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ABSTRACT

CHARACTRIZATION OF A THIN HARD LAYER ON A SOFT
SUBSTRATE – THEORY AND ITS APPLICAION ON A

SURFACE-MODIFIED PDMS

by
Dong Hee Lee

Co-Chairs: James R. Barber and Michael D. Thouless

This dissertation presents theoretical investigations to estimate the graded properties

of a hard thin layer on a soft substrate. For this purpose, theoretical approaches have been

made to explain experimental phenomena that can be observed in the surface-modified

layer of PDMS.

A general strategy is presented, which can be used to determine the critical strain

and the corresponding wave number for the wrinkling instability of a half space or thick

layer loaded in compression, when the elastic properties vary with depth. Results exhibit

dependence on modulus ratios similar to those observed when a homogeneous stiff surface

layer is bonded to a more flexible substrate (i.e. where the elastic properties are piecewise

constant).

Indentation theories are explored to explain the linear force-indentation depth relation-

ships obtained from nanoindentation experiments. The plate theory and bi-layer system

are considered as a theoretical model for the indentation problem at first. After examining

xiii



the theory using the finite-element simulation, we conclude that the theory may not an

adequate model for the indentation by a rigid indenter. A theoretical model is suggested,

which considers the indentation into a half space with graded modulus by a rigid indenter.

The force-indentation depth relationships very close to linear is obtained when the error

function is used as a modulus function. Based on these results, we suggested an itera-

tive method to determine the modulus of a surface-modified PDMS. The effect of residual

strains is considered in the iterative method. With the residual strain, the method gives

reasonable order of the modulus values.

We did two types of experiments to produce wrinkling in a modified-surface of PDMS.

In each experiment, a discrepancy in the wavelengths is observed between the loading

methods. To reveal this discrepancy, analytical models to describe the stress field in the

system is suggested. The effect of Poisson’s ratio mismatch, crack opening, and graded

modulus is considered. While qualitative estimations for the discrepancy can be obtained

with the effect of crack opening and graded modulus, quantitative estimations are not made

in this research.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Poly(dimethylsiloxane) (PDMS) is a clear, elastomeric polymer and has been a valu-

able material for producing commercial goods, and in many research areas since it was

first introduced in the 1960s. For example, PDMS is an important component in making

most sealant products, adhesives, silicon caulks. Silicon grease, silicon-based lubricants,

cosmetics, and hair conditioner are other forms of its applications. It is also used as an

important experimental platform for cutting-edge research in areas such as biomedical en-

gineering (Zhu et al., 2005), electronics and semiconductors (Loo et al., 2002), and micro-

fluidics (Anderson et al., 2000; Fujii, 2002). It has many interesting characteristics, among

which, the ease of manufacturability and chemical inertness may be the major attractions

to researchers and engineers. PDMS is produced from the base monomer and catalytic

agent in liquid state. The production process can be done by pouring the monomer-agent

mixture into a mold, and then curing the mixture by heating. Small scale structures can

be produced from the PDMS using the same process. Thus, conventional machining pro-

cesses do not need to be included to the production process. The absence of the machining

process is helpful for producing micro-/nano-scale structures. Due to their very small

scale, the machining process is naturally not applicable in the production of micro-/nano-

1



scale structures. Figure 1.1 shows an example of a typical process to fabricate a PDMS

microchip (Fujii, 2002).

Figure 1.1: Typical fabrication process of PDMS microchip (Fujii, 2002)

After polymerization and cross-linking (i.e. the mixing and heating process to pro-

duce solid PDMS), a hydrophobic surface is formed on the solid PDMS. The hydrophobic

surface maintains good chemical resistance against solvents that could infiltrate and make

the material swell. This chemical inertness of PDMS has allowed it to be used as in-

door/outdoor electric insulators. With the ease of manufacturability, the hydrophobicity is

also an important property in cutting-edge technologies such as biomedical applications

or biochemistry dealing with toxic liquids and gases in small scale channels. However, the

hydrophobicity becomes an obstacle in some areas such as micro-fluidics and soft lithog-

raphy, which require great wettability. The hydrophobicity can be diminished temporarily

2



when PDMS is exposed to severe weather conditions, electrical discharge or contami-

nation. More methods have been found for developing a hydrophilic surface on PDMS.

Typical examples of the methods are oxygen plasma, corona discharges, or UV/UVO treat-

ment. After the surface of the PDMS is exposed to these treatments, the hydrophobic

surface becomes hydrophilic, and a thin, hard layer is formed as a by- product. While

many surface treatment techniques have been introduced and employed to develop the

hydrophilic surface on bulk PDMS, the modified layers characteristics, such as chemical

structure, thickness, elastic modulus, are unidentified.

Many studies using techniques of chemical analysis have revealed the decrease of the

carbon content and increase in the oxygen content in a modified layer. This change of

chemical structure caused a thin and brittle layer. Chemical techniques have been used to

measure the thickness of the modified layer. Though experimental studies report that the

thickness of the layer reaches up to hundreds of nanometers, the reports are suspect due to

the uncertainties included in the treatment techniques. The treatment techniques include a

diffusion process of ions (oxygen or ozone ions). Because precise control of the diffusion

process is hard, the thickness has to be measured under specific treatment conditions. So

in that vein, the qualitative analysis, which indicates the thickness is very thin, is generally

accepted.

Mechanical techniques have been utilized to measure these properties directly using

indentation as well as indirectly using a measurable property such as wavelength of the

surface wrinkling, which is produced by external perturbation. Though indentation has

been used as a standard method to measure mechanical properties of a material, it is still

in the realm of ongoing research due to the very thin layer. Some researchers have used

the wrinkling phenomenon to build the relation among the wave length and amplitude of

wrinkles, the layer thickness and the elastic modulus. To account for the relation, they as-
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sumed a discrete bi-layer system that consists of two layers with uniform thicknesses and

uniform material properties in each layer. However, due to the uncertainty of the diffusion

process, there is no evidence that the properties are uniform. Therefore, to understand and

utilize the modified layer properly, a new method or theory should be developed for the

characterization of a layer with graded properties.

1.2 Characterization of a modified layer on a substrate

After observing natural modifications of the surface of a silicon rubber, researchers

have tried to develop techniques to re-create the phenomenon in laboratory: Corona dis-

charge, UV/UVO treatment and oxidation by oxygen plasma are well known methods for

the surface treatment.

1.2.1 Characterization of the modified layer by chemical methods

The effect of plasma oxidation has been explored by Hansen et al. (1965). Through

a series of experiments, they generated highly oxidized layers on the surface of polyethy-

lene and polypropylene. They, however, didn’t give further details about the oxidized

layer, but shown that these oxidized surface layers had remarkably low contact angles with

water. This change of surface property was examined by chemical characterization meth-

ods (Hollahan and Carlson, 1970). They found CH2OH groups in the modified-surface

of PDMS that was treated by oxygen plasma and corona discharge using Fourier Trans-

form Infrared Spectroscopy (FTIR) characterization. The effectiveness of the modified

surface of PDMS was demonstrated by Bodö and Sundgren (1986). They tested the effect

of pre-treatments–Ar+ bombardment and oxygen plasma treatment–to the enhancement

of adhesion of titanium film on a PDMS surface. Using scanning electron microscopy

4



(SEM) and X-ray photoelectron spectroscopy (XPS), they revealed that the pre-treatment

resulted in cross-linking on the surface of PDMS and an increased strength of the substrate

surface.

These chemical methods also have been used to reveal the mechanism of hydropho-

bic recovery. Morra et al. (1990) performed aging experiment of oxygen plasma-treated

PDMS in air and water. Using several surface-sensitive measurements—XPS, static sec-

ondary ion mass spectroscopy, and contact angle measurements—they suggested that the

mechanism of hydrophobic recovery is a combination of diffusion of polar groups and

consequent crosslinking on the contact angle-probed layer. Hillborg and Gedde (1998)

explored the hydrophobicity recovery of a high-temperature vulcanized silicone elastomer

exposed to corona discharges. They showed that the thickness of the modified surface

produced by corona discharge is at least 10 ∼ 12 nm using XPS. They found that a small

mechanical deformation (< 1% strain) after corona exposure exhibited a faster hydropho-

bic recovery. They further suggested that it was a mechanical stress that caused a cracking

of the brittle silica-like layer, which facilitated the transport of low molar mass PDMS to

the surface. Previous studies, which mentioned the mechanism of hydrophobic recovery

under different types of surface treatment, were reviewed by Hillborg and Gedde (1999).

According to them, most results reported that the migration of the low molar mass species

is the major cause of the hydrophobic recovery. Bowden et al. (1999) measured the thick-

ness of the plasma-oxidized layer using scanning electron microscope (SEM). They re-

ported that the thickness reached up to 0.5 µm with 15-minute oxidation, and estimated

the modulus of the modified surface to be Es ∼ 720 MPa. Ouyang et al. (2000) performed

experiments to transform cross-linked polysiloxanes to siliconoxide (SiOx) through the ap-

plication of a room-temperature UV/ozone conversion process. They reported that a hard

film is formed on PDMS substrates, which is limited to a thickness on the order of 20∼ 30
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nm. Hillborg et al. (2000) measured the thickness of the oxidized surface using newtron

reflectometry and XPS. They reported that the oxygen plasma led to a smooth (< 10 nm)

oxidized surface layer with a thickness of 130 ∼ 160 nm, and the cause of hydrophobic

recovery was migration of low molar mass PDMS species to the surface. Efimenko et al.

(2002) studied the effect of UV and UVO treatements on the modification of a PDMS

network. They reported that the material density within the first ∼ 5 nm of Sylgard-184

reached about 50% of that of silica. This means that the presence of the silica fillers does

not alter the surface properties of the UVO- and UV -modified Sylgard-184 specimens.

Feinberg and Brennan (2003) reported an increase in the modulus from 1.5 ± 0.8 MPa to

3.0± 0.9 MPa when exposing a cross-linked PDMS to an argon-plasma.

1.2.2 Characterization of the modified layer using AFM

Atomic force microscopy (AFM) is a well known surface characterization method,

which contains two operation modes; tapping mode and contact mode. In tapping mode,

a small cantilever is oscillated at near its resonant frequency. Images of extremely small

surface structures can be obtained using the interaction between the tip and a layer formed

on a surface. In contact mode, the tip of the cantilever is brought towards the surface and

the static deflection of the cantilever is monitored as a function of scanner displacement.

The contact mode is often used as a means of nanoindentation.

The surface morphology is the primary output which can be obtained from tapping

mode AFM (TMAFM). TMAFM gives additional output known as phase imaging. Some

researchers show that the phase image can be interpreted as the difference of material prop-

erties. Magonov et al. (1997) showed that the phase image from AFM can be used to dis-

tinguish different surface features of both multi component materials and one-component
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systems with different density distribution. From this result, Bar et al. (2001) used tap-

ping mode AFM to monitor the change of the stiffness in plasma-treated PDMS surface.

By performing distance-sweep (Z-sweep) TMAFM and numerical simulation, they argued

that a longer oxidation time leads to a greater positive phase shift, which means that the

modulus of the oxidized PDMS surface increases with increasing oxidation time. Mills

et al. (2007) used the phase imaging technique on the 4-minute plasma oxidized PDMS.

To estimate the thickness, they bonded two surface-modified PDMS slabs, which were

oxidized for different times—1 minute and 4 minutes—than broke the bonded structure.

Using tapping mode AFM, they were able to guage the phase angle of the modified and

unmodified section of each PDMS slab. The analysis of the phase image allowed them to

report that the thickness of the modified layer is as high as 200 nm.

1.3 Characterization of a thin layer by Indentation

Since it was introduced in the early 1900s, indentation tests have been a standard

method to characterize a material. Well-known types of the tests and the tip shape of

each test are as follow;

• Brinell hardness test: Sphere

• Berkovich: Pyramid of triagonal base

• Rockwell scale: Conical shape

• Knoop hardness test : Pyramid of rhomboid base

• Vickers hardness test: Pyramid of square base
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Among these tests, Vickers hardness test is popular one due to its ease and speed with

which it can be carried out. Because hardness, defined as the average pressure on the punch

(i.e. force per projected contact area), is the basic property that can be obtained from the

test, the indentation is often called an indentation hardness test. The indentation hardness

test is performed by pressing a hard indenter into the bulk material to be examined. By

measuring the impression marked by the indenter, hardness can be calculated. However,

this technique is limited due to large and varied tip shapes, with indenter rigs that do not

have very good spatial resolution (i.e. the location of the area to be indented is very hard

to specify accurately).

1.3.1 Estimation of the local material properties by nanoindentation

Rapid changes in modern technology and the ever-increasing importance of thin coat-

ings demand more sophisticated indentation methods to characterize new materials —

especially in thin layers such as wear resistance coatings—and small-scale structures,

smaller than a micron scale. In that sense, we can say the development of nano-indenter

(Pethica et al., 1983), which can record both the load and the depth of indenter penetra-

tion continuously during the test, opened a new era for the characterization of thin film

and small scale structures. Doerner and Nix (1986) suggested a method to interpret data

from depth-sensing indentation instruments. They suggested a method to determine elas-

tic properties such as Youngs modulus as well as hardness. By assuming linear unloading,

they calculated plastic depth, which affects the size of projected area. Oliver and Pharr

(1992) suggested a new method to determine hardness and elastic modulus from indenta-

tion load-displacement data based on their observation that the unloading part of the curve

is not linear for some materials. Instead of using the slope of the unloading curve, they es-
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timate the hardness and the elastic modulus using curvature in the unloading data and the

contact area from the indenter shape function. Their method has been used as an impor-

tant reference for the estimation of the mechanical properties using nanoindentation (Brun

et al., 2001; Chowdhury and Laugier, 2004; Huang and Pelegri, 2005). Yeo and Poly-

carpou (2007) discussed a method to retrieve the magnitude of the elastic recovery from

low-force load-unload curves. By calibrating the tip shape function, they demonstrated

that the indentation experiment on a fused quartz standard sample showed more accurate

results than Oliver and Pharr’s method at very shallow (< 3nm) indentation.

Many researchers have used AFM as a means of nanoindentation. Contact mode, one

of its basic operation mode, can generate force-displacement curves, and force-indentation

depth relations can be deduced from these curves. Due to its high resolution that can mea-

sure the order of a few pico-Newtons, it is widely used to measure properties of very soft

materials with a vertical distance resolution of better than 0.1 nanometer. Xu et al. (1998)

introduced a method to interpret the force-displacement curves. They expanded Oliver

and Pharr’s concept to characterize the mechanical properties of thin polymer films using

scanning probe microscopy (STM). By probing the deflection of the cantilever, the force

between the tip and sample is measured via a laser beam. Then, the force can be calcu-

lated as a function of the indentation depth. Similar to the method suggested by Oliver

and Pharr, the elastic modulus was calculated from the early stage of the unloading curve

of the force-indentation depth data. Chien et al. (2000) used AFM to measure the elas-

tic modulus and ion penetration depth caused by the ion bombardment of α-particles on

polymer composites. They reported that the elastic modulus changed from 1.5 to 3.5 MPa.

Brun et al. (2001) reported exponential decrease of modulus versus penetration depth in

a polypropylene modified by He+ particle implantation. Hillborg et al. (2004) probed the

changes in the normalized modulus of UV/Ozone treated PDMS using indentation map-
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ping. Instead of direct interpretation of the probe values, they normalized the values with

respect to the modulus of the unexposed PDMS. They found that the normalized modulus

increase linearly with respect to the oxidation time and also found that a < 50-nm level is

oxidized homogeneously after exposure.

1.3.2 Theoretical studies of indentation

The relationship between indentation force and depth has been studied over centuries

theoretically, and contact mechanics forms the basis of the analytical studies. Hertz (1882)

suggested a theory about the relation between two spherical surfaces with different radii

and elastic properties. Based on his work, numerous studies have been made to find

the stress/strain fields, displacement of the surface, and contact area for various inden-

ter shapes. Boussinesq (1885) suggested a method to determine the stress and deforma-

tion fields in elastic homogeneous solids subject to rigid, axisymmetric punch based on

potential theory. Sneddon (1965) expanded Boussinesq’s theory and suggested general

relationships among the load, displacement and contact area for any punch that can be de-

scribed as a solid of revolution of a smooth function. These studies considered indentation

into a homogeneous half space by point forces or axisymmetric punches.

Another vein of studies has dealt with the problem of indentation into a system con-

sisting a thin layer and thick substrate with different material properties. A layered system

consisting of two or more layers was first mentioned by Burmister (1945a,b,c) in founda-

tion engineering. His research was related to a project for airport design and construction,

so he was interested in the stress distribution and settlement in layered soil deposits of

the runway. By assuming each layer to be homogeneous, isotropic, elastic material, he

solved a boundary value problem, and obtained the stress distribution in each layer and
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a relationship between force and displacement at the surface of the upper layer. He as-

sumed that the upper layer is infinite in the horizontal direction with a finite thickness

while the lower layer is infinite in both horizontal and vertical directions. Timoshenko and

Woinowsky-Krieger (1959) suggested a solution of the indentation problem into a plate on

an elastic foundation (i.e. half space). Ol’shanskii (1987) suggested a modified solution of

Timoshenko and Woinowsky-Kriegers. He suggested the non-dimensional displacement

and pressure as the form of series, which originally expressed as integral forms in Timo-

shenko and Woinowsky-Krieger’s solution. Chen and Engel (1972) analyzed the contact

problem in a multilayer medium based on classical elasticity theory. King (1987) analyzed

indentation problems into a layered isotropic elastic half space by flat-ended cylindrical,

quadrilateral and triangular punches using a basis function technique and a singular in-

tegral equation. Using numerical technique, he obtained load-deflection relations via a

series of values of the ratio of Young’s modulus between the layer and substrate.

A special case of layered systems is the case of a medium that has continuously varying

material properties along its thickness. Soil is a typical example of this medium, and

many researchers in civil engineering have dug into the problem of indentation into a

half space with varying material properties. Calladine and Greenwood (1978) analyzed

an incompressible material whose modulus increases with increasing distance from the

free surface. They found that the solution is similar to that of the Winkler foundation

and suggested a simple formula for the Winkler stiffness of the half space. In a series of

papers, Giannakopoulos and Suresh (1997a,b) suggested analytical solutions for the effect

of graded material properties on the evolution of stress and displacement fields for a semi-

infinite elastic solid indented by either a point force or an axisymmetric indenter. Though a

general power law was adopted as a modulus distribution, they only considered a modulus

increasing with depth.
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1.3.3 Numerical analyses of the indentation

Though indentation test have been widely used in experiments and many researchers

have contributed theoretical analyses, the analysis of indentation by sharp indenters has

been considered one of the hardest problem due to its inherent difficulties: the unavoid-

able 3-dimensional problem, non-linearity, and stress concentration. Thus, numerical tech-

niques such as finite-element methods have been used to analyze the indentation problem

with a sharp indenter. Bhattacharya and Nix (1988a,b) demonstrated that the continuum-

based finite-element approach can be applied to determine the load-indentation depth re-

lation for different types of materials and thin films on a substrate. They also revealed that

the contact area at the unloading process can be assumed to be linear for a bulk material,

but the area is not constant for a thin film. Based on their study, Laursen and Simo (1992)

explored the mechanics of the microindentation process using the finite-element method.

By investigating several characteristics, such as the actual contact area, that are difficult to

evaluate experimentally for either bulk materials or thin film systems, they reported that

the finite-element method can be an effective tool for the characterization of the indenta-

tion process. They also reported that the contact area is not constant during the unloading

process for a thin-film/substrate system.

The adoption of numerical techniques raised a hidden problem in indentation tests,

the contact area obtained from tests is not exact due to the pile-up or sink-down effects.

Chen and Vlassak (2001) investigated the effect of substrate and pile-up on hardness and

stiffness measurements for a variety of thin-film systems, as well as bulk materials, using

the finite-element method. Important conclusions that they have made are; 1) the pile-up

height in a bulk material scales linearly with indentation depth; 2) the influence of the sub-

strate is not appreciable until pile-up height is greater than the half of film thickness for a

soft film on a hard substrate, and the yield stress of a film can be measured from the rela-
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tion H = P/A, as long as the indentation depth is less than the half of the film thickness;

3) if the yield strength of the film is higher than that of the substrate, the substrate effect is

inevitable even for indentation depths less than 10 20% of the film thickness. Larsson and

Peterson (2002) did numerical analyses concerning microindentation for a homogeneous,

isotropic, elastic-plastic thin film (or ribbon) that is perfectly clamped on a hard substrate

with the assumption of frictionless contact between the indenter and the material using a

commercial finite-element code. They found that bulk behavior can be assumed for in-

dentation depths up to 25% of the film thickness despite the known film/substrate effect.

However, their investigation is limited to the case of a deforming (soft) film on a hard

(nondeforming) substrate. He and Veprek (2003) suggested a new range of indentation

to avoid the substrate effect. They suggested 5% instead of the 10% rule-of-thumb for

superhard surface coatings (> 40 GPa) on a relatively soft substrate, such as steel. Other

studies of the indentation problem using numerical techniques have been reported by many

researchers;

• Analyze of Vickers indentation (Giannakopoulos et al., 1994)

• Analysis of Berkovich indentation (Larsson et al., 1996)

• Numerical study for the elastic contact problem of a layered semi infinite solid com-

pressed by a rigid surface (Komvopoulos, 1988)

• Elastic-plastic finite-element analysis for the axisymmetric problem with a harder

and stiffer layer (Kral et al., 1995)

• Develop a procedure to estimate the mechanical properties of implanted layers and

thin films on dissimilar substrate using commercial finite-element code (Knapp,

1997)
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1.3.4 Estimation of the residual stress/strain in thin films by indentation

Most previous research has concentrated on the measurement of static mechanical

properties of thin films, but researchers also have considered the measurement of resid-

ual stress in a thin film using indentation. Tsui et al. (1996) reported a study of the influ-

ences of sample stress on nanoindentation hardness measurements using a sharp Berkovich

indenter. They reported that the hardness determined by standard nanoindentation tech-

niques is affected by stress, increasing in compression and decreasing in tension. However,

subsequent finite-element simulation (Bolshakov et al., 1996) revealed that the changes in

hardness are not correct because standard nanoindentation techniques can not measure the

contact area directly. And the contact area was changed by variations in the pile-up ge-

ometry. Suresh and Giannakopoulos (1998) suggested a theoretical method to estimate

surface residual stress and residual plastic strains using sharp indentation. By assum-

ing equibiaxial residual stresses and residual plastic strains, with a uniform distribution

over depth, they did theoretical analyses and suggested practical procedures to determine

residual stresses or strains at the surface of bulk materials and in thin films and bulk ma-

terials with unknown mechanical properties. However, no experimental verification of the

method was provided. Based on their method, Swandener et al. (2001) introduced an ex-

perimental technique that can measure biaxial residual stress using nanoindentation with

a spherical indenter.

Knapp et al. (1998) suggested a procedure to determine iteratively mechanical prop-

erties for thin, hard films and ion-beam-modified layers on soft substrate. By fitting the

result of a finite- element simulation to the experimental force at one or more fixed depths,

they demonstrated that they could determine the yield stress and Youngs modulus of Ni

sample implanted with Ti and C. Though they reported that the method can be applied to

a thin hard layer on a soft substrate, the substrates in their examples were still relatively
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hard materials such as Ni or Si.

1.4 Surface instability–wrinkling

Wrinkling is a natural phenomenon which can be observed in a wide range of length

scales from carbon nano tubes (Lourie et al., 1998) to folds in rocks (Huddleston and

Lan, 1993). Human skins, cloths, skin of dried fruit are typical examples of wrinkling in

human life. Generally the instabilities such as buckling or wrinkling have been considered

as a nuisance to avoid in engineering area. The Euler beam is a very famous example

of instability, and railroads are notorious examples of wrinkling caused by the mismatch

of thermal expansion between the steel rod and the soil. However, the exploration of

wrinkling on soft substrates has been studied considerably in many applications which

need to form small, micro or nano, scale structures.

Lithographic patterning is a well known microfabrication technique that has been used

to provide structures to materials on a fine scale. Photolithography is a branch of litho-

graphic patterning techniques and is often applied to semiconductor manufacturing of mi-

crochip and fabrication of MEMS devices. However, spontaneous patterning techniques,

which utilize wrinkling on an elastomeric polymer, have been intensively studied during

past years because they are relatively simple and cost-effective comparing to conventional

lithography.

1.4.1 Experimental techniques to form spontaneous patterns using wrinkles in a
thin film

Bowden et al. (1998) introduced an experimental method to produce a complex, or-

dered structures on an elastomer substrate. They deposited a gold film from the vapor
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phase on a thermally expanded PDMS. Subsequent cooling creates compressive stress in

the gold film that is relieved by wrinkling with a uniform wavelength of 20∼ 50 microme-

ters. To obtain ordered wrinkles, they created bas-relief patterns before heating. However,

the result wrinkles were not ordered globally, but locally at regions near the bas-relief. In

the successive paper, they deemonstrated similar experiments using a surface layer modi-

fied with oxygen plasma on PDMS, instead of metal films (Bowden et al., 1999). Through

the observation of similar patterns in the oxidized layer, they reported that the simpler ox-

idation method can be used to produce ordered pattern of wrinkles. Using a simple model,

they found that the wavelength of a wrinkle reaches up to 5 µm and is larger near the edge

rather than the middle of specimen. Another experiment performed by Chua et al. (2000)

also showed that an oxidized surface of PDMS can show similar behavior to the result

of Bowden and coworker’s. They calculated the thickness of the silica-like layer using

measured periodicity of the wrinkles; it ranges between 5.68 and 51.65 nm. They reported

that the wavelengths would go up with increasing oxidation time and power. Huck et al.

(2000) demonstrated a new method to form ordered patterns of buckles in a film of gold

deposited on the surface of PDMS. To obtain ordered patterns, they used UV irradiation on

the surface, which is covered by mask, than the gold film is deposited on both exposed and

unexposed areas of the PDMS surface. In subsequent cooling, the difference of stiffness

of the PDMS surface caused ordered pattern in UV exposed area. You et al. (2002) used

mechanical stress to produce ordered wrinkles. By simply placing PDMS mold on the

surface of the film and heating the entire structure, they obtained a highly ordered pattern

of wrinkles. These techniques to produce wrinkles have been used in various fields;

• Electronics : Electroactive polymer actuators (Watanabe, 2005), Stretchable inter-

connectors (Lacour et al., 2004)

16



• Optical device : Diffraction gratings (Harrison et al., 2004)

• Bio-engineering or life science : Microfluidic sieves (Efimenko et al., 2005), Topo-

graphic matrices for cell alignment (Teixeira et al., 2003)

1.4.2 Patterning wrinkles by mechanical deformation

It was not easy to obtain highly ordered patterns with the wrinkling method using

thermal expansion mismatch. Thus, some researchers reported a method that applied me-

chanical deformation instead of thermal expansion. Volynskii et al. (2000) used a me-

chanical strain to produce striped wrinkles in deposited gold film on poly(ethylene tereph-

thalate). Before depositing the gold film, they stretched the substrate and then released

the film/substrate structure to produce wrinkles. Without any external treatment such as

bas-relief, they got ordered stripe pattern in the gold film. Lacour et al. (2004) and Watan-

abe (2005) also used similar technique to produce ordered strip patterns in a thin film.

This technique is simple and easy to apply and obtain ordered pattern over a wide area

(> 2cm2, Watanabe (2005)). Ohzono and Shimomura (2004) demonstrated a process to

generate stripe patterns in a Pt film deposited on a PDMS slab by controlling compressive

strain using a small vice under an optical microscope. From observing the compression-

relaxation cycles, they concluded that the formation of wrinkles is reproducible. However,

the hysteresis between the cycles may hint the existence of plastic deformation at the time

of sample preparation.

An important potential of the wrinkling is that it can be used to determine the properties of

a thin layer on a substrate. Stafford et al. (2004) suggested an experimental metrology for

measuring the elastic modulus of polymeric thin films based on the surface buckling. With

placing a thin film of a given thickness and unknown modulus on top of an elastomeric
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foundation of known modulus and with measuring the wrinkle wavelength upon stretch-

ing the bilayer beyond the critical strain, the unknown modulus can be determined using a

classic theory of beam on an elastic foundation. However, to determine the elastic modulus

of the film, Poisson’s ratio and the thickness of the film should be known. In a successive

paper, Wilder et al. (2006) demonstrated that this method can be used to determine the

properties of substrate based on the buckling in the thin hard film with known properties.

They also demonstrated that this method can be used to determine the modulus of gradient

substrates, which are prepared by casting three different monomer-curing agent ratios of

PDMS (i.e. three discrete layers of PDMS). They observed different wavelengths in each

layer and proposed a possibility that this method can be used to generate a modulus map

across the gradient specimen.

1.4.3 Theoretical studies of instability–buckling/wrinkling

Though many researchers reported techniques and the possibility that ordered spon-

taneous patterns can be obtained by wrinkling, the mechanism of wrinkling is still under

investigation. The problem of instability in elastic solids was first mentioned by Koiter

(1945). He formulated buckling as a bifurcation problem associated with the principal

solution and provided an asymptotic technique to follow the post-bifurcation equilibrium

paths. With the development of large strain continuum mechanics in the early 1950s, Koi-

ter’s work was subsequently applied to a vast array of structural buckling problems in

mechanics. Budiansky (1974) gave the variational formulation for buckling problems in

elastic solids that have a potential energy. The connection between the loss of stability of

the principal solution at the lowest load bifurcation in elastic systems is also well explained

in this article. The most general variational formulation of the buckling and post-buckling
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problem of conservative elastic systems can be found in Triantafyllidis and Peek (1992).

For the analysis of wrinkles in a thin film, many researchers have used classical theo-

ries about the beam/plate on an elastic foundation that date back to Biot (1937). Among

the theories, recent analyses of wrinkling of thin hard layers have been mostly performed

based on the linear perturbation analysis which had operated by Allen (1969). He first an-

alyzed sandwich panels consisting soft core material between two hard panels subjected to

compressive load and then defined three modes of deformation then he suggested the ex-

pression of critical stresses for each deformation mode. He showed the critical membrane

force that depends on the modulus of the substrate. Niu and Talreja (1999) reviewed the

linear perturbation theory and suggested a unified model for three face wrinkling modes

suggested by Allen. They derived a single expression of the buckling stress from long

to short wavelengths. Based on the classic plate theory and energy minimization, Groe-

newold (2001) derived expressions for the wave length and amplitude for both unidirec-

tional and isotropic wrinkling in a hard plate on a soft substrate. Using the model, he

analyzed Bowden and coworker’s experiments quantitatively. Though the results were

well matched with experiments, they used assumed values of modulus and Poisson’s ratio

for the thin film. Using similar concept with Groenewold (2001), Cerda and Mahade-

van (2003) suggested simple scaling laws for the wave length (λ) and amplitude (A) of

wrinkles.

λ ∼
(

B

K

)−1/4

, A ∼ λ

(
∆

w

)1/2

where B is the bending stiffness of the plate, K is the stiffness of the effective elastic

foundation, and (∆/w) is an imposed compressive strain. By taking several examples,

they implied that the wavelength measurements could be a sensitive technique for the

characterization of thin solid films. Chen and Hutchinson (2004) provided analysis re-
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sults for the uni-directional compression and buckling patterns in a thin gold film on a

PDMS substrate. Among the patterns considered, they reported that the herringbone mode

is associated with the lowest average elastic energy of the film/substrate system for films

stressed well above critical stress. Huang et al. (2004) studied the evolution of wrinkle

patterns on a substrate by modeling the film as an elastic nonlinear plate and the substrate

as a viscoelastic foundation. Using spectral method and finite element simulation, they

found that labyrinth patterns are formed when the initial membrane strains are isotropic,

and aligned herringbone or stripe pattern are formed when the initial membrane strains are

anisotropic. Huang et al. (2005) expanded Chen and Hutchinson’s analysis for a structure

consisting of a thin layer and a soft substrate with finite thickness. They declared a re-

lation between the amplitude and wavelength of the sinusoidal wrinkles as a function of

the modulus and thickness of the substrate that, similar to Chen and Hutchinsons analysis,

assumed an infinite elastic substrate. Theories and applications of wrinkling were well re-

viewed by Genzer and Groenewold (2006). Starting from the human skin, they introduced

the history of wrinkling/buckling, theories and applications in various areas and length

scales.

All analyses discussed thus far were based on classic plate theory and energy min-

imization. Thus, the film, or modified layer, was assumed as a homogeneous layer with

uniform material properties on an infinite homogeneous elastic foundation. However, there

is not known evidence that the properties of a modified layer should be uniform. Moreover,

there is no known method to measure the thickness of the modified layer, and the analy-

ses using classic plate theory may be simplified, thus, the estimated wavelengths were not

matched with the measured wavelengths (Chen and Hutchinson, 2004). Therefore, there

is still a challenge to explore the wrinkling mechanism of a hard layer which has graded

material properties on a soft substrate.
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1.5 Organization of the dissertation

The oxidized PDMS has many advantages for various applications and research areas

especially areas that need to deal with very small scale structures. Though many stud-

ies have been done to understand and utilize the characteristics of the modified surface, a

general method or procedure to determine the graded characteristic of the modified layer

is not known. Therefore, to understand and utilize the modified layer more effectively, a

method or procedure to characterize the modified surface should be implemented. This

is the basic objective of this research. However, a general approach will be considered,

instead of a specific study only for the analysis of the modified PDMS. In each chapter,

general theories will be introduced first and specific examples will be presented using the

oxidized PDMS as an example.

Chapter 2:

For the objective, a theoretical model was developed, which can analyze the surface

instability of an elastic half space that has varying material properties with depth, as well

as a layered system with uniform material properties. Using this model, critical conditions

(critical strain and wavelength) that generate the surface instability will be discussed for an

elastic half space with two grading functions. Critical conditions, which are produced by

non-mechanical perturbation, also will be discussed. The proposed model will be verified

by comparing with the results of a previous study.
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Chapter 3:

Indentation will be considered as a means to characterize a hard thin film on a soft sub-

strate. Theories of indentation will be explored, first based on the linear force-indentation

depth relationship that resulted from experimental observation done by Mills et al. (2007).

For a bi-layer system, plate theories will be explored, then, a power law and the error func-

tion will be considered to investigate the possibility of graded elastic modulus. Based on

these analyses, an iterative procedure will be introduced, which can estimate the thickness

of the layer, the modulus at surface and its profile. The procedure combines the indenta-

tion theory and the relationship between modulus ratio and wave length that are obtained

in Chapter II. The effect of residual strains will be discussed.

Chapter 4:

An experiment to produce wrinkles in the surface-modified layer of PDMS will be in-

troduced. The response of the oxidized surface will be explored according to the different

loading method;tensile and compressive loading. The discrepancy of the wavelengths be-

tween the loading methods will be discussed based on the knowledge obtained in previous

chapters.

Chapter 5:

Based on the results from previous chapters, conclusions and an outline of the future

work will be presented.

Appendix:

A paper is added in the appendix, which introduces an engineering analysis program.

The program is a tool that helps to find the stress and displacement fields near wedges
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and is developed based on Williams asymptotic method. While it is not related to current

research directly, it could be used to study the stress fields near the crack tip.
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CHAPTER II

SURFACE INSTABILITY OF AN ELASTIC HALF
SPACE WITH MATERIAL PROPERTIES VARYING

WITH DEPTH

2.1 Introduction

If a structure consisting of a thin stiff layer and a more flexible substrate is subjected to

a sufficiently large compressive load, a buckling or wrinkling surface instability can occur,

as shown in Figure 2.1.

Figure 2.1: Schematic of a half space subjected to a compressive load

Generally, surface wrinkling has been considered as an undesirable phenomenon to be

avoided. However, in emerging areas such as micro/nano-fabrication and bio-engineering,

wrinkling can be used to produce controlled nano-scale features (Bowden et al., 1999;

Moon et al., 2007; Efimenko et al., 2005). It has been proposed that these may be use-

ful for applications such as diffraction gratings, patterned platforms for cell adhesion or
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nano-fluidic channels. Surface wrinkling may also provide a way of probing the surface

characteristics of the materials Stafford et al. (2004).

Chen and Hutchinson (2004) developed a closed-form solution for the wrinkling of a

gold layer deposited on an elastomer substrate. They modeled the structure as a plate on

a linear elastic foundation with infinite thickness. The same methodology was extended

to the case of a thin elastic layer on a substrate of finite thickness by Huang et al. (2005).

These solutions most naturally relate to the situation in which a thin stiff film is deposited

on a more flexible substrate, so that there is a sharp discontinuity in elastic modulus at

the interface. However, similar effects should be anticipated in cases where the elastic

modulus of the material is graded continuously from the surface to a lower substrate value.

The present work was motivated by observations of micron-scale buckling on oxidized

poly(methyldisiloxane) (PDMS) in which a stiff surface-modified layer was formed by

exposure to an oxygen plasma. The surface layer in this material is formed by a diffu-

sive process, so we anticipate a gradation of mechanical properties from the surface. The

absence in the literature of any discussion of surface wrinkling under these conditions

prompted the question of how the mechanics of wrinkling might be affected by the graded

properties. The intent of this paper is to establish the general mechanics framework for

the study of such problems. In particular, we develop a bifurcation method to analyze

the onset of surface wrinkling of an elastic layer with elastic properties that are arbitrary

functions of depth. The analysis is sufficiently general to allow for an arbitrary distribu-

tion of applied compressive strain with depth. In addition to cases of functionally graded

elastic modulus, it can therefore be applied to situations where a non-uniform distribution

of eigenstrain is generated by thermal expansion or other mechanisms such as a change in

lattice parameters due to variable concentration of a diffusive species (Larché and Cahn,

1982). The method is validated by comparison with the results of Huang et al. (2005).
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It is then used to determine the critical compressive strain at which wrinkling occurs and

the associated wavelength for different distributions of elastic moduli. A subsequent pa-

per will examine some specific examples of buckling associated with cracking in oxidized

PDMS.

2.2 General theory of the instability

The study of buckling (i.e. the sudden change of deformation pattern upon increase

of the externally applied load) in elastic structures and solids is a classical problem in

solid mechanics, dating back two and a half centuries to Euler and his celebrated study of

the problem of the elastica. Restricting attention to conservative elastic systems, the key

ingredients for the appearance of buckling are the non-linearity of the system’s governing

equations and the symmetries inherent in its fundamental solution (i.e. the solution which

exists at small load levels, prior to the appearance of buckling). These features are present

in the problem at hand, as will be explained below.

For elastic solids, Koiter (1945) was the first in the mechanics community to formu-

late buckling as a bifurcation problem associated with the principal solution and provide

an asymptotic technique to follow the post-bifurcation equilibrium paths. With the de-

velopment of large strain continuum mechanics in the early 1950s, Koiter’s work was

subsequently applied to a vast array of structural buckling problems in mechanics. The

interested reader is referred to the eminently readable review article by Budiansky (1974),

who gives the variational formulation for buckling problems in elastic solids that have a

potential energy. The connection between the loss of stability of the principal solution

at the lowest load bifurcation in elastic systems—the reason for associating the onset of

a bifurcation buckling with an instability in these applications—is also well explained in
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this article. The most general variational formulation of the buckling and post-buckling

problem of conservative elastic systems can be found in Triantafyllidis and Peek (1992),

whose notation is followed in the present paper.

We consider the orthotropic elastic layer 0 < x2 < Ht in a state of plane strain and

subjected to a compressive load parallel to the x1-axis, as shown in Figure 2.2.

Figure 2.2: The graded layer subjected to a compressive load

The elastic moduli Lijkl(x2) are assumed to be arbitrary functions of x2 only, satisfying

the major and minor symmetry conditions

Lijkl = Lklij = Ljikl = Lijlk

The boundary x2 = 0 is assumed traction-free, while x2 = Ht is attached to a rigid

plane surface. In many cases, the wrinkling field will be localized near the free surface

and we can then use the simplifying assumption that the body is a half space (Ht → ∞)

with zero displacement at infinity.

If there is no wrinkling, we expect the stress state to be independent of x1. We shall

refer to this as the ‘fundamental stress state’ and the corresponding solution of the elasticity
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equations as the ‘principal solution’
0
σ and it must satisfy both the equilibrium equations

0
σij,j= 0 i, j = 1, 2

and the boundary conditions

0
σi2= 0

on the free surface x2 = 0. Here and subsequently, the notation (.),i denotes differentiation

with respect to xi and the Einstein summation convention is implied over repeated indexes.

Since there is no dependence on x1 (i.e
0
σ,1= 0), the only possible non-zero stresses are

0
σ11,

0
σ33 which can be general functions of x2. It is convenient to define a loading parame-

ter Λ such that
0
σij (x2, Λ) = 0 at Λ = 0 and increase in Λ describes a set of progressively

increased applied loads
0
σij (x2). We then anticipate that above some critical value of Λ,

the principal solution will become unstable and wrinkling will occur.

2.2.1 Nature of the loading

The loading
0
σ may result from a force applied to the extremities of the body, but in

this case, compatibility considerations demand that the corresponding strain
0
ε11≡ ε0 be

independent of x2, giving

0
σij= Lij11(x2)ε0

Thus, the fundamental stress state varies with depth in proportion with the elastic mod-

ulus. However, more general variations in loading can be generated by other mechanisms.

For example, if the temperature T (x2) of the body is a function of depth, we will have

0
σij= Lijkl(x2)

{
0
εkl −αklT (x2)

}
, (2.1)

where αkl is the tensor of thermal expansion coefficients. This situation may give rise to

wrinkling even for a homogeneous half space if the surface is suddenly heated, leading to
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high compressive stresses in a thin surface layer. Other physical mechanisms leading to

transformation strains could have similar effects.

2.2.2 Analysis

Since we assume elastic material response, the problem is conservative and a potential

energy functional P (ui) exists, defined by

P (ui) = Uint + Wext (2.2)

where ui is the displacement field, Uint is the internal energy and Wext is the potential of

the external forces. The latter are given by

Uint =

∫

V

W (εij)dV and Wext = −
∫

V

ρbiuidV −
∫

∂V

tiuidΓ (2.3)

where W (εij) is the strain energy density in the body V , bi is the body force and ti is the

traction on the boundary ∂V . In the present problem, there is no body force or boundary

traction, so only the strain energy term appears in the subsequent analysis. The strain

energy density W is

W =
1

2
Lijklεijεkl , (2.4)

where εij is the strain field. The wrinkling is governed by small strains and moderate

rotations, so the strain can be expressed as

εij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

+
∂uk

∂xi

∂uk

∂xj

)
. (2.5)

The equilibrium of this system can be examined by taking first derivative of the potential

energy,

P,uδu = 0 (2.6)
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The equilibrium equation can be expressed in the weak form by substituting Eqs.

(2.2)–(2.5) into Eq. (2.6), giving

∫

V

σijδεijdV = 0 (2.7)

The fundamental stress state
0
σ (Λ) is always a solution of Eq. (2.7). We now consider

the stability of the principal solution by taking the derivative of the equilibrium equation.

The principal solution is stable in the neighborhood of Λ = 0 since it minimizes the total

potential energy P — i.e
[
P,uu

(
0
u
)

δu
]
δu > 0 , where

0
u (Λ) is the displacement field

corresponding to the fundamental stress state
0
σ and δu is any kinematically admissible

perturbation. As Λ increases, there will be a critical value Λc where stability is lost —
[
P,uu

(
0
u (Λc)

)
∆u

]
δu = 0, where ∆u is the eigenmode. By substituting the stress field

0
σij= Lijkl

0
εkl in the left-hand side of Eq. (2.7), we can define a stability functional

S(Λ) ≡
[
P,uu

(
0
u (Λ)

)
∆u

]
δu =

∫

V

[
Lijkl∆εklδεij+

0
σij ∆δεij

]
dV , (2.8)

where,

∆δεij = (∆uk,iδuk,j)s ; δεij = (δui,j+
0
uk,i δuk,j)s ; ∆εij = (∆ui,j+

0
uk,i ∆ur,j)s.

where (·)s denotes the symmetric part of the corresponding second-order tensor. Since we

assume small strains,
∣∣∣0
uk,i

∣∣∣ ¿ 1 and the strain field simplifies to δεij ' (δui,j)s, ∆εij '

(∆ui,j)s. At the onset of wrinkling, we therefore have

S(Λc) =
[
P,uu

(
0
u (Λc)

)
∆u

]
δu =

∫

V

[
Lijkl∆uk,lδui,j+

c
σij ∆uk,iδuk,j

]
dV = 0 .

(2.9)

where
c
σ≡ 0

σ (Λc). Integrating Eq.(2.9) by parts and using Gauss’ divergence theorem, we

obtain
[
Lijkl∆uk,l+

c
σpj ∆ui,p

]
,j

= 0 (2.10)
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with boundary conditions

Li2kl∆uk,l+
c
σp2 ∆ui,p = 0 (2.11)

at the free surface x2 = 0 and

∆ui = 0 (2.12)

at x2 = Ht.

Since the fundamental stress state
0
σ and the orthotropid elasticity tensor Lijkl are in-

dependent of x1, the equilibrium equation (2.10) and boundary conditions (2.11) simplify

to

L1212∆u1,22 + L1212,2∆u1,2 +
(
L1111+

c
σ11

)
∆u1,11 + L1122∆u2,21 + L1221∆u2,12

+ L1221,2∆u2,1 = 0

L2211∆u1,12 + L2112∆u1,21 + L2211,2∆u1,1 + L2222∆u2,22 + L2222,2∆u2,2

+
(
L2121+

c
σ11

)
∆u2,11 = 0 (2.13)

L1212∆u1,2 + L1221∆u2,1 = 0

L2211∆u1,1 + L2222∆u2,2 = 0 (2.14)

respectively. Since the material is orthotropic, Eqs. (2.12), (2.13) and (2.14) admit eigen-

modes of sinusoidal form

∆u1 = U1(x2) sin(ωx1)

∆u2 = U2(x2) cos(ωx1) . (2.15)

For the problem at hand, the eigenmode decomposition in Eq. (2.15) is complete. Substi-
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tuting these expressions into (2.13), we obtain two ordinary differential equations

L1212U
′′
1 + L

′
1212U

′
1 − ω2

(
L1111+

0
σ11

)
U1 + ω (L1122 + L1221) U ′

2 + ωL
′
1221U2 = 0

L2222U
′′
2 + L

′
2222U

′
2 − ω2

(
L2121+

0
σ11

)
U2 − ω (L2211 + L2112) U ′

1 − ωL′2211U1 = 0

(2.16)

for the functions U1(x2), U2(x2), where the primes denotes derivatives with respect to x2.

The boundary conditions are

L1212U
′
1 − ωL1221U2 = 0 ; ωL2211U1 − L2222U

′
2 = 0 (2.17)

at x2 = 0 and

Ui = 0 (2.18)

at x2 = Ht, from Eqs. (2.14), (2.15) and (2.12). In the special case where the material is

isotropic, Eqs. (2.16) and (2.17) reduce to

µU ′′
1 + µ′U ′

1 − ω2
(
λ + 2µ+

c
σ11

)
U1 − ω (λ + µ) U ′

2 − ωµ′U2 = 0

ω (λ + µ) U ′
1 + ωλ′U1 + (λ + 2µ) U ′′

2 + (λ′ + 2µ′) U ′
2 − ω2

(
µ+

c
σ11

)
U2 = 0 (2.19)

with boundary conditions

U ′
1 − ωU2 = 0 ; ωλU1 − (λ + 2µ)U ′

2 = 0 , (2.20)

at x2 = 0 and Eq. (2.18) at x2 = Ht, where λ, µ are Lamé ’s constants.

Eqs. (2.16), (2.17) and (2.18) or (2.18), (2.19) and (2.20) define an eigenvalue prob-

lem for the critical loading parameter Λc and the eigenmodes U1(x2), U2(x2) for given

wavenumber ω. If the elastic modulus Lijkl and the fundamental stress state
0
σ are piece-

wise constant functions of x2, the problem can be solved analytically, but the authors were
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unable to obtain an analytical solution for the more general case of a functionally graded

material. In the next section, we therefore develop a numerical discretization of the prob-

lem.

2.2.3 Numerical solution

A numerical solution could be obtained by discretizing the differential Eq. (2.16), but

it is more convenient to apply the finite element method directly to Eq. (2.8). Using the

same eigenmodes as given in Eq. (2.15), the stability functional (2.8) can be written as

S(Λ, ω) =

∫

x1

∫

x2

[Lijkl∆uk,l∆ui,j+
c
σij ∆uk,i∆uk,j]dx2dx1 (2.21)

Stability of the structure depends on S(Λ, ω) being positive definite for all ω ∈ <. Since

from symmetry S depends on ω2, only ω > 0 needs to be checked for Λ.

The x2 domain is decomposed in a set of 2-node linear interpolation elements, within

each of which the unknown displacement Ui is represented in the form

Ui(x2) =
2∑

I=1

NI(x2)u
I
i (2.22)

where NI(x2) is shape function and uI
i is the local degree of freedom for Ui at the two

terminal nodes (I = 1, 2) of the element. For each element there are therefore four degrees

of freedom, which we combine into the vector

qe =
{
u1

1, u
1
2, u

2
1, u

2
2

}T

By substituting Eq. (2.22) to Eq. (2.21) and integrating over the element in question

in x2-space, we obtain the element stiffness matrix
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ke =

∫

e

L dx2,

where

L =




ω2

(
L1111+

0
σ11

)

N1N1+L1212N ′
1N ′

1

ω(L1122−L1221)
N1N ′

1

ω2

(
L1111+

0
σ11

)

N1N2+L1212N ′
1N ′

2

ω(L1122N1N ′
2

−L1221N ′
1N2)

ω(L2211−L2112)
N1N ′

1

ω2

(
L2121+

0
σ11

)

N1N1+L2222N ′
1N ′

1

ω(−L2112N1N ′
2

+L2211N ′
1N2)

ω2

(
L2121+

0
σ11

)

N1N2+L2222N ′
1N ′

2

ω2

(
L1111+

0
σ11

)

N1N2+L1212N ′
1N ′

2

ω(−L1221N1N ′
2

+L1122N ′
1N2)

ω2

(
L1111+

0
σ11

)

N2N2+L1212N ′
2N ′

2

ω(L1122−L1221)
N2N ′

2

ω(L2211N1N ′
2

−L2112N ′
1N2)

ω2

(
L2121+

0
σ11

)

N1N2+L2222N ′
1N ′

2

ω(L2211−L2112)
N2N ′

2

ω2

(
L2121+

0
σ11

)

N2N2+L2222N ′
2N ′

2




The global stiffness matrix K can then be constructed by adding the element stiffnesses

such that
∑

e

qT
e keqe = QTKQ

where Q is a vector of global degree of freedom. The eigenvalues of the system can

be obtained by decomposing the global stiffness matrix K using Choleski decomposition,

subject to the essential boundary condition Ui(Ht) = 0. We write

K = LDU

where L is the lower triangular matrix with unit diagonal terms, U = LT is the upper

diagonal matrix and D is diagonal matrix. By tracking the positive definiteness of D ma-

trix, the system stability can be evaluated. If the system is stable, the lowest eigen value

should be positive. When the load parameter Λ reaches at a critical value Λc at which the

lowest element of D is zero, the system becomes unstable.
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2.3 Results

2.3.1 Convergence and validation

The method developed in the preceding two sections can be used to evaluate the sta-

bility of a half space with arbitrarily graded properties and applied loading. However,

to validate the method, we first compare its predictions with the results of Huang et al.

(2005) for an isotropic homogeneous layer of thickness Hf on a dissimilar substrate of

finite thickness Hs (so in our notation Ht = Hf + Hs). Notice that these authors made the

simplifying assumption that the shear stress at the film/substrate interface is zero, whereas

our analysis is exact within the context of the numerical discretization.

Figure 2.3 shows the critical strain εc
0 and critical dimensionless wavelength 2π/ωcHf

as a function of the thickness ratio Hs/Hf for three values of the modulus ratio Ēf/Ēs,

where Ē is the plane strain modulus defined as

Ē =
E

1− ν2

and E and ν are Young’s modulus and Poisson’s ratio, respectively. Poisson’s ratio for

both film and substrate was taken as ν = 0.4. The solid lines are taken from Huang

et al. (2005) and reproduce their Fig. 5, while the points were obtained from the present

program. The agreement is extremely good in all cases.

Tests were also conducted to determine the number of elements required for the nu-

merical solution to converge. A finer mesh was used in the film and in the upper layers of

the substrate since the perturbation is concentrated in this region. Better than 0.1% accu-

racy was obtained using 100 elements in the film and an equal number in a region of the

substrate adjacent to the interface of thickness 3Hf . For the most efficient meshing, the
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element gradation should follow the rate of decay of the perturbation, but this depends on

the wavelength which is only known a posteriori.

It is clear from Figure 2.3 and from heuristic considerations that the thickness of the

substrate has little effect on the results if it is large compared with the wavelength of

the eigenmode. For the homogeneous layer, we found that the half space results can be

recovered from the necessarily finite numerical model provided that the substrate thickness

Hs is greater than about twice the wavelength — i.e. Hs > 4π/ωc.

2.3.2 Graded materials

We next turn our attention to continuously graded materials, for which no previous

results are available. We considered two examples: a half space in which the plane strain

modulus is graded exponentially from a surface value Ē0 to a substrate value Ēs as x2 →

∞— i.e.

Ē(x2) = Ēs + (Ē0 − Ēs) exp

(−x2

H

)

and one in which the grading follows the complementary error function

Ē(x2) = Ēs +
(
Ē0 − Ēs

)
erfc

(x2

H

)
. (2.23)

In both of these examples, the parameter H serves as a characteristic length for the de-

cay and can also be used in constructing an expression for the dimensionless wavenumber

ωcH . The two expressions are compared in Figure 2.4, which shows that the error function

decays to zero more rapidly at large depths.

Figure 2.5 shows the critical strain εc
0 and the dimensionless wavenumber ωcH for the

exponentially graded modulus as a function of the modulus ratio Ē0/Ēs. Poisson’s ratio

was taken as a constant ν = 0.4 for these calculations. For comparison we also show

on these figures the results for a homogeneous layer (solid line). The parameters for this
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Figure 2.3: Critical strain and wavelength for a homogeneous layer on a dissimilar sub-
strate. The solid lines are taken from Huang et al. (2005).
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‘equivalent homogeneous layer’ were chosen by matching the area between the modulus

curve and the constant substrate level and the first moment of the same area, giving

Hf =
2
∫∞
0

(Ē(x2)− Ēs)x2dx2∫∞
0

(Ē(x2)− Ēs)dx2

(2.24)

and

Ēf =
1

Hf

∫ ∞

0

(Ē(x2)− Ēs)dx2 . (2.25)

The graded results show a trend similar to the homogeneous layer, but the dependence

on modulus ratio is not now of power law form and both critical strain and wavenumber

become less sensitive to modulus ratio at high ratios. However, the homogeneous approx-

imation (2.24) and (2.25) underestimates the critical strain by up to a factor of two and

generally overestimates the corrresponding wavenumber.

Corresponding results for error-function gradation are shown in Figure 2.6. The results

are qualitatively similar to the exponential case, though the homogeneous approximation

to the critical wavenumber is less good.
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Figure 2.5: Critical strain and dimensionless wavenumber for exponential grading. The
solid line represents a homogeneous layer approximation using Eqs. (2.24)
and (2.25).
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Figure 2.6: Critical strain and dimensionless wavenumber for error function grading. The
solid line represents a homogeneous layer approximation using Eqs. (2.24)
and (2.25).
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2.3.3 Effect of Poisson’s ratio

In the preceding results, Poisson’s ratio was assumed to be independent of depth. To

examine the effect of grading in ν, we considered the case in which both Ē and ν have

error function grading. In other words, Ē is given by Eq. (2.23) and

ν = νs + (ν0 − νs)erfc
(x2

H

)
(2.26)

The critical strain and wave number are shown as functions of Ē0/Ēs in Figure 2.7 for

the case where ν0 = 0 and νs = 0.49. For comparison, we also show results for the two

cases where the modulus has the same grading but Poisson’s ratio is uniform and given by

the extreme values ν0 = 0 and 0.49, respectively. For a homogeneous layer on a homoge-

neous substrate, the critical strain and wave number depend only on the ratio of the plane

strain moduli Ē0/Ēs and are otherwise unaffected by Poisson’s ratio (Huang et al., 2005).

By contrast, if the modulus is graded, we find a significant effect of ν even if it is assumed

uniform. These effects are greatest when the modulus ratio is relatively modest. For ex-

ample, for Ē0/Ēs=10, the critical strain for ν = 0 exceeds that for ν = 0.49 by almost 90%.

The results for graded Poisson’s ratio are very close to those obtained using the uniform

value 0.49. In other words, a good approximation is obtained if the substrate value of ν

is used throughout the body. This conclusion was verified by other numerical experiments.

2.3.4 Thermoelastic wrinkling

As a final example, we consider the case where the material is isotropic and homo-

geneous, but the fundamental stress state
0
σ varies with depth because of a non-uniform

temperature field due to surface heating, as in Eq. (2.1). If the body is initially at zero

temperature and the boundary x2 = 0 is raised to a constant temperature T0 for time t > 0,
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(♦) Eq. (2.26) with ν0 = 0, νs = 0.49.

42



the subsequent temperature profile will be given by

T (x2, t) = T0erfc

(
x2√
4κt

)
, (2.27)

where κ is the thermal diffusivity Carslaw and Jaeger (1959, §2.5). The corresponding

fundamental stress state is then

0
σ11= − EαT0

(1− ν)
erfc

(
x2√
4κt

)
, (2.28)

from Eq. (2.1), where α is the coefficient of thermal expansion.

Both expressions have the same functional form at all times, but the characteristic

length scale κt (and hence the wavelength of any wrinkles) increases with time. We can

therefore determine a universal dimensionless critical thermal strain α(1+ν)T c
0 and critical

wavenumber ωc
√

κt from a single numerical calculation. We find

α(1 + ν)T c
0 = 0.287 ; ωc

√
κt = 75.6 . (2.29)

A related problem is one in which the thermal-expansion mismatch is uniform and lim-

ited to a surface layer of thickness Hf in a homogeneous material. The critical strain for

this problem is given by α(1 + ν)T c
0 =0.267, and the critical wave number is ωcHf =12.2.

This thermoelastic problem also provides a model for other phenomena that involve com-

pressive misfit strains within a surface layer; for example, a layer with epitaxial strains, a

layer with a volume change due to a phase transition or concentration of a diffusive species

(Larché and Cahn, 1982), or a piezo-electric layer. The critical strains due to pure ther-

moelastic effects are sufficiently large that the surface instabilities may not be of practical

significance when there is no modulus mismatch, but in conjunction with a stiff surface

layer, phenomena such as thermoelastic wrinkling are likely to occur at practical levels of
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strain.

2.4 Conclusions

We have presented a general strategy for determining the critical strain and the corre-

sponding wavenumber for the wrinkling instability of a half space or thick layer loaded

in compression, when the elastic properties vary with depth. Results exhibit dependence

on modulus ratios similar to those observed when a homogeneous stiff surface layer is

bonded to a more flexible substrate (i.e. where the elastic properties are piecewise con-

stant). We present expressions permitting analytical results for the latter case to be used in

an approximate sense. The method can also be applied to thermoelastic loading associated

with transient surface heating and we give results for the critical surface temperature at

which a homogeneous half space will develop wrinkling.
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CHAPTER III

ESTIMATION OF THE PROPERTIES OF A THIN
HARD LAYER ON A SOFT SUBSTRATE BY

INDENTATION

3.1 Introduction

Indentation has been used as a standard method to determine mechanical properties

such as hardness, stiffness, or modulus (Cousins et al., 1975; Robinson and Truman, 1977).

It also has been used to measure the material properties of thin films on a substrate whose

thickness reaches up to a few microns (van der Zwaag and Field, 1983; Vinci and Brav-

man, 1991). Recent technical/engineering development, which is moving toward smaller

and smaller scales, requires more sophisticated method to characterize properties of new

materials and small structures at sub-micron or nano-scale accuracy. This requirement

has led to another technical development that makes nano-indentation possible. Atomic

force microscopy (AFM) is a well known implementation of the development. Many re-

searchers have characterized materials and small-scale structures including the oxidized

layer of PDMS using AFM as a means of nano-indentation (VanLandingham et al., 1997;

Chien et al., 2000).

Recently, Mills et al. (2007) reported an interesting observation about indentation ex-

periments in PDMS. They investigated the surface of unoxidized and oxidized PDMS
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using AFM with SiNi tip attached to a compliant cantilever (k = 0.58 N/m). When unoxi-

dized PDMS samples were indented, a non-linear load versus indentation relationship was

observed (Figure 3.1a). By contrast, a relationship close to linear was observed from in-

dentation into oxidized PDMS samples (Figure 3.1b). They reported that the relationship

between the applied load and indentation depth is in the range of 1.9 to 2.1 N/m in linear

scale. If the relationship is converted using a power law(P = Czm), the exponent(m)

ranges between 0.98 and 1.01.

(a) (b)

Figure 3.1: Load versus Indentation depth relation for the compliant cantilever (k = 0.58
N/m) indenting on (a) unoxidized and (b) 4-minute oxidized PDMS (Repro-
duced from Mills et al. (2007))

Typically, non-linear relationships between load and indentation depth have been re-

ported in indentation experiments. Thus, the linear relation could be an interpretation

of the modified properties of PDMS. Though many experimental results have reported

the possibility of non-uniform properties of the modified layer (Chien et al., 2000; Brun

et al., 2001; Efimenko et al., 2002), there are not many theoretical analyses that take the
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non-uniform properties into account. These analyses that have considered the graded char-

acteristics have dealt with a modulus that increases with increasing depth (Calladine and

Greenwood, 1978; Giannakopoulos and Suresh, 1997a,b).

Therefore, a theoretical method needs to be set up for the estimation of the modi-

fied properties of PDMS with the assumption of graded material properties. To build the

method, indentation theories will be explored to explain the possible cause of the linear

force-indentation depth relationship observed by Mills et al. (2007). Then, an iterative

procedure to estimate the properties of the modified layer - modulus at the surface and

thickness - will be presented based on the suggested theory and the experimental results

reported by Mills et al. (2007).

3.2 Indentation into a homogeneous plate on a half space

A possible theoretical solution for the linear response in the indentation experiment is

a plate on an elastic half space which is indented by a point force. Because the modified

layer is generally considered as very thin and harder than the substrate (i.e. bulk PDMS),

and the AFM tip is much smaller relative to the size of oxidized specimen, the system

could be modeled as a plate on an elastic half space.

If the plate theory is an adequate solution to explain the linear force-indentation rela-

tionship, the material properties of the modified layer can be determined based on follow-

ing argument. If a point force acts on the plate, it will deform to a finite radius (Figure

3.2a). If the material properties for the plate and half space are given, the indentation depth

is always proportional to the point force. For a rigid indenter, if the radius of a deformed

plate is larger than that of the indenter, then the contact load can be considered as a point

force and the problem will be linear (Figure 3.2b). Beyond some critical force, the contact

47



will be become an annular load and the problem will be non-linear (Figure 3.2c). There-

fore, if the parameters of the problem are near the plate/foundation (i.e. half space) limit,

an equivalent stiffness for the plate could possibly be determined. If there is an indepen-

dent estimate of the film thickness, this would permit an estimate of the modulus of the

plate.

A classic indentation theory will be reviewed, which can be a solution for the inden-

tation problem into homogeneous plate resting on elastic half space without friction or

adhesion. This theory will be examined for the case of plate bonded to a half space, which

models a modified layer on a substrate. The theoretical approaches will be examined using

the commercial finite-element code (ABAQUS) by simulating the indentation process.

(a)

r

R

(b)

r

(c)

Figure 3.2: Possible deformation of a plate by a point force and a rigid indenter
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3.2.1 Indentation into a plate on an elastic half space without friction / adhesion

Consider the problem of a thin plate resting on an elastic half space without friction and

subjected to a normal compressive force P (Figure 3.3). The plate consists of thickness

Hf and elastic properties Ef and νf , and the elastic half space consist of elastic properties

Es and νs.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HfEf, νf

Es, νs

P

r

z

Figure 3.3: Schematic of indentation into a plate on elastic half space. E is the elastic
modulus, and ν is Poisson’s ratio. f and s in the subscripts mean the plate and
substrate, respectively. Hf is the thickness of the plate.

Timoshenko and Woinowsky-Krieger (1959) gave a solution of the problem for a plate

resting on a half space without friction. The relationship between force and displacement

(w) and contact pressure (p) were given with the form of Eq. (3.1) at a point on the surface

of the plate.

w = Pl2(2D)−1w0, p = Pl−2p0 (3.1)

where,

w0 =
1

π

∞∫

0

Jo (λρ)

λ3 + 1
dλ, p0 =

1

2π

∞∫

0

Jo (λρ) λ

λ3 + 1
dλ

ρ = r/l, D = EfH
3
f

(
12

(
1− ν2

f

))−1
, l =

(
2DE−1

s

(
1− ν2

s

))1/3
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E, ν are the elastic modulus and Poisson’s ratio of a plate of thickness Hf while Es, νs

are the characteristics of the elastic half space, and J0(z) is the Bessel function. D is the

flexural rigidity of the plate. Ol’shanskii (1987) suggested the integral of w0 and p0 as

forms of power series.

w0 =
1

6

∞∑
m=0

(−1)m

{
4√
3

[
η6m

((3m)!)2
− η6m+4

((3m + 2)!)2

]

+
3η6m+5

Γ2(3m + 7/2)
+

6

π

η6m+2

((3m + 1)!)2
[ln η − ψ(3m + 2)]

}
(3.2)

p0 =
1

12

∞∑
m=0

(−1)m

{
4√
3

[
η6m

((3m)!)2
− η6m+2

((3m + 1)!)2

]

− 3η6m+1

Γ2(3m + 3/2)
+

6

π

η6m+4

((3m + 2)!)2
[ln η − ψ(3m + 3)]

}
(3.3)

3.2.2 Indentation into a plate bonded to an elastic half space

Now consider the problem of a thin plate that is bonded to an elastic half space and

subjected to a normal compressive force P . Both the plate and half space have the same

properties given in previous section. In this section, another assumption µf >> µs is used,

since otherwise the plate theory would not be appropriate. Here, µ is Lamé’s constant, and

f and s in subscripts denote the plate and half space, respectively.

The bonded plate will tend to restrain tangential displacement of the surface of a half

space, relative to the frictionless case considered in the previous section. Two limits can

be considered: one in which this displacement is completely restrained, so that the radial

displacement ur = 0 ; and one in which the shear traction σzr = 0 at z = 0. For the latter

case, the surface tractions and displacements for the half space can be written in terms of
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a harmonic function ϕ in the form

uz(r, 0) = −(1− νs)

µs

∂ϕ

∂z
(r, 0); σzz(r, 0) = −∂2ϕ

∂z2
(r, 0) (3.4)

using the superposition of Green and Zerna’s solution (Barber, 2002, §19.5).

For the radially restrained case, the displacement and surface traction can be written as

follows:

uz(r, 0) = −(3− 4νs)

2µs

w(r, 0); σzz(r, 0) = −2(1− νs)
∂w

∂z
(r, 0) (3.5)

If the displacement w can be written in the form,

w =
1

2(1− νs)

∂ϕ

∂z
(3.6)

Eqs. (3.4) and (3.5) take the form

uz(r, 0) = − (3− 4νs)

4µs(1− νs)

∂ϕ

∂z
(r, 0); σzz(r, 0) = −∂2ϕ

∂z2
(r, 0) (3.7)

The displacement and stress in Eq. (3.7) are identical to those in the frictionless case

except for the multiplying constant on uz. In particular, for a given value of contact pres-

sure , the displacement in the frictionless case will exceed that in the radially restrained

case by the ratio
4(1− νs)

2

(3− 4νs)
(3.8)

Eq. (3.8) equals unity if νs = 0.5, indicating that the problems are identical if the

half space is incompressible and there will be no tangential displacements or surface shear

tractions in either case. For νs = 0, the ratio is 4/3, showing that the stiffening effect of the

radial restraint is always quite modest. For an intermediate value νs = 0.3, the ratio is 1.09.

Thus, the frictionless assumption seems to be a valid model for the analysis of indentation

into a plate on an elastic half space. The radially restrained case can be recovered by

a modest increase in the assumed half space elastic modulus. Therefore, Ol’shanskii’s
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solution can be used to determine the load-indentation depth relation for both frictionless

case and radially restrained case.

In Eq. (3.2), the dimensionless displacement (w0) corresponds to the case η = 0 at the

point subjected to the load. Thus, the only non-zero term gives

w0 =
1

6
(−1)0 4√

3

1

(0!)2
=

2

3
√

3
(3.9)

By substituting Eq. (3.9) into Eq. (3.1), dimensional displacement is given as follows:

w(0, 0) = Pl2(2D)−1w0(0) (3.10)

After rewriting the term l using the elastic relation 2(1− ν2
s )/Es = (1− νs)/µs , the final

dimensional expressions for the central displacement become

w(0, 0) =
P

3
√

3

(
(1− νs)

2

µ2
sD

)1/3

(3.11)

for the frictionless case and

w(0, 0) =
P

3
√

3

(
(3− 4νs)

2

16µ2
s (1− νs)

2 D

)1/3

(3.12)

for the radially restrained case.

3.2.3 Finite element analysis of the indentation into a plate on an elastic substrate

To examine the relevance of the plate theory, indentation into a plate on an elastic half

space is simulated using a commercial finite-element code (ABAQUS/Standard). Because

the solutions of the plate theory, Eqs. (3.11) and (3.12), are approximate, they are com-

pared with the finite-element (FE) solutions that are generally considered to be correct.
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Figure 3.4 shows the geometry of the model for the simulation. For convenience, the

terms ‘film layer’ and ‘substrate ’ are used to designate the plate and the half space, respec-

tively. The indenter tip is modeled as rigid body with parabolic shape, and 2-dimensional

linear hybrid axisymmetric elements are used for the film layer and substrate. As seen in

Figure 3.4, the sliding boundary condition is applied along the axis of symmetry and the

substrate’s base, while a fixed boundary condition is applied at the right edge of each layer

to mimic the infinite boundary (u = v = 0) due to the dimensional limitation of ABAQUS.

This assumption should not add much error to the results. Hf and Hs are the thicknesses

of the film and substrate, respectively. Htot is the total thickness of the simulation model

(Htot = Hf + Hs). The simulation has been done by controlling the displacement of the

indenter (z). Figure 3.5 shows the mesh configuration near the indenter tip.

 z 

x  

y  

 Hf

Htot

D/2

Figure 3.4: Geometry and boundary conditions for the finite element simulation
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Rigid Indenter

Figure 3.5: Mesh configuration near the indenter tip

Figure 3.6 shows a sample output of the simulation; force-indentation depth relation

between the plate theory and a FE simulation. As shown in the figure, the FE simula-

tion gives a result that deviated widely from the plate theory, and, furthermore, the force-

indentation depth curve is non-linear. This discrepancy is outside the goals of what we

consider to be the magnitude of the uncertainty in the normalized results. Because both

layers are assumed to be incompressible bodies, equations (3.11) and (3.12) give the same

results.

Though the FE simulation is generally accepted as a correct solution for a continuum

problem, it needs to be verified for this discrepancy because it is not an exact solution.

According to our assumptions, there are two possibilities for the origin of the non-linearity

in the force-indentation depth curve. One is that the displacement of the indenter is not

solely determined by the plate theory. The other is that that the contact radius (a) is

not constant during the FE simulation. The first possibility can be explained as follows;

if the radius of a rigid indenter is much smaller than the plate thickness, the film layer
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Figure 3.6: Comparison of the load-indentation depth curve between the plate theory and
FE simulation; (–) the plate theory, (©) the FE simulation.

can be considered as a half space. Therefore, the problem becomes a local indentation

problem. If the radius of the indenter is larger than certain critical value, the indenter

can be considered as a point force and hence the plate theory will be the dominant factor

of the indentation depth. Therefore, the effect of both the rigid indenter and the point

force need to be considered. Based on this assumption, new FE simulation has been done

using cylindrical punches with various radius a, and then we obtained force-indentation

relationships close to linear. In Successive simulations, we obtained results that the plate

theory and FE simulation give similar results when the punch radius is much smaller than

the film thickness; a/Hf <∼ 0.02. Therefore, the plate theory may not be adequate to

simulate the indentation problem with rigid indenter.

To compare the plate theory and the FE simulation with a non-circular rigid indenter,

the simulations are performed with different modulus. Figure 3.7 shows results that com-
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pare the plate theory and the FE simulation for various modulus ratios. The dotted lines are

the plate theory, and the solid lines are results of the FE simulation. Each symbol on the

lines shows the modulus ratio between the film layer and the substrate. The plate theory

and the FE simulation are getting closer according to increasing modulus ratio. Therefore,

the information that can be obtained from the plate theory is that it could be used for a

bi-layer system that the film layer is much harder than the substrate (Ef/Es >∼ 1000).

No information about the contact radius can be obtained from the theory.

0
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Figure 3.7: Comparison between the plate theory and the FE simulation with various mod-
ulus ratios; (- - -) the plate theory, (—) the FE simulation, Ef/Es = (©) 10,
(¤) 100, ( ♦) 1000. νf = νs = 0.5.

The second assumption can be examined by combining the plate theory with Hertz

theory. For a spherical rigid indenter, the force-indentation depth relation is,

P =
4EfR

1/2

3(1− ν2
f )

w(0, 0)3/2 (3.13)
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where R is the radius of the rigid indenter, and Ef and νf are the material properties of

the plate. The Hertz theory can be added to the plate theory by adding the displacement

from both theories. From Eqs. (3.12) and (3.13), a new load-displacement relation can be

derived.

w(0, 0) =

(
3(1− ν2

f )

4EfR1/2

)2/3

P 2/3 +
P

3
√

3

(
(3− 4νs)

2

16µ2
s (1− νs)

2 D

)1/3

(3.14)

where subscripts f and s mean the plate and substrate, respectively.

As before, the finite-element method is used to examine the new load-indentation depth

relation. The term ‘modified plate theory’ will be used to refer to Eq. (3.14). Figure

3.8 shows dimensionless load-indentation depth curve calculated from the modified plate

theory and the finite element simulation. Though non -linear relationship is shown in this

figure, there still some differences between the modified plate theory and the finite element

method.

Figure 3.9 shows the effective range of the modified plate theory (left side of the line

with circular symbols). Each symbol in the figure means the contact radius that the solu-

tion of the modified plate theory and the FE simulation is same at a given modulus ratio.

As seen in the figure, the modified plate theory may be valid when the contact radius

is much smaller (a/Hf <∼ 0.015) and the film layer is much stiffer than the substrate

(Ef/Es >∼ 200). In other words, the indentation depth needs to be very shallow than the

thickness of the film layer (z/Hf <∼ 0.01%). The modified plate theory is also effective

for a layered system that the modulus of film layer is much higher than that of the sub-

strate. The flat lines in the range of moderate modulus ratios (30 ≤ Ef/Es ≤ 200) may

be caused by the minimum mesh size (i.e. some contact points between indenter and the
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film surface exist between nodes).
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Figure 3.8: A sample comparison of the load-indentation depth curve between the modi-
fied plate theory and the FE simulation; (- - -) modified plate theory, (–) FE
simulation. Ef/Es = 100, νf = νs = 0.5.
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Figure 3.9: Effective range of the modified plate theory. The steps near a/Hf = 0.01 may
be caused by the minimum mesh sizes in the finite element simulation.
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3.2.4 Estimation of the modulus of the surface-modified layer of PDMS

Thus far, we used the finite-element method to explore the limitations of the plate

theory and a modified plate theory by simulating the indentation process. Now, we use

it to find the combination of modulus and thickness of a layer, which produces a force-

indentation depth relation similar to the experimental observation of Mills et al. (2007) for

an oxidized PDMS.

Mills et al. (2007) suggested a method to estimate the thickness of the modified layer

using the phase imaging function of AFM. They reported the thickness of a 4-minute

oxidized layer being 200 nm. They also estimated the modulus of the modified layer

using the plate theory (Ol’shanskii, 1987), with a substrate modulus Es = 3.5MPa and

an assumption that νf = νs = 0.5. When they assumed a discrete layer, they obtained

the value Ef = 12 ± 3MPa, and they obtained Ē0 = 37 ± 10MPa with linearly graded

assumption, where Ē0 is surface modulus of the oxidized layer (i.e. plane strain modulus).

Based on the parameters they reported, an attempt has been made to estimate the modulus

of the film layer using the FE simulation.

Figure 3.10 shows the comparison of the FE simulation results and the force- inden-

tation depth relation obtained from nanoindentation experiments. At moderate modulus

ratios (Ef/Es ∼ 30, 40, 50), the FE simulation results are close to the experimental data.

However, modulus ratios that exist in the experimental limits are hard to find due to the

non-linear relationship. The simulated force-indentation depth relationships can be fitted

to the experimental data if the shallow indentation data is used. However, the modulus ratio

should be high Ef/Es = 100, therefore Ef is at least 350 MPs based on the nanoindenta-

tion data. Moreover the minimum power-law relationship (i.e. the exponent of power-law

fitting) between the force and indentation depth of the FE simulation results is larger (∼

1.33) than the largest value of the experimental data (1.01). A higher modulus ratio may
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produce a simulated power-law relationship that is close to the experimental data. How-

ever, the modulus of the modified layer may be unrealistically high. This leads one to

the conclusion that the plate theory may be an oversimplified approximation. Therefore,

another theoretical approach needs to be considered to explain the linear force-indentation

depth relation.
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Figure 3.10: Comparison between the results of the FE simulation and the nanoindentation
experiments done by Mills et al. (2007); Ef/Es = (¤) 10, (©) 30, (♦) 40,
(4) 50, (+) 100. Solid lines are experimental results. νf = νs = 0.5.

Table 3.1: Power-law relationships of the FE simulation

Ef/Es Force-indentation depth relationship

10 1.4652 ± 0.004
30 1.4085 ± 0.007
40 1.3912 ± 0.007
50 1.3774 ± 0.008

100 1.3326 ± 0.01
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3.3 Indentation into an elastic half space with graded material prop-
erties

In the previous section, plate theory and a modified plate theory were examined for the

indentation problem into a layered structure. In this section, the effect of a graded modulus

is considered, to explore whether it causes the linearity between the force and the inden-

tation depth. An interesting question is whether we can find an adequate grading profile

that produces linearity in the force-indentation depth relation. Similar approaches have

been made by other researchers (Calladine and Greenwood, 1978; Giannakopoulos and

Surresh, 1997). However, their studies concerned grading profiles that increase with in-

creasing depth. The grading profiles that decrease with increasing depth will be considered

in this section. Though Giannakopoulos and Suresh (1997a,b) suggest analytical solutions

for indentation with exponentially decreasing modulus, they didn’t give any verification.

As in the previous sections, an analytical approach will be presented first then the

finite-element method will be used to examine the limitations of the analysis.

3.3.1 Indentation by a cylindrical punch

Consider the half space z ≡ x3 > 0 with the elastic constitutive law

σij = cijkl
∂uk

∂xl

, (3.15)

where the modulus c varies with depth according to

cijkl = xλ
3Cijkl (3.16)

We initially consider an axisymmetric problem in which the half space is indented by a

frictionless flat cylindrical punch of radius a. Here it is convenient to use cylindrical polar

coordinates (r, θ, z) with z ≡ x3. The boundary conditions are then
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σzr(r, 0) = σzθ(r, 0) = 0 (3.17)

for all r, and

uz(r, 0) = ∆; 0 ≤ r < a (3.18)

σzz(r, 0) = 0; r > a, (3.19)

where ∆ and a are the displace and the radius of the punch, respectively. This is a lin-

ear problem in which the only length scale is the radius a, and hence the solutions for

all a and ∆ can be mapped into each other by a linear mapping. To expose this result

mathematically, we define dimensionless coordinates

ρ =
r

a
; ζ =

z

a
; ξi =

xi

a
(3.20)

and displacements

U =
u

∆
(3.21)

Eq. (3.16) then becomes

cijkl = xλ
3Cijkl = ξλ

3 aλCijkl, (3.22)

and the constitutive law transforms to

σij = ∆ξλ
3 aλ−1Cijkl

∂Uk

∂ξl

(3.23)

Substituting the stress components (3.23) into the equilibrium Eq. (3.15).

∂σij

∂xj

= 0, (3.24)

we obtain

∆aλ−1Cijkl
∂

∂xj

(
ξλ
3

∂Uk

∂ξl

)
= 0, (3.25)

which requires that

Cijkl
∂

∂xj

(
ξλ
3

∂Uk

∂ξl

)
= 0, (3.26)
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since a and ∆ are not zero.

The boundary-value problem is now defined as the search for a function U satisfying

σzr(ρ, 0) = σzθ(ρ, 0) = 0, (3.27)

such that

Uz(ρ, 0) = 1; 0 ≤ ρ < 1 (3.28)

σzz(ρ, 0) = 0; ρ > 1, (3.29)

where the stress components are related to the Ui through Eq. (3.23). We notice that

the boundary conditions involving stresses are all homogeneous. Thus, for example, the

condition σzz ≡ σ33 = 0 in ρ > 1 and x3 = 0 becomes

∆ξλ
3 aλ−1C33kl

∂Uk

∂ξl

= 0 (3.30)

in ρ > 1 and x3 = 0. This clearly requires that

ξλ
3 aλ−1∂Uk

∂ξl

= 0 (3.31)

in ρ > 1 and x3 = 0. It follows that, since neither the governing equation nor the boundary

conditions involve the dimensional parameters a and ∆, the dimensionless boundary value

problem has a universal solution for given λ and Cijkl .

In the dimensional problem, we are interested in the total force F required to produce

the indentation ∆. The most natural way to determine this is to sum the tractions over the

contact area. However, since the modulus will go either to zero or to infinity for all values

of λ 6= 0, this will involve a limiting process. Therefore, it may be better to consider the

tractions transmitted across the horizontal plane ξ3 ≡ ε, where ε ¿ 1, and the tractions

can be allowed to tend to zero in the limit.

The normal traction on this boundary is defined by
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σ33 = ∆λaλ−1C33kl
∂Uk

∂ξl

(ξ1, ξ2, ε) , (3.32)

and the total force is

F = ∆λaλ−1C33kl

∫ ∞

−∞

∫ ∞

−∞

∂Uk

∂ξl

(ξ1, ξ2, ε) dx1dx2

= ∆λaλ+1C33kl

∫ ∞

−∞

∫ ∞

−∞

∂Uk

∂ξl

(ξ1, ξ2, ε) dξ1dξ2 (3.33)

The force can be written as

F = Kaλ+1∆, (3.34)

where

K = ελC33kl

∫ ∞

−∞

∫ ∞

−∞

∂Uk

∂ξl

(ξ1, ξ2, ε) dξ1dξ2 (3.35)

is independent of a and ∆. Thus, the effective stiffness of the indentation varies with aλ+1.

It is worth noting here that the special case of the homogeneous half space corresponds

to λ = 0, for which F is proportional to a, as is indeed found in the classical solution

to this problem. Another special case is that the modulus is a linear function of depth

(λ = 1). This case was considered by Calladine and Greenwood (1978) who found that

the half space then behaved like a Winkler foundation. In other words, the normal traction

is linearly proportional to the local indentation and is unaffected by displacements at other

locations of the surface. In this case, it follows immediately that the force required to pro-

duce an indentation of a given depth is proportional to the area of the indenter planform

and hence, in the present case, to a2, which again is consistent with the above general

result.
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3.3.2 Indentation by a power-law shaped punch

Suppose now that the half space is indented by a punch whose profile is defined by a

power law (z = Crβ), so that the boundary conditions are

σzr(r, 0) = σzθ(r, 0) = 0 (3.36)

for all r, and

uz(r, 0) = ∆− Crβ; 0 ≤ r < a (3.37)

σzz(r, 0) = 0; r > a (3.38)

where C is a constant. Since the punch is smooth, the contact radius (a) is a dependent

variable if either the force F or the indentation ∆ is prescribed. The force F and ∆ cannot

be prescribed at the same time.

Alternatively, the contact radius (a) can be an independent variable if both F and ∆

are allowed to be dependent. The extra condition needed to determine ∆ is the fact that

the gap must be positive outside the contact area and the traction compressive inside. An

equivalent formulation is that the displacement gradients be continuous at the edge of the

contact area. With this formulation, the boundary value problem can be defined in terms

of displacement gradients alone, giving

σzr(r, 0) = σzθ(r, 0) = 0 (3.39)

for all r, and

∂uz

∂r
(r, 0) = −Cβrβ; 0 ≤ r < a (3.40)

∂uz

∂r
(a−, 0) =

∂uz

∂r
(a+, 0) (3.41)

σzz(r, 0) = 0; r > a (3.42)

65



This time, we cannot use ∆ to normalize u, so we shall leave it in dimensional terms,

giving

σzr(ρ, 0) = σzθ(ρ, 0) = 0 (3.43)

for all ρ , and
∂uz

∂ρ
(ρ, 0) = −Cβaβρβ−1; 0 ≤ ρ < 1 (3.44)

∂uz

∂ρ
(1−, 0) =

∂uz

∂ρ
(1+, 0) (3.45)

σzz(ρ, 0) = 0; ρ > 1, (3.46)

where the stress components are related to the ui through

σij = aλ−1ξλ
3 Cijkl

∂uk

∂ξl

(3.47)

The modified problem defined by

σzr(ρ, 0) = σzθ(ρ, 0) = 0 (3.48)

for all ρ , and
∂uz

∂ρ
(ρ, 0) = −ρβ−1; 0 ≤ ρ < 1 (3.49)

∂uz

∂ρ
(1−, 0) =

∂uz

∂ρ
(1+, 0) (3.50)

σzz(ρ, 0) = 0; ρ > 1, (3.51)

has a solution ui = Ui(ξ1, ξ2, ξ3) that is independent of a and it is clear that the solution of

the problem of (3.30)-(3.33) is

ui = CβaβUi(ξ1, ξ2, ξ3) (3.52)
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Substituting this result into Eq. (33), we have

σij = Cβaλ+β−1ξλ
3 Cijkl

∂Uk

∂ξl

, (3.53)

and the total force is

F = Cβaλ+β−1ελCijkl

∫ ∞

−∞

∫ ∞

−∞

∂Uk

∂ξl

(ξ1, ξ2, ε) dx1dx2

= Cβaλ+β+1ελCijkl

∫ ∞

−∞

∫ ∞

−∞

∂Uk

∂ξl

(ξ1, ξ2, ε) dξ1dξ2

= Cβaλ+β+1F , (3.54)

where,

F = ελCijkl

∫ ∞

−∞

∫ ∞

−∞

∂Uk

∂ξl

(ξ1, ξ2, ε) dξ1dξ2 (3.55)

Thus, ∆ is independent of the contact radius a.

Consequently, the relation between the force (F ) and the contact radius (a) is of the

form

F ∼ aλ+β+1 (3.56)

The central displacement (i.e. indentation depth) is

∆ = u3(0, 0, 0) = CβaβU3(0, 0, 0) (3.57)

From Eqs. (3.56) and (3.57), the relation between force and indentation depth can be

expressed as follows,

F ∼ ∆(λ+β+1)/β (3.58)

In particular, F is linearly proportional to ∆ if

λ + β + 1

β
= 1 (3.59)
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or

λ = −1 (3.60)

for all shapes of punch. In other words, the linearity can be obtained if the modulus is

inversely proportional to depth. Notice that this result is independent of β—i.e. if λ = −1,

the linearity can be obtained for indenters of all power-law shapes. Giannakopoulos and

Suresh (1996) have done a similar analysis with simple power law (E = E0z
k). They

defined E0(Pa m−k) as the modulus of homogeneous soil (k = 0) and k is dimensionless

exponent (0 ≤ k < 1). However, there is no reason that most k be positive even if

there are singularities near the sharp edge of an indenter (This is confirmed by a personal

communication). Thus, the entire range of λ(−1 ≤ λ ≤ 1) will be considered in this

research.

Figure 3.11 shows the graphic model of a simple power law. If λ is positive, the mod-

ulus increases according to the increasing depth. If λ = 0, the modulus is same as the

homogeneous half space. If λ = 1, the modulus behaves well known Gibson soil (Gibson,

1967). This type of distribution has been used in geomechanics which deals with soils,

sands, clay and rocks. If λ is negative the modulus decays as the depth increases, and it

has a singularity at z = 0.

z

 

 

 

 

 
λ > 0

λ = 0

λ < 0

E

H

λ =  1

E0

Figure 3.11: Graphic model of a simple power law E = E0(z/H)λ (−1 ≤ λ ≤ 1)
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3.3.3 Finite-element analysis of the indentation into an elastic half space with power
law grading modulus

To examine the relevance of the power law, another series of FE simulations have been

performed with a modulus distribution which follows the power law. A simple power law

is used for the simulation.

E = E0

( z

H

)λ

(3.61)

where −1 ≤ λ ≤ 1, E0 is the modulus at the surface of the half space, H is arbitrary

length added for the non-dimensionalizataion purpose. When the exponent λ is negative,

the power law becomes infinite at z = 0. However, it is impossible to assign an infinite

surface modulus in the finite-element simulation. To avoid this problem, a simple trunca-

tion method is considered, which is shown in the Eq. (3.62) and Figure 3.12. The term

‘constant truncation’ will be used to refer to this truncation method.

E = E0 0 ≤ z ≤ H

E = E0

( z

H

)λ

H < z ≤ Htot (3.62)

To model the continuously varying modulus, the half space is divided into 38 layers;

thinner layers near the surface and thicker layers near the bottom (Figure 3.13). The thick-

ness of the thinnest layers is 1/50000 of the total thickness. The values of the modulus are

calculated from the power law at each node along the z axis, and then an average value of

the two nodes is used as the modulus of each layer (i.e. the stepped solid line in Figure

3.12).

The geometry and mesh configuration are the same as these used in the simulations

of the bi-layer system, and the assumption of incompressible materials (ν= 0.5) is still

effective for the half space. A power law (z = Cr2) is used to describe the shape of the
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E

E0

H

z

Figure 3.12: Schematic of the simple truncation method. The value of the surface modulus
(E0) is used for the first layers. This is a non-scaled picture to show the
truncation and discretization methods.

indenter, where C = 0.025(nm−1) which is equivalent to the radius of the spherical part

of an AFM tip. Possible length scales that can be used are the overall thickness (Htot) , the

arbitrary length scale (H), and the constant for indenter shape function (C). Because the

substrate was modeled as a half-space (H/Htot = 0), the total thickness should not give a

significant error to the results. To check the effect of the total thickness, test simulations

were run with three thickness ratios (H/Htot = 0.001, 0.002, 0.005) for the inverse power

law (λ = −1.0). The error of the dimensionless force-indentation depth relationships were

less than 1% for both the constant and quadratic truncation. Thus, the constant (C) is used

for the non- dimensionalization of the simulation results.

Figure 3.14 shows the force-indentation depth relations of the inverse power law (λ =

- 1), which are obtained from the FE simulation. While the linear force-indentation depth

relation is expected at λ = −1.0, the force-indentation depth curve is not linear even on

the log-log scale as seen in the figure. Thus, the exponent was calculated using a curve

fitting technique (power-law fitting) to compare the FE simulation and the theory. This

non-linearity may be caused by the parameters used in the numerical simulation such as
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Figure 3.13: Discretization of the body to apply the graded material properties. Numbers
in right side are the ratio of each layer to the total thickness (hi/Htot), where
hi is thickness of i-th layer. This is a non-scaled picture.
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the size of the body (i.e. the model is not a half space), the truncated and discretized

modulus distribution, or boundary conditions.

Figure 3.15 shows the comparison between the FE results and the power law for entire

range of λ(−1 ≤ λ ≤ 1). Though the slopes are slightly overestimated along the entire

range of λ, the relations seem to be close to the theoretical values. Thus, the power law

may be a adequate model to describe the linearity of the force-indentation depth relation

that is shown in the experiment, and it can be used to find the modulus value at the surface

of the half space.

10
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0 .001 0 .01 0 .1 1
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E
0
 

C z

Figure 3.14: Non-dimensional force-indentation depth relationship for the inverse power
law (λ = -1). The constant truncation method is used for the FE simulation.

For the inverse power law (λ = −1.0), another simple truncation method is derived

that can consider the characteristic of the oxidation process. Equation (3.63) shows the

second truncation method, which uses a quadratic decaying function within the length

scale. The term ‘quadratic truncation’ will be used to refer to this truncation method.
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Figure 3.15: Comparison of the force-indentation depth relationship between the power
law and FE simulation. The solid line is the power law and the circular sym-
bols are the results of the FE simulation. CH = 0.025, Ef/Es = 100, ν =
0.5.

E = E0 + (Eh − E0)
( z

H

)2

0 ≤ z < H

E = Eh

(
H

z

)
H ≤ z < Htot (3.63)

where, E0 is the surface modulus, Eh is the modulus at z = H , and H is the length

scale (Figure 3.16). Because the modified layer is formed by an oxidation process and

the surface may be saturated during the process, quadratic decay may be a possible as-

sumption. The unknown modulus Eh can be derived using the continuity conditions at

z = H (E1 = E2, ∂E1/∂z = ∂E2/∂z). Thus, the final form of the second truncation

method is,

E = E0

[
1− 1

3

( z

H

)2
]

0 ≤ z < H

E =
2

3
E0

( z

H

)
H < z < Htot (3.64)
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Figure 3.16: Schematic of the qauadratic truncation method. This is non-scaled picture to
show the truncation method.

Figure 3.18 show the effect of the length scale in the truncation methods. Before com-

paring the exponents of the relationshiops for both truncation methods, force-indentation

depth curves are examined to check the quadratic truncation method (Figure 3.17). As seen

in Figure 3.17, the quadratic truncation mehod also shows relationships close to linear on

log-log scale plot.

Regardless of the truncation method, the exponent of the function approaches to the

theoretical value with respect to the decreasing length scale. However, the exponent of

the constant truncation is always larger than that of the quadratic truncation. This may

be a natural result because the modulus of the quadratic truncation decays more rapidly

than the constant truncation. The two truncation methods would give the same value of

exponent at the infinitely short length scale. However, this requires additional calculation

cost (time and effort). Thus, the slope of∼ 1.08 is the best result that can be obtained with

the current geometry and mesh configuration, and the quadratic truncation seems to be a

better model for the profile of the inverse power law.

One interesting question is whether the power law is the only possible model to obtain

the linear force-indentation depth relation. To check this question, the error function is
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Figure 3.17: Nondimensional force-indentation depth curves of the quadratic truncation
with respect to the length scales; CH = (©) 1.25, (¤) 0.75, (♦) 0.25, (4)
0.125, and (+) 0.025. ν = 0.5
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Figure 3.18: Comparison of the force-indentation depth relations between the truncation
methods; (©) the constant truncation, (¤) the quadratic truncation. The bar
in each symbol means the errors caused by the power-law fitting.
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considered as an alternative model for the modulus distribution.

E = Es + (E0 − Es)erfc
( z

H

)
(3.65)

where E0 and Es are modulus at the surface and in the substrate, respectively. H is the

length scale. Because the error function is often used to denote a diffusion process in

material and thermal area, it may be a more realistic expression than the power law. Figure

3.19 shows the graphic model of the modulus distribution of Eq. (3.65).

H  

E 0  

H to t 

E s 

Figure 3.19: Graphic model of the error function.

Figure 3.20 shows the force-indentation depth curves for the error functions with re-

spect to the modulus ratios E0/Es. With the error function, we obtained the curves that

are very close to a linear relationship on the linear scale plot when E0/Es >∼ 104. Figure

3.21 shows the magnitude of the exponent of the force-indentation depth curves for the

error function. As seen in the figure, the relationships decrease with increasing modulus

ratio and seem to converge to unity at any value of length scale. The largest converged

exponent(∼ 1.01) is in the range of nanoindentation experiments performed by Mills et al.

(2007) (0.98 ∼ 1.01). The exponent of the inverse power law is out of this range. There-
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fore, the error function may be a better approximation for the graded modulus.
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Figure 3.20: Force-Indentation depth curves for the error function; E0/Es = (©) 10, (¤)
102, (♦)103 , (4)104 and (+) 105. CH = 0.025, ν = 0.5

The comparison between the quadratically truncated power law and the error function

is shown in Figure 3.22. For the comparison, different modulus ratios (E0/Es) are taken

for each length scale (CH). For example, the modulus ratio is about 105 at CH = 0.025.

The error function always shows the relationships closer to the theoretical limit than the

quadratically truncated power law.

Consequently, any function whose profile is similar to the power law could be the

modulus distribution for an indentation simulation, and among the possible distribution,

the error function shows good linearity in the force-indentation depth relationships.
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Figure 3.21: Force-Indentation depth relationships for the error function. CH = (©)
0.025, (¤) 0.05, (♦) 0.1, (4) 0.5, (×) 1.0. The bar in each symbol means
the errors caused by the power-law fitting.
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Figure 3.22: Comparison of the force-indentation depth relationships between the power
law (quadratic truncation) and the error function; (©) the error function, (¤)
the power law with quadratic truncation. The bar in each symbol means the
errors caused by the power-law fitting.
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3.4 Estimation of the modulus of an oxidized PDMS

In Sections 3.2 and 3.3, indentation theoriesthe plate theory and a power lawwere

explored to explain the linear force-indentation depth relation that is obtained from exper-

iments done by Mills et al. (2007). Through a series of analyses, we found possibilities

that the graded modulus can cause the observed force- indentation depth relation to be

linear. Two functions, the power law and the error function, were examined using the FE

simulation. The error function shows good linearity than the power law, and shows almost

perfect linearity under certain simulation conditions.

An iterative procedure will be introduced in this section, which can be applied for the

estimation of the mechanical propertiessurface modulus and thicknessof the oxidized layer

using the analyses for indentation and the quantities that are measured.

3.4.1 Iterative procedure to determine the modulus of oxidized layer

The error function is used for the profile of the graded modulus based on the analysis

of Section 3.3. To use the error function, two variables, surface modulus (E0) and scale

length (H), need to be determined. There is additional unknown property, Poisson’s ratio

of the oxidized layer, that taken to be 0.5, with the assumption that both oxidized and

unoxidized regions are incompressible. If we can find a force-indentation depth curve

based on assumed values of the surface modulus (E0) and length scale (H), and the curve

is in the range of results of indentation experiments (Figure 3.1), E0 can be considered

as the modulus at surface of an oxidized PDMS, and H can be used to determine the

thickness of the layer. The thickness of the modified layer can be approximated as about

3H based on the property of the error function. However, arbitrary guesses of the values

may cause enormous computational cost. Therefore, a more systematic approach needs to
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be implemented. This is done by introducing the result from Chapter II, the wavelength

as a function of dimensionless modulus for an elastic half space that has graded material

properties.

As seen in Figure 3.23, wavelengths are a weak function of the modulus ratio. In

other words, large changes in modulus ratio cause rather small changes in the dimension-

less wavelength. Therefore, if we have a given value of wavelength, the length scale in

the modulus distribution can be determined. Consequently, the change of modulus ratio,

which is used to match the results of indentation simulation to the results of indentation

experiment, makes the length scale converge to a certain value. The detail procedure is

shown in Figure 3.24.
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Figure 3.23: Dimensionless wavenumbers for error function grading. The solid line rep-
resents a homogeneous layer approximation using Eqs. (2.24) and (2.25).
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Figure 3.24: Flow chart for the iterative procedure to estimate surface modulus and thick-
ness of the oxidized layer of PDMS
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The iterative method is tested using experiment data 1 ; wavelength∼ 1340 nm and the

modulus of the bulk PDMS Es ∼ 3.5 MPa. For the FE simulation, same conditions that

are used in Section 3.3 are used. The values determined from this test are E0 ∼ 31.5 GPa

and H ∼ 11.5 nm (i.e. the thickness of the oxidized layer is about 35 nm). While the pro-

cedure seems to be an effective method to find unknown properties of a modified surface,

the value of surface modulus is higher than expected. Mills et al. (2007) suggested that

the surface modulus is E0 ∼27.75 MPa with the assumption of linearly graded modulus

using the plate theory.

3.4.2 Effect of residual strain

An iterative method is introduced in preceding section, which can be used to evaluate

the surface modulus of an oxidized PDMS. However, test results showed unrealistically

high value of surface modulus. One potential cause of the result is residual strain. Be-

cause the PDMS is heated during an oxidation process, residual strains may be produced

when it is cooled down. Previous studies reported the effect of residual stresses on inden-

tation hardness, which decreases with tensile stress and increases with compressive stress

(Suresh and Giannakopoulos, 1998; Swandener et al., 2001). However, the residual strain

is hard to be determined from the experiments directly. Thus, small tensile strains are

applied to the right edge of the FE model in Figure 3.4 to produce strains in the structure.

Table 3.2 shows the values of surface modulus and length scale obtained from the FE

simulations according to the applied tensile strains. In the table, the surface modulus de-

creases about factor of 1/2 when the applied strain (i.e. residual strain) increases twice.

Table 3.3 shows the homogeneous layer approximatiion of the results of the FE simula-

tions calculated by Eqs. (2.24) and (2.25). When the applied strain is 4 %, the modulus

1All specific data are refer to the data obtained by Mills et al. (2007)
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ratio is Ef/Es ∼35 that seem to be much realistic value than the values in the preceding

section. In Table 3.2 and Table 3.3, the change of surface modulus seems to be sensitive

to the change of residual strains. Therefore, if there are more sophisticate methods to esti-

mate the residual strain, the surface modulus may converge to closer values of the modulus

and thickness.

Table 3.2: The surface modulus and length scale estimated by the iterative FE simulation

Applied tensile strain(%) E0 (MPa) Hf (nm) Estimated thickness of
the modified layer (∼ 3H)

0.5 4375 19.5 58.5
1 2275 23 72
2 1260 28 84
3 875 32.75 98.25
4 682.5 35 105

Table 3.3: Homogeneous layer approximatiion of the results of the iterative FE simulations

Applied tensile strain(%) Ef (MPa) Hf (nm)

0.5 795 17.3
1 425 20.4
2 228 24.8
3 152 29
4 123.5 31

For the estimation of the residual strain, an approximation can be made by observing

open cracks that remain on an oxidized PDMS after releasing strain in tensile experiments.

If there are residual strains in the oxidized layer, these strains will not be recovered after

releasing the applied strain.

Table 3.4 shows lengths of crack spacing and their widths. The widths and spaces were

measured after relaxing 10% applied strain. Figure 3.25 shows how to estimate the residual

strain from the experimental data. The residual strain is calculated using the values in the
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dotted box by dividing the sum of crack widths by the sum of average crack spacings, and

∼2.85 % and∼ 2.95% strains are calculated from both experiment set, respectively. These

values seem to be quite relevant each other, and these are in the range of the finite element

simulation. Therefore, no further simulation has been conducted.

Table 3.4: Crack spaces and widths obtained by a nanoindentation experiment. The
qeustion marks mean no data has been obtained.

Crack Width(nm) Space(µ m)
Experiment Set

Set 1 ? 12.8
? 7.03

250 5.4
214 10.6
319 5.7
290 5.6

Set 2 9.3 ?
147 2.95
218 9.5

? 9.6

12 .8 7.0 3 5 .4 1 0.6 5 .7 

? ?  250 21 4 319  

~  2.87  % 

>  9.3 2.95 9.50 4 9 .6 

1 47 218  ? 

~  2 .95 %  

C rack spa cing 

C rack w idth 

C rack spa cing 

C rack w idth 

Figure 3.25: Estimation of residual strain from the geometry of cracks that is produced by
releasing 10 % tensile strain produced by Mills et al. (2007)
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3.5 Conclusions

Indentation theories are explored to explain the linear force-indentation depth rela-

tionships obtained from nanoindentation experiments. The plate theory is reviewed and

compared with the finite-element method. There are two significant differences between

the plate theory and the FE simulation; non-linear force-indentation relationship and in-

dentation force at same depth.

To explain the non-linearity, we suggest a modified theory that combines the plate

theory and Hertz theory for global and local indentation behavior, respectively. This mod-

ified theory showed non-linear behavior, and the effective limits of the modified theory are

examined with the FE simulation. Though non -linear relationship is found, the FE sim-

ulation is not able to fit the simulation results into the experimental data due to the high

non-linearity in the force-indentation depth relation. An indentation problem is modeled

with graded modulus in an elastic body using a power law. A condition is obtained, which

could show linear force-indentation depth relation. Though the FE simulation gave mod-

erate non-linear force-indentation depth curves, the slopes were much closer to the linear

relation.

An iterative procedure is introduced as a mean to evaluate the surface modulus and

thickness of a surface-modified layer of PDMS based on the indentation theory suggested

in this chapter and critical wrinkling conditions produced in Chapter II. The effect of resid-

ual strain has been considered. We have found that increasing residual strain decreases the

modulus at the modified surface. Though the modulus evaluated by this iterative method

show higher value than previous research, the values of modulus exist in acceptable range.

Therefore, this method can be used as a mean to characterize a thin hard layer on a soft

substrate.
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CHAPTER IV

WRINKLING IN A SURFACE-MODIFIED LAYER OF
POLY (DIMETHYLSILOXANE)

4.1 Introduction

Since it has been revealed that the hydrophobic surface of PDMS can be changed to a

hydrophilic surface using oxidation techniques (Hansen et al., 1965), the modified surface

has been used in various research areas, which requires wettable surface; for example,

microfluidics (Jo et al., 2000) and soft lithography.

In addition to the chemical change of the PDMS surface, researchers have also found

that a thin hard layer is formed by oxidation. This hard layer has been considered as an

experimental platform to form small scale structures. Instead of structures built by adding

or removing parts, researchers have tried to form micro-/nano-scale structures using spon-

taneous wrinkles that can be formed by applying deformation to the layer. Thermal expan-

sion (Huck et al., 2000; Bowden et al., 1999) and mechanical stretching (Volynskii et al.,

2000; Watanabe, 2005) are well known techniques to apply strains in the layer. Many

applications have used the wrinkles. Well known applications that utilize the wrinkles

are diffraction gratings (Harrison et al., 2004) and electric interconnector (Lacour et al.,

2004). The mechanism that produces the wrinkles is the interaction between the compres-

sive stresses in the modified layer and the modulus mismatch between the hard layer and
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the substrate. A recent study reported that uniaxial tensile strains produce periodic parallel

cracks in the hard layer (Zhu et al., 2005), and wrinkles are formed perpendicular to the

strained direction between the cracks.

Many researchers have tried to explain the mechanism of the wrinkling using models

based on the classic plate theory and energy minimization (Huck et al., 2000; Bowden

et al., 1999; Huang et al., 2005). Important parameters in the models are the thickness, the

modulus and Poisson’s ratio of the modified layer. Most models assume uniform material

properties in the layer. However, there are experimental evidences that the properties of

the layer may be distributed spatially (Bar et al., 2001; Hillborg et al., 2004).

In this chapter, wrinkling formed on a surface-modified PDMS will be explored. Espe-

cially, stripe wrinkles produced by compressive and tensile loads1 will be examined using

elasticity theory. To do this, experiments to produce wrinkles have been done at first. A

model to explain the wrinkling mechanism induced by a compressive and a tensile load

will be introduced for a bi-layer system. Graded modulus will be considered later using

the wrinkling model and the instability model introduced in Chapter II. The wrinkling ob-

served from the experiments will be compared with the suggested model.

4.2 Experimental Methods and Observations

4.2.1 Producing wrinkles by a compressive load

PDMS sheets with a thickness of 2 mm were cast using the Sylgard-184 silicon elas-

tomer kit from Dow Corning. The base monomer and cross-linking agent were mixed in

a ratio of 10:1. The sheets were cured at 60 ◦C for three hours, and then at 150 ◦C for 12
1Although all wrinkles are produced by a compressive stress, the terms, compressive and tensile, will be

used to distinguish the experiments. Compressive load and experiment designate the experiment that strain
is applied before the oxidation process. Tensile load and experiment designate the experiment that strain is
applied after the oxidation process.
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hours. They were then sectioned into rectangular specimens 40 mm long and 10 mm wide

before being oxidized. The oxidation was performed in a plasma etcher (Plasma-Prep II,

SPI Supplies Inc.) at the maximum power of 100 W, a pressure of about 40 Pa, and a

constant oxygen flow rate of about 25 m3/min. The samples were exposed to the oxygen

plasma under these conditions for various periods ; 30 sec, 4, 20, 40, and 60 min. This

oxidation process resulted in a thin, stiff surface-modified layer.

A well-documented technique that appears to induce a compressive stress within the

surface-modified layer is to oxidize the PDMS while holding it under a fixed tensile strain

(Volynskii et al., 2000; Watanabe, 2005). When the constraint applying the strain is re-

leased after oxidation, surface wrinkling is observed perpendicular to the direction of the

original applied strain. This wrinkling indicates that relaxation of the applied strain in-

duces a compressive stress within the surface layer. In the present study, a tensile strain of

4± 1 % was applied manually to the specimen before oxidation, and then both ends of the

specimen were clamped to a glass plate using metal clips. The surface of the glass plate

was covered by paper tape to prevent adhesion. The magnitude of the strain was estimated

by using digital calipers to ensure that two lines marked at a distance of 20 mm apart on

the surface of the specimen were moved apart by 0.8 mm. The samples were oxidized

while clamped to the glass plate.

After oxidation, the applied strain was released by removing the clamps. A 10 mm

by 10 mm section was cut from the center of the specimen and examined in an atomic

force microscope in tapping mode2. Figure 4.1 shows a typical profile of the surface of the

specimen after oxidation for 40 minutes and relaxation of the applied tensile strain. While

this image, with its very regular wrinkling pattern is fairly typical for a specimen that has

been subjected to a prolonged period of oxidation, some of the specimens oxidized for

2Nanoscope III AFM, using a silicon tip with a nominal stiffness of 42 N/m
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shorter period showed more irregularity in the amplitudes of the wrinkles. In all cases,

the wrinkles formed perpendicular to the direction of the applied tension. Images such as

these were used to measure how the wavelength varied with oxidation time (Figure 4.2).
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Figure 4.1: Surface buckling after relaxation of a 4 % tensile strain imposed during a 40-
minute oxidation. The left-hand image is a 2-D projection of the image shown
on the right.
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Figure 4.2: Distribution of the wavelengths produced by compressive loading produced by
pre-stretching. At 30-second oxidation, wrinkles were not found.
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No surface wrinkling was observed when the oxidation time was only 30 seconds. The

wavelength increased monotonically from about 1 micron for an oxidation time of 4 min-

utes to about 7 microns for an oxidation of 60 minutes. This increase is believed to be

associated with the increase in the thickness of the surface-modified layer with oxidation

time.

4.2.2 Producing wrinkles by tensile loading

An alternative way to produce surface wrinkles in this system is to oxidize the PDMS in

a relaxed state, and then to apply a uniaxial tensile strain. As a consequence of this applied

tensile strain, periodic cracks form in the surface-modified layer (Zhu et al., 2005), and

then, upon further loading, wrinkles form between and perpendicular to the cracks (Mills

et al., 2007).conducted in which the PDMS specimens were oxidized in a relaxed state.

After oxidation, a tensile strain of 10 % was applied by means of a mechanical stretcher.

Figure 4.3 shows overall procedure to produce wrinkling by the two loading methods.

Owing to the limitations of the available atomic force microscope, it was impossible to

measure the surface topology directly in a stretched state. Therefore, a replica was taken

of the cracked and wrinkled surface while the tensile strain was applied. The surface was

treated3 to prevent adhesion to the replica. PDMS, with a 10:1 ratio of monomer to hard-

ener, was poured onto the surface and cured for 2 hours at 60oC oven while the sample

was still under an applied tension. After curing, the replica was stripped from the surface,

and a section was cut from the middle for examination in the AFM (Figure 4.4).

A typical example of the data from an AFM scan of a replica is shown in Figure 4.5.

3A mixture of (tridecafluoro-1,1,2,2-tetrahydrooctyl)-1- trichlorosilan and mineral oil was mixed on a
glass plate in a 1:1 ratio. The glass plate and the stretched specimen were placed in a vacuum chamber for
seven minutes to allow the vapor to condense onto the cracked surface.
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Figure 4.3: Schematic for the process to produce wrinkles on an oxidized surface of PDMS
using two loading methods
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Image produced 

by AFM S/W

Figure 4.4: Measurement of the surface topology of the oxidized PDMS subjected to ten-
sile load using replica mold

The features that can be identified in this figure are the periodic cracks perpendicular to

the applied tensile strain, and the surface wrinkles between these cracks that are aligned

in the direction of the applied strain. Measured data for how the average wavelength

of the wrinkles varies with oxidation time are included in Figure 4.6. As seen in the

figure, there is a significant difference in the wavelengths obtained from the experiments

in which wrinkles were generated by relaxing a tensile strain, and those in which the

wrinkles were generated between cracks. It is clear that the wavelengths generated in the

former experiments were systematically smaller those obtained in the latter experiments.

In order to confirm that this difference was caused by the different procedures, every effort

was made to ensure that all other features of the experiments were identical. In particular,

the specimens for each pair of tests at the same oxidation times were prepared from the

same batch of material and were oxidized together.

Furthermore, an additional set of experiments were performed in which a replica was

taken from a set of samples subjected to relaxed tension to verify that the process of pro-

ducing a replica did not affect the results. Single specimen was used to produce wrinkles

for both tensile and compressive loading. Tensile strain of 7 ± 1% was applied to the

specimen before 10-minute oxidation. After oxidation, the specimen was released and

first replica was made. The same specimen was stretched by 14% using a mechanical

stretcher, and the second replica was made from the strained specimen. Same surface

treatment technique was used for both replicas. In this experiments, wrinkles produced by
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Figure 4.5: Wrinkles produced by a 10 % tensile strain applied after a 40-minute oxida-
tion. The left-hand image is a 2-D presentation of the data shown in the right.
Both images are inverted from the raw data obtained from the AFM from the
replica, so the cracks appear as cracks not hillocks.
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Figure 4.6: Wavelengths of wrinkles produced by tensile loading (¤). Wavelengths pro-
duced by compressive loading (4) are added for comparison
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a tensile load was always longer than these produced by a compressive load. Therefore,

the process of producing a replica did not affect the results. In the next section, possible

causes for this difference are addressed.

4.3 Wrinkling in a surface-modified layer

A statistically meaningful discrepancy was observed in wavelengths through a series of

experiments conducted using two loading methods. Every effort has been made to assure

that the experiment conditions were controlled with care except two differencesloading

methods and cracks in tensile experimentmay be the causes of the discrepancy.

If Poisson’s ratio was independent of the depth, the lateral strains in the tension ex-

periment would be compatible. In other words, the only possible explanation would be a

variation of Poisson’s ratio with depth before the cracks form. If Poisson’s ratio is same in

the system, lateral strains could not develop stresses in the plane perpendicular to the ten-

sile strain. This means that the entire structure simply shrinks, and only a volume change

is physical phenomenon that can be seen. Therefore, constant Poisson’s ratio is unable to

produce wrinkles. The effect of Poisson’s ratio will be examined using a simple model for

a bi-layer system.

4.3.1 Effect of Poisson’s ratio mismatch

Suppose a strain e11 = ε1 is applied in the x1-direction uniformly and the x2- surface is

unrestrained (Figure 4.7), so that e22 adopts whatever value is necessary for the total force

to be zero; σf
22Hf + σs

22Hs = 0. Because the substrate is much thicker than the film layer

(Hs À Hf ), the zero force condition reduces to σs
22 = 0. Also, stress in the z-direction

(σ33) is zero in the structure. Based on this argument, the stress distribution can be derived
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using Hooke’s law.
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Figure 4.7: Layered structure subjected to a lateral load. The f and s in superscripts and
subscripts mean film and substrate, respectively. Hf and Hs are thickness of
the film layer and substrate, respectively.

In Figure 4.7, Hooke’s law for the substrate gives,

ε1 = es
11 =

σs
11

Es

− νsσ
s
22

Es

=
σs

11

Es

(4.1)

and hence

σs
11 = Esε1 (4.2)

Also, the strain in the x2 direction is

e22 =
σs

22

Es

− νsσ
s
11

Es

= −νsε1 (4.3)

The same strain (e22) must be applied in the film layer and hence
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e22 =
σf

22

Ef

− νfσ
f
11

Ef

= −νsε1 (4.4)

and

ε1 =
σf

11

Ef

− νfσ
f
22

Ef

(4.5)

The stresses in the film layer can be determined from equation (4.4) and (4.5).

σf
11 =

Efε1(1− νfνs)

1− ν2
f

σf
22 =

Efε1(νf − νs)

1− ν2
f

(4.6)

Suppose that the system buckles in compression when ε1 = −εc , implying that

σf
11 ≡ σc = −Efεc(1− νfνs)

1− ν2
f

(4.7)

The wrinkling would occur in tension only if

σf
22 = σc (4.8)

This requires that
ε1

εc

=
1− νfνs

νs − νf

(4.9)

This defines a tensile strain only if νs > νf , and the minimum practical ratio of ε1/εc

occurs when νf = 0.0, νs = 0.5 and is

ε1

εc

= 2.0

For more realistic values of νf = 0.25 and 0.3, the strain ratios are 3.5, 4.25, respectively.

In the experiments, the minimum and maximum applied tensile strains were 6% and 20%,
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respectively, and the compressive strains were 4 % and 7%. Though the tensile and com-

pressive strains are not real critical values, a rough estimation can be made using these

values. From the applied tensile and compressive strains, the range of the strain ratio

(ε1/εc) can be obtained; 0.85 ∼ 5.0. The strain ratio less than equal to 2.0 leads to the

conclusion that Poisson’s ratio of the film layer is negative or zero. Even though the ratio

seems to be in the rather practical range (i.e. the ratio is larger than 2.0), it doesn’t show

why the wavelengths are different. Thus, the stress distribution in the entire structure needs

to be examined for the estimation of the critical strains and wavelengths according to the

loading method.

4.3.2 Stresses produced by compressive and tensile loading

In the preceding section, it was assumed that the wrinkling depends only on the state of

compressive stress in the film layer. However, this is not strictly correct. It may depend not

only on the compressive stresses in the direction perpendicular to the resulting waviness,

but the stresses in the substrate may make a contribution to the energy balance and hence

both to the critical strain and the wavelength.

The stresses derived in the preceding section can be used as compressive stresses for

the compressive and tensile loading. In the direct compression case, the second equation in

Eq. (4.6) can be the stress in the film layer, and Eq. (4.2) can be the stress in the substrate.

σf
11 = −Efεc(1− νfνs)

1− ν2
f

, σs
11 = −Esεc (4.10)

where, εc(> 0) is the critical compressive strain, the superscripts f and s represent the

film layer and substrate, respectively. In the tensile loading case, the second equation in

Eq. (4.6) can be a stress in the film layer, and the stress in the substrate is zero according
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to the zero force condition used in the preceding section.

σf
22 = −Efεt(νs − νf )

1− ν2
f

, σs
22 = 0 (4.11)

where, εt is the critical tensile strain, and the superscripts f and s again represent the

film and the substrate, respectively. It needs to be investigated whether the difference in

the substrate stress (σs) between these two cases causes any measurable difference in the

critical strain and wavelength for practical values.

To simulate the two loading methods, Eqs. (4.10) and (4.11) are used in the finite-

element code developed in Chapter II. Convergence tests are performed using different

mesh sizes. To reduce numerical errors that may be caused by the abrupt change of mesh

sizes, the substrate is divided into two layers, and hence the mesh sizes are changed gradu-

ally from the film layer to a position in deep substrate. With over 50 elements in film layer

and 100 elements in substrates, the critical strains and wavenumbers converge to a value

with less than 0.1% error.

Figure 4.8 shows the distribution of the ratios of critical strains and wavelengths. The

difference of wavelengths (i.e. dimensionless wavenumber ωH) is shown in mostly low

modulus ratio (Ef/Es <∼ 100). This difference seems to be adequate because the dif-

ference of stress field is in the substrate. Therefore, the wavelength difference is in right

direction but probably not big enough to explain the discrepancy of the experimental. The

ratios of critical strains seem to close to the theoretical estimation in high modulus ra-

tios but not in low modulus ratios. This may be caused by the numerical calculation or

discretization for the FE calculation. While Poisson’s ratio mismatch and the zero force

condition seem to be causes of the wavelength discrepancy, the wavelengths seem to be

not much sensitive to the change of Poisson’s ratio.
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(¤) νf = 0.0, (© νf = 0.3. νs = 0.49 is used in the numerical calculations.
Hs/Hf = 100.0.
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4.4 Effect of cracks

In the preceding section, we found that Poisson’s ratio mismatch does not give sig-

nificant effect to the difference of wavelengths for both tensile and compressive loadings.

Thus, another physical difference in the experiments–cracks–needs to be examined. The

effect of cracks on the formation of wrinkles is not clearly understood. While it may or

may not affect the formation of wrinkles, the experiments show that wrinkling doesn’t

occur until the cracks form, suggesting that it is influenced by the resulting redistribution

of stress during crack opening. Therefore we need to make a model to consider the stress

redistribution. Suppose part of the surface-modified PDMS (Figure 4.9). We assume the

vertical planes remain straight before and after crack opening and while strains are applied.

Symmetric plane  

Crack  

ε11 ε11 

x1 x3 

x2 

L1 

Figure 4.9: Schematic for crack opening and assumption of vertical planes

To estimate the relation between the crack opening and the stress relaxation, we fo-

cused on the stress variation between cracks. If the stress decays rapidly and the crack

spacing is far enough, the region around symmetric plane will be plane strain status. There-

100



fore, the wrinkles may not be formed in the middle of the two cracks (Figure 4.10a). If

the decay rate is slow enough, stresses on the surface can be considered as zero (Figure

4.10b). Intermediate decay rate also can occur, and it may produce waves between cracks.

This case will not be considered in this section (Figure 4.10c).
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Figure 4.10: Possible types of stress relaxation between cracks

4.4.1 Stress relaxation between cracks

To check the variation of stress field between cracks, finite element simulations were

performed using ABAQUS. Figure 4.11 shows the geometry and boundary conditions used

in the simulation that modeled the half of the length between two cracks. Unit traction is

applied on the film layer. The decay length is defined as the length that the stress decays,

50% of the input (Figure 4.12).

Through a series of simulations, the relation between the decay length and the modulus

ratio is obtained. The problem is whether the decay length is shorter than dimensionless

crack space (L1/Hf ).

d

Hf

∼ 1.75
Ef

Es

(4.12)

To compare the decay length (4.12) to experiment results, the thickness of the oxidized
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layer was estimated using Eq. (4.13) suggested by Chen and Hutchinson (2004).

λ

2πHf

=

(
Ē

3Ēs

)1/3

, εc =
1

4

(
3Ēs

Ē

)2/3

(4.13)
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Figure 4.11: Geometry to calculate the decay length
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Figure 4.12: Graphic model of the decay length (d). It is defined by a length that the
magnitude of stress in the film layer becomes half of the input value.
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Because the critical strains included in Eq. (4.13) are unable to be determined from

experiments directly, arbitrary values were assumed, which are smaller than the lowest

applied strain (4%). For an assumed critical strain, the modulus ratio of the film and

substrate was calculated, and then the film thicknesses are estimated from the measured

wave lengths and the estimated modulus ratios.

Figure 4.13 shows the distribution of the dimensionless decay lengths and crack spac-

ings at various oxidation times. The x-axis is the assumed critical strain and the y-axis is

the dimensionless lengths (d/Hf or (L1/2)/Hf ). To check the consistency, several crack

spacings were chosen at an oxidation time (Table 4.1). The symbols on a same vertical line

show the difference between the decay length and the crack space. As seen in the figure,

the decay length is always longer than the crack space for all cracks produced under vari-

ous oxidation times. This means that the decay rate of the stress is slow enough so that the

stress relaxation doesn’t produce any significant effect on the amplitude of the wrinkles

between cracks. This estimation also can be supported by the measurement of the ampli-

tudes of wrinkles between two cracks. Figure 4.14 shows the contour map of amplitudes

between selected cracks measured from 60-minute oxidized specimen. As seen in the

figure, the amplitude of a wrinkle doesn’t change significantly between two cracks. Thus,

a simple model derived in the preceding section can be used to set up the stress distribution.

Table 4.1: Average crack spacings used in the comparison
Crack Spacing(µm) 1 2 3

Oxidation Time(min)
4 5.39 10.86 -
20 6.55 13.28 13.5
40 11.37 29.13 48.4
60 12.53 20.84 32.84
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Figure 4.13: Comparison between nondimensional decay lengths and crack spacings at
different oxidation time. (a) 4, (b) 20, (c) 40, (d) 60 minutes. (©) nondimen-
sional decay lengths calculated by FE simulations, (¤,4,×) nondimensional
crack spacings estimated from the experiment results. Critical strains (x-axis)
are assumed to estimate the ratio of the crack spacing to the film thickness.
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Figure 4.14: AFM image of 60-minute oxidized PDMS (left) and contour map of the am-
plitude between selected cracks (right). Horizontal line in left image is same
with the x-axis in right image. White parts of the left image are the top of the
wrinkles and dark parts are the bottoms.

4.4.2 Stress field induced by crack opening

Before crack opening stresses developed in x1 direction, there are stresses in the film

only in x2 direction, only if Poisson’s ratios are different. The effect is localized to the

surface, and by assuming the crack depth is also small compared with the substrate depth,

the forced induced in x2 direction near the surface will have a negligible effect on e22

(same reason in the preceding section). If also the crack spacing is small compared with

the decay length as we argued, then the effect of the relaxation is to reduce the tensile

stress σ11 in the film to zero, whilst holding e22 constant. Assume plane strain in the x2

direction. This will induce a compressive stress, σ22 = −νσ11. There will also be some

compressive stress σ22 in the substrate near the interface between the film and the substrate
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for the same reason, but it may not have much effect, because it is found that even having

a compressive stress throughout the substrate didn’t change the buckling much relative to

having compressive stress only in the film (Figure 4.8). Therefore, the stress relaxation

can be simulated by pressurizing the film layer with the stress (σ11) derived in preceding

section, which has same magnitude but subject on opposite direction (Figure 4.15b). The

crack is assumed to be not propagated along depth (i.e. the crack opening occurs in the

film layer only).
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Figure 4.15: Modeling the stress relaxation in the film layer by crack opening. The minus
and plus sign in superscripts are used to denote the states before and after
crack opening, respectively.

At the time just before a crack opens, the stress distribution in both the film layer and

substrate is same with Eq. (4.6) (Figure 4.15a). To simulate the stress relaxation in the

film layer, σ11 is applied on the film layer in the negative x1-direction (Figure 4.15b). At

the time of crack opening, plane strain in the x2-direction is supposed in the film layer.

εf+
22 =

σf+
22

Ef

− υfσ
f+
11

Ef

= 0 (4.14)
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This gives a new stress induced by the crack opening.

σf+
22 = −νfσ

f−
11 = −Efe1 (1− νfνs) νf

1− ν2
f

(4.15)

Therefore, the compressive stress (σf
22) in the film layer can be obtained by superposition

of two stress components in equations (4.6) and (4.15)

σf
22 = σf−

22 + σf+
22 = −Efe1νs (4.16)

The compressive stress in the film layer is dependent on Poisson’s ratio of the substrate

only. Eq. (4.16) is used as the stress distribution in preceding section for the simulation.

The same level of error with the previous sections has been achieved by doing another

convergence tests with this stress field.

The ratios of critical strains and wavenumbers are shown in Figure 4.16, which are

calculated by the tensile load Eq. (4.16) and the compressive load Eq. (4.10). Here, we

can see how the crack affects on the wavelengths. The ratios of the critical strains decrease

less than 2.0 even Poisson’s ratio of the film layer is larger than zero. For same Poisson’s

ratios (νf = 0.3 and νs = 0.49), the wavelength ratios in the preceding section show the

range of 3.9 ∼ 4.5. With same Poisson’s ratio for both modified layer and substrate, to

obtain same length of wrinkles, the tensile strain needs to be larger than the compressive

strain about 4∼ 4.5 times if cracks are not formed. With crack opening, tensile strains that

are larger than 1.7 ∼ 1.9 of the compressive strain are enough to produce the same length

of wrinkles. Though the ratios of wavelengths are not much different for both cases, the

change in the strain ratios may be a good evidence of the role of cracks.

As a critical case, homogeneous case (νf = νs = 0.49) has been chosen to examine

the effect of Poisson’s ratio. This case causes maximum 10% in crtical strain at Ef/Es =

10. Wavelength changes are less than 3% along the entire range of modulus ratios.
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4.4.3 Effect of graded modulus

In the preceding section, we found that the possible effect of the cracks on the forma-

tion of the wrinkles in the surface-modified layer of PDMS. In Chapter III, we also found

that the error function can be a good model of graded modulus in the modified layer. The

error function is used by matching the length scale H to the thickness of a modified layer

Hf . Therefore, non-uniform compressive stresses subject in the region as deep as H . Pois-

son’s ratio ν = 0.49 is assumed for the entire system, and convergence test also has been

done.

Figure 4.17 shows the ratios of critical strains and wavelengths. Here another differ-

ence can be observed from the preceding section. Both the ratios of critical strains and

wavelengths are higher than these shown in Figure 4.16. The graded modulus may cause

the higher strain ratios, however the ratios of critical strains are still less than the analyti-

cal estimation (i.e. = 2.0). The ratios of wavelengths are higher than the case of bi-layer

with crack opening along the entire modulus ratios and especially at low modulus ratios

(E0/Es <∼ 100). Therefore, both crack and graded modulus may affect to the wavelength

discrepancy.

4.5 Conclusions

We did two types of experiments to produce wrinkling in a modified-surface of PDMS.

For each experiment wavelengths were observed and a discrepancy in the wavelengths was

observed between the loading methods. To reveal this discrepancy, analytical models to

describe the stress field in the system have been developed with assumptions to deal the

effect of Poisson’s ratio mismatch, crack opening, and graded modulus.
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Figure 4.16: Effect of crack opening on the ratios of critical strains and wavelengths; νf =
0.3, νs = 0.49, Hs/Hf = 100.0. Ef and Es are the modulus of the surface-
modified layer and substrate, repectively.
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Figure 4.17: Effect of graded modulus on the ratios of critical strains and wavelengths. ν
= 0.49 for entire system. E0 is the modulus at the surface of a modified layer.
Es is the modulus of substrate.
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Though the wavelengths between structures with and without cracks are not much dif-

ferent, we could find a cause of the discrepancy in the ratios of critical strains. The ratios

of critical strains with cracks were less than the ratios without cracks. When we have

considered the error function as a modulus distribution, the strain ratios decreased, and

the wavelength ratios increased compared to the ratios of a bi-layer system with cracks.

Though a quantitative estimation is hard to obtain from the suggested models, the discrep-

ancy in the experiments can be explained qualitatively, and the models suggested in this

section could be a useful tool for a research.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this study, theoretical approaches are introduced to investigate the characteristics

of a thin hard layer on a soft substrate, and they are used to explain experimental results

obtained from the observation of a plasma-oxidized PDMS. The methods and models in-

troduced in this research can be used as a framework for the characterization of a hard thin

layer on a soft substrate.

A general theory is suggested to determine the critical conditions (critical strain and

corresponding wavenumber) that cause the surface instability on an elastic half space or

a thick substrate loaded in compression. The suggested model is verified by comparing

with a previous research for a bi-layer structure consisting two layers with homogeneous

properties. The effect of graded material properties exhibit dependence on modulus ratios

similar to those observed from a bi-layer system. Using suggested model, we demon-

strate that non-mechanical perturbation such as thermoelastic loading with transient sur-

face heating can generate wrinkling on a half space and we give results for the critical

surface temperature at which a homogeneous half space will develop wrinkling.

Indentation theories are explored to reveal the linear force-indentation depth relation-

ships observed in the nonoindentation experiments. The plate theory and a modified plate
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theory are examined by the finite-element simulations. We reveal that both theories are

not adequate to explain the linear relationships. Therefore, we suggest another analyti-

cal model, which shows a possibility that a graded modulus can cause the linear force-

indentation depth relationship. Two grading functions, the power law and the error func-

tion, are examined using the finite-element simulations, and we obtain force-indentation

depth relationships very close to the linearity using the error function. An interactive

method to determine the characteristic of a modified layer on PDMS is introduced using

the results of the indentation with the error function and wavenumbers versus modulus

ratios obtained in Chapter II. Due to the unrealistically high modulus ratio obtained from

the iterative method, the effect of residual strains is considered. Higher residual strains

cause lower modulus ratio.

From the experiment to produce wrinkles in a surface-modified layer of PDMS, a dis-

crepancy in the wavelengths is observed according to the loading methods (tensile and

compressive loadings). To explore the causes of the discrepancy, an analytical model is

suggested. Poisson’s ratio mismatch, the effect of crack opening, and the effect of graded

modulus are examined using suggested model. Poisson’s ratio mismatch is not enough to

explain the discrepancy in a bi- layer structure. With the assumption of the crack opening,

we obtain the possibility that causes the discrepancy at certain critical strain even lower

than the theoretical limit (i.e. the ratio of the critical strain is less than the theoretical limit

while the ratio of the wavelengths is same). When the error function with the crack open-

ing model is used, the wavelength ratios increase and the critical strain ratios decreased.

While we obtain the evident of the discrepancy from suggested models, quantitative esti-

mation is not able to be obtained.
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5.2 Future Work

In Chapter III, we found that the change of modulus at modified surface is very sen-

sitive to the residual strains. If we find a sophisticated method to determine the residual

strains experimentally or theoretically, we may obtain more realistic value of the modulus.

This method should deal with both tensile and compressive residual strains. Therefore,

the implementation of the method to determine the residual strain may do important role

in the study of indentation in future.

Though we find several evidences that the modulus in the modified layer is graded,

the investigation of the bi-layer assumption may still have importance in this research. In

Chapter IV, we assume that the crack opening occurs only in the film for a bi-layer system.

Thus, we can’t find the stress field when the crack depth is larger than the thickness of

film layer. Even though the effect of crack depth is not significant on the wavelengths, it

deserves careful study.
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APPENDIX A

AN AUTOMATED PROCEDURE FOR DETERMINING
ASYMPTOTIC ELASTIC STRESS FIELDS AT SINGULAR

POINTS

A.1 INTRODUCTION

Singular stress fields are generally developed in elastic bodies at re-entrant corners

(sharp notches and cracks) and at the end points of discontinuous interfaces between dis-

similar bodies. Some typical examples are shown in FigureA.1. Williams (1952) pio-

neered the technique of asymptotic analysis in which the local stress field is expanded as

a series, each term of which has power-law dependence on r, where (r, θ) is a system of

polar coordinates based on the singular point. As the singular point is approached, the

field will be increasingly dominated by the leading term in this series — i.e. the term for

which the power-law exponent is smallest (or has the smallest real part). Thus, if failure is

determined by behaviour in a small region near the singular point, it will be characterized

simply by the coefficient of this most singular term (Dunn, 2003). In the case of a crack,

this coefficient is the familiar stress intensity factor, which forms the basis of linear elastic

fracture mechanics (LEFM). Similar arguments have been used to predict local failure in

other situations involving theoretically singular elastic fields, such as a notch (Leguillon,

2002; Lazzarin et al., 2003) or fretting fatigue at a sharp corner (Giannakopoulos et al.,
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1998; Churchman et al., 2003).

(a)

A B

(b) (c)

Figure A.1: Elastic structures involving singular points.

Knowledge of the nature of the singular field is also important in numerical (typically

finite element) solutions of elasticity problems involving singular points (Sinclair et al.,

2002). Conventionally, a highly refined mesh will be used in such regions in the hope of

capturing the nature of the local field, but this approach is extremely computer-intensive

and even then may fail to converge with increasing mesh refinement, thus compromising

the entire numerical solution. The most efficient way to solve such problems is to define a

special element to model the region immediately surrounding the singular point (Seweryn,

2002). The shape function used in this element can then be chosen to conform with that

of the dominant singular term in the appropriate asymptotic expansion. Special elements

for crack tips in homogeneous materials are now included in all the major commercial

finite element codes and several authors have developed and used special elements in other

situations involving singular points (Lin and Tong, 1980; Chen and Sze, 2001; Tur et al.,

2002; Liu and Huang, 2003).

Results for the asymptotic fields in a variety of special cases have been published.

Bogy (1968) investigated the case of bonded dissimilar wedges and in a discussion to this
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paper Dundurs (1969) demonstrated that a more efficient statement of the solution could

be made in terms of the now well known ‘Dundurs’ parameters’. Further results for this

system were then given by Bogy (1971) and Bogy and Wang (1971). The asymptotic field

at the corner of a sharp body indenting an elastic half plane was investigated by Dundurs

and Lee (1972) for the frictionless case and the corresponding frictional problem was

considered by Gdoutos and Theocaris (1975) and Comninou (1976). It should be noted

that apart from Williams’ results which can be presented in a convenient graphical form, it

is far from easy to use these published results to determine the power law exponent, since

the authors generally use an inverse method to obtain their results.

The general technique of asymptotic analysis at a singular point is now a well es-

tablished branch of elasticity (Barber, 2002, §11.2), but the algebraic calculations can be

tedious and time consuming and are usually a distraction from main purpose of the inves-

tigation for which they are required. For this reason, many investigators simply use con-

ventional elements with mesh refinement at singular points, often even without the backup

of an appropriate convergence test. In the present paper, we introduce an automated pro-

cedure for solving the asymptotic eigenvalue problem for a fairly general class of singular

point, using the software code MATLABTM. Potential users merely need to specify the

geometrical description of the singular point and the appropriate material properties and

boundary conditions. The program then solves the eigenvalue problem, determining the

strength of the dominant singular term and the form of the stress and displacement fields

in the dominant region.
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A.2 SOLUTION METHOD

We first define a set of polar co-ordinates centered on the singular point and then fo-

cus on a region extremely close to the origin, which is equivalent to looking at the singular

point through a very strong microscope. In this view, all the other geometric features of the

component appear to be far distant from the origin and any curved boundaries in the field of

vision will appear straight because their radii of curvature will have been indefinitely mag-

nified. The local elasticity problem therefore reduces to that of one or more semi-infinite

wedges with appropriate boundary conditions at the terminal edges θ = α1, θ = α2 and at

the interface(s) θ = β1, θ = β2, ... (if any) between adjacent wedges. We shall refer to this

as the asymptotic problem.

A.2.1 Boundary and interface conditions

The only finite boundaries in the asymptotic problem comprise the two edges θ =

α1, θ = α2. At an edge θ = α, the boundary conditions might take any one of the following

forms :-

B:(i) Traction-free:

σθr(r, α) = 0 ; σθθ(r, α) = 0 ; (A.1)

B:(ii) Bonded to a rigid body:

ur(r, α) = 0 ; uθ(r, α) = 0 ; (A.2)

B:(iii) Frictionless contact with a rigid body:

σθr(r, α) = 0 ; uθ(r, α) = 0 ; (A.3)
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B:(iv) Frictional contact with a rigid body

σθr(r, α)± fσθθ = 0 ; uθ(r, α) = 0 , (A.4)

where the sign in the first equation depends on the assumed direction of slip.

At an interface θ = β between the jth and (j + 1)th wedges, equilibrium conditions

demand that

σj
θr(r, β)− σ

(j+1)
θr (r, β) = 0 ; σj

θθ(r, β)− σ
(j+1)
θθ (r, β) = 0 . (A.5)

In addition, depending on the status of the interface, we have the additional conditions

I:(i) Bonded interface:

uj
r(r, α)− u(j+1)

r (r, α) = 0 ; uj
θ(r, α)− u

(j+1)
θ (r, α) = 0 ; (A.6)

I:(ii) Frictionless contact:

σj
θr(r, β) = 0 ; uj

θ(r, α)− u
(j+1)
θ (r, α) = 0 ; (A.7)

I:(iii) Frictional contact

σj
θr(r, β)± fσj

θθ(r, β) = 0 ; uj
θ(r, α)− u

(j+1)
θ (r, α) = 0 , (A.8)

where the sign in the first equation depends on the assumed direction of slip.

At the most general singular point, there will be n wedges, n − 1 interfaces and two

edges, in which case the appropriate choice from equations (A.1–A.8) defines 4n homo-

geneous conditions that must be satisfied by the stress fields in the wedges.

By way of illustration, Figure A.2 shows the asymptotic problem corresponding to the

singular point A in Figure 1.1(c). There are two wedges of dissimilar materials occupying
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the regions−π/2 < θ < 0 and 0 < θ < π respectively. There are two traction-free bound-

aries (Eq. (A.1)) corresponding to α1 = −π/2 and α2 = π and one bonded interface (Eq.

(A.6)) β = 0.

traction

free
bonded

θ

θ = −π /2

θ = π θ = 0

µ

µ κ

κ

1 1

2 2

O

r

Figure A.2: Asymptotic problem corresponding to the point A in Figure 1.1(c).

A.2.2 Asymptotic expansion

The asymptotic problem is self-similar (there is no inherent length scale) and the

boundary and interface conditions are all homogeneous. We therefore seek particular so-

lutions to the governing equations of elasticity in which the displacement fields have the

separated-variable form

u = rλf(θ) (A.9)

The most general solution of this kind in the wedge j is conveniently expressed in terms

of the Airy stress function (Barber, 2002, §11.2),

φ = rλ+1{Aj cos(λ + 1)θ + Bj cos(λ− 1)θ

+Cj sin(λ + 1)θ + Dj sin(λ− 1)θ} (A.10)
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corresponding to the stress and displacement components

σrr = rλ−1{−Ajλ(λ + 1) cos(λ + 1)θ −Bjλ(λ− 3) cos(λ− 1)θ

−Cjλ(λ + 1) sin(λ + 1)θ −Djλ(λ− 3) sin(λ− 1)θ} (A.11)

σrθ = rλ−1{Ajλ(λ + 1) sin(λ + 1)θ + Bjλ(λ− 1) sin(λ− 1)θ

−Cjλ(λ + 1) cos(λ + 1)θ −Djλ(λ− 1) cos(λ− 1)θ} (A.12)

σθθ = rλ−1{Ajλ(λ + 1) cos(λ + 1)θ + Bjλ(λ + 1) cos(λ− 1)θ

+Cjλ(λ + 1) sin(λ + 1)θ + Djλ(λ + 1) sin(λ− 1)θ} (A.13)

2µjur = rλ{−Aj(λ + 1) cos(λ + 1)θ + Bj(κj − λ) cos(λ− 1)θ

−Cj(λ + 1) sin(λ + 1)θ + Dj(κj − λ) sin(λ− 1)θ} (A.14)

2µjuθ = rλ{Aj(λ + 1) sin(λ + 1)θ + Bj(κj + λ) sin(λ− 1)θ

−Cj(λ + 1) cos(λ + 1)θ −Dj(κj + λ) cos(λ− 1)θ} (A.15)

where Aj, Bj, Cj, Dj are arbitrary constants, µj is the shear modulus and κj is Kolosov’s

constant equal to 3−4νj in plane strain and (3−νj)/(1+νj) in plane stress, with νj being

Poisson’s ratio.

Substitution of these results into the appropriate boundary and interface conditions

(A.1–A.8) will yield 4n homogeneous linear algebraic equations for the 4n unknowns

Aj, Bj, Cj, Dj . For most values of λ, these equations will have only the trivial solution

Aj = Bj = Cj = Dj = 0, but non-trivial solutions are obtained for a denumerably infinite

set of eigenvalues λi at which the algebraic equations are not linearly independent. These

eigenvalues are the solutions of the characteristic equation obtained by setting the deter-

minant of the coefficients of the algebraic equations to zero. Depending on the conditions

at the singular point, the eigenvalues λi may be real or complex.
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A.2.3 The eigenfunctions

For each eigenvalue λi, there is an associated eigenfunction which can be found by

eliminating the redundant equation from the set and solving for 4n− 1 of the constants in

terms of the remaining constant. Substitution into equations (A.10–A.15) then defines a

non-trivial particular solution to the asymptotic problem of the form

u = Kir
λif i(θ) (A.16)

where Ki is the one remaining undetermined multiplying constant. A more general solu-

tion to the asymptotic problem can then be written down in the form of the eigenfunction

expansion

u =
∞∑
i=1

Kir
λif i(θ) (A.17)

Gregory (1979) has shown that this expansion is complete for the problem of the single

wedge loaded only on the circular boundary r = a. It must also therefore be complete for

the local field at a traction-free notch in an arbitrarily shaped body, since the imaginary

boundary r = a in that body must transmit a unique set of tractions. To the best knowledge

of the present authors, rigorous completeness proofs are not available for more general

singular points, but it seems likely that this representation has general validity.

If the strain energy in the body is to be bounded, all the eigenvalues must satisfy the

condition <(λi) > 0 (Barber, 2002, §11.2)and if they are ranked in order of increasing real

part, the stress field in the immediate vicinity of the singular point will be dominated by the

first term K0r
λ0f 0(θ). This term will define a singular field if and only if 0 < <(λ0) < 1.
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A.3 THE ANALYTICAL TOOL

This procedure has been automated, using the software code MATLABTM v7.1 with

the MATLAB GUI development environment (GUIDE) v2.5 and the MATLAB Symbolic

Toolbox v3.1. The analytical tool provides a graphic interface in which users can define

their problem, determine the order of the corresponding singularity and generate the dis-

tribution of stress and displacement. Final results are provided in both text and graphic

format.

Figure A.3 shows a schematic of the steps involved in the solution. Users specify the ge-

ometry of the singular point through the angles α1, α2 defining the edges, and the angles

β1, β2, ... defining the interfaces between regions (wedges) of different materials, if any.

They also specify the material properties µj, νj of the various regions and whether condi-

tions are plane strain or plane stress. Finally, for each edge or interface, they select one of

the qualitative states itemized in Section A.2.1.

Using this input, the analytical tool constructs the corresponding system of algebraic

equations and hence determines the characteristic equation by evaluating the determinant

of coefficients. It then attempts to solve this equation to evaluate the first few eigenval-

ues, using MapleTM (which is included as a solver within MATLAB). If the characteristic

equation system is too complicated for Maple to solve, the user is prompted to use New-

ton’s method to obtain an iterative solution. Since the characteristic equation has many

solutions, the result of this iterative procedure is sensitive to the choice of initial guess, so

a visual root finder is provided in order that the user can make a selection of an appropriate

initial guess. This procedure is explained in Section A.3.3 below.

Once the lowest eigenvalue has been determined, the corresponding eigenfunction is
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Figure A.3: Flow chart for the automated eigenvalue solver.
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obtained by the back substitution procedure of Section A.2.3. Features of the correspond-

ing stress or displacement field can then be displayed as contour plots.

A.3.1 Data input

Figure A.4 shows the graphic interface representing the appropriate geometry for the

asymptotic problem of Figure A.2. On starting the program, the user is presented with

a blank screen of this form, in which they first select plane stress and plane strain as

appropriate. Clicking on ‘Add Wedge’ opens an input window for the first wedge as shown

in Figure A.5. For the present example, we would select −π/2 and 0 to define the wedge

angles and then input the appropriate material properties for material 1. If the box ‘use

Loading Condition’ is clicked, Kolosov’s constant κ will be calculated from ν based on

the previously specified loading condition. Alternatively, if this box is not checked, κ can

be input as an independent variable.

Figure A.4: Geometry of the asymptotic problem of Figure A.2.
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Figure A.5: Input window for the first wedge.

Clicking on ‘Ok’ returns the user to the geometry window, in which the first wedge

will now be correctly identified. To add the second wedge, we once again click on ‘Add

Wedge’, enter the angles 0 and π and the properties of material 2, which will then return

to the geometry window in the form shown in Figure A.4.

There is no limitation on the number of wedges that can be entered into the problem state-

ment using this procedure, but the algebraic complexity of multi-wedge problems may

place practical limits, depending on the available hardware resources such as processor

and memory capacity.

A.3.2 Boundary and interface conditions

Once the geometry of the problem is completely specified, the next step is to identify

the conditions at the boundaries and interfaces, by selecting between the choices in Section

A.2.1. The first step is to click on the button ‘Set Boundaries’ in Figure A.4, leading to

the screen of Figure A.6, in which all the boundaries and interfaces are identified and
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sequentially numbered. The default option is to identify radial lines shared by two wedges

as interfaces. The user can override this assumption by checking the box ‘Avoid Contact’

for the appropriate edge in the wedge input window of Figure A.5. The user next highlights

one of the boundaries using the mouse and clicks on ‘Edit Selected’. This opens a data

input window, which in the case of a boundary offers the choice of the boundary conditions

B(i)–B(iv) of §2.1, as shown in Figure A.7. If ‘Frictional Contact with a Rigid Body’ is

selected, the coefficient of friction f must also be input. Notice that f may take either sign

depending on the direction of slip anticipated at the singular point. In general, different

singular fields are obtained for different directions of slip. If an interface is highlighted

at the stage, the corresponding data input window offers the choices I(i)–I(iii) of Section

A.2.1.

Figure A.6: Geometry of the problem with boundaries and interfaces identified.
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Figure A.7: Data input window for Boundary 1 from Figure A.6.

A.3.3 Solving process

To start the solution of the eigenvalue problem, the user clicks on ’Tools→Run’ in the

toolbar of Figure A.6. During the solution, a message window is shown on the screen

to inform the user of the progress of the solution. Once the characteristic equation has

been constructed, the tool will attempt to solve it using Maple. However, sometimes this

is unsuccessful and an iterative numerical solution is necessary, using Newton’s method.

The success of this method depends on the choice of initial guess. To increase reliability,

the user is prompted to select an appropriate initial value by the root finding screen shown

in Figure A.8.

This Figure shows the loci of the equations <{C(λ)} = 0 (thick lines) and ={C(λ)} =

0 (thin lines), where C(λ) = 0 is the characteristic equation. The loci are plotted in the

complex plane for λ, so that real eigenvalues (if any) appear on the real axis. Both these

equations must be satisfied, so permissible eigenvalues correspond to the intersection of
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Figure A.8: The visual root finder.

a pair of thick and thin lines. To select a point near to the required intersection, the user

clicks on the ‘Set Point(s)’ button in Figure A.8 and then moves the mouse to click on the

appropriate intersection. The coordinates of the point selected are displayed in the box at

the bottom right of the screen. More than one point may be selected if desired, in which

case all the resulting eigenvalues will be returned. Once the initial value has been identi-

fied, the user clicks on the right mouse button and then on ‘Exit’ which closes this screen

and returns to the solving process.

A.3.4 Presentation of results

Once the solution process is complete, the tool returns a ‘Results’ screen from which

the user can select to display the governing equations, the equations derived from the

boundary and interface conditions, the characteristic equation and the eigenvalue(s). Se-

lection of the options in the ‘Results of Back Substitution’ frame provides a text descrip-
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tion of the equations defining the eigenfunction field for stress or displacement components

associated with the eigenvalue with smallest real part and a contour plot of the same fields.

A.4 VALIDATION

To demonstrate the usefulness of the tool and to evaluate its robustness, we tested it by

comparison with the results for (i) the single wedge solution of Williams (1952), (ii) the

bonded dissimilar wedge problem of Bogy (1971) and (iii) the frictional contact problem

of Gdoutos and Theocaris (1975). In each case, the lowest eigenvalues obtained agreed

exactly with those given by the original authors (including the imaginary part of the eigen-

value in cases where this is complex).

For example, we used the tool to determine the eigenvalues for the system of Figure A.2.

Following Bogy (1971), we present the results in Figure A.9 as a contour plot of the real

and imaginary parts of the dominant eigenvalue as functions of the Dundurs’ parameters.
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Figure A.9: Contour plot of eigenvalues for the problem of Figure A.2.
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A.5 CONCLUSIONS

We have developed an analytical tool within MATLAB for solving the asymptotic

problem for a fairly general class of singular point in linear elasticity. The tool does not

require any specialist knowledge of asymptotic analysis and it provides as output the power

of the dominant singular term (the eigenfunction) and the form of the resulting stress and

displacement fields. The tool has been tested against previously published asymptotic so-

lutions and in all cases it gives reliable and accurate results. It should also be remarked that

most of these previous solutions resort to an inverse method for determining the eigenval-

ues. In other words, they specify the eigenvalue and solve for the corresponding material

properties. The present solution is direct, which is more likely to be useful in particular ap-

plications. The results are potentially useful for the development of special finite elements

or other efficient numerical strategies for problems involving singular points. The source

code is given in the Appendix, or alternatively it can be downloaded from the website

http://www-personal.engin.umich.edu/˜jbarber/asymptotics/intro.html
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