample Sizes Associated with Figures 7-12, 7-13, 7-14 and 7-15 

Sector Gender or  

Ethnicity  

First Year GPA 

Engineering Pre-Med STM Non-STEM 

Gender 

Male <2.5 64 13 26 38 

 2.5 to 3.0 127 26 57 118 

 3.0 to 3.5 165 59 84 221 

 3.5 to 4.0 179 62 89 225 

 Total 535 160 256 602 

Female <2.5 33 22 25 32 

 2.5 to 3.0 53 59 68 144 

 3.0 to 3.5 62 111 127 330 

 3.5 to 4.0 43 79 150 374 

 Total 193 271 370 880 

Ethnicity 

URM <2.5 21 9 13 19 

 2.5 to 3.0 22 18 15 48 

 3.0 to 3.5 10 13 13 58 

 3.5 to 4.0 8 6 10 50 

  61 46 52 175 

Non-URM <2.5 74 23 32 46 

 2.5 to 3.0 148 63 106 208 

 3.0 to 3.5 205 148 184 466 

 3.5 to 4.0 194 129 216 513 

  621 363 538 1233 

 

7.4.2 Discussion  

When university retention was considered, there was a difference in significant predictors 

for the engineering sector versus the non-engineering sectors. In Chapter VI, high school 

rank was a more significant predictor for the engineering sector than the first year GPA.  
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In this chapter, it was found that  the first year GPA was a strong predictor for the Pre-

Med and STM sectors. Neither the GPA nor the high school rank was a strong predictor 

for the Non-STEM sector.  When the four sectors were combined, both first year GPA 

and concern about finances were strong predictors for university retention (Table 7-11). 

There was no difference in university retention by gender or ethnicity across sectors, for a 

given GPA interval.  

 

7.5 Special Case: Comparison of Student Success for Students Enrolled 
       in Calculus I as First Math Course  
 
This section and section 7.6 look at the subset of students who enroll in Calculus I as 

their first course in  freshman engineering.  In the 2004 cohort, 30% of the students were 

enrolled in Calculus I.  In a competitive grade environment, they are most at risk for 

academic success and, in general, may have more challenges for freshman retention.  The 

analysis is similar to that of the entire freshman class for academic success (Section 7.3) 

and student retention (Section 7.4).  The analysis sample for academic success in this 

section is the ACT subset for the 2004 cohort.  

 
7.5.1 No Difference in the Calculus I Grade Distributions 
 
One of the research questions is whether engineering students earn better grades than 

non-engineering students in Calculus I (Math 115).  Figure 7-14 shows the box plots of 

the grade distributions each student sector.  Included in these distributions were students 

who were full time freshmen enrolled in Calculus I as their first course in math during the 

freshman year for the 2004 cohort.  The engineering sector shows a tighter distribution.  

In this time period, the College of Engineering had invited some students who were 

struggling academically in Calculus I to transfer to Pre-Calculus after the first midterm of 

Calculus and these students would not have completed Calculus I. (This program was 

discussed in Koch and Herrin, 2006.) This may explain the tighter distribution. Using the 

Kruskal-Wallis test, there was no statistically significant difference in these distributions.  

In terms of preparation levels, there were no significant differences in the ACT math 

scores. 
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Figure 7-14: Box Plots of Calculus I Grade by Sector Show No Significant    
           Differences (combined sample size equals 179) 
 

7.5.2 Comparison of Calculus I Students for STEM GPA and Overall GPA 

One of the research questions is whether engineering students earn a better or worst first 

year GPA and STEM GPA than non-engineering students.  On the one hand, engineering 

students have higher average admissions scores (see Table 7-1).  On the other hand, the 

freshman engineering courses are considered very competitive.  Figure 7-15 displays the 

cumulative distribution for the STEM GPA (only freshman STEM courses) and the 

overall first year GPA. 

 

Explicit differences exist between the two figures.  Figure 7-15 (top) showed no 

significant difference among the four distributions for STEM GPA.  In Figure 7-15 

(bottom), this trend was reversed with a significant difference between the distributions 

of the sectors.   The engineering student distribution has the largest left (lower) tail with  

18% of the engineering students earning an overall GPA less than 2.5 compared to 13% 

for STM sector and 4% for the Pre-Med and Non-STEM sectors.  The Kruskal-Wallis 

(non-parametric) test was used to determine significance.   
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Figure 7-15: Cumulative Distribution of First Year STEM GPA (top) and First Year 
  GPA (bottom) for Calculus I Students Show Differences in Sectors .  
  The combined sample size for both figures is 179.  
 

 

7.5.3 Discussion  

The data supported that there was no significant difference in the distribution among 

student sectors of either the preparation level (ACT math score) or performance in the 

Calculus I course.   Although the engineering sector had higher average ACT and SAT 

scores, the students who enrolled in Calculus I were placed in this course with the math 

placement test.  My hypothesis of a significant difference in the STEM GPA distributions 

among the four student sectors was not verified but my hypothesis of a significant 

difference in the overall GPA distribution was verified.   For students whose first course 

was Calculus I, the engineering students’ grade distribution of the first year GPA had the 

lowest average, and 18% of the students earned a predicted first year GPA less than 
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2.500.  Since the same trend existed for all freshmen and students who took Calculus I, 

the only logical explanation of this reversal of distributions in Figure 7-15 is that the 

STEM courses are more competitive than the non-STEM courses.   

 

 

7.6 Special Case: University Retention Rates of Calculus I Students 

As a continuation of a study of Calculus I students, this section compares the freshman 

retention rates by student sector.  The analysis sample is the combined 2004 and 2005 

cohorts.6   

 

7.6.1 Results 

Figure 7-16 displays the 95% confidence intervals on the university retention for each 

student sector.  
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Figure 7-16: No Difference in Retention Among Sectors for Calculus I Students   
          (combined sample size equals 930)              
 

 

 
                                                 
6 Students who initially enrolled in Calculus I (Math 115) or Pre-Calculus (Math 110) were included  in 

this sample since most of the Math 110 students started in Math 115.    
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7.6.2 Discussion  

For students who enrolled in Calculus I (Math 115), there was consistency across the four 

student sectors for university retention.  The confidence intervals in Figure 7-16 showed 

no significant difference in retention rates. In addition, all four confidence intervals 

include 96.4, the university retention rate for all sectors, supporting that the retention 

rates were statistically the same.  Since Calculus I is a gateway course for engineering, 

the fact that the retention of the Calculus I students in engineering is the same as other 

student disciplines is significant information for retention policies.   

 

   

7.7 Summary and Recommendations 

7.7.1 Summary of Hypotheses 

In understanding engineering student success and retention at a university, it is important 

to look at the surrounding environment and culture of the university.  One way to do this 

is to compare the engineering student sector to the other student sectors of the same 

university.  When we compare engineering colleges at different research universities, the 

research universities may have different cultures that contribute to a difference in the 

engineering colleges.  By comparing the engineering sector at Michigan to three other 

sectors at Michigan, it is possible to understand how engineering is different from other 

undergraduate programs at Michigan.     

 

In the empirical analysis that was conducted, the model developed in Chapter II was 

adhered to.  As discussed in the introduction to this chapter, eight hypotheses were 

developed.  These are discussed each in turn. 

 

Different Pre-College Characteristics 

Hypothesis 1: A significant difference exists between the engineering sector and the  
  other sectors in the distributions of some of the pre-college   
  characteristics.  
 
This hypothesis was verified.  Comparison of the pre-college characteristics showed 

significant differences between the engineering sectors and the non-engineering sectors 
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(Table 7-1). Many of the significant differences were the same variables that Nicholls 

identified in her study of STEM and non-STEM differences (Nicholls, et al., 2007).  As 

expected, the engineering sector had a higher math and science scores; and in their 

confidence in their math and computer abilities. Hours per week playing video/computer 

games (in high school) for engineering students was significantly higher than for the 

other student sectors.  Despite this significance, playing video games was not a predictor 

of engineering student success or retention.  Pre-Med students had a higher motivation 

for an academic career.  The Non-STEM sector had higher self-rating in writing ability 

and a higher probability of changing a major or career.   

 

The discriminant analysis of the engineering sector versus the non-engineering sectors 

showed that F11 (Confidence in Quantitative Skills), F9 (Educational Goals) and the 

variable “Important to make a theoretical contribution to science” were the major 

predictors of differences between engineering and non-engineering students. Although 

there were significant differences in math scores, the differences in confidence in 

quantitative skills were even more significant.  

 

Academic Student Success 

Hypothesis 1: The predictors for student success are different for the four sectors.  

This hypothesis was verified for the first year GPA.  (See Table 7-3)  In addition, two 

sectors had significant interactions as predictors. With respect to the first year STEM 

GPA, the predictors were different, except F4 (Quantitative Skills) was significant for 

first year STEM GPA in all student sectors. (See Table 7-6)  This supported the 

importance of the math and science preparation courses in high school for STEM courses.  

 

The most variation was explained with the Engineering sector. The adjusted R2 was .38 

for first year GPA and the adjusted R2 was .48 for the STEM GPA.  Relative to the R2 

found in the literature with models that use pre-college characteristics, these are the best 

that I have seen.  A special effect in modeling was made to look at interactions of the 

significant predictors.  This contributed to the higher R2 statistics.   
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For engineering students, quantitative skills are the most significant predictor of first year 

GPA. Engineering students also enroll in the most STEM courses.  For the non-

engineering sectors, students enrolled in a higher percent of social studies and other non-

STEM courses.  For each of the non-engineering sectors, a social engagement factor was 

found to be significant.  This is consistent with Tinto’s theory of college retention (Tinto, 

1993).  The fact that the engineering sector shows no significant predictor related to 

social engagement and the non-engineering sectors show a significant predictor related to 

social engagement strongly support the thesis that a model for student success is different 

for the engineering sector. While the non-engineering sectors followed Tinto’s model 

with a significant social engagement factor, the Engineering sector did not.  

 

 

Hypothesis 2: F4 (Quantitative Skills) will be a significant predictor for student  
  success. 
This hypothesis was verified for the first year GPA, Engineering sector only, and for the 

first year STEM GPA, all sectors.  A major difference between the engineering sector and 

the non-engineering sectors was that while quantitative skills were very significant for 

student success as measured by the first year GPA, they were not significant for the non-

engineering sectors.  Since academic probation was based on the overall GPA, it is 

important to understand this difference between engineering and non-engineering majors.  

 

Most students take some STEM courses (science, technology, engineering or math) and 

the analysis concluded that quantitative skills were important for performing 

academically well in these courses for all sectors.   

 

Hypothesis 3: There will be differences in both the overall GPA and STEM GPA   
              across student sectors. 
This hypothesis was verified that there was a difference for overall GPA but not for the 

STEM GPA.  On the average, the overall GPA for the engineering sector was less than 

for the other student sectors. The distributions of STEM GPA were similar across student 

sectors.   The percent of students with an overall GPA < 2.5 was 15% for engineering 

students compared to half this percent (5-8%) for non-engineering student sectors.  
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Comparison of the overall GPA with the STEM GPA showed that the engineering sector 

had the same GPA of 15% (Table 7-15).  This is probably attributable to engineering 

students take a large number of STEM courses. 

 

 

Table 7-15: Percent of Students with a GPA < 2.5 for the Overall and STEM GPA     
         for All Students and Calculus I Students 

 
Percent of Students 

With GPA < 2.5 

All Students

 

(Figure 7-3) 

Calculus I 

Students Only 

(Figure  7-15) 

Overall 

First Year GPA 

  

   Engineering 15% 18% 

   Non-Engineering 5-8% 4-13% 

STEM GPA   

   Engineering 15% 23% 

   Non-Engineering 28-37% 14-27% 

 

 

Only 5-8% of the students in the non-Engineering sectors earn an overall GPA < 2.5, 

compared to 15% of the engineering students. To understand this better, the subset of 

students whose first math course is Calculus I was considered.   The GPA and STEM 

GPA showed the same relative patterns for the Calculus I students. (See Table 7-15).  

The Calculus I non-Engineering sectors had a lower percent of students with a first year 

GPA < 2.5 than the Engineering students.  In addition, using the Kruskal-Wallis test, 

there was no significant difference between the sectors for the Calculus I students for the 

STEM GPA, while there was a significant difference for the distribution of overall GPA.   

 

Thus it appears that the STEM courses have a different grading scale(more low grades) 

than the non-STEM courses.  Since engineering students take the most STEM courses of 

the four sectors, they are more likely to have a lower overall GPA than the other sectors.  
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Hypothesis 4: Differences in first year GPA by gender and ethnicity will be   
  explained by academic preparation levels.  
This hypothesis was verified.  Once the first year GPA by gender or ethnicity was 

adjusted for the significant covariates in the model, there was no significant difference in 

gender or ethnicity.  This was also true for the first year STEM GPA.  

 

Retention 

Hypothesis 1: University Retention for the engineering sector will be related to the  
  first year GPA and math preparation.  Other factors will influence  
  retention for the non-engineering sectors.  
Because of the small sample size in the group of engineering students who left 

engineering, the logistic regression prediction of university retention was limited to two 

predictors. Neither one was math preparation.    For the engineering sector, the significant 

predictors were high school rank and concern about finances (for college).  For the non-

engineering sectors, the first year GPA was the only significant variable.  Sector was 

found to be significant in a logistic regression model of university retention.   

 

Female students for all sectors appear to factor in their retention decision based on their 

college GPA more than male students (Figure 7-11). 

 

Hypothesis 2: Initial Concern about financial need and attending the student’s first  
  choice  college will be a factor that influences university retention for  
  all sectors.  
Concern about financial need was a significant predictor of university retention.  78% of 

the students indicated in the CIRP survey that Michigan was their first choice college. 

Analysis consistently showed that there was no relationship between university retention 

and the student’s first choice.  

 

Hypothesis 3: The university retention of students who enrolled in Calculus I will  
  vary across sectors 
This Hypothesis was not verified. There was no significant difference in the university 

retention among sectors.  
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7.7.2 Recommendations 

The recommendations include:  

• The differences between the distributions of first year GPA and STEM GPA are 

striking.  The difference appears to be due to the systematic different approach to 

grading courses. It is recommended that an engineering faculty committee review 

this data for further action.  

• In developing an intervention program, it should be recognized that each 

discipline has different predictors for student success.  The model for engineering 

student success is substantially different than that for the other sectors.   

• For the STEM disciplines, F4 (Quantitative Skills) is a consistent predictor of 

STEM GPA for all four sectors.  For any research projects on STEM courses, it is 

recommended as a predictor of success.   

• High school rank, first year GPA and concern about finances should be 

considered as leading indicators for university retention.   

• Although there were significant differences in the first year GPA between sectors, 

the retention statistics between sectors were very similar.  In efforts for 

continuous improvement in retention, the focus should be on support systems for 

first year GPA.   
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CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 
 

This thesis adds a major engineering contribution to the research supporting engineering 

student academic success and retention.  This chapter will discuss the conclusions and 

recommendations based on this research.   

 

8.1 Contributions to Improved Research Methodology 

The contributions to improved research methodology are summarized by chapter. 

Chapter II:  

o The comparison of the research literature from two fields (engineering 

education and education) worked well in the development of a model.  It 

was found that some predictors are dominant in one field and not in the 

other; by considering two fields, a wider net of possible predictors was 

created for a model.  Since the model is based on empirical studies, the 

model can be easily applied to any university’s data.  This approach can be 

extended to other areas of research.  

o Four differences between the engineering curriculum and other disciplines 

were hypothesized. These four differences were then used to hypothesize 

important concepts of a model for engineering student success.  

o A model for freshman engineering success was developed. This model is 

based on pre-college characteristics as input and the GPA at the end of the 

freshman year and retention as the outputs of the model.  

o The current state of continuous improvement programs by educational 

institutions was reviewed.  
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Chapter V: 

o An equation for student success was developed based on the model.  

Dominant in the model are the first two pillars for student success, High 

School Academic Achievement and Quantitative Skills. This suggests a 

strong predictive effect of academic preparation during the high school 

years and the predictive effect of taking math and science courses in high 

school. Also predictive was confidence in quantitative skills and 

commitment to career and educational goals.  More detail follows in Section 

8.2.   

o The Hotelling T2 Technique showed multivariate stability in the data , 

suggesting that the multivariate techniques related to Hotelling’s T2 can be 

applied to education data. The Hotelling T2 has been used effectively for 

improving manufacturing processes.  In addition, Hotelling’s T2 may be 

very successful at detecting students who are in need of intervention in the 

first semester with a multivariate approach using pre-college characteristics.  

o A set of guidelines for potential interventions consistent with the model’s 

pillars of student success was developed. This could be used as a template 

by an engineering college and tailored to the college’s specific programs for 

intervention.  

o The University of Michigan has a number of intervention programs to help 

students.  In general, it is the student’s responsibility to participate in these 

programs.  Thus, a student could participate in several programs.  When 

evaluating an intervention program, bias could develop from students 

having participated in several intervention programs.  In an attempt to 

minimize bias, the “randomized database” technique was used to choose 

students randomly from the database.  Similar to a designed experiment,  

students were randomly selected from the large database to represent the 

combination of  two levels of advising frequency and enrollment or non-

enrollment in Engineering 110.  In this case, advising frequency and 

enrollment in Engineering 110 were considered as interventions.  The same 

technique could be expanded to more interventions.  
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o The factor F4 (Quantitative Skills) includes the ACT math score, the ACT 

science score, and the University of Michigan’s math and chemistry 

placement scores.  It was evaluated as a potential placement instrument.  

The technique estimated a minimal level of F4 needed as the preparation 

level in math and scientific reasoning for each of the freshman engineering 

courses.  It verified the math and science entry level of several courses and 

indicated that two courses needed stronger preparation than is currently 

required for enrollment. 

Chapter VI 

o Prediction equations for engineering college retention and university 

retention were developed based on the retention model.  It was found that 

four variables contributed to predictiveness of engineering college retention: 

self-rating of math ability, high school rank, concern about finances and the 

chance of participating in a study abroad program. For university retention, 

it was found that high school rank and concern about finances are predictive 

variables.  

o The sensitivity analysis for college and university retention indicates the 

variation for retention, taking into account the actual range of each 

predictor.  Within the typical (90%) range of 91 % class rank to 99% class 

rank, the engineering college retention varies the least, a range of 92% to 

95%.  From a self-rating of math ability from average to the top 10% of the 

student population, the engineering college retention can be expected to vary 

much more from 88% to 97%.  For concern about finances, a major concern 

can generate retention of only 89% if all the other variables were controlled 

at the median value.  (The actual engineering college retention was 94%). 

With knowledge of the expected range, a better idea of the risk associated 

with selected admission policies can be better understood.  This is a 

significant benefit of the analysis.  

Chapter VII 

o The comparison of the engineering majors to other majors within the 

University of Michigan places the engineering student success and retention 
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in perspective to other majors.  All colleges within a university have a 

common culture.  Studies that compare engineering to other majors within 

the university may exist but my research is more comprehensive than any I 

have seen.  In this study, engineering students were compared to three other 

student groups: Pre-Med students, STM(Science, Technology and Math ) 

majors and Non-STEM (humanities, social science and business) majors.  

Significant differences were found in predicting student success (first year 

GPA) among the four student groups.  This suggests that a different student 

success strategy is needed for each group.  A recommendation is made that 

researchers consider this in a research design of an engineering student 

success study.  

Overall 

o The research techniques used in this dissertation can be easily extended to 

any engineering college within a research university.  

 

8.2   Student Success Conclusions  

 

The conclusions from this research related to student success are summarized within the 

three research objectives:  

Objective 1: Develop a model for freshman engineering student success and validate 
           it with an empirical analysis 

 

1.  Using both a literature review from engineering education and education 

provided a broader set of pillars of pre-college characteristics for the model than 

just using the engineering education literature.  As a result, a wider set of potential 

variables were considered.   

 

2.  The validation of the academic success model informs engineering education by 

confirming similar variables as strong predictors, compared to other freshman 

engineering success studies.  The two strongest pillars (by percent of variation 

explained) in the validation by pillar and prediction by stepwise regression were P1 (High 

School Academic Achievement) and P2 (Quantitative Skills).  This is consistent with the 
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strength of these pillars shown in the literature review in Chapter 2.  This study verified 

again the strength of overall strength of quantitative skills and confidence in quantitative 

skills.  In the Besterfield-Sacre et al (1997) and Levin and Wyckoff (1988) studies, the 

SAT math had been significant for academic success.  The Besterfield-Sacre study (1997) 

also had found that confidence in basic engineering skills to be a significant predictor; in 

this study, the self-rating of math and computer abilities were significant.   

 

3. The empirical analysis supports a revision to the proposed model of Chapter II.  

The following revisions to the model for engineering student success and retention are 

supported: 

 

• There is insufficient evidence to include P3 (Study Habits), P6 (Commitment to this 

college), and P9 (Social Engagement) in this model for Michigan. Validation by pillar 

for the ACT subset showed these three pillars to be non-significant.. (Table 5-1). In 

addition, in the stepwise regression, the factors associated with these pillars did not 

enter the regression for first year GPA (Table 5-2).  For P9 (Social Engagement), only 

the variable “chance to participate in  a study abroad program” entered either the 

academic success or retention models. Therefore, all the factors associated with 

P3(Study Habits) and P6(Commitment to this college) were removed from the model.  

In addition, all the factors and variables in P9(Social Engagement) were removed 

except for the variable “chance to participate in a study abroad program.”  

o The relationship between Study Habits and first year GPA was very weak in 

this study (See Section 5.1)   

o Commitment to this college was a stronger predictor of student success and 

retention in the education literature than the engineering education literature.  

A chi-square test indicated no difference in retention between engineering 

students who indicated that Michigan was their first choice and those who 

indicated Michigan as their 2nd or more choice.  Once a student starts college, 

it is likely that other variables are better predictors.   

o Although social engagement was a significant predictor for the non-

engineering sectors, it was not a significant predictor for the engineering 
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sector.  The one exception was the chance of participating in a study abroad 

program in predicting college retention.  There were few significant 

differences among the social engagement variables between the engineering 

sector and other sectors.  This indicates that the social engagement 

characteristics of engineering students are similar to that of the STEM 

disciplines and non-STEM majors, but that social engagement does not 

predict academic success as measured by the first year GPA or first year 

STEM GPA.    

• With respect to engineering retention, the empirical analysis showed that the 

likelihood to participate in study abroad programs was a significant pre-college 

characteristic for engineering retention.  Some students leave engineering with high 

GPAs and the best pre-college characteristic (in this study) that predicts this is 

likelihood to participate in study abroad programs; therefore, for this variable was 

added to the pre-college characteristics in the model.  (See Chapter VI for more 

discussion)  

• Due to the lack of support for social engagement, the Freshman Year Process was 

simplified to reflect the important of the pre-college characteristics, the first year 

GPA and the revised commitment to an educational goal of an engineering major.  

• First year GPA was not a significant predictor for college or university retention for 

engineering students.  Instead, the self-rating of math ability, the high school rank, 

concern about financing a college education, and likelihood of studying aboard during 

college were the significant predictors for retention within engineering; and high 

school rank and concern about financing a college education were significant 

predictors for university retention.  Because the research literature supports both first 

year GPA and high school rank as predictors of retention, the model was changed to 

reflect this.   

 

The revised model is shown in Figure 8-1.  
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Figure 8-1 Revised Block Diagram of Model of Engineering Student             
       Retention 

 
 
The predicted equation for freshman engineering student success (GPA) is:  

 
 GPA = 2.921 + 0.233 F4 (Quantitative Skills) + .113 F1 (High School Grades) 
            + 0.205 F1xF4 + .096 F11 (Confidence in Quantitative Skills) 
              -.087 F10 (Career Goals)            8.1 
 
The factors are scaled with an average of zero and approximate standard deviation of 1.0.   
The equations for each factor are given in Chapter V.  
 
 
The predicted equation for freshman engineering (college) retention is:  
 
 Retention = 1/ (1+EXP – (-6.020+ .820 x Math Ability +.083* High School Rank  
          -.717 *Concern about Finances -.500 * Chance to study abroad)) 
               8.2 
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Where Math Ability, Concern about Finances and Chance to study abroad use the same 

coding as in the CIRP survey (2005).  Table 8-1 below shows typical values for these 

variables. 

 

Table 8-1: Range of Values for Variables 

Variable Scale Range  80% Range 
in data 

Self-Rating of 
Math Ability 

1 to 5  3 (Average) to 5 
(Top 10%) 

High School Rank Continuous 91 to 99% 

Concern about 
Finances 

1 to 3 
(None, minor, 
major) 

1 (None) to 3(Major 
concern) 

Chance to Participate in a 
Study Abroad Program 

1 to 4 1 (no chance) to 4 
(high chance) 

 

For example, for a student with a moderately high self-rating of math ability of 4, high 

school rank of 95%, major concern about finances (3) and expecting to participate in a 

study abroad program with a low chance(2),  the predicted first year retention in 

engineering is: 

 

Retention = 1/ (1+EXP – (-6.020+ .820 x Math Ability +.083* High School Rank   
         -.717 *Concern about Finances -.500 * Chance to study abroad)) 
 

Substituting in the values: 

Retention = 1/(1+EXP – ( -6.020+ .820 x 4 +.083 x 95 -.717 x 3 -.500 * 2) 

Retention = 1/(1+EXP- (1.994))  

Retention = .88 or 88% retention rate  

 

Because of the major concern about finances, the predicted retention was lower than the 

average of 93.9%.   
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4.  The hypothesis testing informed engineering education that once the significant 

predictors are statistically controlled, no significant difference in average first year 

GPA exists for gender or URM (ethnicity) 

• There was no significant difference in the average first year GPA between 

male and female engineering students  (Discussed in Chapter V). Admitted 

female students tend to have the same average F1 (High School Grades) 

scores as male students scores (high school rank and GPA) and significantly 

lower F4(Quantitative Skills) and F11(Confidence in Quantitative Skills).  

Because of the interaction term which is of the same magnitude as F1 (High 

School Grades) and F4 ( Quantitative Skills), the model for first year GPA 

(equation 8.1)  predicts a higher first year GPA than without the interaction 

term.  As examples of predicted values of the first year GPA, consider three 

different scenarios for female students.  The first represents the 25th 

percentile, the second the median and the third the 75th percentile for each 

predictor. Then, Table 8.1 displays the calculation of the predicted first year 

GPA for each of the three students. 

 

The model for engineering college retention includes high school rank, one of 

the highly loaded variables on F1 (High School Grades).  As a result, once the 

high school rank is taken into account, there is no significant difference in 

retention of male and female students.  
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Table 8-2: Examples of Prediction of the First Year GPA for Female        
      Engineering Students 
 

 
Variable 

Model 
Coefficient

Female 
25th 

Percentile 

Female 
50th 

Percentile 

Female 
75th 

Percentile
Constant  2.921    

F1 High School Grades  0.113 -0.100 0.400 0.700 

F4 Quantitative Skills  0.233 -0.500 0.200 0.700 

F1 x F4  0.205  0.050 0.080 0.490 

F11(Confidence in 

Quantitative Skills) 

 0.096 -0.200 0.500 0.600 

F10 (Career Goals) -0.087 -0.500 0.400 0.900 

Predicted First Year 

GPA 

 2.828 3.042 3.243 

 

 

• The average first year GPA for under-represented minority (URM) students is 

significantly lower than for Non-URM students.  The data suggests that, on 

the average, URM students were admitted to engineering with significantly 

lower F4 (Quantitative Skills) and F1 (High School Grades) than Non-URM 

students. (See Table 5-7, Section 5.3.2) However, they came to engineering 

with a significantly higher set of engineering career goals.  In a generalized 

linear regression, once the average first year GPA of the URM students is 

statistically controlled for the average level of F1 (High School Grades) and 

F4 (Quantitative Skills) of all students, there is no difference in the average 

first year GPA of URM students compared to Non-URM students.  This 

indicates that the difference is due to the significant covariates.  These 

covariates primarily represent unequal preparation levels.  The conclusion can 

then be drawn that the differences in average first year GPA are due to 

different preparation levels, not different cultures.  This is valid for the 

Engineering sector and  across all four student sectors.  As an example of 

predicted GPAs, Table 8.2 displays the predicted GPA for an under-
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represented student representing the 25 percentile, median and 75 percentile 

values of the predictors for engineering student academic success.  

 

Table 8-3: Examples of Prediction of the First Year GPA for          
       Under-Represented Engineering Students 

 

 
Variable 

Model 
Coefficient 

URM 
25th 

Percentile

URM 
50th 

Percentile 

URM 
75th 

Percentile
Constant  2.921    

F1 High School Grades  0.113 -0.6 -0.1 0.4 

F4 Quantitative Skills  0.233 -0.9  0.1 0.5 

F1 x F4  0.205  0.54  -0.01 0.20 

F11(Confidence in 

Quantitative Skills) 

 0.096  0.5 0.6 1.1 

F10 (Career Goals) -0.087 0.2 0.5 1.0 

Predicted First Year GPA  2.785 2.949 3.142 

 

 

5. This study informed engineering education that interactions are significant.  

For the stepwise regression for the first year GPA in the Engineering sector, the 

interaction F1 (High School Grades) x F4 (Quantitative Skills) was significant and 

contributed 6% more to the regression sums of squares.    For predicting the STEM 

GPA in the Engineering sector (Chapter VII), two interactions were significant: F1 

(High School Grades) x F4 (Quantitative Skills) and F1 (High School Grades) x 

F11 (Confidence in Quantitative Skills).  These are the interactions of F1 High 

School Grades (HS GPA and rank)) with both the actual quantitative skills level and 

confidence in quantitative skills.  This suggests that a higher level of both 

quantitative skills and confidence in quantitative skills compensates for a lower 

initial level of F1 (High School Grades) to enable student success.  In both cases, 

the inclusion of the significant interaction term increased the adjusted R2, an 

indication of a better model fit than without the interaction term.    Previous studies 

tended to not consider an interaction effect.    
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Objective 2: Determine the Effectiveness of Current Intervention Strategies within    
           the Engineering Sector at Michigan 

 
1. Overall, the analysis showed that engineering intervention programs improve 

student academic success and student retention. What seems to be clear is that all 

of these intervention programs helped to retain students in engineering in the first 

year of college.  With engineering students, the focus seemed not to be so much on 

engagement or involvement, as encouragement (mentoring), development of 

cognitive abilities, and career choice development. 

 

2.   Mentoring supports student improvement.  Chapter V discussed the effect of a 

mentoring program, the advising program and Engineering 110 on student success.  

The improvement in the GPA of students, who were mentored, compared to those 

who were not, was significant. The mentored group displayed an increase of an 

average of 1.08 in the second semester GPA  over the fall GPA.   

 

3.  Enrollment in Engineering 110 showed significant improved retention of students 

both within engineering and within the university.  There was a 4.4% 

improvement in the engineering retention rate for students who enrolled in 

Engineering 110 compared to students who did not enroll in Engineering 110.  There 

was strong  evidence that enrollment in Engineering 110 coupled with a high level of 

advising helped some students improve their academic success.    

 

Objective 3: Significant Differences between the Engineering Sector and the Non-  
           Engineering Sectors  

 
1.  This study significantly informed engineering education on the relationship 

between engineering and the three non-engineering sectors (Pre-Med, STM and 

Non-STEM).  Throughout this research, there were significant differences between 

the engineering sector and non-engineering sectors.  The differences were more 

evident with the modeling of student success and much less evident for modeling 

retention.  



 

 271

• Some of the predictors for student success (GPA) for the Engineering 

sector were in different pillars of student success than for the non-

engineering sectors.  

• The generalized linear model showed a significant difference in the first 

year GPA, between the sectors, even after the first year GPA was 

adjusted for the covariates in the model .   

• All the student sectors included the F4 (Quantitative Skills) as a 

significant predictor of first year STEM GPA.  The other predictors for 

STEM GPA were different for each sector.  

• The Engineering sector showed the highest adjusted R2 using the pre-

college characteristics included in the model for the first year GPA and 

STEM GPA.  This suggested that the set of pre-college characteristics 

were better predictors for the Engineering sector than for other student 

sectors.   

• For university retention, for the Engineering sector , both the first year 

GPA and high school rank were predictors of retention, with the high 

school rank combined with concern about finances providing a stronger 

prediction than the first year GPA.  On the other hand, NO pre-college 

characteristics were significant predictors for the Non-STEM sector.  It 

is a significant finding that no pre-college characteristics were 

significant and warrants further research.  This finding supported that 

Engineering retention is different from the Non-STEM sector and that 

the Engineering retention is more predictive by some pre-college 

characteristics  (i.e. high school rank and concern about finances). 

whereas the retention of the Non-STEM sector is not predictive by the 

pre-college characteristics.  The first year GPA was a significant 

predictor of retention for the Pre-Med and STM sectors, consistent with 

the model.  

2. The Differences between Engineering and the STM disciplines informed 

engineering education.  Typically, the STEM disciplines include engineering 

students. In this research design, engineering and pre-med students were in separate 
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student sectors from the rest of the STEM disciplines.  In this research, the predictors 

of student academic success for the STM sector (STEM disciplines without the 

Engineering or Pre-Med sectors) were more like the Non-STEM student sector than 

the Engineering Sector.  F4 (Quantitative Skills) and F11 (Confidence in Quantitative 

Skills), which were significant predictors for first year GPA for the Engineering 

sector, were not significant for the STM sector.  Instead, F2 (High School 

Performance), F7 (Study Habits-homework), F17 (Social Engagement-Socializing) 

and F15(Financial Needs)  were significant.  The modeling of the STEM GPA 

showed a difference in predictors also.  For the Engineering sector, F10 (Career 

Goals) and F11 (Confidence in Quantitative Skills) were significant predictors and 

not for the STM sector; F2 (High School Performance) and  F15 (Financial Needs) 

were significant for the STM sector and not for the Engineering sector.  This suggests 

more separation in key predictors that affect student academic success between the 

Engineering sector and STM sector than previously thought.  

 

3.  Variation in Grading as a Engineering Retention Issue 

It seems very probable from the data presented in Chapter VII that the STEM courses 

were graded on a higher standard scale (more low grades) than non-STEM courses.  

At the same time, the model predicted that engineering students who entered 

engineering less prepared in quantitative skills were then more at risk of academic 

probation (GPA < 2.000).  The data supported that the engineering sector had a lower 

average GPA than the non-engineering sectors. A lower average GPA is consistent 

with the Astins’ multi-institutional study of 1985-1989 (Astin and Astin, 1992).  

More evidence of inequity in grading was present with students who take Calculus I. 

Engineering students who began in Calculus I did not have a statistically significant 

different distribution for the ACT Math score (indication of preparation) or for the 

STEM GPA than the other sectors; however, there was a significant difference 

(lower) in the distribution of first year GPA for Engineering students compared to 

Non-STEM students. This again appeared to be due to inconsistent grading standards 

between the STEM courses and non-STEM courses.  
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Nationally, there is a high awareness of the need for more engineers and scientists 

(NAS, 2005).  The National Science Board has recently expressed their concern about 

the shortage of scientists and engineers (NSB, 2007).  Adelman’s path model 

suggested that if one path is exceedingly difficult, the student will choose one of the 

competing paths, which are just as desirable (Adelman, 1998).  For example, if a 

student was achieving low grades in engineering, he/she may transfer to another 

major (such as business) that was considered just as rewarding.  With different 

grading systems within the same university, if grading of engineering courses is 

tougher, then applying Adelman’s model, engineering may unnecessarily lose 

potentially competent engineers to other majors.   

 

The University of Michigan has a significant mission of increasing its representation 

of under-represented minority students.  Research has shown that increased 

representation of minorities increases the depth of thinking that is important for active 

learning and intellectual engagement in a college education and a successful career.  

(Gurin, et al., 2002)  As a result, during the time of this study, Michigan gave 

preferential treatment to some minorities and female engineering students.  In 

November 2006, voters approved Proposal 2 to amend the Michigan constitution “to 

ban public institutions from discriminating against or giving preferential treatment to 

groups or individuals based n their race, gender, color, ethnicity or national origin.”  

(University of Michigan, 2007)  In the future, it may be another group of students, 

who provide diversity to the university.  Students who provide diversity to the 

university and come from high schools with fewer college preparation and AP 

courses but, yet are generally well-prepared for college, will struggle within a  

university with a competitive grading system. In addition, the Watson and Froyd 

(2007) model for increasing diversity in engineering suggests that in the transition of 

high school to engineering college, three areas of development take place: 

• cognitive development 

• identity development 

• career choice development 
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If there is great difficulty in one area, personal energy is taken away from the overall 

rate of learning in college.  These ideas support a less competitive environment in the 

freshman year of engineering.  

 

This variation in grading between the Engineering sector and Non-STEM sector 

warrants further discussion within the university.  

 

4. Hypothesized Differences Verified 

In Chapter II, it was hypothesized, that there were four differences that affect freshman-

engineering success when compared to other disciplines.  These are discussed below.  

1.) A major in engineering prepares for a specific career, similar to other pre-

professional and professional programs.  

 

In the multiple comparison analysis (Chapter VII, Table 7-1), it was found, that for 

the question concerning the importance of going to college to get training for a 

specific career and the questions concerning career or major change, that there was no 

difference in the average for engineering compared to Pre-Med or the STEM 

disciplines, but there was a significant difference between Engineering and the Non-

STEM disciplines.  This finding confirmed that the STEM disciplines (including 

Engineering) were more focused on a specific career than the Non-STEM disciplines 

and  confirmed this hypothesis.  

 

These survey questions were present in the P4 pillar, Commitment to Career and 

Educational Goals. This is supportive of the supposition that P4 Commitment to 

Career and Educational Goals would be supported in the model for engineering 

student success.  

 

2.) The engineering student is preparing for a career an as analytical thinker.   

Therefore, the freshman curriculum is the most intense in the math and science 

courses. The STEM GPA analysis (Chapter VII) showed that the Engineering sector 

students took the most STEM courses and had the highest average STEM GPA of all 
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the student sectors.  This hypothesis is confirmed. In addition, F4 Quantitative Skills, 

the factor for P2 Quantitative Skills  was significant as a predictor of first year GPA 

only for the engineering sector. This finding is supportive of the supposition that 

Pillar P2 Quantitative Skills would define this difference between engineering and 

other disciplines. 

 

3.) Expectations for admissions to an engineering program include a wide range of 

college-prep courses with a large number of math and science courses. 

 

In the multiple comparisons analysis (Chapter VII), it was found that the Engineering 

sector had a significantly higher average than each of the other sectors did for the 

ACT Math, ACT Science, U-M Math Placement test and the U-M Chemistry 

Placement test.  This hypothesis was confirmed. These are variables in F4 

Quantitative Skills , which defines the P2 pillar, Quantitative Skills.  This difference 

is, therefore, supported in the model.  

 

4.)  The freshman engineering curriculum tends to be very competitive.  Those 

students who have the stronger pre-college preparation in math and science will 

have an advantage.  

 

      As has been discussed in Chapter VII, there is evidence of a different grading scale 

for the STEM courses than for the Non-STEM courses. The model prediction and the 

results in Chapter VII clearly showed that the higher standards for grading for the 

STEM courses disadvantages the less prepared engineering students because of the 

high number of STEM courses that they take.  The academically well-prepared 

students demonstrate high grades, consistent with the model.  This hypothesis is 

considered to be confirmed.  Consistency of support across all pillars was not present. 

The  most support was for P1 High School Academic Achievement and P2 

Quantitative Skills, which are directly related to overall academic preparation and 

preparation in the analytical skills.    
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All four hypotheses were confirmed for the differences between the freshman-

engineering curriculum and other freshman programs.  

 

Overall 

Michigan Engineering has a high freshman retention rate both because of the 

quality of the preparation of admitted students and because of the its interventions 

programs 

One of the reasons given for conducting a single institution study at the University of 

Michigan was to research the modeling of student success at an engineering college with 

a high success rate.  It has been shown in this research, that the freshman engineering 

retention rate was 93.9%. for the 2004-2005 cohorts.   The prediction equation supported 

the importance of academic preparation for academic success in the first year of 

engineering.  The median high school rank of the combined 2004-2005 cohort sample 

was 96% with 90 percent of the students having a high school rank of 91 percent or 

higher.  The average ACT Math score for engineering students was 30.6; the average 

ACT Science score was  29.4; and the average U-M Math placement test score was 20.7.  

All of this indicates a very selective admissions process that generated an academically-

oriented freshman class.  

 

 Consistent with the model (equation 8.1), this high level of  academic preparedness 

contributed to the academic success. In addition, high school rank was found to be a 

significant contributor to freshman retention.  Thus the high level of academic 

preparedness as indicated by the high school rank also explains the high freshman 

retention rate.  Other variables that contributed to a high retention rate was a high degree 

of confidence in math and computer abilities and a low percent of students who had 

major concern about financing college.  For students who struggle academically, the 

evidence provided in this research indicates that mentoring and advising support student 

success.  In addition, the retention of students who enrolled in Engineering 110 was 

found to be 4.4% higher than for students who did not enroll in Engineering 110. In 

summary, it is a combination of high academic preparedness, a low level of concern 

about finances and student support programs that led to the high freshman retention rate.  
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 8.3 Recommendations 

The following is a discussion of recommended systematic and process improvements for 

engineering academic success and retention.  These recommendations are both for the 

engineering education community, in general, and the University of Michigan, in 

particular.  

 

1) Academic Integration is More Important than Social Integration for Engineering 

Academic Success. 

This research adds to previous research that supports the importance of academic 

integration for engineering students; more so than social integration.  The Pareto chart in 

Figure 8-2 indicates that P1 (High School Academic Achievement) and P2(Quantitative 

Skills) are the first two significant predictors for student success  and Social Engagement 

factor has a low contribution. Both P1 (High School Academic Achievement) and 

P2(Quantitative Skills) are oriented towards academic characteristics. 
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Figure 8-2: Pareto Chart of Adjusted R2 by Pillar for the ACT Subset 

 

In addition, in the stepwise regression prediction of the first year GPA for engineering 

students, F1 (High School Grades) and F4 (Quantitative Skills) were the two most 
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significant factors, contributing 30% of the explained variation in the first year GPA.  

The high school GPA and high school class rank were loaded on F1 (High School 

Grades).  F4 (Quantitative Skills) included the ACT math score, the ACT science score, 

the U-M math placement test score and the U-M chemistry placement test score. 

 

The freshman engineering academic curriculum for all engineering colleges focused on 

the STEM courses.  Thus, the modeling of the first year STEM GPA in this single 

institution study was relevant to student success concerns of all engineering colleges.  

The modeling of STEM GPA showed that F4 (Quantitative Skills), one of the academic 

preparation factors, was the most significant predictor for engineering students and for 

ALL of the student sectors.  A possible limitation of this study in applying the results to 

other universities is that F4 (Quantitative Skills) included the U-M placement test scores 

(specific to the University of Michigan).  Yet, the significance of F4 (Quantitative Skills) 

is consistent with other studies.  Previous studies, including the Astin and Astin (1992) 

study, showed the SAT Math to be significant.  Adelman (1992) found that “the highest 

level of mathematics one studies in secondary school has the strongest continuing 

influence on the bachelor’s degree completion.”  

 

 In addition, the literature review in Chapter II showed consistently wide support for the 

High School GPA and High School Class Rank as predictors of the college GPA.  These 

two variables are included in F1 (High School Grades).   

 

With this evidence of the importance of academic preparation, student support needs to 

be focused on academic support, in terms of tutoring programs and curriculum design.  In 

addition, engineering students are most at risk of the four student sectors studies for low 

grades, with the lowest average first year GPA.  Since engineering has the highest percent 

of students  (15%) with a first year GPA less than 2.5 (of the four sectors), more 

aggressive programs to help engineering students in the first year with academic success 

in the STEM courses is needed than for the other sectors.  Prediction equation 8.1 

indicates the importance of F1 (High School Grades) and F4 (Quantitative Skills) for 

engineering programs.  On the average, academically well-prepared students will earn a 



 

 279

high first year GPA.  However, students who are not well prepared will tend to earn a 

substantially lower GPA.  Preparation, in accordance with the model, is more important 

than motivation.   

 

In addition, this study supported having student programs that support building students’ 

confidence in quantitative skills.  This could be included in the design of the freshman 

STEM courses.  

 

2) Career Development Courses are Important for Freshman Engineering Success 

The recommendation is to expand Engineering 110, the engineering survey course, to a 

larger enrollment.  Significant success in retention was evident.  More programs like this 

are needed at all engineering colleges.,  The evidence is clear that one reason the College 

of Engineering has a very high retention rate is due to enrollment in Engineering 110.  

Without it, the retention would be 1.5% lower (taking into account that only one-third of 

the students in the study’s cohorts were enrolled in it.  This research indicates targeted 

enrollment of certain groups of the student population may be appropriate.  More 

confirmatory research in this area is recommended.  

 

I found no research papers in the literature on the effectiveness of engineering career 

courses.  At a national level, this type of course needs be discussed and researched in 

more detail.  At Michigan, an increase in enrollment is recommended. In addition, it may 

be appropriate to consider a career course for each discipline (especially the STEM 

disciplines).  

 

3) Extend this study’s interventions to other current interventions.  As has been 

discussed in this research, each university and especially public universities have limited 

funds.  What we would really like to know is which interventions (or combination of 

interventions) have the most effect on engineering student academic success and 

retention.  For example, in this research, it was shown that a high level of advising and 

enrollment in Engineering 110 improves academic success of engineering students.  

Other programs like tutoring and mentoring could be studied within the context of the 
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model.  They were not studied in this research because of limited documented data.  

Connecting the cost of each program with the benefit in terms of student success is the 

next step.   

 

4) Further study of the Pre-Med and STM Student Sectors.  As discussed in Chapter 

VII, there were significantly different predictors for student academic success for these 

two sectors than for the Engineering Student Sector.  If there is interest in the Michigan 

research community for understanding the freshman year and what contributes to student 

success for these two sectors, the research could be extended using the current database.  

 

5) Extend this research to other universities.  This research was limited to the 

University of Michigan.  Because it was a single-institution study, it has limited 

extension to other universities.  The next step would be to validate this model at several 

peer universities.  As with this study, the effect of the interventions on student academic 

success and retention could be evaluated, controlling for the significant pre-college 

characteristics.  It is recommended that the results from this study can best be applied to 

other research universities with approximately the same admissions criteria, a freshman 

retention rate >92% and similar graduation rates (75-85% 6-year graduation rate).   

 

6) Consideration of a Broader set of Variables for Placement into STEM courses 

Correct placement into the first term courses in an engineering college is tremendously 

important for a continuous improvement strategy in student success (Budny, 1998).  The 

use of F4 (Quantitative Skills), as a placement indicator, was very successful and should 

be evaluated in future research.  F4 includes the ACT math and ACT science scores and 

the two University of Michigan placement test scores (math and chemistry) combined 

into one factor (from a factor analysis).  By the time a student matriculates into the 

freshman class, the ACT or SAT scores are a year old.  Combining them with the 

placement test scores taken during freshman orientation gives a balanced perspective of 

the student’s analytical skills.  The preliminary results from this research indicate that 

Physics 140 and Engineering 101 should require a prerequisite of completion of Calculus 

II (Math 116).  Other engineering colleges could explore an approach similar to this one.  
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Correct placement can also be important with AP students (students who are placed into 

higher-level math courses because of the AP Calculus tests).  In particular, at the 

University of Michigan, it is recommended that the placement of students who earn a 4 

on the AP Calculus AB test should be reconsidered.  The analysis in Chapter V supports 

the need for a different section of Calculus II for engineering students who earned a “4” o 

the AP Calculus AB test.    

 

7) A stronger use of the ACT variables is recommended.  The ACT variables were 

considered in this analysis because of the success of using them in previous research. 

Furthermore, in the state of Michigan, the ACT test is replacing the Michigan 

Educational Assessment Program test for high school proficiency; all high school 

students will be required to take the ACT test. (Michigan Department of Education, 

2007). Other states may adopt the same policy.  Thus for the University of Michigan, it 

can be expected that more students will report the ACT test for admissions.   

 

 The ACT Math score tests for competence in trigonometry and some pre-calculus; the 

SAT Math score test only through Algebra II.  (See Veenstra and Herrin, 2006a, for more 

detail).  Because readiness for calculus is important for academic success in engineering, 

the ACT Math test is a potentially stronger predictor than the SAT Math test. Almost all 

the engineering education literature research shows the use of the SAT Math exclusively 

as a predictor of student success.  In some cases, this has been because some universities 

only accept the SAT test for admissions.  The predictiveness from the ACT and SAT test 

score subsets were very similar in this research, with the ACT Math explaining 23 

percent of the total variation in the first year GPA.  In the stepwise regressions in 

Sections 5.2.2 (Table 5-4), the ACT subset showed an adjusted R2 of .38 compared to the 

SAT subset with an adjusted R2  of .37.  Thus, it is recommended that the ACT Math 

score should be more universally considered as a viable pre-college predictor for 

engineering academic success in retention studies.   
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8) Significance of the CIRP variable that it is “important to participate in a study 

abroad program” needs to be further investigated as a predictor of retention.  There 

are two issues here.  Most engineering freshmen do not plan to participate in a study 

abroad semester.  Traditionally this has been an option in liberal arts programs.  

However, in recent years, as indicated in The Engineer of 2020 (NAE, 2004), having 

experience in the international engineering environment is part of an engineer’s proposed 

education.  The second issue is that female students who indicated that it was important 

to participate in a study abroad semester had a lower retention rate.  It is recommended 

that it be reviewed if freshmen are adequately informed of the opportunities in studying 

abroad.  This may be a variable that indicates another retention issue (such as inherent 

career choice), unrelated to studying abroad.  More research is needed to understand this 

data better.  

 

9) The sensitivity analysis of college and university retention of engineering students 

clearly shows that the retention could be substantially lower than it is.  Currently the 

engineering college retention is 93.9%.  The sensitivity analysis projects a range of 86% 

to 97.6% for engineering college retention.  For the university retention of engineering 

students, the retention was 97.6% with a range of 93 to 100%.  This sensitivity analysis 

can be used to plan for future student populations.  For students at-risk, equation 8.2 can 

be used to predict the expected retention of the students.  High school rank, first year 

GPA and concern about finances are considered as the leading indicators for university 

retention. 

 

The University of Michigan and Michigan Engineering have a history of making 

successful transformations (Duderstadt, 2007).  Duderstadt wrote of the Vision of 2017, 

(a futuring project for where the university would like to be in 2017), “It sought to build 

the capacity, the energy, the excitement, and the risk-taking culture necessary for the 

university to explore entirely new paradigms of teaching, research, and service”.  If we 

are to take the national crisis of the shortage of engineering students seriously, we must 

consider changing the culture to continuously improve the way we support students and 

do it with data-based decisions.  Some of these programs are relatively easy, i.e. more 
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advisors or tutors, but some are more systematic.  Tinto indicates that the classroom is 

where academic integration must begin (Tinto, 2006).  In some cases, the paradigms of 

learning and teaching must be changed.  An example of the new paradigm that is needed 

is the teaching of Engineering 110.  It gives connectedness of freshman engineers to the 

top faculty in the College in a classroom; at the same it provides the bridge between high 

school dreams and a career as an engineering as a reality.  In this transformation, more 

integrated programs like Engineering 110 are needed.  In addition, I would like to 

recommend a data-driven culture to “engineer” student success.   

 

Looking to the future, I would like to encourage more engineering researchers to conduct 

similar research to expand the engineering education community’s understanding of the 

processes that work for engineering student success.      
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APPENDIX A 

Means and Standard Deviations of Variables by Pillar 
Table A-1: Table of Averages and Standard Deviations  

For the 2004 and 2005 Cohorts 
Note:  This table represents the statistics of the students included in the comparisons by  
 student sectors.  

2004 Cohort 2005 Cohort  

Variable N Average Std. 
Dev. 

N Average Std. 
Dev. 

P1. High School Academic Achievement 
1. High School GPA  1459 3.76 .26 1783 3.76 .27

2. High School Class Rank 1458 95.56 4.81 1781 95.56 5.59

3. ACT Composite 1143 28.74 3.04 1396 28.88 2.95

4. SAT Composite 947 1301.12 126.71 1090 1314.12 125.84

5. Self-Rating of Academic 
Ability 

1470 4.37 .58 1786 4.34 .59

6. Self-Rating of Cooperativeness 1468 3.96 .74 1785 4.01 .71

7. Self-Rating of Leadership 
Ability 

1467 3.89 .85 1788 3.92 .82

8. Self-Rating of Writing Ability 1466 3.71 .83 1784 3.68 .83

9.Self-Rating of self-confidence  
(intellectual) 

1468 3.94 .77 1784 3.95 .75

P2. Quantitative Skills  

1. ACT Math Score 1151 28.69 3.80 1431 28.82 3.76

2. SAT Math Score 947 666.05 75.94 1090 674.72 74.38

3. ACT Science Score 1151 27.47 3.93 1431 27.62 3.94

4. UM Math Placement  1443 17.35 5.81 1752 18.19 5.59

5. UM Chemistry Placement  1200 20.96 7.38 1371 21.60 7.28

P3. Study Habits   

1. Hours per week in the past year 
spent on studying/ doing 
homework 

1457 4.83 1.50 1763 4.80 1.49

2. Hours per week in the past year 
spent talking to teacher outside of 
class 

1456 2.60 .96 1756 2.55 .90

3. Hours per week in the past year 
spent reading for pleasure 

1445 2.95 1.27 1739 2.93 1.26
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2004 Cohort 2005 Cohort  

Variable N Average Std. 
Dev. 

N Average Std. 
Dev. 

P3. Study Habits (continued)   

4. Frequency of using the Internet 
for research or homework 

1473 2.85 .36 1789 2.86 .35

5. Frequency of studying 
 with other students 

1471 2.33 .60 1792 2.29 .60

6. Frequency of asking 
 a teacher for advice after class 

1472 2.13 .61 1788 2.11 .60

7. Frequency of tutoring  
another student 

1467 1.97 .67 1784 1.94 .69

8. Frequency of coming late to 
class 

1469 1.77 .62 1775 1.77 .61

9. Frequency of feeling 
overwhelmed by all a student had 
to do 

1470 2.11 .60 1788 2.12 .58

10 Importance in deciding to go 
to college: to learn more about 
things that interest me 

1465 2.85 .39 1782 2.84 .39

11. Chance in the future to 
communicate  regularly with your 
professors 

1472 3.28 .64 1771 3.29 .61

P4. Commitment to Career and Educational Goals 

1. Highest Academic Degree that 
you intend to obtain (recoded) 

1324 5.36 .69 1580 5.37 .69

2. Importance in deciding to go to 
college: to get training for specific 
career 

1467 2.64 .59 1778 2.52 .67

3. Importance in deciding to go to 
college: to prepare myself for 
graduate or professional    School 

1465 2.67 .56 1775 2.66 .56

4. Importance  in deciding to go 
to college: to be able to make 
more money 

1465 2.56 .63 1771 2.57 .62

5. Chance in the future to change 
major field 

1477 2.68 .81 1786 2.66 .80

6. Chance in the future to change 
career choice 

1476 2.75 .82 1782 2.71 .82

7. Self-Rating on drive to achieve 1476 4.28 .75 1786 4.29 .718

8. Importance of making a 
theoretical contribution to science 
 

1468 1.83 .92 1757 1.89 .94
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2004 Cohort 2005 Cohort  

Variable N Average Std. 
Dev. 

N Average Std. 
Dev. 

P5. Confidence in Quantitative Skills 

1. Self-rating of computer Skills 1470 3.38 .79 1788 3.46 .74

2. Self-rating of mathematical 
ability 

1469 3.91 .91 1786 3.87 .92

3. Self-rating of creativity 1468 3.66 .89 1783 3.60 .86

P6. Commitment to this College (U-M) 

1.   What Choice is this college? 1477 3.62 .75 1788 3.63 .70

2.   To how many other colleges 
other than this one did you apply 
for admissions? 

1476 4.60 2.18 1791 4.60 2.24

3.   Importance of coming to this 
college: college has good 
academic reputation 

1462 2.88 .34 1776 2.90 .31

4.   Importance of coming to this 
college: college has good 
reputation for social activities 

1457 2.26 .70 1767 2.29 .69

5.   Importance of coming to this 
college: Rankings in national 
magazine 

1454 2.18 .71 1761 2.22 .72

6.   Importance of coming to this 
college: college’s graduates get 
good jobs 

1450 2.68 .55 1755 2.72 .51

7.   Importance of coming to this 
college: my relatives wanted me 
to come here 

1454 1.54 .65 1764 1.56 .66

8.   Importance of coming to this 
college: offered financial 
assistance 

1447 1.58 .79 1760 1.59 .79

9.   Importance of coming to this 
college: not offered aid by first 
choice 

1432 1.17 .50 1741 1.16 .46

10. Chance in future you will be 
satisfied with this college 

1470 3.66 .51 1773 3.69 .49

P7. Financial Needs 

1. Concern about ability to 
finance college education 

1451 1.66 .61 1752 1.65 .61

2. How much of first year’s 
educational expenses are expected 
to be from loans? 

1163 2.70 1.83 1791 4.60 2.24
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2004 Cohort 2005 Cohort  

Variable N Average Std. 
Dev. 

N Average Std. 
Dev. 

P8. Family Support 

 1. Education Level of Father 1469 6.54 1.64 1782 6.54 1.70

 2.  Education Level of Mother 1468 6.13 1.62 1780 6.21 1.58

P9. Social Engagement 

1.   Self-Confidence (social) 1467 3.56 .87 1785 3.61 .90

2.   Hours per week in past year 
socializing with friends 

1456 2.60 .96 1756 5.4 1.35

3.   Hours per week in past year 
playing video/computer games 

1450 2.32 1.52 1752 2.33 1.53

4.   Hours per week in past year 
partying 

1454 2.89 1.57 1753 2.82 1.56

5.   Hours per week in past year 
working (for pay) 

1454 3.62 2.41 1755 3.53 2.35

6.   Hours per week in past year 
volunteer Work 

1449 2.84 1.269 1749 2.81 1.27

7.   Hours per week in past year 
student clubs/groups 

1446 3.23 1.56 1743 3.18 1.51

8.  Chance in the future you will 
join a social Fraternity or sorority 

1474 2.16 .92 1779 2.16 .90

9.  Chance in the future you will 
play varsity/intercollegiate 
athletics 

1473 1.95 .96 1773 1.97 .98

10.Chance in the future you will 
participate in student clubs/groups

1473 3.43 .70 1773 3.48 .66

11.Chance in the future you will  
participate in a study abroad 
program 

1472 2.92 .96 1778 3.02 .96

Model Output – First Year GPA 1485 3.246 .507 1799 3.249 .497
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APPENDIX C:  

Regression Tables for Validation of the Pillars   
for the ACT Subset  and the SAT Subset  (Table 5-1) 

 
Table C-1: Regression Table for P1. High School Academic Achievement 

        (ACT Subset)  
 

Factor Coefficient T P 

Constant 3.019 79.08 .000 

F1(High School Grades) 0.183 4.69 .000 

F2(High School Performance) 0.241 6.89 .000 

F3(High School Leadership) 0.011 0.30 .763 

Adjusted R2 = 0.262 

F (3,180)= 22.62  (p=.000) 

N=184 

 
 

Table C-2: Regression Table for P2. Quantitative Skills (ACT Subset) 

Factor Coefficient T P 

Constant 2.961 69.88 .000 

F4 (Quantitative Skills) 0.296 7.49 .000 

Adjusted R2 = 0.231 

F (1,182) = 56.10 (p=.000) 

N= 184 
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Table C-3: Regression Table for P3.  Study Habits (ACT Subset) 

Factor Coefficient T P 

Constant 3.134 72.23 .000 

F5(Study Habits Communicate with

Professors) 

-0.030 -0.77 .444 

F6( Study Habits Homework) 

 

 0.013 0.32 .751 

F7 (Study Habits Class Attendance) 

 

-0.052 -1.19 .236 

Adjusted R2 = .000 

F (3,180) = 0.69 (p= .562) 

N= 184 

 
Table C-4: Regression Table for P4. Commitment to Career and Educational Goals  
        (ACT Subset) 

 
Factor Coefficient T P 

Constant 3.202 73.70 .000 

F8(Choice of Major and Career) 

 

0.106 2.28 .024 

F9(Educational Goals) 

 

0.045 1.23 .222 

F10( Career Goals) 

 

-0.095 -2.14 .034 

Adjusted R2 = .048 

F (3,180) = 4.11 (p=.008) 

N= 184 
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Table C-5: Regression Table for P5. Confidence in Quantitative Skills (ACT Subset)    
 

 

Factor 

Coefficient T P 

Constant 

 

3.034 57.79 .000 

F11 (Confidence in 

Quantitative Skills) 

0.140 2.97 .003 

Adjusted R2 = 0.041 

F (1,182) =  8.81 (p=.003) 

N= 184 

 
Table C-6: Regression Table for P6.  Commitment to this College (ACT Subset) 

 
Factor Coefficient T P 

Constant 

 

  3.146 72.59 .000 

F12(Goals- UM Reputation 

 

-0.060 -1.43 .155 

F13 (Goals- UM Choice) 

 

0.027 0.59 .555 

F14 (Goals- UM Financial 

Aid) 

 

0.003 0.08 .935 

Adjusted R2 = 0.000 

F (3,180) = 0.81 (p=.489) 

N= 184 
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Table C-7: Regression Table for P7.  Financial Needs (ACT Subset) 

Factor Coefficient T P 

Constant 

 

3.139 78.79 .000 

F15 (Financial Aid)

 

-0.088 -2.12 .035 

Adjusted R2 = 0.019 

F (1,182) = 4.50 (p=.035) 

N= 184 

 

 

 

 

 
Table C-8: Regression Table for P8.  Family Support (ACT Subset) 

Factor Coefficient T P 

Constant 

 

2.540 12.12 .000 

F16 (Family Support)

 

0.137 2.91 .004 

Adjusted R2 = 0.039 

F (1,182) = 8.44 (p=.004) 

N= 184 
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Table C-9: Regression Table for P9.  Social Engagement (ACT Subset) 

Factor Coefficient T P 

Constant 3.121 71.93 .000 

F17 (Social Engagement- 
Socializing) 

-0.072 -1.63 .104 

F18 (Social Engagement-  
Volunteer) 

0.049 1.17 .244 

F19 (Social Engagement- 
Activities) 

-0.019 -0.48 .635 

Adjusted R2 = 0.008 

F (3,180) = 1.47 (p=.225) 

N= 184 

 

 
Table C-10: Regression Table for P1. High School Academic Achievement 

        (SAT Subset)  
 

Factor Coefficient T P 

Constant 3.077 77.14 .000 

F1(High School Grades) 0.236 5.64 .000 

F2(High School Performance) 0.241 6.23 .000 

F3(High School Leadership) -0.022 -0.64 .527 

Adjusted R2 = 0.295 

F (3,157)= 23.34  (p=.000) 

N=161 
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Table C-11: Regression Table for P2. Quantitative Skills (SAT Subset) 

Factor Coefficient T P 

Constant 3.050 66.47 .000 

F4 (Quantitative Skills) 0.268 5.98 .000 

Adjusted R2 = 0.179 

F (1,159) = 35.77 (p=.000) 

N= 161 

 

 

 
Table C-12: Regression Table for P3.  Study Habits (SAT Subset) 

Factor Coefficient T P 

Constant 

 

3.167 69.03 .000 

F5(Study Habits Communicate with

Professors) 

0.006 0.16 .876 

F6( Study Habits Homework) 

 

0.009 0.20 .840 

F7 (Study Habits Class Attendance) 

 

-0.099 -2.17 .031 

Adjusted R2 = .011 

F (3,157) = 1.61 (p= .189) 

N= 161 



 

 298

Table C-13: Regression Table for P4. Commitment to Career and Educational   
          Goals (SAT Subset) 

 
Factor Coefficient T P 

Constant 

 

3.221 66.81 .000 

F8(Choice of Major and Career)

 

0.054 1.04 .301 

F9(Educational Goals) 

 

0.062 1.50 .134 

F10( Career Goals) 

 

-0.070 -1.52 .130 

Adjusted R2 = .025 

F (3,157) = 2.36 (p=.074) 

N= 161 

 
Table C-14: Regression Table for P5. Confidence in Quantitative Skills  
          (SAT  Subset)           
 

 

Factor 

Coefficient T P 

Constant 

 

3.081 51.45 .000 

F11 (Confidence in 

Quantitative Skills) 

0.127 2.50 .014 

Adjusted R2 = 0.032 

F (1,159) =  6.23 (p=.014) 

N= 161 
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Table C-15: Regression Table for P6.  Commitment to this College (SAT Subset) 
 

Factor Coefficient T P 

Constant 

 

3.172 71.39 .000 

F12(Goals- UM Reputation) 

 

-0.095 -2.09 .039 

F13 (Goals- UM Choice) 

 

-0.000 -0.00 .999 

F14 (Goals- UM Financial Aid)

 

0.061 1.62 .108 

Adjusted R2 = 0.023 

F (3,157) = 2.24 (p=.086) 

N= 161 

 

 
Table C-16: Regression Table for P7.  Financial Needs (SAT Subset) 

Factor Coefficient T P 

Constant 

 

3.177 71.46 .000 

F15 (Financial Aid) 

 

-0.051 -1.15 .252 

Adjusted R2 = 0.002 

F (1,159) = 1.32 (p=.252) 

N= 161 
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Table C-17: Regression Table for P8.  Family Support (SAT Subset) 

Factor Coefficient T P 

Constant 

 

2.474 11.06 .000 

F16 (Family Support)

 

0.159 3.23 .001 

Adjusted R2 = 0.056 

F (1,159) = 10.46 (p=.001) 

N= 161 

 

 
Table C-18: Regression Table for P9.  Social Engagement (SAT Subset) 

Factor Coefficient T P 

Constant 

 

3.160 65.54 .000 

F17 (Social Engagement-

Socializing) 

-0.128 -2.74 .007 

F18 (Social Engagement- 

Volunteer) 

0.015 0.32 .752 

F19 (Social Engagement-

Activities) 

0.000 0.00 .999 

Adjusted R2 = 0.029 

F (3,157) = 2.61 (p=.053) 

N= 161 
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APPENDIX D: 

Regression Tables For the First Year GPA and 
For the First Year STEM GPA 

 
Regression Tables for the First Year GPA  

Table D-1: Stepwise Regression for First Year GPA for the Engineering Sector   
        (ACT Subset, 2004 Cohort,  N=184) 

 
 

Predictor/Step 
Regression 
Coefficient 

T P Adjusted 
R2 

Final 
Mallow’s 

Cp 

Constant 2.921 63.70 .000   

F4 (Quantitative Skills) 0.233   6.17 .000 0.231  

F1(High School Grades 
 x F4 (Quantitative Skills) 

0.205   4.58 .000 0.331  

F1 (High School Grades) 0.113   2.92 .004 0.349  

F11( Confidence 
      in Quantitative Skills) 

0.096   2.41 .017 0.365   

F10 (Career Goals) -0.087 - 2.37 .019 0.381  6.2 

 

 

Table D-2: Stepwise Regression for First Year GPA for the Pre-Med Sector 
                (ACT Subset, 2004 Cohort, N=100) 

 
 

Predictor/Step 
Regression
Coefficient

T P Adjusted 
R2 

Final 
Mallow’s

Cp 
Constant 3.123 65.80 .000   

F2 (High School Performance) 0.164 3.70 .000 0.098  

F1 (High School Grades) 0.152 2.28 .025 0.126  

F19(Social Engagement- 

       Activities) 

0.114 2.00 .049 0.152 2.5 
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Table D-3: Stepwise Regression for First Year GPA for the STM Sector 
                   (ACT Subset, 2004 Cohort, N=145) 

 
 

Predictor/Step 
Regression 
Coefficient 

T P Adjusted 
R2 

Final 
Mallow’s 

Cp 

Constant 3.268 86.68 .000   

F2 (High School Grades) 0.176 5.03 .000 0.102  

F1 (High School Performance) 0.189 3.51 .001 0.166  

F6(Study Habits-Homework) 0.108 3.30 .001 0.210  

F17 (Social Engagement- 
        Socializing) 

0.108 2.71 .008 0.246  

F15 Financial Needs -0.082 -2.23 .028 0.267 5.9 

 

 
Table D-4: Stepwise Regression for First Year GPA for the Non-STEM Sector 

              (ACT Subset. 2004 Cohort, N=206) 
 

 
Predictor/Step 

Regression
Coefficient

T P Adjusted 
R2 

Final 
Mallow’s

Cp 
Constant 3.319 122.42 .000   

F2(High School Performance) 0.171 6.08 .000 0.128  

F1(High School Grades) 0.106 4.41 .000 0.202  

F19(Social Engagement-  
       Activities) 

0.097 3.61 .000 0.240  

F2(High School Performance) x 
F19 (Social Engagement-Activities)

0.062 2.28 .024 0.255 4.1 
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Table D-5: Stepwise Regression for First Year GPA for the Engineering Sector     
        (SAT Subset, 2004 Cohort, N=161) 

  
 

Predictor/Step 
Regression
Coefficient

T P Adjusted 
R2 

Final 
Mallow’s

Cp 
Constant 3.024 73.15 .000   

F4(Quantitative Skills) 0.131 2.49 .014 .179  

F1(High School Grades) 0.198 4.56 .000 .279  

F2 (High School Performance) 0.141 2.89 .004 .318  

F7 (Study Habits- 
Class Attendance) 

-0.109 -2.98 .003 .344  

F10( Career Goals) -0.084 -2.24 .026 .360  

Interaction of F1(High School 
Grades) x F4(Quantitative 
Skills) 

0.093 2.11 .037 .374 6.6 

 

 

 
Table D-6: Stepwise Regression for First Year GPA for the Engineering Sector   
        (ACT Subset, 2005 Cohort, N=177) 

 
 

Predictor/Step 
Regression 
Coefficient 

T P Adjusted 
R2 

Final 
Mallow’s 

Cp 

Constant 2.815     

F4 (Quantitative Skills) 0.439 11.62 .000 .370  

F1(High School Grades 
 x F4 (Quantitative Skills) 

0.246 6.59 .000 .493 -1.8 
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Table D-6: Stepwise Regression for First Year GPA for the Engineering Sector      
        (SAT Subset, 2005 Cohort, N=150) 

 
 

Predictor/Step 
Regression 
Coefficient 

T P Adjusted 
R2 

Final 
Mallow’s

Cp 

Constant 2.992 59.54 .000   

F4 (Quantitative Skills) 0.331 6.56 .000 .234  

F1(High School Grades) x 
F4(Quantitative Skills) 

0.133 2.59 .011 .316  

F15 (Financial Needs) -0.066 -1.99 .049 .332  

F1(High School Grades) 0.095 1.91 .058* .344 0.5 

*Note: F1(High School Grades) has a p>.050. It was included due to the hierarchy rule concerning  
interactions, i.e. if an interaction (F1xF4) is included in a regression model, the main effects must be also.  
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 Regression Tables for the First Year STEM GPA 
 

Table D-7: Stepwise Regression for First Year STEM GPA for the Engineering     
         Sector (ACT Subset, N=184) 
 

 
Predictor/Step 

Regression
Coefficient

T P Adjusted 
R2 

Final 
Mallow’s

Cp 
Constant 2.835 65.64 .000   

F4(Quantitative Skills) 0.281 7.99 .000 0.333  

F1(High School Grades) x

F4(Quantitative Skills) 

0.211 4.72 .000 0.400  

F10(Career Goals) -0.112 -3.28 .001 0.423  

F11(Confidence in  
       Quantitative Skills) 

0.126 3.36 .001 0.443  

F1(High School Grades) 0.174 3.67 .000 0.466  

F1(High School Grades) x
F11(Confidence in  
       Quantitative Skills) 

-0.093 -2.12 .036 0.477 1.0 

 

 

 
Table D-8: Stepwise Regression for First Year STEM GPA for the Pre-Med Sector 

          (ACT Subset, N=98) 
 

 
Predictor/Step 

Regression
Coefficient

T P Adjusted 
R2 

Final 
Mallow’s

Cp 
Constant 2.767 43.62 .000   

F4(Quantitative Skills) 0.286   4.50 .000 0.166 9.7 
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Table D-9: Stepwise Regression for First Year STEM GPA for the STM Sector 
             (ACT Subset, N=120) 

 
 

Predictor/Step 
Regression
Coefficient

T P Adjusted 
R2 

Final 
Mallow’s

Cp 
Constant 2.834 50.99 .000   

F4(Quantitative Skills) 0.185   2.11 .037 0.211  

F1(High School Grades) 0.206   2.63 .010 0.249  

F15 (Financial Needs) -0.124  -2.28 .025 0.276  

F2 (High School Performance) 0.174   2.24 .027 0.300 6.0 

 

 

 

 
Table D-10: Stepwise Regression for First Year STEM GPA for the Non-STEM   
          Sector(ACT Subset, N=113) 
 

 
Predictor/Step 

Regression
Coefficient

T P Adjusted 
R2 

Final 
Mallow’s

Cp 
Constant 2.909 49.01 .000   

F4(Quantitative Skills) 0.361 5.73 .000 0.233  

F1(High School Grades) 0.161 2.94 .004 0.280  

F9 (Educational Goals) -0.155 -2.45 .016 0.311 10.1 
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