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Chapter I 

Introduction 
 

I.1 Statistical disclosure control 

The explosion of collection on private data raises concerns about guarding the privacy of 

survey respondents now more than ever. Statistical disclosure control (SDC) is a class of 

procedures that deliberately alter data collected by statistical agencies before release to 

the public, to prevent the identity of survey respondents from being revealed. These 

methods have increased in importance, with the extensive use of computers and the 

internet. Inevitably, statistical agencies are confronted with the trade-off between data 

protection and data utility. The goal of SDC methods is to find a balance for this 

dilemma, by reducing the risk of disclosure to acceptable levels, while releasing a dataset 

that provides as much useful information as possible for researchers. One aspect of this is 

the ability to draw valid statistical inferences from the altered data.  

Various SDC techniques have been established to preserve confidentially, 

including global recoding and local suppression, swapping data values for randomly 

selected units (Dalenius and Reiss, 1982), or adding random noise (Fuller 1993). These 

methods involve perturbing and masking of the original data. Though the model-free 

nature makes them easy to apply, these methods somewhat distort the statistical structure 

of the data and make analysis difficult for data user. 
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I.2 Multiple imputation methods of SDC 

Rubin (1993) proposes to release fully synthetic data based on multiple imputation (MI) 

methods. In his proposal, an imputation model is built from the original survey data and 

data values in the population are imputed by draws from the predictive distribution based 

on the model. The imputation process is repeated several times and a random sample 

drawn from each imputed dataset is released to the public. A major attraction of this 

method is that full protection of confidentiality is achieved, since no actual values from 

the original data are released. Besides, under well-specified imputation model, valid 

inference for variant estimands can be obtained with simple combining rules 

(Raghunathan 2003, Reiter 2002, 2005a). Fully synthetic data also have benefit for data 

utility, as geographic information for small area can be released, which enables data user 

to perform analysis in small area. However, model specification is challenging for this 

method, as it requires building a statistical model for the whole population. Moreover, 

since the synthetic data need to preserve the same relationship as the original data, the 

accuracy of the statistical model is crucial to valid inferences from synthetic data, and a 

mis-specified model leads to distorted results from data users’ analyses.  

Little (1993) suggests limiting imputation to a set of key variables that contain 

identification information and releasing partially synthetic data as a mixture of actual and 

multiply-imputed data values. This method retains the advantage of synthetic data but is 

more practical than simulating the entire data set, since model mis-specification is less of 

an issue for simulating certain variables than simulating the entire population. Some other 

approaches to partial synthesis method are described in Kennickell (1997), Little, Liu and 

Raghunathan, (2004), and Abowd and Woodcock (2004). Reiter (2003) specifies MI 
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combining rule for partially synthetic data, with estimate of variance calculated 

differently from the original formula for missing data in Little and Rubin (2002). Inspired 

by this approach, this dissertation targets the imputation of a small number (one or two) 

of variables subject to disclosure limitation.  

I.3 Disclosure limitation of extreme values in microdata 

A number of confidentiality concerns are raised by extreme values of a variable. For 

example, in surveys that include income, extremely high income values are considered to 

have the potential to reveal the identity of respondents. These values are generally 

referred to as sensitive values and require modification before release to the public. The 

Health Insurance Portability and Accountability Act (HIPAA) privacy rule also restricts 

release of all age values over 89 in health survey data. Top-coding is a simple and 

common SDC method for handling this situation. It prevents disclosure on the basis of 

extreme values of a variable, by censoring values above a pre-chosen “top-code”. For 

example, in the Survey of Income and Program Participation, the U.S. Census Bureau 

top-codes monthly income at $8,333 in the 1990-1993 panels, such that all values $8,333 

or more are now represented by $8,333.  

Data analyst can apply several approaches to analyze top-coded data, such as 

categorizing the top-coded variable to pool top-coded cases into one category, or treating 

the top-coded values as the true values. In addition, the data user can treat the extreme 

values as censored; and calculate estimates (e.g., maximum likelihood estimate) under the 

assumed statistical model, or apply an imputation method to the top-coded dataset and fill 

in the censored values. These procedures all have limitations for data user: they more or 
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less distort data distributions, require complicated custom algorithms, or are sensitive to 

model assumption about the right tail of the distribution.  

Another limitation of top-coding lies in the treatment of high-age individuals in 

longitudinal datasets, where disclosure limitation is particularly challenging, since 

information about an individual accumulates with repeated measures over time. Because 

of the risk of disclosure, ages of very old respondents can often not be released; in 

particular this is a specific stipulation of HIPAA privacy rule for the release of health 

data for individuals. Top-coding of individuals beyond a certain age (say 80) is a standard 

way of dealing with this issue, and it may be adequate for cross-sectional data, since the 

number of cases affected may be modest. However, this approach seriously limits the 

ability to do longitudinal analysis, particularly survival analyses with chronological age 

being a key variable of interest. 

This problem arises in the Charleston Heart Study (Nietert et al., 2000), a 

longitudinal study that collects data over 40 years (1960-2000). For longitudinal data 

from this study to be included in the data archive at the University of Michigan, 

individual ages beyond age 80 cannot be disclosed, given the geographic specificity of 

the respondents. Also, given the longitudinal nature of the data, a top-coding approach 

would need to be applied to all individuals aged 40 or older in 1960, which makes 

survival analyses almost impossible. 

In this dissertation, I develop MI alternatives to top-coding that allow better 

inferences for the data user using simple MI combining rules, while preserving the SDC 

benefits of top-coding. Adjusting the partially synthetic approach to our specific problem, 

we delete the data values greater than a cutoff point, which is chosen to be smaller than 

 4



the top-code to achieve a mixing of sensitive and non-sensitive values, and apply MI to 

fill in these values. We then release multiple imputed datasets to the public. Data users 

can apply MI combining rules (Reiter 2003) to obtain valid inferences. 

I propose non-parametric and parametric MI methods. The non-parametric 

method is a hot-deck procedure, where we replace the deleted values with values 

randomly drawn with replacement from the set of deleted values. The parametric method 

is Bayesian, and assumes a model for the data, draws model parameters from their 

posterior distribution and then imputes the deleted values with random draws from the 

posterior predictive distribution.  

This dissertation is organized as follows. Chapter II presents our SDC approaches 

and describes corresponding methods of inference for a population mean. We compare 

estimates calculated from our imputed datasets with estimates from the original and top-

coded dataset in simulation study and application in the 1995 Chinese household income 

project. Chapter III provides extension of the MI methods in Chapter II in regression 

analysis, where the outcome is subject to top-coding and assesses inferences of estimates 

of regression coefficients. Chapter IV describes SDC approaches for longitudinal data 

and applies these methods in survival analysis of simulated data and data from the 

Charleston Heart Study. Chapter V presents conclusions and discusses future work. 
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Chapter II 
Multiple Imputation: An Alternative to Top-coding for Statistical 

Disclosure Control 
 

Abstract 

Top-coding of extreme values of variables like income is a common method of statistical 

disclosure control, but it creates problems for the data analyst. This article proposes two 

alternative methods to top-coding for SDC based on multiple imputation (MI). We show 

in simulation studies that the MI methods provide better inferences of the publicly-

released data than top-coding, using straightforward MI methods of analysis, while 

maintaining good SDC properties. We illustrate the methods on data from the 1995 

Chinese household income project. 

Keywords: confidentiality, disclosure protection, multiple imputation 

II.1 Introduction 

Statistical disclosure control (SDC) is a class of procedures that deliberately alter data 

collected by statistical agencies before release to the public, to prevent the identity of 

survey respondents from being revealed. These methods have increased in importance, 

with the extensive use of computers and the internet. The goal of SDC methods is to 

reduce the risk of disclosure to acceptable levels, while releasing a dataset that provides 

as much useful information as possible for researchers. One aspect of this is the ability to 

draw valid statistical inferences from the altered data.
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 Top-coding is a simple and common SDC method that seeks to prevent disclosure 

on the basis of extreme values of a variable, by censoring values above a pre-chosen 

“top-code”. For example, in surveys that include income, extremely high income values 

are considered to be sensitive and have the potential to reveal the identity of respondents. 

By recoding income values greater than a selected “top-code” value to that value, 

respondents with very high income have reduced risk of disclosure.   

 It is left to the analyst to decide how top-coded data are analyzed. One approach is 

to categorize the variable so that top-coded cases all fall in one category – this is sensible, 

but precludes analyses that treat the variable as continuous. Another approach is to ignore 

the fact of top-coding and treat the top-coded values as the truth. This method is 

straightforward, but clearly the data distribution is distorted and biased estimates will be 

obtained. A better method is to treat the extreme values as censored. Under an assumed 

statistical model, maximum likelihood (ML) estimates can be obtained using algorithms 

such as the Expectation-Maximization (EM) algorithm (Dempster, Laird and Rubin, 

1977). This method is model-based, and should yield good inferences if the model is 

correctly specified. But we expect this method to be quite sensitive to model 

misspecification, especially when the upper tail of the assumed distribution differs 

markedly from that of the true distribution. The data users can also apply an imputation 

method to the top-coded dataset and fill in the censored values. A limitation is that the 

imputed data fail to reflect imputation uncertainty, and imputations are sensitive to 

assumptions about the right tail of the distribution. We propose alternatives to top-coding 

that allow better inferences for the data user using simple multiple imputation (MI) 

combining rules, while preserving the SDC benefits of top-coding. 
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 Multiple imputation has been proposed as a method of SDC (Little, 1993; Rubin, 

1993; Little, Liu and Raghunathan, 2004; Reiter, 2003, 2005a, 2005b). An imputation 

model is built from the original data and observed values are replaced by draws from the 

predictive distribution based on the model. The imputation process is repeated several 

times and the imputed datasets are then released to the public. Applying this approach to 

our problem, we delete the data values greater than a cutoff point, which is chosen to be 

smaller than the top-code to achieve a mixing of sensitive and non-sensitive values, and 

apply MI to fill in these values. We then release multiple imputed datasets to the public. 

Data users can apply MI combining rules (Reiter 2003) to obtain valid inferences, as 

described in Section II.3.   

 We propose non-parametric and parametric MI methods. The non-parametric 

method is a hot-deck procedure, where we replace the deleted values with values 

randomly drawn with replacement from the set of deleted values. The parametric method 

is Bayesian, and assumes a model for the data, draws model parameters from their 

posterior distribution and then imputes the deleted values with random draws from the 

posterior predictive distribution.   

 We compare estimates of the mean of the data from our methods with two 

estimates from top-coded data. The first, as described previously, is to treat the top-coded 

values as the true values. The second is to treat those values greater than top-code as 

censored and apply ML estimation under an assumed model. 

 We also investigate situations where covariates are present. We use the proposed 

MI methods to fill in for deleted values without conditioning on covariates. We then 

perform regression analysis on the imputed dataset and compare regression coefficients 
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with those from original and top-coded data. Extensions of our methods that condition on 

covariate data are also outlined. 

 The rest of this paper is organized as follows. Section II.2 presents SDC 

approaches, and Section II.3 describes corresponding methods of inference for a 

population mean. Section II.4 describes a simulation study to evaluate the approaches in 

Section 3, and Section II.5 applies the methods to data from the 1995 Chinese household 

income project. Section II.6 considers estimates of regression coefficients for a regression 

where the outcome is subject to our disclosure control methods. Section II.7 gives 

conclusions and discusses future work. 

II.2 Methods of statistical disclosure control    

Let Y  denote a survey variable (e.g. income) and suppose that values of Y  greater than a 

particular value  are considered too sensitive for release to the public.  We consider 

the following approaches to SDC.   

Ty

(a) Top-coding. Treat  as a top-code value, that is, replace values of Y  greater than 

 by .  The resulting sample is referred to as “top-coded”.   

Ty

Ty Ty

(b) Hot-deck MI (HDMI). Choose a value  smaller than . Delete the values of  

greater than  and replace them with random draws from the set of deleted values.  We 

choose  to achieve a mixing of sensitive and non-sensitive values.  We refer to  

as the cutoff point. 

Iy Ty Y

Iy

TI yy < Iy

(c) Parametric MI (PMI). The HDMI method provides disclosure protection by 

scrambling sensitive and non-sensitive values, but it is arguably limited from the point of 

view of SDC, since actual sensitive data values are released. The PMI methods address 

this concern by releasing data simulated from a parametric model. First, values greater 
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than  are deleted, as with HDMI. The model – we consider log-normal model and 

power-transformed normal model (the power normal model for short) – is fitted to the 

data. Parameters are drawn from their posterior distribution under the assumed model, 

and deleted values are imputed with draws from their predictive distribution. See 

Appendix II.1 for details.   

Iy

 Write the complete data as ret del( , )Y Y Y= , where  denotes the retained values 

and  denotes the deleted values beyond the cut-off. We consider two versions of PMI, 

labeled PMIC and PMID.  For PMIC, we draw the parameter

retY

delY

φ  of the model for the data 

Y from its posterior distribution given the complete data Y, that is: 

PMIC: . * ~ ( | )P Yφ φ

We then draw deleted values from the truncated predictive distribution  

* *
del ~ ( | , )IY P Y Y y φ> . 

For PMID, we apply the parametric model to the deleted data , and draw delY φ  from its 

posterior distribution given :   delY

PMID:  *
del~ ( | )P Yφ φ

The next step is similar to PMIC method, except that we draw deleted values from the 

non-truncated predictive distribution. PMID is less efficient than PMIC since it models 

the deleted data and fails to exploit fully the information in Y when drawing values of 

parameters. However, modeling the deleted data only as in PMID provides useful 

robustness to model misspecification, as we shall see below.  

II.3 Methods of inference for the mean   

We first consider the properties of these SDC methods for inferences about the mean of a 

variable Y subject to top-coding. Some comments concerning inference for other 
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parameters are provided in Sections II.6 and II.7. The following estimates and associated 

standard errors are considered:  

(1) Before Deletion (BD): The sample mean of original data 1 2( , ,..., )ny y y  prior to SDC 

is  

 ∑
=

=
n

i
iy

n 1
1

1θ̂ .   (1) 

This estimate is used as a benchmark for comparing SDC methods. 

(2) Top-coding (TC): The sample mean of top-coded dataset, namely  

 2
1

1ˆ
n

it
i

y
n

θ
=

= ∑ ,      (2) 

where it iy y=  when i Ty y<  and it Ty y=  when i Ty y≥ . This approach is obviously 

biased, and our objective is to improve on it with other methods. 

(3) Log-normal ML (LNML): The ML estimate based on the log-normal model, 

computed by the EM algorithm (Appendix II.2). The log-normal is chosen as a 

convenient model for right-skewed data, but we emphasize that other models could be 

considered. 

The standard errors for methods (1) – (3) are computed by the bootstrap, with B = 

100 bootstrap samples. 

The five remaining methods are all based on MI, and create D sets of imputations 

for values beyond the chosen cut-point Iy ; D imputed datasets are thus created, where 

for the d th imputed dataset , where ( ) ( ) ( ) ( )
1 2( , ,..., )d d d d

nY y y y= ( )d
i iy y=  if i Iy y<  and  

is the d th  MI draw if 

( )d
iy

i Iy y≥ . The MI estimate is then 

 ∑
=

=
D

d

d
MI D 1

)(ˆ1ˆ θθ ,  (3) 
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where ( )ˆ dθ  is the sample mean of d th dataset. The MI estimate of variance is  

 ˆ( ) /MI MIT Var W Bθ= = + D , (4)        

where  ( )
1

/D d
d

W W
=

=∑ D  is the average of the within-imputation variances  for 

imputed dataset d, and  is the between-imputation 

variance. The formula (4) differs from the original MI formula for missing data (where B 

is multiplied by a factor (D+1)/D, see e.g. Little and Rubin, 2002, p86), for reasons 

discussed in Reiter (2003). Imputations for these MI methods are created as follows:  

( )dW

)1/()ˆˆ(
1

2)( −−= ∑ =
DB D

d MI
d θθ

(4) Hot-deck MI (HDMI): Imputations are drawn randomly with replacement from the set 

of values beyond the cut-off Iy .  

(5) Log-normal MIC (LNMIC): Imputations are posterior predictions from a log-normal 

model fitted to the complete data before deletion. 

(6) Log-normal MID (LNMID): Imputations are posterior predictions from a log-normal 

model fitted to the deleted data beyond the cut-off. 

(7) Power-normal MIC (PNMIC): Imputations are posterior predictions from the power-

normal model, the power-transformed normal distribution fitted to the full data before 

deletion. For convenience the power transformation is estimated by ML, and parameters 

are drawn from the full-data posterior distribution treating the power transformation as 

known. An alternative approach is to draw the power from its posterior distribution as 

well, but we made use of the widely available ML routine box.cox.powers( ) in R (R 

project, 2007) in our calculations. 

(8) Power-normal MID (PNMID): Imputations are posterior predictions from the power-

normal model, fitted to the deleted data beyond the cut-off. 
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II.4 Simulation study 

A simulation study was carried out to evaluate and compare the SDC methods in Section 

II.3. We computed point estimates of means and the corresponding variances and 

confidence intervals from the imputed datasets, and compared them with those calculated 

from the original dataset prior to SDC.   

II.4.1 Study design 

Datasets were generated from the following four distributions, all with mean 1: 

Exponential (1), gamma (1.25, 0.8), lognormal (-0.2, 0.4) and square-root normal (0.9, 

0.19) (variances of these distributions are 1, 0.8, 0.49 and 0.69, respectively). Figure II.1 

shows the form of these distributions beyond their approximate upper 10th percentile. For 

each simulated dataset, we calculated the eight mean estimates and their corresponding 

variances as discussed in Section II.3. To assess the validity of inferences, we calculated 

the 95% confidence intervals (CI’s) based on the usual normal approximation, and 

computed the proportion of CI’s that contain the true mean.  For parametric estimates in 

Section II.3, the simulated data distributions are allowed to differ from those assumed in 

the statistical models, in order to provide an assessment of sensitivity to model 

misspecification. 

 In our simulations we chose the 95th percentile of the population distribution as 

the top-code value . Denote by  the number of sensitive sample values greater 

than .  We studied two alternative values for the cutoff point : 

Ty Sn

Ty Iy 90Iy , the value with 

 larger values in the sample, and 2 Sn 80Iy , the value with  larger values in the sample. 

These values correspond approximately to the 90th and 80th percentile values of the 

4 Sn
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distribution, and for this reason we label the version of a method *  that uses cutoff 90Iy  

“*90” and the version that uses cutoff 80Iy  “*80”.  

Clearly the disclosure risk is reduced by increasing the fraction of non-sensitive 

values that are imputed. A simple measure of the risk of disclosure is the proportion of 

multiple-imputed values beyond the top-code value Ty . For all the MI methods, this is 

approximately 50% when the cutoff point is 90Iy , and approximately 25% when the 

cutoff point is 80Iy .  

II.4.2 Results  

Tables II.1 and II.2 present simulation results for sample sizes 2000 and 200, 

respectively. Results are based on 500 data sets for each model. We set B = 100 for the 

number of bootstrap samples. For both NPMI and PMI methods, we created D = 5 

imputed datasets.   As expected, TC underestimates the mean and has poor confidence 

coverage, particularly for the n = 2000 sample size where bias is a relatively large 

component of the RMSE. The HDMI methods (HDMI90 and HDMI80) have minimal 

bias and close to nominal coverage for all the simulated populations, with small increases 

in RMSE and CI width compared with the BD estimate. LNML dominates other methods 

for lognormal data, but has serious bias and very poor confidence coverage for the other 

data sets, suggesting marked sensitivity to model specification. The LNMIC methods 

have similar properties, although they are less biased and have somewhat better 

confidence coverage than LNML when the model is mis-specified. The LNMID methods 

are much more robust than their LNMIC counterparts, yielding minimal bias and good 

confidence coverage for all problems simulated.  
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The PNMIC methods do consistently well in terms of RMSE. Confidence 

coverage is close to the nominal value, except for exponential data with n = 2000 where 

coverage is a little low. This suggests that the power normal model yields good fits to the 

range of models simulated. The PNMID methods also perform well in terms of bias and 

confidence coverage, but they are less efficient than the PNMIC methods.  

When lowering the cutoff point from 90Iy to 80Iy , we observe minor increases in 

RMSE for HDMI, LNMID and PNMIC, and LNMIC when correctly specified. More 

substantial increases in RMSE are seen for PNMID, and LNMIC when mis-specified. 

The losses in efficiency for HDMI80, LNMID80 and PNMIC80 may be acceptable given 

the increase in disclosure protection.  

To provide a visual illustration of the imputation methods under potentially mis-

specified models, Figure II.2 shows the original deleted data values and the imputed 

values from the HDMI and four PMI methods, with cutoff 90Iy , for one of the simulated 

square-root normal data sets with n =2000. Note that the mean of the deleted values is 

2.78. The HDMI predictions look similar to the deleted values and have a similar mean, 

2.80.  

The LNMIC predictions are too severely skewed and have some extreme 

predictions, reflecting the damaging effect on predictions in the tail of applying a mis-

specified model to the full data set. The LNMIC predictions average 5.68, a marked 

overestimate. In contrast, when the lognormal model is correctly specified, the 

predictions track the deleted values well (data not shown). The LNMID predictions have 

the shape of a normal distribution, reflecting effects of model misspecification, but their 

mean, 2.72, matches the mean of the deleted values well.  
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The PNMIC predictions match the deleted values quite well and have a similar 

mean (2.87), reflecting that this model is correctly specified, since the power normal 

model includes the square-root normal as a particular case. The PNMID predictions are 

more skewed than the deleted values, a reflection that the power normal model does not 

fit that well when applied to the deleted values; however these predictions average 2.79, 

very close to the mean of the deleted values. 

In summary, we see that for inference about the mean, the HDMI method 

performs best overall, but has the limitations in terms of SDC noted above. Among the 

parametric imputations, LNMID has the best performance and it works almost as well as 

HDMI. In particular it gives good estimates of the mean even when the log-normal model 

is mis-specified and LNMIC is biased, reflecting the fact that the impact of mis-

specification on the mean is limited when the model is fit to the deleted data. (On the 

other hand this method will work less well for large percentiles under mis-specification, 

since the imputed distribution in the upper tail is distorted). PNMIC also does quite well, 

reflecting that the power-normal model fits the simulated distributions well. The PNMID 

method is satisfactory in terms of bias and confidence coverage, but it is considerably 

less efficient than PNMIC or LNMIC since it is fitting the larger power-normal model to 

the small set of deleted values. The risk of disclosure is reduced when we increase the set 

of value being mixed with the sensitive cases, at the expense of some loss of efficiency of 

the estimate.   

II.5 Application  

We applied the above SDC methods to a subset of data from the 1995 Chinese Household 

Income Project (Riskin et al.2000). This project was designed to measure the personal 
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income distribution in the People’s Republic of China in 1995. Income information on 

both household and individual were recorded for rural and urban areas. Since SDC was 

not applied to the released data set, the effectiveness of the various SDC methods can be 

readily assessed. 

II.5.1 Data analysis  

We illustrated application of the SDC methods to both urban and rural individual income 

values. After deletion of missing and zero income values, the urban dataset included 

15,983 individuals and the rural dataset had 6,296 individuals. We applied the top-

coding, HDMI and PMI methods to the data and compute estimates (1) – (8) described in 

Section II.3. The power transformation parameter estimated by the R function was 0.13 

for the rural data and 0.45 for the urban data.   

II.5.2 Results  

Table II.3 displays the results from the data analysis.  We plot the original deleted data 

values and the imputed values from PMI and HDMI methods using cutoff point 90Iy in 

Figure II.3 and II.4 for urban and rural data, respectively. 

Predictably, in both urban and rural cases, TC underestimates the mean and yields 

an underestimate of standard error because of the reduction in standard deviation from 

top-coding. HDMI90 provides the estimate of the mean closest to the BD mean, with a 

16% increase in standard error. LNML has a large positive bias, indicating sensitivity to 

the lack of fit of the log-normal model for these data. LNMIC90 is also quite biased, 

although it performs better than LNML. LNMID90 has negligible bias and a slightly 

smaller standard error than BD in both urban and rural data. The power-normal model 

estimates PNMIC90 and PNMID90 also have small bias. For urban data, PNMIC90 has 
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relative CI widths less than that from BD, which seems anti-conservative; for the rural 

data it has standard error very similar to BD. PNMID90 shows a slight increase in CI 

width for urban data but a large increase in CI width for rural data, reflecting difficulties 

in fitting this complex model to the deleted data. Changing the cutoff point to 80Iy  results 

in some increases in bias and standard error for LNMIC80 estimates. Estimates from 

HDMI80, LNMID80 and PNMIC80 are still acceptable, as are PNMID80 estimates in the 

urban sample. For the rural data, PNMID80 yields an estimate with strikingly large bias 

and standard error, the result of some very extreme outliers from imputation. It is 

important to check that the method is not creating extreme outliers as in this illustration.   

II.6 Study of SDC methods with covariates 

To make the situation more complicated and realistic, we now introduce covariates into 

our analysis. We use the previous MI methods to impute deleted values, apply a linear 

regression model to the imputed data set, calculate estimates of regression coefficients 

and compare them with those from the original data. Since the MI methods do not 

condition on the covariates, we expect some bias from this procedure; our interest is in 

the size of the bias and resulting distortions in confidence coverage. 

II.6.1 Simulation Study  

Datasets were generated from the following two distributions: 

High correlation distribution: ~ Bivariate Normal  ⎟⎟
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Here X is considered as independent variable and Y is dependent variable. For each 

simulated dataset, we applied the SDC methods to impute for deleted values and 
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performed linear regression of log(Y) on X.  We then calculated the estimates of 

regression coefficient, their corresponding variances and confidence coverage, as we did 

for the estimates of the mean in Section II.4. 

Table II.4 displays results for sample sizes 2000 and 200. For data from the high 

correlation distribution, TC underestimates the regression coefficient, with large RMSE 

and very poor confidence coverage. HDMI90 also underestimates the coefficient, as is to 

be expected since the relationship between the outcome and covariate is attenuated by 

randomly “shuffling” the values beyond top-code. Nevertheless it is less biased and has 

better coverage than TC. The other PMI90 methods yield almost the same result as 

HDMI90. When changing the cutoff point to 80Iy , all MI methods yield estimates with 

more bias and RMSE, reduced efficiency and worse confidence coverage. When the data 

are from the low correlation distribution, all methods have similar properties, but the MI 

methods have satisfactory properties. This suggests that for more moderately correlated 

data, the attenuating effect from imputing without conditioning on X is relatively minor. 

For the smaller sample size of 200, all methods are improved in terms of confidence 

coverage. 

II.6.2 Application in Chinese income data  

We also consider the impact of the SDC methods on a multiple regression, estimated on a 

subset of the urban data in the 1995 Chinese Household Income Project. Our sample 

included 10,752 individuals and 10 variables, with the logarithm of income treated as the 

dependent variable. The covariates were age, gender, marital status, education level, 

occupation, work environment, work intensity, years of work experience and logarithm of 

hours worked per week. To simplify the analysis, we only investigate the scenario where 
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the covariates are complete. We applied the top-coding, HDMI and PMI methods to the 

data, where the PMI methods were applied to the marginal distribution of the dependent 

variable. We again computed estimates of regression coefficients.  

We plot standardized regression coefficients after imputation against those from 

the original dataset in Figure II.5. We choose HDMI, LNMID and PNMIC as 

representations of the MI methods and use the 90th, 80th, 60th and 40th percentiles of the 

outcome variable as cutoff points, to assess the effect of increasingly severe imputation. 

We observe that with 90Iy , the regression coefficients from the imputed dataset are very 

close to those from the dataset before imputation; and imputation with 80Iy  also has a 

minor effect on the coefficients. This particular case is similar to the low correlation 

scenario from simulation study. We conclude that in a situation where the outcome and 

covariates are not strongly associated, the proposed MI methods are robust to the failure 

of the imputation model to condition on covariates.  Lowering cutoff points results in 

larger deviation from original coefficients, leading to greater attenuation of the 

relationship between outcome and covariates.  

II.7. Discussion 

Why should the secondary data analyst prefer our proposed MI methods for SDC to top-

coding? First, appropriate treatment of the top-coded data, using methods like maximum 

likelihood for censored data, requires custom algorithms that are not widely available in 

standard statistical software; as a result we believe that analysts often treat the top-codes 

as true values and assume the bias introduced by this will be small. In contrast, MI 

inferences only require complete-data methods and simple MI combining rules. Second, 

the MI methods tend to be less sensitive than top-coding to model misspecification, as 
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seen in our simulation studies. There are two reasons for this – the random draws from 

the predictive distribution provide variability even if the model is wrong, and the MI’s 

are based on parameter estimates that use information in the original data that is not 

available in the top-coded data. The data producer is also in a better position to assess and 

limit model misspecification, since (s)he can compare analyses based on the MI data with 

analyses based on the original data. In particular, the imputations from the model can be 

compared with the true values.  

For the data producer, MI has the advantage that the balance between disclosure 

protection and information loss can be controlled by the choice of cut-off and number of 

MI’s released. The use of MI allows imputation uncertainty to be propagated, and the 

multiple imputations of a particular value enhance disclosure protection by making clear 

to a potential snooper that these values are not real.  

For inference about the mean, the HDMI, PNMIC and LNMID methods were 

decisively superior to top-coding in our simulations. It is clear that treating the top-coded 

data as the observed data yields bias, the size of which depends on the fraction of cases 

top-coded and the extremity of the top-code. The ML methods based on top-coded data 

are harder to implement for the data user, and are vulnerable to model misspecification. 

Of our preferred MI methods, the HDMI method produces excellent inferences, but has 

limitations as an SDC method, since original values in the data set are retained. The 

PNMIC and LNMID methods both yield good inferences for the mean, with the PNMIC 

yielding imputations that match well the distribution of the deleted values. The LNMIC 

method is vulnerable to misspecification, and the PNMID yields good conference 

coverage but tends to be less efficient than LNMID and PNMIC.   
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We chose the log-normal and power normal models to illustrate parametric MI, 

since they are commonly used to model skewed data; they are not universal, and the MI 

approach could be applied by the data producer with other models that are more suitable 

for the data at hand. MI based on a model fit to all the data (as in the “C” methods) is 

efficient, but vulnerable to model misspecification. Hence if this approach is adopted, 

attention to good model specification is needed – in particular, it is important to check 

that the distribution of the imputed values in the tail is similar to the distribution of the 

deleted values.  

MI based on a model fitted to the deleted values alone (the “D” methods) involves 

some loss of efficiency, but is more robust to model misspecification, since the model is 

being fitted to the data that are being deleted. Here simpler models worked well for the 

mean, but more refined models may still be needed to get the shape of the distribution in 

the tail right. We note that while TC is generally inferior, it is better than MI when 

estimating percentiles below the top-code but above the cutoff point, since the MI 

methods delete values in this range that are retained by TC. 

Our results clearly demonstrate the tradeoff between reducing the risk of 

disclosure by allowing a larger pool of non-sensitive values for mixing with the sensitive 

cases, and reduced efficiency of the estimates. The MI technology is very helpful in 

propagating the increased uncertainty from the disclosure control method, resulting in 

good confidence coverage.   

MI of deleted values should in principle condition on the observed information, 

and hence a refinement of the proposed methods is to condition the predictive distribution 

of the deleted values on observed covariates. Our preliminary assessment of inferences 
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for regression coefficients in Section II.6 confirms that failure to condition on covariates 

leads to an attenuation of relationships between these covariates and Y. The bias was 

serious for highly correlated covariates and large samples, but in other situations was 

surprisingly minor. This suggests that when applying the MI method to multivariate data, 

it may suffice to condition on a relatively small set of covariates that are strongly 

associated with the variable subject to SDC. A simple way of doing this for a small set of 

categorical covariates is to apply the methods presented here within strata defined by the 

covariates, as in the urban and rural strata in the application in Section II.5. More 

generally, regression-based extensions of the PNMIC and PNMID can be readily defined 

by including the key covariates in the mean function. We plan to develop and assess these 

refinements in future work.  

We have confined attention here to inferences from top-coding and MI methods; 

other alternatives to top-coding are also of interest. One such alternative is to add random 

noise (e.g., normal noise as in Fuller 1993) to the values beyond top-code. This method 

may yield satisfactory (if less efficient) inferences for the mean, but noise with 

substantial variance needs to be added to yield reductions of disclosure risk comparable 

to those of MI, and adding such noise potentially distorts the distribution. Also custom 

adjustments are needed for inferences about other parameters, such as regression 

coefficients. Note that if multiple imputes are created by adding noise to the true value, 

the average of these imputations converges to the true value as the number of imputations 

increases, an undesirable property from the perspective of disclosure protection. Our MI 

methods do not have this property: the average of the MI imputed values converges to the 

conditional mean of the predictive distribution, not the true deleted value. Thus 
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increasing the number of MI’s improves efficiency of inferences without compromising 

gains in disclosure protection. This is a major attraction of MI as an SDC method.   
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Table II.1 Inferences about the mean from simulation study, sample size = 2000 

Exponential Data Gamma Data Log-normal Data Square-root-normal Data  
 
Method* 

  Bias 
(*103)  

RMSE** 
(*103)    

Rel- 
wid 

Cover 

(%) 
  Bias 
(*103)  

RMSE
(*103)  

Rel- 
wid 

Cover 
(%) 

  Bias 
(*103)  

RMSE
(*103)  

Rel- 
wid  

Cover 
(%) 

Bias 
(*103)  

RMSE
(*103)  

Rel- 
wid 

Cover 
(%) 

(1) BD -2 24 1.00 93.8 -0 19 1.00 96.2 1 16 1.00 94.0 -0 18 1.00 94.4 

(2) TC -51 55 0.84 23.2 -42 45 0.85 30.0 -39 41 0.80 13.6 -33 37 0.89 45.6 

(3) LNML 359 363 2.40 0 213 216 1.81 0 1 16 1.01 93.8 823 836 7.99 0 

(4) HDMI90 -2 24 1.05 94.8 -0 19 1.05 97.4 1 16 1.09 96.6 -0 19 1.04 95.4 

     HDMI80 -2 24 1.12 95.8 -0 19 1.10 98.2 1 17 1.14 96.2 -0 18 1.08 96.8 

(5) LNMIC90 206 212 2.41 1.0 130 134 1.85 1.0 0 17 1.02 94.8 354 362 4.19 0.6 

     LNMIC80 317 322 2.80 0 202 206 2.09 0 1 17 1.04 94.4 594 606 5.24 0.2 

(6) LNMID90 -2 24 1.00 93.8 -1 19 1.01 95.8 -0 16 1.00 94.4 -1 19 1.01 93.8 

     LNMID80 -4 24 1.00 93.4 -2 19 1.01 95.8 -1 17 0.99 93.2 -1 19 1.01 94.4 

(7) PNMIC90 11 27 1.08 89.6 7 21 1.05 95.2 0 17 1.02 95.0 9 21 1.05 93.0 

     PNMIC80 14 29 1.10 89.0 9 22 1.07 93.8 1 17 1.03 94.6 15 24 1.07 88.6 

(8) PNMID90 2 27 1.18 95.0 2 21 1.15 97.2 0 17 1.15 94.0 1 19 1.08 95.2 

     PNMID80 21 61 2.29 97.4 14 34 1.72 98.0 5 27 1.65 96.2 8 24 1.40 96.8 

26

 
* BD = before deletion, TC = top-coded, LNML = Censored ML for lognormal model, HDMI = hot deck MI, LNMIC = lognormal 
MI fitted to complete data, LNMID = lognormal MI fitted to deleted data, PNMIC = power normal MI fitted to complete data, 
PNMID = power normal MI fitted to deleted data 
** Here “RMSE” refers to root mean squared error. “Rel-wid” refers to “relative width”, which is fraction of 95 CI % width 
comparing to estimate 1.  “Cover” refers to the 95% CI coverage. 
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Method 

Exponential Data Gamma Data Log-normal Data Square-root-Normal Data 

  Bias 
(*103)  

RMSE 
(*103)  

Rel-
wid 

Cover 
(%) 

  Bias 
(*103)  

RMSE
(*103)  

Rel-
wid  

Cover 
(%) 

  Bias 
(*103)  

RMSE
(*103)  

Rel-
wid   

Cover 
(%) 

Bias 
(*103)  

RMSE
(*103)  

Rel- 
wid 

Cover 
(%) 

(1) BD 5 71 1.00 94.2 -5 60 1.00 95.2 -6 50 1.00 93.2 -1 55 1.00 94.8 

(2) TC -45 75 0.84 84.6 -47 69 0.86 86.4 -45 60 0.81 77.2 -34 59 0.89 90.4 

(3) LNML 384 424 2.56 38.0 207 232 1.80 58.2 -5 50 1.02 95.0 833 961 9.39 40.8 

(4) HDMI90 5 72 1.06 96.0 -5 60 1.06 95.4 -6 51 1.08 94.4 -1 55 1.04 96.2 

     HDMI80 5 71 1.11 96.4 -5 62 1.11 95.8 -5 52 1.14 95.8 -2 55 1.08 97.6 

(5) LNMIC90 227 277 2.42 87.4 126 165 1.84 92.2 -7 52 1.03 93.4 364 447 4.17 80.8 

     LNMIC80 338 395 2.85 70.2 192 232 2.08 78.0 -5 53 1.06 93.6 608 732 5.22 46.8 

(6) LNMID90 8 73 1.03 94.8 -4 61 1.03 94.8 -4 51 1.03 95.6 -0 57 1.02 94.4 

     LNMID80 6 73 1.02 94.4 -6 62 1.02 95.2 -7 52 1.01 94.4 -1 57 1.03 95.6 

(7) PNMIC90 18 79 1.09 94.8 0 65 1.05 95.8 -6 51 1.05 95.0 8 58 1.06 95.6 

     PNMIC80 23 83 1.12 94.6 5 65 1.08 95.8 -4 53 1.07 95.4 17 63 1.09 95.4 

(8) PNMID90 15 94 1.22 94.8 4 69 1.23 96.4 -2 55 1.19 95.2 3 60 1.10 96.6 

     PNMID80 73 407 2.83 96.0 23 222 1.85 95.8 3 67 1.40 95.0 16 112 1.57 96.4 

Table II.2 Inferences about the mean from simulation study, sample size = 200 
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Table II.3 Comparison of mean estimates, 1995 Chinese Household Income Project, 
Urban and Rural data 

 

Urban data Rural data Method 

Estimate Fraction 
(%) 

SE  Rel- 
wid 

Estimate Fraction 
(%) 

SE  Rel- 
wid 

(1) BD 6196 0 36 1.0 2196 0 339 1.0 

(2) TC 5895 -4.86 25 0.70 1969 -10.36 25 0.65 

(3) LNML 7732 25.8 85 2.38 2675 21.8 59 1.53 

(4) 
HDMI90 

6196 -0 41 1.16 2196 0 45 1.16 

     
HDMI80 

6196 -0 43 1.19 2197 0.01 47 1.22 

(5) 
LNMIC90 

6760 9.10 58 1.61 2512 14.39 70 1.80 

     
LNMIC80 

7320 18.14 69 1.92 2653 20.80 77 1.98 

(6) 
LNMID90 

6174  -0.35 33 0.92 2179 -0.81 36 0.93 

     
LNMID80 

6162  -0.55 32  0.90 2164 -1.46 35 0.90 

(7) 
PNMIC90 

6035 -2.60 29 0.80 2205 0.39 39 1.01 

     
PNMIC80 

6089 -1.73 30 0.83 2223 1.21 41 1.05 

(8) 
PNMID90 

6135 -1.98 37 1.03 2196 -0.02 70 1.80 

     
PNMID80 

6108 -1.41 39 1.09 2378 8.26 338 8.74 

** Here “SE” refers to standard error of the estimate. “Fraction” refers to fractional 
deviation from BD mean. “Rel-wid” refers to “relative width”, which is fraction of 95 CI 
% width comparing to estimate 1.  
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Sample size 2000 Sample size 200 
High correlation Low correlation High correlation Low correlation 

Method 

Estimate 
(*104) 

RMSE 
(*104) 

Rel-
wid 

Cover 
(%) 

Estimat
e (*104)

RMSE
(*104)

 Rel-
wid 

Cover 
(%) 

Estimate 
(*104) 

RMSE 
(*104) 

Rel-
wid 

Cover 
(%) 

Estimate 
(*104) 

RMSE 
(*104)

Rel-
wid 

Cover 
(%) 

(1) BD 537 8 1.00 94.0 268 13 1.00 93.8 536 24 1.00 94.6 266 41 1.00 94.6 

(2) TC 510 28 0.95 5.6 255 19 0.94 76.6 508 39 0.95 73.8 253 43 0.94 92.8 

(3) HDMI90 528 12 1.13 82.6 263 14 1.04 94.6 526 27 1.14 95.2 262 41 1.04 95.4 

     HDMI80 514 25 1.25 26.6 256 18 1.06 86.2 511 37 1.26 91.2 255 43 1.06 95.2 

(4) LNMIC90 528 13 1.07 78.2 264 14 1.02 95.0 526 29 1.08 91.2 261 42 1.02 94. 

     LNMIC80 514 26 1.14 22.2 256 18 1.03 84.2 511 39 1.15 83.4 254 43 1.03 95.2 

(5) LNMID90 528 13 1.08 78.2 263 14 1.02 94.2 526 28 1.10 93.2 262 41 1.03 95.0 

     LNMID80 514 26 1.16 21.2 256 18 1.03 84.6 512 37 1.18 87.2 255 43 1.04 95.6 

(6) PNMIC90 528 13 1.06 77.2 264 14 1.01 93.2 526 28 1.08 93.7 262 41 1.02 94.8 

     PNMIC80 514 25 1.13 23.0 257 18 1.02 85.6 512 38 1.16 86.0 255 43 1.03 94.9 

(7) PNMID90 527 13 1.06 72.8 263 15 1.01 91.6 525 28 1.08 93.9 261 41 1.02 95.2 

     PNMID80 512 27 1.13 14.8 256 18 1.02 83.4 510 38 1.15 83.6 254 43 1.03 94.9 

Table II.4 Inference for regression coefficient from simulation study 

 



 

Figure II.1 Tails of the Data Distributions in Simulation Study 

 

Figure II.2 Deleted and imputed values for square-root-normal data (n=2000) 
(values greater than 8 are pooled into one category) 
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Figure II.4 Deleted and imputed values for 1995 Chinese household income project, 
rural data (values greater than 60,000 are pooled into one category) 

Figure II.3 Deleted and imputed values for 1995 Chinese household income project, 
urban data (values greater than 85,000 are pooled into one category) 
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Figure II.5 Standardized regression coefficients, after versus before imputation.                                                                          
1995 Chinese household income project, urban data. (Top row, HDMI, with cutoff points being 90, 80, 60, 40 percentiles, from 
left to right. Middle row, LNMID. Bottom row, PNMIC. Line: y = x) 



 

Appendix II.1: PMI method for log-normal model and power-transformed normal 
model  
For X from log-normal 2( , )μ σ  distribution, 2log( ) ~ ( , )Y X N μ σ= .  If X is from the 

power-transformed normal ( 2, ,μ σ λ ) distribution with 0λ ≠ , 

( ) 21 / ~ ( , )Y X Nλ λ μ σ= − .  To apply the PMI method we estimate λ  by its ML 

estimate λ̂  using the widely available routine box.cox.powers( ) in R (see Fox 2006), and 

then assume ( )ˆ 2ˆ1 / ~ ( , )Y X Nλ λ μ σ= − . (A more principled approach would also 

simulate λ  from its posterior distribution).    

 Given data from the1( ,... )nY y y= 2( , )N μ σ distribution, the posterior distribution 

of parameters is as follows, 

 
2

2
2

1

( 1)| ~
n

n SYσ
χ −

− , where 2

1

1 (
1

n

i
i

S y
n =

=
− ∑ 2)y−  (IIA1) 

and 

 2| , ~ ( , / )Y N y nμ σ σ 2 . (IIA2) 

We draw parameters * *2,μ σ from their posterior distribution and then draw deleted 

values for normal data from the predictive distribution  

 . (IIA3) * * *2
del ~ ( , | log )IY N Y yμ σ >

We then transform the draws of normal data back to log-normal and power-transformed 

normal data: 

 log-normal: * *
del delexp( )X Y=  (IIA4) 

 power-transformed normal: ˆ* *
del del

ˆ(X Yλ λ 1)= +  (IIA5) 
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Appendix II.2: EM algorithm for log-normal model 
If X is log-normal( 2,μ σ ), then log( )Y X= is 2( , )N μ σ  and .  

Let  be a random sample from 

2' ( ) exp( / 2)E Xμ μ= = +σ

1( ,... )nY y y= 2( , )N μ σ , and suppose iy  is treated as 

missing if and only if iy c> , where c  is a known censored value.  Without loss of 

generality, we assume iy  is observed for 1, 2,...,i r= and missing for .  The 

complete-data likelihood is 

1,...,i r n= +

 2 2 2 2

1 1

( , | ) exp{ log /(2 ) /(2 ) / }
n n

i i
i i

L Y n y n y 2μ σ σ σ μ σ μ
= =

∝ − − − +∑ ∑ σ .  

(IIA6) 

The complete-data sufficient statistics are  

 2

1 1
( ) ( , )

n n

i i
i i

S Y y y
= =

= ∑ ∑ . (IIA7) 

We write , where  denotes the observed values and denotes the 

missing values.  Given parameter estimates , the ( )th iteration of EM 

method is as follows:  

obs del( ,Y Y Y= )

)t

obsY misY

( ) ( ) ( )( ,t tθ μ σ= 1t +

E-step: 
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M-step: 

  (IIA10) 
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Chapter III 
Extensions of Multiple Imputation Methods as Disclosure Control 

Procedure for Multivariate Data 
 

Abstract 

Multiple imputation (MI) has been proved to be effective statistical disclosure control 

(SDC) method for data with extreme values. Previous studies demonstrate MI methods 

provide better inference of the publicly-released data than the commonly-used top-coding 

procedure, while maintaining good SDC properties. We propose stratified and regression-

based extensions of these MI methods for multivariate analysis. We show in simulation 

studies that our proposed methods work well in preserving relationship within 

multivariate data and provide results from regression analysis close to those obtained 

before imputation. We illustrate the methods on data from the 1995 Chinese household 

income project.  

Keywords: confidentiality, disclosure protection, multiple imputation 

III.1 Introduction  

Statistical disclosure control (SDC) is a class of procedures that deliberately alter data 

collected by statistical agencies before release to the public, to prevent the identity of 

survey respondents from being revealed. These methods have increased in importance, 

with the extensive use of computers and the internet. The goal of SDC methods is to 

reduce the risk of disclosure to acceptable levels, while releasing a dataset that provides 
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as much useful information as possible for researchers. One aspect of this is the ability to 

draw valid statistical inferences from the altered data.   

A great number of confidentiality concerns are raised by extreme values of 

variable. For example, in surveys that include income, extremely high income values are 

considered to have the potential to reveal the identity of respondents. Top-coding is a 

simple SDC procedure in this situation. A “top-code” is defined, and values greater than 

the top-code are recoded to that value. Top-coding is easy to implement, and widely used 

in surveys. 

 We have proposed multiple imputation as an alternative to top-coding for 

disclosure limitation (An and Little, 2007a). Data values greater than a cutoff point, 

which is chosen to be smaller than the top-code, are deleted. These values are replaced 

either by random draws from the set of deleted values (the hot-deck procedure), or by 

draws from the posterior predictive distribution based on the imputation model (the 

Bayesian procedure). The imputation process is repeated several times and the imputed 

datasets are then released to the public. Inferences can be calculated with MI combining 

rules (Reiter 2003). An and Little (2007a) show that MI methods provide better 

inferences than top-coding, while maintaining good SDC properties. 

 An and Little (2007a) focus mainly on inference for a population mean, yet most 

uses of publicly-released data files concern multivariate analysis. That paper also shows 

that in situation where the outcome variable is subject to top-coding, failure of the 

imputation model to condition on covariates leads to attenuation of relationships between 

outcome and covariates. The goal of this article is to propose extensions of MI methods 
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for multivariate data that preserve the associations between variables and yield valid 

estimate of regression coefficients. 

 We propose two extensions, stratified MI and regression-based MI. For the 

stratified method, we calculate predicted values of the outcome variable from regression 

model and create strata based on the predicted values. We then apply previous MI 

methods within each stratum to fill in deleted values. The regression method is based on a 

regression of the outcome on the set of fully observed covariates. We condition the 

predictive distribution of the deleted values on covariates for imputation, by including the 

covariates in the mean function of the outcome.  

We compare estimates of regression coefficients from our methods with estimates 

from the original data, and with two estimates from top-coded data. The first treats the 

top-coded values as the true values. The second treats values greater than top-code as 

censored, and bases inferences on a model fitted to the censored data. 

 The rest of this paper is organized as follows. Section III.2 presents our SDC 

approaches and extensions. Section III.3 describes corresponding methods of inference 

for regression coefficients. Section III.4 describes a simulation study to evaluate the 

approaches in Section III.3, and Section III.5 applies the methods to data from the 1995 

Chinese household income project. Section III.6 concludes with discussion. 

III.2 Methods of statistical disclosure control    

Let Y denote a survey variable (e.g. income) and suppose that values of Y  greater than a 

particular value  are considered too sensitive for release to the public. Let X denote a 

set of fully observed variables that are not subject to disclosure limitation methods. Our 

goal is to develop SDC methods that preserve relationship between Y and the X’s .  

Ty
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III.2.1 Previous SDC methods 

For inference about the marginal mean of Y without covariates, An and Little (2007a) 

distinguish the following methods. 

(A) Top-coding. Treat  as a top-code value, that is, replace values of Y  greater than 

 by . The resulting sample is referred to as “top-coded”.   

Ty

Ty Ty

(B) Hot-deck MI (HDMI). Choose a value  smaller than . Delete the values of Y  

greater than  and replace them with random draws from the set of deleted values. We 

choose  to achieve a mixing of sensitive and non-sensitive values. We refer to  

as the cutoff point. 

Iy Ty

Iy

TI yy < Iy

(C) Parametric MI (PMI). The HDMI method is arguably limited from the point of 

view of SDC, since actual sensitive data values are released. The PMI methods address 

this concern by releasing data simulated from a parametric model. As with HDMI, we 

delete values greater than . Fit a statistical model (e.g. lognormal model) to the data. 

Parameters are drawn from their posterior distribution under the assumed model, and 

deleted values are imputed with draws from their predictive distribution. 

Iy

 Write the complete data as ret del( , )Y Y Y= , where  denotes the retained values 

and  denotes the deleted values beyond the cut-off. We consider two versions of PMI, 

labeled as PMIC and PMID. For PMIC, we draw the parameter

retY

delY

φ  of the model for the 

data Y from its posterior distribution given the complete data Y. For PMID, we apply the 

parametric model to the deleted data , and draw delY φ  from its posterior distribution 

given . For inference about a population mean, PMID is less efficient than PMIC 

because it models the deleted data and fails to exploit fully the information in Y when 

delY
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drawing values of parameters. However, modeling the deleted data only as in PMID 

provides useful robustness to model misspecification, since the model is being fitted to 

the data that are being deleted. See An and Little (2007a) for more details. 

III.2.2 Extensions of MI methods for multivariate data 

The methods in Section III.2.1 do not condition on covariates and potentially attenuate 

relationships between the variables. We propose methods that condition imputation of 

deleted values on the observed X’s. From this section we refer to (Y, X) as the complete 

data prior to SDC; and refer to the deleted values of Y and their corresponding values of 

X’s as the deleted data.  

(a) Stratified HDMI method. Assign the deleted data into strata based on predicted 

values of Y from regression of Y on X. Apply HDMI within each stratum to impute for 

deleted values. 

(b) Stratified PMI method. Again create strata based on predicted values of Y. For 

PMIC methods, we stratify the complete data. For PMID methods, we stratify the deleted 

data as in (a). We then apply statistical models to the values of Y in each stratum and 

impute deleted values with draws from predictive distribution. 

(c) Regression PMI method. Instead of fitting models to the marginal distribution of 

variable Y, we include covariates in the mean function of the model for Y. We draw 

parameters from their posterior distribution under the assumed model, and draw deleted 

values from predictive distribution. We fit the model to the complete data (for PMIC 

method) and the deleted data (for PMID). See Appendix III.1 for details for log-normal 

and power-transformed-normal model.  
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(d) Regression MI method based on top-coded data set. Fit a statistical (e.g., log-

normal) model to the data with values of Y below the top-code. We obtain draws of 

parameter using a Gibbs sampler (Little and Rubin, 2002), and impute deleted values 

with draws from predictive distribution. 

The stratified and regression versions of HDMI and PMI methods in (a)-(c) will 

be later referred to as “S*” and “R*” methods, respectively. 

III.3 Methods of inference   

We study the properties of these SDC methods for inferences about regression coefficient 

with Y being outcome (or covariate). The regression model is fitted to the dataset before 

and after imputation. The following estimates and associated standard errors are 

considered:  

(1) Before Deletion (BD) – the estimate of regression coefficient calculated from original 

data prior to SDC. This estimate is used as a benchmark for comparing SDC methods. 

(2) Top-coding (TC) – the estimate of regression coefficient from the top-coded sample, 

where we treat the top-coded values as the true values.  

The standard errors for methods BD and TC are computed by the bootstrap, with 

B = 100 bootstrap samples. 

(3) Log-normal MI from top-coded data (LNMIT) – the estimates from D imputed 

datasets, where we draw imputations for values beyond the top-code from the posterior 

distributions with a log-normal model fitted to the top-coded data. The MI estimate is 

calculated using the standard MI combining rule for missing data (Little and Rubin, 

2002). In particular, the MI estimate of variance from this method is calculated as 

 DDBWVarT MIMI /)1()ˆ( +∗+== θ . (1) 
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This is different from the calculation of variance estimate for the rest of MI methods (see 

below), because parameters are drawn from their posterior distribution given the top-

coded data, rather than their posterior distribution given the complete data (An & Little, 

2007). 

The remaining MI methods create D sets of imputations for values beyond the 

chosen cut-point Iy , with the d th imputed dataset , where 

 if 

( ) ( ) ( ) ( )
1 2( , ,..., )d d d d

nY y y y=

( )d
i iy y= i Iy y<  and  is the d th  MI draw if ( )d

iy i Iy y≥ . The MI estimate is then 

                   , (2)       ∑ θ̂

where ( )ˆ dθ  is the coefficient estimate from regression of the d th dataset. The MI estimate 

of variance is  

=
=

D

d
d

MI D 1
)(1θ̂

 ˆ( ) /MI MIT Var W Bθ= = + D , (3)        

where ( )
1

/D d
d

W W
=

=∑ D  is the average of the within-imputation variances  for 

imputed dataset d, and                                                    is the between-imputation 

variance (Reiter, 2003).  

( )dW

∑ =
−−=

D

d MI
d DB

1
2)( )1/()ˆˆ( θθ

Methods (4)-(8) all create strata based on predictions from a regression model of 

Y on X, and then apply an unconditional method within each stratum. Imputations for 

these methods are created as follows (details are described in Section III.2.2). 

(4) Stratified Hot-deck MI (SHDMI) – imputations are drawn randomly with 

replacement from the set of values beyond the cut-off Iy .  

(5) Stratified Log-normal MIC (SLNMIC) – imputations are posterior predictions from 

a log-normal model fitted to the complete data before deletion. 

(6) Stratified Log-normal MID (SLNMID) – imputations are posterior predictions from 

a log-normal model fitted to the deleted data beyond the cut-off. 
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(7) Stratified Power-normal MIC (SPNMIC) – imputations are posterior predictions 

from a power-transformed normal model fitted to the full data before deletion. For 

convenience the power transformation is estimated by ML, and parameters are drawn 

from the full-data posterior distribution treating the power transformation as known.  

(8) Stratified Power-normal MID (SPNMID) – imputations are posterior predictions 

from the power-normal model, fitted to the deleted data beyond the cut-off. 

 Methods (9)-(12) are based on predictions from a regression model that includes 

the covariates linearly in the mean structure of the model. Details of these methods are 

described in Appendix III.1. Imputations for these methods are created in a similar 

manner as their counterparts of stratified methods. 

(9) Regression Log-normal MIC (RLNMIC) 

(10) Regression Log-normal MID (RLNMID) 

(11) Regression Power-normal MIC (RPNMIC) 

(12) Regression Power-normal MID (RPNMID) 

III.4 Simulation study 

A simulation study was carried out to evaluate and compare the SDC methods in Section 

III.3. We computed estimates of regression coefficients, the corresponding variances and 

confidence intervals from the imputed datasets, and compared them with those calculated 

from the original dataset prior to SDC.   

III.4.1 Study design  

Datasets were generated from the following two distributions. For each distribution, we 

simulated data where the covariates are strongly or weakly correlated.  

Data distribution 1:  
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 When X1 and X2 are strongly correlated, 

X1 ~ Normal (0, 1); X2|X1 ~ Normal (0.9*X1, 0.19); X3|X1, X2 ~ Normal (0.2*X1+X2, 

0.16) 

 When X1 and X2 are weakly correlated, 

X1 ~ Normal (0, 1); X2|X1 ~ Normal (0.3*X1, 0.91); X3|X1, X2 ~ Normal (0.2*X1+X2, 

0.13) 

Data distribution 2: 

 When X1 and X2 are strongly correlated, 

X1~ Normal (0, 1); X2|X1~ Normal (0.9*X1, 0.19); X3|X1, X2~ Normal (X1+X2, 0.42) 

 When X1 and X2 are weakly correlated, 

X1 ~ Normal (0,1); X2|X1 ~ Normal (0.3*X1, 0.91); X3|X1, X2 ~ Normal (X1+X2, 0.29) 

Here X3 is logarithm of variable Y subject to disclosure control. For regression 

purpose we treated X3 as dependent variable and X1 and X2 as independent variables. 

Data distributions 1 and 2 have different proportions of contribution from the two 

covariates. To assess sensitivity of SDC methods to model misspecification, we also 

investigate situation where X3 was generated from a different distribution with the same 

mean function.  

For each simulated dataset, we applied top-coding, stratified and regression MI 

methods to impute the deleted values of Y and performed linear regression on imputed 

dataset. We then calculated estimates of regression coefficients, the corresponding 

variances, 95% confidence intervals (CI’s) based on normal approximation and the 

coverage of confidence intervals. For comparison, we also considered MI methods that 

failed to condition on the covariates (referred to as unconditional methods). 
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 In our simulations we chose the 95th percentile of the population distribution as 

the top-code value . Denote by  the number of sensitive sample values greater 

than . We studied two alternative values for the cutoff point : 

Ty Sn

Ty Iy 90Iy , the value with 

 larger values in the sample, and 2 Sn 80Iy , the value with  larger values in the sample. 

These values correspond approximately to the 90th and 80th percentiles of the distribution, 

and for this reason we label the version of a method *  that uses cutoff 

4 Sn

90Iy  “*90” and the 

version that uses cutoff 80Iy  “*80”.  

Clearly the disclosure risk is reduced by increasing the fraction of non-sensitive 

values that are imputed. A simple measure of the risk of disclosure is the proportion of 

multiple-imputed values beyond the top-code value Ty . For all the MI methods, this is 

approximately 50% when the cutoff point is 90Iy , and approximately 25% when the 

cutoff point is 80Iy .  

III.4.2 Results  

Unless specified otherwise, the results from simulation are based on 500 data sets 

generated from data distribution 1, with sample sizes 2000. We set B = 100 for the 

number of bootstrap samples. For MI methods, we created D = 5 imputed datasets for 

values beyond 90Iy . For stratified MI methods, we created strata with stratum size around 

40.   

Table III.1 and III.2 show estimates of regression coefficients for X1, X2, and the 

intercept term, when X1 and X2 are strongly correlated and weakly correlated, 

respectively. Results are calculated from top-coding, unconditional and conditional MI 

methods. TC in Table III.1 underestimates the regression coefficients for both covariates. 
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The estimates of the coefficient of X2 have larger bias and less coverage, since top-

coding the outcome results in greater attenuation of the relationship between outcome and 

covariate when they are more associated. TC also provides underestimates of the 

intercept term with poor coverage, suggesting inadequate estimation of the marginal 

mean of X3. When X1 and X2 are weakly correlated, TC estimates for X1 and X2 have 

reduced coverage. The impact is more severe with X2, suggesting that the attenuation 

effect has been reduced by the high correlation between the covariates. 

All unconditional MI methods behave similarly and underestimate coefficients of 

both covariates, with larger bias for estimate of the coefficient of X2. Though most of the 

estimates have acceptable confidence coverage (except that estimates of the coefficient of 

X2 have low coverage when X1 and X2 are not strongly associated), it is worth noticing 

that these estimates have a 20-30% increase (or 30-40% in some cases) in CI width 

compared with BD. As a result, some over coverage is observed for the intercept term.  

Stratified HDMI produces negligible bias and close to nominal coverage for all 

three estimates. SLNMID and SPNMID methods also work quite well, with small 

increases in RMSE and CI width compared to BD estimates. Estimates from SLNMIC 

and SPNMIC methods have good confidence coverage, though they tend to be more 

biased and less efficient than those from stratified HD and PMID methods. There is a 

minor increase in bias for estimate of the coefficient of X2 from all MI methods, as for 

the TC method. Results in Table III.2 show some loss of efficiency in the estimate of 

coefficient of X2. We observe that increasing number of strata results in better inference, 

especially for the S-PMIC method (result not shown). 
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All regression PMI methods yield inferences close to those before deletion. 

LNMIT works almost as well as the R-PMI methods; and appears to be a reasonable 

approach to the analysis of the top-coded dataset. LNMIT and RPNMID have slightly 

less efficient estimates of the coefficient of X2 when X1 and X2 are weakly correlated. 

Regression PMI methods (especially RLNMIC and RPNMIC) are more efficient than 

stratified PMI methods, and produce less bias for the coefficient of X2. Overall, estimates 

from stratified and regression methods are less biased and more efficient than those from 

unconditional MI methods. 

When the data are from the second distribution with X1 and X2 contributing 

evenly in regression (Table III.3 and III.4), we observe similar properties of stratified and 

regression methods as from the first data distribution, except that here estimates of the 

coefficients of X1 and X2 have very similar inferential properties.  

For the smaller sample size of 500 (Table III.5 and III.6), estimates from the 

stratified methods have larger RMSE and relative CI width. Regression methods also 

result in larger RMSE and RPNMID shows some increases in CI width; but in general 

they produce better inferences than stratified methods.   

When changing the cutoff point from 90Iy  to 80Iy  (Table III.7 and III.8), stratified 

HDMI almost has same performance. SLNMID and SPNMID methods have minor 

increases in bias, RMSE and CI width. More substantial increases are seen with SLNMIC 

and SPNMIC. In situation where there is low correlation between two covariates, these 

two methods do not provide full coverage. Results from all regression methods remain 

somewhat unchanged, whereas RPNMID yields less efficient estimates. Unlike stratified 

and regression methods, lowering cutoff point for unconditional MI methods results in 
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larger bias and RMSE, and major increase in CI width. Estimates of coefficient of X1 still 

have satisfactory coverage, while for intercept some over coverage occurs. With X2 the 

estimates of the coefficient have low coverage, which gets worse when X1 and X2 are 

weakly correlated.  

Table III.9 and III.10 display results in situation where X3 was generated from an 

exponential distribution instead of normal distribution, to evaluate method performance 

when model is mis-specified for the outcome. TC again underestimates the regression 

coefficients for X1 and X2, yielding serious bias and low coverage for estimate of the 

coefficient of X2. Estimate of intercept is even more biased and has worse coverage. All 

TC estimates have 20% less of CI width than BD estimates. Unconditional HDMI and 

LNMID, as well as PN methods for strongly correlated covariates, yield satisfactory 

results, though they are in general more biased and less efficient than stratified and 

regression methods. Among stratified MI methods, SHDMI and SLNMID have the best 

performances. They work consistently well and produce estimates with minimal bias and 

good coverage. SLNMIC method has very similar properties as TC, though it is 

somewhat less biased and has better confidence coverage. Stratified PNMIC and PNMID 

methods have larger bias than SLNMID, otherwise they work quite well. For regression 

methods, estimates from LNMIT have sizable bias and reduced CI width, and have 

acceptable coverage except for the intercept term. RLNMIC has even worse performance 

than LNMIT, and has lower coverage for estimate of the coefficient of X2, as X2 

associates more with the outcome. RLNMID works best with inferences close to before 

deletion, and seems to be robust to model misspecification of X3. RPNMIC is more 

biased than RLNMID but also works well. RPNMID produces satisfactory results for X1 
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and X2, whereas for intercept it is more biased and does not provide full coverage (even 

unconditional PNMID method has better results in this case). In a word, regression based 

MI methods are no better than the stratified versions of these methods.   

In summary, stratified HDMI and PMID methods perform well overall. Stratified 

PMIC methods are less satisfactory in some situations, indicating that stratification on 

deleted data is adequate and efficient. Among regression methods, RLNMID has the best 

performance. RPNMIC also works quite well. RPNMID produces satisfactory inferences 

under correct model; and with incorrect model it yields biased estimates for the marginal 

mean of the outcome. LNMIT only imputes values beyond top-code, which may be one 

reason for its close performance as other MI methods. LNMIT and S/RLNMIC methods 

are all sensitive to model misspecification. LNMIT has less impact with tail of 

distribution being mis-specified, due to the fact that it conditions only on values below 

top-code. This could also explain why LNMIT works almost as well as other R-PMI 

methods under correct model, as fewer values are being imputed. On the other hand, 

LNMIT presents higher risk of disclosure than other MI methods.   

III.4.3 Results from regression of X1 on X2 and imputed X3 

We further investigate the impact of SDC methods on regressions where the sensitive 

variable subject to top-coding is a covariate. We applied previous SDC approaches to 

impute for deleted values of X3 as before. We then regressed X1 on X2 and X3 and 

computed coefficients from regression. 

Simulation setting is the same as described in Section III.4.1. Table III.11 and 

III.12 present results from situation where X1 is strongly and weakly correlated with X2, 

respectively. TC results in biased estimates with poor confidence coverage. 
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Unconditional MI methods provide poor results for coefficients of X2 and X3. Estimates 

from these methods have serious bias and much lower coverage than TC estimates.  

Table III.11 shows SHDMI has minimal bias and confidence coverage close to 

before deletion. SLNMID and SPNMID methods work nearly as well. SLNMIC produces 

good estimate for intercept; and estimates of the coefficients of X2 and X3 have less CI 

width and less coverage than BD, yet they behave better than TC estimates. SPNMIC 

yields estimate with similar inferences to those from the SLNMIC method. When X1 and 

X2 are weakly correlated (Table III.12), SHDMI maintains same properties except for 

some minor increase in bias and RMSE. All estimates of the coefficients of X2 and X3 

from stratified PMI methods have larger bias and lower coverage than in Table III.11; 

especially with MIC methods.  

All regression methods yield estimates with good inferences. Result from LNMIT 

method is close to those from RLNMIC and RPNMIC methods. RPNMID has slightly 

higher bias especially when correlation between X1 and X2 is weak. Overall, these 

methods have reduced bias and RMSE comparing with their stratified counterparts. We 

conclude that in situations where imputations are carried out on a covariate, regression 

MI methods are obviously advantageous to stratified methods for inference about 

regression coefficient; and they definitely outdo unconditional methods. 

III.5 Application 

We also consider the properties of the SDC methods on a multiple regression, estimated 

on a subset of the urban data in the 1995 Chinese Household Income Project (Riskin et 

al.2000). This project was designed to measure the personal income distribution in the 

People’s Republic of China in 1995. Income information on both household and 
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individual were recorded for rural and urban areas. This dataset is a good example to 

assess the effectiveness of the various SDC methods, since SDC was not applied to the 

released dataset. 

III.5.1 Data analysis  

Our sample included 10,752 individuals and 10 variables, with the logarithm of income 

treated as the dependent variable. The covariates involved were age, gender, marital 

status, education level, occupation, work environment, work intensity, years of work 

experience and logarithm of hours worked per week. To simplify the analysis, we only 

investigate the situation where the covariates are complete.  

We applied the stratified and regression HDMI and PMI methods to the data as 

previously described and computed estimates of regression coefficients from imputed 

dataset. As in simulation study, we also calculated estimates from the unconditional MI 

methods (i.e., imputation does not condition on covariates) for comparison.  

III.5.2 Results  

We plot estimates of the standardized regression coefficients after imputation against 

those from the original dataset (Fig. III.1-III.3). We choose HDMI, LNMID and PNMIC 

as representations of the MI methods and use the 90th, 80th, 60th and 40th percentiles of the 

outcome variable as cutoff points, to assess the effect of increasingly severe imputation.  

Figure III.1 shows the result from unconditional imputation. We observe that 

with 90Iy , the regression coefficients from the imputed dataset are quite close to those 

from the dataset before imputation; and imputation with 80Iy  also has a minor effect on 

the coefficients. Lower cutoff points result in larger deviation from original coefficients. 

Figure III.2 displays result from stratified MI methods. Imputations with 90Iy , as well 
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as 80Iy , yield regression coefficients very close to those from original data. Coefficients 

computed from RLNMID and RPNMIC (Figure III.3) present very similar properties as 

in Figure III.2. Comparing to Figure III.1, coefficients from Figure III.2 and Figure III.3 

show some minor improvements, especially with lower cutoff point. But overall, they are 

not much different from those in Figure III.1.  

This particular case is similar to the scenario from simulation study where the 

outcome and covariates have low correlation (as the case with X1). We conclude that in 

such situation, the unconditional MI methods are robust to the failure of the imputation 

model to condition on covariates. Lowering cutoff points results in larger deviation from 

original coefficients, leading to greater attenuation of the relationship between outcome 

and covariates. This impact is less severe with stratified and regression methods.  

III.6 Discussion 

When applying the MI method to multivariate data, we should condition the predictive 

distribution of the deleted values on observed covariates. Our previous assessment of 

inferences for regression coefficients from unconditional MI methods confirms that 

failure to condition on covariates leads to an attenuation of relationships between 

outcome and covariates. In simple situation where a small set of categorical covariates 

associate strongly with the outcome, it may suffice to apply the MI methods within strata 

defined by these covariates. We base our stratified method on this idea and consider more 

general application with presence of continuous covariates. Since we are interested in 

preserving association between outcome and covariates, we define strata with the 

predicted values from regression.  
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Of our proposed methods, the stratified methods are easy to apply and involve 

only a limited amount of computation. The regression-based methods are potentially 

more efficient, but a bit more complicated computationally. As for method performance, 

these stratified and regression extensions of MI methods are in general superior to top-

coding and unconditional MI methods for inference about regression coefficient. It is 

clear that treating the top-coded data as the observed data yields bias, the size of which 

depends on the fraction of cases top-coded and the extremity of the top-code. The 

LNMIT method based on top-coded data works quite well under correct model, but is 

vulnerable to model misspecification. Regression LNMID has the best performance and 

yields results close to before deletion. SHDMI, SLNMID and RPNMIC methods also 

produce good inferences. RPNMID method works well except when estimating the 

marginal mean of outcome, with mis-specified model. SPNMIC and SPNMID methods 

work well when the outcome is subject to SDC. When the imputations are performed on a 

covariate, they (SPNMIC in particular) yield less satisfactory results. Both stratified and 

regression versions of LNMIC method are vulnerable to misspecification. 

We chose the log-normal and power normal models to illustrate parametric MI, 

since they are commonly used to model skewed data; they are not universal, and the MI 

approach could applied by the data producer with other models that are more suitable for 

the data at hand.  

We have confined attention here to inferences from top-coding and MI methods; 

other alternatives to top-coding are also of interest. One such alternative is to add random 

noise (e.g., normal noise as in Fuller 1993) to the values beyond top-code. This method 

may yield satisfactory (if less efficient) inferences for the mean, but noise with 
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substantial variance needs to be added to yield reductions of disclosure risk comparable 

to those of MI, and adding such noise potentially distorts the distribution. Also custom 

adjustments are needed for inferences about other parameters, such as regression 

coefficients. Note that if multiple imputes are created by adding noise to the true value, 

the average of these imputations converges to the true value as the number of imputations 

increases, an undesirable property from the perspective of disclosure protection. Our MI 

methods do not have this property: the average of the MI imputed values converges to the 

conditional mean of the predictive distribution, not the true deleted value. Thus 

increasing the number of MI’s improves efficiency of inferences without compromising 

gains in disclosure protection. This is a major attraction of MI as an SDC method.   

 54



 

 55

Acknowledgments 

This work was supported by National Institute of Child and Human Development grant 

(P01 HD045753). The authors thank Trivellore Raghunathan, Michael Elliott, and Myron 

Gutmann for useful comments.



 

Table III.1 Inference of regression coefficients from simulation study, when X1 and X2 are strongly correlated 

Method Bias 
(*104) 

RMSE** 
(*104) 

Rel-wid Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-
wid 

Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Regression of X3 
on X1, X2 

X1 X2 Intercept  

BD -1 211 1 94 3 210 1 94.2 4 87 1 95.4 
TC 
LNMIT 

-102 
-1 

236 
213 

1.02 
1.02 

91.8 
95 

-499 
6 

542 
214 

1.04 
1.03 

33.4 
95 

-257 
4 

272 
87 

1.01 
1.02 

17.8 
95.4 

HDMI90 
SHDMI90 

-32 
-3 

229 
215 

1.24 
1.03 

96.2 
94.2 

-170 
-13 

280 
213 

1.26 
1.03 

93.4 
93.8 

4 
4 

87 
86 

1.24 
1.02 

98.8 
96 

LNMIC90 
SLNMIC90 
RLNMIC90 

-33 
-7 
-1 

227 
215 
214 

1.24 
1.07 
1.01 

97 
94.8 
94 

-163 
-40 
6 

281 
219 
214 

1.27 
1.08 
1.02 

93.6 
94.6 
93.4 

8 
17 
6 

95 
92 
90 

1.24 
1.07 
1.01 

98.6 
95.6 
94.4 

LNMID90 
SLNMID90 
RLNMID90 

-34 
-5 
-3 

227 
218 
211 

1.24 
1.04 
1.02 

96.6 
93.8 
95.4 

-167 
-13 
6 

277 
215 
211 

1.29 
1.04 
1.02 

94.2 
94.4 
94 

5 
3 
3 

90 
88 
87 

1.3 
1.04 
1.02 

98.8 
95.2 
96 

PNMIC90 
SPNMIC90 
RPNMIC90 

-36 
-8 
0 

227 
217 
213 

1.24 
1.08 
1.01 

97.6 
94.8 
94 

-162 
-44 
4 

278 
221 
212 

1.27 
1.08 
1.02 

93 
95 
94.6 

7 
15 
6 

93 
89 
89 

1.24 
1.08 
1.01 

98.6 
96.6 
94.4 

PNMID90 
SPNMID90 
RPNMID90 

-41 
-3 
2 

230 
216 
214 

1.23 
1.04 
1.03 

96.4 
93.6 
94.4 

-194 
-8 
-2 

296 
217 
213 

1.27 
1.04 
1.04 

91.8 
93.8 
94.4 

-15 
6 
4 

90 
88 
87 

1.29 
1.04 
1.03 

98.6 
96 
96.8 
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** Here “RMSE” refers to root mean squared error. “Rel-wid” refers to “relative width”, which is fraction of 95 CI % width 
comparing to estimate 1.  “Cover” refers to the 95% CI coverage. 

 



 

Table III.2 Inference of regression coefficients from simulation study, when X1 and X2 are weakly correlated 

Method Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-
wid 

Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Regression of X3 
on X1, X2 

X1 X2 Intercept  

BD 2 86 1 96.2 1 91 1 93.8 4 79 1 94.8 
TC 
LNMIT 

-100 
1 

133 
87 

1.02 
1.02 

78.2 
94.8 

-498 
1 

509 
93 

1.13 
1.09 

0.2 
93.8 

-225 
4 

240 
80 

1.01 
1.03 

19.8 
95.4 

HDMI90 
SHDMI90 

-34 
-1 

96 
86 

1.22 
1.02 

96.4 
95.4 

-166 
-13 

193 
91 

1.33 
1.05 

74.8 
94 

4 
4 

79 
79 

1.22 
1.03 

98.8 
95.8 

LNMIC90 
SLNMIC90 
RLNMIC90 

-33 
-6 
2 

96 
86 
87 

1.23 
1.07 
1.01 

96.8 
96.6 
94 

-158 
-37 
4 

197 
97 
92 

1.36 
1.11 
1.04 

73.2 
94 
93 

9 
17 
6 

85 
81 
80 

1.24 
1.08 
1.01 

97.2 
96.6 
95.4 

LNMID90 
SLNMID90 
RLNMID90 

-33 
-1 
1 

96 
86 
86 

1.23 
1.03 
1.02 

96.4 
94.6 
94.8 

-163 
-10 
-0 

192 
93 
89 

1.46 
1.08 
1.05 

78 
94.4 
94.2 

5 
5 
3 

82 
80 
80 

1.29 
1.04 
1.02 

97.8 
96 
95.8 

PNMIC90 
SPNMIC90 
RPNMIC90 

-33 
-8 
3 

97 
86 
87 

1.22 
1.07 
1.01 

97 
96.4 
94.2 

-161 
-44 
4 

195 
101 
92 

1.35 
1.13 
1.04 

72.2 
93.4 
92.4 

7 
14 
6 

83 
81 
80 

1.23 
1.08 
1.01 

98.4 
96.2 
95.2 

PNMID90 
SPNMID90 
RPNMID90 

-39 
-1 
2 

100 
86 
87 

1.22 
1.04 
1.03 

95.6 
95.2 
95.6 

-193 
-11 
1 

218 
93 
92 

1.43 
1.08 
1.08 

69.6 
93.6 
93.8 

-13 
5 
5 

83 
80 
80 

1.28 
1.04 
1.03 

98.4 
96.2 
95.8 
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Table III.3 Inference of regression coefficients from simulation study, when X1 and X2 are strongly correlated, data 
distribution 2 

Method Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-
wid 

Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Regression of X3 
on X1, X2 

X1 X2 Intercept  

BD 2 348 1 93.8 2 346 1 93.2 6 143 1 95.4 
TC 
LNMIT 

-498 
-3 

613 
350 

1.02 
1.03 

67.8 
94.4 

-506 
4 

613 
347 

1.03 
1.03 

67.2 
95.2 

-423 
6 

449 
145 

1.01 
1.02 

17.8 
95.2 

SHDMI90 -14 352 1.03 94.6 -14 348 1.03 94 6 142 1.02 95.4 
SLNMIC90 
RLNMIC90 

-37 
-2 

353 
354 

1.08 
1.02 

95.4 
93.8 

-41 
9 

351 
354 

1.08 
1.02 

94.8 
94.4 

29 
9 

150 
148 

1.07 
1.01 

96 
94.8 

SLNMID90 
RLNMID90 

-14 
3 

356 
352 

1.04 
1.03 

94 
94 

-10 
3 

351 
350 

1.04 
1.03 

94.2 
93.6 

8 
7 

147 
144 

1.04 
1.02 

94.8 
95.4 

SPNMIC90 
RPNMIC90 

-48 
-2 

355 
350 

1.08 
1.02 

94.4 
93.8 

-46 
6 

351 
354 

1.08 
1.02 

96.2 
94 

22 
7 

146 
145 

1.08 
1.01 

97 
95.4 

SPNMID90 
RPNMID90 

-9 
-1 

356 
354 

1.04 
1.04 

93.6 
93.8 

-8 
3 

355 
349 

1.04 
1.04 

95.2 
94.8 

10 
7 

143 
145 

1.04 
1.03 

96 
96.2 
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Table III.4 Inference of regression coefficients from simulation study, when X1 and X2 are weakly correlated, data 
distribution 2 

Method Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-
wid 

Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Regression of X3 
on X1, X2 

X1 X2 Intercept  

BD 3 128 1 95 2 131 1 93.6 6 118 1 95.6 
TC 
LNMIT 

-502 
1 

521 
133 

1.08 
1.05 

5.4 
94 

-499 
2 

517 
134 

1.08 
1.05 

4 
95.2 

-349 
6 

370 
119 

1.02 
1.03 

18.2 
95.6 

SHDMI90 -13 133 1.03 94.4 -11 137 1.04 93.8 6 118 1.03 95.8 
SLNMIC90 
RLNMIC90 

-38 
3 

138 
135 

1.08 
1.02 

94.8 
93.4 

-38 
5 

139 
137 

1.09 
1.02 

95.2 
93.2 

25 
8 

122 
123 

1.08 
1.02 

96.4 
94.6 

SLNMID90 
RLNMID90 

-16 
3 

135 
128 

1.05 
1.03 

94.8 
95.4 

-14 
1 

138 
132 

1.06 
1.03 

94.4 
93.4 

4 
9 

120 
118 

1.04 
1.02 

95.4 
95.8 

SPNMIC90 
RPNMIC90 

-47 
5 

141 
131 

1.09 
1.02 

95.6 
94 

-46 
5 

144 
134 

1.1 
1.02 

94 
93.2 

19 
9 

123 
119 

1.09 
1.02 

95.6 
95.4 

SPNMID90 
RPNMID90 

-9 
2 

134 
133 

1.05 
1.05 

95.4 
95.8 

-6 
-1 

137 
134 

1.06 
1.06 

93.6 
95.2 

9 
6 

120 
119 

1.05 
1.04 

96.4 
96 
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Table III.5 Inference of regression coefficients from simulation study, when X1 and X2 are strongly correlated, n = 500 

Method Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-
wid 

Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Regression of X3 
on X1, X2 

X1 X2 Intercept  

BD -3 425 1 93.2 -0 422 1 92.6 4 185 1 93.2 
TC 
LNMIT 

-89 
-2 

437 
429 

1.02 
1.03 

92.8 
93.8 

-513 
1 

674 
432 

1.04 
1.04 

76.4 
94 

-255 
4 

320 
186 

1.02 
1.03 

68.4 
93.4 

SHDMI90 -2 447 1.04 92.4 -16 447 1.04 93.6 3 185 1.04 93.8 
SLNMIC90 
RLNMIC90 

2 
-7 

444 
457 

1.15 
1.03 

95.8 
90.8 

-34 
12 

444 
450 

1.16 
1.03 

95.8 
91.6 

71 
10 

197 
191 

1.16 
1.03 

94.8 
92.8 

SLNMID90 
RLNMID90 

-3 
-3 

458 
441 

1.13 
1.05 

95.2 
93 

-20 
-1 

455 
437 

1.14 
1.05 

95.2 
94.2 

-0 
3 

190 
188 

1.14 
1.04 

95.2 
94.4 

SPNMIC90 
RPNMIC90 

-3 
-6 

439 
452 

1.16 
1.03 

96.2 
91.8 

-31 
3 

440 
447 

1.17 
1.04 

95.4 
92.4 

71 
5 

194 
190 

1.17 
1.03 

94.8 
93 

SPNMID90 
RPNMID90 

-0 
-2 

452 
440 

1.13 
1.07 

95 
93.8 

-24 
18 

455 
442 

1.14 
1.08 

95.4 
93 

-4 
12 

190 
190 

1.14 
1.07 

94.4 
95.2 
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Table III.6 Inference of regression coefficients from simulation study, when X1 and X2 are weakly correlated, n = 500 

Method Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-
wid 

Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Regression of X3 
on X1, X2 

X1 X2 Intercept  

BD -1 176 1 93 -1 176 1 93 4 168 1 93.6 
TC 
LNMIT 

-107 
-0 

206 
180 

1.02 
1.03 

89.8 
94.8 

-500 
5 

538 
188 

1.14 
1.09 

25 
93.4 

-233 
6 

291 
168 

1.02 
1.03 

70.2 
93.6 

SHDMI90 -6 185 1.03 92.6 -18 185 1.05 93.4 1 168 1.03 94 
SLNMIC90 
RLNMIC90 

-10 
-0 

183 
189 

1.15 
1.02 

96 
93.2 

-33 
8 

197 
190 

1.2 
1.05 

94.6 
91 

60 
10 

184 
173 

1.15 
1.02 

95 
93 

SLNMID90 
RLNMID90 

-2 
-2 

188 
178 

1.13 
1.04 

94.2 
94 

-12 
-1 

198 
187 

1.2 
1.07 

93.8 
93.2 

4 
4 

175 
168 

1.14 
1.04 

94.8 
93.6 

SPNMIC90 
RPNMIC90 

-7 
1 

185 
186 

1.16 
1.02 

95.6 
93 

-27 
9 

190 
188 

1.22 
1.05 

96 
92.8 

66 
11 

184 
172 

1.17 
1.03 

95.2 
94.2 

SPNMID90 
RPNMID90 

-4 
-0 

188 
184 

1.12 
1.07 

94.4 
94.6 

-20 
15 

200 
196 

1.2 
1.13 

94 
93.6 

-2 
10 

171 
169 

1.13 
1.07 

96.8 
95 
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Table III.7 Inference of regression coefficients from simulation study with cutoff point 80Iy , when X1 and X2 are strongly 
correlated 

Method Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-
wid 

Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Regression of X3 
on X1, X2 

X1 X2 Intercept  

BD -1 211 1 94 3 210 1 94.2 4 87 1 95.4 
TC 
LNMIT 

-102 
-1 

236 
213 

1.02 
1.02 

91.8 
95 

-499 
2 

542 
213 

1.04 
1.03 

33.4 
94.4 

-257 
4 

272 
86 

1.01 
1.02 

17.8 
95.4 

HDMI80 
SHDMI80 

-90 
-5 

263 
224 

1.53 
1.04 

98.2 
93.4 

-434 
-10 

498 
221 

1.55 
1.04 

77.6 
93.8 

5 
5 

88 
88 

1.52 
1.03 

99.6 
95.8 

LNMIC80 
SLNMIC80 
RLNMIC80 

-90 
-15 
-4 

261 
218 
219 

1.53 
1.12 
1.02 

97.4 
96 
93.6 

-429 
-88 
6 

495 
233 
217 

1.56 
1.13 
1.03 

77.4 
93.4 
94.2 

9 
18 
5 

105 
90 
92 

1.58 
1.13 
1.02 

98.6 
97 
93.6 

LNMID80 
SLNMID80 
RLNMID80 

-89 
-6 
-0 

261 
222 
216 

1.53 
1.05 
1.04 

97.4 
94.6 
93.6 

-439 
-7 
1 

501 
224 
215 

1.58 
1.06 
1.04 

77.8 
93.2 
93.6 

4 
5 
3 

96 
90 
87 

1.67 
1.06 
1.03 

99.8 
95.4 
94.8 

PNMIC80 
SPNMIC80 
RPNMIC80 

-91 
-15 
-2 

263 
217 
218 

1.53 
1.12 
1.02 

97 
96 
93.4 

-431 
-86 
5 

497 
229 
217 

1.57 
1.13 
1.03 

77.4 
96.6 
93.2 

8 
20 
5 

100 
91 
88 

1.58 
1.13 
1.02 

99.4 
96.8 
94.6 

PNMID80 
SPNMID80 
RPNMID80 

-98 
-4 
-1 

260 
220 
216 

1.53 
1.05 
1.06 

97.6 
94.4 
94 

-472 
-3 
19 

528 
220 
222 

1.58 
1.06 
1.07 

72.2 
94.6 
93.6 

-28 
8 
9 

100 
91 
90 

1.66 
1.06 
1.06 

99.2 
95.4 
96 
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Table III.8 Inference of regression coefficients from simulation study with cutoff point 80Iy , when X1 and X2 are weakly 
correlated 

Method Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-
wid 

Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Regression of X3 
on X1, X2 

X1 X2 Intercept  

BD 2 86 1 96.2 1 91 1 93.8 4 79 1 94.8 
TC 
LNMIT 

-100 
1 

133 
86 

1.02 
1.02 

78.2 
95.2 

-498 
1 

509 
92 

1.13 
1.09 

0.2 
93.4 

-225 
4 

240 
80 

1.01 
1.03 

19.8 
96 

HDMI80 
SHDMI80 

-85 
-2 

131 
87 

1.5 
1.03 

94.4 
94.4 

-435 
-14 

447 
92 

1.6 
1.06 

6.6 
94.2 

4 
4 

80 
80 

1.5 
1.03 

99.6 
96 

LNMIC80 
SLNMIC80 
RLNMIC80 

-85 
-16 
2 

133 
88 
88 

1.5 
1.12 
1.02 

95.4 
96.4 
94.8 

-429 
-86 
5 

448 
127 
95 

1.69 
1.17 
1.05 

14 
86.8 
93.2 

9 
17 
7 

94 
84 
82 

1.55 
1.13 
1.03 

99.2 
96.6 
95.2 

LNMID80 
SLNMID80 
RLNMID80 

-88 
-1 
3 

133 
88 
88 

1.5 
1.05 
1.03 

95.4 
94.8 
94 

-440 
-15 
1 

454 
94 
94 

1.8 
1.11 
1.07 

14.4 
95 
94 

1 
4 
4 

88 
82 
80 

1.64 
1.06 
1.04 

99.6 
95.6 
95.4 

PNMIC80 
SPNMIC80 
RPNMIC80 

-84 
-17 
3 

133 
89 
88 

1.49 
1.12 
1.02 

94.8 
96.6 
94 

-431 
-83 
2 

447 
123 
93 

1.7 
1.18 
1.05 

11.6 
89 
93.6 

7 
19 
6 

89 
83 
83 

1.55 
1.13 
1.02 

99.6 
96.6 
94.2 

PNMID80 
SPNMID80 
RPNMID80 

-93 
-1 
3 

137 
88 
89 

1.5 
1.05 
1.06 

93.6 
94.2 
95.4 

-469 
-7 
12 

483 
92 
94 

1.79 
1.11 
1.13 

10.2 
94.4 
94.8 

-22 
7 
8 

91 
82 
82 

1.63 
1.07 
1.06 

99 
95.8 
95.2 
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Table III.9 Inference of regression coefficients from simulation study from incorrect model, when X1 and X2 are strongly 
correlated 

Method Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-
wid 

Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Regression of X3 
on X1, X2 

X1 X2 Intercept  

BD 37 3229 1 94.6 -93 3224 1 93.8 -69 1412 1 92.8 
TC 
LNMIT 

-393 
-326 

2703 
3748 

0.82 
0.88 

93 
94.2 

-1964 
-1527 

3308 
4020 

0.82 
0.88 

86.4 
92.6 

-3369 
-3116 

3637 
3610 

0.82 
0.88 

18.2 
49.6 

HDMI90 
SHDMI90 

-238 
-57 

3124 
3383 

1.08 
1.02 

96 
92.6 

-876 
-61 

3233 
3380 

1.08 
1.02 

95.4 
94.4 

-80 
-67 

1427 
1424 

1.08 
1.02 

95.4 
94.8 

LNMIC90 
SLNMIC90 
RLNMIC90 

-463 
-391 
-440 

2691 
2750 
3654 

0.84 
0.86 
0.84 

93.6 
93.6 
93.8 

-2148 
-1796 
-2012 

3405 
3268 
4154 

0.84 
0.86 
0.84 

86 
88.8 
89 

-3584 
-2967 
-4561 

3830 
3275 
4903 

0.84 
0.87 
0.84 

15.2 
30.6 
18.6 

LNMID90 
SLNMID90 
RLNMID90 

-270 
-72 
45 

3074 
3380 
4324 

1.08 
1.03 
1.03 

96.6 
92.6 
95 

-830 
-48 
-88 

3186 
3335 
4321 

1.08 
1.03 
1.03 

96.2 
94.2 
94.4 

-81 
-62 
-103 

1434 
1470 
1874 

1.14 
1.05 
1.03 

95.6 
92.8 
94 

PNMIC90 
SPNMIC90 
RPNMIC90 

-273 
-218 
-187 

3005 
3088 
4158 

1.07 
1.04 
1.02 

96.8 
95.4 
94.8 

-1059 
-874 
-935 

3196 
3187 
4258 

1.07 
1.03 
1.02 

95.4 
95 
93.6 

-624 
-275 
-546 

1593 
1510 
2007 

1.07 
1.04 
1.02 

92.2 
93.2 
92.4 

PNMID90 
SPNMID90 
RPNMID90 

-271 
-89 
-151 

3043 
3290 
4014 

1.03 
1 
0.97 

96 
93.2 
95.2 

-1073 
-286 
-720 

3216 
3271 
4062 

1.02 
0.99 
0.97 

95 
94.2 
94.6 

-654 
-523 
-1135 

1582 
1508 
2157 

1.06 
1 
0.97 

91.6 
92.2 
88.6 
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Table III.10 Inference of regression coefficients from simulation study from incorrect model, when X1 and X2 are weakly 
correlated 

Method Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-
wid 

Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Regression of X3 
on X1, X2 

X1 X2 Intercept  

BD -43 1438 1 93.6 -46 1556 1 94.6 -68 1399 1 93.8 
TC 
LNMIT 

-432 
-362 

1289 
1712 

0.82 
0.88 

92.8 
94.6 

-1941 
-1501 

2342 
2285 

0.8 
0.87 

61.2 
83.8 

-3300 
-3089 

3568 
3581 

0.83 
0.88 

20.2 
49.6 

HDMI90 
SHDMI90 

-227 
-72 

1387 
1505 

1.08 
1.02 

97.2 
94.8 

-896 
-79 

1751 
1515 

1.07 
1 

92.6 
93.4 

-78 
-68 

1411 
1413 

1.08 
1.02 

95.4 
94.6 

LNMIC90 
SLNMIC90 
RLNMIC90 

-474 
-417 
-470 

1290 
1298 
1677 

0.84 
0.86 
0.84 

94.4 
94 
93.6 

-2134 
-1824 
-2001 

2505 
2241 
2616 

0.84 
0.85 
0.83 

59 
65.6 
74.6 

-3487 
-2953 
-4515 

3739 
3260 
4865 

0.85 
0.87 
0.84 

17 
31.2 
18.4 

LNMID90 
SLNMID90 
RLNMID90 

-217 
-72 
-99 

1424 
1519 
1903 

1.08 
1.03 
1.03 

97 
95.2 
95.4 

-882 
-82 
-30 

1763 
1519 
2009 

1.07 
1.02 
1.02 

92.8 
94.6 
94.4 

-75 
-69 
-91 

1424 
1423 
1890 

1.14 
1.05 
1.03 

95.8 
94.4 
93.8 

PNMIC90 
SPNMIC90 
RPNMIC90 

-273 
-235 
-230 

1417 
1410 
1865 

1.07 
1.03 
1.02 

97.4 
97.2 
95.6 

-1019 
-868 
-863 

1813 
1699 
2099 

1.07 
1.02 
1.02 

90.2 
91.4 
93.2 

-486 
-216 
-455 

1534 
1490 
1994 

1.08 
1.04 
1.03 

91.8 
93.8 
91.2 

PNMID90 
SPNMID90 
RPNMID90 

-262 
-111 
-193 

1393 
1483 
1798 

1.02 
0.99 
0.97 

97 
94.6 
95.8 

-1081 
-278 
-694 

1836 
1522 
1976 

1.01 
0.98 
0.97 

89.6 
93.2 
93.2 

-625 
-491 
-1105 

1545 
1520 
2120 

1.06 
1.01 
0.98 

92 
91.8 
89.4 
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Table III.11 Inference of regression coefficients from simulation study, when X1 and X2 are strongly correlated 

Method Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-
wid 

Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Regression of X1 
on X2, X3 

X2 X3 Intercept  

BD 2 295 1 94.2 1 239 1 93.6 0 94 1 96.2 
TC 
LNMIT 

331 
3 

438 
298 

0.97 
1.02 

78.8 
94.6 

-169 
0 

294 
241 

1 
1.02 

89.6 
94.8 

56 
-0 

110 
93 

1 
1.01 

90.4 
96 

HDMI90 
SHDMI90 

684 
75 

733 
305 

0.97 
1 

30.2 
93.6 

-547 
-58 

586 
245 

0.98 
1 

32.4 
94.2 

-0 
-1 

93 
93 

1.01 
1.01 

96.2 
96 

LNMIC90 
SLNMIC90 
RLNMIC90 

685 
290 
2 

730 
401 
301 

0.97 
0.97 
1.01 

30.6 
84.4 
94.2 

-548 
-234 
1 

584 
324 
244 

0.98 
0.97 
1.01 

32.8 
82.8 
94.8 

-1 
-3 
-1 

93 
93 
94 

1.01 
1.01 
1.01 

95.8 
96.2 
95.8 

LNMID90 
SLNMID90 
RLNMID90 

689 
107 
10 

737 
314 
295 

0.97 
1 
1.02 

28 
92.4 
94.6 

-551 
-84 
-5 

590 
252 
238 

0.98 
1 
1.02 

31.4 
93.4 
95.2 

-0 
-0 
-0 

93 
93 
93 

1.02 
1.01 
1.01 

96.2 
96 
95.8 

PNMIC90 
SPNMIC90 
RPNMIC90 

689 
307 
1 

735 
415 
302 

0.97 
0.97 
1.01 

27.8 
82.4 
94.2 

-551 
-245 
1 

589 
335 
243 

0.98 
0.97 
1.01 

31.4 
82.2 
95.2 

-1 
-3 
-1 

93 
93 
93 

1.01 
1.01 
1.01 

96.4 
96.2 
96 

PNMID90 
SPNMID90 
RPNMID90 

681 
112 
58 

730 
312 
297 

1 
1 
1.01 

34 
92.8 
95 

-538 
-90 
-46 

580 
253 
241 

1.02 
1 
1.02 

36.8 
93 
94.8 

3 
-1 
-0 

93 
93 
94 

1.02 
1.01 
1.01 

96 
96.2 
96.2 

66

 

 



 

Table III.12 Inference of regression coefficients from simulation study, when X1 and X2 are weakly correlated 

Method Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-
wid 

Cover 
(%) 

Bias 
(*104) 

RMSE 
(*104) 

Rel-wid Cover 
(%) 

Regression of X1 
on X2, X3 

X2 X3 Intercept  

BD -26 511 1 95.2 19 451 1 95.6 4 182 1 95.2 
TC 
LNMIT 

1128 
-23 

1245 
513 

1.04 
1.02 

48.8 
96.2 

-548 
16 

726 
452 

1.05 
1.02 

79.8 
95.6 

250 
3 

311 
184 

1.01 
1.01 

74.4 
95.8 

HDMI90 
SHDMI90 

2611 
226 

2667 
558 

1.06 
1 

0.4 
95 

-2110 
-203 

2163 
492 

1.1 
1.01 

1.4 
94.2 

4 
4 

182 
183 

1.05 
1.01 

96.8 
95.2 

LNMIC90 
SLNMIC90 
RLNMIC90 

2631 
991 
-25 

2678 
1111 
510 

1.06 
0.99 
1.01 

0.2 
55.2 
96 

-2135 
-901 
16 

2179 
1004 
450 

1.1 
1.02 
1.01 

0.6 
50 
95.8 

-1 
-9 
1 

185 
183 
184 

1.05 
1.02 
1.01 

96.8 
95.6 
95 

LNMID90 
SLNMID90 
RLNMID90 

2621 
326 
-4 

2678 
607 
514 

1.06 
1.01 
1.01 

0.2 
91.4 
96 

-2122 
-300 
0 

2176 
542 
453 

1.08 
1.01 
1.01 

1 
91.4 
95.8 

2 
2 
4 

184 
182 
184 

1.06 
1.01 
1.01 

96.6 
95.6 
95.6 

PNMIC90 
SPNMIC90 
RPNMIC90 

2618 
1061 
-27 

2668 
1180 
518 

1.06 
0.99 
1.01 

0.2 
48.4 
96 

-2122 
-961 
17 

2168 
1064 
457 

1.1 
1.02 
1.01 

1 
45.2 
96.2 

1 
-6 
1 

183 
184 
184 

1.05 
1.02 
1.01 

96.4 
95.6 
94.6 

PNMID90 
SPNMID90 
RPNMID90 

2592 
363 
188 

2649 
638 
560 

1.16 
1.02 
1.03 

0.4 
89.8 
94 

-2066 
-335 
-182 

2122 
569 
502 

1.24 
1.02 
1.03 

3 
90.4 
95.2 

19 
3 
3 

184 
184 
183 

1.06 
1.02 
1.01 

97.4 
95.6 
95.4 

67

 
 
 

 



 

Figure III.1 Standardized regression coefficients, after versus before unconditional imputation. 
1995 Chinese household income project, urban data. (Top row, HDMI, with cutoff points being 90, 80, 60, 40 percentiles, from 
left to right. Middle row, LNMID. Bottom row, PNMIC. Line: y = x) 
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Figure III.2 Standardized regression coefficients, after versus before stratified imputation.  
1995 Chinese household income project, urban data. (Top row, SHDMI, with cutoff points being 90, 80, 60, 40 percentiles, 
from left to right. Middle row, SLNMID. Bottom row, SPNMIC. Line: y = x) 
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Figure III.3 Standardized regression coefficients, after versus before regression-based imputation. 
1995 Chinese household income project, urban data. (Top row, RLNMID, with cutoff points being 90, 80, 60, 40 percentiles, 
from left to right. Bottom row, RPNMIC. Line: y = x) 

 



 

Appendix III.1: Regression-based parametric MI methods for log-normal model 
and power-transformed normal model 
 
As described in the paper, let Y denote the variable subject to disclosure limitation and X 

denote the covariate matrix. Let Z be a normal variable transformed from Y. To be 

specific, if Y is from a log-normal distribution, let )log(YZ = . If Y is from a power-

transformed-normal distribution with 0≠λ , let . Here we estimateλλ /)1( −= YZ λ by its 

ML estimate using the widely available routine boxcox ( ) in R (see Fox(2006)) and 

then assume that .  

λ̂

λλ ˆ/)1( ˆ
−= YZ

Let Xi denote the vector of covariates for the i th observation,  

),(~| 2σβ∑ j jijii xNXZ . (IIIA1)

Write , without loss of generality, assume ),( delret ZZZ = ),...,( 1 rret zzZ = and 

. ),...,( 1 nrdel zzZ +=

For PMIC method, the posterior distribution of parameters is 

2

2
2 ˆ)(~|*

pn

pnZ
−

−
χ

σσ  (IIIA2)

and 

)*)(,ˆ(~,*|* 212 σβσβ −XXMVNZ T , (IIIA3)

where 

ZXXX TT 1)(ˆ −=β  (IIIA4)

pn

xzn

j jiji

−

−
=
∑ ∑1

2
2

)ˆ(
ˆ

β
σ . (IIIA5)
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We draw parameters *β and from their posterior distribution and draw deleted values 

for normal data from the predictive distribution 

2*σ

2 nrizZxNXZ Ij jijiidel ,...,1),|*,*(~|* )( +=>∑ σβ , (IIIA6)

where for log-normal distribution; or for power-normal 

distribution.  

)log( II yz = λλ /)1( −= II yz

We then transform the draws of normal data back to log-normal,  

)*exp(* )()( idelidel ZY = , (IIIA7)

and power-transformed normal data, 

λ λˆ
)()( )1*ˆ(* += idelidel ZY . (IIIA8)

For PMID method the calculations are quite similar as above, except that the model is 

fitted to the deleted data instead of the complete data. 
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Chapter IV 
A Multiple Imputation Approach to Disclosure Limitation for High-age 

Individuals in Longitudinal Studies 

 

Abstract 
 
Disclosure limitation is an important consideration in the release of public use data sets. 

It is particularly challenging for longitudinal data sets, since information about an 

individual accumulates with repeated measures over time. Despite the challenges, 

research on disclosure limitation methods for longitudinal data has been very limited. We 

consider here problems created by high ages in cohort studies. Because of the risk of 

disclosure, ages of very old respondents can often not be released; in particular this is a 

specific stipulation of the Health Insurance Portability and Accountability Act (HIPAA) 

for the release of health data for individuals. Top-coding of individuals beyond a certain 

age is a standard way of dealing with this issue, and it may be adequate for cross-

sectional data, given that a modest number of cases are likely to be affected. However, 

this approach has severe limitations in longitudinal studies, when individuals have been 

in the study for many years. We propose and evaluate an alternative to top-coding for this 

situation based on multiple imputation (MI). This MI method is applied to a survival 

analysis of simulated data and data from the Charleston Heart Study (CHS), and is shown 

to work well in preserving the relationship between hazard and covariates. 
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Keywords: confidentiality, disclosure protection, longitudinal data, multiple imputation, 

survival analysis 

IV.1 Introduction  

Statistical disclosure control is a class of procedures that deliberately alter data collected 

by statistical agencies before release to the public, to prevent the identity of survey 

respondents from being revealed. These methods have increased in importance, with the 

extensive use of computers and the internet. The goal of SDC methods is to reduce the 

risk of disclosure to acceptable levels, while releasing a dataset that provides as much 

useful information as possible for researchers. One aspect of this is the ability to draw 

valid statistical inferences from the altered data.   

 Top-coding is a simple and common SDC method that seeks to prevent disclosure 

on the basis of extreme values of a variable, by censoring values above a pre-chosen 

“top-code”. For example, in surveys that include income, extremely high income values 

are considered to be sensitive and to have the potential to reveal the identity of 

respondents. By recoding income values greater than a selected “top-code” value to that 

value, respondents with very high income have reduced risk of disclosure.   

 It is left to the analyst to decide how top-coded data are analyzed. One approach is 

to categorize the variable so that top-coded cases all fall in one category – this is sensible, 

but precludes analyses that treat the variable as continuous. Another approach is to ignore 

the fact of top-coding and treat the top-coded values as the truth. This method is 

straightforward, but clearly the data distribution is distorted and biased estimates will be 

obtained. A better method is to treat the extreme values as censored. Under an assumed 

statistical model, maximum likelihood (ML) estimates can be obtained using algorithms 
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such as the Expectation-Maximization (EM) algorithm (Dempster, Laird and Rubin, 

1977). This method is model-based, and should yield good inferences if the model is 

correctly specified. But we expect this method to be quite sensitive to model 

misspecification, especially when the upper tail of the assumed distribution differs 

markedly from that of the true distribution. The data users can also apply an imputation 

method to the top-coded dataset and fill in the censored values. A limitation is that the 

imputed data fail to reflect imputation uncertainty, and imputations are sensitive to 

assumptions about the right tail of the distribution. An and Little (2007a) propose an 

alternative to top-coding based on multiple imputation (MI), which allows valid 

inferences to be created based on applying multiple imputation combining rules described 

by Reiter (2003), while preserving the SDC benefits of top-coding; for other discussions 

of MI in the disclosure control setting, see Little (1993); Rubin (1993); Little, Liu and 

Raghunathan (2004); Reiter(2005a, 2005b). The methods in An and Little (2007a) are 

extended to handle covariate information in An and Little (2007b). 

 We propose here MI for disclosure control in the context of the treatment of age 

in longitudinal data sets. Because of the risk of disclosure, ages of very old respondents 

can often not be released; in particular this is a specific stipulation of HIPAA regulations 

for the release of health data for individuals. Top-coding of individuals beyond a certain 

age (say 80) is a standard way of dealing with this issue, and it may be adequate for 

cross-sectional data, since the number of cases affected may be modest. However, this 

approach has severe limitations in longitudinal studies, when individuals have been in the 

study for many years; for example, consider an individual in a 40-year longitudinal study, 

who enters the study at age 42 at time t and is still in the study at age 82 at time t+40. The 
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age at time t+40 cannot simply be replaced by a top code of 80, since age at time t+40 

can be inferred by simply adding 40 to the age at time t. A strict application of top-coding 

would replace all individuals aged 40 or older at time t by a top code of 40, but this 

strategy seriously limits the ability to do longitudinal analysis, particularly survival 

analyses where chronological age is a key variable of interest. In particular, since age at 

entry is a marker for cohorts, differences in outcomes between cohorts aged 40 or greater 

at entry can no longer be estimated, since these cohorts are all top-coded to the same 

value. 

This problem arises in the Charleston Heart Study (Nietert et al., 2000), a 

longitudinal study that collects data over 40 years (1960-2000). The study was originally 

conducted to understand the natural aging process in a community-based cohort. The data 

include baseline characteristics such as age, race, gender, occupation, education; as well 

as death information for respondents. For longitudinal data from this study to be included 

in the data archive at the University of Michigan, individual ages beyond age 80 cannot 

be disclosed because of HIPAA regulation, given the geographic specificity of the 

respondents. Also, given the longitudinal nature of the data, a top-coding approach would 

need to be applied to all individuals aged 40 or older in 1960, which has the limitation 

discussed above.  

The goal of this research is to develop MI methods that suffice to limit disclosure 

risk and preserve the relationship between hazard and covariates in survival analysis. We 

propose a non-parametric MI method, specifically a stratified hot-deck procedure, where 

we create strata and draw deleted ages with replacement from each stratum. Our method 
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concerns MI of two age variables – entry age and final age (age at death or age at last 

contact).  

 To assess the proposed method, we apply a proportional hazard (PH) model to the 

multiply-imputed datasets, calculate estimates of regression coefficients for putative risk 

factors, and compare these estimates, and corresponding estimates from top-coded data, 

with estimates from the PH model applied to the original data prior to SDC. We also 

present simulation studies where data are simulated according to a known survival model, 

and inferences for parameters of this model are compared with the true values. 

 The rest of this paper is organized as follows. Section IV.2 presents our SDC 

approaches for longitudinal data and describes corresponding methods of inference for 

regression coefficients. Section IV.3 describes a simulation study to evaluate the 

approaches in Section IV.2, and Section IV.4 applies the methods to CHS data. Section 

IV.5 gives discussion and future work. 

IV.2 Methods 

IV.2.1 SDC methods for longitudinal data  

An and Little (2007a) propose SDC methods for a single variable with extreme values. In 

this paper, we investigate a more complicated situation with longitudinal data, where two 

age variables are subject to top-coding. 

Let Yend denote participants’ age at the end of study (referred to as final age) and 

Ystart denote their entry age. Let C be the censoring indicator. Let L represent the length of 

study and S denote time of survival. Individuals with are treated as censored (C = 

1), and otherwise died (C = 0). We consider individuals with values of Yend greater than a 

particular value 

LS ≥

0y  to be at risk of disclosure, and refer to these individuals as sensitive 
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cases. Thus values of Yend and Ystart of the sensitive cases are treated as sensitive values. 

We consider the following approaches to SDC.  

(a) Top-coding. Replace values of Yend greater than 0y  by 0y  and replace values of Ystart 

greater than 0y L−  by 0y L− . The resulting dataset is referred to as “top-coded” data.   

(b) Hot-deck MI (HDMI). Classify sensitive and non-sensitive values into strata, to be 

defined below. Then delete the values of Yend , Ystart, and C for sensitive cases and replace 

them with random draws from the set of deleted values in the same stratum. Our stratified 

HDMI method is similar to the approach described in An and Little (2007b), where we 

assign the deleted data into strata based on predicted values of either age variables from 

regression on other variables, and apply HDMI within each stratum to impute deleted 

values. The following choices of strata are considered here: 

(i) HD1. Strata are defined by predicted values of the logarithm of hazard computed from 

the proportional hazard model.  

(ii) HD2. Strata are defined by predicted values of entry-age, from the regression of 

entry-age on other variables involved. 

(iii) HD3. We develop a two-way stratification, where strata are defined by both 

predicted values of the logarithm of hazard, and predicted values of entry-age.  

 (iv) HD4. Stratification depends on the value of C. For individuals that are censored, 

strata are defined by predicted values of entry-age; and for those not censored, strata are 

defined by both predicted values of the logarithm of hazard and predicted values of entry-

age. 

(v) HD5. We directly apply HDMI method without stratification, for comparison with the 

stratified methods. 
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 Note that for methods HD1 – HD3, we delete values of Yend, Ystart, and C of 

sensitive cases and jointly impute these values. HD4 retains values of C and imputes Yend 

and Ystart only.  

It is worth mentioning that for above stratified methods, we perform regression 

only on the deleted cases to obtain predicted values. We also consider an alternative way 

of stratification, where we perform regression on the complete data, and then stratify the 

sensitive cases for imputation. Results from these methods are briefly described in 

Section IV.3. 

IV.2.2 Methods of inference   

We consider the properties of the SDC methods for inferences about the regression 

coefficient, where a PH model is fitted to the dataset before and after imputation. The 

following estimates and associated standard errors are considered:  

(1) Before Deletion (BD) – the estimates of regression coefficients calculated from 

original data prior to SDC, used as a benchmark for comparing SDC methods. 

(2) Top-coding (TC) – the estimates of regression coefficients calculated from top-coded 

dataset.  

The standard errors for methods (1) and (2) are computed by the bootstrap. 

 The five remaining methods HD1 – HD5 are as described in Section IV.2.1, 

yielding D MI datasets. The MI estimate is calculated as 

                                , (1) 

where ( )ˆ dθ  is the parameter estimate from d th data set. The MI estimate of variance is  

 ˆ( ) /MI MIT Var W Bθ= = + D , (2)        

∑ =
=

D

d
d

MI D 1
)(ˆ1 θθ̂
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where  ( )
1

/D d
d

W W
=

=∑ D  is the average of the within-imputation variances  for 

imputed data set d, and                                                   is the between-imputation 

variance. The formula (2) differs from the original MI formula for missing data (where B 

is multiplied by a factor (D+1)/D, see e.g. Little and Rubin, 2002, p86), for reasons 

discussed in Reiter (2003).  

( )dW

∑ =
−−=

D

d MI
d DB

1
2)( )1/()ˆˆ( θθ

IV.3 Simulation study 

A simulation study was carried out to evaluate the top-coding and MI methods in Section 

IV.2. We computed estimates of regression coefficients, their corresponding variances 

and confidence intervals from the imputed and top-coded datasets, and compared them 

with those calculated from the original dataset prior to SDC. 

IV.3.1 Study design  

For simplicity we simulated survival data with just two binary covariates, representing 

gender (male and female) and entry age (say 30 - 40 and 40 - 50). Datasets were 

simulated from multinomial distribution in four categories defined by these variables. 

Values of entry-age were generated from uniform distribution. Survival times (in years) 

were generated from piece-wise exponential distributions with hazard rates specified in 

Table IV.1 and IV.2. An individual was treated as censored if (s)he survived more than 

40 years from age at entry. We investigated the following three scenarios.  

Scenario I Distributions of entry age do not depend on gender; both male and female 

have same entry-age distributions.  

Scenario II Distributions of entry age are different for males and females. 

Scenario III Distributions of entry age are the same for males and females, and there is 

interaction between entry age and gender.  
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In this study we considered individuals with final age greater than or equal to 75 

years to be at risk of disclosure, and refer to these individuals as sensitive cases. For each 

simulated dataset, we applied the stratified HDMI methods to both final age and entry 

age variables for sensitive cases as described in Section IV.2. We also applied the top-

coding method, with top-code being 75 for final age and 35 for entry age (as the length of 

study is 40 years). We then calculated estimates of regression coefficients from the PH 

model, the corresponding variances of the estimates, as well as 95% confidence intervals 

(CI’s) based on normal approximation, and the confidence coverage of these intervals. 

IV.3.2 Results  

Simulation results are based on 500 datasets of sample size 2000. We set the number of 

bootstraps B to be 100 for calculating standard errors of BD and TC estimates; and create 

D = 5 imputed datasets. For stratified HDMI methods, we create strata with stratum size 

around 25. 

Table IV.3 presents results from scenario I, where distributions of entry-age are 

the same for male and female. TC yields estimate of regression coefficient with serious 

bias and RMSE, and zero confidence coverage for the entry-age variable. As for gender, 

TC estimate has relatively better properties, yet it still has sizable bias and low coverage. 

All stratified HDMI methods produce quite satisfactory results for the entry-age variable, 

with negligible bias and confidence coverage close to before deletion. HD5 also work 

well in terms of bias and coverage, but it is somewhat less efficient than the stratified HD 

methods. HD4 method works best for gender variable, yielding estimate of regression 

coefficient with minimal bias and good confidence coverage. Estimates from other HD 

methods are also acceptable, though they are in general more biased and have less 

 81



 

coverage. When male and female have different entry-age distributions as in scenario II 

(Table IV.4), most methods behave similarly as in the first scenario, except that HD3 

yields larger bias, RMSE and less coverage for estimate of the regression coefficient of 

gender. In fact, it has even worse results than TC method.  

Table IV.5 displays results from scenario III, where there is interaction between 

the age and gender variables. TC yields estimates with considerable bias and poor 

coverage for regression coefficients of age, gender and the interaction between these two 

variables. Among stratified HD methods, HD4 has the best performance and yields 

estimates with good inferences for both variables and the age-gender interaction. HD2 

also has satisfactory results for all three terms, though it is more biased than HD4. 

Estimates from HD1 and HD3 methods have similar properties as from HD2, except that 

they have less sufficient coverage for the interaction term. Estimates from HD5 have 

larger bias and less confidence coverage than those from the stratified HD methods.    

We also applied the alternative stratified method described in Section IV.2.1, 

where we obtained predicted values from regression on the complete data, and then 

stratified the sensitive cases for imputation. Estimates from these methods (not shown) 

are more biased and have less confidence coverage compared to the methods above. This 

suggests that when a regression model is fitted to the data that are being deleted, it makes 

the method more robust to model mis-specification and yield better result (see Section 

IV.5 for more discussion). 

In summary, HD4 performs best under all circumstances. Other stratified HD 

methods yield estimates of regression coefficient with good inferential properties for the 

entry-age variable. These methods also provide satisfactory results for gender, except for 
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HD3 in scenario II. With presence of interaction between age and gender, estimates for 

the interaction term from HD1 and HD3 methods do not have sufficient coverage. HD5 

tends to be slightly less efficient than the stratified HD methods, but it works surprisingly 

well in the first two scenarios, indicating stratification may not be necessary in such data 

setting. For more complicated situation (scenario III), it yields biased estimates with low 

confidence coverage.  

IV.4 Application in Charleston Heart Study data 

We chose a subset of the CHS data and studied the relationship between hazard rate and 

certain risk factors. Since an intact data file prior to disclosure control was available to 

us, the effectiveness of our SDC methods can be readily assessed. 

IV.4.1 Primary data analysis 

After deletion of missing values and recoding on some variables, our sample included 

1344 individuals, of which 303 survived the study. The variables involved were entry-

age, final-age, censoring indicator, race/gender, education level, current cigarette 

smoking status, history of myocardial infraction (MI), history of diabetes, history of 

hypertension, electro-cardiographic interpretation (EKG), living place between age 20 to 

65 and body mass index (BMI). For the PH regression model, final-age instead of 

survival time was treated as the time-scale variable.  

 To examine effects of our chosen risk factors, we applied the PH model to the 

dataset prior to SDC. Table IV.6 displays results from the regression. All factors have 

significant effect on participant’s hazard ratio except BMI and entry-age (overall). 

Comparing to individuals that enter the study between 35 and 40 years old, those with 

entry-age greater than 50 have about a 30% increase in risk of death. White females tend 
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to have 34% less of risk than white males. Achieving education after high school reduces 

hazard by 30% comparing to non-high school education. Smoking cigarette increases 

death risk by 76%. Participants with definite history of myocardial infraction have twice 

the risk of death as those without a history. History of diabetes as well as EKG problems 

increases the hazard by over 50%, while history of hypertension increases risk of death 

by 17%. Rural residents have 25 % less of hazard than urban residents. Most of these 

coefficients are in the expected direction.     

IV.4.2 Results from SDC methods 

As described earlier, variables subject to disclosure limitation are entry-age and final-age 

variables. Respondents with final-age greater than or equal to 80 years are considered to 

be sensitive cases, which intuitively leads to top-code values of 40 for entry-age and 80 

for final-age. For this dataset, top-coding the age variables has great impact on the 

analysis, since the entry-age variable is recoded into only two categories (40 or below 

40), in contrast to the five categories for entry-age in the original data. We applied HDMI 

methods to the data and computed estimates of regression coefficient from a PH model.  

Table IV.7 shows results from original, top-coded and imputed datasets based on 

500 replications. Predictably, TC considerably alters the relationship between hazard and 

covariates and yields estimates of the regression coefficients with serious bias, especially 

for the entry-age variable. Of the stratified HDMI methods, HD3 and HD4 yield 

estimates of coefficients of entry-age close to those from BD. HD1 provides better 

estimates of regression coefficients than other methods for the gender variable. For the 

rest of covariates, none of the stratified HD methods seems to have an obvious advantage, 

with HD2 being slightly inferior. HD5 has less satisfactory results, though it still yields 
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better estimates than TC for some covariates. Overall, the stratified HD methods all work 

better than top-coding in preserving the relationship between risk of death and the 

covariates on this dataset.   

IV.5 Discussion 

Longitudinal data raise particular confidential concerns with potentially extensive 

longitudinal information gathered over time. We consider a specific application 

concerning disclosure risk caused by some participants attaining high ages because of 

prolonged participation in a longitudinal study, as in the Charleston Heart Study. One of 

the authors (McNally) has the responsibility to prepare a public use version of this data 

set at the Data Archive at Michigan that meets HIPAA regulations. As discussed earlier, 

the standard approach of top-coding age has severe limitations in this longitudinal setting, 

especially for survival analyses with age being a key variable of interest. We develop MI-

based SDC methods for this particular data setting. Similar to the methods in An and 

Little (2007b), our proposed MI methods are based on stratification, with strata defined 

by the predicted values of the age variables from a regression model. 

 Regarding the longitudinal nature of dataset in this study, we have focused on 

inference about regression coefficients from Cox’s proportional hazard model. As 

expected, top-coding method yields seriously biased estimate especially for the entry-age 

variable. Among our stratified HDMI methods, HD4 has the best performance and yields 

results close to before deletion in simulation studies. The other stratified methods also 

work well overall, except that sometimes they do not quite attain the nominal confidence 

coverage. When there are fewer censored cases, as with the CHS data (number of 

censored cases is one fourth the total sample size), HD4 does not have obvious advantage 
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over other methods, though it still yields satisfactory results. The no-stratification method 

HD5 works almost as well as stratified HD methods in simple data settings. In situations 

with more covariates and a larger number of sensitive cases, it yields biased estimates 

with low confidence coverage. 

An and Little (2007a) present two versions of MI methods, the “C” method which 

is based on a model fitted to the complete data; and the “D” method based on a model 

fitted to the deleted values alone. The “D” method is somewhat less efficient than the “C” 

method, but it is more robust to model misspecification, since the model is fitted to the 

data that are being deleted.  

Similarly, we develop two alternatives in this study. The first method calculates 

predicted values from regression on the deleted data; and the second one utilizes the 

complete data for regression. Results show the first method yield estimates with better 

inferential properties. This finding supports the justification in An and Little (2007a), as 

regression on deleted data tends to be more robust to model mis-specification. 

 Our stratified HDMI methods produce excellent inferences, but they arguably 

have the limitation as SDC methods that original values in the dataset are retained, 

although not attached to the right records. Moreover, we have confined attention to 

individuals with high age values. The whole field of SDC methods raised by other 

variables (e.g. geographic) in longitudinal health data like the CHS data remains rather 

unexplored. We plan to rise to these challenges and develop suitable SDC methods in 

future work. 
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Table IV.1 Hazard rate for simulation study, scenario I and II 

 Age at death 
 30-40  40-50 50-60 60-70 70-80 80+ 
Category 1  
Male  
Entry-age 31-40 

0.003 0.005 0.011 0.04 0.06 0.1 

Category 2  
Female 31-40 
Entry-age 31~40 

0.024 0.004 0.0088 0.032 0.048 0.08 

Category 3  
Male 41-50 
Entry-age 41~50 

 0.0075 0.0165 0.06 0.09 0.15 

Category 4  
Female 41-50 
Entry-age 41~50 

 0.006 0.0132 0.048 0.072 0.12 

 
 
Table IV.2 Hazard rate for simulation study, scenario III 

 Age at death 
 30-40  40-50 50-60 60-70 70-80 80+ 
Category 1 (0,0) 
Male 31-40 

0.003 0.005 0.011 0.04 0.06 0.1 

Category 2 (1,0) 
Female 31-40 

0.003 0.005 0.011 0.04 0.06 0.1 

Category 3 (0,1) 
Male 41-50 

 0.0075 0.0165 0.06 0.09 0.15 

Category 4 (1,1) 
Female 41-50 

 0.006 0.0132 0.048 0.072 0.12 
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Table IV.3 Simulation study scenario I: inferences of regression coefficients from 
PH model 

Entry-age (40~50) Gender (female) method 
Bias 
(*104)    

RMSE** 
(*104)    

Rel-
wid 

Cover 

(%) 
Bias 
(*104)    

RMSE 
(*104)    

Rel-
wid 

Cover  
(%) 

BD 38 570 1 95.2 -38 582 1 92.6 
TC 11501 11513 0.94 0 486 746 0.99 84.8 
HD1  8 574 1.01 94.6 183 623 1.01 93 
HD2 25 571 1.01 95.4 257 622 1.01 91.8 
HD3 7 569 1.01 95.2 276 645 1.01 91.2 
HD4 36 573 1.01 94.8 -17 585 1 93.6 
HD5  7 581 1.03 94.2 325 648 1.01 91 

 
 
Table IV.4 Simulation study scenario II: inferences of regression coefficients from 
PH model 

Entry-age (40~50) Gender (female) method 
Bias 
(*104)  

RMSE 
(*104)    

Rel-
wid 

Cover 

(%) 
Bias 
(*104)    

RMSE 
(*104)    

Rel-
wid 

Cover 

(%) 
BD 36 583 1 93.6 -15 580 1 93.6 
TC 11463 11475 0.94 0 486 737 0.99 83.8 
HD1  6 578 1.01 93.8 204 609 1.01 93.2 
HD2 13 582 1.01 93.8 346 652 1.01 91.2 
HD3 13 582 1.01 93.4 560 884 1.01 78.6 
HD4 30 581 1.01 93.6 -7 577 1.01 94.2 
HD5  96 599 1.03 93.6 225 588 1.02 94.2 

 
** Here “RMSE” refers to root mean squared error. “Rel-wid” refers to “relative width”, 
which is fraction of 95 CI % width comparing to estimate 1.  “Cover” refers to the 95% 
CI coverage. 
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Entry-age (40~50) Gender (female) Interaction method 
Bias 
(*104)    

RMSE 
(*104)   

Rel-
width 

Cover (%) Bias 
(*104)   

RMSE 
(*104)   

Rel-
width 

Cover (%) Bias 
(*104)   

RMSE 
(*104)   

Rel-
width 

Cover (%) 

BD 28 781 1 94.2 -39 810 1 94.4 13 1094 1 95 
TC 10383 10411 0.95 0 -710 1129 1.07 84.6 2423 2646 0.97 38.6 
HD1  -217 836 1.01 92.8 -128 839 1.01 93 501 1277 1.01 90.2 
HD2 -244 803 1.02 94.8 -53 803 1 93.8 568 1166 1.01 93.6 
HD3 -241 823 1.01 94 -123 850 1.01 92.8 550 1298 1.01 89.4 
HD4 -20 760 1.01 96.4 -67 798 1 94.6 104 1070 1.01 95.4 
HD5  -706 985 1.04 88.8 -437 854 1.01 91 1452 1646 1.03 81.4 

Table IV.5 Simulation study scenario III: inferences of regression coefficients from PH model 

 
 



 

Table IV.6 Estimates of regression coefficients from PH model, original CHS data 

 

 Parameter Estimate  
(*10^4) 

Standard Error 
(*10^4) 

Pr > 
Chisq. 

Hazard 
Raito 

Entry-age  
1 (40~44) 

1977 1128 0.08 1.22 

Entry-age  
2 (45~49) 

1814 1151 0.1 1.2 

Entry-age  
3 (50~59) 

2786 1072 0.009 1.32 

Entry-age  
4 (60+) 

2878 1242 0.02 1.33 

Race/Gender 
2 (white woman) 

-4171 955 <0.0001 0.66 

Race/Gender 
3 (black man) 

-241 949 0.8 0.98 

Race/Gender 
4 (black woman) 

-1870 1031 0.07 0.83 

Education  
1 (some high school)  

-1100 832 0.2 0.9 

Education  
2 (after high school) 

-3761 1000 0.0002 0.69 

Current cigarette smoking  
1 (Yes) 

5677 701 <0.0001 1.76 

History of MI  
1 (possible) 

3741 3416 0.3 1.45 

History of MI  
2 (definite)  

6949 1889 0.0002 2 

History of diabetes  
1 (Yes) 

4330 1602 0.007 1.54 

History of hypertension 
1 (Yes) 

1547 750 0.04 1.17 

EKG  
1 (with problem) 

4644 947 <0.0001 1.59 

Living place 20~65  
2 (rural) 

-2947 1028 0.004 0.75 

Living place 20~65  
3 ( mix of rural and urban 
) 

-1361 1467 0.4 0.87 

BMI 28 74 0.7 1 
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Table IV.7 Estimates of regression coefficients from PH model, CHS data after SDC 

 

Estimate (SE) 
(*10^4) 

 

BD TC HD1 HD2 HD3 HD4 HD5 

Entry-age  
1 (40~44) 

1992 
(1154)

2597 
(1164) 

2129 
(1155) 

1962 
(1157) 

1977 
(1152) 

1801 
(1173) 

Entry-age  
2 (45~49) 

1815 
(1153)

1817 
(1181) 

2429 
(1173) 

1872 
(1180) 

1999 
(1178) 

2269 
(1187) 

Entry-age  
3 (50~59) 

2711 
(1056)

1640 
(1097) 

2658 
(1094) 

2371 
(1098) 

2706 
(1090) 

2638 
(1095) 

Entry-age  
4 (60+) 

2799 
(1254)

Entry- 
age 
1 (<40)
 
-792 
(975) 

2393 
(1240) 

3446 
(1268) 

2922 
(1262) 

3099 
(1262) 

3716 
(1230) 

Race/Gender 
2 (white woman) 

-4200 
(913) 

-3813 
(1189) 

-4724 
(1002) 

-2667 
(953) 

-3798 
(979) 

-3971 
(965) 

-2177 
(960) 

Race/Gender 
3 (black man) 

-205 
(1004)

982 
(1142) 

-248 
(966) 

723 
(960) 

54 
(975) 

16 
(963) 

845 
(971) 

Race/Gender 
4 (black woman) 

-1876 
(1073)

-1734 
(1346) 

-1984 
(1036) 

-1596 
(1055) 

-1771 
(1054) 

-1660 
(1054) 

-1267 
(1043) 

Education  
1 (some high school)  

-1127 
(829) 

-1347 
(1029) 

-996 
(841) 

-1108 
(843) 

-1224 
(843) 

-1257 
(846) 

-924 
(847) 

Education  
2 (after high school) 

-3806 
(963) 

-4958 
(1257) 

-3559 
(1024) 

-3081 
(1003) 

-3721 
(1027) 

-3793 
(1013) 

-3290 
(1025) 

Current cigarette 
smoking  
1 (Yes) 

5785 
(718) 

7328 
(891) 

5763 
(714) 

5463 
(709) 

5874 
(724) 

5596 
(711) 

4875 
(706) 

History of MI  
1 (possible) 

4211 
(4548)

5360 
(6113) 

3397 
(3515) 

2702 
(3483) 

2467 
(3516) 

2946 
(3599) 

3863 
(3552) 

History of MI  
2 (definite)  

7080 
(1936)

5622 
(2766) 

4678 
(1980) 

3392 
(2027) 

5029 
(1979) 

5280 
(1954) 

4716 
(2017) 

History of diabetes  
1 (Yes) 

4616 
(2158)

6234 
(2189) 

4013 
(1681) 

3426 
(1685) 

3695 
(1676) 

4414 
(1674) 

4744 
(1677) 

History of 
hypertension 
1 (Yes) 

1637 
(840) 

2581 
(977) 

2006 
(775) 

1976 
(769) 

1877 
(778) 

1678 
(777) 

1823 
(778) 

EKG  
1 (with problem) 

4754 
(1091)

4717 
(1197) 

4129 
(982) 

2421 
(992) 

3936 
(982) 

3754 
(974) 

3327 
(992) 

Living place 20~65  
2 (rural) 

-3042 
(1029)

-3719 
(1299) 

-3297 
(1054) 

-2741 
(1040) 

-3189 
(1058) 

-3162 
(1047) 

-2522 
(1039) 

Living place 20~65  
3 ( mix of rural and 
urban ) 

-1296 
(1887)

-594 
(1969) 

-1375 
(1545) 

-397 
(1474) 

-1239 
(1500) 

-559 
(1480) 

-410 
(1519) 

BMI 28 
(81) 

20 
(98) 

57 
(76) 

40 
(76) 

61 
(76) 

13 
(75) 

10 
(76) 
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Chapter V 

Conclusion and Discussion 

 

Statistical disclosure control is a field with increasing attention and interest nowadays. 

Though progress has been made in implementing a variety of SDC techniques, these 

methods are not totally satisfactory in providing sufficient protection while reducing 

information loss. In this dissertation I propose both non-parametric and parametric MI 

methods for disclosure limitation problems caused by extreme values of variable.  

In Chapter II, I describe an approach to SDC of extreme values based on multiple 

imputation of values beyond a cut-off. I illustrate the performance of these methods for 

inference about the mean of a variable subject to SDC, by simulations and application to 

data from the Chinese income project. We conclude that our hot-deck MI method, as well 

as the MI methods with log-normal model fitted to the deleted data, and with power-

normal model fitted to the complete data, are decisively superior to top-coding in our 

simulations. They all produce excellent inferences for the mean, with the method based 

on power-normal model yielding imputations that match well the distribution of the 

deleted values. The “D” method based on power-normal model also yields good 

conference coverage but tends to be less efficient than the former methods; and the
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method based on log-normal model fitted to the complete data is vulnerable to model 

misspecification. I further introduce covariates into the analysis and assess impact of the 

SDC methods on a regression where outcome is subject to top-coding. Our results prove 

that when applying the MI method to multivariate data, we should condition the 

predictive distribution of the deleted values on observed covariates, as failure to 

condition on covariates leads to an attenuation of relationships between outcome and 

covariates. I address this situation in Chapter III, by proposing  stratified and regression-

based extensions of our MI methods.   

The regression-based methods are potentially more efficient, but a bit more 

complicated computationally than stratified methods. As for method performance, the 

stratified and regression extensions of MI methods are in general superior to top-coding 

and unconditional MI methods for inference about regression coefficient. Regression 

method with log-normal model fitted to the deleted data has the best performance and 

yield results close to before deletion. Stratified hot-deck method and the “D” method 

based on log-normal model, and regression method with power-normal model fitted to 

the complete data also produce good inferences. Regression method with power-normal 

model fitted to the deleted data works well except when estimating the marginal mean of 

outcome, with mis-specified model. Stratified MI methods based on power-normal model 

work well when the outcome is subject to SDC. When the imputations are performed on a 

covariate, they yield less satisfactory results. Both stratified and regression methods with 

log-normal model fitted to the complete data vulnerable to misspecification. 
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Longitudinal data raise particular confidential concerns with potentially extensive 

longitudinal information gathered over time, yet research on SDC method for 

longitudinal study is very limited. In Chapter IV I consider a specific application 

concerning disclosure risk caused by some participants attaining high ages because of 

prolonged participation in a longitudinal study, and develop nonparametric, stratified MI 

methods for this particular data setting.  

I have focused on inference about regression coefficients from Cox’s proportional 

hazard model. Among our stratified hot-deck MI methods, the method that retains the 

censoring indicator (HD4) has the best performance and yields results close to before 

deletion in simulation studies. The other stratified methods also work well overall, except 

that sometimes they do not quite attain the nominal confidence coverage. The no-

stratification method works almost as well as stratified HD methods in simple data 

settings. In situations with more covariates and a larger number of sensitive cases, it 

yields biased estimates with low confidence coverage. 

In this dissertation I present two different versions of parametric MI methods, the 

“C” method which is based on a model fitted to the complete data; and the “D” method 

based on a model fitted to the deleted values alone. The “C” method is efficient, but 

vulnerable to model misspecification. The “D” method involves some loss of efficiency, 

but is more robust to model misspecification, since the model is being fitted to the data 

that are being deleted. This finding is further confirmed in Chapter IV, with two 

alternative stratification methods. The first method calculates predicted values from 
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regression on the deleted data; and the second one utilizes the complete data for 

regression. Results show the first method yields estimates with better inferential 

properties, since regression on deleted data tends to be more robust to model mis-

specification.  

Our MI methods have the following advantages over the standard approach, top-

coding. First, appropriate treatment of the top-coded data, using methods like maximum 

likelihood for censored data, requires custom algorithms that are not widely available in 

standard statistical software. In contrast, MI inferences only require complete-data 

methods and simple MI combining rules. Second, the MI methods tend to be less 

sensitive than top-coding to model mis-specification, as seen in our simulation studies. 

For the data producer, MI has the advantage that the balance between disclosure 

protection and information loss can be controlled by the choice of cut-off and number of 

MI’s released. The use of MI allows imputation uncertainty to be propagated, and the 

multiple imputations of a particular value enhance disclosure protection by making clear 

to a potential snooper that these values are not real. 

Overall, our proposed MI methods for SDC are relatively easy to implement, and 

yield valid inferences close to those from the data before deletion in the situations 

investigated. Thus, we expect these methods will prove valuable to practitioners. 

On the other hand, the research in this dissertation is limited to a single variable 

that needs disclosure protection and considered inference of the marginal mean of a 

variable, or regression coefficient from a regression model. Future work should 
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investigate our SDC methods in multivariate analysis involving a set of variables that are 

subject to disclosure limitation procedure.  

Moreover, I have confined attention to the comparison of our methods with top-

coding. Other alternatives to top-coding, such as adding random noise to the values 

beyond top-code are also of interest. More simulation studies that compare our MI 

methods with these alternatives would be of interest.  

Finally, my research of disclosure limitation methods for longitudinal data has 

been limited to individuals with high age values. The whole field of SDC methods raised 

by other variables (e.g. geographic) in longitudinal health data remains rather unexplored. 

I also plan to consider other possible confidential concerns for longitudinal data and 

develop suitable SDC methods for these problems. 
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